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Summary

In this thesis, we study a class of multivariate generalized autoregressive heteroskedasticity

(GARCH) models, denoted the Dynamic Conditional Eigenvalue GARCH (or λ-GARCH)

model. Multivariate GARCH models are useful for estimating and filtering time varying

(co-)variances, which are used e.g. in empirical asset pricing, Markovitz-type portfolio

optimization and value-at-risk estimation. GARCH models have long been a staple in

empirical finance and financial econometrics. This thesis contains three self-contained

chapters on the λ-GARCH, covering large-sample properties and bootstrap-based infer-

ence.

In the first chapter, “The Dynamic Conditional Eigenvalue GARCH Model”, we intro-

duce the λ-GARCH class of models, where the eigenvalues of the conditional covariance

matrix are time varying. The proposed dynamics of the eigenvalues is based on applying

the general theory of dynamic conditional score models as proposed by Creal, Koopman,

and Lucas (2013) and Harvey (2013). We provide new results on asymptotic theory for

the Gaussian quasi-maximum likelihood estimator, and for testing of reduced rank of the

(G)ARCH loading matrices of the time-varying eigenvalues. The theory is applied to US

data, where we find that the eigenvalue structure can be reduced similar to testing for

the number in factors in volatility models.

The second chapter, “Spectral Targeting Estimation of Dynamic Conditional Eigen-

value GARCH Models” investigates a two-step estimator of the λ-GARCH model, combin-

ing (eigenvalue and -vector) targeting estimation with stepwise (univariate) estimation.

This estimator is denoted the “spectral targeting estimator”. This type of estimator has

long been used in empirical modeling, and in this chapter, we present novel asymptotic

theory. We find that the estimator is consistent under finite second order moments, while

asymptotic normality holds under finite fourth order moments. The estimator is espe-

cially well suited for modeling larger portfolios: we compare the empirical performance

of the spectral targeting estimator to that of the quasi-maximum likelihood estimator for

five portfolios of 25 assets. The spectral targeting estimator dominates in terms of com-

putational complexity, being up to 57 times faster in estimation, while both estimators

produce similar out-of-sample forecasts, indicating that the spectral targeting estimator

is well suited for high-dimensional empirical applications.

In the third and final chapter, “Bootstrap-Based Inference and Testing in Multivari-
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ate Dynamic Conditional Eigenvalue GARCH Models”, we study fixed-design bootstrap

for quasi-maximum likelihood estimation of multivariate GARCH processes. Specifically,

we extend the univariate bootstrap of Cavaliere, Pedersen, and Rahbek (2018) to the

λ-GARCH model. We show, under fairly mild conditions, that the bootstrap Wald test

statistic is consistent, conditional on the original data. The theoretically investigated

fixed-design bootstrap is contrasted to a recursive bootstrap, and the asymptotic test

statistic. Through Monte Carlo simulations, we find evidence that the fixed-design boot-

strap is superior to the recursive bootstrap and the asymptotic test in small samples.

In larger samples, both bootstrap designs and the asymptotic test share properties, as

expected from the asymptotic theory. An empirical application illustrates the empiri-

cal merits of the bootstrap in multivariate GARCH models. The appealing theoretical

properties, along with the excellent finite sample properties, suggest that the fixed-design

bootstrap is an important tool for small sample inference in multivariate GARCH models.
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Dansk Résume

Denne afhandling undersøger en klasse af multivariate generaliserede autoregressive beting-

ede heteroskedastiske (GARCH) modeller, kendt som Dynamic Conditional Eigenvalue

GARCH (eller λ-GARCH) modeller. Multivariate GARCH modeller er særdeles an-

vendelige til at estimere og filtrere tidsvarierende (ko-)varianser, som anvendes bl.a.

til prisfastsætning af aktiver, Markovitz porteføljeallokering og value-at-risk estimering.

GARCH modeller har længe været en fast bestanddel i finansiering og finansiel økonometri.

Denne afhandling indeholder tre kapitler om λ-GARCH modellen, og vi undersøger de

asymptotiske egenskaber af to forskellige estimatorer og bootstrap-baseret inferens.

Det første kapitel, “The Dynamic Conditional Eigenvalue GARCH Model”, intro-

ducerer λ-GARCH modellen, hvori egenværdierne af den betingede kovariansmatrix er

tidsvarierende. Dynamikken for egenværdierne er udledt via teorien for dynamiske beting-

ede score modeller, oprindeligt introduceret af Creal, Koopman, and Lucas (2013) og

Harvey (2013). Vi udleder ny asymptotisk teori for den Gaussiske quasi-maximum like-

lihood estimator, og introducerer en ny test for reduceret rank af (G)ARCH parameter-

matricerne af de tidsvarierende egenværdier. Den udledte teori anvendes p̊a amerikansk

data, hvor vi finder at strukturen af egenværdierne kan reduceres p̊a samme måde som

man tester for faktorer i volatilitetsmodeller.

Det andet kapitel, “Spectral Targeting Estimation of Dynamic Conditional Eigenvalue

GARCH Models”, undersøger en to-trins estimator af λ-GARCH modellen, hvori (egen-

værdi og -vektor) targeting estimation kombineres med trinvis (univariat) estimation. Vi

kalder denne estimator “spectral targeting estimator”. Denne type estimator er længe

blevet brugt i empiriske sammenhæng, og i kapitlet udleder vi ny asymptotisk teori.

Konkret finder vi at estimatoren er konsistent n̊ar den ubetingede kovariansmatrix er

veldefineret, og at estimatoren er asymptotisk normalfordelt n̊ar fjerde moment er en-

deligt. Denne estimator er især velegnet til modellering af større finansielle porteføljer:

Vi sammenligner den empiriske præstation af spectral targeting estimatoren med quasi-

maximum likelihood estimatoren for fem forskellige porteføljer best̊aende af 25 aktiver.

Vores resultater indikerer, at spectral targeting estimatoren dominerer med hensyn til

beregningskompleksitet, hvor den er op til 57 gange hurtigere, og at begge estimatorer

producerer sammenlignbare out-of-sample prognoser. Dette indikerer at spectral targeting

estimatoren er særdeles velegnet til høj dimensionale anvendelser.
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I det tredje og sidste kapitel, “Bootstrap-Based Inference and Testing in Multivariate

Dynamic Conditional Eigenvalue GARCH Models”, undersøger vi en fixed-design boot-

strap til quasi-maximum likelihood estimation af multivariate GARCH processer. Vi ud-

vider den univariate bootstrap fra Cavaliere, Pedersen, and Rahbek (2018) til λ-GARCH

modellen. Vi viser, under milde betingelser, at bootstrap Wald test statistikken er kon-

sistent, betinget p̊a det observerede data. Vi sammenligner fixed-design bootstrappen

med en rekursiv bootstrap og den asymptotiske test statistik. Vores Monte Carlo simu-

lationer viser, at fixed-design bootstrappen er overlegen i små datasæt. I større datasæt

deler bootstap algoritmerne og den asymptotiske test egenskaber, som forventet fra den

asymptotiske teori. I en lille empirisk anvendelse illustrerer vi de empiriske meritter af

vores fixed-design bootstrap i multivariate GARCH modeller. De tiltalende teoretiske

egenskaber, sammen med den gode præstation i sm̊a datasæt, indikerer at fixed-design

bootstrappen er et vigtigt redskab til inferens i multivariate GARCH modeller i små

datasæt.
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Chapter 1

Dynamic Conditional Eigenvalue GARCH
This chapter is joint research with Anders Rahbek (University of Copenhagen) and

Rasmus Søndergaard Pedersen (University of Copenhagen).1

Abstract

In this paper we consider a multivariate generalized autoregressive conditional het-

eroskedastic (GARCH) class of models where the eigenvalues of the conditional

covariance matrix are time varying. The proposed dynamics of the eigenvalues is

based on applying the general theory of dynamic conditional score models as pro-

posed by Creal, Koopman and Lucas (2013) and Harvey (2013). We denote the

obtained GARCH model with dynamic conditional eigenvalues (and constant condi-

tional eigenvectors) as the λ-GARCH model. We provide new results on asymptotic

theory for the Gaussian quasi-maximum likelihood estimator (QMLE), and for test-

ing of reduced rank of the (G)ARCH loading matrices of the time-varying eigenval-

ues. The theory is applied to US data, where we find that the eigenvalue structure

can be reduced similar to testing for the number in factors in volatility models.

Keywords: Multivariate GARCH; GO-GARCH; Reduced Rank; Asymptotic The-

ory.

JEL: C32; C51; C58.

1This research was supported by the Danish Council for Independent Research (DSF Grant 7015-
00028B).
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1 Introduction

In this paper we consider p-dimensional multivariate generalized autoregressive condi-

tional heteroskedastic (GARCH) models where the eigenvalues (λ1t, ..., λpt) of the con-

ditional covariance matrix of the p-dimensional vector Xt (of returns) are modelled as

time-varying. The proposed dynamics of the eigenvalues (λ1t, ..., λpt) is based on utiliz-

ing the general theory of dynamic conditional score models for time-varying parameters

as proposed by Creal, Koopman and Lucas (2013) and Harvey (2013). We denote the

obtained GARCH model with dynamic conditional eigenvalues (and constant conditional

eigenvectors) as the λ-GARCH model.

We consider in detail the cases where (the returns) Xt are assumed to be multivari-

ate conditionally Gaussian and Student’s tv-distributed respectively, which constitute the

conditional distributions most widely applied in empirical modelling of time-varying co-

variances. By definition, both specifications imply a rich and general dynamic structure

for the evolution of the eigenvalues. Specifically, in the conditional Gaussian case, the

resulting dynamics of the eigenvalues of the λ-GARCH model is an extended version of

the generalized orthogonal GARCH (GO-GARCH) model of van der Weide (2002). Here

the λ-GARCH model extend the GO-GARCH model as the spill-over effects allow for

more flexibility, similar to the extended version of the constant conditional correlation

(ECCC) GARCH model in Jeantheau (1998) which generalizes the CCC-GARCH model

of Bollerslev (1990). On the other hand, in the conditionally tv-distributed case, the dy-

namics of the λ-GARCH model generalizes and extends the univariate β-t-GARCH model

of Harvey (2013) and Harvey and Chakravarty (2008) to the multivariate case, where the

“ARCH” effects are time-varying, while the “GARCH” effects remain constant. One may

note that the score approach is also used for considering time-varying correlations – as

opposed to time-varying eigenvalues – in Creal, Koopman and Lucas (2011), where the

DCC-GARCH model of Engle (2002) is considered under the assumption of a conditional

t-distribution of returns Xt.

As demonstrated in the empirical illustration, the dynamic specification in the λ-

GARCH class allows one to impose hypotheses on the inter-action between linear combi-

nations of the eigenvalues. In particular, for the returns on three major US bank shares,

we find that while we reject time-invariance of all the conditional eigenvalues, there is one

linear combination of the eigenvalues which appear constant. Equivalently, the implied

reduced rank structure of the (G)ARCH loading matrices indicates that there are two

linear combinations of the eigenvalues which drive the conditional volatility of Xt. Thus

we are able to disentangle time-varying linear combinations of the eigenvalues, or factors,

from time-invariant factors which drive the dynamics of the conditional covariance, see

also Lanne and Saikkonen (2007) and Dovonon and Renault (2013).

In terms of inference and asymptotic theory, we provide a full asymptotic theory for the
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Gaussian-based quasi maximum likelihood estimator (QMLE) of the (vector) parameter of

the λ-GARCH model. We provide conditions for strict stationarity, ergodicity, and finite

moments of Xt, and present primitive sufficient condition for consistency and asymptotic

normality of the QMLE relying on only finite second-order moments of Xt. Simulations

indicate that the sufficient condition of finite second-order moments may not be necessary,

which is similar to results in the univariate analysis of GARCH models, see also Jensen

and Rahbek (2004). The asymptotic results are new, and while the arguments applied for

establishing limiting distributions are based on classic likelihood expansions, novel results

on identification are derived, as needed in particular for establishing consistency of the

QMLE.

Moreover, testing reduced rank in the context of multivariate GARCH models is non-

standard as it involves non-identified parameters under the hypothesis – see Pedersen and

Rahbek (2019) for a discussion of the univariate case – and we discuss the general theory

applicable for our empirical illustration. In particular, we derive the limiting distribution

of the sup likelihood ratio (supLR) test statistic for the case of zero rows, and hence

reduced rank, of the (G)ARCH loading matrices, while we for the more general case

propose a bootstrap based approach, see also Cavaliere, Nielsen, Pedersen and Rahbek

(2020).

Existing theory for the classic (non-extended) multivariate GO-GARCH model typi-

cally relies on two (or, three) step estimators. For multiple step estimators, essentially,

in a first step the unconditional covariance matrix is estimated, which is then kept fixed

in the next estimation step(s), where the remaining dynamic GARCH parameters are

estimated, see Fan, Wang and Yao (2008) and Boswijk and van der Weide (2011) and the

references therein. In contrast, we consider here joint one-step estimation of all parame-

ters, which in particular requires the mentioned identification result as the unconditional

covariance, and hence eigenvectors, are not fixed in a first estimation step. In terms of

asymptotic theory for two, or multiple, step estimators in other multivariate GARCH type

models, Pedersen and Rahbek (2014) discuss this in terms of covariance targeting for the

BEKK-GARCH model, while Francq, Horvath and Zaköıan (2014) discuss variance tar-

geting for the ECCC-GARCH model, see also Noureldin, Shephard and Sheppard (2014).

Lanne and Saikkonen (2007) consider one-step estimation of a factor GO-GARCH model,

where, using a BEKK-type representation, it is argued that asymptotic theory in Comte

and Lieberman (2003) applies. This in turn relies on the assumption of finite eighth-order

moments of Xt, see also Hafner and Preminger (2009a), Avarucci, Beutner and Zaffaroni

(2013), and Pedersen and Rahbek (2014) for discussion of moment requirements. In con-

trast, we show that the QMLE for the λ-GARCH model is asymptotically normal under

the mild sufficient condition of finite second-order moments.

The paper is structured as follows. Section 2 defines the λ-GARCH model for the case

of conditional Gaussian and conditional Student’s t distributed returns. In Section 3, the
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stochastic properties of the λ-GARCH process is discussed, and asymptotic theory for the

QMLE is given. In Section 4 testing of reduced rank ARCH and GARCH loading matrices

is discussed and Section 5 contains an empirical example with US data. The Appendix

contains mathematical proofs (Appendix A), details on hypothesis testing (Appendices

B and C), and a short simulation study on the finite sample properties of the QMLE

(Appendix D).

1.1 Notation

Some notation used throughout the paper. Let R+ = {x ∈ R : x ≥ 0} and R++ = {x ∈
R : x > 0}. For p ∈ N, Ip denotes the (p × p) identity matrix and 0n×p denotes a n × p
matrix of zeros (and 0n = 0n×1). For a p-dimensional vector x, diag (x) = diag ((xi)

p
i=1) is

a diagonal matrix with x on the diagonal. Furthermore, denote by ρ(A) the spectral radius

of any square matrix A. We use || · || to denote the Euclidean matrix norm. Moreover,

A � B denotes the Hadamard product, while A ⊗ B denotes the Kronecker product of

A and B of suitable dimensions. We set A�2 = A � A and A⊗2 = (A ⊗ A). Finally, let
p→,

d→ and
w→ denote convergence in probability, in distribution and weakly respectively.

Unless stated otherwise, all limits are taken as the sample size T →∞.

2 Score Driven Conditional Eigenvalues |
λ-GARCH

We consider a class of multivariate conditionally heteroskedastic models with time-varying

eigenvalues of the conditional covariance matrix. As detailed below, dynamic specifica-

tions of the time-varying eigenvalues are derived under different distributional assumptions

on the innovations, using the score-based approach in Creal, Koopman and Lucas (2011)

and Harvey (2013).

Let Xt be a p-dimensional vector of observed variables (returns, say), Xt ∈ Rp for

t = 1, ...., T . Define the information at time t, Ft as the σ -algebra generated by the

past variables, Ft = σ(Xi : i ≤ t), and let f(Xt|Ft−1) denote the conditional density of

Xt given Ft−1. We assume for simplicity that the conditional mean E (Xt|Ft−1) is zero,

E (Xt|Ft−1) = 0, and hence that the conditional distribution of Xt can be characterized in

terms of the time-varying conditional covariance matrix Ωt = E(XtX
′
t|Ft−1) in addition

to distributional shape parameters.

The conditional covariance matrix Ωt is stated in terms of time-varying conditional

eigenvalues (λi,t)
p
i=1 and corresponding p−dimensional constant conditional eigenvectors

(vi)
p
i=1. That is,

Ωt = V ΛtV
′, (2.1)
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with V = (v1, ..., vp) and Λt = diag
(
(λi,t)

p
i=1

)
. By definition the eigenvectors (vi)

p
i=1 are

orthogonal, such that V is an orthogonal matrix, V ′V = V V ′ = Ip. The eigenvalues λi,t

are strictly positive, λi,t > 0 (almost surely) for i = 1, ..., p and for all t. With

λt = (λ1,t, . . . , λp,t)
′

the vector of eigenvalues, we note that the conditional density f(Xt|Ft−1) may be indexed

by λt ∈ Ft−1, and we write henceforth

f(Xt|Ft−1) = f(Xt|λt).

The dynamics of the time-varying eigenvalues λt is given by the score updating equation,

see Creal et al. (2011),

λt = W +Ast−1 + Bλt−1, (2.2)

where W is a p-dimensional vector of constants and A and B are general (p×p) coefficient

matrices. The p-dimensional (score) vector st is defined as the score of the log-density

log f (·|λt) with respect to λt, up to an appropriate scaling. That is, the score contribution

in the dynamics is given by,

st = St
∂ log f(Xt|λt)

∂λt
, (2.3)

with St an appropriate scaling matrix, which here in line with existing literature on score

driven models is set to the inverse of the (conditional) Fisher information matrix, i.e.,

St =

(
E

[
∂ log f(Xt|λt)

∂λt

∂ log f(Xt|λt)
∂λ′t

∣∣∣∣Ft−1

])−1

. (2.4)

Below we consider the implied λ-GARCH models when f (·|λt) is assumed to be one

of the two dominating densities in the multivariate GARCH literature; the multivariate

Gaussian and Student’s t respectively.

2.1 Conditional Gaussian Distribution

Consider the case of conditional normality of Xt, such that the conditional density

f (Xt|λt) is given by,

f(Xt|λt) = (2π)−p/2 det(Ωt)
−1/2 exp

(
−X ′tΩ−1

t Xt/2
)
,

with Ωt defined in (2.1). Using the definitions in (2.2)–(2.4) yields that the implied

dynamics of λt can be represented in the multivariate GARCH-type form as given by,

λt = W + A (V ′Xt−1)
�2

+Bλt−1. (2.5)
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Here W is a p-dimensional vector, A = A and B = B −A, and where we restrict the

(p× p) matrices A and B to have non-negative entries.

Note that, for each i, the time-varying positive eigenvalue λi,t is allowed to depend on

all of the orthogonal linear combinations v′jXt−1, where Cov
(
v′jXt−1, v

′
kXt−1|Ft−1

)
= 0

(and hence Cov
(
v′jXt−1, v

′
kXt−1

)
= 0 as Ωt = E (XtX

′
t|Ft−1) by assumption) for all j 6= k.

In addition, our proposed λ-GARCH model allows λi,t to depend on all entries of λt−1,

and hence the Gaussian score-driven eigenvalue model is a generalization of the GO-

GARCH models considered by Fan et al. (2008) and Boswijk and van der Weide (2011).

Specifically, Boswijk and van der Weide (2011) consider the GO-GARCH model

Xt = V Λ
1/2
t ηt, ηt ∼ i.i.d.(0, Ip),

with Λt = diag
(
(λi,t)

p
i=1

)
satisfying2, with Bd a (p× p) diagonal matrix,

λt = (I − A−Bd) + A (V ′Xt−1)
�2

+Bdλt−1. (2.6)

Moreover, Boswijk and van der Weide (2011) assume that the matrix V = (v1, . . . , vp) is

non-singular with polar decomposition

V = CR,

such that C is positive definite and R is orthogonal. Lanne and Saikkonen (2007) con-

sidered an identical model, but with the additional restriction that some row in A and

(the diagonal) Bd is zero, and hence allowing for constant conditional eigenvalues λi,t.

We discuss in Section 4 testing for reduced rank of A and B in the λ-GARCH model, for

which the zero row restriction is a special case. The model in Boswijk and van der Weide

(2011) is closely related to the model considered by Fan et al. (2008) who, identically to

our approach, let V be orthogonal but with Λt defined by (2.6) such that the condition

that E (XtX
′
t) = Ip (or, equivalently, standardized returns) is imposed.

2.2 Conditional Student’s t-Distribution

Consider here the case where the conditional distribution of Xt is a standardized Student’s

t-distribution with ν > 2 degrees of freedom. The conditional density is given by

f(Xt|λt) =
Γ
(
ν+p

2

)
Γ
(
ν
2

) [(ν − 2)π]−p/2 det (Ωt)
−1/2

[
1 +

X ′tΩ
−1
t Xt

ν − 2

]−(ν+p)/2

,

2Boswijk and van der Weide (2011) state that λit is ”assumed to follow a GARCH-type structure”
[p.119], and the parametrization in (2.6) is the one considered in the empirical application therein.
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where Γ(·) is the Gamma function, and it follows that

∂ log f(Xt|λt)/∂λ′t = Ψ′
(
Λ−1
t

)⊗2
(
δt (V ′Xt)

⊗2 − vec(Λt)
)
, (2.7)

where Ψ = ∂ vec (Λt) /∂λ
′
t and δt = (v + p) /

(
v − 2 +

∑p
i=1 (V ′iXt)

2 /λit
)
, see also Creal

et al. (2011, Theorem 1). Stated differently, ∂ log f(Xt|λt)/∂λit = 1
2λ2
it

[
δt (V ′iXt)

2 − λit
]

for i = 1, ..., p. Moreover, St in (2.4) is given by,

S−1
t =

1

4
Ψ′
(

Λ
−1/2
t

)⊗2 [
gG− vec (I) vec (I)′

] (
Λ
−1/2
t

)⊗2

Ψ. (2.8)

Using (2.7) and (2.8) it follows that the Student’s t λ-GARCH conditional eigenvalue

dynamics can be stated as

λt+1 = W + At (V ′Xt)
�2

+Bλt. (2.9)

It differs from the Gaussian case in (2.5) as the “ARCH-loadings” At are time varying

in the Student’s t case, while the vector W and the matrix B are constant as in the

Gaussian case. Specifically, and as applied in the empirical Section 5, the time varying

“ARCH-loadings” At and the constant “GARCH-loadings” B in (2.9) are for the p = 3

dimensional case given by,

At = wtA

 v + 1 λ1t

λ2t

λ1t

λ3t

λ2t

λ1t
v + 1 λ2t

λ3t

λ3t

λ1t

λ3t

λ2t
v + 1

 and B = B−v + 5

v
A, (2.10)

where wt =
(

v+5
v(v+3)

)
δt for p = 3, i.e., wt = (1 + 5/v) /

(
v − 2 +

∑3
i=1 (V ′iXt)

2 /λit
)
. As

expected for p = 1, and setting wt = v+3
v(v+1)

δt for p = 1, we obtain the univariate Beta-t-

GARCH in Harvey (2013, Ch.4.7). Hence, and as observed in Creal et al. (2011, p.555),

the “weight wt in (8) (here: (2.10)) automatically accounts for extreme values because it

decreases if y′tΣ
−1
t yt (here:

∑3
i=1 (V ′iXt)

2 /λit) is large”, see also the discussion in Section

5.

3 Properties and Estimation of the λ-GARCH

Model

For the estimation theory we focus on the Gaussian case in Section 2.1, and study quasi-

likelihood inference. In particular, we provide sufficient conditions for strict stationarity

and state primitive conditions for strong consistency and asymptotic normality of the

one-step QMLE for all parameters.
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The (Gaussian) λ-GARCH model may be summarized as,

Xt = V Λ
1/2
t ηt, Λt = diag

(
(λi,t)

p
i=1

)
, V ′V = V V ′ = Ip, (3.1)

λt = (λ1,t, . . . , λp,t)
′ = W + A(V ′Xt−1)�2 +Bλt−1, (3.2)

with ηt i.i.d.(0, Ip). The parameters of the model are given by the p-dimensional vector

W = (ω1, ..., ωp)
′ with strictly positive entries, ωi > 0 for i = 1, 2, ..., p and the (p × p)

matrices A = (αij)i,j=1,...,p and B = (βij)i,j=1,..,p with non-negative entries, αij,βij ≥ 0.

As in van der Weide (2002), the orthogonal matrix V = (v1, ..., vp) is defined in terms of

rotation matrices R (i, j;φ) specified below and thus parametrized by p (p− 1) /2 rotation

angles φij collected in φ = (φ12, . . . , φ(p−1)p)
′ ∈ Rp(p−1)/2, with j > i and i = 1, ..., p− 1,

j = 2, ..., p. Specifically, the (p× p) dimensional V = V (φ) is given by,

V (φ) =

p−1∏
i=1

p∏
j=i+1

R (i, j;φ) ,

with R (i, j;φ) (p× p)-dimensional rotation matrices as defined by,

R (i, j;φ)kk = 1 if k 6= i, j, R (i, j;φ)kl = 0 if k 6= l and k 6= i, j,

R (i, j;φ)ii = R (i, j;φ)jj = cos(φij), and R (i, j;φ)ij = −R (i, j;φ)ji = sin(φij).

Remark 1. Note that by definition det(V ) = 1, that is, V is a rotation matrix. By defi-

nition this excludes orthogonal matrices with det (V ) = −1, that is, the class of reflection

matrices. For further details on this, and on the parametrization of det(V ) = 1 in terms

of the rotation angles, or the so-called Givens parametrization, see Pinheiro and Bates

(1996, Section 2.5) and the references therein.

Remark 2. It follows that for the case of p = 3, V (φ) is given by

V (φ) = R (1, 2;φ)R (1, 3;φ)R (2, 3;φ)

=

 cos(φ12) sin(φ12) 0

− sin(φ12) cos(φ12) 0

0 0 1


 cos(φ13) 0 sin(φ13)

0 1 0

− sin(φ13) 0 cos(φ13)


1 0 0

0 cos(φ23) sin(φ23)

0 − sin(φ23) cos(φ23)

 ,

while for p = 2,

V (φ) = R (1, 2;φ) =

(
cos(φ12) sin(φ12)

− sin(φ12) cos(φ12)

)
.
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3.1 Stochastic properties

For the stochastic properties of Xt satisfying equations (3.1)-(3.2), we note that V ′Xt

satisfies the stochastic recursion,

V ′Xt = Λ
1/2
t ηt, with λt = W + A (V ′Xt−1)

�2
+Bλt−1, (3.3)

such that the rich literature on stochastic recursions can be applied in order to state

conditions for strict stationarity and ergodicity as well as conditions for finite moments of

Xt. To see this, rewrite the dynamics of λt in (3.3) as the stochastic recurrence equation

(SRE),

λt = W + Φt−1λt−1 (3.4)

where Φt are i.i.d. random matrices,

Φt = A diag
(
(η2
i,t)

p
i=1

)
+B, (3.5)

with Φt and λt independent. By Francq and Zaköıan (2019, Theorem 10.6 and Corollary

10.2) and Pedersen (2017, Lemmas B.5 and B.6) we immediately have the following result.

Theorem 3.1. The process (Xt : t ∈ Z) given by (3.1)-(3.2) is strictly stationary and

ergodic if and only if ξ < 0, where ξ is the top Lyapunov coefficient of (Φt : t ∈ Z) defined

by

ξ = lim
n→∞

n−1E(log ||
n∏
t=1

Φt||), (3.6)

with Φt defined in (3.5). The strictly stationary and ergodic process has E‖Xt‖s <∞ for

some s > 0. Moreover, for k ∈ N, E||Xt||2k < ∞ if and only if {ρ(E(Φ⊗kt )) < 1 and

E||ηt||2k <∞}.

Remark 3. Notice that a necessary and sufficient condition for finite second order mo-

ments, E||X�2
t || <∞, of the strictly stationarity and ergodic process (Xt : t ∈ Z) is that

ρ(A+B) < 1. In this case, the unconditional variance of the process is

E (XtX
′
t) = E (Ωt) = E(V ΛtV

′) = V
(
diag

{
(Ip − A−B)−1W

})
V ′.

3.2 Quasi-Maximum Likelihood Estimation

The parameters of the λ-GARCH model in (3.1)-(3.2) are given by,

θ = (W ′, vec(A)′, vec(B)′, φ′)′,
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with the vector θ ∈ Θ, where the parameter space Θ is defined by,

Θ = ΘW ×ΘA ×ΘB ×Θφ, (3.7)

with ΘW ⊂ Rp
++, ΘA ⊂ Rp2

+ , ΘB ⊂ Rp2

+ , and Θφ ⊂ Rp(p−1)/2.

Given a realization (Xt : t = 0, 1, . . . , T ) of the λ-GARCH process in (3.1)-(3.2), the

Gaussian quasi-maximum likelihood estimator (QMLE), θ̂T , for θ is defined as

θ̂T = arg min
θ∈Θ

LT (θ),

where the log-Gaussian likelihood function is given by,

LT (θ) =
T∑
t=1

lt(θ), lt(θ) = log det(Ωt(θ)) +X ′tΩ
−1
t (θ)Xt, (3.8)

Ωt(θ) = V (φ)Λt(θ)V (φ)′, Λt(θ) = diag(λt(θ)), (3.9)

λt(θ) = W (θ) + A (θ) (V (φ)′Xt−1)�2 +B (θ)λt−1(θ), t = 1, . . . , T, (3.10)

with λ0(θ) = λ̄0 fixed and with strictly positive entries.

In order to investigate the stochastic properties of the QMLE we make the following

simple assumptions about the parameter space Θ in (3.7):

Assumption 3.1. Assume that the true value θ0 = (W ′
0, vec(A0)′, vec(B0)′, φ′0)′ ∈ Θ.

Moreover, assume that ΘW = [ωL, ωU ]p for some 0 < ωL < ωU < ∞, ΘA = [0, αU ]p
2

for

some 0 < αU < ∞, Θφ = [φL, φU ]p(p−1)/2 with −∞ < φL < φU < ∞, and, finally, that

ΘB is compact with ΘB ⊂ Rp2

+ satisfying supvec(B)∈ΘB
ρ(B) < 1.

Note that Assumption 3.1 implies in particular that Θ is compact. To establish consis-

tency, we make the following assumption about the data generating process (Xt : t ∈ Z):

Assumption 3.2. Assume that ξ < 0, with ξ defined in (3.6), such that the process

(Xt : t ∈ Z) is stationary and ergodic with E‖Xt‖s <∞ for some s > 0.

Lastly, in order to show that the QMLE is strongly consistent, we state an identifying

high-level assumption in terms of the ergodic version Ω?
t (θ) of Ωt(θ), as defined in (A.2)

in the appendix. Note that Ω?
t (θ) is well-defined for any θ ∈ Θ by Assumptions 3.1-3.2.

Assumption 3.3. For θ ∈ Θ, if Ω?
t (θ) = Ω?

t (θ0) almost surely, then θ = θ0.

We have the following strong consistency result for the QMLE.

Theorem 3.2 (Consistency). Under Assumptions 3.1-3.3, θ̂T → θ0 almost surely.

The identifying condition in Assumption 3.3 is high-level, and next we state in As-

sumptions 3.4–3.6 sufficient and primitive conditions under which it holds.
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Assumption 3.4. Assume for the i.i.d.(0, Ip) sequence (ηt : t ∈ Z) that ηit and ηjt are

independent for all i 6= j, i, j = 1, ..., p. Moreover, assume that η2
i,t is non-degenerate for

i = 1, . . . , p.

Assumption 3.5. Assume that the (p× 2p) dimensional matrix [A0, B0] has full rank p.

Moreover, with z ∈ C and θ ∈ Θ, assume that the polynomials A (θ) z and Ip − B (θ) z

satisfy that (Ip −B (θ) z)−1A (θ) z = (Ip −B0z)−1A0z implies θ = θ0.

Assumption 3.6. With Θφ defined in Assumption 3.1, assume that the true value φ0 of

φ belongs to the interior of Θφ, i.e., φ0 ∈ intΘφ, and assume that φL = 0 and φU = π/2.

Remark 4. Assumptions 3.4-3.5 are classic for standard multivariate GARCH models,

see e.g., Francq and Zaköıan (2012). In contrast, Assumption 3.6, which addresses the

rotation parameters φ, is non-standard. As demonstrated in Lemma 3.1 this condition

is indeed sufficient for identification. However, the condition may not be necessary as

also investigated in Appendix D, where we consider practical implications of extending the

parameter space Θφ . Note also in this respect, that the results in the empirical illustration

in Section 5 do not change by extending the parameter space by setting φL = −π/2 < 0.

Remark 5. Note that for the static model (where, say, A = B = 0) identification of

W and the rotation parameters in φ can be obtained by ordering the (assumed) distinct

eigenvalues (ω1, . . . , ωp), and moreover restricting the rotation angles φij to lie in the

interval [φL, φU ] = [0, π], see e.g., Pinheiro and Bates (1996, Section 2.5).

Remark 6. In the proof of Lemma 3.1 properties of the matrix V (φ)′V (φ0) for φ 6= φ0

are exploited. The proof applies an auxiliary Lemma A.1, which relies on the assumption

that φ0 lies in the interior of Θφ = [φL, φU ]p(p−1)/2, ruling out permutations in λt(θ). To

illustrate, consider the simple case of dimension p = 2 and with φ0 = 0, φ = π/2 /∈
int (Θφ), such that φ 6= φ0. In this case, with (W,A,B) = K(W0, A0, B0) where

K =

(
0 1

1 0

)
,

it holds that Ω?
t (θ) = Ω?

t (θ0) almost surely, despite θ 6= θ0. Note also that φ0 ∈ int Θφ rules

out the case where Vφ0 = Ip, that is, when the entries of Xt are conditionally uncorrelated.

In order to allow for this, an alternative to Assumption 3.6 is to assume φ0 ∈ Θφ =

[φL, φU − δ]p(p−1)/2 for some small δ satisfying φL = 0 < δ < π/2 = φU .

We have the following result for identification:

Lemma 3.1. Under Assumptions 3.1, 3.2, 3.4-3.6, it holds that Assumption 3.3 is satis-

fied.
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The main argument used in the proof of the lemma is to show that if Ω?
t (θ) = Ω?

t (θ0)

almost surely and φ 6= φ0, then at least one of the conditional eigenvalues of Ω?
t (θ0) is

a linear combination of the remaining conditional eigenvalues. Such a property implies

that the matrix [A0, B0] has reduced rank, and hence contradicts Assumption 3.5. Hence,

we show that under Assumption 3.5, it must hold that φ = φ0, and identification of the

remaining parameters follows by well-known arguments.

In order to show that the QMLE is asymptotically Gaussian, we make some additional

assumptions.

Assumption 3.7. The true value of the parameter vector θ0 ∈ int Θ.

Assumption 3.8. The data-generating process satisfies (i) that E‖ηt‖4 < ∞, and (ii)

E‖Xt‖2+s <∞ for some s > 0.

Assumption 3.9. The matrix A0 has a row with a unique entry.

Assumptions 3.7 and 3.8(i) are standard. Assumption 3.8(ii) of finite second-order

moments of Xt is used to show that the expectation of the third-order partial derivatives

of the log-likelihood contribution is finite on a (suitable) neighborhood around θ0 in the

proof of Lemma A.6 in Appendix A.5.

Specifically, the third-order derivatives contain terms essentially of the form

λ̇s,t,i(θ)λ̇s,t,j(θ)λ̇s,t,k(θ)

λ3
s,t(θ)

×
λ

1/2
g,t (θ0)λ

1/2
h,t (θ0)ηh,tηg,t

λs,t(θ)
, (3.11)

where ηs,t denotes the sth entry of the noise ηt, λs,t(θ) is the sth entry of λt(θ) in (3.10),

and λ̇s,t,i(θ) = ∂λs,t(θ)/∂θi. Any power of the first factor has finite expectation on the

neighborhood, whereas for the case where g 6= s, it is not obvious that the second factor

has finite expectation for θ 6= θ0. On the other hand, it is straightforward to show that

the fraction is (up to a scaling constant) bounded (uniformly on the neighborhood) by

‖λt(θ0)‖‖ηt‖2 which has finite expectation provided that E‖Xt‖2 < ∞. By Hölder’s

inequality it then follows that (3.11) has finite expectation if E‖Xt‖2+s < ∞ for some

s > 0. Simulations in Appendix D indicate that, while sufficient, the condition may not

be needed in order for the QMLE to be asymptotically normal.

We note that the moment requirement is stronger than for the theory for the Gaussian-

based QMLE for the ECCC-GARCH model (Francq and Zaköıan, 2012) and the factor-

GARCH (Hafner and Preminger, 2009b), where only E‖Xt‖s < ∞ for some s > 0 is

needed. On the other hand, it is milder than the requirements of finite sixth- or eighth-

order moments assumed by Hafner and Preminger (2009a) and Comte and Lieberman

(2003) for the VEC and BEKK class of models, respectively.

Assumption 3.9 is used in the proof of Lemma A.5 in order to show that the expectation

of the Hessian, i.e., the information matrix J = plim (T−1∂2LT (θ0)/∂θ∂θ′) as defined in
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(A.6), is invertible. A sufficient condition for this to hold is the assumption that A0 has

full rank, see also Assumption 3.5. Note that often the proof of invertibility of J relies on

showing that there exists no non-zero γ ∈ Rdθ such that for all t

γ′
∂λt(θ0)

∂θ
= 0p×1 almost surely. (3.12)

In much of the existing literature on multivariate GARCH models, e.g., Comte and Lieber-

man (2003) on BEKK models and Francq and Zaköıan (2012) ECCC models, such a

property is typically verified by exploiting that, under (3.12), γ′∂λt(θ0)/∂θ is linear in

(V ′0Xt−1)�2 and λt−1(θ0) and that θ0 is identified. In our model, we do not have lin-

earity as γ′∂λt(θ0)/∂θ contains terms with partial derivatives with respect to the entries

of φ. This leads to additional considerations about invertibility of J , and we make the

additional Assumption 3.9; see the proof of Lemma A.5 for details.

We have the following result:

Theorem 3.3 (Asymptotic normality). Under Assumptions 3.1, 3.2, 3.4-3.9,

√
T (θ̂T − θ0)

d→ N(0, J−1ΣJ−1),

where J is an invertible matrix defined in (A.6) and Σ is a non-negative definite matrix

defined in (A.5) in the Appendix.

A small simulation study in Appendix D illustrates that the finite-sample distribution

of the QMLE is well-approximated by a normal distribution, and moreover indicate that

the sufficient moment conditions can be relaxed. Lastly, the simulation indicate that

while sufficient for identification, it may not be necessary to restrict φij ∈ [φL, φU ] with

φL = 0 < φU = π/2.

Next, we consider hypothesis testing in the λ-GARCH model motivated by the idea

that a few conditional time-varying linear combinations of λt are driving the volatility of

the Xt process.

4 Reduced Rank of A and B

Consider the λ-GARCH model in (3.1)-(3.2) on the form,

λt = W + A(V ′Xt−1)�2 +Bλt−1.

A relevant hypothesis to test is if there are no spillovers between the eigenvalues, that is if

the matrices A and B are diagonal, similar to testing for no volatility spillovers in ECCC-

GARCH models as considered by Pedersen (2017). We here take another direction and

consider testing of the hypothesis that one or more linear combinations of λt are constant.
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A special case of this is to test if one or more conditional eigenvalues are constant, similar

to the test for a constant factor in the factor GO-GARCH model by Lanne and Saikkonen

(2007).

The hypothesis of (p− q) constant conditional linear combinations of λt may be

parametrized as the hypothesis Hq of reduced rank q < p of A and B, as given by

Hq : A = γα′ and B = γβ′. (4.1)

Here γ, α and β are (p× q) dimensional matrices, such that A and B have non-negative

entries. An immediate implication is indeed that the (p− q) combinations γ′cλt are con-

stant, where γc is (p× p− q) dimensional and γ′cγ = 0 with rank of (γ, γc) equal to p.

That is, the hypothesis is equivalent to (p− q) constant conditional eigenvalue relations

γ′cλt, while the remaining q relations, γ′λt are time-varying.

In terms of testing – apart from standard identification issues related to the reduced

rank as well-known from testing reduced rank in cointegrated vector autoregressive pro-

cesses, see e.g., Cavaliere, Rahbek and Taylor (2012) – this raises the issue of non-identified

parameters under Hq as addressed in Andrews (2001) for univariate GARCH models, see

also Pedersen and Rahbek (2019) for GARCH models with exogenous covariates. In the

λ-GARCH case the non-identified parameters appear in the GARCH loadings matrix B,

and hence across equations which requires arguments different from the univariate cases

mentioned.

