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Summary

Interest rates vary with time horizons. This relationship, known as the term structure
of interest rates or the yield curve, contains information about market expectations
on future interest rates, inflation, and economic activity; risk attitudes; and reces-
sion probabilities. Understanding yield curve dynamics is thus crucial for monetary
policy makers and investors to respond appropriately to fluctuations in financial
markets and the economy.

This thesis addresses key challenges for modeling and interpreting yield curve
dynamics. Through three self-contained chapters, I present new methodologies and
empirical insights related to the time-series properties of bond yields, risk factors
in bond markets, and implications for monetary policy. To illustrate the central
challenges in dynamic term structure modeling, consider the term structure of U.S.
Treasury bond yields from 1971 to 2019 in Figure 1. I highlight two features of
these data:

(i) The time series are highly persistent such that yields only change by small
amounts between observations.

(ii) There is high correlation in the cross-section such that yields for different ma-
turities strongly co-move.

The persistent behavior of interest rates poses a challenge for the workhorse
models in the literature. These so-called Gaussian affine term structure models are
based on stationary, linear dynamics that cannot capture the degree of persistence
observed in the data. The econometrician can enforce the linear model to be suffi-
ciently persistent to match the data by imposing a unit root, but with the result of
non-stationarity. This conundrum is the focal point of Chapter 1 (“Modeling Persis-
tent Interest Rates with Volatility-Induced Stationarity"). I contribute to a literature
that argues that linear dynamic models estimate unreliable decompositions of long-
term bond yields into market expectations on future short-term interest rates and
term premia. This so-called persistence problem arises because the decomposition is
based on the ability of the model to forecast future short-term yields. In a linear and
stationary model such forecasts converge at a faster rate than suggested by the data.
Therefore, model-implied expectations to future short-term interest rates are exces-
sively stable and in turn, model-implied term premia are excessively correlated with
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Figure 1: U.S. Treasury Bond Yield Curve

Notes: The figure shows the U.S. Treasury bond yield curve measured end-of-month from September
1971 to August 2019 for maturities of one to ten years. Data are from Gürkaynak, Sack, and Wright
(2007).

the yield curve. The opposite problem arises in linear models with unit roots, i.e.,
the variation in expectations mimics the variation in bond yields and term premia
are excessively stable.

To accommodate the persistence problem, I introduce the double autoregressive
(DAR) process from Ling (2004) and Nielsen and Rahbek (2014) in a term struc-
ture model. The DAR process has a level-dependent conditional volatility, which
ensures that the model can remain stationary even in the presence of a unit root in
the characteristic polynomial corresponding to the conditional mean. This feature,
which has been coined volatility-induced stationarity, is consistent with important
characteristics of yield curve data. Empirically, I show that the DAR model estimates
term premia that are economically plausible and consistent with survey measures
of market expectations. I also show that the model exhibits improved out-of-sample
forecasting performance compared with the Gaussian affine term structure model.

The second challenge - the fact that yields of different maturities are highly
correlated - has motivated the use of low-dimensional factor models, where the
yield curve is assumed to be driven by a few latent factors (Duffie and Kan, 1996,
Litterman and Scheinkman, 1991). These models can match the yield curve data to
a high precision, but they offer no insights on the nature of these factors and thus
the risk factors that drive bond markets.
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Chapter 2 (”Yield Curve Volatility and Macroeconomic Risk") contributes to a
literature that explores the fundamental drivers behind the latent yield curve factors.
Starting with the seminal work by Ang and Piazzesi (2003), many contributions
have provided insights using Gaussian affine term structure models. Using struc-
tural vector autoregressive models and associated variance decompositions, these
models can answer, what share of the variation in bond yields can be attributed to
macroeconomic shocks? A central assumption in the established literature is that the
amount of variation to be explained, i.e., the volatility, is constant. I argue that this
assumption is critical as it implies that the share of variation attributed to macroe-
conomic shocks is constant over time per construction. To overcome this deficiency,
I extend the canonical model with time-varying volatility given by the multivariate
BEKK-GARCHmodel in Engle and Kroner (1995) and a variance risk premium intro-
duced by Monfort and Pegoraro (2012). I show that my model can be estimated by
a generalization of the important method developed by Joslin, Singleton, and Zhu
(2011).

I apply my model to characterize the variation in the U.S. Treasury bond yield
curve over the period from 1971 to 2019 in terms of shocks to inflation and the
unemployment gap. I show that the relationship between the yield curve and these
macroeconomic risks has varied over time, and that this time-variation exhibits inter-
esting patterns: First, the macroeconomic contribution to short-term yield volatility
was high in the end 1970s, low during the Great Moderation starting in the mid-
1980s, and high again after the financial crisis. Second, I find that market expecta-
tions on future short-term yields have increasingly been related to the macroecon-
omy after the Great Moderation. Third, I document that deflation fears increased
term premia during the financial crisis. Finally, I zoom in on the spring 2019, where
the yield curve inverted with long-term yields below short-term yields. I show that
macroeconomic shocks do not explain the inversion and argue that the inversion is
unlikely to be a warning of an imminent recession.

Time-varying volatility plays a vital role in both Chapters 1 and 2, and thus
in the solution to some of the challenges in term structure modeling. However,
modeling bond market volatility has proven difficult in traditional continuous-time
affine term structure models with stochastic volatility (Jacobs and Karoui, 2009).
This difficulty arises because these models rely on a linear relationship between
bond yield levels and bond market volatility, which appear at odds with the data
(Andersen and Benzoni, 2010, Collin-Dufresne, Goldstein, and Jones, 2009).

In Chapter 3 (“A Joint Model for the Term Structures of Interest Rates and
Realized Volatility"), I propose a new method for modeling the term structure of

ix



bond market volatility. Specifically, I present a framework for the joint modeling
of bond yield levels and realized volatility constructed from high-frequency data.
My approach relies on results showing that realized volatility can be interpreted
by the sum of conditional volatility and a mean-zero error. From this identity, I
construct a measurement equation that links the realized yield covariance matrix to
a conditional covariancematrix implied by amultivariate GARCH-typemodel. These
ideas are integrated into a no-arbitrage term structuremodel with a low-dimensional
latent state vector. I derive closed-form solutions for no-arbitrage bond yields, term
premia, conditional yield curve volatility, and multi-step ahead forecasts of both
yields and realized volatility. Furthermore, I develop an algorithm for filtering latent
factors derived from the basic principles of the standard, linear Kalman (1960) filter.
My filter is exact in contrast with existing non-linear Kalman filters. Empirically, I
show that my model describes both the U.S. Treasury yield curve and the associated
realized covariance matrix with high precision. I also present encouraging out-of-
sample results for forecasting realized yield variances and covariances with multi-
step ahead horizons. Finally, I use my model to show that the risk-neutral dynamics
extracted from first and second moments of the yield curve do not describe the
pricing of interest-rate derivatives.

Altogether, this thesis contributes with new methods to solve some of the chal-
lenges that prevail in the literature on modeling yield curve dynamics. These meth-
ods provide new insights into the interpretation of movements in the yield curve.
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Summary in Danish

Renter varierer med tidshorisonter. Dette forhold, kaldt rentestrukturen eller rente-
kurven, indeholder information om markedsforventninger til fremtidige renter, in-
flation og økonomisk aktivitet; risikopræferencer og sandsynlighed for recession.
Det er således vigtigt for centralbanksøkonomer og investorer at forstå rentekurve-
dynamikker for at kunne respondere hensigtsmæssigt på bevægelser i finansielle
markeder og økonomier.

Denne afhandling adresserer væsentlige udfordringer ved modellering og for-
tolkning af rentekurvedynamikker. Igennem tre selvstændige kapitler præsenterer
jeg nyemetoder og empirisk indblik relateret til tidsrækkeegenskaber for obligations-
renter, risikofaktorer i obligationsmarkeder og implikationer for pengepolitik. For
at illustrere de centrale problematikker i dynamisk rentestruktursmodellering, be-
tragtes rentekurven for amerikanske statsobligationer fra 1971 til 2019 i Figur 1 (se
side viii). Jeg fremhæver to karakteristika i disse data:

(i) Tidsrækkerne er ekstremt persistente, det vil sige at renterne kun ændrer sig
meget lidt mellem observationstidspunkter.

(ii) Der er høj korrelation på tværs af rentekurven, det vil sige at renter for nært-
liggende udløbstidspunkter følger hinanden tæt.

Rentekurvens persistente adfærd er en udfordring for de gængse modeller i lit-
teraturen. Disse såkaldte Gaussisk affine rentestruktursmodeller er baseret på sta-
tionære, lineær dynamikker, som ikke kan opfange den grad af persistens, som data
viser. Økonometrikeren kan påtvinge den lineære model til at være tilstrækkelig
persistent til at beskrive data ved at indføre en enhedsrod, men dette resulterer i
ikke-stationaritet. Dette problem er omdrejningspunktet i Kapitel 1 (“Modeling Per-
sistent Interest Rates with Volatility-Induced Stationarity"). Jeg bidrager til en lit-
teratur, der argumenterer for, at lineære dynamiske modeller estimerer upålidelige
dekompositioner af langsigtede renter i henholdsvis forventninger til fremtidige
korte renter og risikopræmier. Dette såkaldte persistensproblem opstår, fordi dekom-
positionen forlader sig på modellens evne til at fremskrive korte renter. En lineær
og stationær model medfører, at disse fremskrivninger konvergerer med en hur-
tigere hastighed end antydet i data. Derfor er modelimplicitte forventede fremtidige
renter for stabile og omvendt, er modelimplicitte risikopræmier for korrelerede med
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rentestrukturen. Det modsatte problem opstår i lineære modeller med enhedsrød-
der, nemlig at variationen i forventninger efterligner variationen i renterne og risiko-
præmier er for stabile.

For at imødekomme persistensproblemet introducerer jeg den dobbelte auto-
regressive (DAR) proces fra Ling (2004) samt Nielsen og Rahbek (2014) i en rente-
struktursmodel. DAR processen har en niveaubestemt betinget volatilitet, som sikrer,
at modellen kan forblive stationær selv under tilstedeværelsen af en enhedsrod i
det karakteristiske polynomium svarende til den betingede middelværdi. Denne
egenskab, som kaldes volatilitetsinduceret stationaritet, er konsistent med vigtige
karakteristika i rentestruktursdata. Jeg viser empirisk, at modellen estimerer risiko-
præmier, der er økonomisk plausible og konsistente med spørgeundersøgelsesdata
for markedsforventninger. Jeg viser også, at modellen viser forbedret evne til at
fremskrive hele rentestrukturen i sammenligning den Gaussisk affine rentestruk-
tursmodel.

Den anden udfordring - det faktum at renter til forskellige udløbstidspunkter er
stærkt korrelerede - har motiveret brugen af lavdimensionale faktormodeller, hvor
rentekurven antages at være drevet af få latente faktorer (Duffie og Kan, 1996,
Litterman og Scheinkman, 1991). Disse modeller kan beskrive rentekurven med en
høj præcision, men giver ingen information om, hvad de latente faktorer indeholder
og dermed, hvilke risikofaktorer der driver obligationsmarkedet.

Kapitel 2 (“Yield Curve Volatility and Macroeconomic Risk") bidrager til en
litteratur, der undersøger det fundamentale drivværk bag latente faktorer i rente-
kurven. Med afsæt i det grundlæggende arbejde af Ang og Piazzesi (2003), har
mange forsøgt at besvare dette spørgsmål ved hjælp af Gaussisk affine rente-
modeller. Ved brug af strukturelle vektorautoregressive modeller og dertilhørende
variansdekompositioner kan disse modeller besvare, hvor stor en andel af varia-
tionen i renter kan forklares med observerbare makroøkonomiske variable? Det
er en central antagelse i den etablerede litteratur, at mængden af variation der
ønskes forklares, det vil sige volatiliteten, er konstant. Jeg argumenterer for, at
denne antagelse er kritisk idet den medfører, at andelen af variationen der tillægges
makroøkonomiske stød, er konstant over tid per konstruktion. For at overvinde
denne utilstrækkelighed udvider jeg den traditionelle model med tidsvarierende
volatilitet givet ved den multivariate BEKK-GARCH model i Engle og Kroner (1995)
og en variansrisikopræmie introduceret af Monfort og Pegoraro (2012). Jeg viser, at
min model kan estimeres ved en udvidelse af den vigtige metode udviklet af Joslin,
Singleton og Zhu (2011).
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Jeg anvender min model til at karakterisere, hvordan variationen i rentestruk-
turen i amerikanske statsobligationer kan tillægges stød til inflation og arbejds-
løshedsgabet i perioden fra 1971 til 2019. Jeg viser, at sammenhængen mellem
rentestrukturen og disse makroøkonomiske risikofaktorer har varieret over tid, og
at denne tidsvariation udviser interessante mønstre. For eksempel var det makro-
økonomiske bidrag til variationen i kortsigtede renter høj i slutningen af 1970’erne,
lav i løbet af Den Store Moderation, startende fra midt 1980’erne, og høj igen
efter den finansielle krise. Jeg viser også, at markedsforventningerne til fremtidige
kortsigtede renter i en stadigt højere grad tillægges udviklingen i makroøkonomiske
variable efter Den Store Moderation. Dernæst dokumenterer jeg, at deflationsfrygt
øgede risikopræmierne i løbet af den finansielle krise. Endelig zoomer jeg ind på
foråret 2019, hvor rentekurven inverterede med langsigtede renter lavere end kort-
sigtede renter. Jeg viser, at makroøkonomiske stød ikke kan forklare inverteringen
og argumenterer for, at inverteringen ikke er en advarsel om en nært forestående
recession.

Tidsvarierende volatilitet spiller en væsentlig rolle i både Kapitel 1 og 2 og
således i forhold til at løse nogle af de vanskeligheder, som karakteriserer rentestruk-
tursmodellering. Modellering af obligationsmarkedsvolatilitet viser sig dog, at være
svært i traditionelle kontinuerttids affine rentestruktursmodeller med stokastisk
volatilitet (Jacobs og Karoui, 2009). Det skyldes, at disse modeller beror på en linear
sammenhæng mellem renteniveau og -volatilitet, hvilket viser sig at være i modstrid
med data (Andersen og Benzoni, 2010, Collin-Dufresne, Goldstein og Jones, 2009).

I Kapitel 3 (“A Joint Model for the Term Structures of Interest Rates and Re-
alized Volatility") fremsætter jeg en ny metode til at modellere strukturen for obliga-
tionsmarkedsvolatilitet. Helt konkret præsenterer jeg en samletmodel for rentestruk-
turens niveau og realiseret volatilitet, som konstrueres med højfrekvente data. Min
fremgangsmåde beror på resultater der viser, at realiseret volatilitet kan fortolkes
ved summen af betinget volatilitet og en fejl med middelværdi nul. Med udgangs-
punkt i denne identitet konstruerer jeg en måleligning, der forbinder den reali-
serede kovariansmatrix for rentestrukturen med en betinget kovariansmatrix, givet
ved en multivariat GARCH-type model. Disse idéer integreres i en ingen-arbitrage
rentestruktursmodel med en lavdimensionel latent tilstandsvektor. Jeg udleder
løsninger i lukket form for ingen-arbitrage obligationsrenter, risikopræmier, betinget
rentekurvevolatilitet og prognoser for både renter og realiseret volatilitet over flere
perioder. Derudover udleder jeg en algoritme til filtrering af de latente faktorer
baseret på basale principper fra det sædvanlige, lineære Kalman (1960) filter. Mit
filter er eksakt modsat eksisterende ikke-lineære Kalman filtre. Empirisk viser jeg, at
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min model beskriver både rentestrukturen og den tilhørende realiserede kovarians-
matrix i amerikanske statsobligationer med høj præcision. Jeg præsenterer også
lovende resultater for fremskrivning af renters realiserede varianser og kovarianser
over flere perioder. Endelig bruger jeg min model til at vise, at de risikoneutrale
dynamikker der udledes fra første- og andenordens momenter i rentekurven, ikke
beskriver prissætning af rentederivater.

