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Summary

Our decisions often depend on our subjective perceptions of the surrounding reality and we base our

perceptions on the information we have available to us. Consider for instance our assessments of a

variety of societal challenges we face, from immigration to inequality. Our perceptions of the severity

of these problems depend on the information we extract from the networks around us, consisting

of our friends, colleagues, and neighbors, among others. Importantly, our networks might not be

representative of the broader population, they might be too small to make valid inferences, or we may

not have the ability to process the information efficiently. This results in a gap between subjective

perceptions and the objective reality, leading to unintended behavior affecting the individual and the

society. To understand the implications of the gap between perception and reality, we need a better

understanding of how people form perceptions and the underlying mechanisms creating this gap. We

need to investigate the persistence of this gap and consider its long-term consequences. Finally, we

may want to test if perceptions are malleable and design interventions to change behavior.

This thesis comprises three self-contained articles that provide new insights on the formation of

perceptions and their persistence using economic theory and experiments. The common theme in

Chapter 1 and 2 is that agents in both models act as statisticians. Agents perform statistical infer-

ence given their information about others, the amount of information available, and heterogeneity in

how they use information, to estimate an unknown but payoff-relevant state. The modeling approach

allows us to show and disentangle how sample size and heterogeneity in agents’ use of information

affects perception and behavior. In both chapters, the sample of data is not representative of the

payoff-relevant state as sample selection (Chapter 1) or networks (Chapter 2) bias the data gener-

ating process. In Chapter 3, we illustrate how to manipulate perceptions and evaluate its long-term

impact on behavior and welfare of subjects embedded in networks. In our laboratory experiment, we

show that a simple nudge has long-term payoff consequences, and persistently changes the structure

of relationships subjects build with each other over time.

Chapter 1 (Statistical Inference with Sample Selection in Games – joint with Andreas Bjerre-

Nielsen) investigates sample selection as a source of misperceptions in games where agents know the
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utility function and strategies of others. With sample selection, however, agents observe an unrepre-

sentative sample of others’ behavior. We analyze equilibrium behavior in binary action games where

the decision to take an action depends on the benefit and cost to do so. Whereas agents know their

own benefit, cost depends on the estimated share of agents taking one action or another. In equilib-

rium, the share of agents taking an action must equal the share of agents whose benefit is higher than

the estimated cost. We show and disentangle how sample selection, sample size, and heterogene-

ity in how agents use information about the underlying sample selection process affects equilibrium

behavior and outline the welfare implications.

In Chapter 2 (Statistical inference and misperceptions in social networks – joint with Andreas

Bjerre-Nielsen), people do not observe others’ behavior. Instead, they must form beliefs about others’

behavior based on observations of others’ social relations using statistical inference. However, a

statistical law called the friendship paradox, present in almost all networks, biases observations of

others’ social relations. Intuitively, the friendship paradox is an over-sampling bias where agents

over-sample others with many social relations as network neighbors. We analyze equilibrium behavior

under strategic complementarity. Therefore, agents maximize utility if they match their behavior as

close as possible to average behavior of others in the network. We show that population behavior

depends on the share of agents that either do or do not correct their estimate using information about

neighbors’ representativeness, captured by network degree. In particular, we show that when all

agents in the population are sophisticated (i.e. correct their estimate) the friendship paradox does not

affect behavior. We show that the uncertainty from having a finite number of social relations affects

behavior and can have a larger impact on behavior than heterogeneity in how agents use network

information.

In Chapter 1 and 2, agents make a one-time decision in a static environment and the respective

game ends. Whereas this is a justifiable assumption to investigate the mechanisms underlying the

formation of perceptions, it is a strong assumption, especially when we look at networks. Real world

networks are complex as they typically vary in size, structure, and change as time passes. Laboratory

experiments present a powerful tool to learn more about networks as the experimental tool allows the

researcher to control the network and its features.

In Chapter 3 (Nudging Cooperation in Networks – joint with Gorm G. Jensen, Jan O. Haerter,

and Marco Piovesan), we investigate cooperation behavior of agents embedded in networks using a

laboratory experiment.1 In our experiment, subjects build their own network over time. They send

costly messages to each other that contain valuable information for the receiver or other subjects in

1This Chapter builds on, extends, and repeats text from the master’s thesis written by Martin Benedikt Busch at the

University of Copenhagen in 2018 (Busch, 2018).

iv



the network. Sending a message is beneficial for the entire network as it increases the probability

that subjects find the information they are looking for. However, classical game theory predicts zero

cooperation when we measure cooperation by the profit subjects earn. We find subjects do cooperate,

generate a profit for themselves and others, and that cooperation prevails for a long period. When we

change subjects’ perceptions of the network through the provision of initial suggestions of whom to

contact, we find subjects send more messages – increasing their own and others’ profit. Despite the

removal of suggestions, subjects build long-lasting relationships along the suggested contacts.
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Summary (in Danish)

Vores beslutninger afhænger ofte af vores subjektive opfattelse af den omkringværende virkelighed,

og vi baserer vores virkelighedsopfattelse på den information, som vi har tilgængelig. Dette kunne

for eksempel være vurderingen af forskellige samfundsmæssige udfordringer, som vi står over for, fra

indvandring til ulighed. Vores opfattelse af alvoren af disse problemer afhænger af den information,

som vi får ved at være sammen med vores netværk bestående bl.a. af vores venner, kollegaer og

naboer. Men det er vigtigt at være klar over, at vores netværk ikke nødvendigvis er repræsentativt for

hele befolkningen, det kan måske være for lille til at lave valid inferens eller vi har måske ikke evnerne

til at bearbejde informationen efficient. Disse faktorer resulterer i en forskel mellem den subjektive

virkelighedsopfattelse og den objektive virkelighed, hvilket medfører utilsigtet adfærd, som påvirker

både individet og samfundet. For at forstå konsekvenserne af forskellen i virkelighedsopfattelsen og

den faktiske virkelighed bliver vi nødt til at have en bedre forståelse af, hvordan personer danner deres

virkelighedsopfattelse og de underliggende mekanismer, der danner forskellen mellem opfattelsen og

realiteten. Vi bliver nødt til at undersøge persistensen af denne forskel og overveje dens langsigtede

konsekvenser. Endelig kan vi måske teste, om vores virkelighedsopfattelse er let at påvirke og designe

interventioner for at ændre adfærden.

Denne afhandling består af tre selvstændige artikler, som giver nye indsigter i dannelsen af virke-

lighedsopfattelser og deres persistens ved at bruge økonomisk teori og eksperimenter. I Kapitel 1 og

2 er det fælles tema, at agenter i begge modeller agerer som statistikkere. Agenterne laver statistisk

inferens givet deres information om andre, mængden af tilgængelig information og heterogeniteten

i, hvordan de bruger informationen til at estimere en ukendt men payoff-relevant tilstand. Modeltil-

gangen giver os mulighed for at vise og skelne imellem, hvordan samplestørrelsen og heterogeniteten

i agenternes brug af information påvirker virkelighedsopfattelsen og adfærden. I begge kapitler er

datasamplet ikke repræsentativt for den payoff-relevante tilstand, fordi sample selektion (Kapitel 1)

eller netværk (Kapitel 2) giver bias i den datagenererende proces. I Kapitel 3 illustrerer vi, hvordan

man manipulerer virkelighedsopfattelsen og evaluerer dens langsigtede virkning på subjekters adfærd

og velfærd for de subjekter, som er del af et netværket. I vores laboratorieeksperiment viser vi, at sim-
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pel nudging har langsigtede konsekvenser for payoffet og vedvarende ændrer strukturen af de forhold,

som subjekterne danner med hinanden over tid.

Kapitel 1 (Statistical Inference with Sample Selection in Games – joint with Andreas Bjerre-

Nielsen) undersøger, om sampleselektion er en årsag til forkert virkelighedsopfattelse i spil, hvor

agenter kender de andre spilleres nyttefunktion og strategier. Dog gør sample selektion, at agenterne

observerer et ikke-repræsentativt sample af de andre spilleres adfærd. Vi analyserer ligevægtsad-

færden i et binært spil, hvor beslutningen om at tage en handling afhænger af handlingens fordele

og omkostninger. Hvor agenterne kender deres egne fordele, afhænger omkostningerne af den es-

timerede andel af agenter, som tager den ene eller anden handling. I ligevægt skal andelen af agenter,

som tager en handling, være lig andelen af agenter, som har større fordele end de estimerede omkost-

ninger. Vi viser og skelner imellem, hvordan sampleselektion, samplestørrelse og heterogenitet i

agenternes brug af information om den underliggende sampleselektionsproces påvirker ligevægtsad-

færden og skitserer velfærdskonsekvenserne.

I Kapitel 2 (Statistical inference and misperceptions in social networks – joint with Andreas

Bjerre-Nielsen) observerer agenterne ikke de andres adfærd. De må i stedet danne overbevisninger

om de andres adfærd baseret på observationer af de andres sociale relationer ved at bruge statistisk

inferens. Dog er den statistiske lov, friendship paradokset, tilstede i næsten alle netværk og giver bias

i observationerne af andres sociale relationer. Intuitivt er friendship paradokset en oversampling bias,

hvor agenter oversampler andre med mange sociale relationer som netværksnaboer. Vi analyserer

ligevægtsadfærd under strategisk komplementaritet. Agenterne maksimerer derfor deres nytte, hvis

deres adfærd er så tæt som muligt på at matche den gennemsnitlige adfærd i netværket. Vi viser, at

populationens adfærd afhænger af andelen af agenter, som enten korrigerer eller ikke korrigerer deres

estimat ved at bruge information om deres naboers repræsentativitet fanget i netværks-degree’en.

Vi viser særligt, at når alle agenter i populationen er sofistikerede (altså korrigerer deres estimat),

påvirker friendship paradokset ikke adfærden. Vi viser, at usikkerheden af at have et begrænset antal

sociale relationer påvirker adfærden og kan have en større indflydelse på adfærden end heterogenitet

i, hvordan agenterne bruger netværksinformationen.

I Kapitel 1 og 2 tager agenterne en engangsbeslutning i et statisk miljø, hvorefter det respektive

spil slutter. Mens dette er en berettiget antagelse til at undersøge de underliggende mekanismer, som

danner virkelighedsopfattelsen, er det ellers en stærk antagelse, især når vi ser på netværk. Virke-

lighedens netværk er komplekse, fordi de typisk varierer i størrelse, strukturer og ændrer sig med

tiden. Derfor er laboratorieeksperimenter et stærkt redskab til at lære mere om netværk, fordi de

eksperimentale redskaber giver forskeren kontrol over netværkene og dets karakteristika.

I Kapitel 3 (Nudging Cooperation in Networks – joint with Gorm G. Jensen, Jan O. Haerter,
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and Marco Piovesan) undersøger vi samarbejdsadfærden for agenter, som er med i netværk, ved at

bruge laboratorieeksperimenter.2 I vores eksperiment bygger subjekterne deres eget netværk over

tid. De sender omkostningsfulde beskeder til hinanden, som indeholder værdifuld information for

modtageren eller de andre subjekter i netværket. Det gavner hele netværket at sende en besked,

fordi det øger sandsynligheden for at subjekterne finder den information, som de har brug for. Dog

forudsiger klassisk game theory, at ingen vil samarbejde, når vi måler samarbejde ud fra den profit,

som subjekterne får. Vi finder, at subjekterne samarbejder, genererer profit til dem selv og andre samt

at samarbejdet forsætter i lang tid. Når vi ændrer subjekternes opfattelse af netværkene ved initialt at

foreslå dem hvem, de skal kontakte, finder vi, at subjekterne sender flere beskeder, hvilket øger deres

egen og andres profit. Selv ved at fjerne disse kontaktforslag finder vi, at subjekter bygger langvarige

forhold med de foreslåede kontakter.

2Dette Kapital bygger på, udvider og gentager dele fra specialeafhandlingen skrevet af Martin Benedikt Bush på

Københavns Universitet i 2018 (Busch, 2018).
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Statistical Inference with Sample Selection in Games∗

Andreas Bjerre-Nielsen† and Martin Benedikt Busch‡

March 31, 2021

Abstract

We investigate sample selection as a source of misperceptions in games with complete infor-
mation. We analyze equilibrium behavior in binary action games where the decision to take the
action depends on the estimated share of others taking it. With sample selection, agents observe
an unrepresentative sample of others’ behavior. We show and disentangle how sample selection,
sample size, and heterogeneity in agents’ inference procedures affects equilibrium behavior. We
outline how our analysis of equilibrium behavior can be useful to analyze the welfare implications
of sample selection.

JEL Classification Codes: D80, D90.
Keywords: Sample Selection, Statistical Inference, Complete Information.

∗The activities of CEBI members are funded by the Danish National Research Foundation (grant: DNRF-134).
†Department of Economics and SODAS, University of Copenhagen (abn@sodas.ku.dk).
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1 Introduction
People often base decisions on their subjective perception of an unknown, but payoff relevant, objec-
tive population distribution. For example, the decision to attend an event in the midst of a pandemic
depends on the unknown share of other people attending. In such situations, people must collect a
sample of others’ decisions to form an estimate as they do not know or do not have access to the entire
distribution. More often than not, the collected data is not representative of the population distribu-
tion due to sample selection issues (Heckman, 1979). Sample selection issues arise, for instance, when
people exclusively sample from their own social network or learn about others’ decisions from news
media more likely to report exciting rather than non-events.

In this paper, we model statistical decision-making based on selected samples in games with com-
plete information. We ask: 1) How do people form subjective perceptions about the population dis-
tribution when the sample is not representative? 2) How do subjective perceptions affect equilibrium
behavior and what are its welfare implications? We highlight and disentangle the effect of sample size,
heterogeneity in agents’ inference procedures, and their respective population share.

We incorporate sample selection into the model of Salant and Cherry (2020). Agents act as statis-
ticians that decide whether or not to take an action by estimating the share of other agents taking it -
based on a random sample of other agents’ actions. In our model, agents observe a selected sample of
other agents’ actions. We assume that agents are either naive or sophisticated statisticians when form-
ing their estimate. A naive agent neglects the sample selection issue, that is, thinks that her sample
of data is representative of the population distribution.1 A sophisticated agent uses information about
the sample selection process available to both agents to correct for the selection issue, for instance in-
formation accumulated from a similar situation in the past. Both agents perform maximum likelihood
estimation (MLE) to infer the population share taking one or the other action as any share is equally
likely ex ante.

Agents sample data from the equilibrium distribution of actions, use their sample to form an esti-
mate, and respond optimally to maximize utility given their estimate. As a consequence, both sample
size and sample selection affect the equilibrium outcome. A small (finite) sample implies that there
is uncertainty about the equilibrium distribution with or without sample selection. The uncertainty
stems from the fact that agents do not know or do not have access to information about the entire
distribution. Sample selection corresponds to the case where agents sample selected parts that are not
representative of the distribution instead of random parts. For example, one could imagine that agents

1Enke (2020) finds that a substantial share of laboratory subjects are prone to selection neglect when using their sample
to estimate a population mean.
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are more likely to sample parts of the equilibrium distribution that belong to their social network. To
analyze these situations, we use Sampling Equilibrium with Statistical Inference (SESI) as the solution
concept (Salant and Cherry, 2020).

Our main result highlights the critical role of sophistication, in addition to sample size, to over-
come the sample selection issue. We show that the share of agents taking the action with sample
selection, i.e. the SESI share, converges to the Nash equilibrium (NE) share if and only if all agents
are sophisticated as sample size tends to infinity - independent of whether agents over- or undersam-
ple others. Note that NE assumes that agents know the equilibrium distribution. Intuitively, naive and
sophisticated agents become "as if" fully informed about the sample selection issue as sample size
tends to infinity. However, only a sophisticated agent uses the available information to eliminate the
selection issue.

We derive a number of important properties of a SESI with sample selection to establish our main
result. First, we show that a SESI with sample selection is unique. Second, a SESI with sample
selection deviates persistently from the NE share for any positive share of naive agents - even in the
limit. We show that the direction of the deviation depends on sample size, whether agents over- or
undersample others taking an action, and the share of sophisticated agents. Third, when all agents are
sophisticated, the SESI share with sample selection is strictly smaller than the NE share. Intuitively,
the randomness of observations in finite samples alone might lead to inaccurate inferences even if all
agents are sophisticated. In other words, with a finite sample of observations sophisticated agents lack
the statistical power to completely eliminate the sample selection issue. Fourth, the all naive SESI
with sample selection converges to the all sophisticated SESI with sample selection as the share of
sophisticated agents increases. The result highlights the important role of sophistication even within
any given finite sample size.

We relate to a literature in game theory that models agents as statisticians (Salant and Cherry,
2020; Liang, 2019; Jehiel, 2018). In this literature, agents use statistical inference to estimate a payoff-
relevant parameter given their sample of data. With the exception of Jehiel (2018) the data come from
an unbiased data generating process. The closest to our paper is the work of Salant and Cherry (2020)
who analyze equilibrium behavior when the data generating process is unbiased. We extend their
model to allow for sample selection and heterogeneity in how agents use the available information
about the biased data generating process. We show how sample selection affects equilibrium behavior
and offer a solution to the selection issue.

We relate to a literature in game theory where misperceptions about an unbiased distribution of
data stem from agents that use a misspecified causal model to interpret the data (Spiegler, 2016; Schu-
macher and Thysen, 2017; Spiegler, 2020; Eliaz and Spiegler, 2020). Although ourmodeling approach
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is completely different, the insights are quite similar. In this literature, the fact that agents do not fully
understand the correlation structures and causal relationships of the underlying data causes persistent
misperceptions. In our model, misperceptions persist if naive agents neglect the sample selection issue
even with an infinite amount of data. In contrast to this literature, we study sample size in addition to
heterogeneity of how agents use available data. We show that even sophisticated agents are prone to
misperceptions due to small sample sizes.

We make a methodological contribution to the literature investigating the properties of Bernstein
polynomials (see e.g. Davis, 1975; Phillips, 2003). We show that some of the known properties ex-
tend to monotone transformations of the Bernstein basis polynomial (see Section 4). This extension
is essential to investigate how sample selection affects behavior and welfare in our application to co-
ordination games. The literature uses polynomials in Bernstein form to study, for instance, market
equilibria (Salant and Cherry, 2020), voter participation games (Nöldeke and Peña, 2016), evolution-
ary dynamics inmultiplayer games (Peña et al., 2014), and cooperation behavior (Dos Santos and Peña,
2017; Mikkelsen and Bach, 2016). Our extension makes a useful contribution in studying issues of
sample selection and cognitive biases, such as selection neglect, in these contexts.

The remainder of this paper proceeds as follows. We introduce the model in Section 2 and present
the application to coordination games in Section 3. We present the general framework including our
main results concerning behavior andwelfare in Section 4. We conclude in Section 5 and the Appendix
contains auxiliary results as well as proofs.

2 Model
Consider a unit mass of agents that must choose one out of two available actions, which we denote by
B andH .

Utility. An agent receives utility from taking action B as follows:

u(�, �) = � − f (�). (1)

First, an agent’s utility depends on her individual benefit of taking action B which we denote by
� ∈ U ∼ [0, 1]. We normalize an agent’s utility from taking actionH to zero. Second, utility depends
on the share of other agents taking action B, which we denote by � ∈ [0, 1]. An agent trades off her
individual benefit from taking the action with the cost of taking it, which we denote by f (�). We make
the following assumptions about the cost function. We assume that f (�) is continuous, convex, and
monotonically increasing in �. In other words, the cost of taking the action increases in the share of
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other agents taking it. We require that f (0) ≥ 0 and f (1) ≤ 1 implying that the cost of taking the
action is smaller than the maximum individual benefit.

Information structure. The game takes place in an environment of complete information where the
structure of the game is common knowledge among all agents. That is, there is no uncertainty about
the utility function and the strategies of other agents. In our model, we allow for the possibility that
agents only observe a subsample of other agents’ actions and that there may be sample selection. In
other words, agents receive only an imperfect signal about �, possibly biased as well. Intuitively, with
sample selection an agent decides to take an action based on her perceptions but experiences utility
according to realized outcomes, as captured in equation (1). We denote the sample selection process,
determining the perceived share of agents taking action B, as follows:

y(�) = � ⋅ �
� ⋅ � + (1 − �)

, (2)

where � ∈ (0,+∞) determines the magnitude of the sample selection problem. In our model,
y(�) ∈ [0, 1] is a monotone transformation of the true share of agents taking action B. Note that
y(�) = 1 whenever � = 1 and that y(�) = 0 whenever � = 0. We define sample selection as the
case where � ≠ 1 implying that y(�) ≠ �. There is no sample selection when � = 1 in which case
the perceived share y(�) equals the true share �. When � > 1 we say that agents oversample other’s
taking action B and when 0 < � < 1 we say that agents undersample others taking the action.

In our model, an agent obtains a sample of size d comprising independent observations of other
agents actions drawn from a Bernoulli distribution. Therefore, we can interpret y(�) as the success
probability to draw an agent taking action B. For example, when � = 2 the probability to draw an
agent who chooses action B, compared to an agent choosing actionH , is twice as likely.

Statistical inference. Agents use their observed sample to estimate �. From the sample they know
its size d, the sample mean m of agents taking action B, and the magnitude of the sample selection
problem �. Agents use this information in either a naive or sophisticated way to estimate � using
maximum likelihood estimation (MLE). We define the MLE estimator as �̂r(m) where r ∈ {n, s}

denotes whether the agent uses a naive (n) or sophisticated (s) updating rule. Both types of agents
neglect the randomness of observations in small samples, which the literature refers to as bounded
rationality (see e.g. Osborne and Rubinstein, 2003). For example, when the sample contains just
a single observation, both types of agents believe that they can make valid inferences about �. In
addition, a naive agent neglects the sample selection problem. In essence, the naive agent ignores �
and estimates that � equals the sample meanm, i.e. �̂n(m) = m. A sophisticated agent does not believe
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that her sample is representative of the true share due to sample selection, hence, uses the information
about � to adjust her estimate as follows:

�̂s(m) =
m

� + m ⋅ (1 − �)
. (3)

In Appendix A.2, we formally derive the estimator and prove that the sophisticated estimator is
unbiased and consistent. Note, when there is no sample selection (i.e. � = 1) the estimator of the
naive and sophisticated agent align, i.e. �̂s(m) = �̂n(m) = m.

3 Example: Sample Selection and Coordination
We illustrate the equilibrium solution concept and our main results on an example where agents must
decide whether or not to go to a bar in the midst of a pandemic. In this example, action B implies that
an agent decides to go to a bar and actionH implies that the agent decides to stay at home. Moreover,
� denotes an agents individual benefit from going to the bar, � denotes the true share of agents going to
the bar, y(�) denotes the probability to observe an agent going to the bar, and f (�) denotes the cost of
going to the bar. We assume that f (�) = �4. That is, f (�) is continuous, convex, and monotonically
increasing. The agent decides to go to the bar based on her perceptions of the share that goes. How-
ever, only the true share of agents that go affects the likelihood to catch the virus, hence the utility. In
the remainder, we assume that � = 2which means that agents oversample others going to the bar. This
implies that the perceived cost of going to the bar is higher than the actual cost to do so. In this exam-
ple, we assume that all agents are either naive or sophisticated. We generalize the example in Section 4.

A Single Observation. Consider a sample size of d = 1, which means that the agent has access to
a single observation. That is, the agent observes another agent that either goes to the bar or stays at
home. When does an agent choose to go to the bar? All agents whose individual benefit lies above
(below) the estimated cost of going to the bar strictly prefer to take action B (H) and go (not go) to
the bar. The equilibrium share must satisfy the following condition:

� = (1 − y(�)) ⋅ (1 − f (�̂r(0))) + y(�) ⋅ (1 − f (�̂r(1))). (4)

In the equilibrium, the share of agents that go to the bar must equal the expected share of agents
whose individual benefit of going to the bar exceeds the estimated cost to do so. This corresponds
to the left and right hand side of equation (4), respectively. Note that it is 1 − f (�̂r(⋅)) as the highest
individual benefit � that an agent can possess is 1, by definition. With probability (1 − y(�)) the agent
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observes someone who stays at home. A naive and sophisticated agent estimates that everybody stays
at home as âr(m) = âs(0) = ân(0) = 0. Therefore, the agent goes to the bar as � ≥ f (0) always holds.
With probability y(�) the agent observes an agent that goes to the bar. A naive and sophisticated agent
estimates that everyone goes to the bar as âr(m) = âs(1) = ân(1) = 1. In that case, the agent stays at
home since � ≥ f (1) never holds. We can rewrite equation (4) as follows:

1 − � = (1 − y(�)) ⋅ f (0) + y(�) ⋅ f (1). (5)

Without sample selection (i.e. � = 1), which implies that y(�) = �, the unique equilibrium share
lies at � = 1∕2. This is called a sampling equilibrium with statistical inference (SESI) as described in
Salant and Cherry (2020). With sample selection, however, the unique SESI share lies at � ≈ 0.41.
Intuitively, naive and sophisticated agents arrive at the same conclusion as sophisticated agents lack
the statistical power to use the information about the selection issue effectively.

Two Observations. We can apply the same logic as above in the case where an agent has access to a
sample of size d = 2. The equilibrium share � must satisfy the following condition:

1 − � = (1 − y(�))2 ⋅ f (�̂r(0)) + 2y(�)(1 − y(�)) ⋅ f (�̂r(1∕2)) + y(�)2 ⋅ f (�̂r(1)).

With probability (1 − y(�))2 the agent observes two agents who stay at home and estimates that
everybody stays at home. With probability 2y(�)(1 − y(�)) the agent observes one agent who goes to
the bar and one agent who stays at home (i.e. f (�̂r(1∕2))). The naive agent believes that the share is
representative of the population, therefore, estimates that half of the population goes to the bar, i.e.
�̂n(1∕2) = 1∕2. The sophisticated agent adjusts her estimate as follows. The sophisticated agent eval-
uates the cost at f (1∕3) instead of f (1∕2) because �̂s(1∕2) = 1∕3. With probability y(�)2 the agent
observes two agents that go to the bar and the naive and sophisticated agent concludes that everybody
goes to the bar. Without sample selection, the unique SESI share lies at � ≈ 0.6 independent of whether
agents are naive or sophisticated. With sample selection, the unique SESI share lies at � ≈ 0.51 when
all agents are naive. However, when all agents are sophisticated the unique SESI share lies at � ≈ 0.52.

Infinitely Many Observations. Consider the case where agents have access to an infinitely large
sample of observations. With an infinitely large sample and no sample selection it is "as if" agents
know the equilibrium share of agents taking action B. In that case, we can use Nash equilibrium (NE)
as the solution concept. In the NE the share of agents going to the bar must satisfy the following
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condition:

� = 1 − f (�̂r(m)), (6)

where �̂r(m) = m = � in the limit. Intuitively, the share of agents that go to the bar must equal
the share of agents whose individual benefit of going to the bar exceeds the estimated cost to do so.
There is a unique solution at � ≈ 0.72. Note that both the naive and sophisticated agent estimates the
correct share because sample selection is not a problem. That is, ≈ 72% of agents go to the bar and
no agent has an incentive to deviate from her strategy. Now consider the case with sample selection.
With infinite estimation precision, the estimator of the naive agent equals y(�) as �̂n(m) = m = y(�)

in the limit. In other words, naive agents are infinitely precise about the bias in the limit. When all
agents are naive, there exists a unique limit equilibrium at � ≈ 0.64.2 A sophisticated agent, however,
adjusts her estimate. The maximum likelihood estimator of a sophisticated agent is unbiased and con-
sistent, therefore, the sophisticated agent correctly estimates the share of agents going to the bar, i.e.
�̂s(y(�)) = � ≈ 0.72. When all agents are sophisticated, the unique limit equilibrium with sample
selection aligns with the NE share.