To illustrate, we start out by considering in Section 4.1 a p = 3 dimensional model

with γ in (4.1) known such that testing H2 reduces to testing for a zero row in A and B.

Next, in Section 4.2, we discuss general testing of Hq, that is, extend the discussion to

include an unknown γ matrix (and general dimension p). In the empirical illustration in

Section 5 we consider implementation of both cases.

4.1 Testing with γ known

Consider the case of a p = 3 dimensional system with γ known, and given by

γ =

 0 0

1 0

0 1

 ,

that is, with a zero row in γ. This is a special case of H2, as with the (3× 2) matrices α

and β given by

α =

 α21 α31

α22 α32

α23 α33

 and β =

 β21 β31

β22 β32

β23 β33

 ,
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one can write A and B as

A = γα′ =

 0 0 0

α21 α22 α23

α31 α32 α33

 and B = γβ′ =

 0 0 0

β21 β22 β23

β31 β32 β33

 .

We denote this hypothesis by H†2. Observe, that under H†2 the loading matrices A and B

indeed have reduced rank (less than or equal to) q = 2, as induced by the zero row. Note

also under H†2, γc = (1, 0, 0)′ such that γ′cλt = λ1t is constant, while the remaining two

linear combinations in γ′λt = (λ2t, λ3t)
′ are time-varying.

Remark 7. The case of testing for a zero row in A and B, or H†2, is similar to testing the

hypothesis of weak exogeneity known from cointegration analysis, see Harbo et al. (1998).

In terms of testing H†2, it follows that β11 in (the unrestricted) B is not identified

analogous to testing of conditional homoskedasticity in GARCH models, see Andrews

(2001). Moreover, for the two remaining eigenvalues λ2t and λ3t under H†2,

λjt = ωj +
3∑
i=1

αji (V
′
iXt−1)

�2
+

3∑
i=1

βjiλit−1

= (ωj + βj1ω1) +
3∑
i=1

αji (V
′
iXt−1)

�2
+

3∑
i=2

βjiλit−1, j = 2, 3.

Hence, in addition to β11, we also see that the parameters β21 and β31 are non-identified

under the null in the GARCH loadings matrix B. To address this, we proceed as in

Pedersen and Rahbek (2019), and test the observationally equivalent hypothesis H∗2 which

is given by

H∗2 : α1i = 0 for i = 1, 2, 3 and β1j = 0 for j = 2, 3. (4.2)

The idea is to apply a sup likelihood ratio (supLR) test, where the supremum is taken

over the non-identified parameters β11, β21 and β31.

To distinguish the non-identified parameters from the identified, partition the parame-

ter vector θ as θ = (τ ′, δ′)′, with (the identified) τ = ((ωi)
3
i=1 , (αij)

3
i,j=1 , (βij)i=1,2,3 j=2,3 , (φi)

3
i=1)′

and (the unidentified) δ = (βi1)3
i=1. Similarly, with Θ defined in (3.7), the equivalent par-

tition of the parameter space is given by the product Θ = Θτ ×Θδ, where Θτ and Θδ are

compact. The parameter space for τ as restricted by H∗2 is given by

Θ∗τ = {τ ∈ Θτ : α1i = 0 for i = 1, 2, 3 and β1j = 0 for j = 2, 3}.

The test relies on estimating τ restricted and unrestricted for a given δ ∈ Θδ, with the
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restricted and unrestricted estimators given respectively by,

τ̃T,δ = arg max
τ∈Θ∗τ

LT (τ, δ) and τ̂T,δ = arg max
τ∈Θτ

LT (τ, δ) , for δ ∈ Θδ. (4.3)

The supLR statistic is given by

sup LRT (H∗2 ) = sup
δ∈Θδ

LT (τ̂T,δ, δ)− sup
δ∈Θδ

LT (τ̃T,δ, δ) . (4.4)

Under regularity conditions given in Appendix B the statistic converges in distribution to

a limiting distribution L,

sup LRT (H∗2 )
d→ L, (4.5)

with L given by (B.4). Also in Appendix B the implementation of the asymptotic test is

discussed which is applied in Section 5.

Remark 8. The key conditions for (4.5) as given in Appendix B are: (i) that τ̃T,δ and

τ̂T,δ are consistent for τ0 ∈ Θτ for any δ ∈ Θδ, (ii) that the score as a process indexed by

δ converges weakly to a Gaussian process, and (iii) that the Hessian matrix is invertible

uniformly on Θδ. The conditions (i) and (iii) rely on finding conditions such that τ0

is identified, whereas (ii) typically relies on showing that the score obeys a functional

CLT. The latter may be shown to hold if the score process converges in finite-dimensional

distribution to a Gaussian vector, and that the score process is tight, see e.g., Pedersen

and Rahbek (2019, proof of Lemma A.3). In line with Pedersen and Rahbek (2019),

one may need stronger moment conditions than the ones in Assumption 3.8 in order

to prove tightness. Likewise, due to the fact that τ0 is a boundary point of Θτ , it may

require higher-order moments of Xt in order so show that ratios of the type (3.11) have

finite expectation, similar to Francq and Zaköıan (2009) and Pedersen (2017) where finite

sixth-order moments are imposed.

4.2 The general case of reduced rank A and B matrices

Next, consider the general case Hq of reduced rank q in the p-dimensional λ -GARCH

model with general γ, α and β matrices.

Observe initially that with the “ARCH” part of the restrictions in Hq imposed, A =

γα′, and with γ̄ = γ (γ′γ)−1 it holds by definition that

γ̄′λt = γ̄′W + α′(V ′Xt−1)�2 + γ̄′Bγγ̄′λt−1 + γ̄′Bγcγ̄
′
cλt−1,

γ̄′cλt = γ̄′cW + γ̄′cBγγ̄
′λt−1 + γ̄′cBγcγ̄

′
cλt−1.

For γ̄′cλt to be constant, γ̄′cBγ = 0 is needed, in which case the second equation reduces
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to

γ̄′cλt = γ̄′cW + γ̄′cBγcγ̄
′
cλt−1,

which, similar to the H∗2 example, implies that the (p− q)2 parameters γ̄′cBγc are not

identified. Moreover, as the linear combinations γ̄′cλt are constant, also γ̄′Bγc are not

identified in the equation for γ̄′λt. Collecting terms, using (γ, γc) is of full rank p by

definition, it holds that the unidentified (p× (p− q)) dimensional parameter matrix δ is

given by

δ = Bγc.

As above one may consider a sup-based testing approach keeping δ fixed, and a supLR test

statistic similar to (4.4) can be computed. However, the fact that γ is unknown means that

a reparametrization is needed to ensure identification as well as variational independence

of the remaining parameters of the model. In addition, the regularity conditions for

convergence in distribution of supLR statistic are beyond the scope of this paper, and we

instead propose to apply a bootstrap based test. The details of the bootstrap are given

in Appendix C and is illustrated in the next Section 5.

5 An Empirical Illustration

In this section we apply the λ-GARCH model to daily returns of three financial equities3

from the S&P 500 Index with sample period January 3rd 2006 to January 2nd 2018 (with

T = 3020 observations).

The log-returns are shown in Figure 5.1. Initial inspection reveals, as expected, heavy-

tailedness and that the log-returns can be characterized by having ARCH effects, or

volatility clustering. As to the observed volatility clustering it seems to occur during the

same epochs of time, and hence the log-returns tentatively share a common factor (or

eigenvalue) driving their conditional volatilities.

In the following we consider: (i) dynamics of the estimated eigenvalues, (ii) testing

reduced rank of the loading matrices A and B, as well as for constant eigenvalues, and

(iii) adequacy of the λ-GARCH model. Overall, we make the following notes: First, the

λ-GARCH model performs well for the series studied, and the estimated time-varying

eigenvalues and eigenvectors are easy to interpret, reflecting market conditions at a given

time. Second, despite the fact that the three equities all are in the same sector and

have a shared source of the majority of variation in a “market” eigenvalue, we cannot

restrict one of the lesser important eigenvalues to be constant without a significant loss

of explanatory power. Third, we note the usefulness of the reduced rank structure in

conditional covariance matrices. The finding, see below, that the parameter matrices A

and B are of reduced rank is novel, and it may have implications for the applications

3Bank of America corp. (BAC), JPMorgan Chase & co. (JPM), and Wells Fargo (WFC).
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Figure 5.1: Log-returns of the three series analyzed: Bank of America corp. (BAC),
JPMorgan Chase & co. (JPM), and Wells Fargo (WFC).
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Figure 5.2: Estimated standardized residuals {η̂it}Tt=1 from the Gaussian λ -GARCH
model.

of models for the conditional covariance matrices, as it is a coherent way of imposing a

structure and reduce the dimensionality of the model without losing explanatory power.

5.1 Dynamics of the estimated eigenvalues

As to the dynamic variation of the time-varying estimated eigenvalues (λ̂it)
3
i=1 in the first

row of Figure 5.3, we note that λ̂3t on average explains about 85% of the variation of the

aggregated eigenvalues,
∑3

i=1 λ̂it. Moreover, the estimated corresponding eigenvector V̂3

reveals that λ̂3t may be interpreted as a “market factor”, with each asset having a (nor-

malized) weight of roughly 30%. The two remaining eigenvalues λ̂1t and λ̂2t each explain

6 − 8% of the variation on average, and the loadings of the corresponding eigenvectors

correspond to long-short portfolios. Importantly, while the two smaller eigenvalues are of

lesser importance compared to the “market eigenvalue”, they appear non-constant, and

all orthogonalized returns, V (φ̂T )′Xt, have inherited ARCH effects, as can be seen from

Figure 5.4.4

4Note that, in line with the Monte Carlo results, unreported estimation results show that the dynamics
of the eigenvalues in Λ̂t do not change if φij is allowed to lie in [φL, φU ] with φL = −π/2 (and not φL = 0).
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Table 5.1: Estimation of the λ-GARCH.

Rank W A B φ V
0.105
(0.040)

0.122
(0.050)

0.152
(0.076)

0.010
(0.003)

4.19× 10−5

(2.64×10−4)
0.126
(0.240)

0.045
(0.013)

0.323
(0.071)

0.712
(0.018)

−0.239
(0.054)

0.661
(0.007)

q = 3 0.094
(0.027)

0.139
(0.062)

0.108
(0.054)

0.006
(0.002)

0.060
(0.166)

2.55× 10−8

(4.03×10−7)
0.027
(0.015)

0.722
(0.054)

−0.238
(0.061)

0.803
(0.018)

0.546
(0.006)

0.039
(0.028)

0.081
(0.067)

0.168
(0.124)

0.071
(0.017)

3.98× 10−9

(1.65×10−7)
3.66× 10−8

(4.12×10−7)
0.910
(0.021)

0.815
(0.047)

−0.661
(0.041)

−0.546
(0.050)

0.515
(0.007)

Log-likelihood -14941.04 Hypothesis H∗2 Hypothesis H2

AIC 29930.08 supLR test 182.27 LR test 2.11
BIC 30074.40 95%-CV 137.61 95%-CV 23.51
ξ −0.013

(0.006)

Here ξ denotes the top Lyapunov exponent, and standard errors are reported below the point estimates. We use the

delta-method to obtain standard errors for V and ξ. The reported LR statistics are used for testing H∗2 and H2

respectively.

5.2 Testing reduced rank

As to reduced rank and constancy of eigenvalues, consider initially the hypothesis that

the (on average) smallest eigenvalue λ1t is constant, i.e., H∗2 in (4.2). From Table 5.1 it

follows that one cannot accept the hypothesis based on the supLR test (see Appendix

B.1 for details on implementation5). Intuitively, this is sensible as under the hypothesis

H∗2 , λ1t is constant and the associated orthogonalized returns V ′1Xt homoskedastic. As

already noted, this is not the case as all three orthogonalized returns V (φ̂T )′Xt in the

unrestricted model appear to exhibit volatility clustering (see Figure 5.4).

Table 5.2: Estimation of the λ-GARCH under H2.

Rank W A = αγ′ B = βγ′ φ V
0.108
(0.037)

0.143
(0.042)

0.138
(0.057)

0.009
(0.002)

1.10× 10−7

(0.001)
0.087
(0.195)

0.047
(0.012)

0.338
(0.065)

0.717
(0.016)

−0.225
(0.050)

0.660
(0.007)

q = 2 0.094
(0.024)

0.125
(0.053)

0.119
(0.048)

0.006
(0.002)

3.01× 10−8

(0.001)
0.077
(0.166)

0.027
(0.010)

0.708
(0.051)

−0.252
(0.058)

0.799
(0.018)

0.546
(0.006)

0.038
(0.027)

0.080
(0.067)

0.162
(0.116)

0.071
(0.017)

4.16× 10−6

(7.05×10−6)
6.52×−10

(4.89×10−8)
0.911
(0.021)

0.825
(0.043)

−0.650
(0.038)

−0.558
(0.046)

0.516
(0.007)

Log-likelihood -14942.09 AIC 29924.19 BIC 30044.45 ξ −0.013
(0.006)

Table 5.3: Estimated parameters - reduced rank matrices, under H2.

Rank α′ β′ γ′

q = 2 0.125
(0.053)

0.119
(0.048)

0.006
(0.002)

3.01× 10−8

(0.001)
0.077
(0.166)

0.027
(0.010)

1.132
(0.374)

1 0

0.080
(0.067)

0.162
(0.116)

0.071
(0.017)

4.16× 10−6

(7.05×10−6)
6.52×−10

(4.89×10−8)
0.911
(0.021)

0.018
(0.018)

0 1

Recall that A = γα′ and B = γβ′ for q < p, with A and B given in Table 2.

Next consider the less restrictive hypothesis of reduced rank r = 2 of A and B, that is

H2 in (4.1). Under H2 all eigenvalues are allowed to remain time-varying, while p− r = 1

5For each entry of the non-identified parameter vector δ = (β11, β21, β31)′ we use k = 20 equidistant
points between 0 and 0.99 (both points included), leading to a grid of 203 = 8000 points for the grid search
over δ. Steps 1-3 of the algorithm for the asymptotic distribution of the test only draws from grid points
in which: i) the Hessian matrix is invertible, as determined by the reciprocal condition number (rcond),
and ii) the log-likelihood value is close to the maximum likelihood value. That is, for i = 1, . . . ,dim∆,
we only use a given grid point if rcond (Ĵδi) > 10−12 and LT (θ, δi) + 5 ≥ supδi∈∆ LT (θ, δi) both hold.
We use M = 10.000 Monte Carlo draws to determine the critical value.
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Figure 5.3: The first row shows the estimated conditional eigenvalues based on the
Gaussian λ-GARCH model, while the second row shows estimated eigenvalues from the
Student’s t version. The left hand side shows the level of the eigenvalues, while the right
hand side show how much variation in the data is explained by each of the estimated

eigenvalues across the sample.
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Figure 5.4: Estimated rotated returns, {V ′(φ̂T )Xt}Tt=1 from the Gaussian λ-GARCH
model.
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linear combination of these is constant. To ensure identification of γ, α and β under H2,

the lower (2× 2) block of γ is set to I2, while the first row of γ is freely varying. We

obtain critical values by the bootstrap algorithm in Appendix C, see also Cavaliere et

al. (2020). The critical value is obtained from B = 399 bootstrap replications. The LR

statistic is 2.1 and the associated bootstrapped 95% critical value is 17.55 such that H2

is not rejected.6 From the estimated parameters for the reduced rank model (reported

in tables 5.2 and 5.3), the estimated parameters, eigenvalues, and conditional covariances

for unrestricted model and reduced rank model are non-distinguishable, and based on the

AIC and BIC information criteria, the reduced rank model seems in fact to be preferable

to the unrestricted model.

Remark 9. As kindly raised by the Editor, note that while for the considered sample of 12

years of data the λ-GARCH model appears well-specified (please see Section 5.3 for more

details) and supporting the hypothesis of reduced rank r = 2, unreported results indicate

that this seems not to be the case if the sample is extended to include the 1987-crash (as for

example the period 1981-2018). Thus considering longer samples with breaks, or crashes

(such as the 1987-crash), may suggest that a λ-GARCH model with structrual break(s),

or some other type of switching mechanism, is more suitable.

5.3 Model adequacy

As to model adequacy we make the following observations. Table 5.1 contains the pa-

rameter estimates of the λ-GARCH model in (3.1)–(3.2), and standardized residuals are

given in Figure 5.2. In terms of the regularity conditions for the asymptotic theory, the

estimate ξ̂7 of the Lyapunov coefficient ξ in (3.6) and its standard error reported in Table

5.1 suggest that ξ̂ < 0.8 For the standardized residuals, while unreported misspecifica-

tion tests indicate no ARCH-effects and no residual autocorrelation, they appear slightly

heavy-tailed as is common in Gaussian GARCH-type models. In order to address the is-

sue of heavy-tailedness, Table 5.4 reports estimation results from the trivariate Student’s

t version of the λ-GARCH model as given by (2.9) and (2.10). We observe that v̂ = 4.749,

confirming the heavy-tailedness, and moreover from Table 5.5 that the empirical quantiles

of the standardized residuals match the tv̂ (0, 1) quantiles. Interestingly, when considering

the estimated eigenvalues λ̂it for i = 1, 2, 3 in Figure 5.3 for the Gaussian and Student’s

6We also test the hypothesis that the rank of A and B is q = 1. This test is strongly rejected, with a
LR test of 140.21 and a bootstrapped critical value of 65.15.

7The estimate of ξ and its standard error are obtained as in Nielsen and Rahbek (2014).
8As kindly pointed out by a referee it appears that some of the parameter estimates may be close to the

boundary of the parameter space, which again suggests that the distribution of the associated estimators
may be better approximated by “half-normal” type distributions, see e.g., Pedersen and Rahbek (2019).
To avoid this, an alternative could be to allow for negative entries in the A and B matrices, see also
Conrad and Karanasos (2010). However, extending the asymptotic theory is beyond the scope of this
paper; unreported estimation results indicates that allowing this gives (a few) negative entries in B̂ while
the estimated conditional eigenvalues remain positive (and with similar dynamics).
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t cases, it follows that the normalized eigenvalues λ̂it/
(∑3

i=1 λ̂it

)
for i = 1, 2, 3 appear

more “smooth” for the Student’s t case, possibly reflecting the dampening effect of the

weight wt in (2.10) as previously discussed.

Table 5.4: Estimation of the Student’s t λ−GARCH model.

v W A B φ V
0.008 0.025 0.047 0.003 0.973 6.08× 10−10 0.002 0.294 0.706 -0.257 0.660

4.749 0.033 0.034 0.083 0.003 0.165 0.707 9.59× 10−9 0.741 -0.214 0.811 0.545
0.087 0.172 3.44× 10−7 0.075 5.48× 10−8 3.51× 10−8 0.995 0.794 -0.675 -0.526 0.517

Log-likelihood -14401.90

Table 5.5: Empirical quantiles of the standardized residuals from the Student’s t
λ−GARCH.

Quantile 0.010 0.025 0.050 0.250 0.500 0.750 0.950 0.975 0.990

t4.749(0, 1) - 2.62 - 1.99 - 1.55 - 0.56 0.00 0.56 1.55 1.99 2.62
N(0, 1) - 2.33 - 1.96 - 1.64 - 0.67 0.00 0.67 1.64 1.96 2.33
η̂1,t - 2.65 - 2.10 - 1.62 - 0.58 0.01 0.55 1.51 1.97 2.46
η̂2,t - 2.89 - 2.06 - 1.55 - 0.55 0.01 0.55 1.54 1.96 2.66
η̂3,t - 2.70 - 2.00 - 1.56 - 0.58 - 0.03 0.52 1.47 1.92 2.73

APPENDIX

A Mathematical Proofs

A.1 Notation and definitions

Throughout, we let % ∈ (0, 1) denote a generic constant, and K is a generic positive

constant or positive F−1-measurable random variable. Moreover, we let Yt(θ) := V (φ)′Xt

denote the orthogonalized returns. In light of Assumption 3.2, we consider the ergodic

version of the log-likelihood contributions. That is, for any t ∈ Z and θ ∈ Θ,

l?t (θ) = log det(Ω?
t (θ)) +X ′tΩ

?−1
t (θ)Xt, (A.1)

Ω?
t (θ) = V (φ)Λ?

t (θ)V (φ)′, Λ?
t (θ) = diag(λ?t (θ)), (A.2)

λ?t (θ) = W + A(V (φ)′Xt−1)�2 +Bλ?t−1(θ). (A.3)

For derivatives,

Ḃi =
∂B(θ)

∂θi
, B̈i,j =

∂2B(θ)

∂θi∂θj
,

...
Bi,j,k =

∂3B(θ)

∂θi∂θj∂θk
, i, j, k ∈ {1, . . . , dθ},

denote the partial derivatives of some scalar, vector, or matrix B(θ) as a function of θ ∈ Θ

with dθ the dimension of θ.
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Furthermore we let Ω?
t = Ω?

t (θ0), that is Ω?
t evaluated at the true parameter values, θ0.

The same holds for other quantities which depending on θ0, e.g., Yt = Yt(θ0), Λ?
t = Λ?

t (θ0),

and λ?t = λ?t (θ0)

A.2 Proof of Theorem 3.2

It suffices to verify conditions A1-A5 of Francq and Zaköıan (2019, Theorem 10.7).

With Ω?
t (θ) defined in (A.2), we immediately notice that Assumption 3.2 implies that

E[‖Ω?
t (θ0)‖]s <∞ for some s > 0 (condition A3), and that Assumption 3.3 is equivalent

to A4. Moreover, recall that ρ(B) < 1 on Θ, and define the function λ : (Rp)∞×Θ→ Rp,

with (x0, x−1, . . .) a sequence of vectors in Rp and θ ∈ Θ, given by

λ(x0, x−1, . . . ; θ) =
∞∑
i=0

Bi
[
W + A(V (φ)′x−i)

�2
]
.

We note that for any sequence (x0, x−1, . . .), λ(x0, x−1, . . . ; ·) is continuous on Θ (condition

A5). It remains to show the following two points.

(i) With Ωt(θ) and Ω?
t (θ) defined in (3.9) and (A.2), respectively, supθ∈Θ ‖Ω−1

t (θ)‖ ≤ K

and supθ∈Θ ‖Ω?−1
t (θ)‖ ≤ K almost surely.

(ii) supθ∈Θ ‖Ωt(θ)− Ω?
t (θ)‖ ≤ K%t almost surely.

Proof of (i): Note that supθ∈Θ ‖Ω−1
t (θ)‖ ≤ supθ∈Θ ‖V ‖2‖Λ−1

t (θ)‖ ≤ K
√
pω−2

L ≤ K.

Likewise, supθ∈Θ ‖Ω?−1
t (θ)‖ ≤ K.

Proof of (ii): With λt(θ) and λ?t (θ) defined in (3.10) and (A.3), respectively, using that

supθ∈Θ ρ(B) < 1, we have that

sup
θ∈Θ
‖Ωt(θ)− Ω?

t (θ)‖ = sup
θ∈Θ
‖λt(θ)− λ?t (θ)‖ = sup

θ∈Θ
‖Bt(λ̄0 − λ?0(θ))‖ ≤ %tK.

A.3 Proof of Theorem 3.3

Using that θ0 ∈ intΘ, with Θ compact, and l?t (θ) defined in (A.1) is three times continu-

ously differentiable (almost surely), it suffices to verify the following conditions (see e.g.,

Francq and Zaköıan, 2012):

(Asymptotic Normality of the Score) With l?t (θ) defined in (A.1),

1√
T

T∑
t=1

∂l?t (θ0)

∂θ

D→ N(0,Σ), (A.4)

with

Σ := E

[
∂l?t (θ0)

∂θ

∂l?t (θ0)

∂θ′

]
non-negative definite. (A.5)
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(Hessian) With l?t (θ) defined in (A.1),

1

T

T∑
t=1

∂2l?t (θ0)

∂θ∂θ′
p→ E

[
∂2l?t (θ0)

∂θ∂θ′

]
=: J, (A.6)

with J invertible.

(Expectation of Third Order Derivative) With l?t (θ) defined in (A.1) for some neigh-

borhood N(θ0) ⊂ Θ around θ0,

E

[
max

i,j,k=1,...,dθ
sup

θ∈N(θ0)

∣∣∣∣ ∂3l?t (θ)

∂θi∂θj∂θj

∣∣∣∣
]
<∞.

(Initial Values) With lt(θ) defined in (3.8) and l?t (θ) defined in (A.1), for some neigh-

borhood N(θ0) around θ0,∥∥∥∥∥
T∑
t=1

(
∂lt(θ0)

∂θ
− ∂l?t (θ0)

∂θ

)∥∥∥∥∥ = op(T
1/2),

and

sup
θ∈N(θ0)

∥∥∥∥∥
T∑
t=1

(
∂2lt(θ)

∂θ∂θ′
− ∂2l?t (θ)

∂θ∂θ′

)∥∥∥∥∥ = op(T ).

Proof of Asymptotic Normality : From Lemma A.2 we have that E[∂l?t (θ0)/∂θ|Ft−1] = 0,

E[‖∂l?t (θ0)/∂θ‖] <∞, and that Σ is non-negative definite. By a CLT for stationary and

ergodic martingale differences (e.g., Brown, 1971), we conclude that (A.4) holds.

Proof of Hessian: From Lemma A.5, we have that E[‖∂2l?t (θ0)/∂θ∂θ′‖] < ∞. By the

Ergodic Theorem, we conclude that (A.6) holds. Moreover, Lemma A.5 states that the

matrix J is invertible.

Proof of Third Order Derivative: This property holds by Lemma A.6.

Proof of Initial Values : This holds by arguments similar to the ones given in Francq and

Zaköıan (2012, pp.204-206).

A.4 Proof of Lemma 3.1

We make some initial considerations about the structure of V (φ). Note that

V (φ) =

p−1∏
i=1

p∏
j=i+1

R (i, j;φ) =

p−1∏
i=1

Ṽi(φ),

where for i = 1, . . . p− 1,

Ṽi(φ) :=

p∏
j=i+1

R (i, j;φ) . (A.7)
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Note in particular that, by construction, Ṽi(φ) depends only on the rotation parameters

(φi,i+1, . . . , φi,p). Define, for k = 1, . . . , p− 1,

Uk :=

(
p−1∏
i=k

Ṽi(φ)

)′(p−1∏
i=k

Ṽi(φ0)

)
. (A.8)

In particular, we note that

U1 =

(
p−1∏
i=1

Ṽi(φ)

)′(p−1∏
i=1

Ṽi(φ0)

)
= V (φ)′V (φ0).

We will rely on some essential features of Uk stated in Lemma A.1 in the next section.

Suppose that Ω?
t (θ) = Ω?

t (θ0) almost surely. Then, almost surely,

U1Λ?
t (θ0) = Λ?

t (θ)U1. (A.9)

Hence, in light of Lemma A.1, we have that (almost surely)

λ?1t(θ0) = λ?1t(θ). (A.10)

Moreover, in light of (A.9), we also have that

U1Λ?
t (θ0)U ′1 = Λ?

t (θ),

which combined with (A.10) yields that (almost surely)

(U2
1,11 − 1)λ?1t(θ0) +

p∑
j=2

U2
1,1jλ

?
jt(θ0) = 0.

Suppose that (φ1,2, . . . , φ1,p) 6= (φ1,2,0, . . . , φ1,p,0) such that in light of Lemma A.1, U2
1,11 <

1, which implies that (almost surely)

λ?1t(θ0) = (1− U2
1,11)−1

p∑
j=2

U2
1,1jλ

?
jt(θ0).
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This implies that

λ?t (θ0) =


λ?1t(θ0)

λ?2t(θ0)
...

λ?pt(θ0)



=


1

1−U2
1,11

∑p
j=2 ωj,0U

2
1,1j

ω2,0

...

ωp,0

+


1

1−U2
1,11

∑p
j=2Aj,0U

2
1,1j

A2,0

...

Ap,0

 (Yt−1)�2

+


1

1−U2
1,11

∑p
j=2 Bj,0U

2
1,1j

B2,0

...

Bp,0

λ?t−1(θ0),

where Ai,0 (Bi,0) denotes the ith row of A0 (B0). Note that it must hold that U1,1j

is non-zero for some j = 2, . . . , p – otherwise λ?1t(θ0) is degenerate which is ruled out

by Assumptions 3.4-3.5. Hence, [A0, B0] has reduced rank, which is ruled out by As-

sumption 3.5. We conclude that U1,11 = 1, which in light of Lemma A.1 implies that

(φ1,2, . . . , φ1,p) = (φ1,2,0, . . . , φ1,p,0). This in turn implies that Ṽ1(φ) = Ṽ1(φ0), so that

U1 =

(
p−1∏
i=1

Ṽi(φ)

)′(p−1∏
i=1

Ṽi(φ0)

)

=

(
p−1∏
i=2

Ṽi(φ)

)′
Ṽ1(φ)′Ṽ1(φ0)

(
p−1∏
i=2

Ṽi(φ0)

)

=

(
p−1∏
i=2

Ṽi(φ)

)′(p−1∏
i=2

Ṽi(φ0)

)
= U2.

This combined with (A.9) implies that (almost surely)

U2Λ?
t (θ0) = Λ?

t (θ)U2 (A.11)

and

U2Λ?
t (θ0)U ′2 = Λ?

t (θ). (A.12)

By arguments similar to the ones given above, in light of Lemma A.1, we have that

λ?2t(θ0) = λ?2t(θ), (A.13)



27

and hence using (A.12) (almost surely)

(U2
2,22 − 1)λ?2t(θ0) +

p∑
j=1,j 6=2

U2
2,2jλ

?
jt(θ0) = 0.

Now suppose that (φ2,3, . . . , φ2,p) 6= (φ2,3,0, . . . , φ2,p,0) such that in light of Lemma A.1,

U2
2,22 < 1, which implies that (almost surely)

λ?2t(θ0) = (1− U2
2,22)−1

p∑
j=1,j 6=2

U2
2,2jλ

?
jt(θ0).

By arguments similar to the ones above, we have that this violates the assumption that

[A0, B0] has full rank. By contradiction we have that (φ2,3, . . . , φ2,p) = (φ2,3,0, . . . , φ2,p,0).

This combined with the fact that (φ1,2, . . . , φ1,p) = (φ1,2,0, . . . , φ1,p,0) implies (by arguments

identical to the ones given above) that U1 = U3. By identical arguments, it must hold

that (φ3,4, . . . , φ3,p) = (φ3,4,0, . . . , φ3,p,0), and by repeating these arguments we have that

φ = φ0. The identification of the remaining parameters (W,A,B) follows by standard

arguments, see e.g., Francq and Zaköıan (2012, pp.196-197), using Assumptions 3.4-3.5.

A.5 Auxiliary Lemmas

Lemma A.1. Let Ṽi(φ) be defined in (A.7). Let Ṽi,ji(φ) denote entry (j, i) of Ṽi(φ). The

following holds.

1. The i−th column of Ṽi(φ) is given by (Ṽi,1i(φ), . . . , Ṽi,pi(φ))′ where for j = 1, . . . , p

Ṽi,ji(φ) =


0 if j < i∏p

k=i+1 cos(φi,k) if j = i

−
∏p

k=j+1 cos(φi,k) sin(φi,j) if j > i

,

with the convention that
∏p

k=p+1 cos(φi,k) = 1.

2. For k = 1, . . . , p−1, the k-th column of
∏p−1

i=k Ṽi(φ) equals the k-th column of Ṽk(φ).
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3. Let Uk be given by (A.8). With Uk,kk the (k, k) entry of Uk, it holds that

Uk,kk =

p∑
j=1

Ṽk,jk(φ)Ṽk,jk(φ0) (A.14)

=

p∏
j=k+1

cos(φk,j) cos(φk,j,0) (A.15)

+

p∑
j=k+1

(
p∏

l=j+1

cos(φk,l) cos(φk,l,0)

)
sin(φk,j) sin(φk,j,0)

=

p∑
j=k+1

(cos(φk,j − φk,j,0)− 1)

p∏
l=j+1

cos(φk,l) cos(φk,l,0) + 1 (A.16)

4. For φ ∈ [0, π/2]p(p−1)/2 and φ0 ∈ (0, π/2)p(p−1)/2 it holds that Uk,kk > 0.

5. For φ ∈ [0, π/2]p(p−1)/2 and φ0 ∈ (0, π/2)p(p−1)/2, Uk,kk ≤ 1 with equality if and only

if (φk,k+1, . . . , φk,p) = (φk,k+1,0, . . . , φk,p,0).

Proof of Lemma A.1: Points 1-2 follow immediately by inspecting the structure of Ṽi(φ).

The equality in (A.14) follows by noticing that, by definition of Uk and point 2, Uk,kk equals

the dot product of the k-th columns of Ṽk(φ) and Ṽk(φ0). The equality in (A.15) follows
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by point 1. The equality in (A.16) follows by repeated use of trigonometric identities:

p∏
j=k+1

cos(φk,j) cos(φk,j,0) +

p∑
j=k+1

(
p∏

l=j+1

cos(φk,l) cos(φk,l,0)

)
sin(φk,j) sin(φk,j,0)

=

p∏
j=k+1

cos(φk,j) cos(φk,j,0) +

(
p∏

l=k+2

cos(φk,l) cos(φk,l,0)

)
sin(φk,k+1) sin(φk,k+1,0)

+

p∑
j=k+2

(
p∏

l=j+1

cos(φk,l) cos(φk,l,0)

)
sin(φk,j) sin(φk,j,0)

= cos(φk,k+1) cos(φk,k+1,0) sin(φk,k+1) sin(φk,k+1,0)

(
p∏

l=k+2

cos(φk,l) cos(φk,l,0)

)

+

p∑
j=k+2

(
p∏

l=j+1

cos(φk,l) cos(φk,l,0)

)
sin(φk,j) sin(φk,j,0)

= [cos (φk,k+1 − φk,k+1,0)− 1]

(
p∏

l=k+2

cos(φk,l) cos(φk,l,0)

)

+

(
p∏

l=k+2

cos(φk,l) cos(φk,l,0)

)
+

p∑
j=k+2

(
p∏

l=j+1

cos(φk,l) cos(φk,l,0)

)
sin(φk,j) sin(φk,j,0)

= [cos (φk,k+1 − φk,k+1,0)− 1]

(
p∏

l=k+2

cos(φk,l) cos(φk,l,0)

)

+ [cos (φk,k+2 − φk,k+2,0)− 1]

(
p∏

l=k+3

cos(φk,l) cos(φk,l,0)

)

+

(
p∏

l=k+3

cos(φk,l) cos(φk,l,0)

)
+

p∑
j=k+3

(
p∏

l=j+1

cos(φk,l) cos(φk,l,0)

)
sin(φk,j) sin(φk,j,0)

= [cos (φk,k+1 − φk,k+1,0)− 1]

(
p∏

l=k+2

cos(φk,l) cos(φk,l,0)

)

+ [cos (φk,k+2 − φk,k+2,0)− 1]

(
p∏

l=k+3

cos(φk,l) cos(φk,l,0)

)
+ . . .

+ [cos (φk,p−1 − φk,p−1,0)− 1] cos(φk,p) cos(φk,p,0)

+ cos(φk,p) cos(φk,p,0) + sin(φk,j) sin(φk,j,0) + (1− 1)

=

p∑
j=k+1

(cos(φk,j − φk,j,0)− 1)

p∏
l=j+1

cos(φk,l) cos(φk,l,0) + 1.

Turning to point 4, note that all terms in (A.15) are non-negative for φk,k+1, . . . , φk,p ∈
[0, π/2]p−k and φk,k+1,0, . . . , φk,p,0 ∈ (0, π/2)p−k. Hence, Uk,kk ≥ 0 with equality if and
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only if all terms in (A.15) are zero. Noting that cos(x) and sin(x) are strictly positive

for x ∈ (0, π/2), we have that for φk,k+1,0, . . . , φk,p,0 ∈ (0, π/2)p−k, Uk,kk = 0 if and only

if
∏p

j=k+1 cos(φk,j) =
∏p

j=k+2 cos(φk,j) sin(φk,k+1) =
∏p

j=k+3 cos(φk,j) sin(φk,k+2) = . . . =

cos(φk,p) sin(φk,p−1) = sin(φk,p) = 0. This implies that φk,p = 0. Hence cos(φk,p) = 1 ,

and it must hold that φk,p−1 = 0 in order to have that cos(φk,p) sin(φk,p−1) = 0. By

similar arguments, we must have that φk,k+1 = . . . = φk,p = 0. But this implies that∏p
j=k+1 cos(φk,j) = 1 > 0. Hence, it is not possible that Uk,kk = 0, and we conclude that

Uk,kk > 0.

Lastly, turning to point 5, we start out by considering (A.16). For j = k + 1, . . . , p

we have that ξj := (cos(φk,j − φk,j,0)− 1)
∏p

l=j+1 cos(φk,l) cos(φk,l,0) ≤ 0. Hence Uk,kk =∑p
j=k+1 ξj+1 ≤ 1, with equality if and only if ξj = 0 for all j = k+1, . . . , p. Clearly ξj = 0

for all j = k+1, . . . , p if (φk,k+1, . . . , φk,p) = (φk,k+1,0, . . . , φk,p,0). Suppose now that ξj = 0

for all j = k+1, . . . , p. Note that φk,j−φk,j,0 ∈ (−π/2, π/2) so that cos(φk,j−φk,j,0)−1 = 0

if and only if φk,j = φk,j,0. Hence ξp = (cos(φk,p − φk,p,0)− 1) = 0 which implies that φk,p =

φk,p,0. This in turn implies that ξp−1 = (cos(φk,p−1 − φk,p−1,0)− 1) cos(φk,p) cos(φk,p,0) = 0

which can only be the case if φk,p−1 = φk,p−1,0 since cos(φk,p) cos(φk,p,0) 6= 0 as φk,p =

φk,p,0 ∈ (0, π/2). By similar arguments, we conclude that (φk,k+1, . . . , φk,p) = (φk,k+1,0, . . . , φk,p,0).

Lemma A.2. With l?t (θ) defined in (A.1), under Assumptions 3.1-3.2,3.4-3.9, it holds

that

E

[
∂l?t (θ0)

∂θ

∣∣∣∣Ft−1

]
= 0 almost surely, (A.17)

E

[∥∥∥∥∂l?t (θ0)

∂θ

∥∥∥∥2
]
<∞, and (A.18)

Σ = E

[
∂l?t (θ0)

∂θ

∂l?t (θ0)

∂θ′

]
(A.19)

is non-negative definite.

Proof of Lemma A.2: With Yt(θ) = V (φ)′Xt, for i = 1, . . . , dθ, we have from Lemma A.3

that

∂l?t (θ)

∂θi
= tr

{
Λ?−1
t (θ)Λ̇?

t,i(θ)
[
Ip − Λ?−1

t (θ)Yt(θ)Y
′
t (θ)

]}
+ 2Ẏ ′t,i(θ)Λ

?−1
t (θ)Yt(θ),

with λ̇t,i(θ) := ∂λ?t (θ)/∂θi and Ẏt,i(θ) := ∂Yt(θ)/∂θi. Evaluating at θ0, we have

∂l?t (θ0)

∂θi
= tr

{
Λ?−1
t Λ̇?

t,i [Ip − ηtη′t]
}

+ 2Ẏ ′t,iΛ
?−1
t Yt

=: M1,t,i +M2,t,i. (A.20)

Suppose initially that M1,t,i and M2,t,i are integrable such that their conditional expecta-
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tions exist - this will indeed be verified below. We have immediately that

E[M1,t,i|Ft−1] = 0 almost surely, (A.21)

since Λ?−1
t (θ0)Λ̇?

t,i is Ft−1 measurable and E[ηtη
′
t|Ft−1] = E[ηtη

′
t] = Ip. Turning to M2,t

note that

V (φ)V (φ)′ = Ip,

which implies that
∂V (φ)

∂θi
V (φ)′ + V (φ)

∂V (φ)′

∂θi
= 0.