Samlet set bidrager denne afhandling med nye værktøjer til at løse nogle af
de udfordringer, som litteraturen om rentestruktursmodellering står overfor. Disse
værktøjer giver nye indblik i fortolkningen af bevægelser i rentestrukturen.
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Chapter 1

Modeling Persistent Interest Rates with
Volatility-Induced Stationarity

Anne Lundgaard Hansen
University of Copenhagen

It is well-known that interest rates are extremely persistent, yet they are best
modeled and understood as stationary processes. These properties are contradic-
tory in the workhorse Gaussian affine term structure model in which persistent data
often result in unit roots that imply non-stationarity. I resolve this puzzle by propos-
ing a term structure model with volatility-induced stationarity. The model employs
a level-dependent conditional volatility that maintains stationarity despite the pres-
ence of unit roots in the characteristic polynomial corresponding to the conditional
mean. The model is consistent with key characteristics of interest rate data. In
an empirical macro-finance application, I obtain term premia that are economically
plausible and consistent with survey data. Compared with the Gaussian affine term
structure model, I improve out-of-sample forecasting of the yield curve. The empir-
ical evidence suggests that volatility-induced stationarity is unspanned by the yield
curve.

Keywords: Yield curve, unit root, persistence problem, volatility-induced stationar-
ity, level-dependent conditional volatility.

JEL classification: E43, E44, G12.
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1.1 Introduction

Many macro-finance term structure models are specified by vector autoregressive
(VAR) models with Gaussian and homoskedastic shocks. While these models are
celebrated for their tractability, they are inconsistent with key characteristics of U.S.
Treasury yield data. This paper introduces a novel class of discrete-time term struc-
ture models that can generate yield curve dynamics supported by the data. Specifi-
cally, I bridgemacro-finance term structuremodeling with the double-autoregressive
(DAR) model studied in Ling (2004) and Nielsen and Rahbek (2014).

I am motivated by three stylized facts of nominal bond yields that standard VAR
models fail to accommodate. First, U.S. Treasury bond yields are extremely persis-
tent and formal tests often fail to reject the presence of unit roots. When VARmodels
are presented with highly persistent data, they imply a sharp distinction between
I(0) and I(1) models. While I(0) models are stationary, they fail to match the de-
gree of persistence in the yield data (Goliński and Zaffaroni, 2016). On the other
hand, I(1) models are sufficiently persistent but non-stationary, which is counter-
factual from both theoretical and empirical viewpoints (Beechey, Hjalmarsson, and
Österholm, 2009). Second, the data exhibit periods of rapid changes perhaps mark-
ing the beginning and end of monetary policy cycles. Finally, interest rates exhibit
time-varying conditional volatility.1

To accommodate these stylized facts, I develop a term structure model with
multivariate DAR dynamics. The DAR model is a vector autoregression with condi-
tional volatility that depends on lagged levels of the process. Thus, in particular, the
model is consistent with conditionally heteroskedastic interest rates. To fix ideas,
consider the univariate DAR model from Ling (2004):

xt = φxt−1 +
(
ω + ψx2

t−1

)1/2
zt (1.1)

with zt ∼ i.i.d. N (0, 1). A crucial feature of the model is that stationarity is not ruled
out by the presence of a unit root, φ = 1. Instead, the stationarity condition depends
on both the conditional mean through φ and the conditional variance through ψ.
Therefore, the model is said to exhibit volatility-induced stationarity. By allowing
for unit roots without implying non-stationarity, the DAR model is consistent with
the stylized fact that interest rate data are persistent but best described by stationary
processes. The DARmodel can also generate the jump behavior of interest rates by a
sequence of shocks with the same sign. These shocks accumulate in the conditional
1Heteroskedastic interest rates have been acknowledged by non-Gaussian affine term structure mod-
els (Dai and Singleton, 2000), which have been studied in discrete time by Le, Singleton, and Dai
(2010). However, these models fail to capture the first two stylized facts that I emphasize.
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variance so that when a shock of the opposite sign arrives, it is weighted by a large
conditional variance that pushes the process rapidly downwards. Thus, the DAR
model is consistent with the stylized facts of interest rate data.

I present an empirical application with a macro-finance state vector consisting
of the one-month U.S. Treasury bill rate, the ten-year Treasury bond yield, and mea-
sures of inflation and real activity. The data guide a model with reduced rank in
the autoregressive coefficient and long-run equilibria given by the yield spread and
a Taylor rule. I therefore implement the DAR model with these features and bench-
mark the results against the cointegrated VAR model.2 The empirical analysis shows
that the misspecification of the VAR model has both econometric and economic con-
sequences that can be alleviated by the DAR model. Econometrically, I show that
the DAR model passes misspecification tests of the standardized residuals that the
corresponding VAR model fails. Economically, I emphasize the well-known problem
that VAR models distort model-implied term premia because they fail to match the
persistence of the data with a stationary model. In the following, I illustrate this
so-called persistence problem and how the DAR model can remedy this limitation
of linear models.

Term premia are here defined by the residuals of the yield curve that are not
explained by the expectations hypothesis, which asserts that yields of long matu-
rities are determined by expected future short rates only. Thus, term premia can
be estimated based on model-implied forecasts of the short rate. In the stationary
VAR, these forecasts quickly revert to the unconditional mean defined by the model.
Therefore, the expectations hypothesis of the stationary VAR predicts nearly con-
stant yields, and virtually all variation in the yield curve is assigned to term premia.
This issue, named the persistence problem, has been recognized by Jardet, Monfort,
and Pegoraro (2013), Kozicki and Tinsley (2001), and Shiller (1979). In the cointe-
grated VAR model with the yield spread as cointegrating relation, forecasts of future
short rates converge to a level that is proportional to the ten-year yield. Thus, the
expectations hypothesis explains most of the variation in the yield curve, resulting
in nearly constant term premia.3

In sum, the VAR framework can either generate term premia that are approx-
imately proportional to the yield curve or constant. Interestingly, the DAR model
can generate a richer set of term structure decompositions than the VAR models by

2Term structure modeling based on the cointegrated VAR model has been considered in Chernov and
Creal (2019).
3This observation also explains why the cointegrated VAR has been used to test the expectations
hypothesis, e.g., in Campbell and Shiller (1987), Hall, Anderson, and Granger (1992), and Shea
(1992).

3



reconciling unit roots and stationarity. In particular, the DAR model predicts term
premia that are time-varying, but much less correlated with the yield curve than
explained by the stationary VAR model. Indeed, I find that the DAR model matches
expected future short rates as measured by the Survey of Professional Forecasters
better than the stationary and cointegrated VAR models.

Given these promising results related to the modeling of macro-finance dynam-
ics, I embed the DAR model into a macro-finance term structure model with no-
arbitrage restrictions. Assuming a standard exponential-linear stochastic discount
factor preserves the DAR model under the pricing measure. I propose a quadratic
approximation to facilitate analytical computation of no-arbitrage bond yields. My
model obtains an in-sample fit of the yield curve comparable to the Gaussian affine
term structuremodel (GATSM) that is based on the VARmodel. In fact, the quadratic
component of the bond yield formula that is generated from volatility-induced sta-
tionarity explains practically no variation in the yield curve. This result can be inter-
preted as volatility-induced stationarity being unspanned by the yield curve, which
is consistent with the literature on unspanned stochastic volatility (USV) (Collin-
Dufresne and Goldstein, 2002, 2009, Creal andWu, 2015, Joslin, 2017). In contrast,
the DAR term structure model does outperform the GATSM in terms of out-of-sample
performance across almost all maturities from one to ten years and forecasting hori-
zons of 3, 6, and 12 months. Importantly, the DAR model also outperforms the
random walk, which is a competitive benchmark for standard term structure mod-
els (Duffee, 2002).

Volatility-induced stationarity in interest rate data was first studied by Conley,
Hansen, Luttmer, and Scheinkman (1997) who consider Markov diffusion models
with constant volatility elasticity as in the CKLS model in Chan, Karolyi, Longstaff,
and Sanders (1992). Conley, Hansen, Luttmer, and Scheinkman (1997) apply these
models to overnight effective federal funds rates and conclude that "when interest
rates are high, local mean reversion is small and the mechanism for inducing stationar-
ity is the increased volatility". Nicolau (2005) also shows that the federal funds rate
can be modelled by a process that exhibits volatility-induced stationarity. Nielsen
and Rahbek (2014) extend these analyses by modeling two interest rates, namely
the one- and three-month Treasury bill rates, allowing for reduced rank. Their im-
plementation, however, does not impose no-arbitrage restrictions. This paper con-
tributes to this literature by (i) proposing a no-arbitrage model for the entire term
structure and (ii) allowing for more than two factors, e.g., the usual level, slope,
and curvature factors of the yield curve as suggested by Litterman and Scheinkman
(1991) and macroeconomic factors as in the macro-finance term structure literature
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(Ang and Piazzesi, 2003, Ang, Piazzesi, andWei, 2006, Diebold, Piazzesi, and Rude-
busch, 2005, Duffee, 2006, Hördahl, Tristani, and Vestin, 2006, Joslin, Priebsch, and
Singleton, 2014, Rudebusch and Wu, 2008). This paper is the first to suggest that
the persistence problem can be resolved by volatility-induced stationarity.

Other methodologies have been suggested to overcome the persistence prob-
lem. One strand of literature focuses on the well-known statistical problem that the
autoregressive parameter of stationary VAR models is downwardly biased in small
samples when data are persistent. To tackle this problem, Kim and Orphanides
(2007) and Kim and Orphanides (2012) augment the data with survey forecasts
and Bauer, Rudebusch, and Wu (2014) suggest a bias-correction that results in sta-
ble term premia. This approach is conceptually different from that taken in this
paper in which linear dynamics is abandoned to introduce nonlinearity in the form
of volatility-induced stationarity. Consequently, I show empirically that term premia
implied by my model have different properties from those obtained by Bauer, Rude-
busch, andWu (2014). Abbritti, Gil-Alana, Lovcha, andMoreno (2016) and Goliński
and Zaffaroni (2016) suggest that long memory represents a realistic, intermediate
case between I(0) and I(1) GATSMs. Along these lines, Jardet, Monfort, and Pego-
raro (2013) consider near-cointegration implemented by averaging the parameter
estimates of the stationary and cointegrated VAR models. The resulting term pre-
mia coincide with those of the DAR model during the zero-lower bound regime, but
differ elsewhere.

The paper is structured as follows. Section 1.2 introduces the DAR model and
discusses how unit roots can be reconciled with stationary dynamics through
volatility-induced stationarity. The empirical analysis of the DAR model using a set
of macro-finance risk factors is conducted in Section 1.3. In Section 1.4, I embed the
DAR process into a no-arbitrage term structure model and use this model to assess
the implications of volatility-induced stationarity on the yield curve. Finally, Section
1.5 concludes.

1.2 Double Autoregressive Models

DARmodels specify both the conditional mean and the conditional variance in terms
of lagged levels of the process. The conditional mean is equivalent to that of the
VAR, while the conditional variance can be specified based on various multivariate
GARCH models. In general, the p-dimensional DAR model with one lag in both the
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conditional mean and the conditional variance is given by

Xt+1 = µ+ ΦXt + Ω
1/2
t+1εt+1,

Ωt+1 = f(Xt),

where εt+1 ∼ i.i.d. N (0, Ip) and f : Rp → Rp×p is a function that maps the levels
of the process Xt into a symmetric and positive definite matrix. Next, I specify the
conditional variance, Ωt+1.4

1.2.1 Conditional Variance Specification

I specify the conditional variance such that (i) symmetry and positive definiteness
is imposed by construction; (ii) the number of parameters is feasible for estimation;
and (iii) I can establish time series properties of the model. The BEKK ARCH model
in Engle and Kroner (1995) specified in levels rather than residuals satisfies these
requirements. The resulting DAR model is given by

Xt+1 = µ+ ΦXt + Ω
1/2
t+1εt+1,

Ωt+1 = Σ0Σ′0 + Σ1XtX
′
tΣ
′
1,

εt+1 ∼ i.i.d. N (0, Ip).

(1.2)

where Σ0 is lower triangular with strictly positive elements on the diagonal. This
unique Cholesky factor ensures that the conditional variance matrix is positive defi-
nite without imposing further parameter restrictions. The p×pmatrix Σ1 determines
the sensitivity of the conditional volatility to the level of the process realized in the
previous period. In the special case where all elements of this matrix are zero, the
model reduces to a VAR.

Economically, the model allows uncertainty as measured by the conditional vari-
ance to increase with the levels of the yield curve factors. By including macroe-
conomic variables in the model, I can accommodate the hypothesis that a higher
inflation rate increases uncertainty about monetary policy (Ball, 1992, Fischer and
Modigliani, 1978, Friedman, 1977, Logue and Willett, 1976).5 Also, the model is
consistent with Hayford (2000) who finds that inflation Granger causes unemploy-
ment uncertainty. Due to these economic channels of heteroskedasticity, I present a
macro-finance empirical application in Section 1.3.

4Note that I adopt the notation from the GARCH literature and denote the conditional variance given
Xt by Ωt+1.
5This hypothesis has been tested comprehensively in the literature, see for instance Chang (2012),
Fountas (2010), Golob (1994), Hartmann and Herwartz (2012), and Kim and Lin (2012).
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1.2.2 Stationarity Condition and Time Series Properties

Nielsen and Rahbek (2014) show that Xt given by (1.2) is globally stationary and
geometrically ergodic if the Lyapunov exponents are strictly negative, i.e.,

γ (Φ,Σ1) = lim
ξ→∞

[
E

(
log ‖

ξ∏
t=1

(Φ + et)‖

)]
< 0, (1.3)

where et is a p × p matrix that is i.i.d. normally distributed with mean zero and
covariance matrix given by Σ1 ⊗ Σ1. Note that this condition is determined by both
the conditional mean through Φ and the conditional variance through Σ1. Thus,
stationarity can be induced by both the mean and the variance.

The stationarity condition in (1.3) motivates a classification of the DAR model
into four cases: (i) non-stationary I(1) models, (ii) models that are stationary due to
the conditional volatility only, (iii) models with both mean- and volatility-induced
stationarity, and (iv) stationary models without volatility-induced stationarity, that
is I(0) models.6 To characterize the properties of the DAR model, let us look at these
cases separately.

(i) Non-stationary models

Assume that the characteristic polynomial corresponding to the conditional mean
exhibits one or more unit roots. In addition, suppose that the parameter Σ1 in
the conditional variance does not take on values that ensure stationarity through
a strictly negative top-Lyapunov exponent. Formally, let λ1, . . . , λp denote the eigen-
values of Φ. Then, |λi| = 1 for i = 1, . . . , q ≤ p, |λj| < 1 for j = q + 1, . . . , p, and
γ(Φ,Σ1) ≥ 0. This case is well-studied if Σ1 = 0p×p. In particular, if the number of
unit roots equals the dimension of the model, i.e., if q = p, then the model is I(1)
and thus can be made stationary by first differencing. Otherwise, the rank of Φ− Ip
is reduced to r = p− q, and Φ can be parametrized by Φ = Ip + αβ′, where α and β
are p× r matrices. Furthermore, if β′Xt is stationary given an initial distribution, Xt

is cointegrated with cointegrating vector β 6= 0 as defined by Johansen (1995). Due
to the presence of unit roots, the constant term µ is aggregated into a linear trend
if not restricted appropriately as a constant in the cointegrating relations.