Illustration of Main Results. Figure 1 provides a visual illustration of the equilibria that we calcu-
lated above. Note that we could rewrite the left hand side of each equation as 1 − �, depicted by the
black lines in all panels. The monotonically increasing lines illustrate the right hand sides where the
intersection with the black line shows the respective unique equilibrium share. Panel A illustrates the
limit equilibria with (dashed) and without (solid) sample selection. Panels B, C, and D show that as
sample size increases the unique SESI share converges to the respective limit equilibrium share. Panel
B illustrates the solution of Salant and Cherry (2020), where the SESI share without sample selection
converges to the NE share. Panel C illustrates that the unique SESI share with sample selection con-
verges to the limit equilibrium share with sample selection when all agents are naive. Intuitively, if
all agents are naive and the sample becomes infinitely large, naive agents become infinitely precise
about the sample selection bias. Panel D illustrates, however, that the SESI share with sample selec-
tion converges to the NE share if and only if all agents are sophisticated. This is the major result of
the paper. Intuitively, if sophisticated agents have an infinitely large sample they become, as naive
agents, infinitely precise about the underlying sample selection bias. Therefore, sophisticated agents
can precisely remove the bias as the estimator is unbiased and consistent. Note that in all panels the
SESI share is strictly less than the respective limit equilibrium share for any given finite sample size.

2Note that this is not a NE as agents do not know the equilibrium share of agents going to the bar. Instead, agents are
infinitely precise about the bias in what we call "the limit equilibrium".
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Intuitively, the lack of statistical power causes less agents to go to the bar than in the limit.
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Figure 1: Equilibria with (� = 2) and without sample selection
The panels illustrate the unique equilibrium shares. The intersection of the black and red lines illustrate the limit equilibria
with (dashed) and without (solid) sample selection. The intersection of the black and blue lines denote the SESI shares.
PanelA illustrates the limit equilibria; Panel B replicates the solution of Salant and Cherry (2020); PanelC shows the case
when all agents are naive; Panel D shows the case when all agents are sophisticated. In all panels we assume that � = 2
when there is sample selection and � = 1 corresponds to the case without sample selection.

4 General Framework
Consider a population consisting of a mix of naive and sophisticated agents. We denote the share
of sophisticated agents by � and the share of naive agents by 1 − �. We generalize the example in
Section 3 using the theory of Bernstein polynomials, allowing us to represent the equilibrium condition
governing any sample size as follows:

1 − � = Bd(ℎ�; y(�)). (7)

The right hand side denotes what we call a re-weighted Bernstein polynomial of sample size d. The
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difference between our re-weighted version of a Bernstein polynomial and the standard version used
in the literature (see e.g. Phillips, 2003) is that we allow for sample selection as well as heterogeneity
in how agents deal with the sample selection issue. One can rewrite the right hand side as follows:

Bd(ℎ�; y(�)) =
d∑
i=0
bi,d(y(�)) ⋅

(
� ⋅ f

(
�̂s(i∕d)

)
+ (1 − �) ⋅ f

(
�̂n(i∕d)

))
, (8)

where ℎ� = � ⋅ f (�̂s(⋅)) + (1 − �) ⋅ f (�̂n(⋅)).3 Note that �̂r(i∕d) denotes the estimator given
the observation i∕d = m for a given updating rule. Intuitively, one can use a re-weighted Bernstein
polynomial to approximate the cost function f (⋅) using samples of the cost function at f (�̂r(m)). The
respective Bernstein basis polynomial weights the samples of the cost function:

bi,d(y(�)) =
(
d
i

)
y(�)i(1 − y(�))d−i. (9)

Note that a Bernstein basis polynomial equals the probability mass function of a binomial distri-
bution where (d

i

) denotes the binomial coefficient, y(�) the success probability, and d the number of
Bernoulli trials. Recall, in Section 3 we could rewrite the left hand side of the equilibrium condition
as 1−� independent of samples size. This follows directly from the property that the sum of Bernstein
basis polynomials of sample size d form a partition of unity by the binomial theorem:

d∑
i=0
bi,d(y(�)) =

(
y(�)) + (1 − y(�)

)d = 1.

In the two extreme cases where all agents are either naive or sophisticated, equation (7) reduces
to:

1 − � = Bd(ℎ1; y(�)) if � = 1.

1 − � = Bd(ℎ0; y(�)) if � = 0.

In the case where all agents are naive (i.e. � = 0) and there is no sample selection (i.e. � = 1) our
model reduces to the model of Salant and Cherry (2020).

4.1 Equilibrium Properties

We begin our analysis of the general framework with analyzing the equilibrium properties of a SESI
with sample selection.

3We use the property that Bd(ℎ� ; y(�)) = � ⋅ Bd(ℎ1; y(�)) + (1 − �) ⋅ Bd(ℎ0; y(�)) to derive the equation.
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Uniqueness. The example in the previous section illustrates that there exists a unique equilibrium
corresponding to the case where marginal benefits and cost equal each other for small (d = 1, 2, 3,… )
and large samples (d → ∞). We generalize this uniqueness result below and show it holds that for
any sample size, degree of sample selection, and share of sophisticated agents.

Theorem 1. For any share of sophisticated agents and any sample size, there exists a unique SESI

with sample selection.

Proof. Note that 1 − � is a strictly decreasing and continuous function in � ∈ [0, 1], which does not
depend on whether the agent is naive or sophisticated, sample selection, nor sample size. To prove
uniqueness, it is sufficient to show that Bd(ℎ�; y(�)) is monotonically increasing in �, which we prove
in Fact 1 (see Appendix A.1). As a consequence, 1−� andBd(ℎ�; y(�)) cross only once on the domain
[0, 1].

Theorem 1 extends the uniqueness result of Salant and Cherry (2020), which proves uniqueness
for the naive agent without sample selection.

Convergence. The example in the previous section illustrates that the SESI share with sample selec-
tion converges to the NE share if and only if all agents are sophisticated. We generalize below how the
behavioral assumptions about how agents update affects convergence as sample size tends to infinity.

Theorem 2. If there is sample selection, the sequence of Bernstein polynomials of sample size d

converges uniformly to:

1. the misperceived cost function f (y(�)) when all agents are naive.

2. the true cost function f (�) when all agents are sophisticated.

3. the linear combination of the true and mispeceived cost function, i.e. � ⋅f (�)+(1−�) ⋅f (y(�)),

given a share of sophisticated agents.

Proof. We provide the proof in Fact 5 of Appendix Section A.1.

The first result of Theorem 2 states that the SESI share with sample selection, using the naive
inference procedure, approximates the limit equilibrium share with sample selection as sample size
tends to infinity. Instead, the SESI with sample selection, using the sophisticated inference procedure,
approximates the NE share even though there is sample selection. Intuitively, naive and sophisticated
agents become fully informed about y(�) as sample size tends to infinity. However, a sophisticated
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agent uses her knowledge about the sample selection process to cancel the bias. The following re-
formulation of a Bernstein polynomial provides the intuition:

Bd(ℎ�; y(�)) = E
(
� ⋅ f

(
�̂s(Sd∕d)

)
+ (1 − �) ⋅ f

(
�̂n(Sd∕d)

))
,

where Sd counts the number of successes within an agent’s sample (i.e. the number of agents
taking action B) with success probability y(�). When the agent is naive, the law of large numbers
states that the sample average �̂n(Sd∕d) of observed agents taking action B converges in probability
to the expected value y(�) as sample size tends to infinity. As f (⋅) is continuous it should hold that
f (�̂n(Sd∕d)) converges to f (y(�)), becauseE(Sd∕d) = d ⋅y(�)∕d = y(�). The sophisticated inference
procedure is unbiased and consistent (see Fact 7). Unbiasedness implies that the expectation of the
estimator is equal to the true share E(�̂s(Sd∕d)) = E(�̂s(m)) = d ⋅ �∕d = �. Consistency implies that
the sample share converges to the true share as sample size tends to infinity.

4.2 Equilibrium Behavior

In this section, we evaluate how sample selection and the share of sophisticated agents in the population
affect equilibrium behavior. We distinguish two cases. First, we analyze the effect of sample selection
and sophistication on behavior in isolation. With infinite estimation precision there is no uncertainty
about the equilibrium share of agents taking action B. That is, the equilibrium share solely depends
on how agents use the information about the sample selection process and the share of sophisticated
agents in the population. Second, we allow for uncertainty about equilibrium behavior. Uncertainty
comes from the fact that agents only have a finite sample to estimate the equilibrium share.

4.2.1 Behavior with Infinite Estimation Precision

Webegin our analysis of equilibrium behavior with a focus on agents who have large (infinite) samples.
When the sample is large the right hand side of the equation (7) converges to a linear combination of
the true and misperceived cost function (see Theorem 2). In other words, with infinite estimation
precision there is no uncertainty about the share of agents taking action B in equilibrium. We can
rewrite equation (7) as follows:

1 − � = � ⋅ f (�) + (1 − �) ⋅ f (y(�)). (10)

When all agents in the population are sophisticated, sample selection has no effect as the estimator
of the sophisticated agent is unbiased and consistent. To analyse the effect of sample selection we
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require that the share of naive agents in the population is positive. i.e. � ∈ [0, 1).

Theorem 3. If f (�) is monotonically increasing and continuous on [0, 1] for � ∈ [0, 1] and there is

sample selection then:

1. The unique equilibrium share �∗�≠1 decreases as � increases, which holds for any positive share

of naive agents in the population and is independent of whether agents oversample or under-

sample others taking action B.

2. The unique equilibrium share increases (decreases) as the share of sophisticated agents in-

creases if there is oversampling (undersampling) for any given �.

3. The unique equilibrium share with sample selection converges to the unique NE share as the

share of sophisticated agents converges to unity.

Proof. We provide the proof in Appendix A.3.

Intuitively, Theorem 3 states that sample selection causes a deviation from the NE for any positive
share of naive agents in the population, even though there is no uncertainty about the share of agents
taking action B. A sophisticated agent knows about the underlying sample selection problem and
perfectly adjusts her estimate. This reduces the sample selection problem as the share of sophisticated
agents in the population increases. However, unless all agents in the population are sophisticated, the
sample selection issue persists. In other words, the unique equilibrium share with sample selection
equals the NE share if and only if all agents are sophisticated and have infinite estimation precision.

4.2.2 Behavior with Finite Estimation Precision

With finite estimation precision sample size affects behavior due to the uncertainty about the number
of agents taking action B in equilibrium. Whether there is sample selection or not. As one can infer
from the right hand side of equation (7), equilibrium behavior entirely depends on the properties of re-
weighted Bernstein polynomials for a given share of sophisticated agents and a given sample size. To
derive our finite sample size results we need the additional assumption that the cost function f (⋅)must
be convex. This implies the following properties of a re-weighted Bernstein polynomial of sample
size d. We provide the proofs of the respective properties in Appendix A.1.

Property 1. If f (y(�)) and f (y−1(�)) are convex on [0, 1] so that the linear combination is convex:

Bd(ℎ�; y(�)) ≥ Bd+1(ℎ�; y(�)),
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for any share of sophisticated agents and any degree of sample selection. The inequality holds for

� ∈ [0, 1] and is strict for � ∈ (0, 1) unless f (⋅) is linear.

Property 1 implies that a re-weighted Bernstein polynomial of sample size d stochastically domi-
nates a re-weighted Bernstein polynomial of sample size d + 1. Therefore, an increase in sample size
leads to an increase in the equilibrium share. Due to this property the first result of Theorem 3 extends
to the case of finite degree requiring convexity, in addition to monotonicity and continuity. In other
words, the unique equilibrium share in a SESI with sample selection decreases as � increases for any
given sample size.

Property 2. If f (y(�)) and f (y−1(�)) are convex on [0, 1] so that the linear combination is convex

and there is oversampling:

Bd(ℎ0; y(�)) ≥ Bd(ℎ0; �),

for any � ∈ [0, 1] and sample size d ≥ 1, if all agents are naive. Moreover,

Bd(ℎ0; y(�)) ≥ Bd(ℎ�; y(�)) ≥ Bd(ℎ1; y(�)),

for any share of sophisticated agents, any degree of sample selection and d ≥ 2. Both inequalities

hold for � ∈ [0, 1] and are strict for � ∈ (0, 1) unless f (⋅) is linear. The inverse is true when there is

undersampling.

The first result of Property 2 states that for any given sample size the SESI share with sample
selection is smaller (larger) when agents oversample (undersample) others taking action B, compared
to the SESI share without sample selection, if all agents are naive. This highlights the fact that sample
selection is a persistent issue, independent of sample size. The second result of Property 2 is similar
to the second result of Theorem 3, but within a given degree. The re-weighted Bernstein polynomial,
assuming that all agents are naive, stochastically dominates the re-weighted Bernstein polynomial
assuming that all agents are sophisticated for any sample size d > 2 and oversampling.4 As the share
of sophisticated agents increases the re-weighted Bernstein polynomial, assuming that all agents are
naive, converges to the re-weighted Bernstein polynomial assuming that all agents are sophisticated.5

4The inverse is true for undersampling. Note that d = 1 implies that B1(ℎ0; y(�)) = B1(ℎ1; y(�)) for any � ∈ (0, 1).At the extremes (i.e. � ∈ {0, 1}) it holds that Bd(ℎ0; y(�)) = Bd(ℎ1; y(�)) for any given sample size.
5See Figure 3 and 4 in Appendix A.4 for a visual representation.
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Property 3. If f (y(�)) and f (y−1(�)) are convex on [0, 1] so that the linear combination is convex:

Bd(ℎ0; y(�)) ≥ f (y(�)),

Bd(ℎ1; y(�)) ≥ f (�),

Bd(ℎ�; y(�)) ≥ �f (�) + (1 − �)f (y(�)),

for any share of sophisticated agents and any degree of sample selection. The inequality holds for

� ∈ [0, 1] and is strict for � ∈ (0, 1) unless f (⋅) is linear.

Property 3 implies that the SESI share with finite sample size is strictly smaller than the respective
limit equilibrium share. That is, the third result of Theorem 3 does not extend to the finite case even if
all agents in the population are sophisticated. The result highlights the critical role of sample size as a
limiting factor, in addition to sophistication, to overcome the sample selection issue. Intuitively, with
a finite sample of observations, sophisticated agents lack the statistical power to completely eliminate
the sample selection issue.

5 Concluding Comments
This paper investigates how sample selection affects behavior in games with complete information.
The key ingredient to obtain our results is that we model agents as statisticians. In particular, the
modeling approach allows us to show and disentangle how sample selection, sample size, and het-
erogeneity in agents’ inference procedures affects behavior. Sample selection corresponds to the case
where an agent obtains a selected sample of other agents’ actions stemming from a biased data gen-
erating process. We show that an agent will never learn the true action distribution unless the agent
uses statistical inference to overcome the sample selection issue.

We conclude with two comments about how our results concerning behavior are useful to analyze
the effect of sample selection on welfare. We comment on welfare ex-post from the perspective of
agents (i.e the consumers of action B) using equilibrium behavior that we pinned down in Section 4.2.
The first comment is about welfare in large samples when all agents are either naive or sophisticated
as well as a population that consists of a share. The second comment is about welfare implications in
small samples.
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5.1 Welfare with Infinite Estimation Precision

In the case where all agents are either naive or sophisticated and have a large sample, we can express
welfareW (⋅) as a function of � ∈ [0, 1] - the share of agents taking action B:

W (�) = ∫
�

0
(1 − x)dx − f (�) ⋅ �, (11)

where the integral denotes the aggregate benefit � of agents taking actionB and f (�)⋅� denotes the
total cost at any given share of agents taking the action. Naive and sophisticated agents have a different
threshold benefit of � determining whether they take the action or not. However, in the corner cases
where all agents are either naive or sophisticated this threshold is the same for all agents, hence, we
can evaluate aggregate welfare using equation (11). To determine the welfare maximizing share, we
take the derivative ofW (�) with respect to � as follows:

1 − � = )f (�)
)�

⋅ � + f (�). (12)

The left hand side denotes the marginal benefit and the right hand side the marginal cost of an
additional agent taking action B.

Theorem 4. The welfare maximizing share of agents taking action B is strictly smaller than the NE

share and is a global maximum.

Proof. The marginal cost is always greater than or equal to the actual cost by a factor ()f (�)∕)�) ⋅ �
for any given � ∈ [0, 1]:

)f (�)
)�

⋅ � + f (�) ≥ f (�),

which follows directly from the continuity, monotonicity, and convexity property of the cost function
f (⋅) on its domain [0, 1]. We show that the share is a global maximum in Appendix A.3.

Intuitively, the marginal cost curve always lies above the actual cost curve as the cost increase for
all agents who already take action B for each additional agent taking the action. It directly follows
that the rent maximizing share of agents taking action B always lies below the NE share.

We can determine the optimal degree of sample selection that implements the welfare optimal
share of agents taking action B as follows:

)f (�)
)�

⋅ � + f (�) = f (y(�)). (13)
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Note that equation (13) never holds if all agents are sophisticated as sophisticated agents completely
eliminate the sample selection issue with infinite estimation precision.6 Let us revisit our example from
Section 3 and calculate the welfare maximizing degree of sample selection assuming that all agents are
naive. First, we calculate the welfare optimal � by solving equation (12) which equates to � ≈ 0.548.
Second, we solve for the degree of sample selection that implements the welfare optimal �. We plug
� into equation (13) and solve for the optimal degree of sample selection, that is, � ≈ 3.75. In this
example, naivity is good for consumer welfare if agents oversample others actions.

When the population consists of a share of naive and sophisticated agents, there exists a different
threshold benefit of � for each type of agent determining whether the agent takes the action or not. In
this case, we can express the welfare function as follows:

W (�r) = � ⋅
(
∫

�s

0
(1 − x)dx − f (�s) ⋅ �s

)
+ (1 − �) ⋅

(
∫

�n

0
(1 − x)dx − f (�n) ⋅ �n

)
,

where �r ∈ {�s, �n} with the property that � = � ⋅ �s + (1 − �) ⋅ �n. For example, in the corner
case where all agents are naive (i.e. �n = �) we can calculate welfare as in equation (11). From our
analysis of equilibrium behavior we know that there are two moderating factors that work in opposite
directions (see Theorem 3). First, the unique equilibrium share decreases as the degree of sample
selection increases. Second, an increase in the share of sophisticated agents increases the unique
equilibrium share when there is oversampling. A challenge for future research is to disentangle the
effect of sophistication on aggregate welfare and relate it to the welfare maximizing share.

5.2 Welfare with Finite Estimation Precision

With finite estimation precision one has to consider an additional sorting effect due to the uncertainty
stemming from the randomness of observations in small samples - whether there is sample selection
or not. As a comparison, note that in the limit there is "perfect" positive sorting. That is, if a naive
(sophisticated) agent takes action B then all naive (sophisticated) agents with a higher individual ben-
efit take the action as well. In small samples this is not the case as agents estimates differ due to the
randomness of observations. Therefore, agents with a higher individual benefit than an agent who
took the action might not necessarily take it as well. We can use the theory of re-weighted Bernstein
polynomials to quantify welfare in finite samples as follows:

W (�) =
d∑
i=0
bi,d(y(�)) ⋅

(
1 −

[
� ⋅ f

(
�̂s(i∕d)

)
+ (1 − �) ⋅ f

(
�̂n(i∕d)

)])
− f (�) ⋅ �. (14)

6In essence, )f (�))� ⋅ � + f (�) = f (�) never holds.
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To illustrate our point consider a sample size of d = 1 in which case naive and sophisticated agents
arrive at the same estimate and equation (14) becomes:

W (�) =
((
1 − y(�)

)
⋅
(
1 − f (0)

)
+ y(�) ⋅

(
1 − f (1)

))
− f (�) ⋅ �.

There are two possibilities. Either all agents estimate that nobody takes action B or all agents
estimate that everybody takes the action. Agents who estimate that nobody takes the action, implying
zero cost, always take the action - independent of their individual benefit. Agents who estimate that
everybody takes the action, implying maximum cost, never take it. Therefore, an agent with a higher
benefit than another agent that already took the action does not necessarily take the action as well.
A challenge for future research is to facilitate our results of equilibrium behavior to investigate how
sorting affects welfare.
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A Appendix

A.1 Properties of Re-weighted Bernstein Polynomials

Fact 1. If f (⋅) is monotonically increasing on [0, 1] then Bd
(
ℎ�; y(�)

)
is monotonically increasing in

� for � ∈ [0, 1].

Proof. We show that the derivative of Bd
(
ℎ�; y(�)

) wrt. � is positive. Using the chain rule we can
express this derivative as follows:

)Bd
(
ℎ�; y(�)

)
)�

=
)Bd(ℎ�; x)

)x
|||x=y(�) ⋅

)y(�)
)�

From Theorem 7.1.2 in Phillips (2003) we know that )Bd (ℎ� ;x)
)x

|||x=y(�) > 0 for � ∈ [0, 1]. We solve the
other part of the derivative and obtain:

)y(�)
)�

= �
(1 − � + ��)2

,

which is positive for � ∈ (0,∞). Note that if f (�) is monotonically increasing in � ∈ [0, 1] on
[0, 1], then f (y(�)) and f (y−1(�)) are monotonically increasing in � on [0, 1] as well.

Fact 2. If f (y(�)) is convex and continuous on [0, 1] then it holds that Bd(ℎ0; y(�)) ≥ Bd+1(ℎ0; y(�)).

If f (y−1(�)) is convex and continuous on [0, 1] then it holds that Bd(ℎ1; y(�)) ≥ Bd+1(ℎ1; y(�)). If the

first two conditions hold then the linear combination of these conditions is convex and continuous on

[0, 1] and Bd(ℎ�; y(�)) ≥ Bd+1(ℎ�; y(�)). All three inequalities hold for any � ∈ [0, 1] and are strict

for any � ∈ (0, 1) unless f (⋅) is linear.

Proof. FromTheorem 7.1.9 in Phillips (2003) we know that the property holds for any point � ∈ [0, 1],
but without the inner transformation of y(�). As we have the map � = y−1(�), which is a one-to-one
mapping from [0, 1] into [0, 1] it follows that the property also holds for the transformation when all
agents are naive. When all agents are sophisticated the property must hold as �̂s(⋅) maps values from
[0, 1] into [0, 1] as well. Therefore, the property must hold for any linear combination of the two
extreme cases.

Fact 3. If f (�) is convex and continuous on [0, 1] then it holds that Bd(ℎ0; y(�)) ≥ f (y(�)). If

f (y−1(�)) is convex and continuous on [0, 1] then it holds thatBd(ℎ1; y(�)) ≥ f (�). If the first two con-

ditions hold then the linear combination is convex on [0, 1] andBd(ℎ�; y(�)) ≥ �f (�)+(1−�)f (y(�)).

All three inequalities hold for any � ∈ [0, 1] and are strict for any � ∈ (0, 1) unless f (⋅) is linear.
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Proof. One can rewrite a Bernstein polynomial to give it a probabilistic interpretation (see Kowalski
(2006), for example). Additionally, we incorporate our estimation strategy as well as the share of naive
and sophisticated agents as follows:

Bd(ℎ�; y(�)) = � ⋅ E
(
f
(
�̂s(Sd∕d)

))
+ (1 − �) ⋅ E

(
f
(
�̂n(Sd∕d)

))
,

where

Sd =
d∑
i=1
Ai.

Note that A1, A2,… , Ad are independent random variables that either take the value Ai = B or
Ai = H following the Bernoulli law:

P (Ai = B) = y(�) and P (Ai = H) = 1 − y(�).

Thus, we can write the two extreme cases Bd(ℎ0; y(�)) ≥ f (y(�)) and Bd(ℎ1; y(�)) ≥ f (�) as
follows:

E
(
f
(
�̂n(Sd∕d)

)) ≥ f
(
E
(
�̂n(Sd∕d)

)) if � = 0,

E
(
f
(
�̂s(Sd∕d)

)) ≥ f
(
E
(
�̂s(Sd∕d)

)) if � = 1,

where both equations hold by Jensen’s inequality. Note that E(�̂n(Sd∕d)
)
= y(�) as the naive

estimator is biased and that E(�̂s(Sd∕d)
)
= � as the sophisticated estimator is unbiased (see Ap-

pendix A.2). Note that ℎ� is a linear combination of the two extreme cases. Therefore, we can write
Bd(ℎ�; y(�)) ≥ �f (�) + (1 − �)f (y(�)) as:

E
(
� ⋅ f

(
�̂s(Sd∕d)

)
+ (1 − �) ⋅ f

(
�̂n(Sd∕d)

)) ≥ f
(
� ⋅ E

(
�̂s(Sd∕d)

)
+ (1 − �) ⋅ E

(
�̂n(Sd∕d)

))
,

which holds by Jensen’s inequality. We can apply the same arguments as above to the right hand
side and use that f is a linear operator to obtain the stated result:

f
(
� ⋅ � + (1 − �) ⋅ y(�)

)
= �f (�) + (1 − �)f (y(�)).

Fact 4. If f (y(�)) is convex and continuous on [0, 1] and there is oversampling (� > 1) then it holds
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that Bd(ℎ0; y(�)) ≥ Bd(ℎ0; �). If, additionally, f (y−1(�)) is convex and continuous on [0, 1] then it

holds that Bd(ℎ0; y(�)) ≥ Bd(ℎ1; y(�)). If both conditions hold then the linear combination is convex

and continuous on [0, 1] and Bd(ℎ0; y(�)) ≥ Bd(ℎ�; y(�)) ≥ Bd(ℎ1; y(�)). All three inequalities hold

for any � ∈ [0, 1] and d ≥ 2. In all three cases, the inequalities are strict for any � ∈ (0, 1) unless

f (⋅) is linear and the inverse is true when there is undersampling (� < 1).

Proof. Phillips (2003) proves in Theorem 7.1.1 that one can write:

Bd(z; x) =
d∑
t=0
Δtf (0)

(
d
t

)
xt, (15)

where x ∈ {y(�), �}, z ∈ {ℎ0, ℎ1} and i = 0.7 The parameter Δ denotes the forward differences
that are positive as long as f (x) is monotonically increasing. Moreover, the forward differences are
independent of x as:

Δtf (0) =
t∑

k=0
(−1)t−k

(
t
k

)
⋅ f (âr(k∕d)). (16)

Let us illustrate this considering a Bernstein polynomial of sample size d = 2. First, we need to
solve equation (16):

Δ0f (0) = f (âr(0)).

Δ1f (0) = f (âr(1∕2)) − f (âr(0)).

Δ2f (0) = f (âr(0)) − 2 ⋅ f (âr(1∕2)) + f (âr(1)).

Second, we can insert these equations back into equation (15) which yields the required result:

B2(z; x) = f (âr(0)) + 2x ⋅
(
f (âr(1∕2)) − f (âr(0))

)
+ x2 ⋅

(
f (âr(0)) − 2 ⋅ f (âr(1∕2)) + f (âr(1))

)

= (1 − x)2 ⋅ f (âr(0)) + 2x(1 − x) ⋅ f (âr(1∕2)) + x2 ⋅ f (âr(1)).

First, we prove that Bd(ℎ0; y(�)) > Bd(ℎ0; �) holds when naive agents oversample others taking
action B as:

d∑
t=0
Δtf (0)

(
d
t

)
y(�)t >

d∑
t=0
Δtf (0)

(
d
t

)
�t.

7Note that i is the running variable in the original formulation of the Bernstein polynomial (see equation (8), for
example).
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The equation holds whenever y(�) > � which is true for � > 1. The inverse is true whenever
0 < � < 1. Second, we prove that Bd(ℎ0; y(�)) ≥ Bd(ℎ1; y(�)) holds when naive and sophisticated
agents oversample others taking action B. The prove boils down to comparing the forward differences
Δtf (0):

t∑
k=0
(−1)t−k

(
t
k

)
⋅ f (ân(k∕d)) ≥

t∑
k=0
(−1)t−k

(
t
k

)
⋅ f (âs(k∕d)).