With Si(θ) := (∂V (φ)/∂θi)V (φ)′, we have that

∂V (φ)

∂θi
= Si(θ)V (φ),

where Si(θ)
′ = −Si(θ), and, hence, Si(θ) is a skew-symmetric matrix satisfying

tr(Si(θ)) = 0. (A.22)

For θ = θ0 we then have

M2,t,i = 2Ẏ ′t,iΛ
?−1
t Yt = 2X ′tSiV Λ?−1

t V ′Xt = 2tr{SiΩ?−1
t XtX

′
t},

using E[XtX
′
t|Ft−1] = Ω?

t and (A.22),

E[Mt,2,i|Ft−1] = 2tr{Si} = 0 almost surely. (A.23)

Combining (A.20), (A.21), and (A.23), we conclude that (A.17) holds. Turning to (A.18),

we note that it suffices to show that E[(∂l?t (θ0)/∂θi)
2] < ∞ for all i, which in light of

(A.20) and the Cauchy-Schwarz inequality holds if E[M2
1,t,i] <∞ and E[M2

2,t,i] <∞. We

have that, almost surely,

E
[
M2

1,t,i|Ft−1

]
= E

[
tr2
{

Λ?−1
t Λ̇?

t,i [Ip − ηtη′t]
}
|Ft−1

]
=

p∑
q=1

(
E[η4

q,t]− 1
)

[Λ?−1
t Λ̇?

t,i]
2
qq,

where we note that E[η4
q,t] <∞, q = 1, . . . , p, by Assumption 3.8. Hence,

E[M2
1,t,i] =

p∑
q=1

(
E[η4

q,t]− 1
)
E
[
[Λ?−1

t Λ̇?
t,i]

2
qq

]
,

and by Lemma A.7, we have that E[M2
1,t,i] < ∞, i = 1, . . . , dθ. Turning to the variance



32

of M2,t,i, note that with S̃i = V S ′iV
′,

M2
2,t,i = 4X ′tSiV Λ?−1

t V ′XtX
′
tSiV Λ?−1

t V ′Xt

= 4tr
(
SiΩ

?−1
t XtX

′
tSiΩ

?−1
t XtX

′
t

)
= 4tr(S̃ ′iΛ

?−1
t YtY

′
t S̃
′
iΛ

?−1
t YtY

′
t )

≤ K‖Λ?−1
t YtY

′
t ‖2 = K

(
Y ′t YtY

′
t Λ

?−2
t Yt

)
= K

(
p∑
i=1

y2
it

)(
p∑
i=1

y2
it

λ?2it

)
. (A.24)

We note that (A.24) consists of terms of the form

y2
ity

2
jt

λ?2it
= η2

itη
2
jt

λ?jt
λ?it
.

Using Assumption 3.8 and that for θ0 ∈ intΘ,

λ?k,t
λ?l,t

=
ω0,k +

∑p
i=1 α0,kiy

2
i,t−1 +

∑p
i=1 β0,kiλ

?
i,t−1

ω0,l +
∑p

i=1 α0,liy2
i,t−1 +

∑p
i=1 β0,liλ?i,t−1

≤ ω0,k

ω0,l

+

p∑
i=1

α0,ki

α0,li

+

p∑
i=1

β0,ki

β0,li

≤ K,

(A.25)

we have that η2
itη

2
jtλ

?
jt/λ

?
it is integrable for any i, j, and we conclude that E[M2

2,t,i] < ∞
for any i. The matrix Σ is non-negative definite by construction.

Lemma A.3. With l?t (θ) defined in (A.1),

∂l?t (θ)

∂θi
= tr

{
Λ?−1
t (θ)Λ̇?

t,i(θ)
[
Ip − Λ?−1

t (θ)Yt(θ)Y
′
t (θ)

]}
+2Ẏ ′t,i(θ)Λ

?−1
t (θ)Yt(θ), i = 1, . . . , dθ,

with

λ̇?t,i(θ) :=
∂λ?t (θ)

∂θi
and Ẏt,i(θ) :=

∂Yt(θ)

∂θi
.

Proof of Lemma A.3: We have that,

∂l?t (θ)

∂θi
=
∂ log |Λ?

t (θ)|
∂θi

+
∂Y ′t (θ)Λ

?
t (θ)

−1Yt(θ)

∂θi
.

Consider now,
∂ log |Λ?

t (θ)|
∂θi

= tr{Λ?−1
t (θ)Λ̇?

t,i(θ)}.

Next, consider Y ′t (θ)Λ
?−1
t (θ)Yt(θ) = tr{Yt(θ)Y ′t (θ)Λ?−1

t (θ)}. Since Yt(θ)Yt(θ)
′ is symmetric

and Λ?−1
t (θ) is diagonal we find

∂tr{Yt(θ)Y ′t (θ)Λ?−1
t (θ)}

∂θi
= 2Ẏ ′t,i(θ)Λ

?−1
t (θ)Yt(θ)− tr

{
Yt(θ)Y

′
t (θ)Λ

?−1
t (θ)Λ̇?

t,i(θ)Λ
?−1
t (θ)

}
.



33

Hence, the score with respect to θi is

∂l?t (θ)

∂θi
= tr{Λ?−1

t (θ)Λ̇?
t,i(θ)} − tr

{
Yt(θ)Y

′
t (θ)Λ

?−1
t (θ)Λ̇?

t,i(θ)Λ
?−1
t (θ)

}
+ 2Ẏ ′t,i(θ)Λ

?−1
t (θ)Yt(θ)

= tr
{

Λ?−1
t (θ)Λ̇?

t,i(θ)
[
Ip − Λ?−1

t (θ)Yt(θ)Y
′
t (θ)

]}
+ 2Ẏ ′t,i(θ)Λ

?−1
t (θ)Yt(θ).

Lemma A.4. With l?t (θ) defined in (A.1), for i, j = 1, . . . , dθ,

∂2l?t (θ)

∂θi∂θj
= −tr

(
Λ?−1
t (θ)Λ̇?

t,j(θ)Λ
?−1
t (θ)Λ̇t,i(θ)

)
+ tr

(
Λ?−1
t (θ)Λ̈?

t,i,j(θ)
)

+ tr
(

Λ?−1
t (θ)Λ̇?

t,j(θ)Λ
?−1
t (θ)Λ̇?

t,i(θ)Λ
?−1
t (θ)Yt(θ)Y

′
t (θ)

)
− tr

(
Λ?−1
t (θ)Λ̈?

t,i,j(θ)Λ
?−1
t (θ)Yt(θ)Y

′
t (θ)

)
+ tr

(
Λ?−1
t (θ)Λ̇?

t,i(θ)Λ
?−1
t (θ)Λ̇?

t,j(θ)Λ
?−1
t (θ)Yt(θ)Y

′
t (θ)

)
− 2tr

(
S̃ ′j(θ)Λ

?−1
t (θ)Λ̇?

t,i(θ)Λ
?−1
t (θ)Yt(θ)Y

′
t (θ)

)
+ 2tr

(
(Ṡi,j(θ) + Si(θ)Sj(θ))Ω

?−1
t (θ)XtX

′
t

)
+ 2tr

(
V (φ)′

(
Ṡi,j(θ) + Si(θ)Sj(θ)

)
V (φ)Λ?−1

t (θ)Yt(θ)Y
′
t (θ)

)
− 2tr

(
S̃i(θ)Λ

?−1
t (θ)Λ̇?

t,j(θ)Λ
?−1
t (θ)Yt(θ)Y

′
t (θ)

)
+ 2tr

(
S̃ ′i(θ)Λ

?−1
t (θ)S̃j(θ)Yt(θ)Y

′
t (θ)

)
,

(A.26)

where Si(θ) and S̃i(θ) are skew-symmetric matrices given by,

Si(θ) =
∂V (φ)

∂θi
V (φ)′, (A.27)

S̃ ′i(θ) = V (φ)′Si(θ)V (φ) = −V (φ)′S ′i(θ)V (φ) = −S̃i(θ). (A.28)

Proof of Lemma A.4: Throughout the proof, we suppress the dependence on θ. From the

proof of Lemma A.3 we have that

∂2l?t (θ)

∂θi∂θj
=
∂tr(Λ?−1

t Λ̇?
t,i)

∂θj
−
∂tr(Λ?−1

t Λ̇?
t,iΛ

?−1
t YtY

′
t )

∂θj
+ 2

∂Ẏ ′t,iΛ
?−1
t Yt

∂θj

= N1,t −N2,t + 2N3,t.

Where the first term, N1,t, is

∂tr(Λ?−1
t Λ̇?

t,i)

∂θj
= −tr

(
Λ?−1
t Λ̇?

t,jΛ
?−1
t Λ̇?

t,i

)
+ tr

(
Λ?−1
t Λ̈?

t,i,j

)
. (A.29)
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The second term, N2,t, is

∂tr(Λ?−1
t Λ̇?

t,iΛ
?−1
t YtY

′
t )

∂θj
= tr

(
∂Λ?−1

t Λ̇?
t,i

∂θj
Λ?−1
t YtY

′
t + Λ?−1

t Λ̇?
t,i

∂Λ?−1
t YtY

′
t

∂θj

)
= −tr

(
Λ?−1
t Λ̇?

t,jΛ
?−1
t Λ̇?

t,iΛ
?−1
t YtY

′
t

)
+ tr

(
Λ?−1
t Λ̈?

t,i,jΛ
?−1
t YtY

′
t

)
+ tr

(
Λ?−1
t Λ̇?

t,iΛ
?−1
t

(
Ẏt,jY

′
t + YtẎ

′
t,j

))
− tr

(
Λ?−1
t Λ̇?

t,iΛ
?−1
t Λ̇?

t,jΛ
?−1
t YtY

′
t

)
= −tr

(
Λ?−1
t Λ̇?

t,jΛ
?−1
t Λ̇?

t,iΛ
?−1
t YtY

′
t

)
+ tr

(
Λ?−1
t Λ̈?

t,i,jΛ
?−1
t YtY

′
t

)
− tr

(
Λ?−1
t Λ̇?

t,iΛ
?−1
t Λ̇?

t,jΛ
?−1
t YtY

′
t

)
+ tr

(
Λ?−1
t Λ̇?

t,iΛ
?−1
t Ẏt,jY

′
t

)
+ tr

(
Λ?−1
t Λ̇?

t,iΛ
?−1
t YtẎ

′
t,j

)
Noting that Dt,i := Λ?−1

t Λ̇?
t,iΛ

?−1
t is symmetric and that Ẏt,i = V ′S ′iXt with Si defined in

(A.27),

tr
(
Dt,iẎt,jY

′
t

)
= tr

(
Λ?−1
t Λ̇?

t,iΛ
?−1
t V ′S ′jXtX

′
tV
)

= tr
(

Λ?−1
t Λ̇?

t,iΛ
?−1
t V ′S ′jV YtY

′
t

)
= tr

(
S̃ ′jΛ

?−1
t Λ̇?

t,iΛ
?−1
t YtY

′
t

)
,

with S̃j = V ′SjV defined in (A.28). Hence, the second term of the Hessian, N2,t, is

∂tr(Λ?−1
t Λ̇?

t,iΛ
?−1
t YtY

′
t )

∂θj
= −tr

(
Λ?−1
t Λ̇?

t,jΛ
?−1
t Λ̇?

t,iΛ
?−1
t YtY

′
t

)
+ tr

(
Λ?−1
t Λ̈?

t,i,jΛ
?−1
t YtY

′
t

)
− tr

(
Λ?−1
t Λ̇?

t,iΛ
?−1
t Λ̇?

t,jΛ
?−1
t YtY

′
t

)
+ 2tr

(
S̃ ′jΛ

?−1
t Λ̇?

t,iΛ
?−1
t YtY

′
t

)
.

The third term, N3,t, is

∂Ẏ ′t,iΛ
?−1
t Yt

∂θj
=
∂Ẏ ′t,i
∂θj

Λ?−1
t Yt + Ẏ ′t,i

∂Λ?−1
t

∂θj
Yt + Ẏ ′t,iΛ

?−1
t

∂Yt
∂θj

= Ÿ ′t,i,jΛ
?−1
t Yt − Ẏ ′t,iΛ?−1

t Λ̇?
t,jΛ

?−1
t Yt + Ẏ ′t,iΛ

?−1
t Ẏt,j,

where Ÿ ′t,i,j is,

Ÿ ′t,i,j = X ′t
∂SiV

∂θj
= X ′t

(
Ṡi,j + SiSj

)
V,

where Ṡi,j = ∂Si/∂θj. Hence, the first term of N3,t is,

Ÿ ′t,i,jΛ
?−1
t Yt = X ′t

(
Ṡi,j + SiSj

)
V Λ?−1

t V ′Xt

= X ′tV V
′
(
Ṡi,j + SiSj

)
V Λ?−1

t V ′Xt

= tr
(
V ′
(
Ṡi,j + SiSj

)
V Λ?−1

t YtY
′
t

)
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The second term of N3,t is

Ẏ ′t,iΛ
?−1
t Λ̇?

t,jΛ
?−1
t Yt = X ′tV V

′SiV Λ?−1
t Λ̇?

t,jΛ
?−1
t V ′Xt = tr

(
S̃iΛ

?−1
t Λ̇?

t,jΛ
?−1
t YtY

′
t

)
And the final term is

Ẏ ′t,iΛ
?−1
t Ẏt,j = X ′tSiV Λ?−1

t V ′S ′jXt = X ′tV V
′SiV Λ?−1

t V ′S ′jV V
′Xt = tr

(
S̃ ′iΛ

?−1
t S̃jYtY

′
t

)
.

That is, N3,t is

∂Ẏ ′t,iΛ
?−1
t Yt

∂θj
= tr

(
V ′
(
Ṡi,j + SiSj

)
V Λ?−1

t YtY
′
t

)
−tr

(
S̃iΛ

?−1
t Λ̇?

t,jΛ
?−1
t YtY

′
t

)
+tr

(
S̃ ′iΛ

?−1
t S̃jYtY

′
t

)
(A.30)

Using (A.29)-(A.30), we have (A.26).

Lemma A.5. With l?t (θ) defined in (A.1), under Assumptions 3.1-3.2,3.4-3.9,, for i, j =

1, . . . , dθ,

E

[
∂2l?t (θ0)

∂θi∂θj

∣∣∣∣Ft−1

]
= tr

(
Λ?−1
t Λ̇?

t,iΛ
?−1
t Λ̇?

t,j

)
+ 2tr (SiSj) + 2tr

(
S̃ ′iΛ

?−1
t S̃jΛ

?
t

)
, (A.31)

E

[∥∥∥∥∂2l?t (θ0)

∂θ∂θ′

∥∥∥∥] <∞, (A.32)

and

J = E

[
∂2l?t (θ0)

∂θ∂θ′

]
is invertible. (A.33)

Proof of Lemma A.5: Using the expression for ∂2l?t (θ)/∂θi∂θj from Lemma A.4, we im-

mediately have that

E

[
∂2l?t (θ0)

∂θi∂θj

∣∣∣∣Ft−1

]
= tr

(
Λ?−1
t Λ̇?

t,iΛ
?−1
t Λ̇?

t,j

)
+ 2tr

(
Ṡi,j

)
+ 2tr (SiSj)

+ 2tr
(
S̃jΛ

?−1
t Λ̇?

t,i

)
− 2tr

(
S̃iΛ

?−1
t Λ̇?

t,j

)
+ 2tr

(
S̃ ′iΛ

?−1
t S̃jΛ

?
t

)
.

This expression can be simplified further as both Ṡi,j, tr
(
S̃jΛ

?−1
t Λ̇?

t,i

)
and tr

(
S̃iΛ

?−1
t Λ̇?

t,j

)
are skew-symmetric, and hence tr(Ṡi,j) = tr

(
S̃jΛ

?−1
t Λ̇?

t,i

)
= tr

(
S̃iΛ

?−1
t Λ̇?

t,j

)
= 0, and we

obtain (A.31).

Turning to (A.32), we consider each term in (A.31). Notice that E
[
|tr
(

Λ?−1
t Λ̇?

t,iΛ
?−1
t Λ̇?

t,j

)
|
]
<

∞ by Lemma A.7. Trivially, tr(SiSj) is bounded, since Θ is compact and Si is continuous
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in φ. Lastly, consider tr
(
S̃ ′iΛ

?−1
t S̃jΛ

?
t

)
,

S̃ ′iΛ
?−1
t S̃jΛ

?
t =

0 −s̃i,12 . . . −s̃i,1p
s̃i,12 0 . . . −s̃i,2p

...
...

. . .
...

s̃i,1p s̃i,2p . . . 0



λ1,t 0 . . . 0

0 λ2,t . . . 0
...

...
. . .

...

0 0 . . . λp,t

×


0 s̃j,12 . . . s̃j,1p

−s̃j,12 0 . . . s̃j,2p
...

...
. . .

...

−s̃j,1p −s̃j,2p . . . 0




1
λ1,t

0 . . . 0

0 1
λ2,t

. . . 0
...

...
. . .

...

0 0 . . . 1
λp,t

 ,

which has the trace,

tr
(
S̃ ′iΛ

?−1
t S̃jΛ

?
t

)
=

p−1∑
k=1

p∑
l=k+1

s̃i,kls̃j,kl

(
λ?k,t
λ?l,t

+
λ?l,t
λ?k,t

)
,

which is bounded in light of (A.25). We conclude that (A.32) holds.

By standard arguments, see e.g., Comte and Lieberman (2003) or Bardet and Winten-

berger (2009), it suffices to show that there exists no γ = (γ1, ..., γdθ)
′ ∈ Rdθ \ {0dθ×0},

such that
dθ∑
i=1

γivec

(
∂Ω?

t

∂θi

)
= 0p2×1 a.s., (A.34)

where we have suppressed the dependence on θ0. For simplicity, we consider the case p = 2

and emphasize that the arguments can, tediously, be extended to arbitrary dimension p.

For the case p = 2, dθ = 11 such that θ = (ω1, ω2, α11, α21, α12, α22, β11, β21, β12, β22, φ)′,

and we seek to show that there exists no γ = (γ1, ..., γ11)′ ∈ R11 \ {011}, such that

11∑
i=1

γivec

(
∂Ω?

t

∂θi

)
= 04 a.s. (A.35)

We have that

Ω?
t =

(
λ?1,t cos2 φ+ λ?2,t sin2 φ

(
λ?2,t − λ?1,t

)
cosφ sinφ(

λ?2,t − λ?1,t
)

cosφ sinφ λ?2,t cos2 φ+ λ?1,t sin2 φ

)
,
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such that for i = 1, . . . , 10,

∂Ω?
t

∂θi
= V

∂Λ?
t

∂θi
V ′ =

(
cosφ sinφ

− sinφ cosφ

)(
∂λ?1,t
∂θi

0

0
∂λ?2,t
∂θi

)(
cosφ − sinφ

sinφ cosφ

)

=

(
∂λ?1,t
∂θi

cos2 φ+
∂λ?2,t
∂θi

sin2 φ (
∂λ?2,t
∂θi
− ∂λ?1,t

∂θi
) cosφ sinφ

(
∂λ?2,t
∂θi
− ∂λ?1,t

∂θi
) cosφ sinφ

∂λ?2,t
∂θi

cos2 φ+
∂λ?1,t
∂θi

sin2 φ

)
, (A.36)

and for i = 11

∂Ω?
t

∂θi
=
∂Ω?

t

∂φ
=

(
∂Ω?t,11

∂φ

∂Ω?t,12

∂φ
∂Ω?t,12

∂φ

∂Ω?t,22

∂φ

)
,

∂Ω?
t,11

∂φ
= cos2 φ

∂λ?1,t
∂φ

+ sin2 φ
∂λ?2,t
∂φ

+ (λ?2,t − λ?1,t) sin 2φ

∂Ω?
t,12

∂φ
= (λ?2,t − λ?1,t) cos 2φ+

(
∂λ?2,t
∂φ
−
∂λ?1,t
∂φ

)
cosφ sinφ

∂Ω?
t,22

∂φ
= sin2 φ

∂λ?1,t
∂φ

+ cos2 φ
∂λ?2,t
∂φ

+ (λ?1,t − λ?2,t) sin 2φ,

where

∂λ?t
∂w1

=
∞∑
j=0

Bj

(
1

0

)
,
∂λ?t
∂w2

=
∞∑
j=0

Bj

(
0

1

)
,
∂λ?t
∂α11

=
∞∑
j=0

Bj

(
y2

1,t−j−1

0

)
,

∂λ?t
∂α12

=
∞∑
j=0

Bj

(
y2

2,t−j−1

0

)
,
∂λ?t
∂α21

=
∞∑
j=0

Bj

(
0

y2
1,t−j−1

)
,
∂λ?t
∂α22

=
∞∑
j=0

Bj

(
0

y2
2,t−j−1

)
,

∂λ?t
∂βnm

=
∞∑
j=0

(
∂Bj

∂βnm

)((
w1

w2

)
+

(
α11 α12

α21 α22

)(
y2

1,t−j−1

y2
2,t−j−1

))
.

and

∂λ?t
∂φ

=
∞∑
j=0

BjA

(
∂
∂φ
y2

1,t−j−1

∂
∂φ
y2

2,t−j−1

)
= 2

∞∑
j=0

BjA

(
−y1,t−j−1y2,t−j−1

y1,t−j−1y2,t−j−1

)

= 2
∞∑
j=0

Bj

(
(α12 − α11)

(α22 − α21)

)
y1,t−j−1y2,t−j−1

= 2
∞∑
j=0

(
(Bj)11(α12 − α11) + (Bj)12(α22 − α21)

(Bj)21(α12 − α11) + (Bj)22(α22 − α21)

)
y1,t−j−1y2,t−j−1
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Hence, the first row of (A.35) has the form

C0 +
∞∑
j=0

(
C1,jy

2
1,t−j−1 + C2,jy

2
2,t−j−1

)
+ γ112 cos2 φ

(
∞∑
j=0

(
(Bj)11(α12 − α11) + (Bj)12(α22 − α21)

)
y1,t−j−1y2,t−j−1

)

+ γ112 sin2 φ

(
∞∑
j=0

(
(Bj)21(α12 − α11) + (Bj)22(α22 − α21)

)
y1,t−j−1y2,t−j−1

)
= 0 almost surely,

where the constants C1, C2,j, C3,j may depend on γ1, . . . , γ10. Suppose that γ11 6= 0. By

Assumption 3.4 we have that y1,t−j−1y2,t−j−1 is non-degenerate and linearly independent

of y2
1,t−j−1 and y2

2,t−j−1, so it must hold that

γ112 cos2 φ

(
∞∑
j=0

(
(Bj)11(α12 − α11) + (Bj)12(α22 − α21)

)
y1,t−j−1y2,t−j−1

)

+ γ112 sin2 φ

(
∞∑
j=0

(
(Bj)21(α12 − α11) + (Bj)22(α22 − α21)

)
y1,t−j−1y2,t−j−1

)
= 0 almost surely.

This implies that

γ112
(
cos2 φ(α12 − α11) + sin2 φ(α22 − α21)

)
y1,t−1y2,t−1|Fηt−2 is degenerate

which is the case if and only if

cos2 φ(α12 − α11) + sin2 φ(α22 − α21) = 0. (A.37)

The same reasoning applied to the second and third rows of (A.35) yields that

γ112 cosφ sinφ ((α22 − α21)− (α12 − α11)) y1,t−j−1y2,t−j−1|Fηt−2 is degenerate

and hence, using that cosφ and sinφ are non-zero on intΘ, that

(α22 − α21)− (α12 − α11) = 0⇔ (α22 − α21) = (α12 − α11). (A.38)

Combining (A.37) and (A.38), we have that α12 = α11 and α22 = α21, which is ruled out

by Assumption 3.9, and we conclude that (A.35) only holds whenever γ11 = 0. Hence
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(A.35) has the form

10∑
i=1

γivec

(
∂Ω?

t

∂θi

)
= (V ⊗ V )

10∑
i=1

γivec

(
∂Λ?

t

∂θi

)
= 04 a.s.,

which, using that V has full rank, implies that

10∑
i=1

γivec

(
∂Λ?

t

∂θi

)
= 04 a.s.

The non-zero rows of vec(∂Λ?
t/∂θ)i, i = 1, . . . , 10, are

∂λ?t
∂θi

=
∞∑
j=0

∂Bj

∂θi

(
∂W

∂θi
+
∂A

∂θi
(V ′Xt−1−j)

�2

)
,

and by arguments similar to the ones given in Francq and Zaköıan (2019, pp. 311-312),

it follows that there exist no non-zero γ such that (A.35) holds. We conclude that J is

invertible.

Lemma A.6. With l?t (θ) defined in (A.1), suppose that Assumptions 3.1-3.2,3.4-3.9, hold.

Then there exists a neighborhood around θ0, N(θ0) ⊂ Θ, such that

max
h,i,j=1,...,dθ

E

[
sup

θ∈N(θ0)

∣∣∣∣ ∂3l?t (θ)

∂θi∂θj∂θk

∣∣∣∣
]
<∞.

Proof of Lemma A.6: Throughout, we exploit that θ0 ∈ intΘ such that N(θ0) satisfies

that all entries of A and B are bounded away from zero on N(θ0). In particular, with

[Bj−1]s the sth row of [Bj−1],

ω = min
r=1,...,p

inf
θ∈N(θ0)

ωr > 0, (A.39)

ω̃ = min
s=1,...,p

inf
θ∈N(θ0)

∞∑
j=1

[Bj−1]sW > 0. (A.40)

α = min
r,s=1,...,p

inf
θ∈N(θ0)

Ars > 0, (A.41)

α = max
r,s=1,...,p

sup
θ∈N(θ0)

Ars > 0. (A.42)

In the following, for some real-valued random variable ft(θ) depending on θ ∈ N(θ0), we

write ft(θ) ∈ LN(θ0) if E[supθ∈N(θ0) |ft(θ)|] <∞ and we say that ft (θ) belongs to LN(θ0).

Consider the (i, j, k)’th element of the array of third derivatives of the log-likelihood

function, which is obtained by taking the derivative of the (i, j)th element of the Hessian
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in (A.26) with respect to some parameter θk:

∂3l?t (θ)

∂θi∂θj∂θk
= − ∂

∂θk
tr
(

Λ?−1
t (θ)Λ̇?

t,j(θ)Λ
?−1
t (θ)Λ̇?

t,i(θ)
)

(#1)

+
∂

∂θk
tr
(

Λ?−1
t (θ)Λ̈?

t,i,j(θ)
)

(#2)

+
∂

∂θk
tr
(

Λ?−1
t (θ)Λ̇?

t,j(θ)Λ
?−1
t (θ)Λ̇?

t,i(θ)Λ
?−1
t (θ)Yt(θ)Y

′
t (θ)

)
(#3)

− ∂

∂θk
tr
(

Λ?−1
t (θ)Λ̈?

t,i,j(θ)Λ
?−1
t (θ)Yt(θ)Y

′
t (θ)

)
(#4)

+
∂

∂θk
tr
(

Λ?−1
t (θ)Λ̇?

t,i(θ)Λ
?−1
t (θ)Λ̇?

t,j(θ)Λ
?−1
t (θ)Yt(θ)Y

′
t (θ)

)
(#5)

− 2
∂

∂θk
tr
(
S̃ ′j(θ)Λ

?−1
t (θ)Λ̇?

t,i(θ)Λ
?−1
t (θ)Yt(θ)Y

′
t (θ)

)
(#6)

+ 2
∂

∂θk
tr
(
V (φ)′

(
Ṡi,j(θ) + Si(θ)Sj(θ)

)
V (φ)Λ?−1

t (θ)Yt(θ)Y
′
t (θ)

)
(#7)

− 2
∂

∂θk
tr
(
S̃i(θ)Λ

?−1
t (θ)Λ̇?

t,j(θ)Λ
?−1
t (θ)Yt(θ)Y

′
t (θ)

)
(#8)

+ 2
∂

∂θk
tr
(
S̃ ′i(θ)Λ

?−1
t (θ)S̃j(θ)Yt(θ)Y

′
t (θ)

)
. (#9)

In the following, we consider each partial derivative in turn, and show that all terms

belong to LN(θ0).

Term #1 The partial derivative is,

∂

∂θk
tr
(

Λ?−1
t (θ)Λ̇?

t,j(θ)Λ
?−1
t (θ)Λ̇t,i

)
= −2tr

(
Λ?−1
t (θ)Λ̇?

t,j(θ)Λ
?−1
t (θ)Λ̇?

t,k(θ)Λ
?−1
t (θ)Λ̇?

t,i(θ)
)

+ tr
(

Λ?−1
t (θ)Λ̇?

t,j(θ)Λ
?−1
t (θ)Λ̈?

t,i,k(θ)
)

+ tr
(

Λ?−1
t (θ)Λ̈?

t,j,k(θ)Λ
?−1
t (θ)Λ̇?

t,i(θ)
)
.

(A.43)

Noting that tr{Λ?−1
t (θ)Λ̇?

t,j(θ)Λ
?−1
t (θ)Λ̈?

t,i,k(θ)} =
∑p

s=1 λ̇
?
s,t,i(θ)λ̈

?
s,t,i,j(θ)/λ

?2
s,t(θ), we

conclude that the second term in (A.43) belongs to LN(θ0). The same argument

applies to the other terms in (A.43).

Term #2 The second term is,

∂

∂θk
tr
(

Λ?−1
t (θ)Λ̈t,i,j(θ)

)
= −tr

(
Λ?−1
t (θ)Λ̇t,k(θ)Λ

?−1
t (θ)Λ̈t,i,j(θ)

)
+tr

(
Λ?−1
t (θ)

...
Λt,i,j,k(θ)

)
,

and we apply arguments similar to the ones given with respect to Term # 1 in order

to conclude that Term #2 belongs to LN(θ0).

Terms #3 and #5 Terms #3 and #5 are the same up to indexing, and we here show
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that #3 has finite expectation uniformly on N(θ0).

∂

∂θk
tr
(

Λ?−1
t (θ)Λ̇?

t,j(θ)Λ
?−1
t (θ)Λ̇?

t,i(θ)Λ
?−1
t (θ)Yt(θ)Y

′
t (θ)

)
=

− 3tr
(

Λ?−1
t (θ)Λ̇?

t,k(θ)Λ
?−1
t (θ)Λ̇?

t,j(θ)Λ
?−1
t (θ)Λ̇?

t,i(θ)Λ
?−1
t (θ)Yt(θ)Y

′
t (θ)

)
+ tr

(
Λ?−1
t (θ)Λ̈?

t,j,k(θ)Λ
?−1
t (θ)Λ̇?

t,i(θ)Λ
?−1
t (θ)Yt(θ)Y

′
t (θ)

)
+ tr

(
Λ?−1
t (θ)Λ̇?

t,j(θ)Λ
?−1
t (θ)Λ̈?

t,i,k(θ)Λ
?−1
t (θ)Yt(θ)Y

′
t (θ)

)
+ 2tr

(
Λ?−1
t (θ)Λ̇?

t,j(θ)Λ
?−1
t (θ)Λ̇?

t,i(θ)Λ
?−1
t (θ)Yt(θ)Ẏ

′
t,k(θ)

)
. (A.44)

Note that the first term in (A.44) we may use that Yt(θ) = V (φ)′Xt, where Xt =

V Λ
?1/2
t ηt (with V = V (θ0) and Λ

?1/2
t = Λ

?1/2
t (θ0)), such that

tr
(

Λ?−1
t (θ)Λ̇?

t,k(θ)Λ
?−1
t (θ)Λ̇?

t,j(θ)Λ
?−1
t (θ)Λ̇?

t,i(θ)Λ
?−1
t (θ)V (φ)′V Λ

?1/2
t ηtη

′
tΛ

?1/2
t V ′V (φ)

)
=

vec(V (φ)′V )′(Λ
?1/2
t ηtη

′
tΛ

?1/2
t ⊗ Λ?−1

t (θ)Λ̇?
t,k(θ)Λ

?−1
t (θ)Λ̇?

t,j(θ)Λ
?−1
t (θ)Λ̇?

t,i(θ)Λ
?−1
t (θ))

× vec(V ′V (φ)). (A.45)

Since vec(V (φ)′V ) consist of rotations based on trigonometric functions, it is

bounded on N(θ0). Next, note that the quantity Λ
?1/2
t ηtη

′
tΛ

?1/2
t ⊗Λ?−1

t (θ)Λ̇?
t,kΛ

?−1
t (θ)

Λ̇?
t,jΛ

?−1
t (θ)Λ̇?

t,iΛ
?−1
t entering (A.45) is a symmetric p2×p2 matrix, with p×p blocks,

Qg,h, g, h = 1, . . . , p, each of which are diagonal,

Qg,h = diag

(
λ
?1/2
g,t ηg,tλ

?1/2
h,t ηh,t

λ̇?s,t,i(θ)λ̇
?
s,t,j(θ)λ̇

?
s,t,k(θ)

λ?4s,t(θ)

)
,

for s = 1, . . . , p, where λ̇?s,t,i(θ)λ̇
?
s,t,j(θ)λ̇

?
s,t,k(θ)/λ

?3
s,t(θ) has finite rth moment for any

r > 0 by Lemma A.7. Notice however that such property does not appear to apply to

λ
?1/2
g,t ηg,tλ

?1/2
h,t ηh,t/λ

?
s,t(θ) for g = h 6= s as the numerator and denominator are evalu-

ated in θ0 and θ respectively. Instead we note that supθ∈N(θ0) |λ
?1/2
g,t ηg,tλ

?1/2
h,t ηh,t/λ

?
s,t(θ)| ≤

K‖ηt‖2‖λt(θ0)‖, and use Assumption 3.8, Lemma A.7, and Hölder’s inequality in

order to ensure that any entry of Qg,h belongs to LN(θ0). The three other parts of

Term #3 can be shown to belong to LN(θ0) using similar arguments. To illustrate,

consider

tr
(

Λ?−1
t (θ)Λ̇?

t,j(θ)Λ
?−1
t (θ)Λ̇?

t,i(θ)Λ
?−1
t (θ)Yt(θ)Ẏ

′
t,k(θ)

)
=

tr
(

Λ?−1
t (θ)Λ̇?

t,j(θ)Λ
?−1
t (θ)Λ̇?

t,i(θ)Λ
?−1
t (θ)V (φ)′V Λ

?1/2
t ηtη

′
tΛ

?1/2
t V ′Sk(θ)V (φ)

)
=

vec(V (φ)′S ′k(θ)V )(Λ
?1/2
t ηtη

′
tΛ

?1/2
t ⊗ Λ?−1

t (θ)Λ̇?
t,j(θ)Λ

?−1
t (θ)Λ̇?

t,i(θ)Λ
?−1
t (θ))vec(V (φ)′V ),

which belongs to LN(θ0), applying the same arguments as for (A.45).
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Term #4 The derivative is,

∂

∂θk
tr
(

Λ?−1
t (θ)Λ̈?

t,i,j(θ)Λ
?−1
t (θ)Yt(θ)Y

′
t (θ)

)
= −2tr

(
Λ?−1
t (θ)Λ̇?

t,k(θ)Λ
?−1
t (θ)Λ̈?

t,i,j(θ)Λ
?−1
t (θ)Yt(θ)Y

′
t (θ)

)
+ tr

(
Λ?−1
t (θ)

...
Λ
?
t,i,j,k(θ)Λ

?−1
t (θ)Yt(θ)Y

′
t (θ)

)
+ 2tr

(
Λ?−1
t (θ)Λ̈?

t,i,j(θ)Λ
?−1
t (θ)Yt(θ)Ẏ

′
t,k

)
,

and it belongs to LN(θ0), applying the same arguments as used for Terms #1 and

#3.

Terms #6 and #8 These terms are the same up to indexing. The partial derivative in

Term #6 is,

∂

∂θk
tr
(
S̃ ′j(θ)Λ

?−1
t (θ)Λ̇?

t,i(θ)Λ
?−1
t (θ)Yt(θ)Y

′
t (θ)

)
= tr

(
˙̃S ′j,k(θ)Λ

?−1
t (θ)Λ̇?

t,i(θ)Λ
?−1
t (θ)Yt(θ)Y

′
t (θ)

)
−tr

(
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t (θ)Λ̇?

t,k(θ)Λ
?−1
t (θ)Λ̇?

t,i(θ)Λ
?−1
t (θ)Yt(θ)Y

′
t (θ)

)
+tr

(
S̃ ′j(θ)Λ

?−1
t (θ)Λ̈?

t,i,k(θ)Λ
?−1
t (θ)Yt(θ)Y

′
t (θ)

)
−tr

(
S̃ ′j(θ)Λ

?−1
t (θ)Λ̇?

t,i(θ)Λ
?−1
t (θ)Λ̇?

t,k(θ)Λ
?−1
t (θ)Yt(θ)Y

′
t (θ)

)
+tr

(
S̃ ′j(θ)Λ

?−1
t (θ)Λ̇?

t,i(θ)Λ
?−1
t (θ)

(
Ẏt,kYt(θ)

′ + Yt(θ)Ẏ
′
t,k

))
,

and, again, this can be shown to belong to LN(θ0) as Terms # 1, # 3 and # 4.

Term #7 For simplicity, define S̄i,j(θ) := V (φ)′
(
Ṡi,j(θ) + Si(θ)Sj(θ)

)
V (φ)

∂

∂θk
tr
(
S̄ij(θ)Λ

?−1
t (θ)Yt(θ)Y

′
t (θ)

)
= tr

(
˙̄Si,j,k(θ)Λ

?−1
t (θ)Yt(θ)Y

′
t (θ)

)
− tr

(
S̄i,j(θ)Λ

?−1
t (θ)Λ̇?

t,k(θ)Λ
?−1
t (θ)Yt(θ)Y

′
t (θ)

)
+ tr

(
S̄i,j(θ)Λ

?−1
t (θ)

(
Ẏt,k(θ)Yt(θ) + Yt(θ)Ẏ

′
t,k(θ)

))
,

which belongs to LN(θ0) by the same arguments as for Terms #1, #3, #4 and #6.
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Term #9 Note that

∂

∂θk
tr
(
S̃ ′i(θ)Λ

?−1
t (θ)S̃j(θ)Yt(θ)Y

′
t (θ)

)
= tr

(
˙̃S ′i,k(θ)Λ

?−1
t (θ)S̃j(θ)Yt(θ)Y

′
t (θ)

)
− tr

(
S̃ ′i(θ)Λ

?−1
t (θ)Λ̇?

t,k(θ)Λ
?−1
t (θ)S̃j(θ)Yt(θ)Y

′
t (θ)

)
+ tr

(
S̃ ′j(θ)Λ

?−1
t (θ) ˙̃Sj,k(θ)Yt(θ)Y

′
t (θ)

)
+ tr

(
S̃ ′i(θ)Λ

?
t (θ)S̃j(θ)

(
Ẏt,k(θ)Y

′
t (θ) + Yt(θ)Ẏ

′
t,k(θ)

))
.

This term also belong to LN(θ0) per the arguments used above.

Lemma A.7. With λ?t (θ) defined in (A.3), let λ?h,t(θ) denote its hth entry. For i, j, k =

1, . . . , dθ, let

λ̇?h,t,i(θ) =
∂λ?h,t
∂θi

, λ̈?h,t,i,j(θ) =
∂2λ?h,t
∂θi∂θj

, and
...
λ
?
h,t,i,j(θ) =

∂3λ?h,t
∂θi∂θj∂θk

.

Under Assumptions 3.1-3.2,3.4-3.9,, for any r > 0, i, j, k = 1, . . . , dθ, and h = 1, . . . , p

there exists a neighborhood N(θ0) ⊂ Θ of θ0 such that

E

[
sup

θ∈N(θ0)

∣∣∣∣∣ λ̇?h,t,i(θ)λ?h,t(θ)

∣∣∣∣∣
r]
<∞, E

[
sup

θ∈N(θ0)

∣∣∣∣∣ λ̈?h,t,i,j(θ)λ?h,t(θ)

∣∣∣∣∣
r]
<∞, E

[
sup

θ∈N(θ0)

∣∣∣∣∣
...
λ
?
h,t,i,j,k(θ)

λ?h,t(θ)

∣∣∣∣∣
r]
<∞.

Proof of Lemma A.7: We start out by considering the first-order derivatives λ̇?h,t,i(θ)/λ
?
h,t(θ).

With Yt = V (φ)′Xt, and suppressing the dependence on θ,

λ?t =
∞∑
j=1

Bj−1W︸ ︷︷ ︸
:=C

(j−1)
1

+Bj−1A︸ ︷︷ ︸
:=C

(j−1)
2

Y �2
t−j

 =
∞∑
j=1

(
C

(j−1)
1 + C

(j−1)
2 Y �2

t−j

)
,

which has derivatives

∂λ?t
∂ωi

=
∞∑
j=1

Ċ
(j−1)
1,i , Ċ

(j−1)
1,i = Bj−1∂W

∂ωi
,

∂λ?t
∂αi

=
∞∑
j=1

Ċ
(j−1)
2,i Y �2

t−j, Ċ
(j−1)
2,i = Bj−1 ∂A

∂αi
,

∂λ?t
∂βi

=
∞∑
j=1

Ċ
(j−1)
3,i (W + AY �2

t−j), Ċ
(j−1)
3,i =

∂Bj−1

∂βi
=

j−1∑
k=1

Bk−1 ∂B

∂βi
Bj−1−k,

∂λ?t
∂φi

= 2
∞∑
j=1

C
(j−1)
2 (Yt−j � S̃iYt−j), (A.46)
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where ωi, αi, βi, φi denote arbitrary entries of, respectively, W , A, B, φ, and where S̃i is

defined in (A.28).