(ii) Purely volatility-induced stationary models

The DAR model is purely volatility-induced stationary if the conditional mean ex-
hibits one or more unit roots, but the top-Lyapunov exponent is strictly negative

6I abstract from cases where the characteristic polynomial corresponding to the conditional mean
has solutions outside the unit circle although (1.3) can be satisfied under such cases.
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due to a sufficiently large level effect in the conditional variance: |λi| = 1 for some
i = 1, . . . , q ≤ p, |λj| < 1 for j = q + 1, . . . , p, and γ(Φ,Σ1) < 0. Thus, the model is
stationary despite the presence of unit roots because of the dynamics of the condi-
tional volatility. Crucially, note that if the conditional volatility was not time-varying,
the model would belong to the non-stationary class of I(1) models described in case
(i).

In general, the model does not have any finite unconditional moments. Thus,
stationarity is not equivalent to mean-reversion in the traditional sense, where the
process reverts back to a level given by the unconditional mean. Instead, the pro-
cess will tend to spend most time at the level at which the conditional variance is
low, i.e., at zero. What happens as the process moves away from zero, say, due to a
series of positive shocks? Increasing values ofXt accumulate in the conditional vari-
ance so that the stochastic component becomes larger as the process moves farther
away from zero. Since the error term is normally distributed and thus symmetric,
a negative innovation will eventually arrive, which pushes the process downwards.
In this way, the process can quickly return to its stable level. It will take another
series of innovations of the same sign for the process to repeat this pattern. Theo-
retically, nothing prevents that the innovation will continue to be positive such that
the process never returns towards its stable level. However, this event happens with
zero probability because the innovation term is Gaussian.7 Thus, it is not a relevant
concern for the empirical application of the model.

Finally, Nielsen and Rahbek (2014) show that due to volatility-induced station-
arity, the constant term µ does not accumulate into a linear trend as is the case in
I(1) models.

(iii) Mean- and volatility-induced stationary models

Suppose that all eigenvalues ofΦ are inside the unit circle, |λi| < 1 for all i = 1, . . . , p,
and the conditional variance is level-dependent. For empirically relevant values of
Σ1, it will be the case that γ(Φ,Σ1) < 0 and the model is stationary.8 Stationarity is
ensured jointly by Φ and Σ1, hence, the model exhibits both mean- and volatility-
induced stationarity.

To understand the model dynamics intuitively, consider a case where E(Xt) > 0

such that the level of mean-reversion is different and exceeds the level at which the
model has low conditional variance. When the process is at zero, the stochastic

7For a sequence of i.i.d. continuous random variables ε1, ε2, . . . , εT , where εi is symmetrically dis-
tributed with mean zero, Pr(ε1 > 0, ε2 > 0, . . . , εT > 0) = 0.5T .
8Ling (2004) shows in the univariate case that extremely large values of Σ1 can result in non-
stationarity. I will not pay attention to this empirically irrelevant case.
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component is small due to a small conditional variance, and the process is mainly
controlled by the conditional mean that drives the process towards its unconditional
mean. Thus, the transition from levels close to zero to the unconditional mean re-
sembles that of the stationary VAR model. Above the unconditional mean, however,
the stochastic component is attributed more weight as the conditional variance is
increased by the process being away from zero. In the case of a negative shock,
the process will quickly revert to the unconditional mean as both the conditional
mean and stochastic component drive the process downwards. A positive shock, on
the other hand, implies that the conditional mean and conditional variance work in
opposite directions.

(iv) I(0) models

Let the eigenvalues of Φ be inside the unit circle and the conditional variance be
constant: Σ1 = 0p×p and |λi| < 1 for all i = 1, . . . , p. Then, the DAR model reduces to
the stationary VAR whose properties are well-known. Since the conditional variance
is constant, the model is stationary purely due to the absence of unit roots in the
characteristic polynomial corresponding to the conditional mean.

1.2.3 Numerical Illustrations

I illustrate these properties numerically by simulating paths of the model in each of
the four cases. Consider a sample of length T = 300 generated from univariate DAR
models with the following parameter values:

(i) Non-stationary I(1) model: µ = 0.01, Φ = 1, Σ0 = 0.1, and Σ1 = 0.

(ii) Purely volatility-induced stationary model: µ = 0.01, Φ = 1, Σ0 = 0.1, and
Σ1 = 0.3.

(iii) Mean- and volatility-induced stationary model: µ = 0.01, Φ = φ, Σ0 = 0.1,
and Σ1 = 0.3.

(iv) I(0) model: µ = 0.01, Φ = φ, Σ0 = 0.1, and Σ1 = 0.

I repeat the simulation exercise for two different values of the autoregressive coef-
ficient in the cases (iii) and (iv): φ = 0.99, which is close to the unit-root case and
an empirically relevant value, and φ = 0.95 to illustrate the model when the mean-
reversion effect is stronger. Results are shown in Figure 1.1. The I(1) model is a
random walk and the I(0) model is a stationary AR process that fluctuates around
the unconditional mean illustrated by the dotted blue line. When pure volatility-
induced stationarity is present, the process tends to spend most time around zero,
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where volatility is low. As the process moves away from zero, volatility increases
which can generate spikes as those observed around t = 225 and t = 275 in the sim-
ulation sample. However, as soon as a negative innovation is realized, the process
returns quickly to more stable levels. The dynamics of the mean- and volatility-
induced stationary model, case (iii), depends crucially on the autoregressive pa-
rameter. When φ = 0.99, i.e., close to unity, the process behaves almost like the
purely volatility-induced stationary model, see panel (a). With a stronger degree of
mean-reversion, see panel (b), the DAR model resembles the I(0) model.

1.2.4 Likelihood

The process Xt in (1.2) is conditionally Gaussian given Xt−1 with conditional mean
and variance equal to

Et−1 (Xt) = µ+ ΦXt−1,

Vart−1 (Xt) = Ωt = Σ0Σ′0 + Σ1Xt−1X
′
t−1Σ′1.

Thus, the log-likelihood function is given up to a constant by

L(ΘP) = −1

2

T∑
t=1

[
log|Ωt|+ (Xt − µ− ΦXt−1)′Ω−1

t (Xt − µ− ΦXt−1)
]
,

where I note that Ωt is a function of Σ0 and Σ1 given in (1.2) and the parame-
ters are given by ΘP = {µ,Φ,Σ0,Σ1}. Consistency and asymptotic normality of the
maximum likelihood estimator has been established in the univariate case by Ling
(2004); in a bivariate model under certain parameter restrictions by Nielsen and
Rahbek (2014); and in the multivariate setting but with a diagonal conditional co-
variance matrix in Zhu, Zhang, Liang, and Li (2017). Since there are no results
available for the general multivariate specification, I confirm by simulations that
the maximum likelihood estimators exhibit reasonable properties, i.e., are approxi-
mately Gaussian and centered around their true values.9

1.3 Empirical Analysis

For the empirical analysis, I focus on the purely volatility-induced stationary model
versus the special case when the conditional volatility is constant, i.e., the I(1) VAR
model. I consider a macro-finance setting for two reasons. Fist, macroeconomic
variables are important predictors of term premia (Joslin, Priebsch, and Singleton,
2014, Wright, 2011). Second, the volatility specification in (1.2) has an economic
9The simulation results are available upon request.
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Figure 1.1: Simulated Path of Univariate DAR Models
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Notes: Simulated paths of sample length T = 300 generated by univariate DAR models with
parameters (µ,Φ,Σ0,Σ1) given by (0.01, 1, 0.1, 0) in case (i), (0.01, 1, 0.1, 0.3) in case (ii),
(0.01, φ, 0.1, 0.3) in case (iii), and (0.01, φ, 0.1, 0) in case (iv) with φ = 0.99 in Panel (a) and
φ = 0.95 in Panel (b).
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motivation involving inflation rates and unemployment as discussed in Section 1.2.1.
In particular, I model the short and long ends of the yield curve (rt, Rt) and two
macroeconomic measures interpreted as respectively inflation (πt) and real activity
(gt). Let Xt be the vector containing these variables, Xt = [rt, Rt, πt, gt]

′.

1.3.1 Data

I use monthly data between January 1985 and December 2016 measured end-of-
month. The short rate is the one-month U.S. Treasury Bill rate from the Fama Trea-
sury Bills Term Structure Files available at CRSP. Define the long rate by the ten-year
U.S. Treasury bond yield from Gürkaynak, Sack, and Wright (2007).

The macroeconomic variables are constructed following the approach in Ang
and Piazzesi (2003) and Goliński and Zaffaroni (2016). The inflation measure, πt,
is given by the first principal component of standardized series of CPI and PPI data
from the U.S. Bureau of Labor Statistics. The measure of real activity, gt, is the
first principal component of standardized data on the unemployment and employ-
ment growth rates from the U.S. Bureau of Labor Statistics; the industrial produc-
tion index from Federal Reserve Economic Data; and the help-wanted-advertising-
in-newspapers (HELP) index from Barnichon (2010).

Table 1.1 details how πt and gt correlate with the underlying observed data
as well as the fraction of total variation they capture. The inflation variable, πt,
is highly correlated with both inflation measurements and explains 85 percent of
the total variation in these data. The variable measuring real activity, gt, correlates
strongest with employment growth rate and the HELP index. Correlation with the
unemployment rate is negative as expected. The measure of real activity captures
66 percent of the variation in the underlying observables.

The data for Xt = [rt, Rt, πt, gt]
′ are exhibited in Figure 1.2. The series appear

extremely persistent and use of conventional unit-root and stationarity tests indeed
identify unit roots, see Table 1.2. Therefore, modeling these data using a VARmodel
involves the implicit assumption that interest rates are generated by non-stationary
processes, which is puzzling from both theoretical and empirical standpoints. To
alleviate this problem, I propose the DAR model for these persistent and stationary
data.
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Table 1.1: Interpretation of the Macroeconomic Factors

Explained
(percent) Empirical correlation coefficients

CPI PPI UNEMP EMP PROD HELP

πt 85.49 0.92 0.92 - - - -

gt 65.75 - - -0.71 0.93 0.71 0.87

Notes: The percentage of variation in respectively inflation data (CPI,
PPI) and data related to real activity (unemployment rates, UNEMP,
employment growth rates, EMP, the production index, PROD, and the
HELP index, HELP) explained by respectively the inflation measure
(πt) and the real-activity measure (gt). Empirical correlation coeffi-
cients are shown as well.

Table 1.2: Testing for Unit Roots

Null hypothesis rt Rt πt gt

ADF test unit root 2.16 3.19 -16.98 -14.83

[0.44] [0.17] [0.00] [0.01]

KPSS test stationarity 1.49 1.89 0.39 0.43

[0.00] [0.00] [0.08] [0.06]

Notes: Augmented Dickey-Fuller and KPSS tests for respectively unit
roots and stationarity. P-values in brackets.

1.3.2 Model Specification and Estimation

To achieve a well-specified model, I allow for an extensive lag structure in the con-
ditional mean. I find that this generalization is sufficient to match the data and thus
I leave the conditional variance as specified in (1.2). The resulting DAR model is
given by:

Xt+1 = µ+ ΦXt +
K∑
k=1

Γk∆Xt−k + Ω
1/2
t+1εt+1,

Ωt+1 = Σ0Σ′0 + Σ1XtX
′
tΣ
′
1,

εt+1 ∼ i.i.d. Np(0, Ip)

(1.4)
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Figure 1.2: Monthly Interest Rates and Macroeconomic Factors
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Notes: The interest rates, rt and Rt, are the 1-month Treasury bill rate and the 10-year
Treasury bond yield. The inflation measure, πt, is the first principal component of CPI and
PPI rates. Real activity, gt, is measured the first principal component of the unemployment
rate, the growth rate of employment, and the industrial production and HELP indices.

forK ≥ 1.10 As I focus on the purely volatility-induced stationary case, I decompose
Φ = Ip + αβ′, where α and β are of dimension p × r with the rank of Φ satisfying
0 ≤ r ≤ p. The parameters of the model are ΘP = {µ, α, β,Γ1, . . . ,ΓK ,Σ0,Σ1}.

The data suggest a reduced rank of r = 2 and a lag length ofK = 3, when speci-
fication testing is conducted with use of conventional methods for VAR models. With
these choices, the DAR model appears to be well-specified. In fact, compared with
the corresponding cointegrated VAR (CVAR) model that appears as the special case

10The associated top-Lyapunov exponent is given by

γ = lim
ξ→∞

[
E

(
log ‖

ξ∏
t=1

(Φ̃ + ẽt)‖

)]
,

where ẽt has dimension p(K + 1) × p(K + 1) and is i.i.d. normal with mean zero and covariance
matrix equal to Σ̃1 ⊗ Σ̃1. Φ̃ and Σ̃1 are defined by

Φ̃ =



Φ + Γ1 Γ1 − Γ2 . . . ΓK − ΓK−1 −ΓK

Ip 0p×p . . . 0p×p 0p×p

0p×p Ip 0p×p 0p×p
...

. . .
...

0p×p 0p×p . . . Ip 0p×p


, Σ̃1 =

 Σ1 0p×pK

0pK×p 0pK×pK

 .
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Table 1.3: Misspecification Testing

DAR CVAR

Log-likelihood 6986 6823

AIC -13806 -13507

Top-Lyapunov -0.004

rt Rt πt gt rt Rt πt gt

Ljung-Box test 7.71
[0.10]

1.67
[0.80]

0.61
[0.96]

4.96
[0.29]

3.72
[0.44]

1.48
[0.83]

1.05
[0.90]

5.75
[0.22]

Engle’s ARCH
test

23.81
[0.00]

4.37
[0.04]

2.53
[0.11]

1.58
[0.21]

36.15
[0.00]

9.92
[0.00]

20.82
[0.00]

0.60
[0.44]

Kolmogorov-
Smirnov test

0.07
[0.05]

0.06
[0.09]

0.06
[0.12]

0.06
[0.16]

0.09
[0.00]

0.06
[0.12]

0.10
[0.00]

0.05
[0.12]

Notes: Log-likelihood values, Akaike information criteria (AIC), and top-Lyapunov exponent of
the DAR model. Residual specification tests: Ljung-Box test of no autocorrelation. Engle’s test of
no ARCH effects. Kolmogorov-Smirnov test of standard normal distribution. P-values in brackets.

when Σ1 = 0p×p, the DAR model removes autocorrelation and improves normality
tests of the standardized residuals, see Table 1.3. The DAR model obtains the lowest
AIC value and the likelihood values of the models are significantly different when
compared by a LR test. Moreover, note that the estimated top-Lyapunov exponent
in the DAR is strictly negative.11 Therefore, the process is indeed volatility-induced
stationary. Further estimation details and parameter estimates are provided in Ap-
pendix A.1.

Long-Run Equilibria

The long-run equilibria in the DAR model are estimated, up to a constant, by

β̂′1Xt = rt − 3.672πt − 1.681gt,

β̂′2Xt = Rt − rt,

see Table A.3 in Appendix. One relation is the spread between long and short rates
as in Hall, Anderson, and Granger (1992). The other is given by the short rate,
inflation, and real activity. Since the short rate follows the federal funds rate closely,
this relation mimics the dual mandate of the Federal Reserve (Fed). In addition,

11The Lyapunov exponents are obtained by the efficient and numerically stable algorithm described
in Nielsen and Rahbek (2014).
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the signs of the estimates are intuitive: A low interest rate is associated with high
levels of inflation and real activity. Also, note that the estimated adjustment matrix
places more weight on the yield spread relation compared with the dual mandate,
see appendix. These results are practically identical for the CVAR model.