One can see that the inequality holds whenever f (ân(k∕d)) ≥ f (âs(k∕d)) which is true for � > 1.
The inverse is true whenever 0 < � < 1. Note that the inequality is strict for d ≥ 2 as Bd(ℎ0; y(�)) =
Bd(ℎ1; y(�)) for d = 1. Third, it directly follows that:

Bd(f (0); y(�)) ≥ (1 − �) ⋅ Bd(ℎ0; y(�)) + � ⋅ Bd(ℎ1; y(�)) ≥ Bd(ℎ1; y(�)),

must hold for � ∈ [0, 1] and � > 1. Again, the inverse it true for 0 < � < 1 and the inequalities
are strict for d ≥ 2.
Fact 5. If f (⋅) is a continuous function on [0, 1] and d is a positive integer then,

lim
d→∞

E
(|||Bd(ℎ0; y(�)) − f (y(�))

|||
)
= 0 if � = 0, (17)

lim
d→∞

E
(|||Bd(ℎ1; y(�)) − f (�)

|||
)
= 0 if � = 1, (18)

lim
d→∞

E
(|||Bd(ℎ�; y(�)) − f

(
� ⋅ � + (1 − �) ⋅ y(�)

)|||
)
= 0 if 0 < � < 1. (19)

Proof. Kowalski (2006) or Konstantopoulos et al. (2018), for example, prove equation (17), but with-
out the inner transformation of y(�). To prove our case, we can apply the same mapping arguments
that we described in Fact 2. To prove equation (18) and (19) note that one can write:

Bd(ℎ�; y(�)) − f
(
� ⋅ � + (1 − �) ⋅ y(�)

)
=

E
(
� ⋅ f

(
�̂s(Sd∕d)

)
+ (1 − �) ⋅ f

(
�̂n(Sd∕d)

)
− f

(
� ⋅ E

(
�̂s(Sd∕d)

)
+ (1 − �) ⋅ E

(
�̂n(Sd∕d)

)))
.

We can use the same arguments as in Fact 3 to derive each of the three equations above.
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A.2 Properties of the sophisticated estimator

Fact 6. We can write the maximum likelihood estimator (MLE) of a sophisticated agent as follows:

�̂s(m) =
m

� + m ⋅ (1 − �)
.

Proof. Agents observe a random sample of size d drawn i.i.d. from a Bernoulli distribution with
success probability y(�). The agent uses MLE to estimate the most likely parameter that generated the
sample. That is, the agent maximizes the following likelihood function:

(y(�)) = y(�)d⋅m ⋅ (1 − y(�))d⋅(1−m),

where m denotes the sample mean. In other words, the share of agents that take action B in the
sample d. We can take the logarithm, maximize (y(�)) with respect to y(�), and simplify:

log(y(�)) = d ⋅ m ⋅ log(y(�)) + d ⋅ (1 − m) ⋅ log(1 − y(�)),

) log(y(�))
)y(�)

=0 ∶
(
dm ⋅

1
y(�)

− d(1 − m) ⋅ 1
1 − y(�)

)
⋅
)y(�)
)�

= 0,

m = y(�).

Note that we can divide by )y(�)∕)� as it is positive (see Fact 1). That is, the maximum of the log-
likelihood function is where the sample mean m equals the success probability y(�). Without sample
selection (i.e � = 1), the sample mean equals the population share � of agents that choose action B.
With sample selection (i.e. � ≠ 1) the sample mean equals y(�). A sophisticated agent is aware of
the sample selection problem. We derive the MLE of the sophisticated agent by inserting the sample
selection process from equation (2) and solving for � as follows:

m = y(�),

m = � ⋅ �
� ⋅ � + (1 − �)

,

�̂s(m) =
m

� + m ⋅ (1 − �)
.

Fact 7. The MLE of the sophisticated agent is unbiased and consistent.

Proof. The proof of unbiasedness closely follows Bjerre-Nielsen and Busch (2021) and we refer the
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reader to this article for details. In essence, one must show that the expectation of the sophisticated
estimator equals the true share to prove unbiasedness, i.e. E(�̂r(m)) = �. Note that we can write:

E(�̂s(m)) = E
( m
� + m ⋅ (1 − �)

)
= y(�)
� + y(�) ⋅ (1 − �)

,

as E(m) = y(�). Now we can insert the sample selection process from equation (2) and simplify:

y(�)
� + y(�) ⋅ (1 − �)

=
�⋅�

�⋅�+(1−�)

� + �⋅�
�⋅�+(1−�)

⋅ (1 − �)
= �.

To prove consistency of the sophisticated estimator one needs to show that the estimator is identi-
fied, � is part of a convex parameter set, and the log-likelihood function is concave. The sophisticated
estimator fulfills all three criteria and we we refer to Bjerre-Nielsen and Busch (2021) for details.
Furthermore, the sophisticated estimator is the best unbiased estimator, because agents cannot learn
anything from the sequence of draws. In our setup, agents play a static game with complete informa-
tion. That is, agents know either the true share or a share skewed by the sample selection process.

A.3 Equilibrium Behavior and Welfare

Proof of Theorem 3

Proof. To evaluate how sample selection affects behavior, we take the derivative of the right hand side
of equation (10) with respect to �:

d
d�

(
� ⋅ f (�) + (1 − �) ⋅ f (y(�))

)
= (1 − �) ⋅ )f (y(�))

y(�)
⋅
)y(�)
�

,

where

)y(�)
�

= � − �2
(� ⋅ � + (1 − �))2

.

The first order condition with respect to � is positive for � ∈ [0, 1) and � ∈ (0, 1). That is, as
� increases the equilibrium share of agents taking action B decreases given a positive share of naive
agents in the population. Note, the left hand side of equation (10) is 1 − �.

To evaluate how the share of sophisticated agents affects behavior, we take the derivative of the
right hand side of equation (10) with respect to �:

d
d�

(
� ⋅ f (�) + (1 − �) ⋅ f (y(�))

)
= f (�) − f (y(�)).
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One can see that when there is oversampling (i.e. � > 1) the derivative is negative as f (�) <
f (y(�)). That is, an increase in the share of sophisticated agents leads to an increase in the equilibrium
share of agents taking actionB. When there is undersampling (i.e. 0 < � < 1) the derivative is positive
as f (�) > f (y(�)). That is, an increase in the share of sophisticated agents in the population decreases
the equilibrium share of agents taking actionB. In both cases, an increase in the share of sophisticated
agents decreases the gap to the respective limit equilibrium.

Proof that the welfare maximizing share is a global maximum.

Proof. To show that the welfare maximizing share is a global maximum, we derive the second order
derivative ofW (�) with respect to � as follows:

)2W (�)
)�2

= 0 ∶ −1 −
()2f (�)

)�2
⋅ � + 2 ⋅ )f (�)

)�

)
< 0, (20)

which is negative for any � ∈ [0, 1].8 Hence, the welfare function is concave. The continuity
property of the cost function f (⋅) on the closed interval [0, 1] implies that at least one maximum and
minimum exists by the extreme value theorem. There are two options. Either the global maximum
is the local maximum in the interior of [0, 1] or it lies at its boundaries. Note that W (0) = 0 and
W (1) = −1∕2, which is the global minimum. Thus, W (�) has a global maximum that lies in the
interior of [0, 1].

8Note that the expression in brackets of equation (20) is positive as the cost function f (⋅) is continuous, monotonically
increasing, and convex on its domain [0, 1].
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A.4 Additional Figures
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Figure 2: Equilibria with (� = 0.5) and without sample selection
The panels illustrate the unique equilibrium shares. The intersection of the black and red lines illustrate the limit equilibria
with (dashed) and without (solid) sample selection. The intersection of the black and blue lines denote the SESI shares.
PanelA illustrates the limit equilibria; Panel B replicates the solution of Salant and Cherry (2020); PanelC shows the case
when all agents are naive; Panel D shows the case when all agents are sophisticated. In all panels we assume that � = 0.5
when there is sample selection and � = 1 corresponds to the case without sample selection.
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Figure 3: Convergence within a given sample size for � = 2
The panels illustrate the unique equilibrium shares within a given sample size. The intersection of the lines indicate the
unique equilibrium depending on the share of sophisticated agents. Panel A illustrates the equilibrium shares for sample
size d = 3; Panel B illustrates the equilibrium shares for sample size d = 10; Panel C illustrates the equilibrium shares
for sample size d = 100; Panel D illustrates the equilibrium shares for an infinitely large sample. In all panels, we assume
that � = 2.
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Figure 4: Convergence within a given sample size for � = 0.5
The panels illustrate the unique equilibrium shares within a given sample size. The intersection of the lines indicate the
unique equilibrium depending on the share of sophisticated agents. Panel A illustrates the equilibrium shares for sample
size d = 3; Panel B illustrates the equilibrium shares for sample size d = 10; Panel C illustrates the equilibrium shares
for sample size d = 100; Panel D illustrates the equilibrium shares for an infinitely large sample. In all panels, we assume
that � = 0.5.
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Chapter II

Statistical inference and misperceptions in social networks
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1 Introduction
In many real-life situations people base their decisions on what they think other people will do, e.g.
to conform to, copy, or oppose others’ behaviors. As people rarely observe everyone in a population,
they must guess what other people do based on what they actually observe - for example their friends.
However, observations based on friends are skewed by a statistical law known as the friendship para-
dox (Feld, 1991), which states that social relations are not representative of the underlying population.
Therefore, inferences from friends can cause misperceptions which may lead to unintended behavior.

Consider Jackson (2019)’s example of how the friendship paradox may explain why students mis-
perceive alcohol consumption of others’ in school, which, in turn, inflates own and others’ alcohol
consumption behavior. Before a typical school party, students must decide upon the amount of alco-
hol to bring for consumption. They attempt to guess the average alcohol consumption of other students
by thinking about what their friends would do. Students bring more of their own alcohol when they
perceive others’ to bring more. However, popular students respond more to their perceptions of others’
as they havemore social connections and, as a consequence, bringmore alcohol on average. Therefore,
students may overestimate how much alcohol to bring and consume when forming their perceptions
based on friends, which in turn may lead to an inflation of alcohol consumption behavior among all
students. Now assume that some students know that popular students are not representative of the en-
tire student population. How can students use this knowledge to estimate correct perceptions of others’
consumption behavior and how does it affect their own behavior? Does knowledge affect consumption
behavior in the entire school if some students use it and some do not? What are the implications for
perceptions and behavior if students can base their estimate only on a limited number of others’?

In this paper, we provide a micro-foundation of how people form beliefs about others’ character-
istics, given information about their social relations, and show how misperceptions affect own and
others’ behavior. We make two key assumptions. First, we assume that a share of agents in the popu-
lation are sophisticated and the rest are naive. Sophisticated agents are aware of the sampling bias due
to the friendship paradox, whereas naive agents think that their social relations constitute a representa-
tive sample of the population. Second, sophisticated agents use an unbiased and consistent estimation
rule to infer population characteristics. In other words, we do not assume that agents know the correct
or biased distribution of population characteristics. Our two assumptions come from the empirical
literature showing that people use network knowledge (i.e. people are not naive) and usually do not
know everyone in a network.1 Moreover, our setup allows us to illustrate the role of sample size for
estimation precision and behavior.

1We provide a thorough discussion of the two assumptions and relate our paper to the relevant literature in Section 5.
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We consider a large population that consists of two types of people. Popular people (high degree)
who have many social connections and less popular people (low degree) who have fewer connections.
We model the degree distribution as an unknown state of the world and agents must estimate the
population share of popular people based on their sample of network neighbors. We assume that
naive and sophisticated agents know the share of popular people among network neighbors and their
respective degree. Misperceptions arise due to the friendship paradox, which entails an oversampling
of popular people as network neighbors. Jackson (2019) shows how the friendship paradox causes a
correlation between an agent’s degree and her behavior by embedding naive agents in a game where
behavior has strategic complementarity.2 That is, the friendship paradox affects population behavior
through misperceptions of the degree distribution.

We show that when all agents in the population are sophisticated and the number of friends is
large, then the friendship paradox has no impact on population perception and behavior, despite agents
only seeing a biased sample of network neighbors. When all agents in the population are naive, our
results align with Jackson (2019) and the friendship paradox causes an inflation of population behavior.
When the population consists of a mix of naive and sophisticated agents, sophisticated agents choose
higher equilibrium actions compared to the case where all agents are sophisticated, even though they
(correctly) adjust their estimate of the degree distribution. The reason is that equilibrium behavior of
naive agents does not change. Naive agents do not think that network information is useful, hence
(incorrectly) believe that all other agents are naive. This is common knowledge among sophisticated
agents, who increase equilibrium actions as the share of naive agents in the population increases. The
contribution here is to provide a micro-foundation of how the friendship paradox may or may not
cause systematic misperceptions as well as changes in behavior. Our addition of sophisticated agents
is key, because it provides a new channel allowing the researcher to study how the use of network
information and which kind (here degree information) determines misperceptions and behavior in
mixed populations.

We show that the precision of information, in terms of the number of friends observed, plays a
fundamental role in determining perceptions and behavior - independent of the friendship paradox.
Intuitively, the estimate of the population degree distribution is imprecise, whether agents are sophis-
ticated or not, when the sample of network neighbors is small. The contribution here is to show that,
depending on the sample size, estimation precision defines whether agents can use network informa-
tion beneficially rather than sophistication. Again, this is only possible because we demand that agents
form perceptions based on observations of network neighbors using network information - as agents

2He also analyses the effect of the friendship paradox in settings where behaviors are strategic substitutes.
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only have access to a finite set of network neighbors in real world settings.
We show that a sophisticated agent, who uses an unbiased and consistent maximum likelihood

estimator, can correctly estimate the population degree distribution using neighbor degree information
while a naive agent cannot. We derive the maximum likelihood estimator and prove its properties. We
relate to the literature that models agents as statisticians (see e.g. Salant and Cherry, 2020; Liang,
2019). In this literature, agents estimate a parameter using data they obtain from an unbiased data
generating process and behave rationally with respect to the estimate they get. In our paper, agents
obtain data (network neighbors) from a biased data generating process. That is, agents do not learn
the true underlying parameter (the true share of high degree agents) even if they have access to an
infinitely large sample. The contribution here is to develop a framework where agents do or do not
use statistical inference to correct for a naturally occurring sampling bias, present in all real world
networks, using information about the data generating process (degree information).

The remainder of this paper proceeds as follows. We introduce the model in Section 2 and derive
our main results in Section 3. We derive the maximum likelihood estimator and its properties in
Section 4. Section 5 reviews the relevant literature and we conclude in Section 6. The Appendix
contains auxiliary results as well as proofs.

2 Model
Let there be a population of agents, denoted byN , which is infinite. Agents are nodes in an undirected
network g. Let ij ∈ g denote that i and j have a link and thus are neighbors in the network. Assume
that the set of "local nodes" for an agent be its neighbors and denote this byNi. We assume that each
agent i either has a high degree dH or a low degree dL, with dH > dL and dL > 0.3 In other words,
it means that high degree agents have more connections than low degree agents. To quantify this, we
define � = dH∕dL − 1 as the excess ratio. An agent knows the subset of high degree agents among
neighbors �̃i = � ∩Ni, where we denote the size of the neighborhood by di = Ni. Let � denote the
share of high degree agents in the population. That is, the share of high degree agents (�) and the
share of low degree agents (1 - �) constitute the degree distribution. The structure of the network
is that edges are formed randomly, without any sorting by degree. To ensure the constraints on the
degree distribution we assume that the network was generated by the configuration model (see e.g.
Barabási, 2016).4

3Importantly, we can make this assumption without any loss of generality because one low and one high degree are
enough to generate any desired variation in average degree.

4The configuration model produces a network as follows. We assign a degree di to each agent i by creating di openended links. Then we randomly select two open ended links and connect them until no open ended links are left.
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We assume that the data generating process for the share of high degree neighbors �̃i is affected by
the degree of agents in addition to their population share. Hence, unlike a standard setup of estimating
� in a binomial distributed sample, the draw of high and low degree neighbors is not equally likely.
We can write the likelihood to draw a high degree neighbor as:

E[dj = dH |�, dL, dH ] =
dH�

dH� + dL(1 − �)
= �(1 + �)
�(1 + �) + (1 − �)

, ∀i, j ∈ N ∶ j ∈ Ni. (1)

The implications are as follows. First, the larger the share of high degree agents � in the population,
the more likely it is to draw a high degree agent as a neighbor. Second, the higher the actual degree dH
of high degree agents, the higher the likelihood to draw one as a neighbor. We assume that network
neighbors are drawn from an infinite set of agents. The assumption that the population is infinite
implies that there is independence between draws. In other words, the likelihood to draw a high degree
neighbor is constant across draws.5

We impose restrictions on agents’ knowledge and perceptions. Each agent observes the share of
high degree agents �̃i among its neighbors and knows the set of degrees di ∈ {dL, dH}. Although each
agent possesses the same kind of information, they process it either in a naive or sophisticated manner.
We say that agents use an updating rule ri for forming an expectation about the share of high degree
agents based on the set of observed neighborsNi, where the applied rule is either naive or sophisticated
r ∈ {n, s}. The crucial difference between types is that the naive agent believes that what she sees
(�̃i) is in fact the truth, i.e. she does not incorporate degree information about network neighbors
into her estimate. That is, a naive agent thinks that her network neighbors are a random draw from
the population. On the other hand, a sophisticated agent uses an unbiased and consistent maximum
likelihood estimator, using degree information, to estimate the correct share of high degree agents
in the population. We investigate these rules in Section 4, where we formally derive the maximum
likelihood estimator and establish its properties.

We denote the share of sophisticated agents in the population by �. Conversely, 1 − � denotes the
share of naive agents. We assume there is common knowledge, both, of rationality and about the fact
that agents observe the share of high degree neighbors. However, we do not assume there is common
knowledge about how other agents process signals, i.e. �. Instead, we assume naive agents believe
(incorrectly), both, that all other agents are also naive, i.e. � = 0, and that these beliefs are common
knowledge among all agents. Conversely, we assume sophisticated agents believe (correctly) that the
share equals �. Moreover, we assume sophisticated agents know of the common knowledge among

5Here, the use of the configuration model is crucial, because it allows us to compute network statistics even tough we
assume an infinite number of agents.
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sophisticated agents about � as well as about the common knowledge among naive agents.
To determine how an agent’s use of information from its local network affect its own and others’

behavior, we modify Jackson (2019)’s model framework where the friendship paradox causes misper-
ceptions that affect agents’ behavior. The setup consists of agents who choose an action, where actions
exhibit strategic complementarity in a simultaneous move game. We define the expected utility func-
tion as follows:6

EUi(xi, �i, di, ri, �̃i) = �ixi + axidiE[xj|ri, di, �̃i] −
cx2i
2
. (2)

The first term denotes an agent’s own action, xi ∈ IR+ multiplied by her preference �i ∈ Θ (where
�i ∈ Θ is a compact subset of IR+) for the action.7 We limit our analysis to the case of linear quadratic
utility to obtain a closed form solution. We assume that agents’ preferences for actions are uncorrelated
with degree di. That is, agents (correctly) believe that preferences of network neighbors are randomly
drawn from the known distribution of preferences. This assumption allows us to focus on mispercep-
tions caused by the friendship paradox where the degree of an agent solely determines her type. We
assume that an agents updating rule r is independent of degree. For example, we do not assume that
more popular people are more likely to be sophisticated (i.e. think that network information is useful).
The second term governs the complementarity in actions, i.e. the extent that own incentives for the
action depend on other agents’ actions. In other words, agents care about how their action matches
with average actions of others in the population. The strength of complementarity depends on agents’
own degree di and its level a > 0. The third term denotes quadratic costs, where c is a positive scalar.

We deviate from Jackson (2019) by replacing expectations in the second term by not assuming
that agents have ex-ante knowledge about the degree distribution. That is, we assume that agents only
have an uninformative prior about the population degree distribution, which means that the true share
of high degree agents (�) is uniformly distributed on (0, 1). In other words, agents think that every
possible share of high degree agents in the population is equally likely, ex ante. In particular, we
replace prior beliefs over actions of others with beliefs conditional on observing a set of neighbors
Ni and an information updating rule r. The updating rule determines how the agent uses information
contained in Ni to estimate the underlying population degree distribution. We express the agents’
expectations about other agents’ behavior as a function of sufficient statistics rather than the actual
sample. This is possible because the individual degree (di), which is the sample size, and the observed
share of high degree agents (�̃i), together, encompass all the necessary information from the sample

6We note that we have omitted a final term from equation (2), compared to Jackson (2019), which governs a global
externality which is independent of xi. We omit this term because we only focus on behavior.

7Note that i denotes a generic member of the network.
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of network neighbors Ni to obtain the estimated share of high degree agents. Note that di = |Ni|
determines the precision of the estimate. Intuitively, a larger sample of network neighbors allows
agents to improve the precision of the estimate.

3 How network perceptions affect behavior
We proceed with the derivation of our main results, where we compute equilibrium actions for naive
and sophisticated agents, depending on their share in the population, under infinite and finite estimation
precision. We derive the unique Bayesian Nash equilibrium, where all agents simultaneously choose
an action xi given their beliefs. The equilibrium is a function of an agent’s type, because we allow
agents to differ with respect to their preference (�i) for action xi, their degree (di), updating rule (ri),
and observed share of high degree agents (�̃i). However, for each type of agent, beliefs over the rest
of the population are the same. We compute the first order condition for utility wrt. their own action
xi and obtain the following best response function:

xi(�i, di, ri, �̃i) =
�i
c
+
adiE[xj|ri, di, �̃i]

c
. (3)

3.1 Equilibrium expectations and actions under infinite precision

We pin down an expression for individual expectations about other agents’ actions. We do this by
computing the conditional expectation with respect to the updating rule and information from observ-
ing network neighbors. In our computation, we use that a naive agent is defined as someone who
essentially ignores network information, for example, because a naive agent thinks that this informa-
tion is not useful. Therefore, a naive agent does not condition her action on how other agents in the
population form their estimates. In other words, this corresponds to the case where a naive agent
thinks that all other agents in the population are naive too (� = 0). Here, we limit our analysis to
the case of asymptotic infinite precision (we relax this assumption in Section 3.3). The assumption
allows us to solely focus on misperceptions caused by the friendship paradox through the updating
rule r rather than precision. Intuitively, we assume that all agents have a sufficiently large sample of
network neighbors to estimate the share of high degree agents in the population - i.e. all agents who
use the same rule converge to the same estimate. Therefore, the estimated share of high degree agents
only depends on the updating rule r, and not precision, which implies that high and low degree agents
have the same conditional expectations. Specifically, we assume that limdL→∞ where the degree ratio
dH∕dL is fixed. To ensure that our model is independent of the scaling of the minimum sample size,

39



dL, we normalize complementarities by defining a = �∕dL. We proceed with our first result on the
structure of equilibrium expectations.

Lemma 1. Consider a network generated by the configuration model with two distinct types of degrees
where preferences (�i) and degree (di) are uncorrelated. For asymptotic infinite low degree and a con-

stant excess ratio (�) it holds that expectations of other agents’ actions are characterized by equation

(4) for naive agents and equation (5) for sophisticated agents.

lim
dL→∞

E[x|n, �̃(�, �)] = E[�]
c − � ⋅

[
1 + � ⋅ �̃(�, �)

] , (4)

lim
dL→∞

E[x|s, �̃(�, �)] =
E[�] + � ⋅ [1 + � ⋅ �̃(�, �)] ⋅ (1 − �) ⋅ E[�]

c−�⋅[1+�⋅�̃(�,�)]
c − � ⋅ [1 + � ⋅ �] ⋅ �

. (5)

Proof. We provide the proof of Lemma 1 in Appendix A.2.

In the case of asymptotic infinite low degree naive agents have the same expectations, irrespective
of the share of sophisticated agents �. However, sophisticated agents adapt their expectations given
the share of sophisticated agents. We note that in the case where the measure of naive agents is zero,
then the expectations for sophisticated agents is simplified and is equivalent to equation (4) where
�̃(�, �) is substituted for the estimate of a sophisticated agent �. Our proof of the mixed case relies on
the fact that we only need to compute equilibrium expectations from the perspective of a sophisticated
agent, because naive equilibrium expectations are independent of the share of sophisticated agents. A
sophisticated agent knows that naive agents do not care about the type of other agents in the population.
Thus, we can treat limdL→∞E[x|n, �̃(�, �)] as a constant.

We plug the expressions for equilibrium expectations separately into the best response function (3)
to derive an expression for equilibrium actions. This allows us to analyze how misperceptions of the
degree distribution affect population behavior. We compute the following equations for equilibrium
actions:

lim
dL→∞

x(�i, di, n, �̃(�, �)) =
�i
c
+

adiE[�]
c ⋅ (c − � ⋅ [1 + � ⋅ �̃(�, �)])

, (6)

lim
dL→∞

x(�i, di, s, �̃(�, �)) =
�i
c
+
adi

(
E[�] + � ⋅

[
1 + � ⋅ �̃(�, �)

]
⋅ (1 − �) ⋅ E[�]

c−�⋅[1+�⋅�̃(�,�)]
)

c ⋅ (c − � ⋅ [1 + � ⋅ �] ⋅ �)
. (7)

We can see that an increase in complementarities a, as well as own degree di, increases equilibrium
actions. It’s exactly these complementarities that provide the channel through which the friendship
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paradox biases perceptions of population shares. Intuitively, high degree agents benefit more from
complementarities, hence choose a higher action in equilibrium which then feeds back to the popula-
tion and increases overall population behavior. An increase in the cost of taking the action decreases
equilibrium actions. Note that we assume that c > � ⋅ [1 + � ⋅ �̃(�, �)] to ensure that iterative best re-
sponses of agents converge and not diverge in equilibrium. The main focus in this section is to analyze
how perceptions governed by � about the share of high degree agents determine equilibrium actions.
We compare equilibrium actions to a benchmark case where all agents know the population share of
high degree agents �. Hence, a case where misperceptions are absent. We state our main result in the
following theorem that pins down the impact of the friendship paradox on behavior.

Theorem 2. Consider a network generated by the configuration model with two distinct types of de-

grees where preferences (�i) and degree (di) are uncorrelated. For asymptotic infinite low degree and

a constant excess ratio it holds that in the unique equilibrium:

1. If all agents use naive updating (� = 0) then equilibrium actions are higher for all agents

compared to the benchmark case without misperceptions.

2. If all agents use sophisticated updating (� = 1) then equilibrium actions are equal to the bench-

mark case without misperceptions.

3. If a share (�) of agents in the population use sophisticated updating and a share (1 − �) use

naive updating, then

(a) equilibrium actions decrease in � for sophisticated agents.

(b) equilibrium actions correspond to the case where all agents use naive updating (� = 0)

for naive agents.

Proof. We provide the proof of Theorem 2 in Appendix A.2.

The first and second result of Theorem 2 cover the two extreme cases where all agents in the
population are either naive or sophisticated. That is, agents can overcome misperceptions when using
degree information of network neighbors. In other words, equilibrium behavior is not affected by the
friendship paradox when sophisticated agents use neighbor degree information to estimate the share
of high degree agents in the population. However, when agents act naively, the friendship paradox
increases equilibrium behavior of all agents, which is consistent with the result of Jackson (2019) for
the naive case. In our setting, agents have "as if" perfect knowledge of the degree distribution due to an
infinite set of network neighbors, whereas in Jackson (2019) they know the degree distribution, ex ante.
Intuitively, a naive agent, who essentially ignores network information, experiences higher activity
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than there actually is in the population. As a consequence, equilibrium behavior increases given the
complementarities. A sophisticated agent, who knows that the activity of her network neighbors is not
representative of the population distribution, uses neighbor information to estimate the correct level
of population activity.

The third result of Theorem 2 covers the case where the population consists of a mix of naive and
sophisticated agents (0 < � < 1). Sophisticated agents want to increase (decrease) equilibrium actions
as the share of naive agents in the population increases (decreases). Even though sophisticated agents
correctly estimate the population share of high degree agents, they choose higher equilibrium actions
as compared to the case where all agents in the population use sophisticated updating. Intuitively,
sophisticated agents know that naive agents do not form beliefs about how others’ update. Hence,
naive agents choose an equilibrium action that is inflated by the friendship paradox, where the size
of the inflation depends on their share in the population. With strategic complements, sophisticated
agents benefit from choosing higher equilibrium actions due to the mistake naive agents make.

3.2 An illustrative example

We now show an example that can help understand the mechanics of the model and illustrate Theorem
2. We assume that the share of high degree agents � is 40%, and thus the share of low degree agents is
60%. High degree agents have 6 links while low degree agents have 4, where we capture the fact that
high degree agents are 1.5 times more popular than low degree agents by the excess ratio (� = 6

4
−1 =

0.5).8 As high degree agents have more network links, the observed share of network neighbors that
are of high degree (�̃i = 0.5) is not representative of the population distribution. Figure 1 displays a
finite network representation of these properties.