We now verify that supθ∈N(θ0) |λ̇?s,t/λ?s,t|r < ∞ has finite expectation by considering

ωi, αi, βi and φi in (i)–(iv) below.

(i) Consider first θi = ωi. Here

∂λ?s,t/∂ωi

λ?s,t
=

∑∞
j=1[Ċ

(j−1)
1,i ]s∑∞

j=1

(
[C

(j−1)
1 ]s+

∑p
h=1[C

(j−1)
2 ]s,hy

2
h,t−j

) ≤
∞∑
j=1

[Ċ
(j−1)
1,i ]s

ω
≤

∞∑
j=1

%j−1

ω
≤ K,

where we have used that λ?s,t ≥ ω, with ω > 0 defined in (A.39), and supθ∈Θ ρ(B) <

1.

(ii) Next, consider θi = αi. Since ∂λ?t/∂αi =
∑∞

j=1 Ċ
(j−1)
2,i Y �2

t−j, with Ċ
(j−1)
2,i = Bj−1∂A/∂αi.

Here ∂A/∂αi is a matrix of zeros except for a 1 in the place of αi in A. We can

therefore use that, elementwise,

αi
∂λ?t
∂αi
≤ λ?t .

Hence, for s = 1, . . . , p, ∣∣∣∣∂λ?s,t/∂αiλ?s,t

∣∣∣∣ ≤ K.

(iii) Next, consider θi = βi. Let C̄t−j = W + AY �2
t−j, and notice that

∂λ?t
∂βi

=
∞∑
j=1

(
j∑

k=1

Bk−1 ∂B

∂βi
Bj−kC̄t−j

)
,

where ∂B/∂βi is a matrix of zeros, apart a one in the same place as βi in B. We

can therefore apply the inequality, (with βi > 0 uniformly on N(θ0)),

βi
∂λ?t
∂βi
≤

∞∑
j=1

jBjC̄t−j,

which elementwise corresponds to,

βi
∂λ?s,t
∂βi

≤
∞∑
j=1

j

p∑
h=1

[Bj]s,h[C̄t−j]h.

Recall furthermore that,

λ?s,t ≥ ω +

p∑
h=1

[Bj]s,h[C̄t−j]h.
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Lastly, we use the inequality x/(1 + x) ≤ xk for all x ≥ 0 and k ∈ (0, 1), such that,

βi
∂λ?s,t/∂βi

λ?s,t
≤

∑∞
j=1 j

∑p
h=1[Bj ]s,h[C̄t−j ]s

ω+
∑p
h=1[Bj ]s,h[C̄t−j ]s

≤
∞∑
j=1

p∑
h=1

j
(

[Bj ]sh[C̄t−j ]h
ω

)k
=
∞∑
j=1

p∑
h=1

j[Bj]ksh

(
[C̄t−j ]h

ω

)k
≤ K

∞∑
j=1

j%j
p∑

h=1

(
[C̄t−j ]h

ω

)k
Using that supθ∈Θ ρ(B) < 1, for any r > 0, we can choose k > 0 sufficiently small,

such that E[supθ∈N(θ0) |(∂λ?s,t/∂βi)/λs,t|r] <∞, where we have used that ‖Xt‖s has

finite mean for some s > 0, by Assumption 3.2.

(iv) Finally, consider θi = φi. The partial derivative ∂λ?t/∂φi in (A.46) contains the

matrix product S̃iYt−n, where the jth row of S̃iYt−n is

[
S̃iYt−n

]
j

= −
j−1∑
k=1

s̃i,kjyk,t−n +

p∑
k=j+1

s̃i,jkyk,t−n.

Hence,

[
Yt−n � S̃iYt−n

]
j

= yj,t−1

(
−

j−1∑
k=1

s̃i,kjyk,t−n +

p∑
k=j+1

s̃i,jkyk,t−n

)
,

and we have that

|[Yt−n � S̃iYt−n]s| ≤ K

(
s−1∑
k=1

|ys,t−n||yk,t−n|+
p∑

h=s+1

|ys,t−n||yh,t−n|

)
≤ pK‖Yt−n‖2,

where we have used the simple inequality that a2 + b2 ≥ |ab| for a, b ∈ R. Hence,

for s = 1, . . . , p,
∂λ?s,t
∂φi

≤ pK
∞∑
j=1

p∑
h=1

[C
(j−1)
2 ]s,h‖Yt−j‖2.

Note that on N(θ0), elementwise,

C
(j−1)
2 = Bj−1A ≤ αBj−1(ιp, . . . , ιp),

where ιp is a p-dimensional column vector of ones, and α > 0 is defined in (A.42).

Then, with [Bj−1]s the sth row of [Bj−1],
∑p

h=1[C
(j−1)
2 ]s,h ≤ pα[Bj−1]sιp, and we

have that ∣∣∣∣∂λ?s,t∂φi

∣∣∣∣ ≤ Kp2α

∞∑
j=1

[Bj−1]sιp‖Yt−j‖2. (A.47)
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Moreover, with α > 0 defined in (A.41), we have that [C
(j−1)
2 ]s,h ≥ α[Bj−1]sιp for

h, s = 1, . . . , p. Hence for any j ≥ 1, and s = 1, . . . , p,

λ?s,t =
∞∑
j=1

[Bj−1]sW +
∞∑
j=1

p∑
h=1

[C
(j−1)
2 ]s,hy

2
h,t−j ≥ ω̃ +

∞∑
j=1

p∑
h=1

α[Bj−1]sιpy
2
h,t−j

= ω̃ + α

∞∑
j=1

[Bj−1]sιp‖Yt−j‖2 ≥ ω̃ + α[Bj−1]sιp‖Yt−j‖2, (A.48)

where ω̃ > 0 is defined in (A.40). Combining (A.47) and (A.48), we have that for

s = 1, . . . , p and k ∈ (0, 1)

∣∣∣∂λ?s,t/∂φiλ?s,t

∣∣∣ ≤ Kp2α
∞∑
j=1

[Bj−1]sιp‖Yt−j‖2
ω̃+αL[Bj−1]sιp‖Yt−j‖2

= Kp2α

α

∞∑
j=1

[Bj−1]sιp‖Yt−j‖2
ω̃/α+[Bj−1]sιp‖Yt−j‖2

≤ Kp2α

α

∞∑
j=1

(
[Bj−1]sιp‖Yt−j‖2

ω̃/α

)k
≤ Kp2α

α

∞∑
j=1

%j−1
(
‖Yt−j‖2
ω̃/α

)k
,

and we may again choose k > 0 sufficiently small such that

E[supθ∈N(θ0) |(∂λ?s,t/∂φi)/λ?s,t|r] <∞. The integrability of supθ∈N(θ0) |λ̈?h,t,i,j(θ)/λ?h,t(θ)|r

and supθ∈N(θ0) |
...
λ
?
h,t,i,j,k(θ)/λ

?
h,t(θ)|r are shown to hold by similar arguments.

B Testing for Nullity of Rows

In this section we first consider sufficient regularity conditions under which the asymptotic

distribution of the (sup) likelihood ratio statistic for the hypothesis H∗2 in (4.2) can be

derived. In Section B.2, the implementation of the test is discussed.

B.1 Zero-rows in A and B

Recall from Section 4.1 that when testing the hypothesis H∗2 in (4.2) that θ = (τ, δ) ∈
Θτ × Θδ, where δ = (β11, β21, β31)′ denotes the unidentified parameters, while τ ∈ Θτ

denotes the remaining dτ = 21 parameters. As in Appendix A.1, consider the stationary
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and ergodic version of the log-quasi-likelihood contributions given by,

l?t (τ, δ) = log det(Ω?
t (τ, δ)) +X ′tΩ

?−1
t (τ, δ)Xt,

Ω?
t (τ, δ) = V (φ)Λ?

t (τ, δ)V (φ)′, Λ?
t (τ, δ) = diag(λ?t (τ, δ)),

λ?t (τ, δ) = W + A(V (φ)′Xt−1)�2 +Bλ?t−1(τ, δ).

The limiting distribution of the supLR statistic in (4.4) can be derived under the follow-

ing conditions, see Andrews (2001) for details and Pedersen and Rahbek (2019) for an

application to GARCH-X models.

(i) With τ̃T,δ and τ̂T,δ defined in (4.3), assume that τ̃T,δ, τ̂T,δ
p→ θ0.

(ii) Assume that T−1/2
∑T

t=1 ∂l
?
t (τ, ·)/∂τ

w→ G·, where G· is a mean zero dτ dimensional

Gaussian process with kernel

Σδ1δ2 = E
[
∂l?t (τ0,δ1)

∂τ

∂l?t (τ0,δ2)

∂τ ′

]
, for δ1, δ2 ∈ Θδ. (B.1)

(iii) For any δ ∈ Θδ, T
−1∂2l?t (τ0, δ)/∂τ∂τ

′ p→ Jδ, where

Jδ = E(
∂2l?t (τ0,δ)

∂τ∂τ ′
), (B.2)

with Jδ invertible uniformly on Θδ.

(iv) The sets Θτ − τ0 and Θ∗τ − τ0 are locally equal to some convex cones C and C∗,

respectively.1

(v) There exists a neighborhood N(τ0) of τ0 such that

sup
δ∈Θδ

∥∥∥∥∥T−1/2

T∑
t=1

(
∂lt(τ0,δ)
∂τ

− ∂l?t (τ0,δ)

∂τ

)∥∥∥∥∥ p→ 0,

and

sup
δ∈Θδ,τ∈N(τ0)∩Θτ

∥∥∥∥∥T−1

T∑
t=1

(
∂2lt(τ,δ)
∂τ∂τ ′

− ∂2l?t (τ,δ)

∂τ∂τ ′

)∥∥∥∥∥ p→ 0.

(vi) For any fixed δ ∈ Θδ, and any deterministic scalar sequence (εT : T = 1, 2, ...) with

εT → 0,

sup
τ∈Θτ :‖τ−τ0‖≤εT

∥∥∥∥∥T−1

T∑
t=1

(
∂2l?t (τ,δ)

∂τ∂τ ′
− ∂2l?t (τ0,δ)

∂τ∂τ ′

)∥∥∥∥∥ p→ 0.

1With Θ ⊂ Rdim θ and θ0 ∈ Θ, the set Θ − θ0 is locally equal to C if there exists a ε > 0 such that
{Θ− θ0} ∩H(0, ε) = C ∩H(0, ε) where H(0, ε) ⊂ Rdim θ is an open cube centered at zero and with side
length 2ε.
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By Andrews (2001, Theorem 4), under conditions (i)-(vi) and H∗2 ,

sup LRT (H∗2 )
d→ sup

δ∈Θδ

{λ′δJδλδ} − sup
δ∈Θδ

{λ∗′δ Jδλ∗δ} , (B.3)

where

λδ = arg inf
η∈C

{
(η − Zδ)′ Jδ (η − Zδ)

}
,

λ∗δ = arg inf
η∈C∗

{
(η − Zδ)′ Jδ (η − Zδ)

}
and Zδ = J−1

δ Gδ which is Ndθ

(
0, J−1

δ Σ
δδ
J−1
δ

)
distributed. By definition, the limiting

distribution in (B.3) depends on the cones C and C∗, and hence implicitly on the location

of the nuisance parameters, see e.g., Cavaliere et al. (2020) for a general discussion. In line

with Francq and Zaköıan (2009) and Pedersen (2017) we make the additional assumption

that the nuisance parameters are in the interior. To do so, without loss of generality,

order the parameters in τ as

τ = (τ ′1, τ
′
2)′,

with τ1 = (α11, α12, α13, β11, β12)′ of dimension dτ1 = 5, and with τ2 containing the remain-

ing dτ2 = 16 (nuisance) parameters in W,A and B.

(vii) Assume that τ2,0 ∈ intΘτ2 and Θτ = Θτ1 ×Θτ2 , with τ1 ∈ Θτ1 and τ2 ∈ Θτ2 .

Under the additional assumptions in (vii), C = Rdτ1
+ × Rdτ2 and C∗ = {0dτ1} × Rdτ2 ,

which implies that

sup LRT (H∗2 )
d→ sup

δ∈Θδ

{
λ′δ
(
KJ−1

δ K ′
)−1

λδ

}
, (B.4)

where K is given by Kτ = τ1 and

λδ = arg inf
η∈R

dτ1
+

{
(η − Zδ)′

(
KJ−1

δ K ′
)−1

(η − Zδ)
}
. (B.5)

and with Zδ = KJ−1
δ Gδ such that Zδ is a dτ1 dimensional Gaussian process.

B.2 Implementation:

One may obtain a critical value for the supLR test by relying on the following steps, see

also Andrews (2001) and Pedersen (2017). By definition, δ is dδ = 3 dimensional and we

choose k different values for each entry of δ, such that we have a discrete grid ∆ with

d∆ = kdδ different values of δ.
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Initialization For given δ, δ1, δ2 ∈ ∆ estimate Jδ and Σδ1δ2 as

Ĵδ =
1

T

T∑
t=1

∂2lt(τ̂T,δ ,δ)

∂τ∂τ ′
, and Σ̂δ1δ2 =

1

T

T∑
t=1

∂lt(τ̂T,δ1 ,δ1)

∂τ

∂lt(τ̂T,δ2 ,δ2)

∂τ ′
.

Step 1 Draw a realization of (Zδ : δ ∈ ∆) as

(Zδ1 , ..., Zδd∆ ) = Ndθ1×d∆

0,


Σ̂Z
δ1δ1

Σ̂Z
δ1δ2

. . . Σ̂Z
δ1δd∆

Σ̂Z
δ2δ1

Σ̂Z
δ2δ2

...
. . .

...

Σ̂Z
δd∆δ1

. . . . . . Σ̂Z
δ
d∆

δ
d∆



 ,

where Σ̂Z
δiδj

= KĴ−1
δi

Σ̂δiδj Ĵ
−1
δj
K
′

for i, j = 1, 2, ..., d∆.

Step 2 For i = 1, 2, .., , d∆, compute the dθ1 dimensional λδi by solving the constrained

minimization problem in (B.5), with Zδ and Jδ replaced with Zδi and Ĵδi , respec-

tively. Next, compute

µ = max
δ∈∆

{
λ′δ

(
KĴ−1

δ K ′
)−1

λδ

}
.

Step 3 A critical value for a test with nominal size a is found by repeating Steps 1 and

2 M times and computing the empirical (1− a)-percentile of (µi)i=1,2,...,M .

C Bootstrap Algorithm for Testing Reduced

Rank

Following Cavaliere et al. (2017) and Cavaliere et al. (2020), we apply a restricted

recursive bootstrap to obtain critical values for the likelihood ratio statistic, LRT (H2),

where the null hypothesis of reduced rank is imposed on the bootstrap data generating

process. The recursive bootstrap scheme applied is standard in the context of GARCH

models, see e.g., Hidalgo and Zaffaroni (2007) or Jeong (2017). The bootstrap algorithm

is as follows:

Initialization Estimate the model parameters with H2. That is, the likelihood function

in (3.8) is maximized with A = γα′ and B = γβ′ where the (3× 2) matrices γ, α and

β have non-negative entries. With θ̃T denoting the obtained restricted estimator,

for t = 1, ..., T compute the centered and standardized residuals,

η̂ct = Σ̂−1/2
η (η̂t −

1

T

T∑
t=1

η̂t),
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where Σ̂η is the sample covariance matrix of η̂t, and

η̂t = Λ
−1/2
t (θ̃T )V (φ̃T )′Xt.

Step 1 Using the estimated parameter vector under the null hypothesis, θ̃T , generate the

bootstrap process X∗t as follows:

X∗t = V (φ̃T )Λ
∗1/2
t (θ̃T )η∗t , Λ∗t (θ̃T ) = diag(λ∗t (θ̃T ))

λ∗t (θ̃T ) = W (θ̃T ) + A(θ̃T )(V (φ̃T )′X∗t−1)�2 +B(θ̃T )λ∗t−1(θ̃T ),

for t = 1, ..., T . Here the bootstrap innovations, η∗t , are drawn uniformly from η̂ct

with replacement, and the initial values are X∗0 = X0 and λ∗0 = W (θ̃T ).

Step 2 With the bootstrap log-likelihood function L∗T (θ) given by,

L∗T (θ) =
T∑
t=1

l∗t (θ), l∗t (θ) = log det(Ω∗t (θ)) +X∗′t Ω∗−1
t (θ)X∗t ,

Ω∗t (θ) = V (φ)Λ∗t (θ)V (φ)′, Λ∗t (θ) = diag(λ∗t (θ)),

λ∗t (θ) = W + A(V (φ)′X∗t−1)�2 +Bλ∗t−1(θ),

this is maximized unrestricted and under the hypothesis in order to obtain the

bootstrap estimators θ̂∗T and θ̃∗T . Compute next the bootstrap LR statistic,

LR∗T (H2) = 2(L∗T (θ̂∗T )− L∗T (θ̃∗T )).

Step 3 A critical value for a test with nominal size a is found by repeating Steps 1 and 2

B times and computing the empirical (1− a)-percentile of (LR∗T (b) : b = 1, . . . , B).

Remark 10. Note that the bootstrap distribution approximates the LRT (H2) statistic for

the case where, under H2, nuisance parameters are assumed to be in the interior of the

parameter space. To allow nuisance parameters on the boundary of the parameter space,

one may alternatively apply the shrinkage-based bootstrap proposed by Cavaliere et al.

(2020).

D Monte Carlo Simulations

In this section, we investigate the finite sample properties of the QMLE discussed in

Section 3.2. The asymptotic distribution theory for the QMLE is presented in Theorem

3.3 for the general model with A and B general (p× p) dimensional matrices. For the



51

simulations in Cases (i)-(iii) below, we consider the case of B diagonal (or even zero) as

detailed in order to keep the discussion simple. The emphasis of the simulations is on the

sufficient regularity condition of finite second order moments of Xt in Theorem 3.3, which

we conjecture is not necessary. In addition, we investigate the necessity of the rotation

parameters in φ being restricted to the interval [φL, φU ] = [0, π/2], which is sufficient for

identification. The simulations indeed indicate that the conditions of finite second order

moments and the restrictions on φ are not necessary.

D.1 Case (i): Sufficient Conditions for Asymptotic

Normality Satisfied

T
1/2(φ̂−φ

0
) N(s=1.74) 
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Figure D.1: Monte Carlo-based densities of estimated parameters θ̂T for the finite
second-order moment case, ρ (A+B) < 1.

In Case (i), the bivariate λ-GARCH model is considered, where

Xt = V Λ
1/2
t ηt, ηt i.i.d.N(0, I2), Λt = diag(λt), λt = W + AY �2

t−1 +Bλt−1, (D.1)

and B is assumed to be diagonal2. For the data-generating process (dgp), set φ0 = 0.70 ∈
[0, π/2], W0 = (0.50, 0.75)′ and

A0 =

(
0.10 0.06

0.05 0.01

)
, B0 =

(
0.85 0.00

0.00 0.77

)
,

such that ρ(A0 +B0) = 0.98 < 1. By Theorem 3.1 (setting k = 1), the stationary solution

of the process has finite second order moments, and the conditions of Theorem 3.3 are

2The theory in Theorem 3.3 is straightforward to modify to the case of A and B diagonal.
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Figure D.2: Monte Carlo based densities of θ̂T for the “integrated” case of ρ(A+B) = 1 .

satisfied.

We simulate N = 1000 realizations the process with T = 10000 observations, and

estimate φ, W, A, B by QMLE. Figure D.1 contains kernel density estimates of the

centered and scaled estimates of φ, ω1, α11, and β11. The solid line is the estimated

density, and the dashed line is the normal density. As expected Figure D.1 confirms

asymptotic normality.

D.2 Case (ii): Lack of Second Order Moments

Consider again the model in (D.1) with A and B diagonal. For the dgp φ0 is as before,

W0 = (0.1, 0.1)′

A0 =

(
0.12 0.00

0.00 0.10

)
, B0 =

(
0.88 0.00

0.00 0.84

)
,

such that ρ(A0+B0) = 1. Hence, by definition, the stationary solution does not have finite

second-order moments which violates the sufficient condition in Theorem 3.3. Figure D.2

contains kernel density estimates of the centered and scaled estimates of φ, ω1, α11, and

β11. Despite the fact that the sufficient condition for asymptotic normality is violated,

the estimates seem to fit a normal distribution, indicating that the requirement of finite

second order moments in Theorem 3.3 is not a necessary condition.

D.3 Case (iii): The Rotation Parameter φ

Consider here the trivariate λ-GARCH,

Xt = V ′Λ
1/2
t ηt, ηt i.i.d. N(0, I3), Λt = diag(λt), λt = W + AY �2

t−1 +Bλt−1,
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Figure D.3: Monte Carlo-based densities of estimated parameters θ̂T when φL = −π/2
and φU = π/2 in Θφ.

with B = 03×3 and with the parameter space for φ = (φ1, φ2, φ3)′ is extended such that

φi ∈ [−π/2, π/2]. For the dgp set

φ0 =

 0.47

1.45

−1.30

 , W0 =

0.45

1.50

0.95

 , A0 =

0.25 0.05 0.09

0.03 0.35 0.06

0.07 0.12 0.3

 , B0 = 03×3,

such that φ0,3 /∈ [0, π/2]. Figure D.3 contains standardized densities of φ̂1, φ̂2, and

φ̂3. Whereas, Lemma 3.1 restricts φi to be in the interval [0, π/2] in order to ensure

identification, we have that Figure D.3 indicates that the condition can be relaxed, as the

densities seem to be centered around zero.
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Chapter 2

Spectral Targeting Estimation of Dynamic
Conditional Eigenvalue GARCH Models

Abstract

This paper investigates a two-step estimator of a class of orthogonal GARCH models,

combining (eigenvalue and -vector) targeting estimation with stepwise (univariate)

estimation. We denote this estimator the “spectral targeting estimator”. This type

of estimator has long been used in empirical modeling, and in this paper we present

novel asymptotic theory. We find that the estimator is consistent under finite second

order moments, while asymptotic normality holds under finite fourth order moments.

The estimator is especially well suited for modeling larger portfolios: we compare

the empirical performance of the spectral targeting estimator to that of the quasi-

maximum likelihood estimator for five portfolios of 25 assets. The spectral targeting

estimator dominates in terms of computational complexity, being up to 57 times

faster in estimation, while both estimators produce similar out-of-sample forecasts,

indicating that the spectral targeting estimator is well suited for high-dimensional

empirical applications.

Keywords: Asymptotic theory, Multivariate GARCH, Variance targeting, Two-

step estimation.

JEL: C32, C58.



56

1 Introduction

Multivariate conditionally heteroskedastic (MGARCH) models are a popular tool for risk

management and dynamic portfolio allocation, where forecasts of conditional covariance

matrices play an important role. As is well known in the literature, MGARCH mod-

els suffer from the “curse of dimensionality”, making them difficult and time consum-

ing to estimate for larger portfolios using quasi-maximum likelihood (QML) techniques.

Many practitioners and academics alike have therefore preferred using alternative estima-

tion methods: Two popular choices are the variance targeting (VT) estimator and the

equation-by-equation (EbE) estimator, see e.g., Bauwens, Laurent, and Rombouts (2006).

In the context of orthogonal GARCH models, such as the Dynamic Conditional Eigen-

value GARCH (or λ-GARCH) model of Hetland, Pedersen, and Rahbek (2020), we can

combine the idea behind the two methods in what we denote the spectral targeting es-

timator (STE): By estimating the unconditional eigenvalues and -vectors using a sample

moment estimator, the remainder of the parameters of the GARCH model may be esti-

mated univariately in a stepwise manner, in which we target the unconditional eigenvalues

and -vectors. This estimation procedure dramatically reduces the computational complex-

ity of the optimization problem and speeds up numerical estimation compared to the QML

estimator.

In this paper, we derive large-sample properties (consistency and asymptotic normal-

ity) of this estimator under mild conditions. Our numerical illustrations show that the

estimator is superior to the QML estimator in cross-sections larger than 10 financial as-

sets, being up to 57 times faster in estimation, while the out-of-sample forecasts from the

QML and ST estimator are similar in portfolios of 25 assets. Furthermore, because the

second step of the estimator is based on univariate estimation, estimation of conditional

covariance matrices of high-dimensional portfolios is feasible. In our numerical exercise,

we estimate the model in dimensions up to p = 500 assets.

Two-step estimators such as the STE are well-known in the empirical multivariate

GARCH literature, and the STE has been applied as early as Alexander and Chibumba

(1997). Related multi-step estimators are discussed in e.g., Fan, Wang, and Yao (2008)

and Boswijk and Weide (2011) (see also references therein), with the common element that

a first step estimator utilizes (un-)conditional information from the matrix of second order

moments using a loss-function, and a second step in which univariate estimation based

on the Gaussian log-likelihood function is used. While Fan, Wang, and Yao (2008) and

Boswijk and Weide (2011) show consistency of their respective first step estimators, both

papers come short of showing the joint asymptotic behavior of the two-step estimator. In

contrast to the aforementioned papers, we derive consistency and asymptotic normality

of the joint estimator.

In general, asymptotic theory of QML estimation of MGARCH models is well-understood
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(large-sample theory for the λ-GARCH is covered in Hetland, Pedersen, and Rahbek

(2020), while chapter 11 of Francq and Zaköıan (2019) contain a review of existing theory

for other model specifications), whereas less attention has been paid to the theory of al-

ternative estimation methods. Large-sample properties of the two-step VT estimator are

considered in Pedersen and Rahbek (2014) and Francq, Horvath, and Zaköıan (2014) for

the BEKK model (Engle and Kroner, 1995) and the (extended) CCC model (Bollerslev,

1990 and Jeantheau, 1998) respectively, while Francq and Zaköıan (2016) consider the

two-step EbEE for various MGARCH specifications. Both the VT and EbE estimators

are two-step estimators, which are quite common in econometrics, see e.g., Newey and

McFadden (1994). The EbEE and VTE both aim at making high(er) dimensional esti-

mation feasible, and do so in two distinct ways: The EbEE estimates univariate volatility

models in a first step, and subsequently a (conditional) correlation dynamic in a second

step, whereas the VTE estimates the unconditional covariance matrix using a moment

estimator (or vector of unconditional variances in the case of the CCC model), followed

by a joint (profiled) estimation of the volatility and covariance dynamics. The STE is

related to both, as we recover sample eigenvalues and -vectors from the unconditional

covariance matrix, and estimate univariate dynamics for “rotated” (orthogonalized) re-

turns in a second step. The resulting estimator is well-behaved and easily implemented:

Because the λ-GARCH model is specified using the spectral decomposition, the (profiled)

log-likelihood, conditional on the initial estimator, can be rewritten as a sum of orthogo-

nal univariate log-likelihood functions, making stepwise estimation feasible. Furthermore,

by recovering the (constant conditional) eigenvectors we avoid having to parameterize the

eigenvectors under the restriction of orthonormality.

The remainder of the paper proceeds as follows: Section 2 introduces the λ-GARCH

model and spectral targeting. Section 3 presents the two-step estimator and Section 4

presents novel asymptotic results and discuss practical considerations for implementa-

tion. Section 5 investigates the empirical properties of the estimator compared to the

QML estimator. Finally, Section 6 concludes. All proofs are relegated to the appendices.

1.1 Notation

Some notation used throughout the paper. R denotes the real numbers, R+ the positive

real numbers, R++ the strictly positive real numbers. The absolute value of a ∈ R is

denoted |a|. For p, n ∈ N, Ip denotes the (p × p) identity matrix and 0n×p denotes

a n × p matrix of zeros. The vector vec(A) stacks the columns of the matrix A. For

a p−dimensional vector x, diag(x) = diag((xi)
p
i=1) is a diagonal matrix with x on the

diagonal. The trace of a square matrix is denoted tr(A), and the determinant det(A).

Furthermore, denote by ρ(A) the spectral radius of any square matrix A, i.e., ρ(A) =
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max{|λ̃i| : λ̃i is an eigenvalue of A}. We use || · || as a matrix norm. Let � denote the

Hadamard product, with A�2 = A� A, and A⊗ B denotes the Kronecker product of A

and B of suitable dimensions, and note that A⊗2 = A⊗A. Elements of matrices or vectors

are denoted by lower case letters, e.g., aij is the (i, j)’th element of the matrix A. We use

three kinds of convergence of random variables,
a.s.→ denotes almost sure convergence,

p→
denotes convergence in probability and

D→ denotes convergence in distribution.

2 The λ-GARCH Model

As in Hetland, Pedersen, and Rahbek (2020), we focus on the class of orthogonal GARCH

(O-GARCH) models originally introduced by Alexander and Chibumba (1997). The

presented model has more general dynamics than the O-GARCH, allowing for eigenvalue-

spillovers, and we denote this version of the model λ-GARCH.

Let Xt be a p× 1 vector of asset returns,

Xt = H
1/2
t Zt, (2.1)

where t = 1, . . . , T and Zt is an iid(0, Ip) sequence of random variables. H
1/2
t = V Λ

1/2
t is

the (asymmetric) matrix square root of the conditional covariance matrix, Ht (following

the literature on MGARCH models, see e.g., Weide (2002) and Lanne and Saikkonen

(2007)), which is decomposed using the spectral theorem,

Ht = V ΛtV
′. (2.2)

Here, V =
(
V1 V2 . . . Vp

)
is an orthonormal matrix of eigenvectors, V V ′ = Ip, and Λt

is a diagonal matrix with time-varying eigenvalues, λt, on the diagonal,

Λt = diag(λt). (2.3)

The p× 1 vector of dynamic eigenvalues are assumed to follow a GARCH dynamic,

λt = W + AY �2
t−1 +Bλt−1, (2.4)

where Yt = V ′Xt are “rotated” (or orthogonalized) returns: The orthonormal matrix V

rotates the returns Xt to be orthogonal with conditional covariance Λt. To ensure that

the covariance matrix is positive definite for all t ∈ Z, we restrict wi > 0, aij ≥ 0, and

bij ≥ 0 for i, j = 1, . . . p. Furthermore, to facilitate stepwise estimation, we restrict B to

be a diagonal matrix, letting the i’th lagged eigenvalue enter equation i. The restriction

on B is crucial for making the step-wise estimation feasible: In the context of a non-

restricted B matrix, λi,t is a function of λj,t for i, j = 1, . . . , p, and it is not possible
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to estimate the model sequentially as λi,t depends on conditional eigenvalues, λj,t, j 6= i,

that (potentially) have not been estimated yet. This restriction is common in equation-by-

equation estimation of GARCH models, see e.g., Francq, Horvath, and Zaköıan (2014).1

In this restricted case, the λ-GARCH is equivalent to the model in Fan, Wang, and Yao

(2008) and closely related to the model in Lanne and Saikkonen (2007) and Boswijk and

Weide (2011), see Section 2.1 of Hetland, Pedersen, and Rahbek (2020) for a discussion

and comparison.

By Lemma C.1 and C.2 in Appendix C, the stochastic process {Xt}t∈Z can be initiated

from the invariant distribution such that it is covariance stationary if and only if ρ(A +

B) < 1. If this is the case, the unconditional covariance matrix, H = V (Xt) = E[XtX
′
t],

exists almost surely and is given by,

H = V diag(λ)V ′, (2.5)

λ = (Ip − A−B)−1W, (2.6)

where λ = E[λt] is the vector of unconditional eigenvalues.

To obtain the spectral targeting λ-GARCH, we re-parameterize the model by substi-

tuting (2.6) into (2.4),

λt = (Ip − A−B)λ+ AY �2
t−1 +Bλt−1. (2.7)

This implies that the i’th rotated return is driven by an augmented GARCH(1, 1) with

spill-overs from the other squared rotated returns,

yi,t = λ
1/2
i,t zi,t, (2.8)

λi,t = wi +

p∑
j=1

aijy
2
j,t−1 + biλi,t−1, (2.9)

with yi,t = V ′iXt and wi = (1 − bi)λi −
∑p

j=1 aijλj for i = 1, . . . , p. This specification is

motivated by generality: it seems restrictive to assume that the conditional variance of a

component is not influenced by the past of other components, and allowing for spill-overs

between assets may improve the model fit and out-of-sample performance.

3 Spectral Targeting Estimation

While theory for classical joint QMLE of λ-GARCH type models have been considered in

Hetland, Pedersen, and Rahbek (2020), we consider spectral targeting estimation. The

1In principle one could allow B to be non-restricted. The cost however, is that all equations have to
be estimated jointly in a second step, similar to the VTE of ECCC-GARCH or BEKK-GARCH models,
see Pedersen and Rahbek (2014) and Francq, Horvath, and Zaköıan (2014).
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stepwise estimation procedure examined in this paper makes estimation and inference

for the λ-GARCH feasible in (very) large systems, as long as the time series dimension

dominates the cross-sectional dimension (see e.g., Ledoit and Wolf, 2004, 2012).

Define υ = vec(V ), i.e., the vector of stacked eigenvectors, such that

γ = [λ′, υ′]′ and κ(i) = [ai1, . . . , aip, bi]
′, (3.1)

where γ contain the eigenvalues and -vectors of the unconditional covariance matrix,

H. Hence, γ denote “static” and κ(i) the “dynamic” parameters of equation i, such

that θ(i) = [γ′, κ(i)′]′ is the vector of parameters associated with the i’th rotated return,

i = 1, . . . , p, of size e = p2 + 2p + 1. Likewise, define the parameter space Θ(i) :=

L × V × K(i) ⊂ Rp
++ × Rp2 × Rp+1

+ which is restricted such that ρ(A + B) < 1 and λ is

element-wise strictly positive and eigenvectors are orthonormal, V V ′ = Ip, such that H

is positive definite and symmetric. To ensure W = (Ip − A − B)λ > 0 it is sufficient to

impose the restriction
∑p

j=1 aij + bi < 1.

The vector of all the parameters in the model is

θ = [γ′, κ(1)′, . . . , κ(p)′]′,

which has p(p+ 1)/2 + p2 + p elements. To emphasize the dependence on the parameters

in θ(i), we restate the model for the i′th rotated return as,

yi,t(γ) = λi,t(γ, κ
(i))zi,t

λi,t(γ, κ
(i)) = wi +

p∑
j=1

aijy
2
j,t−1(γ) + biλi,t−1(γ, κ(i)),

which also explicitly states that the conditional eigenvalues are a non-linear function of

the eigenvectors in γ, and are linear in the dynamic parameters in κ(i). Furthermore,

Ht(θ) = V Λt(θ)V
′, such that the (constant conditional) eigenvectors only depend on

γ, whereas the diagonal matrix of conditional eigenvalues depend on the full vector of

parameters, θ.

The STE consists of two steps: In the first step, we estimate γ using a sample estima-

tor. In the second step, the dynamic parameters of the model are estimated by univariate

QMLE for each equation in (2.8)-(2.9) for i = 1, . . . , p. This procedure yields the STE

for equation i, denoted θ(i), and based on the joint vector of parameters, θ, the sequence

of filtrated conditional covariance matrices, Ht(θ), can be recovered for t = 1, . . . , T .
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3.1 The moment estimator

The first step of the STE utilizes the (strong) law of large numbers for strictly stationary

and ergodic processes, and we estimate H by the sample covariance matrix,

vec(Ĥ) = vec

(
1

T

T∑
t=1

XtX
′
t

)
. (3.2)

If Xt is covariance stationary and ergodic, Ĥ is a strongly consistent estimator for H by

the ergodic theorem. From Ĥ it is possible to recover the estimated eigenvalues, λ̂, and

estimated eigenvectors, V̂ , by solving the two equations,

|H − λIp| = 0, (3.3)

HVi = λiVi, i = 1, . . . , p, (3.4)

and under Assumption 4.1 below, λ̂ and υ̂ are strongly consistent estimators of λ and υ

respectively by the continuous mapping theorem.

In applications, these two equations are solved using iterative procedures and for H

symmetric and positive definite, all eigenvalues are almost surely strictly positive. Notice

however, that the eigenvalue decomposition is not unique: the spectrum of H is unique

only up to the ordering, and while the eigenspace of H is unique the eigenvectors are

not. Furthermore, eigenvalues may not be unique. We discuss this further in the next

subsection (see Assumption 4.2 and Remark 4.1).

Remark 3.1 (Alternative first step estimator). Instead of estimating the eigenvalues and

-vectors implicitly using the moment estimator of H, we can estimate them directly using

an approach similar to that proposed by Fan, Wang, and Yao (2008) (see also Boswijk

and Weide (2011)), wherein V is specified using rotation matrices,

V (φ) =
∏

1≤i<j≤p

Uij(φij),

with Uij(φij) a p-dimensional identity matrix apart from four elements: (i, i) and (j, j) are

cos(φij), (i, j) and (j, i) are sin(φij) and − sin(φij) respectively. φ is a p(p − 1)/2 vector

containing the rotation parameters, φij. This parameterization ensures that V (φ)V ′(φ) =

Ip. The eigenvectors and eigenvalues can then be estimated by numerically solving the

minimization problem,

arg min
[φ′,λ′]′∈C

CT (φ, λ)

where C is an appropriate parameter space and CT (φ, λ) is a cost function, e.g., the
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Gaussian log-likelihood,

CT (φ, λ) =
1

T

T∑
t=1

(
log det(Λ) +X ′tV (φ)Λ−1V ′(φ)Xt

)
.

The asymptotic theory for this estimator can be derived with relative ease, see e.g., Het-

land, Pedersen, and Rahbek (2020) who parameterize the joint QMLE of the λ-GARCH in

a similar fashion. One should however, keep in mind that the rotation parameters in φ are

not uniquely identified unless we impose restrictions on the parameter space. A sufficient

condition is φij ∈ (0, π/2), see Lemma 1 of Hetland, Pedersen, and Rahbek (2020).

The alternative first step estimator outlined in Remark 3.1 requires numerical opti-

mization of a cost function, and may therefore run into numerical problems as p increase,

such as failure of a Newton-type optimization procedure to converge, or the possibility of

ending up in a local maximum – problems similar to those of the joint QML estimator.

We therefore choose to work with the sample moment estimator as it has a closed form

solution and is the preferred first step estimator in the variance targeting literature.

3.2 The profiled maximum likelihood estimator

In the second step of the STE, we consider the profiled quasi log-likelihood function based

on the multivariate Gaussian distribution. Conditional on a fixed X0 and H0, the joint

Gaussian log-likelihood of the model is, up to a constant,

LT (θ) =
1

T

T∑
t=1

log det(Ht(θ)) +X ′tH
−1
t (θ)Xt

=
1

T

T∑
t=1

p∑
i=1

(
log(λi,t(γ, κ

(i))) +
y2
i,t(γ)

λi,t(γ, κ(i))

)

=

p∑
i=1

L
(i)
T (γ, κ(i)), (3.5)

using H−1
t (θ) = V Λ−1

t (θ)V ′, log det(Ht(θ)) =
∑p

i=1 log(λi,t(γ, κ
(i))), and Yt(γ) = V ′Xt.

That is, because the rotated returns are orthogonal, the log-likelihood function can be

decomposed as the sum of p univariate log-likelihood functions, each of which depend on

θ(i) = [γ′, κ(i)′ ]′,

L
(i)
T (γ, κ(i)) =

1

T

T∑
t=1

l
(i)
t (γ, κ(i)), (3.6)

l
(i)
t (γ, κ(i)) = log(λi,t(γ, κ

(i))) +
y2
i,t(γ)

λi,t(γ, κ(i))
, (3.7)



63

where yi,t(γ) = V ′iXt and λi,t(γ, κ
(i)) is given in (2.9). Conditional on γ, each of the i

univariate log-likelihood functions are orthogonal and do not depend on κ(j) for j 6= i.

The parameters of the model can therefore be estimated sequentially, and we define the

STE of κ(i) as,

κ̂(i) = arg min
κ(i)∈K(i)

L
(i)
T (γ̂, κ(i)), (3.8)

and the two-step procedure yields the STE of θ,

θ̂ = [γ̂′, κ̂(1)′, . . . , κ̂(p)′]′.

Similar to quasi-maximum likelihood estimation of multivariate GARCH models, we

use the Gaussian log-likelihood function, but we do not assume that the vector of in-

novations Zt are Gaussian, only that they are centered with unit variance: Even if the

innovations are drawn from a different distribution, the results in Theorem 4.1 and 4.2

below still hold, as long as the assumptions are satisfied.

Compared to joint QMLE, which estimates all 3
2
(p2 + p) parameters jointly, the STE

procedure vastly reduces the number of parameters estimated in each step: In the first

step p(p + 1)/2 parameters are estimated by method of moments and in the second step

p+ 1 parameters are estimated for each rotated return, making the estimation procedure

suitable in high-dimensional systems and less vulnerable to numerical problems.