1.3.3 Conditional Volatilities

Model-implied conditional variances are exhibited in Figure 1.3. In the DAR model,
conditional variances are highly time-varying and fluctuate around the constant lev-
els estimated by the CVAR model. With exception of the short rate, which is subject
to money market noise (Piazzesi, 2005) and institutional effects (Hilton, 2005), the
factors exhibit countercyclical volatility. In particular, there are pronounced spikes
at the outbreak of the financial crisis in 2007/08. Volatilities are small and nearly
constant during the zero-lower bound regime in the aftermath of the crisis.

The DAR model allows all variables to exhibit volatility-induced stationarity
and furthermore, the conditional heteroskedasticity can be driven by all variables.
This general setting allows us to make statements about (i) which variables exhibit
volatility-induced stationarity? and (ii) what variables drive this feature? From
Figure 1.3, the short rate stands out with a highly volatile conditional variance that
ranges from high and rapidly changing to low and stable.

From the estimation results provided in Appendix A.1, the conditional variance
of the short rate is given by

Vart (rt+1) = (95.7rt + 18.9Rt + 15.2πt)
2 ,

where insignificant coefficients are suppressed. Thus, volatility-induced stationarity
in the short rate is mainly driven by the short rate itself, but also by the long rate
and inflation.

Figure 1.3 also shows the conditional correlations in the DAR model. I note
that these are time-varying, which suggests that the flexibility offered by DAR mod-
els in terms of time-varying conditional correlations in contrast to Ap(p) models is
indeed necessary to fit the data. The short rate correlates positively with the long
rate through the majority of the sample implying that the monetary transmission
mechanism from short to long rates works in normal times. However, the correla-
tion becomes negative following recessionary periods.
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Figure 1.3: Estimated Conditional Variances and Correlations
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Notes: Estimated conditional variances (in basis points) in the DAR and CVAR models. Condi-
tional correlations are reported for the DAR model. Shaded areas mark recessionary periods
defined by NBER.
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1.3.4 Term Premia

Next, I show that volatility-induced stationarity impacts model-implied term pre-
mia. Term premia are defined by an accounting identity that decomposes the bond
yield, Yt,n, into the yield that would prevail if investors were risk neutral, Ỹt,n, and
a residual, the term premium, TPt,n: Yt,n = Ỹt,n + TPt,n. By definition,

Ỹt,n = − 1

n
logEt

(
exp

[
−

n−1∑
i=0

rt+i

])
, (1.5)

where Et(·) is the conditional expectation given the filtration at time t under physical
probabilities and rt is the short rate. Using observed yields for Yt,n, the term premium
follows by computing Ỹt,n.12

Model-implied term premia with maturity of ten years, n = 120, are shown
in Figure 1.4. Besides comparing the DAR and CVAR models, I also report term
premia implied by the stationary VAR model. The models agree that term premia
are countercyclical, which is consistent with the intuition on how risk premia behave.
However, the DAR model implies stronger cyclicality than the VAR models.

Figure 1.4: Ten-Year Term Premia
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Notes: Ten-year term premia implied by the DAR, CVAR, and stationary VAR models. The
ten-year yield is plotted for reference. Shaded areas mark recessionary periods defined by
NBER.

12The expectation in (1.5) can either be simulated or approximated by the method that will explained
in Section 1.4.2, where the Q-parameters are replaced by the corresponding parameters under the
P-measure. Here, I report term premia obtained by approximation.
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I make two observations regarding the VAR models. First, the stationary VAR
model implies that term premia are downward-sloping corresponding to the down-
trending long rate. In fact, the correlation between the ten-year term premium of
the stationary VAR model and the ten-year yield is 0.91. This high correlation re-
flects the strong mean reversion of stationary VAR models that implies that Ỹt,n is
nearly constant. Consequently, almost all of the variation in yields is attributed to
term premia. This persistence problem has previously been recognized in the litera-
ture (Abbritti, Gil-Alana, Lovcha, and Moreno, 2016, Goliński and Zaffaroni, 2016,
Jardet, Monfort, and Pegoraro, 2013, Kozicki and Tinsley, 2001, Shiller, 1979). Sec-
ond, I note that the CVARmodel predicts an almost constant ten-year term premium
in the range of 3-4 percent throughout the entire sample even as the ten-year yield
falls toward 2 percent towards the end of the sample. It is, however, counterintu-
itive that the term premium is well above the yield itself for a long period of time,
as it means that investors expect future short rates to become highly negative. The
stable term premium in the CVAR model is a direct implication of the model result
that the short rate adjusts to the yield spread as a long-run stable relation. In turn,
Ỹt,n converges to the long rate such that no residual variation can be assigned to the
term premium.

The flexibility of the DAR model allows for term premia that are more time-
varying than those of the CVAR model, but not close to perfectly correlated with
yields as in the stationary VAR model. To numerically evaluate the DAR model’s
ability to decompose interest rates, I compare model-implied expectations of short
rates with market expectations measured by survey forecasts. The survey data are
from the Survey of Professional Forecasters (SPF) conducted by the Federal Reserve
Bank of Philadelphia on a quarterly basis. I use median forecasts of the three-month
Treasury Bill rate as a proxy for the short rate. I compare these data to expectations
computed by respectively the DAR model and the cointegrated and stationary VAR
models. Table 1.4 compares root mean squared errors between model-implied and
survey expectations for forecasting horizons of 3, 6, and 12 months. The results
unambiguously show that volatility-induced stationarity help matching market ex-
pectations. I interpret this result as an indication that the DAR model provides a
more accurate term structure decomposition than the cointegrated and stationary
VAR models.
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Table 1.4: Matching Survey Expectations

DAR CVAR VAR

3M 34.55 37.34 39.15

6M 44.92 53.63 58.54

12M 74.45 91.98 106.09

Notes: Root mean squared errors in basis points of forecasts of the short
rate in the DAR, CVAR, and stationary VAR models compared with the
expected 3-month Treasury bill rate from the Survey of Professional
Forecasters. Forecasting horizons are 3, 6, and 12 months. Lowest
errors across models are boldfaced.

Alternative Solutions to the Persistence Problem

Bauer, Rudebusch, and Wu (2012) (hereafter BRW) suggest that the persistence
problem of the stationary VAR model can be resolved by correcting for the well-
known downward bias in the autoregressive coefficient matrix. Figure 1.5 compares
model-implied five-by-five year forward term premia of the DAR, CVAR, and station-
ary VAR models compared with those in BRW, which are available at the quarterly
frequency from 1990:Q1 to 2009:Q1 from the AEA website associated with the pa-
per.13 Descriptive statistics of the forward term premia are given in Table 1.5.

For the considered sample and at the quarterly frequency, the BRW forward term
premia are as stable as those of the CVAR both with an empirical standard deviation
of 0.6. Therefore, I expect that the BRW model encounters the same problem as the
CVAR model if extrapolated into the zero-lower bound regime. Moreover, the BRW
forward term premia are negatively correlated with the forward rate. To the extent
that higher levels of yields are associated with more volatility, I would expect the
correlation to be positive as predicted by the DAR and VAR models.

The persistence problem is also considered in Jardet, Monfort, and Pegoraro
(2013), who suggest an averaging estimator that combines the parameter estimates
of the stationary VAR and CVAR models. I adopt their weighting scheme to combine
the estimated VAR models, which give term premia as depicted in Figure 1.6.14

The term premia estimated by the averaging model are in-between those of the

13BRW consider a macro-finance term structure model where the factors are given by the first three
principal components of the yield curve along with two unspanned macro risks constructed by
smoothed inflation and GDP growth data.
14Jardet, Monfort, and Pegoraro (2013) chooses a weighting scheme such that the forecasting error
of the future path of short rates is minimized. As a result, the stationary VAR estimates are weighted
by 0.2617 which implies a weight on the CVAR model equal to 0.7383.
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Figure 1.5: Five-by-Five Year Forward Term Premia
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Notes: Five-by-five year forward term premia implied by the DAR model and the bias-
corrected I(0) VAR model in Bauer, Rudebusch, and Wu (2012) (BRW). Shaded areas
mark recessionary periods defined by NBER. Data are in quarterly frequency.

Table 1.5: Empirical Standard Deviations and Correlations of Five-by-Five Year
Forward Term Premia

DAR CVAR VAR BRW

Standard deviation 1.39 0.59 1.06 0.60

Correlation with forward rate 0.50 0.09 0.89 -0.09

Correlation matrix:

DAR 1

CVAR 0.85 1

VAR 0.70 0.33 1

BRW 0.38 0.60 0.20 1

Notes: Empirical standard deviations of five-by-five-year forward term premia implied by the
DAR, CVAR, and VAR models and the bias-corrected I(0) VAR model in Bauer, Rudebusch,
andWu (2012) (BRW). Correlations with the forward rate as well as correlations between the
models are reported as well. All data are in quarterly frequency from 1990:Q1 to 2009:Q1.
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stationary VAR and CVAR models and thus highly stable. Consequently, this model
cannot produce term premia that are either below or above the estimates of the VAR
models. The averaging model will therefore differ from the DAR model in most of
the sample per construction. An exception is during the zero-lower bound regime,
where the term premia of the DAR model and averaging model coincide.

Figure 1.6: Ten-Year Term Premia
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Notes: Ten-year term premia implied by the DAR, CVAR, and stationary VAR models
along with the model averaging estimator (AVG) that combines the parameters of the
VAR and CVAR models with weights equal to respectively 0.2617 and 0.7383. The ten-
year yield is plotted for reference. Shaded areas mark recessionary periods defined
by NBER.

1.4 Volatility-Induced Stationary Term Structure Modeling

This section casts the DAR model analyzed thus far into a macro-finance term struc-
ture model. I consider a four-factor term structure model with the observable state
vector Xt = [rt, Rt, πt, gt]

′ whose dynamics is given by (1.4).

1.4.1 Stochastic Discount Factor and Q-Dynamics

I adopt the standard linear-exponential stochastic discount factor given by

Mt+1 = exp

(
−rt −

1

2
Λ′tΩt+1Λt − Λ′tΩ

1/2
t+1εt+1

)
, (1.6)
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where Λt is the market price of risk with risk measured by the conditional vari-
ance, Ωt+1. I specify the market price of risk such that the factor dynamics under
the risk-neutralQ-measure follows a DARmodel. Moreover, to reduce the number of
parameters I treat lagged variables as unspanned factors as in Joslin, Le, and Single-
ton (2013a). Thus, the lag structure determines the dynamics under the real-world
measure but is not priced in the term structure cross-section. The market price of
risk is defined by:

Λt = Ω−1
t+1

[
(µ− µQ) +

(
Φ− ΦQ)Xt +

K∑
k=1

Γk∆Xt−k

]
, (1.7)

with risk-neutral Q-dynamics given by the following DAR model:

Xt+1 = µQ + ΦQXt + Ω
1/2
t+1ε

Q
t+1,

Ωt+1 = Σ0Σ′0 + Σ1XtX
′
tΣ
′
1,

εQt+1 ∼ i.i.d. Np(0, Ip).

(1.8)

Note that the market price of risk is time-t measurable as Ωt+1 depends on Xt. Fi-
nally, per construction of the state vector, the short rate and the state vector are
related by rt = ι′1Xt where ι′1 is a unit vector with one in the first entry. With these
assumptions, the special case where Σ1 = 0p×p corresponds to the GATSM based on
the CVAR model rather than the stationary VAR model that is standard in GATSMs.
In the following, I use the acronym GATSM to describe the model based on the CVAR
specification that is nested in my model.

1.4.2 Bond Pricing

The no-arbitrage price of a zero-coupon bond with n+1 periods to maturity is given
by

Pt,n+1 = Et (Mt+1Pt+1,n) ,

where Et(·) denotes the conditional expectation given Ft = {Xt, Xt−1, . . . , X1} un-
der real-world probabilities. My model does not admit a closed-form bond price
expression that satisfies this equation. Instead, I propose an exponential-quadratic
approximation that allows the conditional covariance matrix to affect bond yields.
This is similar to the GATSM in which the closed-form solution depends on the con-
stant conditional variance, see Ang and Piazzesi (2003). Also, I make sure that for
Σ1 = 0p×p, bond yield computation must coincide with the solution of the GATSM.
Appendix A.2 shows that such an approximation can be obtained by controlling the
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dynamics of the conditional variance under the Q-measure. The resulting approxi-
mation is given by15

Pt,n = exp (An +B′nXt + C ′nvec (XtX
′
t)) , (1.9)

where

An = An−1 +B′n−1µ
Q + C ′n−1

(
vec
(
µQµQ′

)
+ vec (Σ0Σ′0)

)
+

1

2
B′n−1Σ0Σ′0Bn−1

B′n = −ι1 +B′n−1ΦQ + C ′n−1

(
ΦQ ⊗ µQ + µQ ⊗ ΦQ)

C ′n = C ′n−1

(
ΦQ ⊗ ΦQ + Σ1 ⊗ Σ1

)
+

1

2

(
[B′n−1Σ1]⊗ [B′n−1Σ1]

)
initiated at n = 0 with A0 = 0, B0 = 0p×1, C0 = 0p2×1. The associated approxi-

mated bond yield is given by

Yt,n = − 1

n
log (Pt,n) = − 1

n
An −

1

n
B′nXt −

1

n
C ′nvec (XtX

′
t) . (1.10)

The approximated bond yield expression is similar to the solution of the class of
quadratic term structure models (QTSMs) studied in Leippold and Wu (2002), Ahn,
Dittmar, and Gallant (2002), and Realdon (2006). Thus, the DAR term structure
model and the QTSM can produce similar shapes of the yield curve. However, the
source of the quadratic term and thus the loading recursions are highly different
across the two model frameworks: Whereas the quadratic bond yield in my model
stems from the variance specification in the DAR model, the QTSM imposes this
non-linearity through a quadratic specification of the short rate. This difference
is particularly highlighted in the macro-finance model considered in this paper in
which the short rate is a factor itself. In this setting, the short-rate specification is
linear per construction and the QTSM reduces in this case to the GATSM.

15To evaluate the approximation error, I proxy the exact solution by averaging 10,000,000 paths of
exp

(
−
∑n−1
i=0 ι

′
1X̂t

)
, where X̂t is simulated under the Q-measure according to (1.8). Then, this

simulated bond price is converted to yields. I repeat this procedure for all months of January in the
sample using parameter values reported in Table 1.6. The approximation error is largest for the ten-
year yield, for which the average absolute error is 38 basis pointsbasis points corresponding to 6.94
percent of the average ten-year yield level.
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1.4.3 Estimation

I estimate µQ and ΦQ by non-linear least squares given the parameters obtained for
the factor dynamics in Section 1.3, Θ̂P = {µ̂, α̂, β̂, Σ̂0, Σ̂1, Γ̂1, Γ̂2, Γ̂3}.16 The data are
U.S. Treasury bonds yields from Gürkaynak, Sack, and Wright (2007) with matu-
rities n = 1, 2, . . . , 10 years. The results are shown in Table 1.6. The DAR model
remains stationary under the Q-measure with a top-Lyapunov exponent of −0.017.