In this example, we assume �i = 1
2
for all i which represents an agent’s individual preference for

action x, and thus E[�i] = 1∕2. We also assume that � = 4meaning that the level of complementarity
a = �∕dL = 1, and c = 6 denotes the cost of taking action x. Agents don’t know �, hence they need
to estimate it using either the naive or sophisticated rule. In the following, we compute equilibrium
expectations for each type of agent, depending on their share in the population, and show how this
translates into equilibrium actions and expected utility.

Figure 2 illustrates equilibrium expectations of other agents actions x (y-axes) depending on the
share of sophisticated agents in the population (x-axes). We calculate equilibrium expectations of
naive agents (blue line) about other agents’ actions using equation (4) and the benchmark case (red line)
assuming that agents know the population degree distribution.9 The calculations show that equilibrium

8See Section 4 for a detailed derivation of �.
9We provide detailed calculations in the appendix.
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Figure 1: Finite network representation
Figure 1 shows and example network consisting of 10 agents (nodes), where black nodes represent high degree agents
(dH = 6) and white nodes represent low degree agents (dL = 4). Each agent observes that 50% (= �̃) of network
neighbors are of high degree. As in an infinite network, estimation precision does not play a role as, both, high an low
degree agents, if sophisticated, correctly estimate �. Furthermore, the network features a degree-assortativity coefficient
of 0 as agents do not sort by degree in an infinite network.

expectations of others’ actions increase if all agents are naive (= 0.5) compared to the benchmark case
(= 0.417). One can see that as the share of sophisticated agents in the population increases, equilibrium
expectations decrease for sophisticated agents (black line). Recall, we assume that a sophisticated
agent knows � and knows that a naive agent does not use network information. Therefore, unless all
agents in the population are sophisticated, a sophisticated agent expects higher actions in equilibrium
due to the share of naive agents who do not use network information. If all agents are sophisticated,
each agent uses an unbiased and consistent estimator to correctly estimate �. Thus, the calculation of
equilibrium expectations aligns with the calculation of the benchmark case.
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Figure 2: Equilibrium Expectations
Figure 2 shows equilibrium expectations (y-axes) of naive agents (dotted blue line) and sophisticated agents (black line)
depending on the share of sophisticated agents in the population (�). The dotted red line depicts the benchmark case where
misperceptions are absent.

Figure 3 shows how equilibrium expectations translate into equilibrium actions and expected utility
for each type of agent (high or low degree), using equation (6) and (7) to compute equilibrium actions
and equation (2) to compute expected utility. In this example, types only vary by degree di ∈ {dL, dH}
and updating rule r ∈ {n, s} since preferences �i for action x are the same for all i. For the benchmark
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case equilibrium actions equal to 0.361 for the low type and 0.5 for the high type.10 Utility equates
to 0.391 for the low type and 0.75 for the high type. One can see that high degree agents enjoy more
interaction, thus have a higher utility than low degree agents.
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Figure 3: Equilibrium Actions and Utility
The left panels of Figure 3 show equilibrium actions (y-axes) for each type of agent (high and low degree). The right panels
show utility (y-axes) for each type of agent (high and low degree). The dotted blue lines depict equilibrium actions and
utility for naive agents and the black line depicts equilibrium actions and utility for sophisticated agents depending on the
share of sophisticated agents in the population (�). The dotted red lines depict the benchmark case where misperceptions
are absent.

When all agents are naive, each agent estimates that 50% of agents in the population are of high
degree, i.e. �̂i = �̃i. We compute equilibrium actions for each type of naive agent where equilibrium
actions equal to 0.417 for the low type and 0.583 for the high type. In comparison to the benchmark
case, equilibrium actions increase for all types of naive agents. Next, we compute expected utility
for both types of naive agents. Here, we compare the utility change directly to the benchmark case.
That is, we use the actions naive agents choose under misperceptions about expected actions of oth-
ers E[x|n, �̃], but use correct expectations E[x|�] to calculate the utility change. The result is that
expected utility decreases for naive agents compared to the benchmark case for each type of agent.

Equilibrium actions decrease for both types of sophisticated agents as the share of sophisticated
10Note that average actions are equal to equilibrium expectations in the benchmark case (i.e. 4

10 ⋅ 0.5 +
6
10 ⋅ 0.361 =

0.417 = E[x|�]). Under the assumption that people know the population degree distribution there is no need to form
expectations and equilibrium actions can be calculated directly.
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agents in the population increases. As equilibrium actions start to approach the optimal level (dotted
red line), for both types of agents, expected utility increases. If all agents in the population are so-
phisticated the calculation of equilibrium actions and expected utility align with the benchmark case.
In other words, if all agents in the population are sophisticated, the friendship paradox does not affect
behavior even though agents do not know the population degree distribution, ex ante. This is the main
result of this paper.

3.3 Equilibrium expectations and actions under finite precision

In this section, we relax the assumption of infinite asymptotic precision. This allows us to analyze how
estimation precision affects equilibrium expectations and behavior. In particular, we do not assume
that agents, naive or sophisticated, have a sufficiently large sample to correctly estimate the share of
high degree agents in the population. This entails that high and low degree agents arrive at different es-
timates, even though they use the same updating rule. Note, network neighbors are still drawn i.i.d (i.e.
from an infinite pool of potential network neighbors), but an agent only has a finite sample of network
neighbors to estimate the share of high degree agents in the population. In other words, the maximum
likelihood estimator of a sophisticated agent is still unbiased but not consistent anymore. In the case
where agents have finite degree, equation (8) of Lemma 3 characterizes equilibrium expectations of
other agents’ actions.

Lemma 3. Consider a network generated by the configuration model with two distinct types of degrees
where preferences (�i) and degree (di) are uncorrelated. For finite degree and a constant excess ratio

(�) it holds that expectations of other agents’ actions are characterized by equation (8) for naive and
sophisticated agents.

� = −
(�
c
Π − IL

)−1 E[�i]
c

⋅ JL. (8)

Proof. We provide the proof of Lemma 3 in Appendix A.2.

In the equilibrium associated with the finite degree setting each type of agent, as defined by
(ri, di, �̃i), has a different expectation about the equilibrium actions of others. That is, � is the vec-
tor of beliefs for each type about other agents actions. The solution is mainly affected by Π which
denotes the beliefs for each type about the likelihood of observing other agents’ types as a function
of �, �, and �. IL is the identity matrix and JL a vector of one’s, both of size L, where L denotes the
number of unique types. The difference between the finite and infinite case is that in the finite case

45



there is also variation in beliefs which stems from the observed share of high degree agents �̃i, which
is constant in the infinite case.

Figure 4 visualizes Lemma 3. We visualize equilibrium expectations (y-axis) depending on the
true share of high degree agents in the population (x-axis) for a fixed set of parameters (i.e. � = 2,
� = 1.2, E[�] = 1, c = 3.7, and � ∈ [0, 0.5, 1]). The figure shows that as the sample of network
neighbors increases (i.e. estimation precision increases) equilibrium expectations of the finite case
(blue lines) converge to the infinite case (red line). To isolate how estimation precision affects equi-
librium expectations, we require a constant excess ratio �. As low degree converges towards infinity
high degree increases proportionally. In other words, we analyze the effect of estimation precision by
holding misperceptions due to the friendship paradox constant. For example, consider the case where
low degree is equal to dL = 2 or dL = 4. A constant excess ratio of � = 2 implies that high degree is
equal to dH = 6 and dH = 12, respectively.
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Figure 4: Equilibria with finite degree: convergence and comparison
Figure 4 illustrates the convergence from finite (blue lines) to infinite degree (red line) for a fixed excess ratio of � = 2.
Equilibrium expectations are depicted on the y-axis and the true share of high degree agents � on the x-axis. Moreover, we
fix expectations of others preferences for action x to E[�] = 1, we normalize complementarities by � = 1.2, and choose
the cost to take action x to be c = 3.7. We compute equilibrium expectations for three different shares of sophisticated
agents in the population � ∈ [0, 0.5, 1]. The left panel denotes the case where � = 0, the middle panel denotes the case
where � = 0.5, and the right panel denotes the case where � = 1.

When inspecting Figure 4 one sees that as the degree/sample of agents increases then the expecta-
tions about others’ action in equilibrium decreases. This pattern holds irrespective of estimation rule
and for all levels of degree. In fact, it holds not only for the illustrated set of parameters but for any of
the approximately five million different feasible parameter combination that we checked computation-
ally.11 The numerical examination of how the precision of signals affects agents equilibrium actions

11We constructed a grid of parameter combinations spanned by � ∈ {1, 2,… , 20}, � ∈ {0.1, 0.2,… , 12}, and c ∈
{1, 10, 20,… , 250} such that the constraint c > � ⋅[1+�] holds. In total, there were 44,458 combinations of the parameters.
We verified the condition held for any value of � ∈ {0.00, 0.01,⋯ , 1.00}, which implies 4,490,258 (= 44458 ⋅ 101)
combinations in total.
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led us to articulate the conjecture below.

Conjecture 4. For any combination of low and high degree, if both of these values are doubled then

equilibrium perceptions and actions are lower when keeping other type characteristics constant.

In some situations, the effect of sophistication may actually play a minor role compared to the
effect of precision. This situation is evident in Figure 4: If one compares the case of all sophisticated
agents with low precision (e.g. dL = 2) with the case of all naive agents with infinite precision, it is
clear that naive agents have lower equilibrium beliefs and, as a consequence, lower actions. That is,
even if agents perfectly use network information, estimation precision defines whether they can use
network information beneficially or not. As estimation precision increases, equilibrium expectations,
hence equilibrium actions, decrease.

As one can see in Figure 4, equilibrium expectations converge to the case of infinite precision as
the sample of network neighbors increases. This pattern holds for all feasible parameter combinations
and, therefore, underlines the stability of the equilibrium.

4 Forming perceptions from network neighbors
In this section, we show how agents endogenously form perceptions about the population degree dis-
tribution by observing a sample of network neighbors - biased by the friendship paradox. The distribu-
tion consists of the share of high degree agents (�) and the share of low degree agents (1 − �). Based
on the observed share of high degree agents among network neighbors (�̃i) and degree information
(di ∈ {dL, dH}), agents must provide an estimate (�̂i) of the population share of high degree agents.
We derive the maximum likelihood estimator for naive and sophisticated agents for the population
share of high degree agents � and show under which assumptions the estimator is unbiased and/or
consistent. A sophisticated agent who knows that the degree of agents, in addition to their share,
affects the data generating process estimates the population share of high degree agents as follows.

Proposition 5. The maximum likelihood estimator under neighbor degree information is given by:

�̂i =
1
dH
�̃i

1
dH
�̃i +

1
dL
(1 − �̃i)

= 1
1 + (1 + �)�i

. (9)

Proof. We provide the proof of Proposition 5 in Appendix A.1.

Note that �i = 1−�̃i
�̃i

denotes the ratio of observed low and high degree. The maximum likelihood
estimate �̂i shows that a sophisticated agent discounts the observed share of high (low) degree agents
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with their respective degrees. That is, a sophisticated agent realises that high degree agents are over-
represented in her neighborhood and adjusts for this. The estimate of a naive agent, who thinks that
her neighbors are a random draw from the population distribution, is simply that of a binomial dis-
tribution, i.e. �̂i = �̃i. Thus, a naive agent reports the observed share of high degree agents among
network neighbors as her estimate of the degree distribution. Note that when the degree of high degree
agents equals the degree of low degree agents, i.e. under the assumption that dH = dL, the estimator
for naive and sophisticated agents coincide.

To illustrate the mechanics of the estimator, consider again the illustrative example (section 3.2),
where 60% (1 − � = 0.6) of agents are of low degree (dH = 4) and 40% (� = 0.4) of agents are high
degree (dH = 6). In this example, each agent observes that 50% (�̃i = 0.5) of network neighbors are of
high and low degree. Using the estimator (see equation (9)), a sophisticated agent correctly estimates
that the true share of high degree agents equals 40%.

We move on to investigating properties of the maximum likelihood estimator. First, we show
that the estimator is unbiased and the best unbiased estimator. Second, we show that the estimator is
consistent. That is, we show that the estimator converges in probability to the true share � when the
sample of neighbors tends towards infinity.

Theorem 6. The maximum likelihood estimator under neighbor degree information is the best unbi-

ased estimator.

Corollary 7. The maximum likelihood estimator under neighbor degree information is consistent.

Proof. We provide the proof of Theorem 6 and Corollary 7 in Appendix A.1.

Figure 5 illustrates these two properties. We visualize how the difference of the naive and sophis-
ticated estimator depends on the share of high degree agents in the population and the excess ratio.
The maximum of each curve depicts the point where the combination of � and the � creates maximal
misperception. In other words, this is the point where the use of neighbor degree information becomes
most valuable to a sophisticated agent. For example, let’s consider an excess ratio of 1 which means
that high degree agents are twice as popular as low degree agents. Here, the difference between the
sophisticated and naive estimate reaches its maximum at≈ 17% points with a true share of high degree
agents of ≈ 42%. Intuitively, naive agents perceive the share of high degree agents as being around
17% higher than the truth whereas sophisticated agents do not. As the excess ratio increases, misper-
ceptions increase monotonically for a fixed share of high degree agents. Interestingly, as the degree
ratio increases, the maximum shifts to the left which means that a small share of high degree agents is
sufficient to cause substantive misperceptions. For example, when high degree agents are 100 times
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Figure 5: Naive vs. sophisticated estimate
Figure 5 illustrates the difference between the naive and sophisticated estimator (y-axis) depending on the true share of
high degree agents (�) in the population (x-axis). The excess ratio denotes the difference in popularity between high and
low degree agents.

more popular then low degree agents only ≈ 10% of high degree agents create a difference between
the naive and sophisticated estimator of ≈ 82% points. We stress that a naive agent misperceives the
true share of high degree agents even though the sample of network neighbors is infinite. In other
words, the maximum likelihood estimator of a naive agent is not consistent.

5 Related Literature
Recent research demonstrates that network structure can generate misperceptions in people’s belief
about what is "normal" behavior in the population (Lerman et al., 2016; Jackson, 2019; Lee et al., 2019;
Stewart et al., 2019). However, at the core of these results lie two crucial assumptions. First, people
do not know the entire structure of the network, consistent with recent evidence from the field (Breza
et al., 2018). Once people do not know the entire structure of the network, they must form beliefs
based on the people they know - e.g. their network neighbors. However, existing work assumes that
people are naive which is the second crucial underlying assumption. In essence, people falsely believe
that their neighbors constitute a representative sample of the population. The kind of naivity depends
on the setting - in Lerman et al. (2016) and Jackson (2019) agents misperceive the degree distribution,
while in Lee et al. (2019) and Stewart et al. (2019) they ignore the underlying sorting in the network.
One direct implication of the assumption of naivity is that people do not fully use available network
information, for example, about network neighbors to update beliefs about population behavior. In
other words, naivity implies that people think that their sample of neighbors is truly random, and
sufficiently large, hence there is no need to use additional information.

An emerging literature investigates what people know about the structure of their network (Breza
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et al., 2018; Banerjee et al., 2019). In particular, this literature finds that people are able to identify
central (popular) people in the network. In addition, Banerjee et al. (2019) analyzes how information
diffuses through a network and shows that peoples’ knowledge about the underlying network facilitates
the process of network diffusion. In other words, people are able to use network information benefi-
cially. However, these studies cannot answer the question whether the access to network information
changes peoples’ behavior or perception, because they don’t observe behavior or perceptions in the ab-
sence of network information. In the laboratory, the researcher can exogenously vary the information
people receive about others to evaluate the effect of information on outcomes and whether people use
the information in a naive or sophisticated way. The experimental literature consistently finds that net-
work information does matter for outcomes in a variety of domains, like belief formation (Grimm and
Mengel, 2020), cooperation behavior (Gallo and Yan, 2015), equilibrium selection (Charness et al.,
2014), and coordination (Kearns et al., 2006).

Complete and incomplete information are two standard assumptions in network games (Jackson
and Zenou, 2015). Complete information usually refers to the case where people are able to base
their decisions on knowledge about the entire structure of the network. For example, in Lipnowski
and Sadler (2019) people know the entire structure of the network, however, use some information
exclusively about network neighbors. In particular, Lipnowski and Sadler (2019) assume that people
know the (correct) strategies taken by their network neighbors but not by others. Thus, related to our
setup, agents make sophisticated inferences about others based on knowledge of network neighbors
which has consequences for the entire population.

Incomplete information refers to a case where people need to base their decisions solely on their
own degree. However, there exist variations in the literature which depend on the setting. For example,
(Gallo and Yan, 2015) combine it with information about cooperativeness of others, whereas Grimm
and Mengel (2020) add knowledge about the degree distribution, and Kearns et al. (2006) provides
subjects knowledge about neighbor degree in addition to the incomplete information background. In
summary, the literature shows that people are not naive about network information, but instead use
it in a sophisticated way. Moreover, Grimm and Mengel (2020) directly show that how people form
beliefs is inconsistent with a model of naive learning that assumes people do not incorporate network
information into their updating process.12

Our paper closely relates to the literature that models misperceptions about population characteris-
tics or behavior. Jackson (2019) analyzes behavior of a finite set of agents that have to choose an action
based on expected actions of others under incomplete information. In addition to her own degree, the

12Grimm and Mengel (2020) show that behavior is also inconsistent with Bayesian belief updating, since participants
use a more heuristical (sophisticated) approach to incorporate network information.
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agent either knows the population degree distribution or the distribution of expected neighbor degrees.
Agents are naive if they misperceive the distribution of expected neighbor degrees as a proxy for the
population degree distribution. Jackson (2019) shows that when agents form expectations of others’
actions based on expected actions of network neighbors, equilibrium behavior of all agents is higher
as compared to the case where agents form expectations of others’ actions knowing the population
degree distribution. We do not assume that agents know the population degree distribution nor the
distribution of expected neighbor degrees. Instead, we micro-found how agents form beliefs about the
population degree distribution using network information. Hence, we explicitly condition on the fact
that the agent is linked to her network neighbors. We show under which behavioral assumptions agents
can overcomemisperceptions and analyze the impact on population behavior. Frick et al. (2019a) stud-
ies a setting where agents misperceive the distribution of types in the population due to assortativity
neglect.13 In their setting, agents either correctly perceive the type distribution in the population or
misperceive the distribution among neighbors as representative of the population distribution. The
crucial difference to our paper is that we do not model type assortativity. We focus on mispercep-
tions exclusively caused by degree heterogeneity, where an agents’ type equals her degree, without
any sorting by degree (i.e. degree assortativity). Frick et al. (2019b) study misperceptions in a social
learning environment and show that even slight misperceptions of the type distribution in the popula-
tion (i.e. others characteristics) can generate long run misperceptions about an underlying true state of
the world. In their setup, agents always know the type distribution in the population. However, they
either know the correct type distribution or a misspecified version of it. This differs from our approach
where we explicitly show how agents estimate the population distribution using network information.
That is, we show under which assumptions about agents and their information misspecified distribu-
tions arise instead of assuming them. Furthermore, we do not model social learning environments.
Instead, we focus on belief formation in a static game played on a network.

Our paper relates to an analogous debate in the finance literature about whether irrational investors
pose a threat to efficient market prices in equilibrium or not (Shleifer, 2000).14 For example, propo-
nents of the efficient market hypothesis argue that trading mistakes of irrational investors do not affect
equilibrium prices as rational investors are able to capitalize on them. In contrast, opponents of the
efficient market hypothesis argue that irrational investors do affect equilibrium prices because a few
rational investors in the market are not able to mitigate all the trading mistakes irrational investors
make. Our results reflect the view of the opponents of the efficient market hypothesis in the sense that

13Assortativity captures the idea that, for example, high income earners interact disproportionally more with other high
income earners than low income earners and vice versa.

14See Zwiebel (2002) for a short review.
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a few naive agents are able to affect equilibrium perceptions and behavior due to the assumption that
naive agents think that all other agents in the population are naive.

6 Conclusion
We show that a sophisticated agent can consistently overcome misperceptions using network informa-
tion and that their own and others’ behavior depends on the mix of naive and sophisticated agents in
the population. The existing literature assumes that people have either perfect prior information about
the degree distribution or misperceive the distribution to equal the expected distribution of degree
among network neighbors. As a consequence, it is assumed that agents ignore network information.
This is surprising considering the growing literature, experimental and empirical, that demonstrates
that people know quite a bit about their network and use this information to make decisions.

We know from the existing literature in economics that people in the real world are not sophisti-
cated in many respects. However, we also know that people are not naive either. This illustrates that
both assumptions about agents are problematic and that the truth probably lies somewhere in between,
and probably also depends on the specific application. Second, we assume that the agent knows the
degree of her network neighbors which is a critical information assumption in itself. The current lit-
erature does not offer a decisive answer on what information people actually use about the network or
their network neighbors. We think that this is an interesting avenue for future research.

We finish with a remark about possible extensions. First, one could analyze a more general utility
function, e.g. by going beyond linear quadratic and/or incorporating externalities as in Jackson (2019).
Moreover, it is possible to introduce a correlation between individual preferences and degree. Such
a correlation would lead to another type of misperception known as the "Majority Illusion" (Lerman
et al., 2016), and this could further exacerbate behavioral biases. Future work could extend our setup
to estimate the share of the type distribution including both degree and preferences. Second, one
may allow neighbors to share beliefs among one another by combining it with models of learning in
networks. Lastly, one could think of other mechanisms that cause misperceptions in networks other
than the friendship paradox. One obvious candidate is homophily (McPherson et al., 2001). That is,
people disproportionally form network connections with each other based on their characteristics. One
could think of extending the model to allow for homophily by introducing a bias in the way people
form links with each other. A sophisticated agent, who knows that her sample of network neighbors is
not representative of population characteristics due to homophily, could use this information to correct
her estimate of population characteristics.
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A Appendix: auxiliary results and proofs

A.1 Processing information about neighbors

Proof of Proposition 5

Proof. The sample of neighbors is drawn without replacement from the set of agents which is infi-
nite. This implies that even a finite sample drawn without replacement has the property that there is
independence between the elements drawn. The agent knows dH and dL. The distribution of neigh-
boring agents is Bernoulli distributed where the likelihood to draw a high degree neighbor equals
E[dj = dH |�, dL, dH ]. Therefore, we can express the log-likelihood function, given a sample of net-
work neighborsNi, as follows:

log(�|Ni, dH , dL) = ni,H ⋅ log(E[dj = dH |�, dL, dH ]) + ni,L ⋅ log(1 − E[dj = dH |�, dL, dH ]),

where ni,H (ni,L) denotes the number of high (low) degree agents among network neighbors for
agent i. The first-order condition for maximizing the above function can be expressed as follows:

(
ni,H

1
E[dj = dH |�, dL, dH ] − ni,L

1
1 − E[dj = dH |�, dL, dH ]

)
⋅
)E[dj = dH |�, dL, dH ]

)�
= 0,

ni,H
1

E[dj = dH |�, dL, dH ] − ni,L
1

1 − E[dj = dH |�, dL, dH ] = 0,

ni,H (1 − E[dj = dH |�, dL, dH ]) − ni,L(E[dj = dH |�, dL, dH ]) = 0,

E[dj = dH |�, dL, dH ] =
ni,H

ni,H + ni,L
.

We now substitute E[dj = dH |�, dL, dH ] with its value and simplify:

dH�
dH� + dL(1 − �)

=
ni,H

ni,H + ni,L
,

dH� ⋅ (ni,H + ni,L) = ni,H ⋅ (dH� + dL(1 − �)),

� =
dLni,H

dLni,H + dHni,L
=

1
dH
ni,H

1
dH
ni,H +

1
dL
ni,L

.

55



We have now derived the optimal updating rule: �̂i =
1
dH

ni,H
1
dH

ni,H+
1
dL
ni,L

. Note that we can denote the
number of high (low) degree neighbors ni,H (ni,L) as the observed share of high (�̃i) and low degree
neighbors (1 − �̃i). Furthermore, we denote the excess ratio by � = (dH∕dL − 1) and the ratio of
observed low and high degree agents by �i = (1−�̃i)

�̃i
. Thus we can write the estimator as:

�̂i =
1

1 + (1 + �) ⋅ �i
.

Lemma 8. The maximum likelihood estimator under neighbor degree information is unbiased.

Proof. To prove that our estimator is unbiased we need to show that the expectation of the estimator
equals the true share of high degree agents - i.e. we need to show that E(�̂) = �. The first step is to
insert the estimator into the expectation and apply common expectation rules:

E

[
ni,H

ni,H + (ni,L) ⋅
dH
dL

]
=

E
[
ni,H

]

E
[
ni,H

]
+ E

[
ni,L

]
⋅ dH
dL

.

Under the assumption that the samples are drawn i.i.d from the true distribution we know that
E(ni,H ) = E(nH ) and E(ni,L) = E(nL). Furthermore, we use that E[nH ] = E[dj = dH |�, dL, dH ],
where

E[dj = dH |�, dL, dH ] =
�dH

�dH + (1 − �)dL
.

Thus:

E
[
nH

]

E
[
nH

]
+ E

[
nL
]
⋅ dH
dL

=
E[dj = dH |�, dL, dH ]

E[dj = dH |�, dL, dH ] + (1 − E[dj = dH |�, dL, dH ]) ⋅ dHdL
.

We can insert E[dj = dH |�, dL, dH ] into the equation and simplify:
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�dH
�dH+(1−�)dL

�dH
�dH+(1−�)dL

+
(

(1−�)dL
�dH+(1−�)dL

)
dH
dL

=
�dH(

�dH + (1 − �)dL
)(

�dH
�dH+(1−�)dL

+
(

(1−�)dL
�dH+(1−�)dL

)
dH
dL

)

=
�dH(

�dH + (1 − �)dL
)(

�dH
�dH+(1−�)dL

+ (1−�)dH
�dH+(1−�)dL

)

=
�dH(

�dH + (1 − �)dL
)(

�dH+(1−�)dH
�dH+(1−�)dL

)

=
�dH

�dH + (1 − �)dH

=
�dH
dH

= �

Lemma 9. The statistic ni,H is complete.

Proof. A statistic is complete if E�(g(ni,H ) = 0 for all � which implies that P�(g(ni,H = 0) = 1 for
all � and some measurable function g(⋅). The proof for a statistic that has a binomial distribution
with parameters (ni, �) can be found in Example 6.2.22 in Casella and Berger (2001). In our case, ni
denotes a random sample of agents where we index each agent by i. Each agent’s likelihood of being
high degree follows a Bernoulli distribution with probability E[dj = dH |�, dL, dH ]. Recall that ni,H
is the number of high degree agents observed in i’s sample. It follows that ni,H is a statistic of the
random sample ni which has a binomial distribution with parameters (ni, E[dj = dH |�, dL, dH ]). As
the parameter space for E[dj = dH |�, dL, dH ] ∈ (0, 1) is a monotone transformation of the parameter
space of � ∈ (0, 1) (i.e. a mapping from the domain (0, 1) into (0, 1), ni,H is a complete statistic.

Lemma 10. The statistic ni,H is a sufficient statistic for the maximum likelihood estimator under neigh-

bor degree information.

Proof. We show that the statistic is sufficient for the underlying parameter E[dj = dH |�, dL, dH ].
A sufficient statistic is a sample statistic that conveys exactly the same information about the data
generating process that created the data as the entire data itself. That is, once we know the sample
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statistic our inferences are the same as those that one can obtain by conditioning on the entire data.
Agent ni,j can either be high degree (H) or low degree (L) where i ∈ [1, .., n] and j ∈ [H,L] and
we denote an agent’s sample consisting of high and low degree nodes by ni. Whether a node is high
degree is Bernoulli distributed with parameterE[dj = dH |�, dL, dH ]. That is, P (ni,j = ni,H ) = E[dj =
dH |�, dL, dH ] and P (ni,j = ni,L) = 1 − E[dj = dH |�, dL, dH ]. This can be formulated as follows:

P (ni|ni,H , E[dj = dH |�, dL, dH ]) =
P (ni, ni,H |E[dj = dH |�, dL, dH ])
P (ni,H |E[dj = dH |�, dL, dH ]) , (10)

where the numerator denotes the joint distribution and the denominator denotes the distribution of
the sufficient statistic. If the statistic is sufficient, the ratio will not depend on E[dj = dH |�, dL, dH ].
We can rewrite the numerator of equation (10) as:

P (ni, ni,H |E[dj = dH |�, dL, dH ]) =
n∏
i=1

E[dj = dH |�, dL, dH ])ni,H (1 − E[dj = dH |�, dL, dH ]))(ni−ni,H ).

where we used that the sample ni consists of ni,H high degree agents with the property that each
draw is independent. We know that our statistic is binomial distributed - i.e. ni,H ∼ Bin(ni, E[dj =

dH |�, dL, dH ]). So we can rewrite the denominator of equation (10) as follows:

P (ni,H |E[dj = dH |�, dL, dH ]) =
(
ni
ni,H

)
E[dj = dH |�, dL, dH ])ni,H (1 − E[dj = dH |�, dL, dH ]))(ni−ni,H ),

where ( ni
ni,H

)
= ni!