4 Large-Sample Properties of Spectral

Targeting Estimation

In this section we establish consistency and asymptotic normality of the STE and discuss

practical considerations for implementation. A novelty of the asymptotic theory presented

here is that we parameterize the moment estimator in terms of the unconditional eigen-

values and vectors, rather than the vectorized covariance matrix. In doing so, we apply

the mean-value theorem on the eigenvectors, which otherwise do not have a closed form

solution as a function of the unconditional covariance matrix. This, in conjunction with

the continuous mapping theorem, allows us to study the asymptotic behavior of both the

first step estimator, γ, and the joint parameter vector of the i’th rotated return, θ(i).

The two-step estimator is consistent under finite second order moments, and it has

a limiting Gaussian distribution under the assumption of finite fourth order moments.

Both of these moment conditions stem from the first step moment estimator, and are

more strict that the moment conditions for the joint QML estimator (for which we need

E||Xt||2+δ <∞, δ > 0, see Theorem 3.3 in Hetland, Pedersen, and Rahbek (2020)). These

results are novel and extend the existing literature on targeting and stepwise estimation,
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see e.g., Francq, Horvath, and Zaköıan (2014), Pedersen and Rahbek (2014) and Francq

and Zaköıan (2016). All proofs are relegated to Appendix A.

Before discussing the asymptotic properties in detail, we make the following assump-

tions. First, we assume that the process is covariance stationary and ergodic.

Assumption 4.1. The process {Xt}t∈Z is strictly stationary, ergodic and has finite second

order moments.

Assumption 4.1 is in line with the literature for variance-targeting estimation in the

univariate and multivariate case, see e.g., Pedersen and Rahbek (2014) or Francq, Horvath,

and Zaköıan (2011, 2014), and is needed to ensure that the moment estimator converge

to a well-defined unconditional covariance matrix for T →∞.

Furthermore, we need the following assumption on identification of the first step esti-

mator.

Assumption 4.2. The characteristic polynomial of the unconditional covariance matrix,

H, has an algebraic multiplicity of 1. Furthermore, the eigenvalues are sorted from small-

est to largest, λ1 > λ2 > . . . > λp > 0 and each eigenvector is normalized such that the

first non-zero element of Vi is positive for i = 1, . . . , p.

Assumption 4.2 is novel in the (variance) targeting literature and is needed to ensure

identification of the first step estimator: We assume that the unconditional eigenvalues

are simple, i.e., that the characteristic polynomial of the unconditional covariance matrix

has an algebraic multiplicity of one. This is needed for two reasons: First, in the case

of repeated eigenvalues, the associated eigenvectors are not uniquely determined and the

parameters in the first step estimator are not uniquely identified, and hence the first step

estimator is not consistent. Second, it is a requirement for λ and υ to be continuously

differentiable (see Theorem 1 of Magnus, 1985), which is needed to apply the mean-value

theorem when considering the asymptotic distribution of the estimator. The second part

of Assumption 4.2 imposes an identifying normalization on the first step estimator and

ensures a unique identification of the unconditional eigenvalues and -vectors. This is

needed since the ordering of the eigenvalues is not fixed and the sign of the eigenvectors

is unidentified without imposing a normalization.

Remark 4.1 (Consequences of failure of Assumption 4.2). When the first part of As-

sumption 4.2 is violated, that is, the case of repeated eigenvalues, the eigenvectors can

only be identified up to an orthogonal transformation. Furthermore, Ledoit and Wolf

(2004) present simulation evidence that the estimates of λi tend to be under-/overstated,

when eigenvalues are repeated. It should be noted, and as emphasized by Jolliffe (2002)

(Section 2.4), that repeated eigenvalues are a problem that (paraphrasing slightly) “arise

in theory, but are relatively uncommon in practice”, and we note that assumptions sim-

ilar to our Assumption 4.2 are commonly made in both the statistics and econometrics
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literature, see e.g., Aı̈t-Sahalia and Xiu (2019) and references therein. Anderson (1963),

Eaton and Tyler (1991), and Jolliffe (2002) (Section 3.7) discuss methods for testing of

repeated eigenvalues.

We also assume that the dynamic parameters of the model are identified and that the

true parameter vector is a subset of the parameter space.

Assumption 4.3. The true parameter vector θ
(i)
0 ∈ Θ(i), with Θ(i) compact.

Assumption 4.4. For κ(i) ∈ K(i), if κ(i) 6= κ
(i)
0 , then λi,t(γ0, κ

(i)) 6= λi,t(γ0, κ
(i)
0 ) (almost

surely).

Assumptions 4.3-4.4 are standard for (multivariate) GARCH models, see e.g., Comte

and Lieberman (2003) or Hafner and Preminger (2009a). Moreover, the normalization

imposed on the first step estimator ensures that the eigenvalues and -vectors of the first

step estimator are uniquely identified. Assumption 4.4 is high-level, and Assumption

3.4 and 3.5 of Hetland, Pedersen, and Rahbek (2020) provide sufficient and primitive

conditions under which it holds. Most importantly, the matrix 2p× p [A0, B0] must have

full rank p.

These assumptions lead us to the following theorem from Hetland, Pedersen, and

Rahbek (2020) (Theorem 3.2) on strong consistency of the STE.

Theorem 4.1. Under Assumptions 4.1-4.4, as T →∞, the ST estimator is consistent,

θ̂(i) a.s→ θ
(i)
0 .

Next, we show that the estimator is asymptotically normal. To do so, we need two

additional assumptions on existence of moments and the true parameter vector.

Assumption 4.5. The process {Xt}t∈Z has finite fourth order moments, E||Xt||4 <∞.

Assumption 4.5 is required to ensure that the first step estimator,
√
T (γ̂ − γ0), con-

verges to a Gaussian distribution with a finite variance. This assumption is common in

the variance targeting literature and is also needed when reparameterizing the moment

estimator in terms of the spectral decomposition. In fact, the moment requirement is not

needed in the probability analysis of the profiled log-likelihood function, but it is needed

in the sense that the second step estimator depends on convergence of γ̂.. Lemma C.2

in Appendix C can be used to check the moment condition in Assumption 4.5. Based

on the simulations included in Appendix D, the moment conditions for consistency and

asymptotic normality are sufficient and necessary.

Assumption 4.6. θ
(i)
0 is in the interior of Θ(i).
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Assumption 4.6 is standard in the literature, and is a technical requirement to ensure

that the mean-value theorem can be applied on the optimality condition for the profiled

log-likelihood function.

This leads us to the next theorem on asymptotic normality of the estimator for the

i’th rotated return,

Theorem 4.2. Under Assumptions 4.1-4.6, for T →∞

√
T
(
θ̂(i) − θ(i)

0

)
D→ N

(
0,Σ

(i)
0

)
,

where Σ
(i)
0 is the asymptotic covariance matrix, given by,

Σ
(i)
0

e×e
=

(
Ip(p+1) 0p(p+1)×p+1

−(J
(i)
0 )−1K

(i)
0 −(J

(i)
0 )−1

)
Ω

(i)
0

(
Ip(p+1) −(J

(i)
0 )−1(K

(i)
0 )′

0p+1×p(p+1) −(J
(i)
0 )−1

)
. (4.1)

where J
(i)
0 and K

(i)
0 are defined in (A.12) and Ω

(i)
0 is given in (B.22).

In the derivation of the asymptotic distribution of the first step (and consequently

the second step) estimator, we restate the moment estimator as the average of the con-

ditional eigenvalues. However, as vec(Ĥ) = V ⊗2vec( 1
T

∑T
t=1 Λ

1/2
0,t ZtZ

′
tΛ

1/2
0,t ) is in terms of

Λt, and not the vectorized eigenvalues, λt, we restate the dynamics of the conditional

eigenvalues in (2.4) as a (restricted) BEKK(p2, 1, 1, 1) model for Λt. This parametrization

is present in Ω
(i)
0 in (B.22). In doing so, γ̂ − γ0 is shown to (asymptotically) be a mar-

tingale difference, allowing us to use a central limit theorem for martingale differences on√
T
(
γ̂ − γ0

∂L
(i)
T (θ

(i)
0 )

∂κ(i)

)′
jointly to show normality and find the expression for Ω

(i)
0 . The

proof of joint normality of
√
T (θ̂(i)− θ(i)

0 ) applies the mean-value theorem on the optimal-

ity condition of the second step estimator, stacked with the moment estimator from step

one, and Lemmata B.6-B.10 in Appendix B verify that the mean-value theorem can be

applied.

Remark 4.2 (Fixed initial values). Assumption 4.1 assumes that the process is strictly

stationary, implying that the process {Xt}t∈Z is initiated in the invariant distribution or

in the infinite past. In practice the observed process (in the likelihood function) is initiated

in some fixed values, X0 and H0, which by definition makes the process non-stationary.

However, Lemmata B.4 and B.10 in Appendix B verifies that the choice of initial values are

asymptotically irrelevant for both consistency and asymptotic normality of the estimator.

In (very) large portfolios, practitioners may prefer a “diagonal” specification of the

model, in which both A and B are restricted to be diagonal, to reduce dimensionality

of the model. In this case the parameter vector is κ(i) = [ai, bi]
′, and the lemmata

in the appendix can easily be modified such that the estimator is still consistent and

asymptotically normal by Theorems 4.1-4.2.
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In applications, the asymptotic variance matrix for the stepwise estimator may be

approximated using plug-in sample estimators. That is,

Ĵ
(i)
T

p+1×p+1

=
1

T

T∑
t=1

∂2l
(i)
t (θ(i))

∂κ(i)∂κ(i)′

∣∣∣∣∣
θ(i)=θ̂(i)

, K̂
(i)
T

p+1×p2+p

=
1

T

T∑
t=1

∂2l
(i)
t (θ(i))

∂κ(i)∂γ′

∣∣∣∣∣
θ(i)=θ̂(i)

, (4.2)

Ω̂
(i)
T

e×e
=

1

T

T∑
t=1

ω̂tω̂
′
t where ω̂t

e×1
:=



DV̂ ⊗2
(

vec(XtXt)− vec(Ĥ)
)

V̂ ′1 ⊗ (λ̂1Ip − Ĥ)+
(

vec(XtXt)− vec(Ĥ)
)

...

V̂ ′p ⊗ (λ̂pIp − Ĥ)+
(

vec(XtXt)− vec(Ĥ)
)

∂l
(i)
t (θ(i))

∂κ(i)

∣∣∣
θ(i)=θ̂(i)


(4.3)

where (λ̂iIp− Ĥ)+ denotes the Penrose-Moore pseudo-inverse of λ̂iIp− Ĥ for i = 1, . . . , p

and D is defined in Lemma B.5. The expressions in (4.2)-(4.3) converge almost surely to

their population counterparts due to the ergodic theorem. Note that we may substitute

the estimators by their true value, as we have established strong consistency of θ(i). This

makes estimation of the asymptotic covariance matrix only slightly more cumbersome

than that of the well-known “sandwich” covariance matrix estimator from joint QMLE.

Once we know the asymptotic distribution of θ̂(i), it is possible to derive the asymptotic

distribution of the original parameters of the model in (2.9), φ(i) = [wi, ai1, . . . , aip, bi]
′

using the delta method.

Corollary 1 (Limiting distribution of φ(i) = [wi, ai1, . . . , aip, bi]
′ ). Under Assumption

4.1-4.6, for T →∞,

√
T (φ̂(i) − φ(i)

0 )
D→ N(0, ϕ

(i)
0 Σ

(i)
0 ϕ

(i)′

0 )

for i = 1, . . . , p with Σ
(i)
0 given in (4.1) and,

ϕ
(i)
0

p+2×e
=
∂φ(i)

∂θ(i)′

∣∣∣∣∣
θ(i)=θ

(i)
0

=

(1− b0,i)I{i} − A′0,i 01×p2 −λ′0 −λ0,i

0p×p 0p×p2 Ip 0p×1

01×p 01×p2 01×p 1

 (4.4)

where I{i} is a 1 × p vector of zeros, apart from a “1” in the i’th column and Ai is the

i’th row of A.

Note that we present the asymptotic theory in terms of θ(i) rather than θ, following

Francq and Zaköıan (2016) and their notation for an equation-by-equation estimator of

various MGARCH models. The theorems listed above could easily be restated in terms of

θ, as the asymptotic results hold simultaneously due to the orthogonality of the conditional
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univariate log-likelihood functions, but we refrain from doing so for two reasons: First, the

present formulation is coherent with the step-wise approach of the estimator. Second, this

presentation makes it straightforward to parallelize estimation, computing the asymptotic

variance matrix in each iteration, which speeds up the estimation procedure.

As already emphasized, the STE reduces the risk of numerical issues in estimation

compared to the QML estimator, and in the context of the λ-GARCH model, the ST

estimator is closely related to the variance targeting estimator: Because the profiled

log-likelihood consists of p orthogonal terms, the STE and VTE of the λ-GARCH are

theoretically equivalent, and in practice is expected to produce similar estimates and

standard errors. Note however, that we expect the STE to have a smaller computational

burden, as it minimizes the log-likelihood function over a smaller parameter space.

Remark 4.3 (Variance targeting estimator of the λ-GARCH). An alternative to the

stepwise estimation of the λ-GARCH is the variance targeting (VT) estimator, in which

all κ = [κ(1)′, . . . , κ(p)′]′ are estimated jointly. This estimator still relies on the first step

estimator of γ̂ in (3.2), and we denote the full VT estimator θ̃ = [γ̂′, κ̃′]′. Because of the

orthogonal structure of the log-likelihood function, consistency and asymptotic normality of

the VT estimator of the λ-GARCH can be derived using similar techniques as in Appendix

A and B.

5 Empirical Illustrations

In the following we compare the empirical performance of the ST estimator to that of

the joint QML estimator. First, we consider the relative efficiency of the two estimators

in a simulation setting for different portfolio sizes. This exercise lets us compare the

(empirical) efficiency of the STE against the QMLE. Second, we consider the out-of-sample

performance of the the two estimation methods in a recursive value-at-risk application

for portfolios of p = 25 assets. The empirical fit is assessed using the likelihood ratio

tests of Christoffersen (1998). In both these exercises, we also consider the computational

complexity (i.e., time spent on estimating the model) of the two methods. Finally, we

briefly summarize the results.

5.1 Relative efficiency: STE vs. QMLE

We now compare the relative efficiency and the time complexity of the STE against the

joint QMLE. This is done for the diagonal model of dimension p, where we simulate a

data-generating process N = 399 times with A0 = 0.05Ip, B0 = 0.85Ip, such that the

process has finite fourth order moments. The unconditional eigenvalues are specified as

λ0,i = (p + 1 − i)/10 for i = 1, . . . , p and the eigenvectors are constructed using rotation

matrices with all rotation parameters φ0,i = 0.5 for i = 1, . . . , p(p − 1)/2 (see Remark



69

3.1). The innovations, Zt, are drawn iid from a standard normal distribution, and each

path of the simulated process has T = 2000 observations. The model has p(p− 1)/2 + 3p

parameters, and the STE procedure estimates p(p + 1)/2 parameters in the first step,

and the remaining 2p parameters sequentially for each rotated return. The QMLE on the

other hand estimates all p(p− 1)/2 + 3p parameters simultaneously.

In comparing the two estimators, we employ the same methodology as Francq and

Zaköıan (2016) who use the quadratic form T (ϑ̂ − ϑ0)′I(ϑ̂ − ϑ0) as a measure of ac-

curacy of an estimator ϑ̂, where I is the (numerically) approximated information ma-

trix and the parameter vector is constructed identically for both estimators with ϑ =

[vec(H)′, diag(A)′, diag(B)′]′. Because I is computationally demanding to compute in

higher dimensions, we instead use the simulated information matrix, which is obtained

as I = var(ϑ̂nQMLE − ϑ0) ≈ 1
N

∑N
n=1(ϑ̂nQMLE − ϑ0)(ϑ̂nQMLE − ϑ0)′ for n = 1, . . . , N , where

ϑ̂nQMLE is the QMLE parameter vector for the n’th simulated path. The relative efficiency

is then computed as,

RE =
(ϑ̄STE − ϑ0)′I(ϑ̄STE − ϑ0)

(ϑ̄QMLE − ϑ0)′I(ϑ̄QMLE − ϑ0)
,

where ϑ̄STE = 1
N

∑N
n=1 ϑ̂

n
STE with ϑ̄QMLE defined analogously. By this definition, if RE <

1, the ST estimator is relatively more efficient than the QML estimator.

Table 5.1: Relative efficiency: QMLE vs. STE.

Dimension, p # parameters Time (s), QMLE Time (s), STE RE
2 7 12.82 0.69 2.59
4 18 52.93 1.36 1.42
6 33 161.70 1.92 2.05
8 52 358.16 2.74 2.06
10 75 505.75 3.76 1.13
12 102 546.40 4.86 0.11
15 150 617.31 6.41 0.01
20 250 765.87 10.03 0.00
50 1,375 2,987.88 33.00 0.03
100 5,250 15,775.08 141.27 0.04
200 20,500 N/A 618.29 N/A
500 126,250 N/A 4,084.79 N/A

For the case p = 200 and p = 500 the QMLE failed to converge.
The time complexity and RE is the average over N = 399 simulations.

All simulations/estimations are done using a single core.

The (average) computation times and the relative efficiency for the two estimators are

contained in Table 5.1. For the larger systems, p > 20, the computation time for QMLE

is very big, on average 50 minutes for p = 50 and 260 minutes for p = 100, whereas STE

remains feasible in all but the p = 500 case, in which the computation time is roughly
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one hour. Considering the relative efficiency of the two estimators, the QMLE performs

favorably for p ≤ 10, after which its performance deteriorate drastically compared to the

STE. For portfolios larger than 10 assets, the STE is preferred.

Here, estimations are initiated in ϑinit = ϑ0 − 0.025. However, one could argue that

initiating both estimators in ϑinit 6= ϑ0 gives the joint QMLE a disadvantage, as it per-

forms numerical optimization over a much larger parameter space. We therefore repeat

the exercise, initiating in ϑinit = ϑ0. This yields almost identical results (available upon

request) and leads to the same conclusion, namely that the STE is relatively more efficient

than joint QMLE for systems larger than p > 10 assets, and that it always has a lower

computational complexity than joint QMLE.

5.2 An application in risk management

We now turn our attention to the empirical performance of the STE of the λ-GARCH,

and compare it to the joint QML estimator. The out-of-sample performance is assessed

by considering the conditional 5% value-at-risk (VaR) for five different medium-sized

portfolios consisting of p = 25 assets from the SP100 index.

Methodology and data

We consider the out-of-sample performance by considering the conditional 5% value-at-

risk at 1 and 5-day horizons for five different portfolios. The first of the five portfolios is

equally weighted while the weights of the remaining portfolios are drawn randomly such

that the second and third portfolios are long-only, with the third portfolio 50% geared.

The fourth and fifth portfolios are long-short portfolios. The constituents of the portfolios

are drawn randomly from the SP100 index and can, along with their weighting, be found

in Appendix E.

The ST and the QML estimators are fitted on a (rolling window) sample of T =

1200 daily observations, with the initial sample starting on December 28th 2010, ending

on December 29th 2015. The out-of-sample consists of 3 years of data from December

30th 2015 to December 31st 2018, leading to τ = 756 out-of-sample observations for

the 1-day forecast and τ = 189 observations for the 5-day (non-overlapping) forecasts.

The out-of-sample forecasts are computed using a filtered historical simulation in which

we draw innovations iid with replacement from the standardized residuals, Ẑt, see e.g.,

Christoffersen (2009).

Recall that the conditional VaR at risk level α for the h-period return of portfolio i,

denoted VaRi
t,h(α) is defined as,

Pt(R
i
t+h|t < −VaRi

t,h(α)) = α, (5.1)
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where Pt is the conditional distribution of the ex ante h-period return of portfolio i, Ri
t+h|h.

We define the (unconditional) “hit” variable for portfolio i as,

I it = 1{Ri
t+h|t > −VaRi

t,h(α)}, (5.2)

such that the unconditional coverage for portfolio i is πi = 1
τ

∑τ
n=1 I

i
n. Similarly, we define

the conditional hit variable as I it|t−1 = 1{I it = 1|I it−1 = 1}, denoting two hits in a row.

When assessing the adequacy of the VaR forecasts we consider the three likelihood ratio

(LR) tests proposed by Christoffersen (1998). The first LR test examines the hypothesis

that the unconditional coverage is correct, E[I it ] = α, but fails to account for potential

clustering in the VaR hits. This is rectified by the second test, in which I it|t−1 follows a two-

state Markov chain, and we test the hypothesis of independence between hits. However,

this test does not test for correct coverage, and as a consequence, we also consider the

third test of correct conditional coverage, which lets I it|t−1 follow the two-state Markov

chain, and tests it against the null of independence between hits and correct coverage.

The tests are denoted LRuc, LRind and LRcc respectively.

Out-of-sample results

The results of the out-of-sample exercise is given in Table 5.2. Importantly, the STE

procedure is roughly 57 times faster than the QMLE. We note that the estimated λ-

GARCH (on average) has finite second order moments but not fourth order moments.

Intuitively, this means that both estimators are consistent, but only the QML estimator

has a limiting Gaussian distribution.

The two estimation methods have a similar performance based on unconditional cov-

erage and the LR-tests: In general, the unconditional coverage is slightly different from

the hypothesized 5% and most of the LR-tests do not reject. Similar results are found for

the 1 and 5-day 1% VaR (not reported here). The rejected LR-tests relate to the equally

weighted portfolio P1.

In general, the VaR estimates produced by the two estimation methods are similar, but

not identical: Consider Figure 5.1 which plots the estimated VaR for the two estimation

methods along with the realized return of portfolio P4. As shown, the VaR estimates are,

for the majority of the sample, very similar, but the QML estimator sometimes produce

more extreme VaR estimates than the STE. We note, however, that while the two VaR

estimates at times differ, the unconditional and conditional hit sequences are almost

identical, and based on the LR-test in Table 5.2, none of the estimation methods seem

to dominate the other empirically. We therefore conclude that the estimation procedures

seem to yield similar results, with the STE having the clear advantage that it is much

faster in practice.2

2As an alternative empirical exercise, we also consider the one-step ahead minimum-variance portfolio
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Table 5.2: Empirical exercise: 95% VaR at 1 and 5-day forecast horizons.

1-day 5-day
STE QMLE STE QMLE

P1 π̂1 0.044 0.038 0.048 0.048
LRuc 0.413 0.126 0.880 0.880
LRind 0.013 0.910 0.427 0.056
LRcc 0.033 0.309 0.721 0.160

P2 π̂2 0.046 0.040 0.053 0.058
LRuc 0.636 0.178 0.856 0.614
LRind 0.093 0.478 0.090 0.136
LRcc 0.218 0.313 0.234 0.290

P3 π̂3 0.042 0.038 0.053 0.058
LRuc 0.321 0.126 0.856 0.614
LRind 0.050 0.910 0.537 0.136
LRcc 0.089 0.309 0.813 0.290

P4 π̂4 0.065 0.052 0.074 0.069
LRuc 0.073 0.842 0.155 0.261
LRind 0.307 0.409 0.078 0.269
LRcc 0.119 0.697 0.077 0.288

P5 π̂5 0.065 0.050 0.058 0.053
LRuc 0.073 0.973 0.614 0.856
LRind 0.453 0.449 0.243 0.290
LRcc 0.152 0.751 0.446 0.562

STE QMLE
Time complexity 9.1 526.5

Pi refers to the i’th portfolio, with π̂i being the unconditional hit ratio i = 1, ..., 5. LRuc, LRind and
LRcc are the asymptotic p-values for the LR test for unconditional coverage, independence and

conditional coverage respectively. The time complexity is given in seconds and is computed using a
single core for one out-of-sample iteration.
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Figure 5.1: 1-day 95% VaR for portfolio P4

QMLE SVTE P
4
 

2016 2017 2018 2019

­4

­3

­2

­1

0

1

2

3

4

QMLE SVTE P
4
 

Note: STE and QMLE denote the estimated 1-day 5% VaR, P4 denotes the realized return.

5.3 Brief summary of numerical exercises

The simulation evidence in Section 5.1 indicates that not only is the STE relatively more

efficient than QMLE in cross-sections of more than p > 10 assets, it is also much more

time efficient. This is verified in by the empirical study in Section 5.2. One potential

explanation is that the λ-GARCH is a non-linear function of the parameters in γ through

Yt−1. By using a stepwise estimator, in which γ is estimated using a closed form estimator,

we mitigate the potential issues due to non-linearity, which seem to cause issues for large

p in the QML estimator.

In regards to the asymptotic results in Theorems 4.1-4.2, the simulation study in

Appendix D suggests that the estimator is consistent in the case of finite second order

moments of Xt. Furthermore, the simulations indicate that the asymptotic normality of

the STE holds when Xt has finite fourth moments. Hence, the moment requirements

in Assumption 4.1 and 4.5 appear to be sufficient and necessary for consistency and

asymptotic normality of the STE.

for p ∈ (5, 10, 25, 50), where we find that the STE yields portfolios with a lower ex post variance compared
to the QML estimator as p increases, such that the STE outperforms QMLE for portfolios of p ≥ 25.
These results are not reported for brevity, but are available upon request.
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6 Extensions and Concluding Remarks

We have derived asymptotic properties of the spectral targeting estimator (STE) for the λ-

GARCH, an extended version of the multivariate orthogonal GARCH (O-GARCH). This

two-step estimator is consistent under finite second order moments, while it has a limiting

Gaussian distribution when fourth order moments are finite. Simulations indicate that

these moment conditions are sufficient and necessary. Moreover, we compare the empirical

performance of the STE to that of the quasi-maximum likelihood estimator (QMLE)

for five portfolios of 25 assets. The STE dominates QMLE in terms of computational

complexity, being up to 57 times faster in estimation, while both estimators produce

similar out-of-sample forecasts. Finally, simulations indicate that in portfolios of more

than 10 assets, the stepwise estimator is relatively more efficient than QMLE. The STE

is therefore well suited for practitioners as it alleviates numerical problems and speeds up

numerical optimization, while being easy to implement.

We note that while the STE delivered promising results in this exposition, the first step

(sample) estimator may not be well-behaved when the ratio p/T approaches one. This is

discussed in e.g., Ledoit and Wolf (2004, 2012), who derive shrinkage estimators for the

sample covariance matrix, minimizing the estimation error. An extension could therefore

consider the asymptotic analysis of a spectral targeting estimator where the first step

estimator is based on shrinkage. Another extension would be to consider spectral targeting

estimation with infinite fourth order moments, in a similar fashion to the exposition in

Pedersen (2016) who consider the variance targeting estimator of the extended constant

conditional correlation GARCH model.

APPENDIX

A Proofs

Recall the log-likelihood function for the i’th equation,

L
(i)
T (γ, κ(i)) =

1

T

T∑
t=1

l
(i)
t (γ, κ(i)), (A.1)

l
(i)
t (γ, κ(i)) = log(λi,t(γ, κ

(i))) +
y2
i,t(γ)

λi,t(γ, κ(i))
, (A.2)
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which has first and second order derivatives,

∂l
(i)
t (θ(i))

∂θ
(i)
n

=

(
1−

y2
i,t(θ

(i))

λi,t(θ(i))

)
1

λi,t(θ(i))

∂λi,t(θ
(i))

∂θ
(i)
n

+ 2
yi,t(θ

(i))

λi,t(θ(i))

∂yi,t(θ
(i))

∂θ
(i)
n

, (A.3)

∂2l
(i)
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∂θ
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(i)
m
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y2
i,t(θ

(i))

λi,t(θ(i))

)
1

λi,t(θ(i))
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(i))
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(i)
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(i)
m

+

(
2
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λi,t(θ(i))
− 1

)
1

λ2
i,t(θ

(i))
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∂θ
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∂θ
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m

yi,t(θ
(i)) +

∂yi,t(θ
(i))

∂θ
(i)
n

∂yi,t(θ
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∂θ
(i)
m

)
1

λi,t(θ(i))

− 2

(
∂λi,t(θ

(i))

∂θ
(i)
n

∂yi,t(θ
(i))

∂θ
(i)
m

+
∂λi,t(θ

(i))

∂θ
(i)
m

∂yi,t(θ
(i))

∂θ
(i)
n

)
yi,t(θ

(i))

λ2
i,t(θ

(i))
, (A.4)

for n,m = 1, . . . , p(p+ 1) + 1.

Throughout the proofs, we let L
(i)
t (θ(i)) (l

(i)
t (θ(i))) denote the log-likelihood function

(-contribution) initiated in the infinite past, and we let L
(i)
t,h(θ

(i)) (l
(i)
t,h(θ

(i))) denote the

log-likelihood function (-contribution) initiated in a fixed X0 and H0 (with H0 positive

definite),

L
(i)
T,h(γ, κ

(i)) =
1

T

T∑
t=1

l
(i)
t,h(γ, κ

(i)), (A.5)

l
(i)
t,h(γ, κ

(i)) = log(λi,t,h(γ, κ
(i))) +

y2
i,t(γ)

λi,t,h(γ, κ(i))
, (A.6)

where λi,t(θ
(i)) and λi,t,h(θ

(i)) is defined analogously. Because λi,t(θ
(i)) and λi,t,h(θ

(i)) are

defined for the same strictly stationary and ergodic sequence, {Xt}t∈Z, we may write,

λi,t(θ
(i))− λi,t,h(θ(i)) = bti(λi,0(θ(i))− λi,0,h(θ(i))), (A.7)

for t ≥ 1.

The structure of the main proofs and the accompanying lemmata follow that of Ped-

ersen and Rahbek (2014) (proof of Theorems 4.1-4.2 and Lemmata B.1-B.11). In order to

make the proofs readable, most steps rely on lemmata stated and proved in Appendix B.

In the following, we let the letters K and φ denote generic constants, whose value can vary

along the text, but always satisfy K > 0 and 0 < φ < 1. Furthermore, let H0,t := Ht(θ
(i)
0 ),

V0 := V (θ
(i)
0 ) and Λ0,t := Λt(θ

(i)
0 ).



76

A.1 Proof of consistency

Initially, observe that by the ergodic theorem (Theorem 20.3 of Jacod and Protter (2012)),

along with Assumption 4.1 the sample estimator is strongly consistent, Ĥ
a.s.→ H0, for

T →∞. Since λ0 is assumed to be simple, we may use the continuous mapping theorem

(Theorem 17.5 of Jacod and Protter (2012)) to establish strong consistency of the first

stage estimation,

λ̂→ λ0 a.s. (A.8)

υ̂ → υ0 a.s. (A.9)

We now show that κ̂(i) is consistent. The proof follows that of Theorem 4.1 in Pedersen

and Rahbek (2014).

For any ε > 0, it holds almost surely for large T,

E[l
(i)
t (γ0, κ̂

(i))] < L
(i)
T (γ0, κ̂

(i)) +
ε

5
By Lemma B.2,

L
(i)
T (γ0, κ̂

(i)) < L
(i)
T,h(γ̂, κ̂

(i)) +
ε

5
By Lemma B.4,

L
(i)
T,h(γ̂, κ̂

(i)) < L
(i)
T,h(γ̂, κ

(i)
0 ) +

ε

5
By (3.8),

L
(i)
T,h(γ̂, κ̂

(i)) < L
(i)
T (γ0, κ

(i)
0 ) +

ε

5
By Lemma B.4,

L
(i)
T (γ0, κ

(i)
0 ) < E[l

(i)
t (γ0, κ

(i)
0 )] +

ε

5
By Lemma B.2 .

That is, for any ε > 0,

E[l
(i)
t (γ0, κ̂

(i))] < E[l
(i)
t (γ0, κ

(i)
0 )] + ε,

and by Lemma B.3 along with standard arguments for two-step estimators (Newey and

McFadden, 1994), it follows that for T → ∞, κ̂(i) a.s.→ κ
(i)
0 . Hence, the two-step estimator

is strongly consistent, θ̂(i) a.s.→ θ(i).

A.2 Proof of asymptotic normality

Compared to asymptotic theory for the joint QMLE of multivariate GARCH models

additional difficulties arise from the fact that STE is a multi-step estimator. Conversely,

the proof is simplified by the additional assumption of E||Xt||4 <∞ and the fact that we

treat individual {yi,t}t∈Z separately.

The proof of asymptotic normality is based on an application of the mean-value the-

orem on the optimality condition of the score vector, θ(i) = θ
(i)
0 along with Assumption
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4.6 and (3.8),

0p+1×1 =
∂L

(i)
T,h(θ

(i)
0 )

∂κ(i)
+

(
∂2L

(i)
T,h(θ̃

(i))

∂κ(i)∂θ(i)′

)
(θ̂(i) − θ(i)

0 )

=
∂L

(i)
T,h(θ

(i)
0 )

∂κ(i)
+ J

(i)
T,h(θ̃

(i))(κ̂(i) − κ(i)
0 ) +K

(i)
T,h(θ̃

(i))(γ̂ − γ0), (A.10)

where

∂L
(i)
t,h(θ

(i)
0 )

∂κ(i)
=
∂L

(i)
t,h(θ

(i))

∂κ(i)

∣∣∣∣∣
θ(i)=θ

(i)
0

, J
(i)
T,h(θ̃

(i)) =
∂2L

(i)
T,h(θ

(i))

∂κ(i)∂κ(i)′

∣∣∣∣∣
θ(i)=θ̃(i)

, K
(i)
T,h(θ̃

(i)) =
∂2L

(i)
T,h(θ

(i))

∂κ(i)∂γ′

∣∣∣∣∣
θ(i)=θ̃(i)

.

Here κ(i) = [ai1, . . . , aip, bi]
′, γ = [λ′, υ′]′, and θ̃(i) is on the line between θ

(i)
0 and θ̂(i).

J
(i)
T is finite and invertible with probability approaching one (Lemma B.7 and B.9)

and θ̂(i) a.s.→ θ(i) (Theorem 4.1). Hence, by Lemma B.10, (A.10) can be rewritten as,

√
T
(
κ̂(i) − κ(i)

0

)
= −

(
J

(i)
T (θ̃(i))

)−1√
T
∂L

(i)
t (θ

(i)
0 )

∂κ(i)
−
(
J

(i)
T (θ̃(i))

)−1

K
(i)
T (θ̃(i))

√
T (γ̂ − γ0) + op(1),

which we rewrite for the (joint) parameter vector of equation i,

√
T

(
γ̂ − γ0

κ̂(i) − κ(i)
0

)
=

(
Ip(p+1) 0p(p+1)×p+1

−(J
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The asymptotic normality then follows from Lemma B.6 together with Slutsky’s theorem,

√
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where Ω
(i)
0 is defined in Lemma B.6, and J

(i)
T (θ̃(i))

a.s.→ J
(i)
0 , K

(i)
T (θ̃(i))

a.s.→ K
(i)
0 by Lemma

B.8, with
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A.3 Proof of Corollary 1

The asymptotic distribution of the vector φ(i) = [wi, ai1, . . . , aip, bi]
′ can be found using

the delta method, for which we need the partial derivative of φ(i) with respect to the

parameter vector θ(i),

ϕ
(i)
0

p+2×e
=
∂φ(i)

∂θ(i)′

∣∣∣∣∣
θ(i)=θ

(i)
0

=

(1− b0,i)I{i} − A′0,i 01×p2 −λ′0 −λ0,i

0p×p 0p×p2 Ip 0p×1

01×p 01×p2 01×p 1

 (A.13)

where I{i} is a 1 × p vector of zeros, apart from a 1 in the i’th column and Ai is the i’

row of A. Hence, the asymptotic distribution of φ(i) is,

√
T (φ̂(i) − φ(i)

0 )
D→ N(0, ϕ

(i)
0 Σ

(i)
0 ϕ

(i)′

0 ). (A.14)

B Lemmata

B.1 Lemmata for the proof of consistency

Lemma B.1 (Finite expectation of likelihood contributions). Under Assumptions 4.1-

4.4,

E

[
sup

θ(i)∈Θ(i)

∣∣∣l(i)t (γ, κ(i))
∣∣∣] ≤ K,

where l
(i)
t (γ, κ(i)) is defined in (A.2).

Proof. Notice that the i′th conditional eigenvalue may be rewritten as an ARCH(∞)

process,

λi,t(θ
(i)) = wi +

p∑
j=1

aijy
2
j,t−1(θ(i)) + biλi,t−1(θ(i)) =

∞∑
l=0

bli

(
wi +

p∑
j=1

aijy
2
j,t−l−1(θ(i))

)
.

Using ρ(B) < 1 (By Assumption 4.1 and Lemma 4.1 of Ling and McAleer (2003)), along

with Theorem 9.2 of Jacod and Protter (2012),

E

[
sup

θ(i)∈Θ(i)

∣∣log(λi,t(θ
(i)))

∣∣] ≤ E

[
sup

θ(i)∈Θ(i)

∣∣λi,t(θ(i))
∣∣] ≤ K

∞∑
t=1

φt(1 + E||Xt||2) ≤ K.
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Furthermore,

E
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sup

θ(i)∈Θ(i)

∣∣∣∣ 1

λi,t(θ(i))

∣∣∣∣] ≤ sup
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wi

∣∣∣∣ ≤ K, (B.1)

E
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θ(i)∈Θ(i)
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[
sup

θ(i)∈Θ(i)

∣∣(V ′i (θ(i))Xt)
2
∣∣] ≤ KE||Xt||2 ≤ K. (B.2)

This, along with the triangle inequality, means that the log-likelihood contribution for

the i′th rotated return is then bounded by a constant by Assumption 4.1,

E

[
sup

θ(i)∈Θ(i)

∣∣∣l(i)t (γ, κ(i))
∣∣∣] ≤ E

[
sup

θ(i)∈Θ(i)

∣∣λi,t(θ(i))
∣∣]+ E

[
sup

θ(i)∈Θ(i)

∣∣∣∣∣ y2
i,t(θ

(i))

λi,t(θ(i))

∣∣∣∣∣
]
≤ K.

Lemma B.2 (Uniform convergence of likelihood function). Under Assumptions 4.1-4.4,

sup
θ(i)∈Θ(i)

∣∣∣L(i)
T (γ, κ(i))− E[l

(i)
t (γ, κ(i))]

∣∣∣ a.s.→ 0,

where L
(i)
T (θ(i)) is the log-likelihood function for the i’th rotated return and l

(i)
t (θ(i)) is the

log-likelihood contribution for the i’th rotated return at time t, stated in (A.1) and (A.2).

Proof. Follows from Lemma B.1 and the uniform law of large numbers (Theorem A.2.2.

of White (1994))

Lemma B.3 (Likelihood uniquely minimized). Under Assumptions 4.1-4.4,

E|l(i)t (γ0, κ
(i)
0 )| <∞,

and if κ(i) 6= κ
(i)
0 ,

E[l
(i)
t (γ0, κ

(i))] > E[l
(i)
t (γ0, κ

(i)
0 )],

where l
(i)
t (γ, κ(i)) is defined in (A.2).

Proof. The first statement follows directly from Lemma B.1. For the second statement,



80

consider

E[l
(i)
t (γ0, κ

(i))]−E[l
(i)
t (γ0, κ

(i)
0 )]

=E

[
log

(
λi,t(γ0, κ

(i))

λi,t(γ0, κ
(i)
0 )

)
+ y2

i,t(γ0)

(
1

λi,t(γ0, κ(i))
− 1

λi,t(γ0, κ
(i)
0 )

)]

=E

[
λi,t(γ0, κ

(i)
0 )

(
1

λi,t(γ0, κ(i))
− 1

λi,t(γ0, κ
(i)
0 )

)
− log

(
λi,t(γ0, κ

(i)
0 )

λi,t(γ0, κ(i))

)]

=E

[
λi,t(γ0, κ

(i)
0 )

λi,t(γ0, κ(i))
− 1− log

(
λi,t(γ0, κ

(i)
0 )

λi,t(γ0, κ(i))

)]
≥ 0,

which uses yi,t(γ0) = λ
1/2
i,t (γ0, κ

(i)
0 )zi,t, where zi,t is iid with unit variance. Notice that

log x ≤ x−1 for x > 0, and that log x = x−1 only if x = 1. This inequality is strict unless
λi,t(γ0,κ

(i)
0 )

λi,t(γ0,κ(i))
= 1, which is ruled out, as it violates Assumption 4.3 on identification.

Lemma B.4 (Asymptotic irrelevance of initial values). Under Assumptions 4.1-4.4,

sup
κ(i)∈K(i)

∣∣∣L(i)
T (γ0, κ

(i))− L(i)
T,h(γ̂, κ

(i))
∣∣∣ a.s.→ 0,

where L
(i)
t (γ, κ(i)) is defined in (A.1) and L

(i)
t,h(γ, κ

(i)) is defined in (A.5).