Table 1.6: Estimated Q-Dynamics

DAR term structure model GATSM

(µQ)′×100
-0.007
(0.001)

0.001
(0.000)

-0.046
(0.003)

-0.018
(0.003)

-0.010
(0.006)

0.001
(0.000)

-0.029
(0.034)

-0.002
(0.026)

ΦQ

0.758
(0.018)

0.242
(0.000)

0.093
(0.090)

0.225
(0.078)

0.905
(0.001)

0.111
(0.000)

0.013
(0.003)

0.076
(0.002)

-0.008
(0.016)

1.007
(0.000)

-0.001
(0.082)

-0.003
(0.070)

-0.010
(0.000)

1.009
(0.000)

0.001
(0.003)

-0.002
(0.002)

0.886
(0.010)

-0.756
(0.000)

0.477
(0.049)

-0.887
(0.043)

0.156
(0.000)

-0.104
(0.000)

0.879
(0.002)

-0.145
(0.001)

0.807
(0.019)

-0.738
(0.000)

-0.438
(0.093)

0.138
(0.080)

0.168
(0.001)

-0.168
(0.000)

-0.089
(0.003)

0.783
(0.002)

Notes: Estimated parameters related to the Q-dynamics, µQ and ΦQ, in the DAR
term structure model and the GATSM. The parameters are estimated given Θ̂P =
{µ̂, α̂, β̂, Σ̂0, Σ̂1, Γ̂1, Γ̂2, Γ̂3} from Section 1.3. Standard errors are in paranthesis.

1.4.4 In-Sample Fit

Figure 1.7 shows how the DAR term structure model matches the unconditional
first and second empirical moments of the yield curve cross-section compared with
the GATSM. I observe that the models fit the yield curve and moreover, that the
models are practically identical in this respect. To explain this similarity, I compare
estimated factor loadings An and Bn in Figure 1.8. Indeed, the DAR term struc-
ture model does not imply different loadings from those obtained by the GATSM. In
Figure 1.9, I plot the component that prices volatility-induced stationarity, −n−1C ′n
vec (XtX

′
t) from (1.10). This quadratic component is very small and below 0.16

percent at all times. Therefore, the quadratic component generated by volatility-
induced stationarity is not priced by the yield curve. Since the time-varying con-
16This two-step estimation method is a common approach in the macro-finance term structure liter-
ature, see for instance Ang and Piazzesi (2003), Ang, Piazzesi, and Wei (2006), and Wright (2011).
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Figure 1.7: In-Sample Yield Curve Fit
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Notes: Empirical unconditional mean and standard deviation of observed and model-implied
yields in the DAR term structure model and GATSM.

ditional variance of the DAR model only affects bond yields through a convexity
effect, this finding is consistent with Joslin and Konchitchki (2018) who show that
convexity effects under the Q-measure are small.
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Figure 1.8: Factor Loadings
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Figure 1.9: Quadratic Component of Model-Implied Bond Yield
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1.4.5 Out-of-Sample Performance

I assess the out-of-sample performance through a rolling-window forecasting exer-
cise. In particular, I estimate the models with one lag in the factor dynamics as in
(1.2), for the sample from January 1985 to December 2005 (T = 252). Using these
estimated models, the yield curve is forecasted 3, 6, and 12 months ahead. I repeat
this procedure by re-estimating the models based on a rolling-window sample of
length T = 252 from January 2006 to December 2015. This period contains events
that are difficult to forecast including the financial crisis of 2007/08 and the zero-
lower bound regime. Root mean squared errors from this exercise are presented in
Table 1.7 along with random walk forecasts. The DAR term structure model outper-
forms both the GATSM and the random walk almost uniformly across all maturities.
The exceptions are forecasts of the 10-year yield and the 12-month ahead forecast of
the 9-year yield. The differences between the models’ forecasting performance are
larger for shorter maturities reflecting that volatility-induced stationarity is gener-
ated by the short end of the yield curve. Thus, volatility-induced stationarity clearly
improves out-of-sample forecasting of the yield curve.
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Table 1.7: Out-of-Sample Performance

DAR model GATSM Random Walk

3M 6M 12M 3M 6M 12M 3M 6M 12M

Average 58.06 71.77 87.42 69.07 88.21 102.74 63.37 79.48 125.61

1Y 65.90 85.18 113.43 99.57 131.34 168.83 65.53 102.71 175.08

2Y 63.23 78.86 99.29 86.35 111.69 136.38 64.60 91.40 156.03

3Y 61.77 75.03 90.18 77.96 99.04 115.84 64.20 83.29 140.76

4Y 60.24 72.83 85.93 72.16 90.75 103.14 63.82 78.08 129.29

5Y 58.33 70.88 83.53 67.52 84.74 94.88 63.45 75.12 120.86

6Y 56.33 69.02 81.94 63.50 79.94 89.03 63.12 73.64 114.60

7Y 54.55 67.39 80.76 59.96 75.87 84.56 62.80 73.00 109.85

8Y 53.24 66.16 79.95 56.90 72.36 80.96 62.47 72.73 106.11

9Y 52.64 65.56 79.46 54.35 69.37 78.05 62.07 72.54 103.05

10Y 54.36 66.78 79.72 52.42 66.95 75.77 61.60 72.28 100.44

Notes: Root mean squared errors from forecasting the yield curve using the DAR term structure
model and the GATSM. The models are estimated on a rolling window starting with the sample
from January 1985 to December 2005. Forecasts by the random walk are reported for reference.
The minimum value obtained for each forecast horizon and maturity is boldfaced. Reported in basis
points per annum.

1.5 Conclusion

This paper presents a novel class of macro-finance term structure models based on
the double-autoregressive model. The dynamic model is consistent with key stylized
facts of interest rate data that the VAR framework fails to accommodate. A defining
feature of my model is that it exhibits volatility-induced stationarity implying that
the conditional variance of the model can maintain stationarity even in the pres-
ence of unit roots in the conditional mean. I show that this property is important
for decomposing the term structure into expected future short rates and term pre-
mia. I embed the DAR model into a no-arbitrage term structure model and provide
an approximation for computing model-implied bond yields analytically. Volatility-
induced stationarity helps forecasting bond yields. However, compared with the
GATSM based on a VAR model, there are no in-sample improvement of the DAR
model. This can be interpreted as evidence that volatility-induced stationarity is
unspanned by the yield curve. Thus, my findings are consistent with the notion of
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unspanned stochastic volatility. Future work may focus on volatility-induced term
structure models in which the conditional volatility is unspanned by construction.
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Appendix

A.1 Specification and Estimation

I specify the model in (1.4) by use of conventional methods. In particular, the rank
is determined by the likelihood-ratio test in Johansen (1991), which is based on the
VAR, with critical values obtained using the wild bootstrap procedure in Cavaliere,
Rahbek, and Taylor (2014). The test model is specified with a restricted constant,
i.e., a constant term appears in the cointegrating relations only.17 The lag struc-
ture of the test is specified by general-to-specific LR tests, information criteria, and
misspecification tests. For the choice of 3-months lags, the residuals are not auto-
correlated according to univariate Ljung-Box tests, see the right panel of Table 1.3
in the body of the paper. The likelihood-ratio test, for which results are reported in
Table A.1, suggests a reduced rank of r = 2. I interpret these findings as indications
that the DAR model in (1.4) may be well-specified by r = 2 and lag length K = 3 as
well. The left panel of Table 1.3 confirms this presumption.

17If a constant is unrestricted, the cointegrated VAR model implies that the data contains a linear
trend (Johansen, 1995).
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Table A.1: Rank Testing

r ≤ 0 r ≤ 1 r ≤ 2 r ≤ 3

90.89 32.62 15.99 5.06

[0.00] [0.03] [0.07] [0.11]

Notes: Likelihood-ratio test of the null r ≤
{0, 1, 2, 3} against r = p. P-values obtained with
the wild bootstrap in brackets.

I estimate (1.4) with r = 2 and K = 3 by maximum likelihood under just-
identifying restrictions. Then, I impose further restrictions to obtain models with
economically sensible interpretations. The restrictions are imposed sequentially
starting with setting the most insignificant estimates to zero first in the relations
β′Xt and then in the adjustment matrix. At each step, the restrictions are tested by
LR tests and the short-run coefficient estimates are compared. Parameter estimates
are given in Tables A.3 and A.2.

Table A.2: Parameter Estimates of the Volatility Dynamics

DAR CVAR

Σ0 (×10−3) 0.045
(0.010)

0.369
(0.022)

0.049
(0.037)

0.217
(0.012)

0.029
(0.015)

0.228
(0.010)

-0.016
(0.040)

0.022
(0.016)

0.247
(0.017)

0.020
(0.013)

-0.007
(0.016)

0.275
(0.016)

0.012
(0.015)

0.014
(0.007)

0.002
(0.009)

0.113
(9,995)

0.013
(0.005)

0.017
(0.005)

-0.001
(0.008)

0.114
(0.005)

Σ1 -0.096
(0.013)

-0.019
(0.006)

-0.015
(0.006)

-0.008
(0.005)

-0.015
(0.014)

0.007
(0.010)

0.012
(0.011)

-0.028
(0.012)

-0.006
(0.018)

-0.007
(0.011)

-0.012
(0.018)

0.076
(0.016)

-0.002
(0.006)

-0.000
(0.004)

-0.008
(0.007)

-0.0074
(0.007)

Notes: Estimates of parameters related to the conditional volatility in the DAR and CVAR
models. Standard errors in parentheses.

31



Table A.3: Parameter Estimates Related to the Conditional Mean

DAR CVAR

µ′ (×10−4) -0.041
(0.060)

0.288
(0.217)

-0.273
(0.263)

-0.244
(0.106)

-0.637
(0.448)

-0.215
(0.119)

-0.122
(0.425)

-0.241
(0.095)

α′ 0 0 0.017
(0.008)

0.008
(0.003)

-0.016
(0.008)

0 0.017
(0.009)

0.009
(0.003)

0 -0.031
(0.021)

0 0 0.050
(0.027)

0 -0.033
(0.017)

0

β′ 1 0 -3.672
(1.150)

-1.681
(0.611)

1 0 -3.097
(0.911)

2.174
(0.715)

-1 1 0 0 -1 1 0 0

Γ1 -0.175
(0.064)

0.059
(0.034)

0.027
(0.022)

0.036
(0.039)

-0.427
(0.076)

0.183
(0.088)

0.014
(0.060)

-0.064
(0.161)

-0.026
(0.034)

0.027
(0.055)

0.150
(0.050)

0.140
(0.102)

-0.028
(0.032)

0.034
(0.059)

0.148
(0.054)

0.069
(0.100)

0.039
(0.032)

0.032
(0.056)

0.444
(0.059)

-0.087
(0.113)

0.020
(0.030)

0.024
(0.056)

0.449
(0.077)

0.029
(0.140)

0.027
(0.016)

0.010
(0.027)

0.068
(0.022)

0.244
(0.048)

0.020
(0.015)

0.021
(0.027)

0.065
(0.023)

0.236
(0.049)

Γ2 -0.028
(0.072)

-0.032
(0.023)

0.011
(0.019)

0.014
(0.045)

-0.125
(0.082)

0.164
(0.080)

0.035
(0.065)

0.527
(0.165)

-0.035
(0.040)

-0.119
(0.055)

0.064
(0.044)

0.048
(0.106)

-0.025
(0.039)

-0.117
(0.053)

0.057
(0.048)

0.005
(0.114)

0.036
(0.032)

-0.063
(0.049)

-0.162
(0.066)

0.292
(0.118)

0.015
(0.033)

-0.035
(0.052)

-0.124
(0.079)

0.480
(0.137)

0.008
(0.017)

-0.015
(0.025)

0.025
(0.029)

0.187
(0.053)

0.010
(0.016)

-0.009
(0.025)

0.017
(0.033)

0.193
(0.049)

Γ3 -0.061
(0.056)

-0.022
(0.022)

-0.0359
(0.0220)

0.061
(0.038)

0.030
(0.074)

-0.064
(0.083)

-0.190
(0.062)

-0.070
(0.141)

-0.045
(0.034)

0.065
(0.058)

-0.090
(0.043)

0.001
(0.096)

-0.026
(0.034)

0.056
(0.061)

-0.078
(0.044)

-0.063
(0.099)

0.007
(0.029)

0.064
(0.051)

0.122
(0.056)

-0.084
(0.113)

0.009
(0.030)

0.066
(0.056)

0.063
(0.070)

0.050
(0.111)

-0.039
(0.015)

-0.015
(0.025)

0.034
(0.025)

0.288
(0.052)

-0.035
(0.014)

-0.017
(0.024)

0.032
(0.028)

0.278
(0.053)

Notes: Estimates of parameters related to the conditional mean of the DAR and CVAR models.
Standard errors in parentheses.
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A.2 Approximation of No-Arbitrage Bond Yields

Define εQt = Ω
1/2
t εQt . From the factor dynamics under the Q-measure in (1.8), write

XtX
′
t =µQµQ′ + µQX ′t−1ΦQ′ + ΦQXt−1µ

Q′ + ΦQXt−1X
′
t−1ΦQ′ +

(
µQ + ΦQXt−1

)
εQ
′

t

+ εQt

(
µQ′ +X ′t−1ΦQ′

)
+ εQt ε

Q′
t ,

or by using the vectorization operator, vec (A), that stacks the columns of the matrix
A into a vector and its relation with the Kronecker product denoted ⊗,

vec (XtX
′
t) = vec

(
µQµQ′

)
+
(
ΦQ ⊗ µQ + µQ ⊗ ΦQ)Xt−1 +

(
ΦQ ⊗ ΦQ) vec (Xt−1X

′
t−1

)
+
(
I4 ⊗

(
µQ + ΦQXt−1

)
+
(
µQ + ΦQXt−1

)
⊗ I4

)
εQt + vec

(
εQt ε

Q′
t

)
.

Next, I compute the conditional expectation given Ft−1 = {Xt−1, . . . , X1} under
Q-measure probabilities, EQ

t−1(·), of this expression. It follows that

EQ
t−1 (vec (XtX

′
t)) = vec

(
µQµQ′

)
+
(
ΦQ ⊗ µQ + µQ ⊗ ΦQ)Xt−1

+
(
ΦQ ⊗ ΦQ) vec (Xt−1X

′
t−1

)
+ vec (Ωt) .

To derive a bond yield expression in closed-form, I introduce the following approxi-
mation:

vec (XtX
′
t) ≈ vec

(
µQµQ′

)
+
(
ΦQ ⊗ µQ + µQ ⊗ ΦQ)Xt−1

+
(
ΦQ ⊗ ΦQ) vec (Xt−1X

′
t−1

)
+ vec (Ωt) ,

where ≈ denotes an equality that is valid only approximately. Given this equation,
the zero-coupon bond price takes the form

Pt,n+1 = exp
(
An+1 +B′n+1Xt + C ′n+1vec (XtX

′
t)
)
.

It is straightforward to prove this claim and derive recursive formulas for the load-
ings:

logPt,n+1 =− rt + An +B′n(µQ + ΦQXt) + C ′nvec
(
µQµQ′

)
+ C ′n

(
ΦQ ⊗ µQ + µQ ⊗ ΦQ)Xt + C ′n

(
ΦQ ⊗ ΦQ) vec (XtX

′
t)

+ C ′nvec (Ωt+1) + logEQ
t

[
exp

(
B′nε

Q
t+1

)]
=− rt + An +B′n(µQ + ΦQXt) + C ′nvec

(
µQµQ′

)
+ C ′n

(
ΦQ ⊗ µQ + µQ ⊗ ΦQ)Xt + C ′n

(
ΦQ ⊗ ΦQ) vec (XtX

′
t)

+ C ′nvec (Ωt+1) +
1

2
B′nΩt+1Bn.
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Gathering terms result in factor loading recursions given by

An+1 = An +B′nµ
Q + C ′n

(
vec
(
µQµQ′

)
+ vec (Σ0Σ′0)

)
+

1

2
B′nΣ0Σ′0Bn

B′n+1 = −ι1 +B′nΦQ + C ′n
(
ΦQ ⊗ µQ + µQ ⊗ ΦQ)

C ′n+1 = C ′n
(
ΦQ ⊗ ΦQ + Σ1 ⊗ Σ1

)
+

1

2
([B′nΣ1]⊗ [B′nΣ1]) .