(ni,H−ni)! ni!
. Now we can insert the expressions for the numerator and denominator

back into equation (10) and simplify:

P (ni|ni,H , E[dj = dH |�, dL, dH ]) =
E[dj = dH |�, dL, dH ])ni,H (1 − E[dj = dH |�, dL, dH ]))(ni−ni,H )( ni

ni,H

)
E[dj = dH |�, dL, dH ])ni,H (1 − E[dj = dH |�, dL, dH ]))(ni−ni,H )

= 1( ni
ni,H

) .

which is independent of E[dj = dH |�, dL, dH ]). Thus, ni,H is a sufficient statistic for E[dj =
dH |�, dL, dH ]). This shows that, for example, knowing the sequence in which the draws of high and
low degree agents occurs does not give any further information about E[dj = dH |�, dL, dH ]). What
we are then doing in this paper is to go a step further and see what inferences we can obtain from
this about � - i.e. what we are doing in Proposition 5. For example, the inference we obtain when
we assume that a naive agent thinks that E[dj = dH |�, dL, dH ]) = � in comparison to a sophisticated
agent who knows that E[dj = dH |�, dL, dH ]) ≠ �.
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Proof of Theorem 6

Proof. We need prove that our estimator �̂, where the agent has neighbor degree information, is
the best unbiased estimator of the unknown share of high degree agents �. That is, there exists no
other estimator that, given the provided information about the network, is better at estimating �. The
Lehmann–Scheffé theorem (Lehmann and Scheffé, 1950) states that any unbiased estimator of the
unknown share of high degree agents that depends on the data only through a complete and suffi-
cient statistic is the best unbiased estimator of that quantity. These conditions are both satisfied by
respectively Lemma 8 for unbiasedness and Lemma 9, 10 for completeness and sufficiency.

Proof of Corollary 7

Proof. Here we prove consistency of the maximum likelihood estimator �̂. That is, �̂ converges in
probability to � as the sample of network neighbors grows infinitely large. To prove consistency
we apply Theorem 2.7 of Newey and McFadden (1994). We show that our estimator is identified,
� is part of a convex parameter set, and the log-likelihood function log(�|Ni, dH , dL) is concave.
First, identification follows directly because our design imposes a unique maximum at �. Second, the
parameter space is the open range (0, 1), which is obviously convex. This follows directly from the
fact that for any x1, x2 ∈ (0, 1) it holds that �x1 + (1 − �)x2 ∈ (min(x1, x2),max(x1, x2)) and thus
�x1 + (1 − �)x2 ∈ (0, 1) as (min(x1, x2), max(x1, x2)) ⊂ (0, 1). Third, log(�|Ni, dH , dL) is concave
on its domain � ∈ (0, 1) as long as ) log(�|Ni,dH ,dL)

)�
is a strictly decreasing function. We already derived

the first order condition in Proposition 5 above which is:

⎛⎜⎜⎜⎜⎜⎝

ni,H
1

E[dj = dH |�, dL, dH ]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

A

− ni,L
1

1 − E[dj = dH |�, dL, dH ]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

B

⎞⎟⎟⎟⎟⎟⎠

⋅
)E[dj = dH |�, dL, dH ]

)�
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

C

Note that C is increasing in �, which directly implies that A (B) is decreasing (increasing) in �. That
is, A + B is decreasing in � and still decreasing when multiplied by C .

A.2 How network perceptions affect behavior

Proof of Lemma 1

Proof. We derive the BNE by taking the first order condition for utility (see equation (2)) wrt. own
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action xi. We obtain the following best response function:

xi(�i, di, ri, Ni) =
�i
c
+
adiE[xj|ri, Ni]

c
, di = |Ni|. (11)

To pin down an expression for individual expectations about other agents’ actions we compute the
conditional expectation wrt. to the updating rule and the set of network neighbors:

E[xj|ri, Ni] =
E[�i]
c

+ a
c
⋅ E[dj ⋅ E[xk|rj , Nj]|ri, Ni]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

A

, (12)

where A denotes the expectation of population degree times higher order beliefs of others actions
xk, all conditional on the updating rule and neighbor information. We can write E[xk|rj , Nj] =

E[xk|rj , dj , �̃j], because dj and the observed share of high degree agents in the population �̃j constitute
a sufficient statistic for Nj . In other words, dj and �̃j encompass all information that can be obtained
from the sample of network neighbors Nj . That is, others actions xk depend on how others estimate
others (including j) given the updating rule, the observed share of high degree agents, and degree. We
can express A as follows:

A = ∫ dj ⋅ E[xk|rj , dj , �̃j]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Br

⋅ f (rj , dj , �̃j|ri, di, �̃i)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

C

drjddjd�̃j , (13)

where Br denotes the conditional expectation of others’ actions given the updating rule, degree,
and the observed share of high degree agents. C denotes the marginal density function for beliefs of
other agents about the share of high degree agents, their degree, and their updating rule. We can insert
the updating rule and write:

A = ∫ Br ⋅ f (rj = s, dj , �̃j|ri, di, �̃i) ddjd�̃j + ∫ Br ⋅ f (rj = n, dj , �̃j|ri, di, �̃i) ddjd�̃j ,

where this general notation allows us to distinguish different shares of naive and sophisticated
agents in the population. We let � denote the probability that rj = sj and 1 − � the probability that
rj = nj , where � is common knowledge among sophisticated agents. For sophisticated agents it holds
that f (rj = sj , dj �̃j|ri, di, �̃i) = � ⋅ f (dj , �̃j|ri, di, �̃i) and that f (rj = nj , dj , �̃j|ri, di, �̃i) = (1 − �) ⋅

f (dj , �̃j|ri, di, �̃i). However, for a naive agent it holds that f (rj = sj , dj , �̄j|ri, di, �̃i) = 0, so that f (rj =
nj , dj , �̃j|ri, di, �̃i) = f (dj , �̃j|ri, di, �̃i). Recall, a naive agent is defined as someone who essentially
ignores network information, for example, because a naive agent thinks that this information is not
useful. Therefore, we assume that a naive agent also beliefs that the rest of the population thinks
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network information is not useful. We can write this as:

A = ∫ Bs ⋅ � ⋅ f (dj , �̃j|ri, di, �̃i) ddjd�̃j + ∫ Bn ⋅ (1 − �) ⋅ f (dj , �̃j|ri, di, �̃i) ddjd�̃j .

In the following, the proof proceeds in two steps. First, we solve the case where the agent has access
to an infinite sample of network neighbors. Second, we relax the infinity assumption and solve equi-
librium expectations when the agents has access to a finite set of network neighbors.

Infinite degree. Wemake one additional assumption to simplify the analysis. We assume that limdL→∞

where the degree ratio dH∕dL is fixed. Intuitively, this assumption ensures that agents have a suffi-
ciently large sample of network neighbors to estimate the share of high degree agents in the pop-
ulation. To ensure that our model does not break down due to the infinity assumption we normal-
ize complementarities a = �∕dL. For an asymptotically large sample of neighbors, we have that
all agents who use the same rule converge to the same estimate, irrespective of degree. Hence,
f (rj , dj , �̃j|ri, di, �̃i) = f (rj , dj , �̃j|ri, �̃i). Therefore, the estimated share of high degree agents only
depends on the updating rule ri, but not precision. This allows us to use the results of Theorem 6 and
Corollary 7 and replace the observed share of high degree agents �̃(�, �) with its estimate � (which is
true share of high degree agents), if the agent is sophisticated. Naive agents do not adjust their esti-
mate, so the estimate for the share of high degree agents is simply the observed share. This implies
that for both high and low degree agents it holds that:

A =Bs ⋅ � + Bn ⋅ (1 − �) ,where (14)
Bs =

(
dL + (dH − dL) ⋅ �

)
⋅ E[xk|s, �]. (15)

Bn =
(
dL + (dH − dL) ⋅ �̃(�, �)

)
⋅ E[xk|n, �̃(�, �)]. (16)

This implies that high and low degree agents have the same conditional expectations. We can
insert the excess ratio (� = dH

dL
− 1) and write equation (15) and (16) as follows:

Bs = dL ⋅
(
1 + � ⋅ �

)
⋅ E[xk|s, �]. (17)

Bn = dL ⋅
(
1 + � ⋅ �̃(�, �)

)
⋅ E[xk|n, �̃(�, �)]. (18)

We can therefore rewrite equation (12) (dropping the subscripts, because expectations are the same
for all agents) as an equationwith two unknowns (E[x|s, �] andE[x|n, �̃(�, �)]), irrespective of degree,
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but dependent on the updating rule:

E[x|rj , �̃(�, �)] = E[�]
c

+
adL
c

(
(1 + � ⋅ �) ⋅ �E[x|s, �] + (1 + � ⋅ �̃(�, �)) ⋅ (1 − �)E[x|n, �̃(�, �)]).

(19)

First, let us compute equilibrium expectations for a naive agent. Recall, a naive agent ignores
network information, therefore does not condition her action on how other agents in the population
form their estimates. In other words, this corresponds to the case where a naive agent thinks that all
other agents in the population are naive too (i.e. � = 0). We can write this, substituting in the constant
� = adL, as follows:

E[x|n, �̃(�, �)] = E[�]
c

+ �
c
⋅
(
1 + � ⋅ �̃(�, �)

)
⋅ E[x|n, �̃(�, �)].

E[x|n, �̃(�, �)] = E[�]
c − � ⋅

[
1 + � ⋅ �̃(�, �)

] .

Second, lets compute equilibrium expectations for the mixed case - i.e. sophisticated and naive
agents are part of the population. Note, we only need to compute equilibrium expectations from the
perspective of a sophisticated agent, because naive equilibrium expectations are independent of the
share of sophisticated agents (�) in the population. We can solve equation (19) forE[x|s, �] as follows:

E[x|s, �] = E[�] + � ⋅ [1 + � ⋅ �̃(�, �)] ⋅ (1 − �) ⋅ E[x|n, �̃(�, �)]
c − � ⋅ [1 + � ⋅ �] ⋅ �

,

and obtain an expression for equilibrium expectations of sophisticated agents, dependent on the
share of naive agents in the population. A sophisticated agent knows that naive agents do not care about
the type of other agents in the population. Thus, we can treat E[x|n, �̃(�, �)] as a constant. Inserting
the expression for E[x|n, �̃(�, �)] results in the following equation for equilibrium expectations of
sophisticated agents:

E[x|s, �] = E[�]
c − � ⋅ [1 + � ⋅ �] ⋅ �

+ � ⋅ E[�] ⋅ [1 + � ⋅ �̃(�, �)] ⋅ (1 − �)
(c − � ⋅ [1 + � ⋅ �] ⋅ �) ⋅ (c − � ⋅ [1 + � ⋅ �̃(�, �)])

. (20)

In case all agents in the population are sophisticated (� = 1), we have that:

E[x|s, �] = E[�]
c − � ⋅ [1 + � ⋅ �]

.

Finite degree. In the case where we have finite degree, equation (13) can be rewritten using discrete
probabilities. The rewritten expression is the weighted sum of other types expectations where the
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weights are beliefs about the likelihood of a given type:

A =
∑
rj∈n,s

∑
dj∈dL,dH

∑
�̃j∈D̃j

dj ⋅ E[xk|rj , dj , �̃j] ⋅ f (rj , dj , �̃j|ri, di, �̃i), D̃j =
{
0
dj
, 1
dj
, ..,

dj
dj

}
. (21)

For each feasible type, i.e. ri, di, �̃i, this entails that we can simplify the expression for own ex-
pectations about the equilibrium from equation (12). This expression is a linear function of others’
expectations about other agents’ actions. The number of unique types is L = 2 ⋅ (dL + 1 + dH + 1)

as there is one for each rule times the number of feasible draws that can be obtained (0, .., dL for low
degree and 0, .., dH for high degree).15 When taken together, equations (12) and (21) span a system
of L equations governing the agents belief. Thus, each equation in the system expresses the belief for
each type as a linear function of the other L types with L coefficients that measure the types’ beliefs
about other agents types’ likelihood. We can express the system of equations as the following matrix
equation:

(�
c
Π − IL

)
�′ = −

E[�i]
c

⋅ JL, (22)

where Π denotes the beliefs for each agents type (ri, di, �̃i) about the likelihood of observing other
agents’ types. They come from the density function in equation (21). Note that Π is a function of �,
�, and �. That is, we can compute a belief matrix Π for each possible share of sophisticated agents in
the population, for example. � is the vector of beliefs for each type about other agents actions, IL is
the identity matrix of size L, and JL is vector of ones with size L. The L equations can be solved with
standard linear algebra by inverting the matrix of coefficients for the system of equations:

� = −
(�
c
Π − IL

)−1 E[�i]
c

⋅ JL.

Proof of Theorem 2

Proof. First, Theorem 2 states that if all agents use naive updating then x(�i, di, n, �̃(�, �)) > x(�i, di, �)
for all �i and di. Note that x(�i, di, �) denotes the benchmark case absent of misperceptions. Sec-
ond, if all agents are sophisticated then x(�i, di, s, �̃(�, �)) = x(�i, di, �) for all �i and di. Thus,
E[x|n, �̃(�, �)] > E[x|s, �̃(�, �)] = E[x|�]. Third, if a share (�) of agents in the population use
sophisticated updating and a share (1−�) use naive updating, then equilibrium actions are decreasing

15This assumes that dL ≠ dH .
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in � for sophisticated agents. Note that equilibrium actions of naive agents are not affected by the
share of sophisticated agents in the population.

To prove the first two parts of Theorem 2 we need to show that the maximum likelihood estimator
of a sophisticated agent is unbiased (E[s, �̃(�, �)] = �) and that the estimate of the sophisticated agent
is smaller than the estimate of the naive agent (� < �̃(�, �)). Note that we already proved that the
estimator of a sophisticated agents is unbiased (see Lemma 8). For the second part of the proof we
need to show that � < �̃(�, �):

� <
�dH

�dH + (1 − �)dL
= �
� + (1 − �) ⋅ (1 + �)−1

,

� ⋅ (� + (1 − �) ⋅ (1 + �)−1) < �,

(1 − �) ⋅ (1 + �)−1 < (1 − �),

0 < �.

which holds by definition. For the third part we need show that equilibrium actions of sophisticated
agents decrease in �. This is equivalent to showing that equilibrium expectations of sophisticated
agents decrease in �. Therefore, we need to show that the first derivative of equation (20) is negative
for each value of �:

d
d�
E[x|s, �] = d

d�

(
E[�]

c − � ⋅ [1 + � ⋅ �] ⋅ �

)
+ d
d�

(
� ⋅ E[�] ⋅ [1 + � ⋅ �̃(�, �)] ⋅ (1 − �)

(c − � ⋅ [1 + � ⋅ �] ⋅ �) ⋅ (c − � ⋅ [1 + � ⋅ �̃(�, �)])

)

= c ⋅ � ⋅ E[�] ⋅ � ⋅ � − c ⋅ � ⋅ E[�] ⋅ � ⋅ �̃(�, �)
(c − � ⋅ (1 + � ⋅ �) ⋅ �)2 ⋅ (c − � ⋅ (1 + � ⋅ �̃(�, �))

.

where one can see that the nominator is negative because � < �̃(�, �). The denominator is positive
due to the assumption that c − � ⋅ (1 + � ⋅ �̃(�, �) > 0. Hence, d

d�
E[x|s, �] < 0. It directly follows

that equilibrium actions are decreasing in � since we only multiply the nominator and denominator
with positive constants that are independent of �. Lastly, we show that equilibrium expectations with
a mix of sophisticated and naive agents in the population are bounded by the two extreme cases (all
agents are either naive or sophisticated). We need to show that the following inequality holds, where
we denote �̃(�, �) by �̃ to save some notation:

E[�]
c − � ⋅ (1 + � ⋅ �)

≤ E[�]
c − � ⋅ (1 + � ⋅ �̃) ⋅ �

+ � ⋅ E[�] ⋅ (1 + � ⋅ �̃) ⋅ (1 − �)
(c − � ⋅ (1 + � ⋅ �) ⋅ �) ⋅ (c − � ⋅ (1 + � ⋅ �̃))

≤ E[�]
c − � ⋅ (1 + � ⋅ �̃)

where c > � ⋅ (1 + � ⋅ �̃) and 0 ≤ � ≤ 1. We can multiply by c − � ⋅ (1 + � ⋅ �̃), c − � ⋅ (1 + � ⋅ �),
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and divide by E[�]:

c − � ⋅ (1 + � ⋅ �̃) ≤ (c − � ⋅ (1 + � ⋅ �)) ⋅ (c − � ⋅ (1 + � ⋅ �̃)) + (c − � ⋅ (1 + � ⋅ �)) ⋅ � ⋅ (1 + � ⋅ �̃) ⋅ (1 − �)
c − � ⋅ (1 + � ⋅ �) ⋅ �

≤ c − � ⋅ (1 + � ⋅ �)

c − � ⋅ (1 + � ⋅ �̃) ≤ (c − � ⋅ (1 + � ⋅ �)) ⋅ (c − � ⋅ (1 + � ⋅ �̃) ⋅ �)
c − � ⋅ (1 + � ⋅ �) ⋅ �

≤ c − � ⋅ (1 + � ⋅ �)

(c − � ⋅ (1 + � ⋅ �̃)) ⋅ (c − � ⋅ (1 + � ⋅ �) ⋅ �) ≤ (c − � ⋅ (1 + � ⋅ �)) ⋅ (c − � ⋅ (1 + � ⋅ �̃) ⋅ �)
≤ (c − � ⋅ (1 + � ⋅ �)) ⋅ (c − � ⋅ (1 + � ⋅ �) ⋅ �)

We first prove that the inequality on the left hand side holds:

(c − � ⋅ (1 + � ⋅ �̃)) ⋅ (c − � ⋅ (1 + � ⋅ �) ⋅ �) ≤ (c − � ⋅ (1 + � ⋅ �)) ⋅ (c − � ⋅ (1 + � ⋅ �̃) ⋅ �)
−� ⋅ (1 + � ⋅ �) ⋅ � ⋅ c − � ⋅ (1 + � ⋅ �̃) ⋅ c ≤ −� ⋅ (1 + � ⋅ �̃) ⋅ � ⋅ c − � ⋅ (1 + � ⋅ �) ⋅ c

� ⋅ (1 + � ⋅ �) ⋅ (c − � ⋅ c) ≤ � ⋅ (1 + � ⋅ �̃) ⋅ (c − � ⋅ c)

(1 + � ⋅ �) ≤ (1 + � ⋅ �̃)
� ≤ �̃

which we just showed above. For the right hand side we need to prove that:

(c − � ⋅ (1 + � ⋅ �)) ⋅ (c − � ⋅ (1 + � ⋅ �̃) ⋅ �) ≤ (c − � ⋅ (1 + � ⋅ �)) ⋅ (c − � ⋅ (1 + � ⋅ �) ⋅ �)
c − � ⋅ (1 + � ⋅ �̃) ⋅ � ≤ c − � ⋅ (1 + � ⋅ �) ⋅ �

(1 + � ⋅ �) ≤ (1 + � ⋅ �̃)
� ≤ �̃

which we showed above.

A.3 An illustrative example: additional calculation steps

The assumption underlying the results of Theorem 2 is that the population of agents is infinite, which
allows us to isolate misperceptions caused by the friendship paradox and abstract from the follow-
ing two effects. First, we can abstract from estimation precision, where one could argue that high
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degree agents might be able to make a better estimation than low degree agents due to a larger sam-
ple of network neighbors. This is not the case in an infinite network. Second, there is no degree
(dis-)assortativity in an infinite network which can arguably amplify or mitigate the effect of mis-
perceptions caused by the friendship paradox. We would not be able to distinguish to what extent
misperceptions are caused by the friendship paradox compared to (dis-)assortativity.

Recall that the example network consists of 10 agents (nodes), where 4 out of 10 agents have
high degree (black nodes) and 6 out of 10 agents have low degree (white nodes). That is, the degree
distribution consists of a share of high degree agents (� = 40%) and the share of low degree agents
(1− � = 60%). Each agent observes that 50% (= �̃) of network neighbors are of high degree (dH = 6)
and the other 50% (= �̃) are of low degree (dL = 4). Furthermore, we defined �i = 1

2
for all i,

E[�] = 1∕2, � = 4, and c = 6.

Benchmark Case with No Misperceptions

Equilibrium actions for each type of agent x(�i, dL) = x(1
2
, 4) and x(�i, dH ) = x(1

2
, 6) are defined as

follows:

x(1
2
, 4) =

�i
c
+

adiE[�]
c ⋅ (c − � ⋅ [1 + � ⋅ �)])

= 0.5
6
+

1 ⋅ 4 ⋅ 1∕2
6 ⋅ (6 − 4 ⋅ [1 + 1∕2 ⋅ 4∕10])

= 13
36
≈ 0.361.

x(1
2
, 6) =

�i
c
+

adiE[�]
c ⋅ (c − � ⋅ [1 + � ⋅ �)])

= 0.5
6
+

1 ⋅ 6 ⋅ 1∕2
6 ⋅ (6 − 4 ⋅ [1 + 1∕2 ⋅ 4∕10])

= 18
36
= 0.5.

That is, average actions are equal to 4
10
⋅ 18
36
+ 6

10
⋅ 13
36
= 15

36
or one can compute average actions as

follows:

E[x|�] = E[�]
c − � ⋅ [1 + � ⋅ �]

=
1∕2

6 − (4 ⋅ [1 + 1∕2 ⋅ 4∕10])
= 15
36
≈ 0.417,

where this formulation becomes useful once we do not assume that agents know the degree dis-
tribution. We compute utility for both types of agents U (x, �i, dL) = U (x, 1

2
, 4) and U (x, �i, dH ) =

U (x, 1
2
, 6):

U (x, 1
2
, 4) = �ix + axdiE[x|�] − cx2

2
= 1
2
⋅
13
36
+ 1 ⋅ 13

36
⋅ 4 ⋅ 15

36
−
6 ⋅ ( 13

36
)2

2
= 0.3912,

U (x, 1
2
, 6) = �ix + axdiE[x|�] − cx2

2
= 1
2
⋅
18
36
+ 1 ⋅ 18

36
⋅ 6 ⋅ 15

36
−
6 ⋅ ( 18

36
)2

2
= 0.75,
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where high degree agents enjoy more interaction, thus have a higher utility than low degree agents.

All Agents are Naive or Sophisticated

In the following, we do not assume that agents know the population degree distribution. Instead, they
must estimate it using information about their sample of network neighbors. When all agents are naive,
each agent estimates that 50% of agents in the population are of high degree �̂ = �̃. First, we calculate
equilibrium expectations of naive agents about other agents’ actions as follows:

E[x|n, �̃] = E[�]
c − � ⋅

[
1 + � ⋅ �̃

] = 1∕2
6 − (4 ⋅ [1 + 1∕2 ⋅ 1∕2])

= 18
36
= 0.5.

where equilibrium expectations of others’ actions increase if all agents are naive compared to the
benchmark case (i.e. E[x|n, �̃] = 0.5 > E[x|�] = 0.417). Next, we compute equilibrium actions for
each type of the naive agent x(�i, dL, r) = x( 12 , 4, n) and x(�i, dH , r) = x( 12 , 6, n):

x(1
2
, 4, n) =

�i
c
+

adiE[�]
c ⋅ (c − � ⋅ [1 + � ⋅ �̃)])

= 0.5
6
+

1 ⋅ 4 ⋅ 1∕2
6 ⋅ (6 − 4 ⋅ [1 + 1∕2 ⋅ 1∕2])

= 15
36
≈ 0.417,

x(1
2
, 6, n) =

�i
c
+

adiE[�]
c ⋅ (c − � ⋅ [1 + � ⋅ �̃)])

= 0.5
6
+

1 ⋅ 6 ⋅ 1∕2
6 ⋅ (6 − 4 ⋅ [1 + 1∕2 ⋅ 1∕2])

= 21
36
≈ 0.583,

where equilibrium actions increase for all types of naive agents compared to the case where misper-
ceptions are absent (i.e. x( 1

2
, 4, n) ≈ 0.417 > x(1

2
, 4) ≈ 0.361 and x( 1

2
, 6, n) ≈ 0.583 > x(1

2
, 6) = 0.5).

Next, we compute expected utility for both types of naive agents. Here we compare the utility
change directly to the case with no misperceptions. That is, we use the actions naive agents choose
under misperceptions about expected actions of others E[x|n, �̃], but use correct expectations E[x|�]
to calculate the utility change:

EU (x, 1
2
, 4, n) = �ix + axdiE[x|�] − cx2

2
= 1
2
⋅
15
36
+ 1 ⋅ 15

36
⋅ 4 ⋅ 15

36
−
6 ⋅ ( 15

36
)2

2
≈ 0.3819,

EU (x, 1
2
, 6, n) = �ix + axdiE[x|�] − cx2

2
= 1
2
⋅
21
36
+ 1 ⋅ 21

36
⋅ 6 ⋅ 15

36
−
6 ⋅ ( 21

36
)2

2
≈ 0.7291,

where expected utility decreases for naive agents compared to the benchmark for each type of agent
(i.e. EU (x, 1

2
, 4, n) ≈ 0.3819 < U (x, 1

2
, 4) ≈ 0.3912 and EU (x, 1

2
, 6, n) ≈ 0.7291 < U (x, 1

2
, 6) =

0.75). If all agents in the population are sophisticated, we can compute their estimate using equation
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(9):

�̂i =
1

1 + (1 + �)�i
= 1
1 + (1 + 1

2
) ⋅ 1

= 4
10
,

where, in this example, each agent (high or low degree) has perfect precision to correctly estimate
the share of high degree agents in the population, if sophisticated (i.e. �̂i = �̂ = 4

10
for all i). We can

see that the sophisticated estimate aligns with the true share of high degree agents �. Thus, if all agents
in the population are sophisticated, the friendship paradox does not influence behavior even though
agents do not know the population degree distribution ex ante.
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Nudging Cooperation in Networks
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1 Introduction
Why do people cooperate, trust strangers and build solid networks based on reciprocal help? This
is one of the most fundamental puzzles in social sciences. Cooperation, reciprocity and trust are
the key ingredients of the emergence of the so-called “social capital” that can foster economic and
social development (Nowak and May, 1992; Nowak and Sigmund, 2005; Nowak, 2006; Axelrod and
Hamilton, 1981). For instance, through cooperation, reciprocity and trust, individuals can create and
share information with one another to reach mutual help. The creation of preferential communication
networks allows individuals to locate and access the exact information they need (Trusina et al., 2005;
Sneppen et al., 2005) and sustain an information flow that is beneficial for the entire network (Rosvall
and Sneppen, 2003, 2006, 2009). This ability to exchange information is not trivial. In particular,
cooperation is difficult to achieve in large networks that involve the coordination of many individuals
at the same time. The presence of time constraints (Fehl et al., 2011; Rand et al., 2011; Wang et al.,
2012; Haerter et al., 2012; Bednarik et al., 2014; Bendtsen et al., 2016) together with the limited
capacity of humans to focus on only a finite number of others (Dunbar, 1992; Hill and Dunbar, 2003;
Miritello et al., 2013) make it hard to sustain an informal (non-binding) network of cooperation.