Proof. We want to show that the initial values are asymptotically irrelevant. As in the

proof of Theorem 4.1 in Pedersen (2016), we use the triangle inequality as follows,

sup
κ(i)∈K(i)

∣∣∣L(i)
T (γ0, κ

(i))− L(i)
T,h(γ̂, κ

(i))
∣∣∣ ≤

sup
κ(i)∈K(i)

∣∣∣L(i)
T (γ0, κ

(i))− L(i)
T (γ̂, κ(i))

∣∣∣+ sup
κ(i)∈K(i)

∣∣∣L(i)
T (γ̂, κ(i))− L(i)

T,h(γ̂, κ
(i))
∣∣∣ . (B.3)

In line with the aforementioned proof, we apply the mean-value theorem to the first term

of (B.3),

sup
κ(i)∈K(i)

|L(i)
T (γ0, κ

(i))− L(i)
T (γ̂, κ(i))| ≤

p(p+1)∑
j=1

(γ̂j − γ0,j)
1

T

T∑
t=1

sup
θ(i)∈L̃×V×K(i)

∣∣∣∣∂lt(γ, κ(i))

∂γj

∣∣∣∣ ,
(B.4)

where L̃ is chosen to be a compact subset of (0,∞)p such that (Ip − A − B)λ ∈ (0,∞)p

and bounded away from zero on L̃ × V , with λ0 in the interior of L̃. An expression for

∂lt(γ, κ
(i))/∂θ(i) can be found in (A.3) along with derivatives of λi,t(θ

(i)) in (B.23)-(B.25)

in Lemma B.7. Notice also that E[supγ∈L×V ||∂y2
i,t(γ)/∂γ||] ≤ KE||Xt||2. By Assumption

4.1 and ρ(B) < 1 (follows Assumption 4.1, see Lemma 4.1 in Ling and McAleer (2003))

supθ(i)∈L̃×V×K(i) |∂λi,t(θ(i))/∂γj| < ∞. This, along with supθ(i)∈L̃×V×K(i) |1/λi,t(κ(i))| ≤ K,
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ensure that E
[
supθ(i)∈L̃×V×K(i) ∂l

(i)
t (γ, κ(i))/∂γj|

]
<∞. By the ergodic theorem and (A.8)-

(A.9) we find that, supκ(i)∈K(i)

∣∣∣L(i)
T (γ0, κ

(i))− L(i)
T (γ̂, κ(i))

∣∣∣ a.s.→ 0.

Next, consider the second term of (B.3),

sup
κ(i)∈K(i)

∣∣∣L(i)
T (γ̂, κ(i))− L(i)

T,h(γ̂, κ
(i))
∣∣∣ ≤ K

1

T

T∑
t=1

sup
κ(i)∈K(i)

∣∣bti(λi,0(γ̂, κ(i))− λi,0,h(γ̂, κ(i)))
∣∣+

1

T

T∑
t=1

K sup
κ(i)∈K(i)

∣∣∣∣||Xt||2
[

1

λi,t,h(γ̂, κ(i))

(
λi,t,h(γ̂, κ

(i))− λi,t(γ̂, κ(i))
) 1

λi,t(γ̂, κ(i))

]∣∣∣∣ ≤
K

1

T

T∑
t=1

φt(1 + ||Xt||2) (B.5)

by log x ≤ x − 1 for x ≥ 1 along with (A.7), (B.1) and supγ∈L×V |V ′iXt| ≤ K||Xt||.
Additionally, we use that for any j ≥ 0, supκ(i)∈K(i) |bji | ≤ Kφj (see e.g., p.616 of Francq

and Zaköıan (2004) or p.611 of Francq, Horvath, and Zaköıan (2011)), along with A.9

and the compactness of K(i) for T →∞,

K
1

T

T∑
t=1

sup
κ(i)∈K(i)

∣∣bti(λi,0(γ̂, κ(i))− λi,0,h(γ̂, κ(i)))
∣∣ ≤ K

1

T

T∑
t=1

φt a.s. (B.6)

Hence,

sup
κ(i)∈K(i)

∣∣∣L(i)
T (γ̂, κ(i))− L(i)

T,h(γ̂, κ
(i))
∣∣∣ ≤ K

1

T

T∑
t=1

φt(1 + ||Xt||2) a.s.

For any ε > 0, we use Markov’s inequality and Assumption 4.1,

∞∑
t=1

P (φt||Xt||2 > ε) ≤
∞∑
t=1

φtE||Xt||2

ε
<∞,

Next, by the Borel-Cantelli lemma, φt||Xt||2
a.s.→ 0, and finally, by Cesaro’s mean theorem

1

T

T∑
t=1

φt||Xt||2
a.s.→ 0,

we conclude that the initial values are asymptotically irrelevant for consistency of the

estimator.
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B.2 Lemmata for the proof of asymptotic normality

Lemma B.5 (Rewriting the two-step estimator in vector form). Under Assumptions

4.1-4.6, for T →∞, the two-step estimator can be written jointly as,

√
T

(
γ̂ − γ0

∂L
(i)
T (θ0)

∂κ(i)

)
=

1√
T

T∑
t=1



D(Ip2 − Ã0 − B̃0)−1(Ip2 − B̃0)(Λ
1/2
0,t )⊗2vec(ZtZ

′
t − Ip)

V ′0,1 ⊗ (λ0,1Ip −H0)+V ⊗2
0 (Ip2 − Ã0 − B̃0)−1(Ip2 − B̃0)(Λ

1/2
0,t )⊗2vec(ZtZ

′
t − Ip)

...

V ′0,p ⊗ (λ0,pIp −H0)+V ⊗2
0 (Ip2 − Ã0 − B̃0)−1(Ip2 − B̃0)(Λ

1/2
0,t )⊗2vec(ZtZ

′
t − Ip)

− 1

λi,t(θ
(i)
0 )

∂λi,t(θ
(i)
0 )

∂κ(i) (z2
i,t − 1)


+ op(1).

(B.7)

where (·)+ is the Moore-Penrose inverse, D is p × p2 with all elements zero, apart from

one element on each row, which is dj,j+(j−1)p = 1 for j = 1, . . . , p and Ã and B̃ are given

in (B.13).

Proof. In rewriting the estimator in vector form, we partly follow Pedersen and Rahbek

(2014) (proof of Lemma B.8) and rewrite vec(Ĥ) − vec(H0) in terms of the GARCH

parameters. The remainder of the proof is distinctly different, as we have to recast the

vector of dynamic eigenvalues, λt, in a BEKK(p2, 1, 1, 1) parameterization, and state the

first step estimator in terms of γ̂ − γ0 rather than vec(Ĥ)− vec(H0).

First, consider the moment estimator of the unconditional covariance matrix,

Ĥ =
1

T

T∑
t=1

XtX
′
t =

1

T

T∑
t=1

H
1/2
0,t ZtZ

′
t(H

1/2
0,t )′ =

1

T

T∑
t=1

V0Λ
1/2
0,t ZtZ

′
tΛ

1/2
0,t V

′
0 .

Recall that Y0,t = V ′0Xt and define Λ̂ = 1
T

∑T
t=1 Y0,tY

′
0,t = 1

T

∑T
t=1 Λ

1/2
0,t ZtZ

′
tΛ

1/2
0,t , such that,

vec(Λ̂) = (V ′0)⊗2vec
(
Ĥ
)

= vec

(
1

T

T∑
t=1

Λ
1/2
0,t ZtZ

′
tΛ

1/2
0,t

)

=

(
1

T

T∑
t=1

(Λ
1/2
0,t )⊗2vec(ZtZ

′
t − Ip) + vec

(
1

T

T∑
t=1

Λ0,t

))
. (B.8)

Next, we need to rewrite the conditional eigenvalues in a “vec”-reparameterization. That

is, we first write the dynamics of Λ0,t to be nested in the BEKK-GARCH, and then we

apply the vec-operator to obtain the vec-parameterization of the conditional eigenvalues.
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Hence,

Λ0,t = C +

p2∑
i=1

Ai,0Y0,t−1Y
′

0,t−1A
′
i,0 +B1,0Λ0,t−1B

′
1,0, (B.9)

with C = (Λ0 −
∑p2

i=1 Ai,0Λ0A
′
i,0 +B1,0Λ0B

′
1,0), and Ai are restricted parameter matrices,

e.g., for the bivariate case,

A1 =

(√
a11 0

0 0

)
, A2 =

(
0
√
a12

0 0

)
, A3 =

(
0 0
√
a21 0

)
, A4 =

(
0 0

0
√
a22

)
, (B.10)

and B1 is

B1 = B1/2. (B.11)

The vec-reparameterization is therefore,

vec(Λ0,t) = (Ip2 − Ã0 − B̃0)vec(Λ0) + Ã0vec(Y0,t−1Y
′

0,t−1) + B̃0vec(Λ0,t−1), (B.12)

where

Ã =

p2∑
i=1

A⊗2
i , B̃ = B⊗2

1 . (B.13)

We now use this reparameterzation of the model to rewrite vec
(

1
T

∑T
t=1 Λ0,t

)
as follows,

vec

(
1

T

T∑
t=1

Λ0,t

)
=
(
Ip2 − Ã0 − B̃0

)
Λ0 + Ã0vec

(
1

T

T∑
t=1

Y0,t−1Y
′

0,t−1

)
+ B̃0vec

(
1

T

T∑
t=1

Λ0,t−1

)

=
(
Ip2 − Ã0 − B̃0

)
Λ0 + Ã0vec

(
1

T

T∑
t=1

Y0,tY
′

0,t

)
+ B̃0vec

(
1

T

T∑
t=1

Λ0,t

)
+

1

T

(
Ã0(vec(Y0,0Y

′
0,0)− vec(Y0,TY

′
0,T )) + B̃0(vec(Λ0,0)− vec(Λ0,T ))

)
.

Collecting terms, and noting that Λ̂ = 1
T

∑T
t=1 Y0,tY

′
0,t, yields,

vec

(
1

T

T∑
t=1

Λ0,t

)
= (Ip2 − B̃0)−1(Ip2 − Ã0 − B̃0)vec(Λ0) + (Ip2 − B̃0)−1Ã0vec(Λ̂)

+
1

T
(Ip2 − B̃0)−1

(
Ã0(vec(Y0,0Y

′
0,0)− vec(Y0,TY

′
0,T ) + B̃0(vec(Λ0,0)− vec(Λ0,T ))

)
,

where (Ip2 − B̃0) is invertible since B is diagonal with ρ(B0) = ρ(B̃0) < 1. Insert this into
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(B.8) and rearrange,

vec(Λ̂)− vec(Λ0) =
(
Ip2 − Ã0 − B̃0

)−1 (
Ip2 − B̃0

) 1

T

T∑
t=1

(Λ
1/2
0,t )⊗2vec(ZtZ

′
t − Ip)

+
1

T

(
Ip2 − Ã0 − B̃0

)−1 (
Ã0(vec(Y0,0Y

′
0,0)− vec(Y0,TY

′
0,T )) + B̃0(vec(Λ0,0)− vec(Λ0,T ))

)
By Markov’s inequality it holds that for ε > 0,

P

(∣∣∣∣∣∣ 1

T
(Ip2 − Ã0 − B̃0)−1

(
Ã0(vec(Y0,0Y

′
0,0)− vec(Y0,TY

′
0,T )) + B̃0(vec(Λ0,0)− vec(Λ0,T ))

) ∣∣∣∣∣∣ > ε

)
≤ KE||Xt||2

Tε
→ 0,

as T →∞. This yields,

vec(Λ̂)− vec(Λ0) =(Ip2 − Ã0 − B̃0)−1(Ip2 − B̃0)
1

T

T∑
t=1

(Λ
1/2
0,t )⊗2vec(ZtZ

′
t − Ip) + op(1).

Recall that vec(Ĥ)− vec(H0) = V ⊗2
0

(
vec(Λ̂)− vec(Λ0)

)
, and we find that,

√
T (vec(Ĥ)− vec(H0)) =

V ⊗2
0 (Ip2 − Ã0 − B̃0)−1(Ip2 − B̃0)

1√
T

T∑
t=1

(Λ
1/2
0,t )⊗2vec(ZtZ

′
t − Ip) + op(1). (B.14)

As the model is parameterized in terms of the eigenvalues and -vectors, we now restate

(B.14) in terms of λ and υ. Notice that λ̂ − λ0 = D(V ′0)⊗2
(

vec(Ĥ)− vec(H0)
)

, where

D is a p× p2 matrix of zeros, apart from p elements, di,i+(i−1)p = 1 for i = 1, . . . , p, such

that Dvec(Λ) = λ, and we find that,

√
T (λ̂− λ0) = D(Ip2 − Ã0 − B̃0)−1(Ip2 − B̃0)

1√
T

T∑
t=1

(Λ
1/2
0,t )⊗2vec(ZtZ

′
t − Ip) + op(1).

(B.15)

Next, since υ does not have a closed form solution as a function of H, we apply the

mean-value theorem, and use the following result from Magnus (1985) (Theorem 1),

∂Vj
∂vec(H)

= V ′j ⊗ (λjIp −H)+, (B.16)

where (λjIp −H)+ is the Moore-Penrose (pseudo-) inverse of (λjIp −H). From this, we
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can apply the mean-value theorem to the j’th eigenvector,

√
T (V̂j − V0,j) = V ′0,j ⊗ (λ0,jIp −H0)+

√
T (vec(Ĥ)− vec(H0))

+ (V ′0,j ⊗ (λ0,jIp −H0)+ − Ṽ ′j ⊗ (λ̃jIp − H̃0)+)
√
T (vec(Ĥ)− vec(H0))︸ ︷︷ ︸

=op(1)

= V ′0,j ⊗ (λ0,jIp −H0)+
√
T (vec(Ĥ)− vec(H0)) + op(1), j = 1, . . . , p,

(B.17)

where H̃ = Ṽ Λ̃Ṽ ′ is on the line between H0 and Ĥ. Hence, by (B.14) and (B.17),

√
T (υ̂ − υ0) =
V ′0,1 ⊗ (λ0,1Ip −H0)+V ⊗2

0 (Ip2 − Ã0 − B̃0)−1(Ip2 − B̃0) 1√
T

∑T
t=1(Λ

1/2
0,t )⊗2vec(ZtZ

′
t − Ip)

...

V ′0,p ⊗ (λ0,pIp −H0)+V ⊗2
0 (Ip2 − Ã0 − B̃0)−1(Ip2 − B̃0) 1√

T

∑T
t=1(Λ

1/2
0,t )⊗2vec(ZtZ

′
t − Ip)

+ op(1).

(B.18)

Finally, note that

∂l
(i)
t (θ

(i)
0 )

∂κ(i)
= − 1

λi,t(θ
(i)
0 )

∂λi,t(θ
(i)
0 )

∂κ(i)
(z2
i,t − 1). (B.19)

Hence, by (B.15), (B.18) and (B.19), we conclude that (B.7) holds.

Lemma B.6 (Joint normality of parameter vector). Under Assumptions 4.1-4.6, for

T →∞,

√
T

(
γ̂ − γ0

∂L
(i)
T (θ0)

∂κ(i)

)
D→ N(0,Ω

(i)
0 ), (B.20)

with Ω
(i)
0 defined in (B.22).

Proof. Similar to the variance targeting literature (e.g., Pedersen and Rahbek (2014)

proof of Lemma B.8 and B.9), we use that (B.7) is a martingale difference sequence

(asymptotically) to show convergence in distribution. From (B.7), define

Yt
e×e

(θ
(i)
0 ) :=

Y1,t(θ
(i)
0 )

Y2,t(θ
(i)
0 )

Y3,t(θ
(i)
0 )

 ,
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which has elements,

Y1,t(θ
(i)
0 )

p×1

= D(V ′0)⊗2Γ0(Λ
1/2
0,t )⊗2εt,

Y2,t(θ
(i)
0 )

p2×1

=


χ0,1Γ0(Λ

1/2
0,t )⊗2εt

...

χ0,pΓ0(Λ
1/2
0,t )⊗2εt

 ,

Y3,t(θ
(i)
0 )

(p+1)×1

= − 1

λi,t(θ
(i)
0 )

∂λi,t(θ
(i)
0 )

∂κ(i)
(z2
i,t − 1),

where we use the following definitions,

εt := vec(ZtZ
′
t − Ip),

Γ0 := (V0)⊗2
[
(Ip2 − Ã0 − B̃0)

]−1

(Ip2 − B̃0),

χ0,i := V ′0,i ⊗ (λ0,iIp −H0)+,

Notice that

E
[
Y(θ

(i)
0 )
]

= 0p(p+2)+1×1, (B.21)

since Zt is iid with E[ZtZ
′
t] = Ip.

Next, consider the covariance matrix,

Ω0
e×e

(i) := E
[
Yt(θ(i)

0 )Yt(θ(i)
0 )′
]

= E


 Ω

(i)
0,11 Ω

(i)
0,12 Ω

(i)
0,13

(Ω
(i)
0,12)′ Ω

(i)
0,22 Ω

(i)
0,23

(Ω
(i)
0,13)′ (Ω

(i)
0,23)′ Ω

(i)
0,33


 , (B.22)
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with

Ω
(i)
0,11 = D(V ′0)⊗2Γ

(
Λ

1/2
0,t

)⊗2

εtε
′
t

(
Λ

1/2
0,t

)⊗2

Γ′(V0)⊗2D′,

Ω
(i)
0,22 =


χ0,1Γ0(Λ

1/2
0,t )⊗2εtε

′
t(Λ

1/2
0,t )⊗2Γ′0χ

′
0,1 . . . χ0,1Γ0(Λ

1/2
0,t )⊗2εtε

′
t(Λ

1/2
0,t )⊗2Γ′0χ

′
0,p

...
. . .

...

χ0,pΓ0(Λ
1/2
0,t )⊗2εtε

′
t(Λ

1/2
0,t )⊗2Γ′0χ

′
0,1 . . . χ0,pΓ0(Λ

1/2
0,t )⊗2εtε

′
t(Λ

1/2
0,t )⊗2Γ′0χ

′
0,p

 ,

Ω
(i)
0,33 =

1

λ2
i,t(θ

(i)
0 )

∂λi,t(θ
(i)
0 )

∂κ(i)

∂λi,t(θ
(i)
0 )

∂κ(i)′
(z2
i,t − 1)2,

Ω
(i)
0,12 = D(V ′0)⊗2Γ

(
Λ

1/2
0,t

)⊗2

εt

(
ε′t(Λ

1/2
0,t )⊗2Γ′0χ

′
0,1 . . . ε′t(Λ

1/2
0,t )⊗2Γ′0χ

′
0,p

)
,

Ω
(i)
0,13 = D(V ′0)⊗2Γ

(
Λ

1/2
0,t

)⊗2

εt
1

λi,t(θ
(i)
0 )

∂λi,t(θ
(i)
0 )

∂κ(i)′
(1− z2

i,t),

Ω
(i)
0,23 =

χ0,1Γ0(Λ
1/2
0,t )⊗2εt

. . .

χ0,pΓ0(Λ
1/2
0,t )⊗2εt

 1

λi,t(θ
(i)
0 )

∂λi,t(θ
(i)
0 )

∂κ(i)′
(1− z2

i,t),

which are p× p, p2 × p2, p+ 1× p+ 1, p× p2, p× p+ 1 and p2 × p+ 1 respectively.

To show that Yt(θ(i)
0 ) is square integrable, we verify that all elements of Ω

(i)
0 are finite.

By independence of Zt and Λ0,t,

E [||Ω0,11||] ≤ KE

[∣∣∣∣∣∣ (Λ
1/2
0,t

)⊗2 ∣∣∣∣∣∣2]E [||εt||2] ,
E [||Ω0,22||] ≤ KE

[∣∣∣∣∣∣ (Λ
1/2
0,t

)⊗2 ∣∣∣∣∣∣2]E [||εt||2] ,
and using the euclidean matrix norm, ||A|| =

√
tr(A′A) along with tr(A⊗B) = tr(A)tr(B)

(for A and B square),

E

[∣∣∣∣∣∣ (Λ
1/2
0,t

)⊗2 ∣∣∣∣∣∣2] = E
[
tr (Λ0,t)

2] = E

( p∑
i=1

λi,t(θ
(i)
0 )

)2
 ≤ K <∞,

by Assumption 4.5. Moreover,

E
[
||εt||2

]
≤ E

[
||Zt||4

]
+K <∞,

as E [||Zt||4] ≤ KE [||Xt||4]. Hence E
[
||Ω(i)

0,11||
]
<∞ and E

[
||Ω(i)

0,22||
]
<∞. Next,

E
[
||Ω(i)

0,33||
]
≤ K <∞,

by Assumption 4.5. Finally, E
[
||Ω(i)

0,12||
]
, E

[
||Ω(i)

0,13||
]

and E
[
||Ω(i)

0,23||
]

are finite by the
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Cauchy-Schwarz inequality.

Because Yt(θ(i)
0 ) is a square integrable ergodic martingale difference sequence, we can

invoke the central limit theorem for martingale differences, see e.g., Brown (1971), imply-

ing that (B.20) holds.

Lemma B.7 (Finite expectation of second order derivative). Under Assumptions 4.1-4.6

E

[
sup

θ(i)∈Θ(i)

∣∣∣∣∣∂2l
(i)
t (θ(i))

∂θ(i)∂θ(i)′

∣∣∣∣∣
]
<∞.

Proof. The second order derivative of li,t(θ
(i)) is given in (A.4), and we note that in order

to show that E
[
supθ(i)∈Θ(i)

∣∣∣∂2l
(i)
t (θ(i))

∂θ(i)∂θ(i)′

∣∣∣] <∞, if suffices to verify that,

1. E
[
supθ(i)∈Θ(i)

∣∣∣ y2
i,t(θ

(i))

λi,t(θ(i))
1

λi,t(θ(i))

∂2λi,t(θ
(i))

∂θ(i)∂θ(i)′

∣∣∣] <∞,

2. E
[
supθ(i)∈Θ(i)

∣∣∣(∂2yi,t(θ
(i))

∂θ
(i)
n ∂θ

(i)
m

yi,t(θ
(i)) +

∂yi,t(θ
(i))

∂θ
(i)
n

∂yi,t(θ
(i))

∂θ
(i)
m

)
1

λi,t(θ(i))

∣∣∣] <∞,

3. E
[
supθ(i)∈Θ(i)

∣∣∣(∂λi,t(θ(i))

∂θ
(i)
n

∂yi,t(θ
(i))

∂θ
(i)
m

+
∂λi,t(θ

(i))

∂θ
(i)
m

∂yi,t(θ
(i))

∂θ
(i)
n

)
yi,t(θ

(i))

λ2
i,t(θ

(i))

∣∣∣] <∞,

4. E
[
supθ(i)∈Θ(i)

∣∣∣ y2
i,t(θ

(i))

λi,t(θ(i))
1

λ2
i,t(θ

(i))

∂λi,t(θ
(i))

∂θ
(i)
n

∂λi,t(θ
(i))

∂θ
(i)
m

∣∣∣] <∞,

for n,m = 1, . . . , p(p + 1) + p + 1. Inequalities 1.-3. are finite by Assumption 4.5. The

last inequality requires finite 2 + s moments for s > 0, as,

E

[
sup

θ(i)∈Θ(i)

∣∣∣∣∂λi,t(θ(i))

∂θ
(i)
n

1

λi,t(θ(i))

∣∣∣∣] ≤ K.

To see this, recall that the process for the eigenvalues can be written as,

λi,t =
∞∑
l=0

bli
(
wi +

p∑
j=1

aijy
2
j,t−l−1(θ(i))

)
=

wi
1− bi

+
∞∑
l=0

p∑
j=1

bliaijy
2
j,t−l−1(θ(i))

with wi = (1 − bi)λi −
∑p

j=1 aijλj and θ(i) = [γ′, ai1, . . . , aip, bi]
′. The derivatives of the

eigenvalues are,

∂λi,t(θ
(i))

∂γk
=
∂wi(1− bi)−1

∂γk
+ 2

∞∑
l=0

p∑
j=1

bliaijyj,t−l−1(θ(i))
∂Vi
∂γk

′
Xt, (B.23)

∂λi,t(θ
(i))

∂aij
=
∂wi(1− bi)−1

∂aij
+
∞∑
l=0

bliy
2
j,t−l−1(θ(i)), (B.24)

∂λi,t(θ
(i))

∂bi
=
∂wi(1− bi)−1

∂bi
+
∞∑
l=1

p∑
j=1

lbl−1
i aijy

2
j,t−l−1(θ(i)), (B.25)
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for k = 1, . . . , p(p+1) and i, j = 1, . . . , p+1. By Assumption 4.6 along with the inequality

z/(1 + z) ≤ zs for s ∈ (0, 1) for all z ≥ 0, for all interior θ(i) ∈ Θ(i),

sup
θ(i)∈Θ(i)

∣∣∣∣ 1

λi,t(θ(i))

∂λi,t(θ
(i))

∂γj

∣∣∣∣ ≤ sup
θ(i)∈Θ(i)

∣∣∣∣∣K +K
∞∑
l=0

∑p
j=1 b

l
iaijy

2
j,t−l−1(θ(i))

K +
∑p

j=1 b
l
iaijy

2
j,t−l−1(θ(i))

∣∣∣∣∣
≤ sup

θ(i)∈Θ(i)

∣∣∣∣∣K +K

∞∑
l=0

p∑
j=1

blsi a
s
ijy

2s
j,t−l−1(θ(i))

∣∣∣∣∣ ≤ K, (B.26)

using supθ(i)∈Θ(i) |∂y
2
i,t−1(θ(i))

∂γj
| = supθ(i)∈Θ(i) |2Vi(θ(i))′Xt−1

∂V ′i (θ(i))

∂γj
Xt−1| ≤ supθ(i)∈Θ(i) |Ky2

i,t−1|,
due to the orthonormality of Vi. Similarly,

sup
θ(i)∈Θ(i)

∣∣∣∣ 1

λi,t(θ(i))

∂λi,t(θ
(i))

∂aij

∣∣∣∣ ≤ sup
θ(i)∈Θ(i)

∣∣∣∣∣K +K
1

aij

∞∑
l=0

bliaijy
2
j,t−l−1(θ(i))

K + bliaijy
2
j,t−l−1(θ(i))

∣∣∣∣∣
≤ sup

θ(i)∈Θ(i)

∣∣∣∣∣K +K
∞∑
l=0

blsi a
s
ijy

2s
j,t−l−1(θ(i))

∣∣∣∣∣ ≤ K, (B.27)

sup
θ(i)∈Θ(i)

∣∣∣∣ 1

λi,t(θ(i))

∂λi,t(θ
(i))

∂bi

∣∣∣∣ ≤ sup
θ(i)∈Θ(i)

∣∣∣∣∣K +K
1

bi

∞∑
l=1

l

∑p
j=1 b

l
iaijy

2
j,t−l−1(θ(i))

K +
∑p

j=1 b
l
iaijy

2
j,t−l−1(θ(i))

∣∣∣∣∣
≤ sup

θ(i)∈Θ(i)

∣∣∣∣∣K +K
∞∑
l=1

p∑
j=1

lbsli a
s
ijy

2s
j,t−l−1(θ(i))

∣∣∣∣∣ ≤ K, (B.28)

such that (B.26)-(B.28) are finite when {Xt}t∈Z is stationary, ergodic and has finite frac-

tional moments. Hence the last inequality holds under Assumptions 4.1-4.6.

Lemma B.8 (Uniform convergence of second order derivative). Under Assumptions 4.1-

4.6, for T →∞,

sup
θ(i)∈Θ(i)

∣∣∣∣∣∂2L
(i)
t (θ(i))

∂θ(i)∂θ(i)′
− E

[
∂2l

(i)
t (θ(i))

∂θ(i)∂θ(i)′

]∣∣∣∣∣ a.s.→ 0.

Proof. Since
∂2li,t(θ

(i))

∂θ(i)∂θ(i)′ is a function of (Xt, Xt−1, . . .) and θ(i), it is strictly stationary and

ergodic. The result then follows by Lemma B.7 and the uniform law of large numbers for

stationary and ergodic processes, see Theorem A.2.2 of White (1994).

Lemma B.9 (Non-singular J
(i)
0 ). Under Assumption 4.1-4.6, J

(i)
0 , given in (A.12), is

non-singular.

Proof. J
(i)
0 is identical to the Hessian of a univariate (extended) GARCH model (for the

rotated returns). The non-singularity of J
(i)
0 therefore follows from Berkes, Horváth, and

Kokoszka (2003) Lemma 5.7.
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Lemma B.10 (Asymptotic irrelevance of (fixed) initial values). Under Assumptions 4.1-

4.6, ∣∣∣∣∣ 1√
T

T∑
t=1

(
∂l

(i)
t (θ

(i)
0 )

∂κ
(i)
n

−
∂l

(i)
t,h(θ

(i)
0 )

∂κ
(i)
n

)∣∣∣∣∣ p→ 0 (B.29)

for n = 1, . . . , p+ 1, and

sup
θ(i)∈Θ(i)

∣∣∣∣∣ 1

T

T∑
t=1

(
∂2l

(i)
t (θ(i))

∂θ
(i)
n ∂θ

(i)
m

−
∂2l

(i)
t,h(θ

(i))

∂θ
(i)
n ∂θ

(i)
m

)∣∣∣∣∣ p→ 0, (B.30)

for n,m = 1, . . . , p(p+ 1) + p+ 1.

Proof. Consider first (B.29) concerning the elements of the score vector. By (A.3), the

triangle inequality and supθ(i)∈Θ(i) |yi,t| = supγ∈H |V ′i (γ)Xt| ≤ K||Xt||,∣∣∣∣∣ 1√
T

T∑
t=1

(
∂l

(i)
t (θ

(i)
0 )

∂κ
(i)
n

−
∂l

(i)
t,h(θ

(i)
0 )

∂κ
(i)
n

)∣∣∣∣∣ ≤
1√
T

T∑
t=1

∣∣∣∣∣ 1

λi,t(θ
(i)
0 )

∂λi,t(θ
(i)
0 )

∂κ
(i)
n

− 1

λi,t,h(θ
(i)
0 )

∂λi,t,h(θ
(i)
0 )

∂κ
(i)
n

∣∣∣∣∣+
K

1√
T

T∑
t=1

||Xt||2
∣∣∣∣∣ 1

λi,t(θ
(i)
0 )

∂λi,t(θ
(i)
0 )

∂κ
(i)
n

− 1

λi,t,h(θ
(i)
0 )

∂λi,t,h(θ
(i)
0 )

∂κ
(i)
n

∣∣∣∣∣,
for n = 1, . . . , p+ 1. Following Francq, Horvath, and Zaköıan (2011) (p. 649),

sup
θ(i)∈Θ(i)

∣∣∣∣∂λi,t(θ(i))

∂θ
(i)
n

− ∂λi,t,h(θ
(i))

∂θ
(i)
n

∣∣∣∣ =

sup
θ(i)∈Θ(i)

∣∣∣∣∣ ∂bti∂θ
(i)
n

(
λi,0(θ(i))− λi,0,h(θ(i))

)
+ bti

∂
(
λi,0(θ(i))− λi,0,h(θ(i))

)
∂θ

(i)
n

∣∣∣∣∣ ≤ Kφt, (B.31)

as both bti → 0 and ∂bti/∂bi → 0 for t→∞. Furthermore, notice that

sup
θ(i)∈Θ(i)

∣∣∣∣ 1

λi,t(θ(i))
− 1

λi,t,h(θ(i))

∣∣∣∣ ≤ sup
θ(i)∈Θ(i)

∣∣∣∣ 1

wi
− 1

wi

∣∣∣∣ ≤ K. (B.32)

Using (B.31)-(B.32), we find that B.29 can be bounded as,∣∣∣∣∣ 1√
T

T∑
t=1

(
∂l

(i)
t (θ

(i)
0 )

∂κ
(i)
n

−
∂l

(i)
t,h(θ

(i)
0 )

∂κ
(i)
n

)∣∣∣∣∣ ≤ K
1√
T

T∑
t=1

φt
(
1 + ||Xt||2

)
.

As
∑T

t=1 φ
t → (1−φ)−1 it holds that KT−1/2

∑T
t=1 φt → 0 for T →∞, and by the Markov
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inequality for ε > 0,

P

(
1√
T

T∑
t=1

φt(1 + ||Xt||2) > ε

)
≤ ε−1(1 + E ||Xt||2)

1√
T

T∑
t=1

φt
p→ 0,

as E||Xt||2 <∞ by Assumption 4.1. This proves the first statement of the lemma.

Next, we consider the requirement in (B.30). The second order derivative of the log-

likelihood function is given in (A.4), and to show that the expression in (B.30) converges

to zero in probability we need three additional results. First,

sup
θ(i)∈Θ(i)

∣∣∣∣∂2λi,t(θ
(i))

∂θ
(i)
n ∂θ

(i)
m

− ∂2λi,t,h(θ
(i))

∂θ
(i)
n ∂θ

(i)
m

∣∣∣∣ =

sup
θ(i)∈Θ(i)

∣∣∣∣∣ ∂2bti

∂θ
(i)
n ∂θ

(i)
m

(
λi,0(θ(i))− λi,0,h(θ(i))

)
+ bti

∂2
(
λi,0(θ(i))− λi,0,h(θ(i))

)
∂θ

(i)
n ∂θ

(i)
m

+
∂bti

∂θ
(i)
n

∂
(
λi,0(θ(i))− λi,0,h(θ(i))

)
∂θ

(i)
m

+
∂bti

∂θ
(i)
m

∂
(
λi,0(θ(i))− λi,0,h(θ(i))

)
∂θ

(i)
n

∣∣∣∣∣ ≤ Kφt,

(B.33)

for n,m = 1, . . . , p(p+ 1) + p+ 1. Second, by (B.26)-(B.28),

sup
θ(i)∈Θ(i)

∣∣∣∣ 1

λi,t(θ(i))

∂λi,t(θ
(i))

∂θ
(i)
n

∣∣∣∣ ≤ K, sup
θ(i)∈Θ(i)

∣∣∣∣ 1

λi,t,h(θ(i))

∂λi,t,h(θ
(i))

∂θ
(i)
n

∣∣∣∣ ≤ K. (B.34)

Third,

sup
θ(i)∈Θ(i)

∣∣∣∣ 1

λi,t(θ(i))
− 1

λi,t,h(θ(i))

∣∣∣∣ =

sup
θ(i)∈Θ(i)

∣∣∣∣ 1

λi,t(θ(i))
(λi,t(θ

(i))− λi,t,h(θ(i)))
1

λi,t,h(θ(i))

∣∣∣∣ ≤ Kφt. (B.35)

Hence, by (B.31)-(B.35) along with the triangle inequality, (B.30) can be bounded as,

sup
θ(i)∈Θ(i)

∣∣∣∣∣ 1

T

T∑
t=1

(
∂2l

(i)
t (θ(i))

∂θ
(i)
n ∂θ

(i)
m

−
∂2l

(i)
t,h(θ

(i))

∂θ
(i)
n ∂θ

(i)
m

)∣∣∣∣∣ ≤ K
1

T

T∑
t=1

φt
(
1 + ||Xt||2 + ||Xt||4

)
,

which by Markov’s inequality converges to zero in probability,

P

(
K

1

T

T∑
t=1

φt
(
1 + ||Xt||2 + ||Xt||4

)
> ε

)
≤ ε−1

(
K(1 + E[||Xt||2] + E[||Xt||4])

1

T

T∑
t=1

φt

)
p→ 0,

which concludes the proof, and we conclude that the (fixed) initial values used in the

estimation do not matter for T →∞.
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C Stationarity, ergodicity and existence of

moments

The following two lemmata provide sufficient and necessary conditions for strict station-

arity, ergodicity, and finite moments for the multivariate GARCH model and are both

stated without proofs. They were originally stated in the context of the extended CCC

model but are also applicable in the present model, as the λ-GARCH, conditional on the

eigenvectors, is an extended CCC model for the rotated returns.

Rewrite the process of the eigenvalues as a stochastic recurrence equation,

λt = W +At−1λt−1,

where At−1 = A diag
(
Z�2
t−1

)
+B is an iid p× p sequence for t ∈ Z.

Lemma C.1 (Francq and Zaköıan (2019) Theorem 10.6). A necessary and sufficient

condition for the existence of a unique, non-anticipative, strictly stationary and ergodic

solution to the process (Xt : t ∈ Z) is γ < 0, with γ defined as the top Lyapunov coefficient,

γ = lim
t→∞

1
t
E
[
log ||

∏t
i=1Ai||

]
Notice that Lemma C.1 only ensures the existence of fractional moments, E||Xt||s <

∞, 0 < s < 1. We next restate a result from Pedersen (2017) (Proposition 2.1), which

contain necessary and sufficient conditions for finite (non-fractional) moments.

Lemma C.2 (Pedersen (2017) Proposition 2.1). Let (Xt : t ∈ Z) denote a strictly station-

ary and ergodic process. Then E
[
||X�2

t ||k
]
<∞, k ∈ N if and only if ρ

(
E
[
A⊗kt

])
< 1.

D Simulation study

This appendix illustrates the theoretical results through simulations: we simulate the

large-sample distribution of the STE in three cases: In the first, we illustrate the sufficiency

of finite fourth order moments, and show that both steps of the STE are consistent and

asymptotically normal when E||Xt||4 < ∞. The second case considers the distribution

of the STE when the data-generating process (DGP) does not admit finite fourth order

moments, but rather has finite second order moments, E||Xt||2 < ∞, E||Xt||4 = ∞,

indicating that the STE should be consistent, but have a non-normal limiting distribution.

Finally, the third simulation considers the STE when the DGP only admits a finite mean,

E||Xt|| <∞, E||Xt||k =∞ for k = 2, 4.
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Figure D.1: Densities of estimated parameters when E||Xt||4 < ∞. The solid line is
the estimated density, and the grey dashed line is the normal distribution.

D.1 Case 1: The DGP satisfies the sufficient condition for

asymptotic normality

Consider the bivariate λ-GARCH with Gaussian innovations,

Xt = V Λ
1/2
t Zt, ηt iid N(0, I2), Λt = diag(λt), λt = W + AY �2

t−1 +Bλt−1, (D.1)

with parameters

V0 =

(
0.89 0.45

−0.45 0.89

)
, W0 =

(
1.5

0.46

)
, A0 =

(
0.33 0

0 0.25

)
, B0 = 02×2, (D.2)

such that ρ(E[A diag(Z2
t ) + B]⊗2) = max

(
a2
iiE[z4

i,t]
)
< 1 for i = 1, 2. For Zt iid N(0, I2)

this corresponds to max(ai) < 1/
√

3, and by Lemma C.2 (with k = 2), the stationary

solution of the process has finite fourth order moments, and the moment restrictions of

Theorem 4.2 are satisfied.

We simulate N = 10.000 realizations of (D.1)-(D.2) with T = 10.000 observations,

and estimate W and A using STE. Figure D.1 contains standardized densities of w1 and

a11. The figure suggests that the STE is indeed consistent and asymptotically normal, in

line with the findings in Theorem 4.2.

D.2 Case 2: The DGP satisfies the sufficient condition for

consistency

Next, we consider the case where the DGP has finite second order moments, E||Xt||2 <∞
but does not admit finite fourth order moments, E||Xt||4 =∞. We consider (D.1), with
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parameters

V0 =

(
0.89 0.45

−0.45 0.89

)
, W0 =

(
1.5

0.46

)
, A0 =

(
0.60 0

0 0.55

)
, B0 = 02×2, (D.3)

such that ρ(E[A0 diag(Z2
t ) + B0]) = max

(
a2

0,ii

)
< 1 for i = 1, 2. By Lemma C.2 (with

k = 1), the stationary solution of the process admits finite second order moments, and the

moment restrictions for asymptotic normality (Theorem 4.2) are not satisfied. However,

by Theorem 4.1, the estimator should be consistent.
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Figure D.2: Densities of estimated parameters when E||Xt||4 < ∞. The solid line is
the estimated density, and the grey dashed line is the normal distribution.

We simulate N = 10.000 realizations of (D.1) and (D.3) with T = 10.000 observations,

and estimate W and A using STE. Figure D.2 contains standardized densities of w1 and

a11. The figure suggests that in this case, the estimator is indeed consistent, but it is not

asymptotically normal. Surprisingly, the density of w1 seem to behave almost like a normal

distribution, albeit with a heavy left tail, whereas that of a11 is clearly non-normal. This

is similar to the findings of Pedersen and Rahbek (2014), who consider variance-targeting

in the BEKK-model, and we conclude that E||Xt||4 <∞ is a necessary condition for the

joint normality of the ST estimator.

D.3 Case 3: The DGP does not satisfy the sufficient

condition for consistency

Finally, we consider the case where the DGP only admits a finite mean, E||Xt|| < ∞.

Here we set parameter matrices to

V0 =

(
0.89 0.45

−0.45 0.89

)
, W0 =

(
1.5

0.46

)
, A0 =

(
1.01 0

0 0.90

)
, B0 = 02×2. (D.4)
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As max(a0,ii) < π/2 for i = 1, 2 the DGP is strictly stationary, ergodic and has a finite

mean, but does not admit any higher order moments (by Lemma C.2). As before, we

simulate N = 10.000 realizations of (D.1) and (D.4) with T = 10.000 observations,

and estimate W and A using STE. Figure D.3 contains standardized densities of w1

and a11. Clearly, the estimator is neither consistent nor asymptotically normal when

E||Xt||2 = ∞, and we conclude that the moment condition in Theorem 4.1 is indeed

necessary for consistency of the estimator.
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Figure D.3: Densities of estimated parameters when E||Xt||4 < ∞. The solid line is
the estimated density, and the grey dashed line is the normal distribution.
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E Empirical exercise: Portfolio constituents

and weights

Table E.1: Portfolio constituents and weights.