To be consistent with rt = ι′1Xt, the recursions are initiated at n = 0 with A0 = 0,
B0 = 0p×1, C0 = 0p2×1.
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Chapter 2

Yield Curve Volatility and
Macroeconomic Risk

Anne Lundgaard Hansen
University of Copenhagen

I show that the relationship between the U.S. Treasury yield curve and macroeco-
nomic risk fluctuates over time. I establish this result by introducing time-varying
volatility and variance risk premia in a tractable term structure model. Based on my
model, I characterize the joint behavior of the yield curve and macroeconomic risk
captured by inflation and unemployment gap from 1971 to 2019. First, I find that
the macroeconomic contribution to short-term yield volatility is high in the 1970s,
low during the Great Moderation starting in the mid-1980s, and high again after the
financial crisis. Second, investors are increasingly anchoring short-rate expectations
to macroeconomic risk after the Great Moderation. Third, deflation fears increase
term premia during the financial crisis. Finally, I show that macroeconomic shocks
do not explain the yield curve inversion in 2019. My results suggest that the recent
inversion is not a warning of an imminent recession and thus should not trigger
monetary policy easing.

Keywords: Yield curve, macro-finance term structure model, bond market volatility,
multivariate GARCH, variance risk premia.

JEL classification: C32, E43, E44, G12.
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2.1 Introduction

Policy makers and investors pay close attention to the joint dynamics of the yield
curve and macroeconomic variables. These dynamics can, for example, shed light
upon how the yield curve is affected by the Federal Reserve’s dual mandate of maxi-
mum sustainable employment and stable prices. The relationship between macroe-
conomic risk and the decomposition of yields into short-rate expectations and term
premia is also useful for understanding the sources of movements in the yield curve.
In light of the recent sharp decline in long-term yields, it is of particular interest to
recognize if this development reflects low expectations on future economic activity
and, consequently, is likely to anticipate a recession.

I focus on the question, how much variance in the yield curve, short-rate expec-
tations, and term premia can be attributed to macroeconomic risk? I contribute to
a large body of literature that uses dynamic term structure models with observed
macroeconomic variables to decompose variances into macroeconomic and latent
yield-curve-specific shares. Starting with Ang and Piazzesi (2003), the existing lit-
erature is centered around Gaussian term structure models (Bikbov and Chernov,
2010, Doshi, Jacobs, and Liu, 2018, Duffee, 2018). These models are celebrated for
their tractability and ability to match the yield curve. However, they assume that
yield curve volatility is constant, which contradicts the empirical evidence. My pa-
per studies whether time-varying yield curve volatility has implications for the joint
behavior of the yield curve and macroeconomic variables.

I build a novel term structure model that has time-varying volatility and vari-
ance risk premia, unlike the Gaussian term structure model. Specifically, I bridge
the Baba-Engle-Kraft-Kroner (BEKK) multivariate GARCH model proposed by Engle
and Kroner (1995) with the exponential-quadratic pricing kernel of Monfort and Pe-
goraro (2012). My model admits closed-form solutions for no-arbitrage bond yields
and their decomposition into short-rate expectations and term premia. I match the
U.S. Treasury yield curve at the monthly frequency from 1971 to 2019 using in-
flation and unemployment gap as macroeconomic variables and three latent yield-
curve-specific factors. Model-implied conditional variances and covariances capture
realized and rolling measures. In contrast, continuous-time term structure models
with stochastic volatility struggle to match empirical volatility proxies with low and
often negative correlation between predicted and realized volatilities (Christensen,
Lopez, and Rudebusch, 2014, Collin-Dufresne, Goldstein, and Jones, 2009, Jacobs
and Karoui, 2009). Finally, my model implies excess returns that explain the empir-
ical failure of the expectations hypothesis. Thus, my model overcomes a trade-off in

36



the existing literature between modeling time-varying volatility and excess returns
as documented by Dai and Singleton (2002).

By embracing the stylized fact that yield curve volatility is time-varying, I show
that the relationship between the yield curve and macroeconomic variables fluctu-
ates over time. Gaussian term structure models imply a constant relationship. I find
that macroeconomic shocks explain more than half of the variation in yields in some
periods, but that yield curve volatility is unrelated to macroeconomic risk in other
periods. I argue that large month-to-month fluctuations are related to economic
events, for example, the announcement of quantitative easing programs. Thus,
macroeconomic news partly drives movements in the yield curve, which is consis-
tent with Andersen, Bollerslev, Diebold, and Vega (2007), Feunou, Fontaine, and
Roussellet (2019), and Piazzesi (2005).

I present a novel dynamic characterization of the historical joint behavior of
the yield curve and macroeconomic variables. First, I show that the macroeconomic
contribution to short-term yield variance has followed a U-shaped pattern since the
1970s. These macroeconomic shares were high in the 1970s, low during the Great
Moderation starting from the mid-1980s, and high following the financial crisis.
Second, I find an upward trend in the macroeconomic contribution to variance in
10-year short-rate expectations since the Great Moderation. Thus, investors increas-
ingly form expectations on future short rates based on macroeconomic risk. This
result possibly reflects a growing belief among investors that the Federal Reserve’s
commitment to the dual mandate is credible. Third, the macroeconomic share of
variance in the 10-year term premium increases during the financial crisis due to
inflation shocks. Thus, inflation risk premia are high despite a low-inflation envi-
ronment. This result is generated by the exponential-quadratic pricing kernel as it
allows investors to demand compensation for both positive and negative shocks to
inflation as also shown by Roussellet (2018). As an implication, a symmetric infla-
tion target enhances the efficiency of monetary policy during recessions.

In terms of methodology, I show that my model can be estimated by a step-wise
approach without relying on filtering methods for estimating the latent yield-curve-
specific factors. Specifically, my model is invariant to affine transformations such
that latent factors can be rotated into portfolios of synthetic yields. The synthetic
yields are constructed by residuals from yields explained with macroeconomic vari-
ables only. My estimation method is a generalization of Joslin, Singleton, and Zhu
(2011), who provide similar arguments for the Gaussian term structure model. My
method is most closely related to Ghysels, Le, Park, and Zhu (2014), who consider
a model that differs from my model in two respects. First, my model is consistent
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with the view that volatility is not priced in Treasury bonds (Andersen and Benzoni,
2010, Collin-Dufresne and Goldstein, 2002, Joslin, 2017). In contrast, Ghysels et al.
let volatility affect yields in the spirit of the ARCH-in-mean model in Engle, Lilien,
and Robins (1987). Second, I allow for both latent factors and observed macroeco-
nomic variables, whereas Ghysels et al. use only latent factors. Other macro-finance
term structure models with GARCH-type volatility in the literature do not allow for
a rotation of the latent factors (Campbell, Sunderam, and Viceira, 2017, Haubrich,
Pennacchi, and Ritchken, 2012, Koeda and Kato, 2015).

The introduction of time-varying volatility in the yield curve has two implica-
tions for model-implied risk compensation in fixed-income markets. First, my model
decomposes long-term yields into persistent short-rate expectations and counter-
cyclical term premia. The cyclicality is stronger than the term premia implied by
the Gaussian term structure model. This difference arises because my model in-
volves both a time-varying price and quantity of risk, whereas the Gaussian model
only allows for variation in the price of risk. As an implication, the models disagree
about the effectiveness of forward guidance. Specifically, my model is consistent
with effective forward guidance as seen in Carlstrom, Fuerst, and Paustian (2015)
and McKay, Nakamura, and Steinson (2016), but unlike Hagedorn, Luo, Manovskii,
and Mitman (2019).

Second, I find that investors are willing to pay large variance risk premia to
hedge macroeconomic uncertainty. My result indicates that macroeconomic uncer-
tainty may increase trading activity in fixed-income derivative markets. To the ex-
tent that the policy rate is determined by the dual mandate, my results complement
Cieslak and Povala (2016) who show that fixed-income variance risk premia are par-
ticularly related to uncertainty about future monetary policy. My term structure of
estimated variance risk premia is downward-sloping in magnitudes, which is con-
sistent with the literature (Choi, Mueller, and Vedolin, 2017, Trolle and Schwartz,
2009, Trolle and Schwartz, 2015). Gaussian term structure models abstract from
the presence of variance risk premia by imposing exponential-affine pricing kernels
that only allow investors to demand compensation for mean-based risk.

Finally, I show that macroeconomic variables did not drive the movements in
the yield curve in the spring 2019. Specifically, I focus on the 50-basis-point decline
in the 10-year yield from April to June. This decline led to an inversion of the yield
curve, with the 10-year yield below the 3-month yield, in May. Yield curve inver-
sions are sensational because history shows that inversions are strong predictors of
recessions. The predictive power reflects that when investors expect a slowing econ-
omy, short-rate expectations and hence long-term yields decline. Thus, if the yield
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curve inversion is likely to predict a recession, movements in short-rate expectations
should be driven by macroeconomic variables. My model allows me to zoom in on
the relationship between the yield curve and macroeconomic variables specifically
during spring 2019. In contrast, the Gaussian term structure model can only draw
conclusions that are valid on average across the full sample. I begin by showing
that the yield curve inversion in August 2006 that preceded the financial crisis was
related to macroeconomic risk through short-rate expectations. Following this, I
show that the recent yield curve inversion is mainly driven by term premia and not
short-rate expectations. Furthermore, I show that the relationship between short-
rate expectations and macroeconomic risk weakened during the spring 2019. My
results suggest that the recent yield curve inversion is not a warning of an imminent
recession. Thus, the Federal Reserve should not launch a monetary policy easing
cycle based on the inversion. This finding is consistent with the current strength in
the U.S. economy. For example, in May 2019 the unemployment rate had been at
or below 4 percent for over a year.

The remainder of this paper is organized as follows. First, I present my term
structure model with time-varying volatility and variance risk premia in Section
2.2. Section 2.3 provides a tractable method for estimating my model. Section 2.4
details the data and discusses the empirical performance of my model. I analyze
the relationship between yield curve volatility and macroeconomic risk in Section
2.5. Finally, I apply my model to study the 2019 yield curve inversion in Section 2.6.
Conclusions follow in Section 2.7.

2.2 Term Structure Model

In this section, I present my term structure model. My model is distinct from the
Gaussian term structure model in two dimensions: First, the dynamics under the
physical probability measure exhibit multivariate GARCH volatility. Second, the
pricing kernel is exponential-quadratic allowing investors to demand a compensa-
tion for exposure to conditional volatility. In the following, I describe these elements
separately.

2.2.1 Physical Dynamics

The yield curve is driven by a nX-dimensional state vector,Xt, consisting of nx latent
yield-curve-specific factors, xt, and nm observedmacroeconomic variables,mt. Thus,
the state vector isXt = [x′t,m

′
t]
′. Assuming that xt can be filtered from observed bond

yields, let Ft be the filtration given by (Xt, Xt−1, . . .).
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Conditional Mean

The physical dynamics ofXt are given by a vector autoregressive model allowing for
some lag length, L, in the equation for the macroeconomic variables, mt. Following
the existing literature, latent factors have one lag.18 The equations for xt andmt are
given by

xt = µx + Φ(1)
x xt−1 + Φ(1)

xmmt−1 + εx,t, (2.1)

mt = µm + Φ(1)
mxxt−1 + Φ(1)

m mt−1 + Φ(2)
m mt−2 + . . .+ Φ(L)

m mt−L + εm,t, (2.2)

where εx,t and εm,t are conditionally Gaussian given Ft−1 with mean zero and con-
ditional variance matrix, Vt.19 Equivalently, I write

Xt = µX + Φ
(1)
X Xt−1 + . . .+ Φ

(L)
X Xt−L + εt (2.3)

with appropriate zero restrictions in Φ
(l)
X for l = 2, . . . , L and εt|Ft−1 ∼ N (0, Vt).

Conditional Variance Matrix

I model the full variance matrix, Vt, allowing for time-varying conditional covari-
ances between the macroeconomic variables and latent factors. The volatility dy-
namics are given by the multivariate BEKK GARCH model of Engle and Kroner
(1995):

Vt = ΣXΣ′X +
K∑
k=1

A
(k)
X εt−1ε

′
t−1A

(k)′

X +
K∑
k=1

B
(k)
X Vt−1B

(k)′

X . (2.4)

If ΣX is lower triangular such that ΣXΣ′X is positive definite, then Vt is also positive
definite. Importantly, the model in (2.4) is invariant to affine transformations. This
is a non-trivial property that many multivariate GARCH models do not satisfy.20 I
use this property to propose a tractable estimation method in Section 2.3.

18The model can easily be extended to a full vector autoregressive model of order L. However, al-
lowing for a lag structure in the dynamics of xt is costly in terms of parameters. Indeed, I show in
Appendix B.2.2 that information criteria prefer models with multiple lags in the equation formt only.
19It should be noted that Vt denotes the conditional volatility of a process at time t that is adapted to
Ft−1. This choice follows the GARCH literature, but differs from the literature on stochastic volatility.
20For example, GARCH models with asymmetric components and the dynamic conditional correla-
tions model of Engle (2002) are not invariant to affine transformations.
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With multiple ARCH and GARCH components,K > 1, I allow for rich dynamics
of conditional variances and covariances which are typically needed empirically.21

When K is sufficiently large, the model can obtain a representation equivalent to the
vech-GARCH model of Bollerslev, Engle, and Wooldridge (1988).

The full BEKK GARCH model, i.e., the model where A(k)
X and B(k)

X are fully pa-
rameterized matrices for some k, suffers frommany econometric problems including
the curse of dimensionality (Chang andMcAleer, 2019). I therefore impose diagonal
restrictions on A(k)

X and B(k)
X for all k = 1, . . . , K.

2.2.2 Pricing Kernel

I relate the state vector to no-arbitrage bond yields by specifying the pricing kernel.
Standard term structure models use exponential-affine pricing kernels, see, e.g.,
Le, Singleton, and Dai (2010). However, recent work suggests that higher-order
pricing kernels are needed for capturing the conditional volatility of the yield curve
(Creal and Wu, 2017, Ghysels, Le, Park, and Zhu, 2014, Joslin and Konchitchki,
2018). Based on these results, I apply the exponential-quadratic kernel in Monfort
and Pegoraro (2012) given by

Mt+1 =
exp

(
−rt + ξ′tXt+1 +X ′t+1ΞtXt+1

)
Et
[
exp

(
ξ′tXt+1 +X ′t+1ΞtXt+1

)] , (2.5)

where rt is the short rate.
I show in Technical Appendix B.1.1 that exponential-quadratic pricing kernels

can be structurally justified in preference-based models. Specifically, the long-run
risk model of Bansal and Yaron (2004) implies an exponential-quadratic pricing
kernel when solved by the second-order projection developed by Andreasen and
Jørgensen (2019). In addition, Hansen and Heaton (2008) propose a long-run
risk model based on vector autoregressive dynamics that implies an exponential-
quadratic pricing kernel when allowing for a time-varying wealth-consumption ra-
tio.