In this paper, we study how humans interact, exchange information and learn to trust each other.
In a controlled and incentivized experimental setting, we observe subjects that freely build their own
communication network to find the information they need. We ask two questions: 1) Are subjects able
to cooperate and create an effective communication network even in a complex environment? Our data
show that cooperation can emerge spontaneously and remain stable over time. Subjects create their
own preferential communication networks that help them to achieve higher payoffs. 2) Can a subtle
and non-binding nudge foster cooperation and help to sustain it over time? The provision of a weak
suggestion about who and how many subjects to contact at the beginning of the experiment can foster
communication and the stability of their network. Interestingly, the effect of the nudge survives long
after it is removed.

In our experiment, we create a complex environment that makes cooperation particularly chal-
lenging. Subjects interact in a large network comprising 25 individuals for multiple rounds. In each
period, subjects can freely choose which other subjects to contact in the network, hence are not forced
to cooperate or not with a particular other subject. Subjects are anonymous, i.e. there is no direct
face-to-face communication, and cannot build a global reputation. Subjects have the possibility to
free ride and exploit the network without direct punishment opportunities by others. In essence, we
create an environment where classical game theory would predict zero cooperation.

Subjects in our experiment can send costly messages to each other that contain valuable informa-
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tion for the receiver or other subjects in the network. Subjects can send two types of costly messages.
First, they can send inquiries that reveal their distinct information to the receiver of the inquiry. Sec-
ond, they can send replies that distribute the received information to others in the network. When
subjects send a message, they increase the amount of information in the network - beneficial for the
entire network. In particular, we define a cooperative act as any kind of message sent during the game.
We measure cooperation by the profit subjects earn during the experiment in experimental currency
unit (ECU). We derive theoretical conditions, comparable to the data, that illustrate when subjects
should engage in the game and when the overall network is in a sustainable state. We illustrate that
a subject’s decision to engage in the game depends on two factors. First, the belief a subject holds
about how many inquiries others send. Second, her beliefs about the willingness of others to reply
to inquiries. When taking a network perspective, we show that a state under which cooperation is
sustainable (i.e. subjects make a positive profit) depends on the amount of information present in the
network, measured by the number of inquiries sent, and subjects willingness to reply to inquiries.

Our results are the following. First, we show that subjects cooperate even in our complex environ-
ment. Subjects can build trust and sustain cooperation even if the incentives to do so are small, ex ante.
To stimulate cooperation, we suggest six contacts to each subject. The suggestions are visible to sub-
jects during the initial five rounds of the game. Second, we show that this simple nudge is effective in
increasing payoffs and the number of messages sent. Payoffs increase even though the higher number
of messages sent implies higher cost. Subjects generate more profit because there is more information
in the network. We observe a higher level of cooperation and reciprocity with almost no decline. Co-
operation is sustainable because subjects are willing to “invest” in others’. Third, we decompose the
number of inquiries sent in baseline and nudging sessions into inquiries sent within and outside the
suggested network. We show that subjects in our baseline sessions send inquiries even when others’
are not (fully) reciprocating. Subjects in nudging sessions are sending even more inquiries: Some
inquiries following our suggestion, some to create and explore new networks.

This paper relates to the literature developing since Axelrod’s seminal work (Axelrod and Hamil-
ton, 1981), largely based on rational agents striving to maximize gain. Since then, it has become
increasingly clear that one cannot categorize humans as pure "Homo Economicus" as they are also
"Homo Sociologicus" (Fehr and Gintis, 2007). Whereas the former type, one that is purely self-
interested, could prevail in a pure market setting, research shows that it is a limited model for social
contexts. Indeed, even under elimination of aiding mechanisms - such as reputation or punishment
– altruism prevails as a distinguishing feature of human versus other animal societies (Güth et al.,
1982; Fehr and Fischbacher, 2003). Under the temptation of short-term benefits and the complexity
of decision-making in communication networks, it seems that the benefit of more immediate gains is
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more attractive than the investment in long-term links within a network context. Yet, mutual, that is
reciprocated, communication and strong links (Krackhardt et al., 2003; Melamed and Simpson, 2016)
facilitate the flow of information in email networks (Newman et al., 2002), in the world-wide-web
(Albert et al., 1999), or Wikipedia (Zlatić et al., 2006) - hinting at robustness of the finding of reci-
procity for network links. However, the literature also suggests weak ties to promote organizational
success (Friedkin, 1982), as weak ties often allow for information flow across large societal distances
(Granovetter, 1977; Hansen, 1999; Levin and Cross, 2004).

With modern communication increasingly taking place virtually, research addressing the evolution
and navigability of corresponding social networks is more relevant than ever (Monge and Contractor,
2001). As opposed to formal, mandated, communication networks, where links are pre-imposed,
such as in bureaucratic contexts, informal, emergent, communication networks can be more useful
to accomplish creative or innovative tasks (Monge and Contractor, 2001). However, self-interested
individuals may then drive communication and cooperation may fail. A theoretical mechanism lead-
ing to emergent network structure can be optimization, where people make rational choices to garner
personal benefits (Monge and Contractor, 2001). However, the literature suggests that people "satis-
fice", that is, they do not - and possibly cannot - explore all options before settling for a good solution
(Monge and Contractor, 2001). Further distorting the mathematical optimization problem, humans
typically lack "time consistency," and thereby favor short-term gains that come with long-term losses
(Gintis, 2000). In our setting, we acknowledge that subjects suffer from optimization problems. In-
stead, we nudge subjects towards the optimal solution. At longer timescales, emergent communication
networks relate to the theory of social capital (Coleman, 1988). The theory suggests that humans first
build social capital by making investments and subsequently exploit social capital to achieve a benefit
as a return.

The remainder of this paper proceeds as follows. We introduce the experimental design in Section
2 and derive the theoretical conditions in Section 3. Section 4 presents the results. We conclude in
section 5. The appendix contains auxiliary results and the material used for the laboratory experiment.

2 Experimental Design
We conducted a computerized experiment with 100 players shared in two baseline sessions (B1 and
B2) and two nudging sessions (N1 and N2). We endowed players with 100 Experimental Currency
Units (ECU; 1 ECU = 3 DKK) and, during the experiments, players made decisions that affected their
earnings. Players earned 461.87 DKK on average (min: 71 DKK; max: 767 DKK) for approximately
180 minutes. We distributed written instructions about our interactive game to all players, and we
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checked their comprehension with on-screen control questions (see Appendix B). Our sessions have a
different number of rounds (from 51 to 86) since we defined the game to last for exactly 90 minutes and
the speed of each round depends on players’ behaviour. Players’ ID numbers remain fixed throughout
the session to allow each player to identify other players but keeping anonymity.1 What varies at
the beginning of each round is the unique Question and Expertise that each player receives from the
computer, represented by neutral letters (e.g. O and P). Each player’s Question uniquely matches
another player’s Expertise.2 In each round, players have to find out which of the other 24 players has
the Expertise for their Question. If they succeed they gain 10 ECU.

Each round has two stages. In stage 1, players can send inquiries to reveal their question and
expertise to the receiver. For instance, the inquiry of a player that has Question B and Expertise C
says: "I am an expert in C. I have a question about B. Can you help me?” Players can send up to
24 inquiries, but each inquiry has a cost of 1 ECU. Stage 1 ends with the simultaneous delivery of
all inquiries. In stage 2, players can reply to the inquiries they received: each reply costs 1 ECU
and players cannot send false information. There are three types of costly replies depending on what
information each player offers: 1) "I’m sorry, but I don’t know anyone who is an expert in B"; 2) “Yes!
I am the expert you are looking for”; 3) “The expert you are looking for is player X” if the player has
received an Inquiry from player X, revealing that player X has expertise B. Players can avoid sending
any inquiry or reply if they want to avoid the cost. Stage 2 ends with the simultaneous delivery of all
replies. Nudging sessions differ from baseline sessions for a visual suggestion we gave to players in
the first five rounds: six stars appearing next to six players’ ID that suggest sending an inquiry to those
players. The six suggested ID’s form a communication network with three properties:

1. the network is perfectly bi-directional (player i is suggested to player j, if and only if j is sug-
gested to i), i.e., the adjacency matrix  is symmetric, ij = ji.

2. each player is at most two steps away from any other player, i.e., ( +2)
ij > 0 ∀ i, j ∈

{1,… , N}.

3. the graph is symmetric in the sense that all nodes are topologically identical.

We informed subjects that "if every player follows our suggestion and helps other players find their
expert, then every player will find her expert in every round". This follows from the second property.
Note that players are still free to contact (or not) any other players in the game (see Suggestion in
Appendix B).

1In practice, to a player sitting at computer m, the player sitting at computer n will appear with ID n − m mod 25.
2First we make a random permutation p of the 25 players and a random permutation q of the 25 first alphabet letters.

We then assign to the player p the question q and the expertise q + 1 mod 25.
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3 Theoretical Framework
The game derives its complexity from its network aspect and the trade-offs made by players as they
choose whom to communicate with. Classical game theory may not lead to straightforward results,
as the size of the strategy space makes it difficult to even suggest the existence of a Nash equilibrium.
As each player can send inquiries to any other within stage 1 of each round, 2nrN(N−1) combinations of
inquiries are possible during a game comprising nr rounds and N players. Replies are conditional on
inquiries, but further increase the options.

To capture the basic game mechanics, we make the following two assumptions that simplify the
strategy space. First, we assume that every player only sends informed replies. An informed reply
is a reply where player i sends a reply to an inquiry by player j containing the information on the
requested expert. We distinguish informed replies from uninformed replies of the form: “I’m sorry,
but I don’t know anyone who is an expert in X”. Second, we abstract from network structure. That
is, we assume that players can choose how many inquiries they want to send, but not whom they send
them to. In essence, we model the first round where players do not have a game history with each
other, therefore, do not have any incentive to prefer one player over another. The assumption implies
that a selfish player does not have a rational incentive to reply to inquiries in the second stage. We
evaluate the assumptions in Section 4. Without the incentive to reply, players do not have an incentive
to send inquiries in the first stage. In this simplified version, standard rational agent theory predicts a
single Nash equilibrium: Selfish players should remain inactive during the game and gain zero ECU.
This is a typical example of the tragedy of the commons as replies increase group profit, but players
have no incentive to send them.

Humans often do not behave like selfish rational agents, even in idealized lab experiments. There-
fore, we consider an additional modification of the game. We define a reply rate r ∈ [0, 1] capturing
the probability that a player sends an informed reply. For example, if the reply rate equals unity all
players always send informed replies. If the reply rate is zero, players never send informed replies. For
intermediate values, players will send some informed replies but not others. For example, this could
be due to inattentiveness or cognitive constraints.

In the following, we distinguish two perspectives. First, the individual perspective where we show
under which conditions a player should send at least one inquiry given other players’ inquiry sending
behavior and reply rate. Second, the network perspective where we illustrate under which conditions
the network is in a sustainable state. That is, we compute the expected network profit, given the
assumptions, for a given number of inquiries and reply rate. We illustrate the two perspectives using
two representative players that we call Alice and Bob, where Alice is the expert for Bob’s question.
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3.1 Individual Perspective

When should Bob send at least one inquiry? In other words, should Bob engage in playing the game at
all? The answer depends on Bob’s underlying beliefs about other player’s behavior. First, it depends on
whether Bob expects Alice to send inquiries and how many. Second, it depends on Bob’s expectation
about other player’s likelihood to reply to inquiries. In the following, we derive belief thresholds under
which Bob should engage in playing the game or not.

In a given round, consider the probability Pwin(m, n) that Bob finds Alice, where m denotes the
number of inquiries Bob sends and n denotes the number of inquiries Alice sends. We assume that
inquiries sent by Bob and Alice are sent to random receivers. Assume that Bob sends m = 0 inquiries.
The probability that Bob finds Alice equates to Pwin(0, n) = n∕24. For example, if Alice sends n = 1
inquiry then this inquiry will reach Bob with probability Pwin(0, 1) = 1∕24 as there are 23 other players
in the network. If Alice sends an inquiry to every other player in the network (that is, n = 24) then
Bob will find Alice with certainty, that is, Pwin(0, 24) = 1. We can denote the expected profit Πi(m, n)

of Bob as follows:

Πi(m, n) = 10 ⋅ Pwin(m, n) − m.

The reward for finding Alice equates to 10 ECU, by definition. When Bob sends m = 0 inquiries
his expected profit equates to Πi(m, n) = Πi(0, n) = (10 ⋅ n)∕24.

When should Bob send at least m = 1 inquiry? To answer this, we need to calculate Πi(1, n) and
compare it to Πi(0, n). Let us assume that the reply rate r equals unity in the following, so that players
always reply if they can (we relax this assumption later). Note that once Bob sends an inquiry, there
are two additional scenarios under which he can find Alice. First, Bob sends an inquiry directly to
Alice. Second, Bob sends an inquiry to a player that Alice inquires too. To calculate the Probability
Pwin(1, n) that Bob finds Alice, we can ask under which conditions Bob does not find Alice. This
depends on the following two probabilities PA and PB:

1. PA = (24 − n)∕24: None of Alice’s n inquiries are sent to Bob.

2. PB = (24 − (n + 1))∕24: Bob sends an inquiry neither to Alice nor any of the n players who
Alice sends an inquiry to.

For example, if Alice sends one inquiry then the probability that the inquiry of Alice goes to any
of the other 23 players equates to PA = 23∕24. In the other extreme, if Alice sends an inquiry to every
player then Bob finds Alice with certainty, i.e. PA = 0. Now consider the case where Bob and Alice
send one inquiry each. The probability that Bob’s inquiry neither reaches Alice nor any of the other
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players Alice inquires equals PB = 22∕24. In the other extreme, if Alice sends n = 23 inquiries, then
Bob finds Alice with certainty, i.e. PB = 0. We can calculate the probability Pwin(1, n) that Bob finds
Alice when Bob sends m = 1 inquiry as follows:

Pwin(1, n) = 1 − PA ⋅ PB =
24 + 47 ⋅ n − n2

242
. (1)

Bob’s expected profit equates to:

Π(1, n) = 10 ⋅ Pwin(1, n) − 1 =
240 − 242 + 470 ⋅ n − 10 ⋅ n2

242
.

Thus, Bob should send an inquiry whenever Π(1, n) ≥ Π(0, n). We can solve this equation for n
and get the result that this equation holds whenever 1.57 ≤ n ≤ 21.43. Whenever Bob expects Alice
to send over 1.57 inquiries and less than 21.43 inquiries, Bob should send at least one inquiry. Note
that we derived this threshold under the assumption that the reply rate r equals unity. We can account
for the reply rate being less than unity considering the probability PC as follows:

PC : If Bob does send an inquiry directly to Alice or one of the n players Alice inquired, Alice
or one of the other players sends a reply with probability r < 1.

The probability PC extends PB as it is now possible that Bob does not find Alice even though he
sends an inquiry directly to Alice, for example. We can denote the probability PC by:

PC = PB + (1 − PB) ⋅ (1 − r) = 1 − r ⋅ n + 1
24

.

One can see that when the reply rate equals unity we are back to the case we calculated above and
PC = PB. However, if the reply rate is less than unity the probability PC that Bob does not find Alice is
greater than PB as players do not reply with certainty. When the reply rate equals zero the probability
PC that Bob does not find Alice equals unity. Intuitively, if nobody replies Bob cannot find Alice
by sending inquiries himself. We can substitute PC for PB in equation (1) above and recalculate the
interval stating when Bob should send at least one inquiry. For example, for a reply rate of r = 0.75
(r = 0.5) the interval becomes 2.59 ≤ n ≤ 20.41 (5.09 ≤ n ≤ 17.91). Whenever Bob expects Alice
to send over 2.59 (5.09) and less than 21.4 (17.91) inquiries, Bob should send at least one inquiry.
Note that the interval is shrinking, as a lower reply rate implies that Alice needs to send more (less)
inquiries to satisfy the lower (upper) bound of the interval. In other words, if Bob believes that other
players do not always reply even though they know who the requested expert is, Alice needs to send
relatively more inquiries so that it is worthwhile for Bob to send at least one inquiry. Furthermore,
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we can calculate that when Bob beliefs that the reply rate is less than ≈ 0.37 he should never send an
inquiry independent of how few or many inquiries Alice sends.3

3.2 Network Perspective

How does the profit players can expect to make depend on the number of inquiries present in the
network and the willingness of players to reply to inquiries? Figure 1 shows the expected profit as a
function of the number of inquiries sent per player for random networks. We calculate the expected
profit as follows.4 First, we calculate the probability that Bob will find Alice by counting how many
players know this and average this number over all combinations of possible experts. Second, we can
calculate howmany replies Bob will send, on average. Once we know the average number of messages
sent, it is straightforward to calculate the expected profit. The orange star depicts the expected profit
of the suggested network.5
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Figure 1: Expected Group Profit in ECU
We generate an ensemble of 1000 random networks for each number of total inquiries ranging from 0 to 8 ⋅ 24. Then we
calculate the expected profit for each of the networks in the ensemble. The curves represent the mean of the ensembles,
and the shaded areas represent the mean plus/minus one standard deviation. We calculate the expected profit by averaging
over all possible question-expertise configurations for each network within an ensemble. We sum the profit of each player
and take the average in each round to calculate the average group profit. We measure profit in Experimental Currency Unit
(ECU, 1 ECU = 3 DKK).

One can see that when the reply rate equals zero then the expected profit is always negative. Players
only find their experts when the expert inquires them through a direct inquiry. Therefore, expected
profit linearly decreases in the number of inquiries sent. For example, if players send five inquiries, on

3Note that the strategy space, for a given reply rate, is simple enough to explore other Nash equilibria. In Appendix
A.4, we show that for sufficiently high reply rates there exist non-trivial “active” Nash equilibrium states in addition to the
“no-activity” Nash equilibrium.

4See Appendix A.3 for the derivation.
5See Appendix A.5 for the derivation.
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average, then the expected profit per round equals ≈ −3 ECU. When the reply rate is greater than zero
one needs to take the probability into account that Bob finds Alice through a reply sent by a player
both Bob and Alice inquired. This non-linear effect creates the curvature of the expected profit curves
in Figure 1. One can see that for a reply rate of less than ≈ 50% the network does not generate a
positive profit under the assumptions we made. The highest profit occurs when players send ≈ 4.5

inquiries, on average, given a reply rate of unity. Finally, the expected profit would be significantly
higher, compared to the curve that features a reply rate of 100%, if all players were following our
suggestion perfectly - as we induce an efficient network structure. We suggest players to each other so
that every player finds her expert in every round. That is, the vertical difference between the expected
profit curve featuring a reply rate of 100% and our suggested network (orange star) denotes the effect
of network structure.

4 Results
Figure 2 displays the average payoffs accumulated during the rounds played by 25 subjects in each
of the four sessions (B1 and B2, in blue; N1 and N2, in orange). The payoff structure of our game
suggests that subjects should remain inactive (gaining 0 ECU) unless they hold relatively strong beliefs
about the number of inquiries their expert sends and others willingness to reply (see Section 3). In the
following, we compare outcomes at round 51 as B2 is the session with the lowest number of rounds
played among all sessions. In baseline sessions, our subjects do cooperate and play the game. They
send, on average, three inquiries in round 1 (B1: 2.88; B2: 3.12) and 2.65 inquiries per round across
51 rounds (B1: 2.53; B2: 2.76). In B2 subjects earned, on average, 22.72 ECU (min: -35, max: 107)
after round 51 and 80% of them can make a positive profit. In B1 subjects earned 18.12 ECU after the
same number of rounds (min -45, max: 107) and 72% of them made a positive profit.

In nudging sessions, we suggest subjects to send six inquiries per round. However, subjects send,
on average, four inquiries in round 1 (N1: 3.96; N2: 4.16) that is lower than what we suggested but
significantly more than in baseline sessions (Wilcoxon Rank Sum test, p-value = 0.00323). Across all
51 rounds, on average, subjects sent 3.53 inquiries (N1: 3.22; N2: 3.85). Comparisons of all sessions
show that all session means differ significantly from each other at the 1% significance level (Pairwise
Wilcoxon Rank-Sum test, p-value < 0.001). This inquiry increase of≈ 33.52% sent per subject almost
doubles the cumulative profit. After 51 rounds, on average, subjects earned 39.12 ECU in N1 (min:
-32, max 96) and 84% of them made a positive profit. In N2, subjects earned 40.36 ECU (min: -73;
max: 105) and 88% of subjects made a positive profit.6

6Across all rounds of a respective session (B1: 86, B2: 51, N1: 73, N2: 57) subjects make a profit of 30.8 ECU in B1
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Figure 2: Average Profit (ECU) cumulated during each session (B1, B2, N1 and N2)
We sum the profit of each player and take the average in each round to calculate the average individual profit. We measure
profit in Experimental Currency Unit (ECU, 1 ECU = 3 DKK). The number of rounds varies between sessions (86 rounds
in B1, 51 in B2, 73 in N1 and 57 in N2). The dotted black line shows the expected profit if all subjects would follow our
suggestion. See Appendix A.5 for the derivation of the suggested network.

Figures 3 shows the average number of inquiries sent per round during each of the four sessions.
We can say that, on average, a ≈ 36.5% investment increase (inquiries and replies sent) in nudging
sessions leads to a ≈ 94.6% increase in profit at round 51.7 That is, the increase in information present
in nudging sessions outweighs the additional cost of sending more messages. To which extent does
the profit increase reflect a pure investment increase, and what is the effect of network structure? Note
that our suggested network requires subjects to send more inquiries (i.e. invest more in the network) as
well as an efficient network structure. We disentangle the effect of network structure from investment
on individual profit and find that investment entirely drives profit differences between baseline and
nudging sessions rather than network structure. See Appendix A.2 for a detailed discussion.

We examine to which extent subjects replied to the inquiries they received in stage 1 to determine
the reply rate that we used to derive the theoretical benchmarks. As the number of replies any subject
can send varies from round to round, we derive a quantity called conditional informed reply rate. We
normalize the number of replies sent by the number of replies a subject could have sent. For each
session this rate becomes B1:0.82, B2:0.87, N1:0.85, and N2:0.81, hence, common to all sessions
most subjects replied reliably when they could. The conditional informed reply rate is similar in
baseline and nudging sessions, that is, the profit increase in N1 and N2 compared to B1 and B2 cannot
be explained by changes in subjects’ willingness to reply. To learn more about replying behavior,
(min: -39; max: 139), 22.72 in B2 (min: -35; max: 107), 49.48 in N1 (min: -40; max: 123), and 46.16 in N2 (min: -54;
max: 128). In total, 72% of subjects make a positive profit in B1, 80% in B2, and 84% in both N1 and N2.

7B1: (Cost, Reward, Profit) per round = (71.5, 80.4, 8.9); B2: (82.4, 93.5, 11.1); N1: (94.2, 113.3, 19.2); N2: (116,
136, 19.9).
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Figure 3: Average Investment for Sending Inquiries (in ECU) per session
We sum the number of inquiries of each player and take the average in each round to calculate the average investment.
The number of rounds varies between sessions (86 rounds in B1, 51 in B2, 73 in N1 and 57 in N2). Note that inquiry cost
corresponds to the number of inquiries sent per player in a round.

we asked subjects whom they replied to in a post experimental questionnaire (see Appendix A.6).
The majority of subjects (58% in baseline sessions and 60% in nudging sessions) claimed they did
not distinguish between communication partners they considered friends (defined as reply givers) and
those considered acquaintances (defined as communication partners not expected to give replies) when
sending replies. However, subjects valued replies they received themself as a sign of friendship. In
particular, we asked subjects to score received replies on a scale from 0 to 10 where 10 indicates that
subjects value received replies as a sign of friendship. The median subject in baseline (nudging) gives
replies a score of 9 (9) - hence not significantly different from each other (p-value of a two sample
wilcoxon rank sum test is 0.678).

To derive the theoretical benchmarks, wemade the assumption that subjects never send uninformed
replies of the form "I’m sorry, but I don’t know anyone who is an expert in X". This is a relatively
good approximation of the experimental findings. We can see that subjects only sent about 3% of the
possible uninformed replies.8 However, there are informed replies that cannot help the receiver win
the round. If Alice is the expert that Bob is looking for, and they both send inquiries to each other,
then it will be redundant for Alice to send a reply of the form “Yes, I’m the expert you are looking
for”. Subjects should avoid sending redundant replies like this if they were striving to optimize the
group profit. The data shows that players sent these replies with a frequency of ≈ 75% whether or
not they already revealed this by sending an inquiry to that same recipient in stage 1.9 This does not
affect group profit much as a player gets the opportunity to send such a reply only ≈ 2 times within 51

8The percentage is similar for each session (B1; B2; N1; N2) = (1%; 6%; 2%; 4%).
9Subjects sent replies of this form with a frequency of (B1; B2; N1; N2) = (75%; 77.4%; 80.9%; 67.7%).
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rounds, on average. Therefore, if subjects did not use this type of reply, group profits would increase
by approximately 5.44% in each session, on average.10

There is a large variation in how many inquiries subjects send and how many they receive (see
Figure 7 in Appendix B). These two measures show a strong positive correlation, which is a sign
that subjects prefer reciprocity. The sample Pearson correlation coefficients (Inquiries sent – Inquiries
received) for each session are; B1: 0.73, B2: 0.75, N1: 0.51, and N2: 0.60.11 We claim this because
we expect a positive slope if subjects are more likely to contact subjects fromwhom they have received
inquiries in a previous round. Interestingly, inquiry returns roughly mirror inquiry sending behaviour
for higher sending rates, but even those sending few inquiries receive about 1.55 inquiries per round.
For example, players who do not send any inquiry still receive inquiries from others’ who explore
the network. In the post experimental questionnaire, we asked subjects to score, on a scale from 0 to
10, whether they perceive received inquiries as a sign of friendship. The median subject in baseline
(nudging) sessions gives inquiries a score of 5 (6) which is significantly different (p-value of a two
sample wilcoxon rank sum test is 0.008). The network in nudging sessions is more profitable, hence,
each inquiry generates a larger profit for subjects, on average. Therefore, subjects might perceive
received inquiries to contain a stronger friendship signal.

We investigate to which extent subjects followed our suggestions over time to see whether our
suggestions influence network formation even a long time after removal. The bottom panels of Figure
4 decompose the number of inquiries subjects sent in N1 and N2 into “suggested connections” (light
+ dark orange area) and “others” (light + dark gray area). In the initial five rounds, while we show
the suggestions to subjects, almost every inquiry (96% in N1 and 91% N2) is sent to a suggested
contact (light + dark orange area). Note, if subjects would have perfectly followed the suggestions,
then they would have sent six inquiries each - one to each of the six suggested other subjects. After five
rounds, when the suggestions are no longer visible to subjects, we see a sharp drop in the percentage of
inquiries sent to suggested players. In rounds 6 to 51, the share of inquiries sent to suggested subjects
remains fairly constant at 44% plus/minus 5% in N1 and 53% plus/minus 4% in N2. We would expect
that, by chance, 25% of the inquiries would be sent along the suggested links even if we provided no
suggestion. This follows because we suggest 6 out of 24 connections to each subject. However, we
see that the actual share of inquiries sent to suggested players is significantly higher. We conclude that
our initial suggestions influence network formation long after we removed them.

When we disentangle the reward generated from suggested subjects to the reward generated from
10In Appendix A.3, we show how it affects our measure of expected profit once we relax the assumption of informed

replies.
11For the total number of messages sent (i.e. inquiries and replies) the sample pearson correlation coefficients for each

session are: B1: 0.84, B2: 0.9, N1: 0.73, and N2: 0.85. See Figure 8 in Appendix B.
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Figure 4: Decomposition of Inquires Sent
The figure shows the number of inquiries sent split by the number of suggested links (light and dark orange) and non-
suggested links (light and dark gray) in baseline and nudging sessions as a function of the number of rounds played. The
lighter areas (both orange and gray) depict bi-directional links, whereas the darker areas (both orange and gray) depict
unidirectional links. The dotted black line depicts the center between the last round where suggestions are active (round
5) and the first round they are removed (round 6).

network links outside the suggested network, we find that for the first 51 rounds the share of reward
generated within the suggested network is 48% in N1 and 56% in N2.12 However, we find that sug-
gested links are not more efficient than links subjects form with others’ outside the suggested network.
We calculate the relative return on investment (RRI) made by subjects in nudging sessions split into
suggested and non-suggested links within 51 rounds. We calculate the RRI by summing the reward
and dividing it by the number of inquiries (number of messages) sent as a measure of how much sub-
jects invest in the respective group. In N1, the reward-inquiry ratio (reward-message ratio) equals 1.34
(1.14) among suggested links and 1.47 (1.27) among non-suggested links. In N2, the reward-inquiry
ratio (reward-message ratio) equals 1.38 (1.14) among suggested links and 1.44 (1.21) among non-
suggested links. It seems surprising that the RRI is lower inside than outside the suggested network
since we specifically designed the suggested network to optimize the chance of winning.