Bloomberg ticker Company name Portfolio weights
P1 P2 P3 P4 P5

DIS US Equity Walt Disney Co. 0.040 0.016 0.010 0.068 - 0.347
HD US Equity Home Depot 0.040 0.002 0.085 - 0.082 - 0.099
ABT US Equity Abbott 0.040 0.042 0.071 - 0.195 - 1.099
CVX US Equity CV Sciences 0.040 0.066 0.007 - 0.038 - 1.243
EXC US Equity Exelon 0.040 0.038 0.057 0.137 0.671
MCD US Equity McDonalds 0.040 0.044 0.048 - 0.257 - 0.122
MMM US Equity 3M 0.040 0.001 0.101 - 0.282 0.318
AAPL US Equity Apple 0.040 0.045 0.086 0.159 0.621
UNH US Equity United Health Group 0.040 0.086 0.072 - 0.118 - 0.210
TXN US Equity Texas Instruments 0.040 0.078 0.066 0.118 - 0.342
JPM US Equity JPMorgan Chase 0.040 0.067 0.113 0.138 - 0.856
IBM US Equity IBM 0.040 0.010 0.118 0.255 0.760
DVN US Equity Devon Energy 0.040 0.082 0.040 - 0.059 0.861
GD US Equity General Dynamics 0.040 0.078 0.029 - 0.083 0.606
CPB US Equity Campbell Soup Company 0.040 0.015 0.095 0.180 0.970
PEP US Equity PepsiCo 0.040 0.058 0.008 0.156 0.383
MRK US Equity Merck & Co. 0.040 0.002 0.043 0.090 0.507
NKE US Equity NantKwest 0.040 0.011 0.008 0.183 - 0.794
COST US Equity Costco 0.040 0.029 0.038 0.084 0.692
T US Equity AT&T 0.040 0.014 0.008 0.269 - 0.429
RF US Equity Regions Financial Corporation 0.040 0.069 0.035 - 0.098 - 0.160
SLB US Equity Schlumberger 0.040 0.075 0.094 0.140 - 0.468
PG US Equity Procter & Gamble 0.040 0.032 0.108 0.265 0.177
HON US Equity Honeywell 0.040 0.029 0.094 - 0.097 0.410
HPQ US Equity Hewlett-Packard 0.040 0.010 0.067 0.066 0.195
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Chapter 3

Bootstrap-Based Inference and Testing in
Multivariate Dynamic Conditional

Eigenvalue GARCH Models

Abstract

We study fixed-design bootstrap for quasi-maximum likelihood estimation of mul-

tivariate GARCH processes. Specifically, we extend the univariate bootstrap of

Cavaliere, Pedersen, and Rahbek (2018) to the Dynamic Conditional Eigenvalue

GARCH model of Hetland, Pedersen, and Rahbek (2020). We show, under fairly

mild conditions, that the bootstrap Wald test statistic is consistent, conditional

on the original data. The theoretically investigated fixed-design bootstrap is con-

trasted to a recursive bootstrap, and the asymptotic test statistic. Through Monte

Carlo simulations, we find evidence that the fixed-design bootstrap is superior to

the recursive bootstrap and the asymptotic test in small samples. In larger samples,

both bootstrap designs and the asymptotic test share properties, as expected from

the asymptotic theory. An empirical application illustrates the empirical merits of

the bootstrap in multivariate GARCH models. The appealing theoretical proper-

ties, along with the excellent finite sample properties, suggest that the fixed-design

bootstrap is an important tool for small sample inference in multivariate GARCH

models.

Keywords: Multivariate GARCH, fixed-design bootstrap, fixed regressor boot-

strap, hypothesis testing.

JEL: C32, C58.
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1 Introduction

Multivariate GARCH models are a popular choice for modeling the conditional covariance

matrix of financial returns. They are typically applied in the context of Markowitz type

optimization procedures (see e.g., Engle, Ledoit, and Wolf, 2019) and for the estimation

of market risk models, such as value-at-risk and expected shortfall (see e.g., Francq and

Zaköıan, 2020). In both cases, inference is an integral part of empirical applications of

multivariate GARCH models.

In small samples, inference based on asymptotic distributions may lead to an incorrect

nominal size. As well known, see e.g., Cavaliere, Nielsen, and Rahbek (2017), Cavaliere,

Pedersen, and Rahbek (2018), and Cavaliere et al. (2020), such small sample issues can

be corrected by the bootstrap. The bootstrap is a simulation-based approach in which

we generate new samples of the data and the test statistic of interest, and use these to

compute finite-sample critical values.

This paper extends the univariate fixed-design (or fixed volatility) bootstrap of Cava-

liere, Pedersen, and Rahbek (2018) of ARCH(q)-type models to the multivariate Dynamic

Conditional Eigenvalue GARCH (λ-GARCH) model. The λ-GARCH was introduced in

Hetland, Pedersen, and Rahbek (2020) as a generalized autoregressive score model (Creal,

Koopman, and Lucas, 2011, 2013) for the conditional eigenvalues, and the authors es-

tablish full asymptotic theory of the quasi-maximum likelihood estimator (QMLE). The

λ-GARCH is closely related to the GO-GARCH of Weide (2002) (see also Lanne and

Saikkonen, 2007, Fan, Wang, and Yao, 2008 and Boswijk and Weide, 2011), as discussed

in detail in Hetland, Pedersen, and Rahbek (2020). A general introduction to multivari-

ate GARCH models can be found in e.g., Bauwens, Laurent, and Rombouts (2006) and

Silvennoinen and Teräsvirta (2009). For a treatment of stochastic properties along with

estimation of multivariate GARCH models, see Francq and Zaköıan (2019) (chapter 10).

To our knowledge, we are the first to consider fixed-design bootstrap for multivari-

ate GARCH processes in the context of full QMLE, and we explore the theoretical and

numerical properties of this bootstrap. Within the realm of GARCH models, the fixed-

design bootstrap is one of two popular residual bootstrap methods, the other being the

recursive bootstrap: the recursive bootstrap generates new data recursively using the es-

timated dynamics, whereas the fixed-design bootstrap keeps lagged variables fixed at the

(observed) sample values. That is, the recursive bootstrap generates new paths for the

conditional eigenvalues in each simulation, whereas the fixed-design bootstrap keeps these

fixed across all simulations, such that the only source of variation is the re-sampling of

standardized residuals.

The fixed-design bootstrap has previously been studied in a univariate (G)ARCH

context: Shimizu (2010) considers a one-step Newton-Raphson estimator, while Cavaliere,

Pedersen, and Rahbek (2018) consider likelihood based tests for a class of ARCH(q)
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models. Beutner, Heinemann, and Smeekes (2020) study a fixed-design bootstrap in

the context of two-step estimation of value-at-risk, based on univariate GARCH models,

while Cavaliere et al. (2020) consider a shrinkage-based fixed-design bootstrap for testing

hypotheses on the boundary of the parameter space (see also Cavaliere, Nielsen, and

Rahbek (2017)). Recursive bootstrap methods, in the context of univariate GARCH

models, have been studied in e.g., Hall and Yao (2003), Pascual, Romo, and Ruiz (2006),

Hidalgo and Zaffaroni (2007) and Jeong (2017). Considering multivariate GARCH models,

Francq, Horvath, and Zaköıan (2014) apply the one-step Newton-Raphson fixed-design

methodology from Shimizu (2010) in variance targeting estimation of the CCC-GARCH,

while Hetland, Pedersen, and Rahbek (2020) use a recursive bootstrap to test parameter

restrictions in the λ-GARCH. In contrast, our exposition is a complete asymptotic analysis

based on the QMLE.

We provide a full asymptotic analysis of the fixed-design bootstrap for the λ-GARCH

model, and show that the bootstrap Wald test statistic is consistent. That is, we establish

validity of the bootstrap Wald test statistic and show that the bootstrap mimics the cor-

rect asymptotic distribution under both the null and alternative hypotheses. While the

theoretical exposition assumes stationarity, ergodicity and finite fourth order moments

of the return vector, our simulations imply that only a finite mean of the return process

(in addition to finite fourth order moments for the residuals) are necessary for bootstrap

consistency. Furthermore, our simulations indicate that the fixed-design bootstrap has

excellent nominal coverage compared with both the recursive bootstrap and the asymp-

totic test statistic in small samples. As expected from the asymptotic theory, all three

statistics perform comparably for larger sample sizes.

The remainder of the paper is as follows. Section 2 introduces the λ-GARCH, stochastic

properties and estimation by QMLE. Section 3 present the fixed-design bootstrap, imple-

mentation and theoretical results, and Section 4 contain Monte Carlo simulations, while

Section 5 considers a small empirical application. Finally, Section 6 concludes. All proofs

can be found in Appendix A.

1.1 Notation

We denote by R,R+,R++ the real, positive real and strictly positive real numbers re-

spectively. The absolute value of a ∈ R is denoted |a|. For p, n ∈ N, Ip denotes the

(p × p) identity matrix and 0n×p denotes a n × p matrix of zeros. The trace of a square

matrix is denoted tr(A), and the determinant det(A). For a p−dimensional vector x,

diag(x) = diag((xi)
p
i=1) is a diagonal matrix with x on the diagonal. Denote by ρ(A) the

spectral radius of any square matrix A, i.e., ρ(A) = max{|λ̃i| : λ̃i is an eigenvalue of A}.
We use || · || as a matrix norm. Elements of matrices or vectors are denoted by lower case
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letters, e.g., aij is the (i, j)′th element of the matrix A. In the context of the Hadamard

product, we let X�2 = X�X for the vector X. Let P ∗ and E∗ denote probability and ex-

pectation conditional on the original sample. Furthermore,
w∗→p denotes weak convergence

in probability, i.e., X∗T
w∗→p X means that, as the sample size T diverges, the cumulative

distribution function G∗T of X∗T conditional on the original data, converges in probability

to the cumulative distribution function G of X at all continuity points of G. Moreover,

for some sequence X∗T computed from the bootstrap data, X∗T
p∗→p X or X∗T −X = o∗p(1),

mean that for any ε > 0, P ∗(||X∗T −X|| > ε)
p→ 0 for T →∞. Similarly, X∗T = O∗p(1) in

probability, means that, for any ε > 0, there exists some constant M > 0 such that, for

large T , P (P ∗(||X∗T || > M) < ε) is arbitrarily close to one.

2 The λ-GARCH Model | Properties and

Estimation

We now present the λ-GARCH model. Let Xt be a p× 1 vector of asset returns,

Xt = V Λ
1/2
t Zt, (2.1)

Λt = diag((λi,t)
p
i=1), (2.2)

λt = (λ1,t, . . . , λp,t)
′ = W + AY �2

t−1 +Bλt−1, (2.3)

for t = 1, . . . , T . The innovations, Zt, are i.i.d.(0, Ip) and θ is a vector of parameters

(to be specified). Here, V is an orthonormal matrix, V V ′ = V ′V = Ip, and we let

Yt = V ′Xt denote the orthogonalized returns which have conditional covariance Λt. Let

W be a p × 1 vector of strictly positive elements, wi > 0 for i = 1, . . . , p, and let A

and B be p × p with non-negative entries, αij, βij ≥ 0 for i, j = 1, . . . , p. Furthermore,

the (constant conditional) eigenvectors V are parametrized by the p(p−1)/2 dimensional

vector φ = [φ12, . . . , φ(p−1)p]
′. Specifically, we parameterize V as a series of Givens rotation

matrices (see also Pinheiro and Bates (1996) and Hetland, Pedersen, and Rahbek, 2020)

V = V (φ) =

p−1∏
i=1

p∏
j=i+1

R(i, j;φ), (2.4)

where R(i, j;φ) is a (p× p) matrix with elements

[R(i, j;φ)]kk = 1 if k 6= i, j, [R(i, j;φ)]kl = 0 if k 6= l and k 6= i, j,

[R(i, j;φ)]ii = [R(i, j;φ)]jj = cos(φij), [R(i, j;φ)]ij = −[R(i, j;φ)]ji = sin(φij).

Before we discuss estimation of the λ-GARCH, we briefly state a condition for strict
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stationarity and ergodicity of the process in (2.1)-(2.3).

Remark 2.1 (Stationarity and ergodicity). As detailed in Theorem 3.1 of Hetland, Ped-

ersen, and Rahbek (2020), the λ-GARCH is strictly stationary and ergodic if and only if

the top Lyapunov exponent, γ, defined as

γ = lim
T→∞

T−1E

(
log ||

T∏
t=1

A diag((z2
i,t)

p
i=1) +B||

)
, (2.5)

is strictly negative, γ < 0.

In the following, we consider QMLE based on the Gaussian probability density func-

tion, which has log-likelihood, up to a constant,

LT (θ) =
1

T

T∑
t=1

lt(θ), (2.6)

lt(θ) = log(det(Λt(θ))) + Y ′t (θ)Λ
−1
t (θ)Yt(θ). (2.7)

The parameters of the model are given by θ = [W ′, vec(A)′, vec(B)′, φ′]′ which has di-

mension dθ = p + 2p2 + p(p − 1)/2. Note that Λ0 and Y0(θ) = V ′(θ)X0 are fixed in the

statistical analysis.

The QMLE, θ̂T , is defined as,

θ̂T = arg min
θ∈Θ

LT (θ), (2.8)

where Θ is the parameter space,

Θ = ΘW ×ΘA ×ΘB ×Θφ, (2.9)

with ΘW ⊂ Rp
++,ΘA ⊂ Rp2

+ ,ΘB ⊂ Rp2

+ and Θφ ⊂ Rp(p−1)/2.

To investigate the stochastic properties of the QMLE we make the following assump-

tion on the parameter space Θ in (2.9).

Assumption 2.1. The true value of the parameter vector θ0 = [W0, vec(A0)′, vec(B0)′, φ′0]′

belongs to Θ. Moreover, assume that ΘW = [wL, wU ]p for some 0 < wL < wU < ∞,

ΘA = [0, aU ]p
2

for some aU < ∞ and ΘB ∈ Rp2

+ such that supvec(B)∈ΘB
ρ(B) < 1, and

Θφ = [0, φ/2]p(p−1)/2.

In particular, Assumption 2.1 implies that Θ is compact, and ensures that the rotation

parameters in φ are identified. We also make the following assumption about the data-

generating process, {Xt}t∈Z.

Assumption 2.2. The process defined in (2.1)-(2.3) is strictly stationary and ergodic

with E||Xt||s <∞ for some s > 0.
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Next, we state an assumption ensuring that the log-likelihood function is well-defined

for θ ∈ Θ, along with a low-level identifying assumption.

Assumption 2.3. The i.i.d. innovations, Zt, has finite second order moments, E||Zt||2 <
∞.

Assumption 2.4. The (p× p2) parameter matrix [A0, B0] has full rank p.

We now have the following result on consistency for the QMLE from Hetland, Peder-

sen, and Rahbek (2020) (Theorem 3.2).

Theorem 2.1 (Consistency of QMLE). Suppose that Assumptions 2.1-2.3 hold, then for

T →∞, the QMLE in (2.8) is strongly consistent,

θ̂T
a.s.→ θ0.

In order to show that the estimator is asymptotically normal, we make the following

additional assumptions.

Assumption 2.5. θ0 is an interior point of Θ, and the matrix A0 has a row with a unique

entry.

Assumption 2.6. The data-generating process satisfies E||Zt||4 <∞ and E||Xt||2+s <∞
for s > 0.

The moment requirements in Assumption 2.6 are sufficient conditions to ensure that

the derivatives of the log-likelihood function in (2.6)-(2.7) are well-behaved in the limit.

We are now ready to state the following theorem from Hetland, Pedersen, and Rahbek

(2020) (Theorem 3.3) which establishes asymptotic normality of the QMLE.

Theorem 2.2 (Asymptotic normality of QMLE). Suppose that Assumptions 2.1-2.6 hold.

Then, for T →∞, the QMLE in (2.8) is asymptotically normal,

√
T (θ̂T − θ0)

D→ N(0,Σ),

with Σ = J−1V J−1, where J = E
[
∂2lt(θ)
∂θ∂θ′

∣∣∣θ=θ0] and V = E
[
∂lt(θ)
∂θ

∂lt(θ)
∂θ′

∣∣∣θ=θ0].
Proofs of Theorem 2.1 and Theorem 2.2 are given in Hetland, Pedersen, and Rahbek

(2020). Some additional comments on the assumptions. Assumptions 2.1-2.4 ensure that

the λ-GARCH are uniquely identified, and that the QML estimator is well-defined and

attains a unique minimum. The restrictions on Θφ, namely that all rotation parameters

are restricted to the interval [0, π/2] ensure that the eigenvalues cannot permute and has

a fixed order. Assumption 2.2 on strict stationarity and ergodicity is needed to invoke a
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law of large numbers for the estimator. Finally, Assumptions 2.5-2.6 are needed to ensure

that ĴT is invertible and V̂T is finite for T →∞.

In practice, we use the sample counterparts of J and V ,

ĴT = T−1

T∑
t=1

∂2lt(θ)

∂θ∂θ′

∣∣∣∣∣
θ=θ̂T

V̂T = T−1

T∑
t=1

∂lt(θ)

∂θ

∂lt(θ)

∂θ′

∣∣∣∣∣
θ=θ̂T

(2.10)

and note that Σ̂T := Ĵ−1
T V̂T Ĵ

−1
T

a.s.→ Σ.

Remark 2.2 (Moment requirement for QML estimation). A simulation study in Het-

land, Pedersen, and Rahbek (2020) indicates that the moment condition for Xt, outlined

in Assumption 2.6 above, may not be necessary, and that stationarity and ergodicity of

the process in (2.1)-(2.3), in addition to E||Zt||4 < ∞, is sufficient and necessary for

asymptotic normality of the QML estimator.

In the following, we are interested in testing a hypothesis of the form,

H0 : Rθ = r (2.11)

where R is k × dθ of full rank, r is k × 1, and dθ ≥ k ≥ 1, and k denotes the number of

restrictions. Both R and r are known.

The hypothesis given in (2.11) can be tested using a standard Wald test, based on the

statistic,

WT = T (Rθ̂T − r)′(RΣ̂TR
′)−1(Rθ̂T − r), (2.12)

where Σ̂T are defined in Theorem 2.2. Under H0, Theorem 2.2 implies that,

WT
D→ χ2(k) (2.13)

where χ2(k) denotes a chi-squared distribution with k degrees of freedom.

Alternatives to the Wald test statistic include the likelihood ratio (LR) and the La-

grange multiplier (LM) test statistics both of which are also based on the log-likelihood

function. However, additional considerations are needed for the probability analysis of

the LR and LM test statistics. In particular, both require the analysis of the estimator

under the null hypothesis, complicating the theoretical exposition. In contrast, the Wald

statistic only requires the analysis of the alternative (unrestricted) estimator. We conjec-

ture, however, that the theory presented in this paper can, with relative ease, be extended

to also cover the LR and LM statistics, by employing e.g., the exposition in Cavaliere,

Nielsen, and Rahbek (2017) or Cavaliere et al. (2020). Recall that the Wald, LR and LM

statistics are asymptotically equivalent, and the choice of test statistic therefore does not

matter for T →∞.
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Notice, that the theory presented here is not valid for testing hypotheses on the bound-

ary of the parameter space, examples of which include testing for no-ARCH (A0 = B0 = 0)

or no eigenvalue spillovers (A0 = diag(a0,i), B0 = diag(b0,i)) for i = 1, . . . , p). Bootstrap-

based testing for no-ARCH in a univariate setup is covered in Cavaliere, Nielsen, and Rah-

bek (2017) and Cavaliere et al. (2020), while Pedersen (2017) considers (non-bootstrap)

testing for no volatility spill-overs in the extended CCC-GARCH. Extending our theory to

allow for parameters on the boundary considerably complicates the exposition, and is left

for future work. We can, however, test if the eigenvalues are integrated (ρ(A0 +B0) = 1),

which is highly useful when forecasting the conditional covariance matrix.

3 The Fixed-Design Bootstrap

We now introduce the fixed-design bootstrap algorithm for the multivariate λ-GARCH,

motivated by Cavaliere, Pedersen, and Rahbek (2018). The key feature of the fixed-design

bootstrap is that the conditional eigenvalues, λt, are kept fixed, and are not random,

conditional on the original data. Therefore, the re-sampled residuals serve as the only

source of variation in the fixed-design bootstrap. This is in contrast to the recursive

bootstrap, in which both the eigenvalues and innovations are generated recursively by

drawing from the standardized estimated residuals.

The estimated residuals are given by,

Ẑt = Λ
−1/2
t (θ̂T )V ′(θ̂T )Xt, (3.1)

and can be obtained after computing the QMLE in (2.8). Similar to Francq and Zaköıan

(2016), and analogously to the literature on univariate bootstrap inference in GARCH

models (see e.g., Cavaliere, Nielsen, and Rahbek, 2017, Cavaliere, Pedersen, and Rahbek,

2018, or Cavaliere et al., 2020), we standardize the residuals as,

Ẑs
t = Ω̂

−1/2
Z (Ẑt − Z̄), (3.2)

where Z̄ = 1
T

∑T
t=1 Ẑt and Ω̂Z = 1

T

∑T
t=1(Ẑt − Z̄)(Ẑt − Z̄)′.

Algorithm 1 (Fixed-design bootstrap). The fixed-design bootstrap can be outlined as

follows:

1. Generate the bootstrap series {X∗t }Tt=1 as X∗t = V̂ Λ̂
1/2
t Z∗t , where Z∗t are drawn inde-

pendently with replacement from the standardized residuals, {Ẑs
t }Tt=1 in (3.2).

2. Compute the bootstrap QMLE,

θ̂∗T = arg min
θ∈Θ

L∗T (θ), (3.3)
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with

L∗T (θ) =
1

T

T∑
t=1

log(det(Λt(θ))) +X∗t V (θ)Λ−1
t (θ)V (θ)′X∗t . (3.4)

3. Compute the bootstrap Wald test statistic, defined as,

W ∗
T,b = T (θ̂∗T − θ̂T )′R′(RΣ̂∗TR

′)−1R(θ̂∗T − θ̂T ), (3.5)

where,

Σ̂∗T = Ĵ∗−1
T V̂ ∗T Ĵ

∗−1
T , Ĵ∗T = T−1

T∑
t=1

∂2l∗t (θ̂
∗
T )

∂θ∂θ′
, V̂ ∗T = T−1

T∑
t=1

∂l∗t (θ̂
∗
T )

∂θ

∂l∗t (θ̂
∗
T )

∂θ′
.

4. Repeat steps 1.–3. b = 1, . . . , B times. The p% critical value can then be com-

puted as the (1 − p)%’th quantile of the empirical cumulative distribution function

of {W ∗
T,b}Bb=1.

Notice that the bootstrap log-likelihood function in (3.4) differs from the log-likelihood

function in (2.6)-(2.7) since Λt(θ) is a function of Xt and not X∗t . The bootstrap p-

value, defined as p∗ = 1 − P ∗(W ∗
T,b ≤ x) (where P ∗(W ∗

T,b ≤ x) is the cumulative dis-

tribution function of W ∗
T,b, conditional on the original data), can be approximated as

p∗B = 1
B

∑B
b=1 1{W ∗

T,b > WT}, noting that p∗B
a.s.→ p∗ for B → ∞, see also Cavaliere,

Pedersen, and Rahbek (2018).

We now present a theorem on consistency of the bootstrap, which verifies that Al-

gorithm 1 correctly mimics the (first order) asymptotic distribution of the fixed-design

Wald test statistic under both the null and alternative.

Theorem 3.1 (Bootstrap consistency). Suppose that Assumptions 2.1-2.6 are satisfied,

and in addition E||Xt||4 <∞. Then, under the null hypothesis, H0 : Rθ = r, as T →∞,

W ∗
T

w∗→p χ
2(k). Moreover, under the alternative, HA : Rθ 6= r, W ∗

T
w∗→p χ

2(k). That is,

W ∗
T = O∗p(1), and the bootstrap Wald test is consistent.

The proof of bootstrap consistency of the Wald test follows that of Cavaliere, Pedersen,

and Rahbek (2018), and can be outlined as follows. First, we show that the bootstrap

estimator, θ̂∗T is consistent for θ0, conditional on the original data. Then, we show that the

bootstrap estimator, for T →∞, converges weakly in probability, that is
√
T (θ̂∗T − θ̂T )

w∗→p

N(0,Σ). Finally, we show that the bootstrap estimator of Σ, Σ̂∗T , is consistent under the

null and alternative hypotheses.

Throughout, we use Lemma A.8, which verifies that a law of large numbers holds for

the standardized residuals, such that T−1
∑T

t=1E
∗[ẑsi,t]

k p→ E[zi,t]
k for k = 1, . . . , 4. Note

also that in several lemmata, we invoke the bootstrap version of Markov’s inequality,
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P ∗(||X∗||2 > ε) < E∗[||X∗t ||4]/ε2, for ε > 0, X∗ ∈ R. This can potentially be relaxed

by verifying the validity of a bootstrap law of large numbers using the (bootstrap) char-

acteristic function as done in Cavaliere, Nielsen, and Rahbek (2017) (proof of Lemma

B.3), which may lead to lesser moment requirements. We investigate this numerically

in Section 4, where we find that Xt (and by extension X∗t ) need only have a finite first

moment along with finite fourth moments of the innovations, Zt, for the bootstrap Wald

test to be consistent.

Before moving on to the numerical exercises, we present the recursive bootstrap. In the

simulations below, we contrast the empirical performance of the fixed-design bootstrap

to that of the recursive bootstrap, and to the asymptotic test statistic.

Algorithm 2 (Recursive bootstrap). The recursive bootstrap can be outlined as follows:

1. Generate the bootstrap series {X?
t }Tt=1 as X?

t = V̂ Λ̂
1/2
t Z∗t , where Z∗t are drawn inde-

pendently with replacement from the standardized residuals, {Ẑs
t }Tt=1 in (3.2).

2. Estimate the parameters in θ using the bootstrap QMLE,

θ̂?T = arg min
θ∈Θ

L?T (θ), (3.6)

with

L?T (θ) =
1

T

T∑
t=1

log(det(Λ?
t (θ))) +X?

t V (θ)Λ?−1
t (θ)V (θ)′X?

t . (3.7)

3. Compute the bootstrap Wald test as,

W ?
T,b = T (θ̂?T − θ̂T )′R′(RΣ̂?

TR
′)−1R(θ̂?T − θ̂T ), (3.8)

where,

Σ̂?
T = Ĵ?−1

T V̂ ?
T Ĵ

?−1
T , Ĵ?T = T−1

T∑
t=1

∂2l?t (θ̂
?
T )

∂θ∂θ′
, V̂ ?

T = T−1

T∑
t=1

∂l?t (θ̂
?
T )

∂θ

∂l?t (θ̂
?
T )

∂θ′
.

4. Repeat steps 1.–3. b = 1, . . . , B times. The p% critical value can then be computed as

the 1−p%’th quantile of the empirical cumulative distribution function of {W ?
T,b}Bb=1.

As already emphasized, the main difference between fixed-design bootstrap in Al-

gorithm 1 and the recursive bootstrap in Algorithm 2, is that the recursive bootstrap

has an additional source of variation stemming from the recursively updated eigenval-

ues in addition to the re-sampled innovations. That is, λ?t (θ) is a (recursive) function of

past bootstrap innovations through X?
t−1. It is important to note that the asymptotic
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properties of the recursive bootstrap in Algorithm 2 have not yet been established for

multivariate GARCH models.

4 Monte Carlo Study

In this section we investigate the finite sample performance of the fixed-design Wald test

statistic, which we compare to the recursive bootstrap Wald test statistic outlined in

Algorithm 2 and the asymptotic test statistic in (2.13). We compare the empirical size

and power of the test, i.e., the empirical rejection probabilities (ERPs) when the null

hypothesis is respectively true and false.

We consider four different data-generating processes for the bivariate λ-GARCH model.

Each of the four data-generating processes relax the assumptions needed to verify the con-

sistency of the bootstrap. We find that while finite fourth order moments of the return

process are sufficient (by Theorem 3.1), they do not seem necessary for consistency of

the fixed-design Wald test. Rather, we conjecture that finite first order moments along

with finite forth order moments of the innovations are sufficient for consistency of the

fixed-design bootstrap Wald test. Furthermore, we find that the same result hold for the

recursive bootstrap outlined in Algorithm 2.

For simplicity, we consider a restricted version of the model, which does not allow for

spill-overs between the conditional eigenvalues. That is, A0 and B0 are diagonal. The

data-generating process is,

Xt = V0Λ
1/2
0,t Zt, V0 =

(
cos(0.50) sin(0.50)

− sin(0.50) cos(0.50)

)
, Λ0,t = diag(λ0,t), (4.1)

λ0,t =

(
λ0,1,t

λ0,2,t

)
=

(
0.10 + a0,1 y

2
0,1,t−1 + 0.80 λ0,1,t−1

0.05 + 0.10 y2
0,2,t−1 + 0.85 λ0,2,t−1

)
. (4.2)

The parameter vector of the data-generating process is θ0 = [0.50, 0.10, 0.05, a0,1, 0.10, 0.80, 0.85],

with t = 1, . . . , T . The innovations, Zt, are drawn iid from either a standard bivariate

normal distribution or a standardized bivariate Student’s t distribution. We vary the value

of a0,1 throughout the experiments such that the process has finite fourth, second, and

first order moments, while the remaining parameters are kept fixed in the data-generating

process. We use Theorem 3.1 of Hetland, Pedersen, and Rahbek (2020) to ensure that

E||Xt||k <∞ for k ∈ (1, 2, 4).

We consider four different scenarios,

C1: with a0,1 = 0.15 and Zt iid N(0, I2) such that E||Xt||4 <∞.

C2: with a0,1 = 0.18 and Zt iid N(0, I2) such that E||Xt||2 <∞ and E||Xt||4 =∞.
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C3: with a0,1 = 0.20 and Zt iid N(0, I2) such that E||Xt|| < ∞, E||Xt||2 = ∞ and

E||Xt||4 =∞.

C4: with a0,1 = 0.20 and Zt iid tv(0, I2) with v = 4.7 such that E||Xt|| <∞ , E||Xt||2 =

∞ and E||Xt||4 =∞. Furthermore, E||Zt||4 <∞ while E||Zt||6 =∞.

That is, in the first scenario, the data-generating process satisfies the sufficient and

necessary conditions outlined in Theorem 3.1 for consistency of the bootstrap Wald test.

In the remaining cases, we examine the performance of the bootstrap when the sufficient

condition, E||Xt||4 <∞, is violated. In C4 we consider the performance of the bootstrap

when Zt is drawn from a standardized tv distribution with v = 4.7 degrees of freedom,

satisfying the necessary condition of E||Zt||4 <∞ from Assumption 2.6.

Throughout, we use N = 1000 Monte Carlo replications and B = 399 bootstrap

repetitions to approximate the distribution of the Wald statistics. We consider samples

sizes of T ∈ (250, 500, 1000, 2000). All tests are at the nominal 10% significance level.

Table 4.1: Empirical rejection probabilities, power and size studies.

Size Power

Fixed Recursive Asymptotic Fixed Recursive Asymptotic

T C1: E||Xt||4 <∞, Zt ∼ N(0, Ip)
250 0.115 0.165 0.128 0.117 0.167 0.131
500 0.088 0.085 0.091 0.233 0.230 0.245
1000 0.087 0.078 0.078 0.525 0.522 0.517
2000 0.093 0.085 0.079 0.805 0.809 0.793

C2: E||Xt||2 <∞, E||Xt||4 =∞, Zt ∼ N(0, Ip)
250 0.105 0.143 0.128 0.205 0.253 0.239
500 0.092 0.087 0.094 0.542 0.521 0.549
1000 0.094 0.087 0.083 0.850 0.848 0.851
2000 0.095 0.099 0.092 0.992 0.989 0.990

C3: E||Xt|| <∞, E||Xt||2 =∞, E||Xt||4 =∞, Zt ∼ N(0, Ip)
250 0.103 0.149 0.125 0.289 0.345 0.345
500 0.099 0.091 0.104 0.727 0.691 0.736
1000 0.093 0.093 0.090 0.957 0.960 0.955
2000 0.095 0.095 0.089 1.000 1.000 1.000

C4: E||Xt|| <∞, E||Xt||2 =∞, E||Xt||4 =∞, Zt ∼ tv(0, Ip), v = 4.7
250 0.128 0.190 0.174 0.108 0.185 0.171
500 0.138 0.134 0.165 0.254 0.265 0.357
1000 0.097 0.098 0.108 0.873 0.872 0.897
2000 0.115 0.112 0.127 0.618 0.621 0.690
“Fixed” refers to the fixed-design bootstrap, “recursive” to the recursive bootstrap and “asymptotic” to

the asymptotic test. All tests are at the nominal 10% significance level.

The first three columns of Table 4.1 contain the ERPs under the null hypothesis. Here,

we test if the parameter a1 is equal to the true parameter, a0,1, in all four scenarios, Ci,
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i = 1, . . . , 4. We find that the fixed-design bootstrap overall has a good coverage compared

to the recursive bootstrap and the asymptotic test statistic, and indeed works very well

for the short samples. Especially so when compared with the recursive bootstrap, which

has remarkably bad coverage for T = 250 (even worse than the asymptotic test). As

already noted, the moment requirement outlined in Theorem 3.1 appears to be sufficient,

but not necessary for consistency of the bootstrap. Rather both the recursive and fixed-

design bootstrap appear to be consistent for case C4 where only the mean of the process

is finite, E||Xt|| < ∞. Remarkably, the fixed-design bootstrap is by far preferred to

the other tests in the scenario C4 (with heavy-tailed innovations). We argue that this

scenario is the most realistic, as the innovations from multivariate GARCH models based

on financial time series are often heavy-tailed (see e.g., Bauwens, Laurent, and Rombouts,

2006, Section 3).

Columns 4-6 of Table 4.1 contain the ERPs under the alternative. In these simulations,

the null hypothesis is kept fixed through the different scenarios, Ci, i = 1, . . . , 4, and

the tested hypothesis is H0 : a1 = 0.10 ( 6= a0,1). As expected, the empirical power

is monotonically increasing increasing as the true a0,1 get further away from the null

hypothesis. The power of the tests is also increasing in T . We note that there are no

substantial difference in power across the different tests.

Summing up, we find that the fixed-design bootstrap outperforms the recursive boot-

strap and the asymptotic test for the samples of T = 250, while the fixed-design bootstrap,

the recursive bootstrap and the asymptotic test statistic perform equally well for larger

samples, T ∈ (500, 1000, 2000). In terms of power, all three tests perform similarly

across all simulations.

5 Empirical Illustration

We now consider a brief empirical illustration, based on data for Coca Cola and Pepsi

(tickers “KO” and “PEP”). We consider a three-year period, from December 31st 2007

to December 31st 2010 (T = 757), covering the height of the financial crisis.

The log-returns are shown in Figure 5.1. There are no signs of autocorrelation in the

returns, while the absolute values (not shown) of the returns are highly autocorrelated.

Furthermore, the unconditional marginal densities are heavy tailed and the two time series

are characterized by volatility clustering.

We are interested in testing the hypothesis that the conditional eigenvalues of the time

series are integrated, ρ(A0+B0) = 1, which has implications for forecasting the conditional

covariance matrix. For simplicity, we consider a diagonal version of the model, in which

A = diag(a1, a2) and B = diag(b1, b2).

The estimated parameters from the λ-GARCH are contained in Table 5.1. We find

that the process is asymptotically stationary and ergodic (albeit not significantly so,
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Figure 5.1: Log-returns of Coca Cola and Pepsi
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Table 5.1: Estimated parameters - λ-GARCH.

Ŵ diag(Â) diag(B̂) φ̂ V̂
0.072
(0.044)

0.107
(0.051)

0.814
(0.087) 0.847

(0.047)

0.662
(0.035)

0.749
(0.031)

0.186
(0.087)

0.166
(0.041)

0.796
(0.049)

−0.749
(0.031)

0.662
(0.035)

LT (θ̂T ) −1, 698.43 γ̂ −0.101
(0.068)

Standard errors are given in parenthesis below the point estimates.

possibly due to the small sample size) based on the point estimate of the top Lyapunov

exponent.1 The estimated conditional eigenvalues are given in Figure 5.2. We find that

the second eigenvalue, λ̂2,t, explains on average 90% of the variation in the data. From

the estimates of V̂ we find that the first rotated return, ŷ1,t = V̂ ′1Xt, corresponds to a

long-short portfolio, while the second, ŷ2,t = V̂ ′2Xt, is a long-only portfolio. The estimated

residuals are given in Figure 5.3, along with histograms of the standardized residuals. We

find that while the residuals are characterized by a heavy-tailed density, they do not seem

to be autocorrelated in the absolute value, indicating a decent fit of the λ-GARCH model.

We are interested in testing the hypothesis that the eigenvalues are (jointly) integrated,

that is,

H0 : a1 + b1 = 1 ∨ a2 + b2 = 1,

a hypothesis with k = 2 restrictions. The Wald test statistic is WT = 4.62, with a

bootstrap p-value of p∗ = 0.096. Hence, we cannot reject that the eigenvalues are indeed

1In practice, direct computation of γ in (2.5) is numerically unstable, because the matrix product
converges to zero exponentially fast, and we therefore employ the QR method outlined in Dieci and Van
Vleck (1995) to compute the top Lyapunov exponent. See also Nielsen and Rahbek (2014).
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Figure 5.2: Estimated eigenvalues
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Figure 5.3: Estimated residuals
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Figure 5.4: Histogram of standardized residuals
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Note: The thick line in the histograms is a standard Gaussian reference.
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integrated. When testing the auxiliary hypotheses that ai + bi = 1 for i = 1, 2 we also fail

to reject the null that λi,t for i = 1, 2 are integrated (bootstrap p-values of p∗ = 0.16 and

p∗ = 0.11 respectively).

6 Extensions and Concluding Remarks

We extend the univariate fixed-design (or fixed volatility) bootstrap of Cavaliere, Peder-

sen, and Rahbek (2018) of ARCH(q)-type models to the multivariate λ-GARCH model of

Hetland, Pedersen, and Rahbek (2020). We consider the fixed-design bootstrap for mul-

tivariate GARCH processes in the context of full quasi-maximum likelihood estimation,

and we explore the theoretical and numerical properties this bootstrap. We show, under

mild assumptions, that the bootstrap Wald test statistic is consistent, conditional on the

original data. We contrast the theoretically investigated fixed-design bootstrap to that

of a recursive bootstrap, and the asymptotic test statistic, and find that the fixed-design

bootstrap provides excellent coverage. This is especially true for the smallest sample

size of T = 250, where the fixed-design bootstrap dominates the recursive bootstrap and

asymptotic test statistic. In sample sizes of T ∈ (500, 1000, 2000) all three test statistics

perform roughly equivalent and have a correct nominal size, and comparable power, as

expected from the asymptotic theory.

We note that while the fixed-design bootstrap delivers promising results in this expo-

sition, the theory presented in this paper only holds for hypotheses in the interior of the

parameter space. That is, an interesting extension would be to extend the work of Cav-

aliere, Nielsen, and Rahbek (2017) and Cavaliere et al. (2020) to a multivariate setting.

This would allow us test hypotheses on the boundary of the parameter space, such as a

test for no-ARCH effects, or no eigenvalue spillovers. Another interesting extension would

be to examine if the moment requirement can be relaxed in the theoretical exposition. We

find that while finite fourth order moments of the return process is a sufficient condition

for bootstrap consistency, it does not appear to be necessary based on our Monte Carlo

simulations. Both of these extensions are left for future work.

APPENDIX

A Technical appendix

The technical exposition builds on Cavaliere, Pedersen, and Rahbek (2018), who demon-

strate bootstrap consistency of the Wald test statistic for the univariate ARCH(q) model.

We extend their results to the multivariate λ-GARCH, and most of our lemmata are

the multivariate analogous to theirs. Furthermore, the “classical” asymptotic theory pre-
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sented in Theorem 2.1-2.2 are proved in Hetland, Pedersen, and Rahbek (2020).

The appendix is organized as follows, Section A.1 contains the proof for Theorem 3.1,

Sections A.2 and A.3 contains lemmata required to verify consistency (conditional on the

original sample) and weak convergence in probability of the bootstrap QML estimator

respectively. Section A.4 verifies that the bootstrap Wald test is consistent conditionally

on the original data, and finally Section A.5 contain lemmata for the (bootstrap) residuals.