21To illustrate this notion, consider a bivariate model withK = 1 in which A(1)
X and B(1)

X are diagonal
matrices with elements aii and bii, i = 1, 2. Then,

Vt = ΣXΣ′X +

 a211ε
2
1,t−1 a11a22ε1,t−1ε2,t−1

a11a22ε1,t−1ε2,t−1 a222ε
2
2,t−1

+

 b211V11,t−1 b11b22V12,t−1

b11b22V12,t−1 b222V22,t−1

 .
The parameters aii and bii are the ARCH and GARCH effects related to variable i. However, these
parameters also determine the conditional covariance between the variables. Thus, there is a tension
betweenmodeling conditional variances and covariances simultaneously. This problem is also present
when A(1)

X and B(1)
X are full matrices.
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The pricing kernel in (2.5) contains three components. The first component is
a time discount, which is determined by the short rate. Following the literature, I
impose a short-rate model that is affine in Xt:

rt = αX + β′xxt + β′mmt = αX + β′XXt. (2.6)

The remaining components represent compensation for mean-based risk, ξ′tXt+1,
and variance-based risk, X ′t+1ΞtXt+1. Thus, the exponential-quadratic pricing ker-
nel allows investors to be averse towards both mean- and variance-based risk. The
variables ξt and Ξt can be interpreted as market prices of risk associated with, respec-
tively, the conditional mean and variance matrix ofXt+1. In this sense, the variances
of Xt+1 can be interpreted as quantities of risk. If Ξt = 0, the pricing kernel in (2.5)
reduces to the standard exponential-affine pricing kernel. Thus, exponential-affine
pricing kernels only allow investors to price mean-based risk.

Monfort and Pegoraro (2012) show that if the market prices of risk are chosen
by

ξt = (V Q
t+1)−1EQ

t (Xt+1)− V −1
t+1Et(Xt+1), (2.7)

Ξt =
1

2

(
V −1
t+1 − (V Q

t+1)−1
)
, (2.8)

where EQ
t (Xt+1) and V Q

t+1 denote the first and second conditional moments of Xt+1

givenFt under the risk-neutral probabilitymeasure (Q), thenXt+1|Ft
Q∼N (EQ

t (Xt+1)

, V Q
t+1). Thus, my model allows the risk-neutral conditional variance matrix, V Q

t , to
differ from the physical conditional variance matrix, Vt. The discrepancy between
the conditional variance under the physical and risk-neutral probability measures is
feasible in discrete-time models as they are not restricted by Girsanov’s theorem. In
contrast, Girsanov’s theorem rules out distinct volatility specifications across proba-
bility measures in continuous-time models. Specifically, it follows from the market
price of variance risk, Ξt, that it is the introduction of variance-based risk compen-
sation that facilitates different variance specifications under the physical and risk-
neutral probability measures.

The market price of mean-based risk in (2.7) is akin to that of the standard
term structure model with exponential-linear pricing kernel. Specifically, it is given
by the differences in the conditional means under physical and risk-neutral probabil-
ity measures weighted by a conditional variance matrix. In contrast to the standard
model, however, I weigh the physical and risk-neutral expectations by different vari-
ance matrices, accounting for the different variances across probability measures.
The market price of variance-based risk in (2.8) is diminishing in the quantity of
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risk under the physical measure, Vt+1. This property is consistent with the empiri-
cal fact that fixed-income variance risk premia are diminishing in magnitudes with
the maturity of bonds (Choi, Mueller, and Vedolin, 2017, Trolle, 2009, Trolle and
Schwartz, 2015).

In the following, I specify the risk-neutral moments which pin down the market
prices of risk through (2.7)-(2.8). This approach contrasts with the standard liter-
ature in which the market prices of risk are specified to pin down the risk-neutral
moments.

2.2.3 Risk-Neutral Moments

I specify moments under the risk-neutral probability measure such that my model is
tractable and sufficiently flexible to match the yield curve in sample. An autoregres-
sive model of order one with constant volatility satisfies both of these criteria (Joslin,
Le, and Singleton, 2013b). I also impose independence of the macroeconomic vari-
ables and the latent yield-curve-specific factors under the risk-neutral measure. In-
tuitively, I allow for interdependent dynamics of macroeconomic variables and latent
factors through the physical dynamics, but bond market investors do not price these
interactions. Failure of this assumption affects the efficiency, but not the consistency,
of my proposed estimator. Thus, the risk-neutral conditional mean and variance ma-
trix are given by

EQ
t (Xt+1) =

µQ
x

µQ
m

+

ΦQ
x 0

0 ΦQ
m

xt
mt

 = µQ
X + ΦQ

XXt, (2.9)

V Q
t+1 =

V Q
x 0

0 V Q
m

 = V Q
X , (2.10)

where V Q
X is positive definite. The assumption of constant conditional variances and

covariances under the risk-neutral measure is likely to be violated. However, re-
cent literature indicates that a violation is unlikely to affect the pricing of bonds.
First, Cieslak and Povala (2016) build a flexible term structure model with stochas-
tic volatility under both the physical and risk-neutral probability measures. As a
result, no-arbitrage bond yields depend directly on volatility. However, they empir-
ically show that the loading on volatility is close to zero. This result is also sup-
ported by a large body of literature that argues that bond market volatility is not
spanned by bond yields (Andersen and Benzoni, 2010, Collin-Dufresne and Gold-
stein, 2002, Joslin, 2017). This phenomenon is known as unspanned stochastic
volatility. Second, Joslin and Konchitchki (2018) show that convexity effects un-
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der the risk-neutral measure are small. Therefore, the conditional variance under
the risk-neutral measure has only small effects on bond pricing.

2.2.4 No-Arbitrage Bond Pricing

The no-arbitrage bond yields implied by mymodel are equal to those of the Gaussian
term structure model. These are given in the following theorem.

Theorem 2.1 Let Pt,n denote the no-arbitrage price of a n-period zero-coupon bond.
Let Yt,n = −n−1 log(Pt,n) be the associated yield. Given (2.6)-(2.10), Yt,n is given in
closed form by

Yt,n = an + b′x,nxt + b′m,nmt = an + b′nXt, (2.11)

where an = −n−1ãn and bi,n = −n−1b̃i,n for i = {x,m} are given recursively by

ãn+1 = −αX + ãn + b̃′x,nµ
Q
x + b̃′m,nµ

Q
m +

1

2
b̃′x,nV

Q
x bx,n +

1

2
b̃′m,nV

Q
m bm,n, (2.12)

b̃′x,n+1 = −β′x + b̃′x,nΦQ
x , , (2.13)

b̃′m,n+1 = −β′m + b̃′m,nΦQ
m, (2.14)

The recursions are initiated at n = 0 with a0 = 0, bx,0 = 0nx×1, and bm,0 = 0nm×1.

Proof. The solution follows from the no-arbitrage recursion,

Pt,n = Et (Mt+1Pt+1,n−1) ,

see Ang and Piazzesi (2003).

Remark 2.1 I note that the conditional variance matrix, Vt, does not appear in the bond
pricing equation, (2.11). Thus, my model exhibits a form of unspanned volatility, but
without introducing restrictions as in the traditional literature on unspanned stochastic
volatility.22

Remark 2.2 It follows from (2.11) that conditional yield variance is given by

Vart(Yt+1,n) = b′nVt+1bn. (2.15)

22Joslin (2017) argues that traditional USV models restrict the cross-section of yield curve volatility
in a way that is inconsistent with the data.
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2.2.5 Risk Compensations

My model distinguishes between two concepts of risk compensation. First, term
premia, Ψt,n, are defined by the difference between bond yields and expected future
short rates, Υt,n:

Ψt,n = Yt,n −Υt,n, Υt,n =
1

n

n−1∑
i=0

Et (rt+i) . (2.16)

The following theorem provides closed-form expressions of short-rate expectations
and term premia.

Theorem 2.2 Given the physical conditional mean of Xt in (2.3) and the assumptions
of Theorem 2.1, short-rate expectations, Υt,n, and term premia, Ψt,n, are given by

Υt,n = aEHn + (bEHn )′Xt,

Ψt,n =
(
an − aEHn

)
+ b′nXt − (bEHn )′Xt.

where Xt = [Xt, Xt−1, . . . , Xt−L+1] and

aEHn = αX +
1

n

n−1∑
i=0

i−1∑
j=0

β′XΦj
XµX ,

bEHn =
1

n

n−1∑
i=0

β′XΦi
X .

Here, βX = [β′x, β
′
m, 01×(p+m)(L−1)]

′ and µX and ΦX denote the parameters of the con-
ditional mean associated with the companion form of (2.3).

Proof. Straightforward.

Remark 2.3 It follows that the conditional variances of short-rate expectations and
term premia are given in closed form by

Vart−1(Υt,n) = (bEHn )′Vart−1 (Xt) bEHn
Vart−1(Ψt,n) =

(
b̌n − bEHn

)′ Vart−1 (Xt)
(
b̌n − bEHn

)
,

where b̌n = (b′n, 0, 0, . . . , 0)′.
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The second concept of risk compensation relates to variance risk. While Vt is
not priced in bonds, see Theorem 2.1, investors may demand compensation for vari-
ance risk through fixed-income derivatives. This compensation is realized in the
broader fixed-income market through the pricing of interest-rate derivatives. To
analyze these premia and their relation to macroeconomic variables, I follow Boller-
slev, Tauchen, and Zhou (2009) and consider the model-implied variance risk pre-
mium given by the difference between the expected variance under physical and
risk-neutral probabilities. The next theorem provides a closed-form solution for the
variance risk premium.

Theorem 2.3 Variance risk premia defined by

Γt,n = Et [Vart+1(Yt+2,n)]− EQ
t [Vart+1(Yt+2,n)]

are given by

Γt,n = b′n

(
K∑
k=1

[
A

(k)
X Vt+1A

(k)′

X − A(k)
X V Q

XA
(k)′

X

])
bn.

Proof. Straightforward.

Remark 2.4 It follows that EQ
t [Vart+1(Yt+2,n)] is constant and the dynamics of my

variance risk premium are determined solely from the physical dynamics.

Due to the above remark, I abstract from analyzing time-variation in variance
risk premia in my empirical application. Instead, I consider averages, which I believe
are accurately estimated by my model.

2.3 Econometric Method

In this section, I present a simple approach to estimating my model. Specifically, I
extend the ideas proposed by Joslin, Singleton, and Zhu (2011) for the Gaussian
term structure model with latent yield-curve-specific factors only.

2.3.1 Estimation Problem

Consider bond yields of N different maturities given by n1, . . . , nN periods. Let
Yt = (Yt,n1 , . . . , Yt,nN )′ denote a vector of these observations. I impose the following
assumption on the accuracy of yield measurements:

Assumption 1 Yields, Yt, are measured with errors given by ηt ∼ i.i.d. N (0, σ2IN).
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I identify latent yield-curve-specific factors, xt, such that they capture yield curve
variation that is not related to the macroeconomic variables. For this purpose, I
decompose model-implied yields given in Theorem 2.1 by

Yt,n = am,n + b′m,nmt + Y ⊥mt,n , (2.17)

where Y ⊥mt,n = Yt,n − am,n − b′m,nmt and am,n = n−1ãm,n with

ãm,n = ãm,n−1 + b̃′m,nµ
Q
m +

1

2
b̃′m,nV

Q
m b̃m,n.

The synthetic yields, Y ⊥mt,n , capture the variation in the yield curve that cannot be
explained by the macroeconomic variables. I therefore extract latent yield-curve-
specific factors from synthetic yields.

I propose a step-wise estimation method to implement this strategy. A first
step estimates parameters related to pricing bonds with macroeconomic variables,
ΘQ
m = {βm, µQ

m, ΦQ
m, V

Q
m }. The marginal likelihood function to be maximized is given

by

log `Y
(
Yt|mt; ΘQ

m

)
= −

N∑
i=1

(Yt,ni − am,ni − bm,nimt)
2 .

I use these estimated parameters to construct estimates of the synthetic yields, Y ⊥mt,n .
The remaining parameters can be estimated in a second step by the standard

approach, combining maximum-likelihood estimation with a Kalman filter and pa-
rameter restrictions for statistical identification. This approach is, however, cumber-
some because my model encounters non-linearities in both the conditional variance
matrix, Vt, and in the loading recursions, an and bx,n. In the remainder of this sec-
tion, I provide a simpler approach that separates the estimation problem such that
non-linearities in the physical dynamics are treated separately from the non-linear
bond yield equation. Furthermore, my approach avoids Kalman filtering and hence
the numerical stability issues that are likely to be associated with filtering methods.

2.3.2 Rotation and Identifying Restrictions

My model is invariant to affine transformations of the latent factors given by ρt =

cx +Cxxt, see Lemma 2.1 in Technical Appendix B.1.2. Therefore, the latent factors
can be rotated into linear combinations, or portfolios, of the synthetic yields, Y ⊥mt,n .
Let ρt = WY ⊥mt denote a vector of these rotated factors. The matrix of portfolio
weights,W , can be chosen freely, e.g., such that the portfolios are the first nx princi-
pal components of the synthetic yield curve. The rotated model is unique given that
W has full rank. Theorem 2.4 formalizes these ideas.

47



Theorem 2.4 The model defined by (2.3)-(2.10)with synthetic yields defined in (2.17)
is observationally equivalent to a unique model in which the latent factors are portfolios
of synthetic yields given by ρt = WY ⊥mt , where the weighting matrix W has full rank.
Let Pt = (ρ′t,m

′
t)
′ denote the resulting observable state vector. Then, this unique model

is given by

Pt = µP +
L∑
l=1

Φ
(l)
P Pt−l + εP,t, εP,t = V

1/2
t zP,t, (2.18)

Vt = ΣPΣ′P +
K∑
k=1

A
(k)
P εt−1ε

′
t−1A

(k)′

P +
K∑
k=1

B
(k)
P Vt−1B

(k)′

P , (2.19)

Pt = µQ
P + ΦQ

PPt−1 + εQP,t, εQP,t = (V Q
P )1/2zQP,t, (2.20)

rt = αP + β′mmt + β′ρρt (2.21)

with zP,t ∼ i.i.d. N (0, InX ) and zQP,t ∼ i.i.d. N (0, InX ). V Q
P is a positive definite matrix.

Proof. See Technical Appendix B.1.2.

Remark 2.5 Given the rotation in Theorem 2.4, model-implied synthetic yields are
given by

Y ⊥mt,n = aρ,n + b′ρ,nρt, (2.22)

where aρ,n = −n−1ãρ,n and bρ,n = −n−1b̃ρ,n with

ãρ,n+1 = −αP + ãρ,n + b̃′ρ,nµ
Q
ρ +

1

2
b̃′ρ,nV

Q
ρ bρ,n, (2.23)

b̃′ρ,n+1 = −β′ρ + b̃′ρ,nΦQ
ρ . (2.24)

The next step is to impose parameter restrictions such that my model is iden-
tified. In a model with a constant conditional variance matrix under the physical
measure, these restrictions can be imposed on the risk-neutral dynamics only, see
Joslin, Singleton, and Zhu (2011). I adopt these restrictions as formalized in part
(i) of Theorem 2.5, which follows next. In my model, however, I need additional
restrictions for identifying the physical dynamics. These are given by part (ii) of
Theorem 2.5. To state the theorem, I define functions that map a set of parameters
into a vector of bond yield loadings by a(αP , βρ, µ

Q
ρ ,Φ

Q
ρ , V

Q
ρ ) = (aρ,n1 , . . . , aρ,nN )′ and

b(βρ,Φ
Q
ρ ) = (bρ,n1 , . . . , bρ,nN )′.