One can explain this because suggested connections are bi-directional, that is, pairs of subjects si-
multaneously sending inquiries to each other. Inquiries sent along bi-directional links are less efficient
because they represent redundant information sharing. We observe that there are more bi-directional

12A subject receives a reward (10 ECU) if a message informs a subject about who their expert is. If a player receives
more than one of such messages in a single round then we divide the reward into equal fractions between subjects.
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links then we would expect at random in far most of the rounds across all sessions (see Figure 9 in
Appendix B). Therefore, we decompose suggested (non-suggested) links further into suggested (non-
suggested) bi-directional links and suggested (non-suggested) unidirectional links. We can see that
among suggested links in session N1 (N2) 61% (67%) are bi-directional in the first five rounds, on av-
erage. Whereas among non-suggested links only 11% are bi-directional in session N1 in the first five
rounds, on average. Not a single non-suggested link is bi-directional in N2 within the first five rounds.
After round five, the percentage of bi-directional links among suggested links drops to 43% (58%) in
N1 (N2), on average. Among non-suggested links the percentage of bi-directional links increases to
19% (26%).

Finally, we can decompose the links in baseline session B1 and B2 in bi-directional and unidirec-
tional links. We find that the majority of links 88% (82%) in B1 (B2) are uni-directional within the
first five rounds, on average. This number decreases slightly to 76% (75%) in B1 (B2) after round five,
on average. Hence, most links in baseline sessions where we do not provide a suggestion to subjects
are unidirectional. One explanation for the slight decrease in the share of unidirectional links after
round five is that subjects develop relationships which leads to the formation of bi-directional links.
In summary, the share of bi-directional links among non-suggested ones is similar for baseline and
nudging sessions. However, there is a large difference between sessions with respect to the number of
bi-directional links. In nudging sessions the share of bi-directional links is not only larger, the large
share of bi-directional links prevails at a fairly constant level until the end of the experiment.

5 Conclusion
We use the laboratory to create an environment with little incentives to cooperate and show that sub-
jects cooperate and build their own communication network nevertheless. A subtle and non-binding
nudge fosters cooperation and helps to sustain higher levels of cooperation, and thereby profit, even
long after its removal. We conclude that the initial conditions are crucial in guiding a community into
a productive and profitable state, leading to an increased information flow, and long-lasting relations
between players. Across all sessions, even within almost every round, subjects form a higher than ex-
pected number of bi-directional relationships with others - a characteristic deeply rooted in the nature
of human behaviour.

Our experiments mimic virtual online communication, which is becoming more and more com-
mon in a global economy largely based on accumulation and transfer of knowledge and expertise.
Our interactive game highlights the complexity arising when the transaction success made with one
individual depends on previous transactions made with others. Navigating the strategy space of such
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a game is complex, and individuals in our experiments likely acted more like intuition, rather than
"solving" for the optimal solution during the course of the experiment. We here motivate, that, what
at first might seem as "friendly" behavior, namely the pronounced willingness to send replies, could
indeed be seen a fairly calculated trade of information: Offering a reply is a display of one’s access to
information and invites future inquiries from the transaction partner - increasing one’s chance to profit
at a later stage.

Our results could have powerful practical implications. When building professional teams, such
as in business or academia, initial "buddy programs", kindly suggesting professional partnerships be-
tween employees would tie informal contracts between them. Thus, allowing the group to perform as
an "information processing unit" long after the initial suggestion.
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A Appendix

A.1 The Suggested Network Algorithm

We split the 25 players into five groups of five. Each player can now be indexed with two integers
g, i ∈ {1, 2, 3, 4, 5}, where g specifies which group the player is in and i is an index within the group.
For a player with index (g, i) we add the following six connections:

1. Link the groups together as a ring: (g, i + 1) and (g, i − 1).

2. Inter group links: (g + 1, 2i + 1), (g + 2, 3i + 3), (g + 3, 2i + 4), and (g + 4, 3i + 2).

The indices should all be interpreted as modulo 5. That is, if an index is greater than 5 it loops
around, for example 4 + 2 = 1 mod 5. It is clear that all players are treated symmetrically. It can be
easily checked that the links are indeed bi-directional. Further, the network has diameter two, i.e. any
two players are either directly connected or they have a common connection to whom they are both
connected.

A.2 Graph Structure and Sending Behavior

To explain the difference between baseline and nudging sessions, we study the effect of network struc-
ture and sending behavior on group profit. Recall that the suggested network induces an efficient
network structure, but simultaneously suggests subjects to send more inquiries. We use a measure of
expected profit, which removes the effect of the inquiry network structure by re-shuffling of network
links.

The expected profit is the mean profit that a player receives given the inquiry graph of a single
round under the assumption that everybody sends informed replies with a reply rate equal to unity.
We compute the average profit obtained by a player over all possible question/expertise configura-
tions. The expected profit helps distinguish between the effects of the inquiry volume and network
structure, because it allows us to directly compare the “efficiency” of the actual inquiry networks with
randomised ensembles of the same inquiry volume.

The simulation works as follows. We preserve the number of inquiries sent in each round by each
player, but the receivers are chosen at random with uniform probability. That is, this measure removes
correlations due to relationships that players might formwith each other over time. Ideally, the network
structure could help increase expected profit, as redundancy could be reduced relative to inquiries sent
without coordination.
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Figure 5: Expected Group Profit in ECU per Round
The figure shows the cumulated expected group profit averaged over all subjects within each session as a function of rounds
(solid lines). The grey area shows the simulation outcome from 100 randomised game histories. The simulation preserves
the number of inquiries sent by each subject in each round, but receivers are chosen at random with uniform probability.
Each shaded area shows the mean plus/minus one standard deviation.

The contrary is the case for our experimental networks. The expected profit in any of the actual
inquiry networks is consistently lower when compared to the ensemble where receivers are chosen at
random with uniform probability. Whereas there are systematic differences in expected profits for the
actual histories and the randomisation, these differences are small compared to those between sessions.
We conclude that it is predominantly the amount of sending behaviour driving profit differences, not
the network structure itself.

A.3 Expected profit with random inquiry receivers

Assume a directed inquiry network Iij describing a single round of the game, where Iij = 1 if player
i sends an inquiry to player j, and Iij = 0, otherwise. We denote inquiry in-degree of player i by
I in
i =

∑
j Iji and inquiry out-degree of player i by Iout

i =
∑

j Iij . If player j is player i’s expert, then
the number of players who can send informed replies to player i is:

xij = Iij +
∑
k
Iik ⋅ Ijk.

The first term equals one when j can reply directly to player i and 0 otherwise. The second term
adds one for every player k that receives an inquiry from player i and j. Player i wins the round if
she receives a direct inquiry from player j, or by receiving at least one informed reply. Assume that
there is a constant reply rate. Then the probability that player i does not receive any informed replies
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is given by (1 − r)xij . The probability that player i finds her expert is given by:

Pwin(i, j) = 1 − (1 − r)xij ⋅ (1 − Iji).

For example, player i is certain to find her expert (i.e. Pwin(i, j) = 1) if Iji = 1 which means that
her expert sends a direct inquiry to her so that (1 − r)xij ⋅ (1 − Iji) = 0. On the other hand, Pwin(i, j)

solely depends on (1−r)xij if player i’s expert does not sent a direct inquiry (i.e. Iji = 0). For example,
if the reply rate equals zero player i does not learn who her expert is with certainty (i.e. Pwin(i, j) = 0).
In the other extreme, when the reply rate equals unity player i learns who her expert is with certainty
given that xij > 0. All players have the same probability of being player i’s expert, so the average
probability of player i winning is:

P (wi) =
∑
j≠i

Pwin(i, j)
24

.

The last thing we have to calculate is how many replies player i must send, on average. We dis-
tinguish two cases. In the first case, we calculate expected replies under the assumption that players
send informed replies. We can write the expected number of replies E(Ri) as follows:

E(Ri) =
I in
i
2

24
.

For each inquiry player i receives, there is a I in
i ∕24 chance that player i knows who the expert is.

However, for bi-directional inquiry links, there is a 1∕24 chance that player i is herself the expert that
player j is looking for. In this case, player i knows that her reply does not contain any new information.
Therefore, it would be more efficient for the group profit if player i refrains from replying. This would
change the number of expected replies as follows:

E(Ri) =
(
I in
i − I rec

i

)
⋅
I in
i

24
+ I rec

i ⋅
I in
i − 1
24

=
I in
i
2 − I rec

i

24
.

The first term counts the number of non-reciprocal connections player i has with others’ times the
probability that player i knows who the expert is. That is, the first term denotes the chance of knowing
who the expert is given that the connections are non-reciprocal. The second term counts the number
of reciprocal links a player has with others’ times the probability that the player knows who the expert
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is. Player i will reply to r < 1 of those, so that we can denote the expected profit of player i by:

Πi = 10 ⋅ Pwin(i, j) −
(
Iout
i + r ⋅ E(Ri)

)
,

where the first term denotes the expected reward and the second term the expected cost consisting
of the inquiry cost Iout

i and the expected reply cost E(Ri). In essence, we can calculate the probability
that player i will win given that player j is her expert by counting how many players know this. We
can average this number over each of the possible experts. In a similar fashion, we can calculate how
many replies player i will be able to send on average. When we know the chance of winning and the
average number of messages sent, it is straightforward to calculate expected profit.

A.4 Alternative Group Dynamics

Let us consider a different type of idealised game dynamics. We will investigate the expected profit of
a player who sends m inquiries in a round when all other players send n inquiries each. The expected
profit is the difference between the expected reward and expected cost (inquiry and reply cost). The
expected reward is 10 ECU times the probability of winning the round and the cost equates to 1 ECU
for each message (inquiries and replies) sent:

Πi(m, n) = 10 ⋅ Pwin(m, n) − m − E(Ri).

First, we assume that all receivers are chosen independently with uniform probability. Second, all
players send informed replies and a reply rate of unity. Given these assumptions we can calculate the
probability of winning:

Pwin(m, n) = 1 −
24 − m − n

24

n∏
k=1

25 − m − k
25 − k

.

The average number of informed replies that player i sends is given by:

E(Ri) =
n
24
+ 23 ⋅

( n
24

)2
,

where the first term counts the expected number of direct replies to players that seek your expertise.
The second term counts the number of replies where you can refer players expertises to each other.
Note that replies stemming from the first term do not contain any new information if a player already
sent an inquiry. This happens with a probability ofm∕24, which changes the average number of replies
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as follows:

E(Ri) =
n
24

⋅
(
1 − m

24

)
+ 23 ⋅

( n
24

)2
.

Figure 6 visualises expected profits under the assumptions of informed replies. One can see that the
group can produce more profit, on average, if all players maintain a high level of sending activity (i.e.
if they send a lot of inquiries). However, players are trying to optimise their individual profit, rather
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Figure 6: Expected profit of a player when all others’ send n inquiries

We sum the profit of each player and take the average in each round to calculate the average group profit. Wemeasure profit
in Experimental Currency Unit (ECU, 1 ECU = 3 DKK). The calculation of expected payoff relies on two assumptions.
First, all inquiry receivers are chosen at random from a uniform distribution. Second, all players send informed replies.
The black x’s indicate the optimal strategy for the players sending m inquiries, given all other players sending n inquiries.

than that of the group as a whole. What number of inquiries, m∗, will optimise a players individual
profit given that the other players all send n inquiries? In an environment where all other players send
n = 0, n = 2 or n = 3 inquiries, all players can optimise their individual profits by conforming to
the group and sending the same number of inquiries (i.e. m∗ = n). These states can be interpreted
as Nash equilibria of this restricted version of the game. In contrast, states where all players send
n > 3 inquiries each can be considered unstable, because the players have an incentive to reduce their
sending activity. For n = 4 or n = 5 it is optimal to only send m∗ = 3 inquiries, so one could expect
the overall activity to drop to this level. A similar logic applies for n = 1, where every player would
have an incentive to stop sending inquiries all together. Bringing the system into the completely silent
state where all communication has perished.

The above considerations indicate that the game has a lower threshold for the overall inquiry activ-
ity, below which it is no longer meaningful for the players to keep playing. The value of the threshold
might very well be different in the actual game, given that we have ignored the effects of non-random
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network structures. We also assume that all players except one send the same number of inquiries.
However, we can make the qualitative prediction that the inquiry activity should start to consistently
decay once it gets below some threshold.

A.5 Expected Profit of the Suggested Network

Weprovide a suggestion to subjects to create a situationwhere it is entirely up to themselves tomaintain
an efficient network. Our suggestion maximizes the expected profits for each subject, while ensuring
an equal distribution of profits among subjects. The network we suggest is bi-directional (i.e. all links
are reciprocal) and yield the same expected profits for each player (i.e. perfect equality) as opposed
to a network that maximizes expected profits (e.g. perfect inequality in a star network). The network
connects all 25 players such that each player receives the same expected profit independent of her
position in the network. The local network (first degree neighborhood) of each position exhibits the
same properties, so that each position receives the same profit in expectation.

To calculate the expected profit Πi(m, n) for each player in the suggested network within a given
round, we make the following two assumptions. First, players perfectly follow our suggestion in
stage 1 of each round which implies that each player sends the same number of inquiries, Πi(m, n) =

Πi(m,m) = Πi(m). Second, we assume a reply rate of unity and that players only send informed replies
in stage 2 of each round. Note, the two assumptions ensure that every player finds her expert in every
round. Given that a player gains 10 ECU if she finds her expert, the expected reward per player equates
to 10 ECU per round.

We calculate the expected cost of sending inquiries and replies for a given round. Calculating
the expected cost of sending inquiries is straightforward as 25 players send six inquiries each round
according to our suggestions. Each inquiry costs 1 ECU, hence the expected cost of sending inquiries
equates to six ECU per player. We calculate the expected reply cost E(Ri(m)) as follows. For each
inquiry a player receives, the probability PR(m) that the requested expert is one of the players she is
linked to equates to:

PR(m) =
m

N − 1
,

using our definition of informed replies where N denotes the total number of players. However,
for bi-directional inquiry links, there is a 1/24 chance that player i is the expert herself, in which case
the reply does not contain any new information. We can account for this and rewrite the probability

94



as follows:

PR(m) =
m − 1
N − 1

.

Note that it is m − 1 as a player cannot send a reply to someone who is already linked to her.
Remember when the link is bi-directional, the knowledge about question and expertise pairs is already
transferred through inquiries and part of the expected cost of sending inquiries. This being the case,
we only have to take the probability into account that one has to refer her direct links to each other.
Putting everything together, the expected reply cost for each player at any given round is:

E(Ri(m)) = PR(m) ⋅ m.

The final step is to insert the parameters specific to the game. The experiment features N = 25

players which send six inquiries to each of the six suggested players. This yields expected reply costs
ofE(Ri(m)) = 1.5 ECU per player and round, using the assumption of informed replies. The expected
profitΠi(m) of each player, therefore, equates to 2.5 ECU per round. Lastly, we allow for the possibility
that a reply sent along a bi-directional link might not contain any new information. In this case,
expected reply cost equate to E(Ri(m)) = 1.25 ECU per player which yields an expected profit of
Πi(m) = 2.75 ECU per player and round.

A.6 Questionnaire Results

In the final part of the experiment, subjects must answer a questionnaire (see Questionnaire in Ap-
pendix B). which allows us to gain further insights into differences between baseline (B1, B2) and
nudging (N1, N2) sessions. Characteristics like age and gender are not able to explain the differences
between baseline and nudging sessions. Subjects have a mean (median) age of 25.27 (25) in baseline
sessions and 24.84 (23) in nudging sessions. In total, 48 males and 52 females participated in our
experiment with a gender ratio (female/male) of 1.174 in baseline sessions and 1 in nudging sessions.

Personality. The questionnaire contains a set of 30 questions to predict certain personality charac-
teristics of subjects which allows us to examine whether personality can explain differences between
baseline and nudging sessions. We selected three personality measures (Honest-Humility, Agreeable-
ness versus Anger, and Extraversion) from the HEXACO-60 inventory that assesses the six dimensions
of personality structure of the HEXACOmodel (Ashton and Lee, 2009). We find no significant differ-
ences in personality between subjects in baseline and nudging sessions, suggesting that differences in
personality are not driving our results. For Agreeableness versus Anger, we find that the average sub-
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ject in baseline (nudging) scores, on a scale from 1 to 5, 3.16 (3.15) which is not significantly different
(p-value of a two sample t-test is 0.94). For Extraversion, we find that the average subject in baseline
(nudging) scores 3.33 (3.5) which is not significantly different (p-value of a Welch two sample t-test
is 0.165).13 For Honest-Humility we find that the average subject in baseline (nudging) scores 3.408
(3.398) which is not significantly different (p-value of a two sample t-test is 0.933).

Game Experience. This part of the questionnaire asks subjects about their experiences with the
others throughout the game as well as about features of the game itself. The average subject in baseline
(nudging) has 5.15 (5.39) acquaintances and 4.29 (4.57) friends. 56% of subjects reported that their
group of friends never changed throughout the game (60% in baseline and 52% in nudging), 29%
reported that their group of friends changed every 10 rounds (24% in baseline and 34% in nudging),
13% reported that their group of friends changed faster than every 10 rounds (12% in baseline and
14% in nudging).14 The average (median) subject reports that it took at least ≈ 13 (13) rounds to find
friends in baseline and ≈ 13 (11) rounds in nudging.15 In baseline (nudging), 26% (26%) of subjects
indicated that they found friends in less than 10 rounds, 44% (40%) needed between 10 and 19 rounds
to find friends, 18% (28%) reported that they needed more than 20 rounds to find friends, 8% (6%)
indicated that they never found friends, and 4% (0%) are missing.

We asked subjects to score, on a scale from 0 to 10, whether they perceive received inquiries or
replies from others as a sign of friendship. The median subject in baseline (nudging) gives inquiries
a score of 5 (6) which is significantly different (p-value of a two sample wilcoxon rank sum test is
0.008).16 The median subject in baseline (nudging) gives replies a score of 9 (9) which is not signifi-
cantly different from each other (p-value of a two sample wilcoxon rank sum test is 0.678). The results
show that subjects in baseline and nudging value replies more than inquiries as a sign of friendship.
The increase in the value of inquiries in nudging sessions potentially reflects that the networks in nudg-
ing sessions generate more profit then the networks in baseline sessions (see Section 4). We further ask
subjects if they prefer to send inquiries to friends, acquaintances, or neither of both. 75% of subjects
indicate that they prefer friends (68% in baseline and 82% in nudging), indicating that inquiries carry
a strong friendship signal. 73% out of the 75% of subjects who prefer friends also indicate that they
prefer some friends over others when sending an inquiry. Replies, however, tell a different story. 59%
of subjects (58% in baseline and 60% in nudging) indicate that they have no preference over sending

13Here we select the Welch two sample t-test, because an f-test shows that the two sample variances are significantly
different from each other (p-value of 0.02).

144% of questionnaire answers (two subjects) are missing in baseline sessions due to a data storage error.
15To calculate the mean and median we exclude subjects who reported "never" and treat reports of > 25 as 25.
16We choose a non-parametric test because the underlying data in baseline and nudging sessions is not normally dis-

tributed. For individual sessions (B1; B2; N1; N2) subjects gave inquiries a mean value of (4.5; 4; 5.5; 5.6) and a median
value of (4; 5; 5; 6).
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replies. That is, the majority of subjects reply independently of whether they consider the individual
they are about to help as a friend or an acquaintance. Out of the 33% (30% in baseline and 36% in
nudging) who prioritize friends as the receiver of a reply, 61% report that they have no preferences
among their friends.

General Questions. We asked subjects whether the game is good at mimicking actual communi-
cation, e.g. email communication in an actual business, on a scale from 1 to 10. The average (median)
subject gives our game a score of 5.6 (6). Furthermore, our game features a timer that ends a round
if the last three subjects need more than 15 seconds to make their decision to prevent the game from
stalling. We were worried that this might influence the decisions of subjects so we asked themwhether
the timer influenced their decisions in the game. 90% of subjects indicated that the timer did not (52%)
or just marginally (38%) affect their decisions, confirming that the timer is not responsible for the out-
come of the game. Lastly, we asked subjects to indicate whether they were surprised that the game
ended since we set a time limit of 90 minutes instead of letting them play a fixed number of rounds.
90% of subjects indicated that they were not surprised (52%) or a little surprised (38%), showing that
there might be an endgame effect in the last rounds of our game. However, the data does not confirm
such an endgame effect.
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B Additional Figures and Laboratory Material
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Figure 7: Reciprocal Inquiry Sending Behavior
The scatter plots show the number of inquiries received as a function of the number of inquiries sent, normalized by the
number of rounds played in the respective session. The number of rounds varies between sessions (86 rounds in B1, 51
in B2, 73 in N1 and 57 in N2). Each dot represents one out of 25 players for baseline sessions (B1 and B2) and nudging
sessions (N1 and N2). The black line denotes the 45 degree line.
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Figure 8: Reciprocal Message Sending Behavior
The scatter plots show the number of messages received as a function of the number of messages sent, normalized by the
number of rounds played in the respective session. The number of rounds varies between sessions (86 rounds in B1, 51
in B2, 73 in N1 and 57 in N2). Each dot represents one out of 25 players for baseline sessions (B1 and B2) and nudging
sessions (N1 and N2). The black line denotes the 45 degree line.
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Figure 9: Statistical over-representation of bi-directional links
We generate an ensemble of 100 random inquiry networks, for each round in each session, preserving the in- and out-
degrees of the actual (data) networks. We measure the mean and standard deviation of bi-directional links in the ensembles
- again for each round in each session. The y-axis shows the standard deviation of our normalized bi-directionality measure.
We construct this measure by subtracting the ensemble mean from the actual number of bi-directional links and divide
by the standard deviation. The black line shows the mean plus/minus one standard deviation. Dots represent individual
rounds and lines show 5 round averages.
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I copy part of the following laboratory material from Busch (2018) as the two baseline sessions
were part of my Master’s Thesis. However, the data for the nudging sessions were collected and
analyzed during my Ph.D. studies.

100



 
 

Game Instructions (Note that these Instructions resemble the Tutorial) 

Please read through this tutorial carefully to understand the rules of this experiment. Note that at the end of 
the tutorial you must answer some questions. You can proceed with the experiment only after having 
correctly answered all the questions. It is important that you understand the “Game” since it is likely that 
you earn more money when you understand the rules. 

Payment 

In this experiment, you can earn ECU (Experimental Currency Unit) that will be converted in DKK (Danish 
krone) at the end of the experiment. The exchange rate is 1:3, which means that for each ECU you have after 
the experiment, you will receive 3 DKK.  

At the end of the experiment you will be payed what your balance is plus 50 DKK as a show-up fee. For 
example, if your balance is 150 ECU at the end of the game you receive 500 DKK (3x150 + 50).  

If you leave before the Experiment is finished you will not receive any money. 

Objective 

This experiment consists of a series of rounds. In the beginning of each round (stage 1) you will be assigned 
a "Question" and an "Expertise". 

Your assigned "Question" is indicated by a letter (e.g. A, B, C ....). For example, if you are assigned with 
question A, your goal is to find the player who has the corresponding expertise (In this case a player with 
expertise A). 

Your "Expertise" is indicated by a different letter (e.g. if your question is A it is not possible that your expertise 
is A). For example, if you are assigned with expertise B, some other player assigned with question B is 
searching for you. 

During each round, your goal is to find out which of the other players is the "Expert" for your "Question". If 
you succeed, you will earn 10 ECU. 

How to play 

You communicate with the other players by sending and receiving messages. It costs 1 ECU to send a 
message. 

Each round has 2 stages: 

 In the first stage, you can send "Inquiries" which reveal your question and expertise to the receiver, 
and ask for help finding your expert. If multiple players send inquiries to you, you might learn that 
one is the expert another player is searching for. 

 In the second stage, you can "Reply" to the inquiries you received from the first stage.  
If you reply to an inquiry, and you know who the expert is, you help the receiver fulfill her task. 

In each stage, you may send messages to as many players as you want (but it costs 1 ECU to send each 
message). The messages will be delivered simultaneously at the end of each stage when all players are 
finished sending messages. 
 
In the following, you will be guided through an example, which teaches you the game interface and its 
functions. 
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At the top of the screen you can find information about your current state in the game. 

 To the left you will find your own "Question" and "Expertise". 
 To the right you can see how much ECU you currently have. When the experiment begins you have 

100 ECU. 

In this example, your current "Question" is "O" and your "Expertise" is "P". This means that during this round 
you have to find the player with expertise "O" to earn 10 ECU. The player with question "P" has to find you 
to earn 10 ECU for himself. 

In the example you have 103 ECU, in the beginning of the fourth round. This means that during the first three 
rounds, you have won 3 ECU more by finding your expert, than you have spent sending messages. 

Notice that the panel on top of the screen is blue whenever you are expected to make an action, 
and grey when you are waiting for the other players. A bell-sound will be played whenever a new stage 
begins, i.e. when the top-panel changes color from grey to blue. 

 

 

 

102



 
 

 

To the left you will find the ID of all other players (from 1- 24) and information about their "Question" and 
"Expertise" in the current round. Note that the number of other players in the session today might be 
different from this example. 

Important: Question and expertise will change at the beginning of each round but the player ID will remain 
fixed throughout the entire experiment. This means that your ID and the other players ID will not change 
(e.g. player 17 will be player 17 through the entire experiment). The only thing that changes between rounds 
is your and other players "Question" and "Expertise". 
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In stage 1 you can send "Inquiries" to the other players. 

To select who you will send "Inquiries" to you click the inquiry-icon in the right end of each player label. 

When clicked, the color of the icon will change from grey to blue  indicating that the player is selected. 
In the example, you have selected players 4,5,12 and 13 (Note that it is possible to undo your choice i.e. you 
can press on a blue icon and it turns grey again). 

Sending an "Inquiry" costs 1 ECU. Remember, you must pay this cost for each inquiry you send. For instance, 
if you send your inquiry to 4 different players you must pay 4 ECU. 

Once you have made your choice you must press the "Send->"-button to send your inquiry to the selected 

players (i.e. player with a blue icon ). 

When you have sent your inquiries, you have to wait for the other players to send theirs too. All inquiries will 
be delivered simultaneously after all players have clicked "Send->". 
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Here you can see the messages you sent and received during the entire experiment. 

In the example, in the current round (round 4) you have sent "Inquiries" to players 4,5,12, and 13, and you 
are now waiting for the other players to send their messages, before the game can continue. Notice that the 
top panel is grey because you are waiting for the other players. 

To see the messages you sent and received in the previous rounds you can scroll in the "Archive of all 
messages sent and received". 
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In the example you spent 4 ECU for sending 4 inquiries. The balance in the upper part of the screen is now 
99 ECU (103 – 4 ECU). 

Note that it is not possible to send messages, if their combined price is higher than your current balance. 

 

 

 

 

 

 

 

 

106



 
 

 

When the last player has clicked send, you will receive the "Inquiries" that other players have sent to you. 

When you receive an inquiry from another Player, her "Expertise" and her "Question" will appear in the 
player table. 

In the example, you received inquiries from players 2, 3, 5, 12, and 13. Now you know, for example, that in 
the current round player 2 has a question "B" and is an expert in "C". 

 

 

 

 

 

107



 
 

 

Stage 2 starts immediately after the inquiries sent in stage 1 are delivered. Note that there are now reply 

icons  to the right of the players table. An icon will appear only next to the players from whom you 
received inquiries. In the example, that are players 2, 3, 5, 12, and 13. 

In this stage, if you want, you can reply to the other players' inquiries. Sending a reply can help the receiver 
find her expert. You may reply to any inquiry you have received. Each reply costs 1 ECU. 