Let the letters K and φ denote generic constants, whose value can vary along the text,

but always satisfy K > 0 and 0 < φ < 1. Furthermore, we let L̃T (θ) and l̃t(θ) denote the

stationary and ergodic version of the log-likelihood function and -contribution, which are

initiated in the infinite past. This is in contrast to LT (θ) and lt(θ), given in (2.6)-(2.7),

which are initiated in a fixed initial value X0 and Λ0. Hence,

L̃T (θ) =
1

T

T∑
t=1

l̃t(θ), (A.1)

l̃t(θ) = log det(Λ̃t(θ)) +X ′tV (θ)Λ̃−1
t (θ)V ′(θ)Xt, (A.2)

where Λ̃t(θ) (and λ̃i,t(θ), i = 1, . . . , p) is defined analogously. With ˙̃Λi,t(θ) = ∂Λ̃t(θ)
∂θi

,
¨̃Λi,j,t(θ) = ∂2Λ̃t(θ)

∂θi∂θj
, and

...
Λ̃i,j,k,t(θ) = ∂3Λ̃t(θ)

∂θi∂θj∂θk
, we apply the following bounds from Hetland,

Pedersen, and Rahbek (2020) (Lemma A.7).

E

[
sup
θ∈intΘ

||Λ̃t(θ)
−1 ˙̃Λi,t(θ)||r

]
<∞, (A.3)

E

[
sup
θ∈intΘ

||Λ̃t(θ)
−1 ¨̃Λi,j,t(θ)||r

]
<∞, (A.4)

E

[
sup
θ∈intΘ

||Λ̃t(θ)
−1

...
Λ̃i,j,k,t(θ)||r

]
<∞ (A.5)

for r > 0, and for θ ∈ intΘ,

λ̃i,t(θ)

λ̃j,t(θ)
=
wi +

∑p
k=1 aiky

2
k,t−1(θ) +

∑p
k=1 bikλ̃k,t−1(θ)

wj +
∑p

k=1 ajky
2
k,t−1(θ) +

∑p
k=1 bjkλ̃k,t−1(θ)

≤ wi
wj

+

p∑
k=1

aik
ajk

+

p∑
k=1

bik
bjk
≤ K, (A.6)

for i, j, k = 1, . . . , dθ. (A.3)-(A.6) holds under Assumptions 2.1-2.6.

Since Λ̃t(θ) and Λt(θ) are defined for the same strictly stationary and ergodic sequence,

{Xt}t∈N, it holds,

sup
θ∈Θ
||Λ̃t(θ)− Λt(θ)|| = sup

θ∈Θ
||Bt(λ̃0(θ)− λ0)|| ≤ φtK

p→ 0, (A.7)

since supθ∈Θ |ρ(B)| < 1 is necessary for Assumption 2.2 (Francq and Zaköıan, 2019,
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Corollary 10.1), see also Hetland, Pedersen, and Rahbek (2020) (proof of Theorem 3.2).

Similar results also hold for the first and second derivatives of the eigenvalues,

sup
θ∈Θ
|| ˙̃Λi,t(θ)− Λ̇i,t(θ)|| ≤ sup

θ∈Θ

∣∣∣∣∂Bt

∂θi
(λ̃0(θ)− λ0)

∣∣∣∣+ sup
θ∈Θ

∣∣∣Bt( ˙̃λ0,i(θ)− λ̇0,i)
∣∣∣

≤ φtK
p→ 0, (A.8)

sup
θ∈Θ
|| ¨̃Λi,j,t(θ)− Λ̈i,j,t(θ)|| ≤ sup

θ∈Θ

∣∣∣∣∣ ∂2Bt

∂θi∂θj

(
λ̃0(θ)− λ0

) ∣∣∣∣∣+ sup
θ∈Θ

∣∣∣∣∣Bt
∂2
(
λ̃0(θ)− λ0

)
∂θi∂θj

∣∣∣∣∣+
sup
θ∈Θ

∣∣∣∣∣∂Bt

∂θi

∂
(
λ̃0(θ)− λ0

)
∂θj

∣∣∣∣∣+ sup
θ∈Θ

∣∣∣∣∣∂Bt

∂θj

∂
(
λ̃0(θ)− λ0

)
∂θi

∣∣∣∣∣
≤ φtK

p→ 0, (A.9)

see e.g., Hetland (2020) (proof of Lemma B.10) and Francq and Zaköıan (2012) (pp.204-

206).

A.1 Proof of Theorem 3.1

Proof. The starting point of the proof is a Taylor expansion around θ̂T , for which we need

Theorems 2.1-2.2 along with lemma A.1.

0dθ×1 =
∂L∗T (θ̂T )

∂θ
+
∂2L∗T (θ̂T )

∂θ∂θ′

(
θ̂∗T − θ̂T

)
+MT (θ̂∗T , θ̂T ), (A.10)

where MT (·) is a remainder term and dθ is the size of the parameter vector, dθ = p(p −
1)/2 + p+ 2p2. By Lemmata A.3, A.4, A.6, Theorems 2.1-2.2, and the bootstrap version

of Slutsky’s lemma, it holds under the null (and alternative) that,

√
T (θ̂∗T − θ̂T ) =

√
T

(
∂2L∗T (θ̂T )

∂θ∂θ′

)−1
∂L∗T (θ̂T )

∂θ

w∗→p N(0,Σ). (A.11)

with Σ = J−1V J−1 where J and V defined in (A.24) in the proof of Lemma A.7. The

bootstrap Wald test is,

W ∗
T = T (θ̂∗T − θ̂T )′R′(RΣ̂∗TR

′)−1R(θ̂∗T − θ̂T )
w∗→p χ

2(k).

which is χ2(k) distributed under both the null and the alternative by Lemma A.7 and the

bootstrap version of Slutsky’s lemma.
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A.2 Consistency of bootstrap estimator

Lemma A.1. Under Assumptions 2.1–2.6, the bootstrap QMLE in (2.8) is consistent,

conditional on the original data. That is, for any ε > 0,

P ∗(||θ̂∗T − θ̂T || > ε)
p→ 0.

Proof. We follow Cavaliere, Pedersen, and Rahbek (2018) (Lemma A.1) and Dovonon

and Gonçalves (2017) (proof of Proposition 3.1), allowing for a slight modification to

account for the impact of fixed initial values. From Theorem 2.1 we know that θ0 =

arg minθ∈ΘE[l̃t(θ)] is unique, and recall that LT (θ) is defined in (2.6) and L̃T (θ) in (A.1).

For any ε > 0, such that ||θ − θ0|| > ε there exists a δ = δ(ε) > 0 such that E[l̃t(θ)] −
E[l̃t(θ0)] > δ. Hence, with LT (θ̂T ) ≤ LT (θ0) and L∗T (θ̂∗T ) ≤ L∗T (θ̂T ), along with the union

bound,

P ∗(||θ̂∗T − θ0|| > ε) ≤ P ∗(E[l̃t(θ)]− E[l̃t(θ0)] + LT (θ̂T )− LT (θ̂T ) + L∗T (θ̂∗T )− L∗T (θ̂∗T ) > δ)

≤ P ∗(E[l̃t(θ)]− E[l̃t(θ0)] + LT (θ0)− LT (θ̂T ) + L∗T (θ̂T )− L∗T (θ̂∗T ) > δ)

≤ P ∗
(

2 sup
θ∈Θ
|E[l̃t(θ)]− LT (θ)| > δ/2

)
+ P ∗

(
2 sup
θ∈Θ
|LT (θ)− L∗T (θ)| > δ/2

)
.

Notice here that P ∗
(

2 supθ∈Θ |E[l̃t(θ)]− LT (θ)| > δ/2
)

is given when we condition on the

original sample, {Xt}Tt=1,

P ∗
(

2 sup
θ∈Θ
|E[l̃t(θ)]− LT (θ)| > δ/2

)
= I

{
2 sup
θ∈Θ
|E[l̃t(θ)]− LT (θ)| > δ/2

}
.

Hence, we need to verify the following two statements:

1. supθ∈Θ |E[l̃t(θ)]− LT (θ)| p→ 0.

2. P ∗ (supθ∈Θ |LT (θ)− L∗T (θ)| > δ/2)
p→ 0.

Starting with 1., by the triangle inequality,

sup
θ∈Θ
|E[l̃t(θ)]− LT (θ)| ≤ sup

θ∈Θ
|E[l̃t(θ)]− L̃T (θ)|+ sup

θ∈Θ
|L̃T (θ)− LT (θ)|,

where supθ∈Θ |E[l̃t(θ)] − L̃T (θ)| p→ 0 holds trivially by an application of the uniform

law of large numbers for ergodic processes, using that Θ is compact and that E[l̃t(θ)]

is continuous in θ, along with the fact that if E||Xt||2+δ < ∞ for δ > 0, as assumed

in Assumption 2.6. Second, supθ∈Θ |L̃T (θ) − LT (θ)| p→ 0 is shown to hold by utilizing

(A.7) (see e.g., Hetland, Pedersen, and Rahbek, 2020, proof of Theorem 3.2, and Francq

and Zaköıan, 2019, proof of Theorem 10.2). Finally, it is shown in Lemma A.2 that the

statement in 2. holds.
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Hence,

P ∗(||θ̂∗T − θ̂T || > ε)
p→ 0.

Lemma A.2. Suppose that Assumptions 2.1–2.6 holds and in addition E||Xt||4 < ∞,

then for ε > 0,

P ∗
(

sup
θ∈Θ
|L∗T (θ)− LT (θ)| > ε

)
p→ 0

Proof. Notice that,

sup
θ∈Θ
|L∗T (θ)− LT (θ)| = sup

θ∈Θ

∣∣∣∣∣ 1

T

T∑
t=1

tr
{

Λ−1
t (θ)(Y ∗t (θ)Y ∗′t (θ)− Yt(θ)Y ′t (θ))

}∣∣∣∣∣
≤ sup

θ∈Θ

∣∣∣∣∣K
T∑
t=1

p∑
i=1

y∗2i,t(θ)− y2
i,t(θ)

∣∣∣∣∣ ,
where we use that, E[supθ∈Θ ||Λ−1

t (θ)||] ≤ K by compactness of Θ and strict positivity

of W (see also Francq and Zaköıan (2019) proof of Theorem 10.8), and tr(Y ∗t (θ)Y ∗′t (θ)−
Yt(θ)Y

′
t (θ)) =

∑p
i=1 y

∗2
i,t(θ)− y2

i,t(θ). By the bootstrap version of Markov’s inequality,

P ∗

(
sup
θ∈Θ

∣∣∣∣∣K 1

T

T∑
t=1

p∑
i=1

y∗2i,t(θ)− y2
i,t(θ)

∣∣∣∣∣ > ε

)
≤ Kε−2E∗

sup
θ∈Θ

∣∣∣∣∣∣
(

1

T

T∑
t=1

p∑
i=1

y∗2i,t(θ)− y2
i,t(θ)

)2
∣∣∣∣∣∣


= Kε−2 1

T
E∗

[
sup
θ∈Θ

∣∣∣∣∣ 1

T
(
T∑
t=1

p∑
i=1

y∗4i,t(θ) + y4
i,t(θ)) +

1

T
CT (θ)︸ ︷︷ ︸

4

∣∣∣∣∣
]
, (A.12)

where CT (θ) has T (T − 1) terms, which contain all cross-products, all of the form,

y2
i,t(θ)y

2
j,t(θ), y2

i,t(θ)y
∗2
i,t(θ), y2

i,t(θ)y
∗2
j,t(θ), y∗2i,t(θ)y

2∗
j,t(θ),

y2
i,t−k(θ)y

2
i,t−q(θ), y2

i,t−k(θ)y
2
j,t−q(θ), y∗2i,t−k(θ)y

∗2
i,t−q(θ),

y2
i,t−k(θ)y

2
i,t−q(θ), y∗2i,t−k(θ)y

2
i,t−q(θ), y∗2i,t−k(θ)y

2
j,t−q(θ),

for i 6= j and k 6= q. All the terms in 4 are defined for the same λt−l(θ) (a function

of Xt−1−l) for l = 0, . . . , t − 1, and constitute sample averages and autocovariance-type

functions. Under the assumption E||Xt||4 < ∞, Lemma A.8 and the Cauchy-Schwarz

inequality, all terms of 4 have a finite probability limit, uniformly in θ ∈ Θ.



117

Hence,

P ∗

(
sup
θ∈Θ

∣∣∣∣∣K 1

T

T∑
t=1

p∑
i=1

y∗2i,t(θ)− y2
i,t(θ)

∣∣∣∣∣ > ε

)
≤

Kε−2 1

T
E∗

[
sup
θ∈Θ

∣∣∣∣∣ 1

T

T∑
t=1

p∑
i=1

(y∗4i,t(θ) + y4
i,t(θ)) +

1

T
CT (θ)

∣∣∣∣∣
]

= op(1), (A.13)

see also Cavaliere, Pedersen, and Rahbek (2018) (proof of Lemma A.2) for a more rigorous

treatment of CT (θ).

A.3 Asymptotic normality of bootstrap estimator

Lemma A.3. Suppose Assumptions 2.1–2.6 holds, and in addition E||Xt||4 <∞, then

√
T
∂L∗T (θ̂T )

∂θ

w∗→p N(0, V ), (A.14)

where V = E
[
∂l̃t(θ0)
∂θ

∂l̃t(θ0)
∂θ′

]
is non-negative definite.

Proof. The i′th element of the score vector of the bootstrap log-likelihood contribution

is,

∂l∗t (θ)

∂θi
= tr{Λ−1

t (θ)Λ̇t,i(θ)(Ip − Λ−1
t (θ)Y ∗t (θ)Y ∗′t (θ))}+ 2X∗′t Si(θ)V (θ)Λ−1

t (θ)Y ∗t (θ)

= Mt,i(θ) +Nt,i(θ), (A.15)

where
∂Y ∗t (θ)

∂θi
= V ′(θ)Si(θ)X

∗
t (Lemma A.2 of Hetland, Pedersen, and Rahbek, 2020) with

Si(θ) skew-symmetric (Si(θ) = −Si(θ) and tr(Si(θ)) = 0).

We show that the bootstrap score function converges weakly in probability by verifying

the following regularity conditions for the Lindeberg central limit theorem for triangular

arrays,

1. With F∗t = σ(X∗s , s = 0, . . . , t), E∗
[
∂l∗t (θ̂T )

∂θ

∣∣∣F∗t−1

]
= 0

2. T−1
∑T

t=1E
∗
[
∂l∗t (θ̂T )

∂θ

∂l∗t (θ̂T )

∂θ′

∣∣∣F∗t−1

]
p∗→p V

3. For υ ∈ Rdθ and any ε > 0, T−1
∑T

t=1 E
∗

[(
υ′
∂l∗t (θ̂T )

∂θ

)2

I(∣∣∣∣υ′ ∂l∗t (θ̂T )

∂θ

∣∣∣∣>T 1/2ε

)
]

p→ 0,

where I(·) is the indicator function.
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Regarding 1., with E∗[Z∗t ] = 0 and E∗[Z∗t Z
∗′
t ] = Ip (by Lemma A.8), it follows immediately

that

E∗

[
∂l∗t (θ̂T )

∂θi

∣∣∣∣∣F∗t−1

]
=E∗

[
tr{Λ−1

t (θ̂T )Λ̇t,i(θ̂T )(Ip − Λ−1
t (θ̂T )Λ

1/2
t (θ̂T )Z∗t Z

∗′
t Λ

1/2
t (θ̂T ))}

+ 2tr{Si(θ̂T )V (θ̂T )Λ−1
t (θ̂T )V ′(θ̂T )X∗tX

∗′
t }
∣∣∣F∗t−1

]
= 0.

Next, turning to 2., we note that it suffices to show that T−1
∑T

t=1 E
∗
[(

∂l∗t (θ̂T )

∂θi

)2
∣∣∣∣F∗t−1

]
p→

K < ∞ for i = 1, . . . , dθ. In light of (A.15), along with the Cauchy-Schwarz inequal-

ity, the variance of the score vector is finite if 1
T

∑T
t=1E

∗[Mt,i(θ̂T )2]
p→ K < ∞ and

1
T

∑T
t=1 E

∗[Nt,i(θ̂T )2]
p→ K <∞.

Starting with 1
T

∑T
t=1 E[M2

t,i(θ̂T )],

1

T

T∑
t=1

E∗
[
M2

t,i(θ̂T )
∣∣∣F∗t−1

]
=

1

T

T∑
t=1

E∗
[
tr2{Λ−1

t (θ̂T )Λ̇t,i(θ̂T )(Ip − Z∗t Z∗′t )}
∣∣∣F∗t−1

]
=

1

T

T∑
t=1

p∑
k=1

λ̇2
k,t,i(θ̂T )

λ2
t (θ̂T )

E∗[z∗4k,t − 1]
p∗→p

p∑
k=1

E

 ˙̃λ2
k,t,i(θ0)

λ̃2
t (θ0)

E[z4
k,t − 1] <∞,

by (A.3), (A.7)-(A.8) and Lemma A.8, along with the uniform law of large numbers for

stationary and ergodic sequences, along with the fact that θ̂T
p→ θ0 and E

[
˙̃
λ2
k,t,i(θ0)

λ̃2
t (θ0)

]
is

continuous at θ0.

Turning to 1
T

∑T
t=1 E

∗[N2
t,i(θ̂T )],

1

T

T∑
t=1

E∗
[
N2
t,i(θ̂T )

∣∣∣F∗t−1

]
=

4

T

T∑
t=1

E∗
[
tr{V ′(θ̂T )Si(θ̂T )V (θ̂T )Λ−1

t (θ̂T )Y ∗t (θ̂T )Y ∗′t (θ̂T )V ′(θ̂T )Si(θ̂T )V (θ̂T )Λ−1
t (θ̂T )Y ∗t (θ̂T )Y ∗′t (θ̂T )}

∣∣∣F∗t−1

]
≤

1

T

T∑
t=1

KE∗
[
||Λ−1

t (θ̂T )Y ∗t (θ̂T )Y ∗′t (θ̂T )||2
∣∣∣F∗t−1

]
=
K

T

T∑
t=1

E∗[Y ∗′t (θ̂T )Y ∗t (θ̂T )Y ∗′t (θ̂T )Λ−2
t Y ∗′t (θ̂T )|F∗t−1] =

1

T

T∑
t=1

KE∗

[(
p∑
i=1

y∗2i,t(θ̂T )

)(
p∑
i=1

y∗2i,t(θ̂T )/λ2
i,t(θ̂T )

)∣∣∣∣∣F∗t−1

]
, (A.16)

where we utilize that both supθ∈Θ ||V (θ)|| < K and supθ∈Θ ||Si(θ)|| < K for i = 1, . . . , dθ,
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as both matrices consist solely of trigonometrical functions. (A.16) has terms of the form,

1

T

T∑
t=1

E∗

[
y∗2i,t(θ̂T )y∗2j,t(θ̂T )

λ2
j,t(θ̂T )

∣∣∣∣∣F∗t−1

]
=

1

T

T∑
t=1

E∗[z∗2i,tz
∗2
j,t]
λi,t(θ̂T )

λj,t(θ̂T )

p∗→p E[z2
i,tz

2
j,t]E

[
λ̃i,t(θ0)

λ̃j,t(θ0)

]
<∞,

by (A.6)-(A.7), Lemma A.8 and the uniform law of large numbers for stationary and

ergodic sequences. The cross product, 1
T

∑T
t=1 E

∗
[
Mt,i(θ̂T )Nt,i(θ̂T )

∣∣∣F∗t−1

]
converges in

probability, conditional on the original sample, by the Cauchy-Schwarz inequality. The

matrix V is non-negative definite by construction.

Turning to the Lindeberg condition in 3., we follow Francq, Horvath, and Zaköıan

(2014) (proof of Theorem 4.1). That is, since the bootstrap sample, conditional on the

original data, is independent with finite fourth order moments, we have that,

E∗

(υ′ l∗t (θ̂T )

∂θ

)2
 p→ K <∞ for i = 1, . . . , dθ.

Second, for T →∞, the indicator function tends to zero,

I

(∣∣∣∣∣υ′ l∗t (θ̂T )

∂θ

∣∣∣∣∣ ≥ ε
√
T

)
p→ 0.

Hence, each term of the Lindeberg condition tends to zero,

E∗

(υ′∂l∗t (θ̂T )

∂θ

)2

I(∣∣∣∣υ′ ∂l∗t (θ̂T )

∂θ

∣∣∣∣>√Tε)
 p→ 0. (A.17)

By Cesáros lemma, the average also tends to zero almost surely, and the Lindeberg con-

dition holds.

Lemma A.4. Under Assumptions 2.1–2.6 along with E||Xt||4 < ∞, for ε > 0, there

exists a δ > 0 such that,

P

(
P ∗

(∣∣∣∣∣
∣∣∣∣∣∂2L∗T (θ̂T )

∂θ∂θ′
− E

[
∂2l̃t(θ0)

∂θ∂θ′

]∣∣∣∣∣
∣∣∣∣∣ > δ

)
> ε

)
→ 0.

Proof. By the triangle inequality,∣∣∣∣∣
∣∣∣∣∣∂2L∗T (θ̂T )

∂θ∂θ′
− E

[
∂2l̃t(θ0)

∂θ∂θ′

]∣∣∣∣∣
∣∣∣∣∣ ≤∣∣∣∣∣

∣∣∣∣∣∂2L∗T (θ̂T )

∂θ∂θ′
− ∂2LT (θ̂T )

∂θ∂θ′

∣∣∣∣∣
∣∣∣∣∣+

∣∣∣∣∣
∣∣∣∣∣∂2LT (θ̂T )

∂θ∂θ′
− ∂2L̃T (θ̂T )

∂θ∂θ′

∣∣∣∣∣
∣∣∣∣∣+

∣∣∣∣∣
∣∣∣∣∣∂2L̃T (θ̂T )

∂θ∂θ′
− E

[
∂2l̃t(θ0)

∂θ∂θ′

]∣∣∣∣∣
∣∣∣∣∣ .
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The first term tends to zero in probability by Lemma A.5 below. The second term

concerns the fixed initial values and tends to zero by (A.7)-(A.9), see also Francq and

Zaköıan (2012) (p. 204-206) and Hetland (2020) (proof of Lemma B.10). The third term

tends to zero in probability by standard arguments (compact Θ, the uniform law of large

numbers, continuity at θ0 and consistency of θ̂T ).

Lemma A.5. Under Assumptions 2.1–2.6 along with E||Xt||4 <∞, for any ε > 0 there

exists a δ > 0 such that

P

(
P ∗

(∣∣∣∣∣
∣∣∣∣∣∂2L∗T (θ̂T )

∂θ∂θ′
− ∂2LT (θ̂T )

∂θ∂θ′

∣∣∣∣∣
∣∣∣∣∣ > δ

)
> ε

)
→ 0.

Proof. It suffices to show that the result holds element-wise, i.e.,

P

(
P ∗

(∣∣∣∣∣∂2L∗T (θ̂T )

∂θi∂θj
− ∂2LT (θ̂T )

∂θi∂θj

∣∣∣∣∣ > δ

)
> ε

)
→ 0, (A.18)

for i, j = 1, . . . , dθ. First, from Lemma A.4 of Hetland, Pedersen, and Rahbek (2020), the

(i, t)’th element of the Hessian matrix is (suppressing the dependency on θ),

∂2LT (θ)

∂θi∂θj
=

1

T

T∑
t=1

(
− tr

(
Λ−1
t Λ̇t,jΛ

−1
t Λ̇t,i

)
+ tr

(
Λ−1
t Λ̈t,i,j

)
+ tr

(
Λ−1
t Λ̇t,jΛ

−1
t Λ̇t,iΛ

−1
t YtY

′
t

)
− tr

(
Λ−1
t Λ̈t,i,jΛ

−1
t YtY

′
t

)
+ tr

(
Λ−1
t Λ̇t,iΛ

−1
t Λ̇t,jΛ

−1
t YtY

′
t

)
− 2tr

(
S̃ ′jΛ

−1
t Λ̇t,iΛ

−1
t YtY

′
t

)
+ 2tr

(
(Ṡi,j + SiSj)Ω

−1
t XtX

′
t

)
+ 2tr

(
V ′
(
Ṡi,j + SiSj

)
V Λ−1

t YtY
′
t

)
− 2tr

(
S̃iΛ

−1
t Λ̇t,jΛ

−1
t YtY

′
t

)
+ 2tr

(
S̃ ′iΛ

−1
t S̃jYtY

′
t

))
, (A.19)

where S̃i is a skew-symmetric matrix, S̃ ′i = V ′SiV = −V ′S ′iV = −S̃i and Ṡi,j = ∂Si
∂θj

.
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Hence,∣∣∣∣∣∂2L∗T (θ̂T )

∂θi∂θj
− ∂2LT (θ̂T )

∂θi∂θj

∣∣∣∣∣ =∣∣∣∣∣ 1

T

T∑
t=1

(
tr
(

Λ−1
t (θ̂T )Λ̇t,j(θ̂T )Λ−1

t (θ̂T )Λ̇t,i(θ̂T )Λ−1
t (θ̂T )(Y ∗t (θ̂T )Y ∗′t (θ̂T )− Yt(θ̂T )Y ′t (θ̂T ))

)
− tr

(
Λ−1
t (θ̂T )Λ̈t,i,j(θ̂T )Λ−1

t (θ̂T )(Y ∗t (θ̂T )Y ∗′t (θ̂T )− Yt(θ̂T )Y ′t (θ̂T ))
)

+ tr
(

Λ−1
t (θ̂T )Λ̇t,i(θ̂T )Λ−1

t (θ̂T )Λ̇t,j(θ̂T )Λ−1
t (θ̂T )(Y ∗t (θ̂T )Y ∗′t (θ̂T )− Yt(θ̂T )Y ′t (θ̂T ))

)
− 2tr

(
S̃′j(θ̂T )Λ−1

t (θ̂T )Λ̇t,i(θ̂T )Λ−1
t (θ̂T )(Y ∗t (θ̂T )Y ∗′t (θ̂T )− Yt(θ̂T )Y ′t (θ̂T ))

)
+ 2tr

(
(Ṡi,j(θ̂T ) + Si(θ̂T )Sj(θ̂T ))Ω−1

t (θ̂T )(X∗tX
∗′
t −XtX

′
t)
)

+ 2tr
(
V ′(θ̂T )

(
Ṡi,j(θ̂T ) + Si(θ̂T )Sj(θ̂T )

)
V (θ̂T )Λ−1

t (θ̂T )(Y ∗t (θ̂T )Y ∗′t (θ̂T )− Yt(θ̂T )Y ′t (θ̂T ))
)

− 2tr
(
S̃i(θ̂T )Λ−1

t (θ̂T )Λ̇t,j(θ̂T )Λ−1
t (θ̂T )(Y ∗t (θ̂T )Y ∗′t (θ̂T )− Yt(θ̂T )Y ′t (θ̂T ))

)
+ 2tr

(
S̃′i(θ̂T )Λ−1

t (θ̂T )S̃j(θ̂T )(Y ∗t (θ̂T )Y ∗′t (θ̂T )− Yt(θ̂T )Y ′t (θ̂T ))
))∣∣∣∣∣. (A.20)

Note that all terms of (A.20) essentially are of the form Ktr(Y ∗t (θ̂T )Y ∗′t (θ̂T ) − Yt(θ̂T )Y ′t (θ̂T )),

and recall that E[supθ∈Θ ||Λ−1
t (θ)||] ≤ K by compactness of Θ and strict positivity of W (see

also Francq and Zaköıan (2019) proof of Theorem 10.8). Furthermore, supθ∈Θ ||V (θ)|| < K and

supθ∈Θ ||Si(θ)|| < K for i = 1, . . . , dθ, as V and Si consist solely of trigonometrical functions.

This, in addition to (A.3)-(A.5), allows us to evaluate up,∣∣∣∣∣∂2L∗T (θ̂T )

∂θi∂θj
− ∂2LT (θ̂T )

∂θi∂θj

∣∣∣∣∣ ≤
∣∣∣∣∣K 1

T

T∑
t=1

p∑
i=1

y∗2i,t(θ̂T )− y2
i,t(θ̂T )

∣∣∣∣∣ . (A.21)

Notice that (A.21), is the same as (A.13) from the proof of Lemma A.2, which is shown to be

op(1), conditional on the original sample, under the assumption E||Xt||4 < ∞ and using the

Cauchy-Schwarz inequality. This allows us to conclude that

P ∗

(∣∣∣∣∣K 1

T

T∑
t=1

p∑
i=1

y∗2i,t(θ̂T )− y2
i,t(θ̂T )

∣∣∣∣∣ > δ

)
p→ 0, (A.22)

and hence (A.18) holds for i, j = 1, . . . , dθ.

Lemma A.6. Suppose Assumptions 2.1–2.6 hold. Then,

sup
θ∈Θ

∣∣∣∣ ∂3L∗T (θ)

∂θi∂θj∂θk

∣∣∣∣ ≤ C∗T , where C∗T = O∗p(1) in probability,

for i, j, k = 1, . . . , dθ.

Proof. The entire expression of the array of third order derivative is given in Hetland,
Pedersen, and Rahbek (2020) Lemma A.6, and all terms can be bounded stochastically.
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Specifically, all terms can be shown to be bounded by the same method as applied to the
terms #3 and #5 (pp. 38-39), which contain,

1

T

T∑
t=1

tr{Λ−1
t (θ)Λ̇t,k(θ)Λ−1

t (θ)Λ̇t,j(θ)Λ
−1
t (θ)Λ̇t,i(θ)V

′(θ)V (θ̂T )Λ
1/2
t (θ̂T )Z∗t Z

∗′
t Λ

1/2
t (θ̂T )V ′(θ̂T )V (θ)} =

1

T

T∑
t=1

vec(V ′(θ)V (θ̂T ))′(Λ
1/2
t (θ̂T )Z∗t Z

∗′
t Λ

1/2
t (θ̂T )⊗ Λ−1

t (θ)Λ̇t,k(θ)Λ−1
t (θ)Λ̇t,j(θ)Λ

−1
t (θ)Λ̇t,i(θ))vec(V ′(θ̂T )V (θ)),

where supθ∈Θ |vec(V ′(θ̂T )V (θ))| < K, as it consists of rotations of trigonometric functions.

Next, Λ
1/2
t (θ̂T )Z∗t Z

∗′
t Λ

1/2
t (θ̂T ) ⊗ Λ−1

t (θ)Λ̇t,k(θ)Λ
−1
t (θ)Λ̇t,j(θ)Λ

−1
t (θ)Λ̇t,i(θ) consists of p × p

blocks, each of which are diagonal, with elements,

λ
1/2
g,t (θ̂T )z∗g,tz

∗
h,tλ

1/2
h,t (θ̂T )

λ̇s,t,i(θ)λ̇s,t,j(θ)λ̇s,t,k(θ)

λ4
s,t(θ)

for g, h, s = 1, . . . , p. Here supθ∈Θ |λ̇s,t,i(θ)λ̇s,t,j(θ)λ̇s,t,k(θ)/λ3
s,t(θ)| ≤ K by (A.3) for T →

∞, but such a property does not hold for λ
1/2
g,t (θ̂T )z∗g,tz

∗
h,tλ

1/2
h,t (θ̂T )/λs,t(θ) for g 6= h 6= s

without assuming E||Xt||2+δ, δ > 0. This is because the numerator and denominator are

evaluated in θ and θ̂T respectively. Hence, by Assumption 2.1–2.6,

1

T

T∑
t=1

sup
θ∈Θ
|λ1/2
g,t (θ̂T )z∗g,tz

∗
h,tλ

1/2
h,t (θ̂T )/λs,t(θ)|

p→ K <∞. (A.23)

for g, h, s = 1, . . . , p. This can be applied to all terms of the array of third order derivatives,

such that supθ∈Θ

∣∣∣ ∂3L∗T (θ)

∂θi∂θj∂θk

∣∣∣ ≤ C∗T for i, j, k = 1, . . . , dθ.

A.4 Validity of bootstrap Wald test

Lemma A.7. Suppose that Assumptions 2.1–2.6 along with E||Xt||4 <∞ holds, then

Σ̂∗T
p∗→p Σ.

Proof. Recall that Σ = J−1V J−1, with

J = E

[
∂2l̃t(θ0)

∂θ∂θ

]
and V = E

[
∂l̃t(θ0)

∂θ

∂l̃t(θ0)

∂θ′

]
, (A.24)

with l̃t(θ) defined in (A.2). Recall that, ĴT
p→ J and V̂T

p→ V by Theorem 2.2. We

now show that Ĵ∗T
p∗→ J and V̂ ∗T

p∗→ V . Notice that it is sufficient to show that for any

i, j = 1, . . . , dθ |J∗ij,T − Jij|
p∗→p 0 and |V ∗ij,T − Vij|

p∗→p 0.
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Hence, for any i, j = 1, . . . , dθ,

∣∣∣Ĵ∗ij,T − Jij∣∣∣ =

∣∣∣∣∣∂2L∗t (θ̂
∗
T )

∂θi∂θj
− Jij

∣∣∣∣∣ ≤
∣∣∣∣∣∂2LT (θ̂T )

∂θi∂θj
− Jij

∣∣∣∣∣+ sup
θ∈Θ

∣∣∣∣∣∣∣∣ ∂3L∗T (θ)

∂θi∂θj∂θ

∣∣∣∣∣∣∣∣ ||θ̂∗T − θ̂T || = o∗p(1),

(A.25)

by Lemmata A.1, A.4 and A.6.

Next, with V ∗T = T−1
∑T

t=1(∂l∗t (θ̂T )/∂θ)(∂l∗t (θ̂T )/∂θ′) consider

||V̂ ∗T − V || ≤ ||V̂ ∗T − V ∗T ||+ ||V ∗T − V̂T ||+ ||V̂T − V ||. (A.26)

In a fashion similar to the proof of Lemma A.5, each term can be shown to converge

to zero in probability conditional on the original sample. That is, ||V̂ ∗T − V ∗T ||
p∗→p 0 by

E||Xt||4 <∞ along with Lemma A.1, ||V ∗T − V̂T ||
p∗→p 0 by Lemma A.8 and E||X4

t || <∞.

Finally, ||V̂T − V ||
p→ 0 by Theorem 2.1 (consistency). Hence, Σ̂∗T

p∗→p Σ.

A.5 Lemmata for the bootstrap residuals

Lemma A.8. Under Assumptions 2.1–2.6 along with E||Xt||4 <∞,

E∗ [Z∗t ]
p→ E [Zt] , E∗ [Z∗t Z

∗′
t ]

p→ E [ZtZ
′
t] , E∗

[
z∗4i,t
] p→ E

[
z4
i,t

]
,

for i = 1, . . . , p.

Proof. First, with ΩZ = 1
T

∑T
t=1

(
Ẑt − Z̄

)(
Ẑt − Z̄

)′
, and Z̄ = 1

T

∑T
t=1 Ẑt,

E∗[Z∗t ] =
1

T

T∑
t=1

Ẑs
t = Ω

−1/2
Z

(
1

T

T∑
t=1

(
Ẑt − Z̄

))
= 0 = E[Zt],

E∗[Z∗t (Z∗t )′] =
1

T

T∑
t=1

Ẑs
t Ẑ

s′
t = Ω

−1/2
Z

1

T

T∑
t=1

(
Ẑt − Z̄

)(
Ẑt − Z̄

)′
Ω
−1/2
Z = Ip = E[ZtZ

′
t].

Next, notice that the i’th standardized residual is,

ẑsi,t =

p∑
j=1

[Ω−1/2
z ]ij(ẑj,t − z̄j),

where [Ω
−1/2
z ]ij is the (i, j)’th element of Ω

−1/2
z . The expectation, E∗[z∗4i,t ], conditional on

the original data, is therefore

E∗[z∗4i,t ] =
1

T

T∑
t=1

(ẑsi,t)
4 =

1

T

T∑
t=1

(
p∑
j=1

[Ω−1/2
z ]ij(ẑj,t − z̄j)

)4

.
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Since Ωz
p→ Ip, it must also hold that Ω

−1/2
z

p→ Ip. Hence, for T →∞ all terms of E∗[z∗4i,t ],

except [Ω
−1/2
z ]4ii(ẑi,t − z̄i)4, converge to zero in probability,

E∗[z∗4i,t ] =
1

T

T∑
t=1

(
p∑
j=1

[Ω−1/2
z ]4ii(ẑi,t − z̄i)

)4

+ op(1)

= [Ω−1/2
z ]4ii

(
1

T

T∑
t=1

z4
i,t + z̄4

i + 6
1

T

T∑
t=1

z2
i z̄

2
i + 4

1

T

T∑
t=1

zi,tz̄
3
i + 4

1

T

T∑
t=1

z3
i,tz̄i

)
+ op(1)

= [Ω−1/2
z ]4ii

1

T

T∑
t=1

z4
i,t + op(1)

p→ E[z4
i,t].

by repeated use of Lemma A.9, along with E[Z] = 0 and E[ZtZ
′
t] = Ip.

Lemma A.9. Under Assumptions 2.1–2.6 along with E||Xt||4 < ∞, for k = 1, 2, 3, 4, it

holds that

1

T

T∑
t=1

ẑki,t
p→ E[zki,t], i = 1, . . . , p.

Proof. With ẑi,t = zi,t(θ̂T ) = V ′i (θ̂T )Xt/λi,t(θ̂T ), where Vi is the i′th column of V , we apply

the mean-value theorem around θ0

1

T

T∑
t=1

zki,t(θ̂T ) =
1

T

T∑
t=1

zki,t +

dθ∑
j=1

1

T

T∑
t=1

∂zki,t(θ̃)

∂θj
(θ̂j − θ0,j), (A.27)

where zi,t = V ′i (θ0)Xt/λi,t(θ0) and θ̃ is on the line between θ̂T and θ0 and

∂zki,t(θ̃)

∂θj
= k

(
1

λi,t(θ̃)

∂V ′i (θ̃)

∂θj
Xt −

V ′i (θ̃)Xt

λi,t(θ̃)

∂λi,t(θ̃)/∂θj

λi,t(θ̃)

)k−1

. (A.28)

Notice here that by (A.8), along with E||Xt||k < ∞ (for k = 1, 2, 3, 4), implies that a

uniform law of large numbers hold,

sup
θ∈Θ

∣∣∣∣∣ 1

T

T∑
t=1

∂zki,t(θ)

∂θj

∣∣∣∣∣ p→ E

[
sup
θ∈Θ

∣∣∣∣∣∂zki,t(θ)∂θj

∣∣∣∣∣
]
<∞.

This, along with consistency of the estimator, ||θ̂T − θ0|| = op(1), implies that the second

term of (A.27) is op(1). Furthermore, 1
T

∑T
t=1 z

k
i,t

p→ E[zki,t] by the law of large numbers

for iid processes, under the assumption E[zki,t] < ∞ implied by the moment assumption
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for the vector of returns, E||Xt||k <∞. Hence,

1

T

T∑
t=1

zki,t(θ̂T ) =
1

T

T∑
t=1

zki,t + op(1)
p→ E[zki,t].
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Silvennoinen, A. and T. Teräsvirta (2009). “Multivariate GARCH models”. Handbook of

Financial Time Series. Springer, pp. 201–229.

Weide, R. van der (2002). “GO-GARCH: a multivariate generalized orthogonal GARCH

model”. Journal of Applied Econometrics 17 (5), pp. 549–564.

White, H. (1994). Estimation, Inference and Specification Analysis. Cambridge University

Press.


	Acknowledgments
	Summary
	Dansk Résume
	The Dynamic Conditional Eigenvalue GARCH Model
	Introduction
	Score Driven Conditional Eigenvalues "026A30C  -GARCH
	Properties and Estimation of the -GARCH Model 
	Reduced Rank of A and B
	An Empirical Illustration
	Appendix
	Mathematical Proofs
	Testing for Nullity of Rows
	Bootstrap Algorithm for Testing Reduced Rank
	Monte Carlo Simulations

	Spectral Targeting Estimation of Dynamic Conditional Eigenvalue GARCH Models
	Introduction
	The -GARCH Model
	Spectral Targeting Estimation
	Large-Sample Properties of Spectral Targeting Estimation
	Empirical Illustrations
	Extensions and Concluding Remarks
	Appendix
	Proofs
	Lemmata
	Stationarity, ergodicity and existence of moments
	Simulation study
	Empirical exercise: Portfolio constituents and weights

	Bootstrap-Based Inference and Testing in Multivariate Dynamic Conditional Eigenvalue GARCH Models
	Introduction
	The -GARCH Model "026A30C  Properties and Estimation
	The Fixed-Design Bootstrap
	Monte Carlo Study
	Empirical Illustration
	Extensions and Concluding Remarks
	Appendix
	Technical appendix

	Bibliography