You can send two types of (automatically generated) replies: 

1. If you know who has an "Expertise" matching the inquirer's "Question", your reply will say: The 

expert you are looking for is "Experts player ID", and the reply symbol will be green . 

2. If you do not know it, it will say: I'm sorry, but I don't know anyone who's an expert for this 

"Question", and the reply symbol will be orange . 

You select which players to reply to by pressing grey reply icons  in the right end of the player-labels. A 
player is selected when the icon changes color. Then press "Send->" to actually send the replies. 
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In this example, you are about to send 3 replies (to players 2, 3, and 12) which will cost 3 ECU in total (3 x 1 
ECU). You can send as many or as few replies as you want. 

 The reply to player 2 is green, because player 2 has a question about "B" you know that player 12 is 
the expert in "B". The reply text will be: "The expert you are looking for is player 12". 

 The reply to player 3 is also green, because player 3 has a question about "P" and you are an expert 
in "P". The reply text will be: "Yes, I happen to be the expert you are looking for". 

 The reply to player 12 is orange because player 12 has a question about "A", but you don't know who 
is an expert in "A". The reply text will be: "I'm sorry, but I don't know anyone who's an expert in A". 

In the example, the reply icons  of player 5 and 13 stay grey, because you choose not to reply to them. 

 

 

 

 

 

109



 
 

 

Note that you cannot send false information. 

For instance, you cannot send an orange reply (type 2) to player 2. Since you know who the expert of player 
2 is, your only option is to either send a green reply (type 1) or you choose not to reply. 

In addition, it is not possible to send a green reply (type 1) to player 12. Since you do not know who his expert 
is, your only option is to either send an orange reply (type 2) or you choose not to reply. 
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Each stage lasts until the last player has clicked the "Send->" button. To prevent the experiment from stalling, 
the game implements a "soft timer". 

The "soft timer" works in the following way: 

When all players except for 3 have sent their messages, this timer will appear at the top of the screen of the 
last three players. The timer will start at 15 seconds, and count down to 0 seconds. 

If you are one of the last three players and you don't click the "Send->" button before the timer reaches zero 
seconds, the game will automatically click the button for you. An automatic click works exactly like a manual 
click, so if the player has selected players to send messages, these messages will be sent. 

In the example, you are one of the last three players who have not yet clicked the "Send->" button in the 
current stage, so the timer has started. There are currently 7 seconds until the game will automatically click 
the send button. If that happens, you will send green replies to the players 2 and 3, an orange reply to player 
12, and no replies to player 5 and 13. 
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You can use the message-counters to get a fast overview of the messages you sent and received in the game. 

The color of the small message icons (inquiry:  and reply:  ) show whether you have sent or received 
such a message in the current round. 

 Sent Column: In the example you can see, that in the current round you have sent inquiries to the 
players 4, 5, 12, and 13, and you have sent green replies to the players 2 and 3, and an orange reply 
to player 12. 

 Received Column: You can also see that you received inquiries from the players 2, 3, 5, 12, and 13, 
and you received an orange reply from player 13. 

The numbers show how many messages you have sent and received, of the corresponding type, during the 
entire experiment. 

 E.g. in the example your entire correspondence with player 5 consists of you sending 3 inquiries 
(including one in the current round) and one reply, and you receiving 2 inquiries (including one in the 
current round) and 2 replies. 
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When the last player has sent her or his replies by clicking the "send->" button, all replies are delivered and 
the round is finished. 

In the example, you did not find the player which is an expert in "O" (your Question). Therefore, you did not 
earn 10 ECU this round. 

When you are finished reading the replies you have received you can start the next round by clicking the 
"Next Round" button. 

The experiment consists of many rounds. After 90 minutes, the last round will be allowed to finish, but no 
new round will be started. You will notice this automatically as the "Next Round" button will not appear on 
the screen. 
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This example shows an altered version of how the round could have played out. 

In contrast to the previous example, you have here received an inquiry from player 9. Player 9 is an expert in 
"O" and you have a question about "O". The inquiry from player 9 is marked with a turquoise symbol, to 
indicate that it came from your expert. 

In this example, the reply you received from player 13 is green, and is telling you that player 9 is the expert 
you were looking for. Player 13 must have gotten an inquiry from player 9, to be able to send you this reply. 

NOTICE that in this round you have found your expert and won 10 ECU already when receiving the inquiry 
from player 9 in stage 1. When you received the reply from player 13, you did not win 10 ECU again, because 
you already knew who your expert was. It is never possible to learn who your expert is and win 10 ECU more 
than one time each round. 
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Additional Features 

If you click one of the player labels, the archive of messages will show the messages you have sent to-, and 
received from this player only. You can use this if you want to have a closer look at your correspondence with 
this particular player. 

The archive of messages will return to showing all messages when you click anything that is not a player-label 
(including the background). 

In the example, you have clicked the label of player 3. 

Notice that messages you sent and received in previous rounds only display who the message was to or from, 
and an icon indicating what kind of message it was. To see the content of a message, hold the cursor above 
it (as with the inquiry sent to player 3 in round 2 in the example). 

 

 

 

 

115



 
 

 

Additional Features 

In the bottom right corner of the screen you can see a dialogue window. If you are ever in doubt about what 
to do during the game, you are encouraged to look here for instructions of what to do next. 

If you have any questions please raise your hand and one of the lab-assistants will assist you in private. Do 
not talk, communicate or ask questions to the other participants. Thank you! 
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Important! 
  
For the first 5 rounds, six stars  will appear next to six specific players. These stars 
suggest you six other players to contact. We believe this suggestion is beneficial for 
you and other players. Following this suggestion can help you find your expert and 
thus collect more ECU. 
  
Note that: 

• Each player receives personalized suggestions. This means that all the 
players have different suggestions of players to contact. 
 

• The suggested contacts are reciprocal. That means that you are a suggested 
contact for the same players who are suggested contacts for you. 
 

• If every player follows our suggestion and helps other players find their expert, 
then every player will find his expert in every round. 
 

• You are free to follow our suggestion or contact any of the other players. 
 

• Stars will appear only for 5 rounds. Note that in these five rounds stars will 
always suggest the same other players. 
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The Expert Game: Instructions for Lab-Assistants 

 

General Information:  

 

 The experiment is run online and not using zTree. Therefore, the procedure might be different 

than usual. Specifically, running the experiment online gives the experimenter/lab assistants less 

control over and knowledge of the current state of the experiment. Please read these 

instructions carefully before the start of a session. 

 

  The experiment consists of 3 parts: please note the time of each of the 3 parts for every Session 

in the respective sheet of the “Payment.xlsx” file: 

 

1. The Expert Game Tutorial/Instructions (roughly 45 minutes)  

2. The Expert Game (90 minutes sharp) 

3. The post experimental Questionnaire (roughly 30 minutes)  

 

General preparation of the lab: 

 

 Start the 28 Client computers and the Experimenter computer. 

o Log in Experimenter computer: username ibt.ku.dk\okolabadmin and password 

XXXXXXX  

o Log in Client computers: username ibt.ku.dk\okolabguest and password XXXXXXX 

 Check that there is enough paper in the printer. 

 First check if there are written Instructions stored from a previous Session. Print the remaining 

amount of Instructions, so that you end up with a total of 25. Place them down at each computer 

and familiarize yourself with the Instructions (Instructions are the same for control and 

treatment sessions).  

 [Treatment Specific: Print the document called “Suggestion_Screen” 25 times. Do NOT place 

them down at each computer.] 

 Print the provided “Seat-ID/Player-ID” table (1 printout for you).  

 Make sure that there are enough receipts. 

 Make sure there is a sufficient amount of money to pay all participants. 
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 Get the speaker from the IT-support (Building 26, ground floor - room 26.0.37) some days in 

advance and test if it works. Attach the provided speaker to the Admin Computer and again 

make sure it works properly (Turn Volume to 50 on the computer). 

 Place a sheet of paper with a pen at each seat. 

 

Setting up the game (before participants arrive): 

 

Note: When attempting to log into any of the websites below, the browser may warn you “Your 

connection is not private”. This happens because the game is set up to use encrypted HTTPS 

connections, but does not have a validated CA-certificate. You will have to bypass this warning by 

clicking on “Advanced” and then “Proceed to [address]”. 

1. Start the game server on the Experimenter computer by executing “expertgame2.exe” saved in 

the experiment folder in the subfolder “expertgame2”. Click on “allow access” when the pop-up 

message regarding the connection appears. 

2. Start the Admin Interface on the Experimenter computer by opening Google Chrome and going 

to https://localhost:8080/admin. Login using the password XXXXXX. 

3. In the Admin Interface, you can configure the game and see players´ current payoff. It is only 

possible to add players, not remove them. In addition, players cannot be added after the game 

has started. Therefore, you will have to count the number of participants who showed up first, 

before you can log in the Client computers and configure the game according to the number of 

participants (more information on this later).  

4. Open the game on all 28 Client computers by clicking on the Chrome-shortcut named 

“expertgame.link” on the desktop. The game should open in full-screen mode. Do not login. 

5. Set up the game: Select "Add Player" in the “Action Panel” and click "send" 23 times. The 

minimum Number of players is 23, the maximum is 25. Verify that the correct number of players 

has been added to the “Player Table”. [Not in Treatment] 

6. [Treatment Specific: Set up the game: Select "Add Player" in the “Action Panel” and click "send" 

25 times. In the treatment sessions, we MUST play with 25 players. Verify that the correct 

number of players has been added to the “Player Table”.] 

7. Configure the game by setting “Auto-start next round” to 100 and “Auto-start timer” to 3 

players and 15 seconds in the “Settings Panel”. Important: Click on the background outside of 

the “Settings Panel” to implement the changes.  

8. Login 23 Client computers (Computer number 1-23) by typing in the respective computer 

number into the player-ID field and click “Join Game”. [Not in Treatment] 
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9. [Treatment Specific: Login 25 Client computers (Computer number 1-25) by typing in the 

respective computer number into the player-ID field and click “Join Game”.]  

10. After having logged in, click “Start Tutorial”. The first page of the tutorial should now fill the 

screen. 

11. Place the keyboards on the side or behind the computer, so that it is not accessible for 

participants during the “Tutorial” and the “Game”. They only need it for the “Questionnaire”. 

Important: make sure that none of the keys is continuously pressed by placing the keyboard 

behind the computer, because this will cause problems with the software.   

 

 

Once all participants have arrived outside the lab: 

 

 Meet participants outside the lab, bringing the participation list and the red coins. 

 Ask participants for identification to check whether they registered correctly for the experiment. 

In case there are ANY violations (e.g. a participant is recognized to have participated twice 

because of a fake account) the participant will be excluded from the experiment.   

 Welcome participants and explain the general rules of the lab. 

o Stress that communication during the experiment is forbidden. Otherwise, participants 

will be asked to leave without receiving any payment. 

o Ask participants to turn off their mobile phones now. 

o No food and drinks are not allowed inside the lab. 

o Tell participants that the experiment is longer than usual and ask them to go to the 

restroom before entering the lab if they need to. 

o Explain the meaning of the red coins. 

o Ask participants to leave their bags at the left side after entering the lab and then to sit 

down at their seat and wait for further instructions. 

 While one lab-assistant welcomes the participants, the other assistant counts the participants 

and prepares the corresponding number of red coins. 

o In case there are too many registered participants see section “How to deal with 

unregistered participants and overbooking” at the end of this script. 

 Ask participants to wait outside while you finish preparing the lab: [Not in Treatment] 

o If there are 25 participants: Add the remaining 2 by selecting “Add Player” in the “Action 

Panel” and click “send” 2 more times. [Not in Treatment] 
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o Login the client computers, by typing the respective computer number into the player-ID 

field and click “Join Game”. [Not in Treatment] 

o After having logged in, click “Start Tutorial”. The first page of the tutorial should now fill 

the screen. [Not in Treatment] 

o Place the keyboards on the side or behind the computer, so that it is not accessible for 

participants during the “Tutorial” and the “Game”. They only need it for the 

“Questionnaire”. [Not in Treatment] 

 Once the computers are ready, go back outside. Openly shuffle the red coins and let participants 

draw a red coin while entering the lab.  

 

 

Running the Tutorial: 

 

 When all participants are seated, one lab assistant provides participants with further 

instructions: 

o Tell them to not click anywhere/press any key other than told.  

o Mention that the experiment consists of three parts: The Tutorial/Instructions, the Game 

and the Questionnaire.  

o Do not say that it is called the “Expert Game” and do not mention the duration of the 

Game. 

o Tell them that the printed instructions are identical to the ones´ they see on the screen. 

Emphasize that they should follow the onscreen instructions and that they can consult 

the paper instructions just in case (but there is no need to do so). 

o Tell them that they do not need to use the keyboard to answer the control questions. 

o Tell them to wait silently once they finished the Tutorial, which they will notice because 

they cannot perform any more actions. They will then receive further instructions. 

o If they have questions, they can raise their hand and a lab assistant will come and help 

them in person. Emphasize that participants are NOT allowed to communicate with 

other participants to answer the control questions. 

 Ask the participants if they have any general questions regarding the procedure in an 

experiment.  

 If not, tell them to start the tutorial by following the instructions on the screen. 

 If necessary, help participants with the control questions (see solutions at the end of the script). 
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 Important: In case there is one or more participant(s) who take(s) a lot of time ensure that the 

other participants move the mouse from time to time so that the computer does not shut down.  

 

Running the Game: 

 

 Latest time to start the game (10 o’clock|experiment starts at 9 o’clock) 

 Unfortunately, there is no feature that tells you in which stage participants are. Therefore, you 

will have to check by walking around if all participants have finished answering the control 

questions. If they have their screen will look like this: 

 

 

 

 Let students know that everyone finished the Tutorial part of the experiment and that the Game 

part will start now.  

 [Treatment Specific: Select "Suggest Contacts" in the “Action Panel” and click "send". A pop-up 

message will appear which gives participants additional information about today’s experiment. 

After participants read the additional information, they must press the “Ok” button. Verify that 
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each participant has returned to the screen above (this time including six stars next to some 

players).]  

 [Treatment Specific: In the meantime, one of the lab-assistants places one printouts of the 

“Suggestion_Screen” down at each computer.] 

 To start the game, select “Start Game” in the Action Panel and click “Send”. The students will 

now see a blue “Next Round” button and you will hear a sound. Ask them to start the Game by 

clicking “Next Round”. 

 The game will be played for 90 minutes. Remember to set a timer when you start the game.  

 [Treatment Specific: After 5 rounds select "Unsuggest Contacts" in the “Action Panel” and click 

"send"]. 

 After 90 minutes have passed, end the Game by setting “Auto-start next game” to 0 in the 

Settings Panel. This will allow the current round to finish, but the next round will not be started. 

Let participants know that the game has finished.  

 Check how many rounds have been played by looking at one of the computer screens.  

 After the Game is over, select “Start Questionnaire” in the admin “Action Panel”, and click 

“Send”. Tell participants to take the keyboards, because they need it to answer the 

Questionnaire.  

 While the participants fill out the Questionnaire (roughly 30 minutes), prepare the payment. 

Participants´ payoffs in ECU will be automatically computed and will appear on the Administrator 

Interface (Column Reward in the Player Table). You will have to calculate the profits in DKK by 

(manually) copying the ECU payoffs into the column “Payoff in ECU” in the “Payment” file. The 

Payment file automatically multiplies participants earnings into DKK (3 x ECU = DKK) and adds a 

show up fee of 50 DKK. Print out the file, bring it with you to the payment room, and pay out 

participants. 

 

Payment: 

 

 One lab assistant goes into the payment room while the other assistant asks the participants to 

remain seated after finishing the Questionnaire. Once everyone is finished, the lab assistant 

distributes receipts, which participants fill out except from the amount they are going to be paid.  

 Once the payment is ready, the lab assistant calls the participants one by one (starting with 

computer 1) and asks them to go to the payment room. 

 Ask them to bring their belongings, the red coins and the receipts with them and leave the rest 

(Instructions, notes, pens etc.) at their seat.  
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 The lab-assistant in the payment room then pays the participants. After that, participants can 

leave. 

 

After the experiment: 

 

 Copy the data files created by the online program and stored in 

“expertgame2/files/data_[todays date]” into the folder “Data” in the experiment folder. In case 

the game-server was started multiple times on the same day, “_x[i]” (where [i] is an increasing 

counter) is appended to the directory names, to ensure that no data is overwritten. 

 To exit the game on the Client computers, press Alt + F4. 

 Store the written Instructions (if untouched) for the next Session. If there is something written on 

the instruction, label them with the respective seat number. 

 Label the sheet of paper, with the respective seat number if there is something written on it. 

 Shut down the computers and clean everything up for the next day.  

 Lock the rest of the money in the safe. 

 

How to deal with unregistered participants and overbooking: 

 

1. Print the registration list from ORSEE. You must use the registration list to check if all 

participants, who showed up are also registered. Note that we are not required to give a 

show up fee if participants are not registered for the session. 

2. Prepare the stack of red coins. 

3. The maximum number of participants in the experiment is 25. In case more than 25 

registered participants show up follow these steps: 

a. In case someone must be excluded, ask if anybody voluntarily wants to receive a 

show-up fee of 50 DKK and not participate. 

b. If nobody volunteers, you must randomly choose one or more of the participants. In 

that case, please include and amount of “X”-coins (corresponding to the number of 

participants that have to be sent home) in the stack of coins. The participant(s) who 

receives an “X” will be given a show-up fee and will be excluded from the 

experiment. 

c. Have some receipts ready in case you must give a show-up fee before the 

experiment starts. 
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4. If you must send a participant home and pay him/her a show-up fee, one lab assistant should 

take that participant into the payment room, ask the participant to sign a receipt and pay.   

 

How to handle special cases: 

Note that the following cases are very unlikely and should ideally not happen. However, the following 

points describe how to deal with such cases. For both cases, the lab assistant is required to note the 

time the participant (identified by its seat number) leaves and returns to his seat. The information 

should be added in the provided “Seat ID/Player-ID” table. 

1. Participant leaves during the experiment: In that case, the participant receives no payment. Then 

one of the lab assistants must take the seat of that participant and clicks “only” the send button 

for the rest of the Game. Inform the other participants that one player is missing and that this 

player will not send any messages for the rest of the experiment. 

2. Participants leave for the toilette: In that case, the game continues automatically. So, no further 

action is required by the lab assistant. 

 

 

Troubleshooting in case participants experience problems: 

1. Check whether one key on the keyboard is continuously pressed. In that case, get the keyboard 

from the place it is stored and check that no key is pressed.  

2. If a participant has problems to submit the control questions of the tutorial. First, try to submit it 

for him again. In case this does not work, press “Alt + F4” and look the player in again by clicking 

on the Chrome-shortcut named “expertgame.link” on the desktop. The game should open in full-

screen mode. Login the player with his respective seat number. Click through the tutorial for 

him, answer the control questions for the participant until he experienced problems, and click 

submit.  
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Solution manual for control questions: 

Screen Task: 

 What is your Expertise?          Solution: V 

  In which "Round" is the Experiment?      Solution: 6 

  In which “Stage” is this “Round”?      Solution: 2 

  How many players sent an “Inquiry” to you this round?   Solution: 5 

  Did you receive at least one “Inquiry” from player 23 in a 

 previous round?         Solution: Yes 

  Did you send an “Inquiry” to player 2 this round?    Solution: No 

  Did you send an “Inquiry” to player 2 in a previous round?   Solution: Yes 

  Have you already found your “Expert” in the current round?  Solution: No 

  Can you send a green reply of type 1 to player 13?    Solution: No  

  How many green replies of type 1 are you able to send in the 

 current stage?        Solution: 2 

 

 

 

Calculation Task: 

 In stage 1, you sent 3 “Inquires”. How much do they cost in total?    Solution: 3 ECU 

 In stage 2, you receive 4 “Inquires”. Now you decide to reply to 2 out of  

the 4 “Inquires” you received. How much do these two replies cost?   Solution: 2 ECU 

 At the end of the round, you learn that you did not find your Expert.  

What is your balance?         Solution: 95 ECU 

 Using the exchange rate 1 ECU = 3 DKK, how much did your balance  

decrease during this round in Danish kroner?      Solution: 15 DKK 

 Assume instead that you did learn who your expert was, because  

someone sent you a green reply. What would your balance be then?   Solution: 105 ECU 

 How much did your balance increase during this round in Danish kroner?   Solution: 15 DKK 
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Note: Participants answered the Questionnaire on screen.  
 
 

Questionnaire (Paper Version) 
 

Please answer all of the following questions, and then click "Submit questionnaire". 
 
Part 1 
 
Please provide the following information about yourself: 
 
What is your sex?  ○ Female or ○ Male 
 
What is your age?           years 
 
Below you will find a series of statements about you. Please read each statement and decide how much 
you agree or disagree with that statement. Then indicate your response using the following scale: 
 
5 = strongly agree 
4 = agree 
3 = neutral (neither agree nor disagree) 
2 = disagree 
1 = strongly disagree 
 
Please answer every statement, even if you are not completely sure of your response. 
 
I rarely hold a grudge, even against people who have badly wronged me.  
○ 1  ○ 2  ○ 3  ○ 4  ○ 5   
 
I feel reasonably satisfied with myself overall.  
○ 1  ○ 2  ○ 3  ○ 4  ○ 5   
 
I wouldn't use flattery to get a raise or promotion at work, even if I thought it would succeed.  
○ 1  ○ 2  ○ 3  ○ 4  ○ 5   
 
People sometimes tell me that I am too critical of others.  
○ 1  ○ 2  ○ 3  ○ 4  ○ 5   
 
I rarely express my opinions in group meetings.  
○ 1  ○ 2  ○ 3  ○ 4  ○ 5   
 
If I knew that I could never get caught, I would be willing to steal a million dollars.  
○ 1  ○ 2  ○ 3  ○ 4  ○ 5   
 
People sometimes tell me that I'm too stubborn.  
○ 1  ○ 2  ○ 3  ○ 4  ○ 5   
 
I prefer jobs that involve active social interaction to those that involve working alone.  
○ 1  ○ 2  ○ 3  ○ 4  ○ 5   
 
Having a lot of money is not especially important to me.  
○ 1  ○ 2  ○ 3  ○ 4  ○ 5   
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People think of me as someone who has a quick temper.  
○ 1  ○ 2  ○ 3  ○ 4  ○ 5   
 
On most days, I feel cheerful and optimistic.  
○ 1  ○ 2  ○ 3  ○ 4  ○ 5   
 
I think that I am entitled to more respect than the average person is.  
○ 1  ○ 2  ○ 3  ○ 4  ○ 5   
 
My attitude toward people who have treated me badly is “forgive and forget”.  
○ 1  ○ 2  ○ 3  ○ 4  ○ 5   
 
I feel that I am an unpopular person.  
○ 1  ○ 2  ○ 3  ○ 4  ○ 5   
  
If I want something from someone, I will laugh at that person's worst jokes. 
○ 1  ○ 2  ○ 3  ○ 4  ○ 5   
 
I tend to be lenient in judging other people.  
○ 1  ○ 2  ○ 3  ○ 4  ○ 5   
 
In social situations, I’m usually the one who makes the first move.  
○ 1  ○ 2  ○ 3  ○ 4  ○ 5   
 
I would never accept a bribe, even if it were very large.  
○ 1  ○ 2  ○ 3  ○ 4  ○ 5   
 
I am usually quite flexible in my opinions when people disagree with me.  
○ 1  ○ 2  ○ 3  ○ 4  ○ 5   
 
The first thing that I always do in a new place is to make friends.  
○ 1  ○ 2  ○ 3  ○ 4  ○ 5   
 
I would get a lot of pleasure from owning expensive luxury goods.  
○ 1  ○ 2  ○ 3  ○ 4  ○ 5   
 
Most people tend to get angry more quickly than I do.  
○ 1  ○ 2  ○ 3  ○ 4  ○ 5   
 
Most people are more upbeat and dynamic than I generally am.  
○ 1  ○ 2  ○ 3  ○ 4  ○ 5   
 
I want people to know that I am an important person of high status.  
○ 1  ○ 2  ○ 3  ○ 4  ○ 5   
 
Even when people make a lot of mistakes, I rarely say anything negative.  
○ 1  ○ 2  ○ 3  ○ 4  ○ 5   
 
I sometimes feel that I am a worthless person.  
○ 1  ○ 2  ○ 3  ○ 4  ○ 5   
 
I wouldn’t pretend to like someone just to get that person to do favors for me.  
○ 1  ○ 2  ○ 3  ○ 4  ○ 5   
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When people tell me that I’m wrong, my first reaction is to argue with them.  
○ 1  ○ 2  ○ 3  ○ 4  ○ 5   
 
When I’m in a group of people, I’m often the one who speaks on behalf of the group.  
○ 1  ○ 2  ○ 3  ○ 4  ○ 5   
 
I would be tempted to buy stolen property if I were financially tight.  
○ 1  ○ 2  ○ 3  ○ 4  ○ 5   
 
 
Part 2 
 
We are now very much interested in your experience with the game. Please give your answers as precisely 
as possible as they are important for scientific research. Where numbers are required, make your best 
guess. 
 
For assistance with any of the questions, please ask! 
 
 
1. Interaction with other players 
 
How well did the other players collaborate with you in the game?  
Give each player a score by setting the slider on a scale from bad to good: 
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2. Friends and Acquaintances 
 
Let’s call those players “friends”, from which you generally expected to receive replies, when you sent 
them an Inquiry. Other players that you also communicated with, but did not expect replies from, are 
called “acquaintances”. 
 
How many “friends” did you have approximately?                         
 
How many “acquaintances” did you have approximately?  
 
 
Once your group of “friends” had formed, did it change over the course of the remaining rounds? 
Choose the statement which fits best: 
 
○ It stayed the same    ○ It changed every 10 rounds or so    ○ It changed faster than every 10 rounds 
 
 
After how many rounds did you feel you had friends in the game?  
(please chose the approximate number, if you can’t remember the total number of rounds, please ask the 
lab assistants.) 
 

 
 
 
3. Message types 
 
Why did you send messages of type “Inquiry (I)”? (write anything that comes to your mind) 
 
 
 
 
 
 
Why did you send messages of type “Reply (R)”? (write anything that comes to your mind) 
 
 
 
 
 
 
 
When receiving any of the two message types of the game, i.e. “Inquiry (I)” or “Reply (R)”, please give a 
score for how much you valued each as a sign of friendship. Use a scale where “0” means “no value”, and 
“10” means “highest value”. 
 
Inquiry (I):  
Reply (R):  
 
 
When sending Inquiries (stage 1 of each round), who did you prioritize? Choose the one that fits better: 
○ Friends    ○ Aquaintances    ○ Neither 
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If the answer to the previous question was “friends”, did you have a priority list also among your “friends” 
or did you treat all your “friends” equally? Choose the most appropriate. 
○ All equal    ○ Some preference    ○ Strong preference 
 
When sending Replies (stage 2 of each round), who did you prioritize? Choose the one that fits better: 
○ Friends    ○ Aquaintances    ○ Neither 
 
If the answer to the previous question was “friends”, did you have a priority list also among your “friends” 
or did you treat all your “friends” equally? Choose the most appropriate. 
○ Friends    ○ Aquaintances    ○ Neither 
 
4. General Questions 
 
Thinking of this game as an abstract description of professional communication, e.g. by email in a business, 
how closely do you find it to mimic actual communication? (check one, 1=bad, 10=excellent) 
 
○ 1  ○ 2  ○ 3  ○ 4  ○ 5  ○ 6  ○ 7  ○ 8  ○ 9  ○ 10   
 
In which aspects did you find that the game had similarities with real communication? 
 
 
 
 
  
(write at least one thing that comes to your mind) 
 
In which aspects did you find the game did not represent real communication? 
 
 
 
 
  
(write at least one thing that comes to your mind) 
 
Were you surprised when the experiment ended, i.e. did you expect it to go longer? 
○ Quite Surprised     ○ A little surprised     ○ I knew it was almost over 
 
How much did you find that the timer influenced your decisions during the Game? 
○ A lot     ○ A little    ○ Not at all 
 
If you selected “A lot” or “A little”. How did the timer influence your decisions? 
 
 
 
 
 
(write at least one thing that comes to your mind) 
 
How would you describe the strategy you played in the game? Did it change in the course of the 
experiment, and in what way? 
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