Theorem 2.5 The model defined by (2.18)-(2.21) in Theorem 2.4 with synthetic yields
given by (2.22) is identified with the following parametrizations:

48



(i) The risk-neutral dynamics and the short-rate equation are uniquely parame-
trized by ΘQ

ρ = {kQ∞, λQ, V Q
ρ }, where λQ contains ordered eigenvalues of the

transformed risk-neutral autoregressive coefficient matrix given by
[Wb(βx,Φ

Q
x )]−1ΦQ

ρ [Wb(βx,Φ
Q
x )], c.f., Lemma 2.1 in the Technical Appendix B.1.2.

In particular,

αP = −β′ρaW ,

βρ = (b−1
W )′ι,

µQ
ρ = kQ∞bW e1 + (Inx − ΦQ

ρ )aW ,

ΦQ
ρ = bWJ(λQ)b−1

W ,

where e1 = (1, 0, . . . , 0)′ and J(λQ) = diag(JQ
1 , J

Q
2 , . . . , J

Q
D), where JQ

d for d =

1, 2, . . . , D are Jordan blocks. Also, aW = Wa(0, ι, kQ∞e1, J(λQ), b−1
W V Q

ρ (b−1
W )′)

and bW = Wb(ι, J(λQ)).

(ii) For identification of the conditional variance matrix under the physical measure,
restrict the diagonal elements of ΣP to be strictly positive and the first entry of
A

(k)
P and B(k)

P for k = 1, . . . , K to be non-negative. Finally, a necessary condition
for identification is that K ≤ floor

(
1
2
nX + 1

2

)
.

Proof. See Technical Appendix B.1.3.

2.3.3 Marginal Likelihood for Synthetic Yields

As in Joslin, Singleton, and Zhu (2011), I impose the following assumption to set
up the likelihood function for synthetic yields.23

Assumption 2 The portfolios of synthetic yields, ρt, balance out the measurement er-
rors such that ρt is observed without errors.

With ρt and hence Pt observed, the marginal log-likelihood of the synthetic yields
can be separated by

log `
(
Y ⊥mt |Y ⊥mt−1 ; ΘP

P ,Θ
Q
ρ

)
= log `Y

(
Y ⊥mt |Pt; ΘQ

ρ

)
+ log `P

(
Pt|Pt−1; ΘP

P
)
.

23Relaxing this assumption requires a filtering technique such as Kalman filtering for estimating the
model. Joslin, Singleton, and Zhu (2011) show in the Gaussian term structure model that the pa-
rameter estimates do not change significantly when this assumption is relaxed.
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I note that the two terms of the log-likelihood contribution do not depend on the
same parameters. In particular, the likelihood separation clarifies that ΘQ

ρ relates to
the cross-section of the synthetic yield curve, while ΘP

P governs the dynamics of the
state vector. It follows that ΘQ

ρ and ΘP
P can be estimated by solving two unrelated

maximum likelihood problems. The marginal log-likelihood function related to the
parameters of the physical dynamics is given up to constants by

log `P
(
Pt|Pt−1; ΘP

P
)

=− 1

2
log|Vt| −

1

2

(
Pt − µP −

L∑
l=1

Φ
(l)
P Pt−l

)′
V −1
t

(
Pt − µP −

L∑
l=1

Φ
(l)
P Pt−l

)
,

where I recall that Vt depends on the parameters and data through (2.19). For
the remaining parameters, the marginal log-likelihood function to be maximized is
given by

log `Y
(
Y ⊥mt |Pt; ΘQ

ρ

)
=
(
Y ⊥mt − a− bρt

)′ (
Y ⊥mt − a− bρt

)
, (2.25)

where a = a(αP , βρ, µ
Q
ρ ,Φ

Q
ρ , V

Q
ρ ) and b = b(βρ,Φ

Q
ρ ) with αP , βρ, µQ

ρ , and ΦQ
ρ given as

explicit functions of ΘQ
ρ = {kQ∞, λQ, V Q

ρ } in Theorem 2.5. It is noteworthy that the
log-likelihood function in (2.25) is identical to that of the Gaussian term structure
model. Thus, this part of the estimation is no more difficult to implement than
Gaussian term structure models that are celebrated for their tractability.

2.4 Data and Empirical Performance

2.4.1 Data

I apply zero-coupon yields of U.S. Treasury bonds provided by Gürkaynak, Sack, and
Wright (2007) at the monthly frequency with end-of-month observations. I consider
the sample from September 1971 to June 2019, which contains both periods with
highly volatile yields, e.g., in the beginning of the 1980s, and periods with low yield
volatility, e.g., before the outbreak of the financial crisis and during the zero-lower
bound regime. I include maturities of 1, 2, 3, 5, 7, and 10 years. To capture the short
end of the yield curve, I also use the 3- and 6-month Treasury bill rates from Federal
Reserve Economic Data.

Following the literature, I include two macroeconomic variables: inflation and
economic activity. There is no consensus in the literature about which specific data
to use for these variables.24 Economic activity has been defined by both growth and
24For example, Ang and Piazzesi (2003) construct factors from principal components of a wide range
of macroeconomic variables; Joslin, Priebsch, and Singleton (2014) use expected inflation measured
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slack measures. Bauer and Rudebusch (2016) show that these series are widely dif-
ferent and uncorrelated over the business cycle. They argue that slack variables are
appropriate as they are consistent with empirical monetary policy rules. Moreover,
they show that the unemployment gap is related to the slope of the yield curve.
In light of these results, I adopt the unemployment gap as a measure of economic
activity. I construct the unemployment gap by the difference between the unem-
ployment rate from the U.S. Bureau of Labor Statistics and the estimate of natural
unemployment from the Congressional Budget Office.25 I measure inflation by the
12-month change in headline consumer prices from the Bureau of Labor Statistics.

The data are exhibited in Figure 2.1 and the descriptive statistics are detailed in
Table 2.1. The yield data are highly persistent for all maturities. They are upward-
sloping on average with a decreasing term structure of standard deviations. Yield
levels peak in the beginning of 1980 and approach the zero-lower bound in the
aftermath of the financial crisis. The unemployment gap is weakly and negatively
correlated with the yield curve, while the correlations between inflation and yields
are higher and positive. The data are cyclical: Yields, particularly for short-term
maturities, and inflation decrease in recessions, while the unemployment gap in-
creases in recessions. The unemployment gap has decreased steadily during the
current expansion.

The dual mandate of the Federal Reserve is related to inflation based on per-
sonal consumption expenditures (PCE) rather than CPI inflation. Moreover, it has
been argued that core inflation, i.e., change in price indices that exclude food and
energy prices, provides a better indicator of the path of future inflation compared
to headline inflation (Blinder and Reis, 2005, Mishkin, 2007). I therefore provide
results using PCE and core CPI inflation in Appendix B.3. I also apply my model
using a growth measure of economic activity given by the Chicago Fed National
Activity Index. The conclusions do not qualitatively change with these choices of
macroeconomic variables.

2.4.2 Model Specification

Number of Latent Factors

Since Litterman and Scheinkman (1991), the literature widely agrees that three
latent factors are sufficient for modeling the yield curve. The macroeconomic vari-

from surveys along with the Chicago Fed National Activity Index, which is an estimate of overall
economic growth; Bikbov and Chernov (2010) use CPI inflation and the Help Wanted Advertising in
Newspapers index.
25The natural unemployment estimate is available at the quarterly frequency only. I assume that the
natural unemployment rate is constant over the quarters.
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Figure 2.1: Yield and Macroeconomic Data
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Notes: The figure shows 3-month and 10-year bond yields (upper panel) and the macroeconomic
data (lower panel). The yields are from U.S. Treasury bills and bonds provided by Federal Reserve
Economic Data and Gürkaynak, Sack, and Wright (2007). Inflation is the 12-month change in con-
sumer prices provided the Bureau of Labor Statistics. Unemployment gap is the unemployment rate
from the Bureau of Labor Statistics minus the natural unemployment rate from the Congressional
Budget Office. The data are from September 1971 to June 2019. Shaded areas represent recessions,
as defined by the National Bureau of Economic Research.

ables can potentially reduce the number of latent factors necessary for capturing the
residual variation in the synthetic yields. However, I find that three latent factors
remain necessary.

As shown in Theorem 2.4, the latent factors can be rotated into observed port-
folios of synthetic yields, ρt = WY ⊥mt , whereW has full rank. I chooseW such that
the yield portfolios correspond to the first three principal components of the syn-
thetic yield curve. This choice ensures that the portfolios are orthogonal and thus
span the entire three-dimensional subspace. As a result, the portfolios capture as
much variation in the synthetic yields as possible with three factors.
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Table 2.1: Descriptive Statistics of the Yield and Macroeconomic Data

Yields with maturities in years Inflation Unemp.
Gap

0.25 0.5 1 2 3 5 7 10

Average 4.63 4.76 5.13 5.37 5.56 5.88 6.12 6.39 3.98 0.82

Std.dev. 3.42 3.42 3.56 3.49 3.41 3.23 3.09 2.94 3.00 1.49

Skew-
ness 0.58 0.52 0.46 0.38 0.37 0.39 0.41 0.44 1.49 0.93

Kurtosis 3.17 3.00 2.83 2.69 2.64 2.63 2.67 2.74 4.97 3.24

Autocorrelations:

Lag 1 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

Lag 2 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.97 0.98

Lag 3 0.96 0.97 0.97 0.97 0.97 0.98 0.98 0.98 0.96 0.97

Lag 6 0.93 0.94 0.94 0.95 0.95 0.96 0.96 0.96 0.90 0.90

Lag 12 0.87 0.88 0.89 0.9 0.91 0.92 0.92 0.91 0.75 0.73

Note: The table shows descriptive statistics of bond yield data and macroeconomic data in
percent per annum. The yield data are U.S. Treasury bond yields from Gürkaynak, Sack, and
Wright (2007) and Treasury bill rates from Federal Reserve Economic Data. The macroeco-
nomic data are given by the 12-month change in consumer prices and the unemployment
gap defined by the unemployment rate subtracted the natural unemployment rate estimated
by the Congressional Budget Office. CPI inflation and unemployment rates are provided by
the Bureau of Labor Statistics. The data are sampled monthly from September 1971 to June
2019.

Lag Length Under the Physical Measure

The order of the vector autoregression under the physical measure determines the
lag length of the macroeconomic variables. I implement the model with an order of
L = 12 corresponding to an annual lag structure, which is a common choice in the
macro-finance term structure literature (Ang and Piazzesi, 2003, Jardet, Monfort,
and Pegoraro, 2013, Joslin, Le, and Singleton, 2013b). The lag length is chosen
based on general-to-specific tests and information criteria as documented in Ap-
pendix B.2.1.

Generality of the Conditional Variance Matrix Under the Physical Measure

With three latent factors and two macroeconomic variables, the state vector has
dimension NX = 5, which identifies up to K = 3 components in the conditional
variance matrix. In fact, for K = 3, the BEKK GARCH model is equivalent to the
diagonal vech-GARCH model with restrictions for positive definiteness. As already
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discussed, K = 1 does not give the model sufficient freedom to capture both con-
ditional variances and covariances. In contrast, I find that the model can match
realized and rolling variances of bond yields closely with K = 2, see Section 2.4.3.
In Appendix B.2.3, I formally compare models specified withK = {1, 2, 3} and show
that the data is best modeled with K = 2.

2.4.3 Estimation Results

Parameter estimates are reported in Appendix B.2.4. The model is highly persistent
under both the physical and risk-neutral measures with maximum eigenvalues of the
autoregressive coefficients of respectively 0.995 and 0.997. The conditional variance
matrix of the physical dynamics is persistent but remains stationary because

max

[
K∑
k=1

(A
(k)
P � A

(k)
P +B

(k)
P �B

(k)
P )

]
= 0.981 < 1,

where � denotes element-wise Hadamard product.26

The estimated latent factors are exhibited in Figure 2.2 along with the factor
loadings bx,n across maturities n. The loadings show that the latent factors capture
level, slope, and curvature risk of the synthetic yields, Y ⊥mt . The figure shows that
these factors are different from the level, slope, and curvature of observed yields, Yt.
In particular, I observe that the macroeconomic variables relate to variations in the
level and slope of the yield curve. This is consistent with Rudebusch andWu (2008),
who show that the level and slope of the yield curve have macroeconomic underpin-
nings, and Bauer and Rudebusch (2016), who show that the unemployment gap is
related to the slope.

2.4.4 Empirical Performance

Goodness of In-Sample Yield Curve Fit

The ability of my model to match the yield curve is summarized by root mean
squared errors in Panel A of Table 2.2. My model fits the data well with an av-
erage error across maturities of 8 basis points. This result is not surprising since the
risk-neutral dynamics of my model are similar to those of the Gaussian term struc-
ture model, which is known to have good in-sample properties in terms of matching
the yield curve.

26The stationarity condition for the BEKK GARCH model is given in Engle and Kroner (1995).
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Table 2.2: In-Sample Performance

Panel A. Yield Curve Fit

Maturities in years

0.25 0.5 1 2 3 5 7 10 Average

RMSE 8.74 10.90 12.42 2.97 5.64 7.86 3.64 8.35 8.18

Panel B.1. Fit to Realized Variances and Covariances

Maturities in years

0.25 1 2 5 10 (0.25,5) (0.25,10) (5,10) Average

RMSE 4.83 4.53 3.77 2.04 1.23 3.37 1.60 1.47 2.85

Con-
stant

0.03
(0.02)

0.05
(0.02)

0.06
(0.02)

0.04
(0.02)

-0.01
(0.02)

0.03
(0.01)

0.02
(0.01)

0.02
(0.02) 0.03

Slope 0.77
(0.06)

0.50
(0.05)

0.53
(0.06)

0.63
(0.05)

0.80
(0.06)

0.59
(0.05)

0.69
(0.06)

0.69
(0.06) 0.65

R̄2 0.63 0.56 0.52 0.49 0.50 0.63 0.63 0.48 0.56

Panel B.2. Fit to Rolling Variances and Covariances

Maturities in years

0.25 1 2 5 10 (0.25,5) (0.25,10) (5,10) Average

RMSE 3.91 3.13 2.16 1.68 1.38 2.78 1.82 1.58 2.31

Con-
stant

-0.01
(0.02)

-0.01
(0.03)

-0.01
(0.03)

-0.00
(0.02)

-0.04
(0.02)

0.02
(0.02)

0.02
(0.01)

-0.03
(0.02) -0.01

Slope 0.67
(0.09)

0.63
(0.09)

0.62
(0.09)

0.65
(0.08)

0.70
(0.08)

0.64
(0.08)

0.71
(0.09)

0.67
(0.08) 0.66

R̄2 0.53 0.49 0.44 0.42 0.41 0.50 0.48 0.43 0.46

Notes: The table shows the in-sample performance of my model. Panel A shows root mean squared
errors (RMSEs) of model-implied against observed yields in basis points per annum. Panels B.1
and B.2 show RMSEs of model-implied against realized and rolling variances and covariances. The
table also shows constants and slope coefficients with standard errors in parenthesis and adjusted
R-squared values from Mincer and Zarnowitz (1969) regressions of realized and rolling variances
and covariances onto a constant and model-implied variances and covariances.
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Figure 2.2: Estimated Latent Factors and Factor Loadings

1975 1985 1995 2005 2015
-20

-10

0

10

20

30

40

P
e
rc

e
n
t

Latent Factor 1

Synthethic

Observed

1975 1985 1995 2005 2015
-4

-2

0

2

4

6

P
e
rc

e
n
t

Latent Factor 2

1975 1985 1995 2005 2015
-1

0

1

2

3

P
e
rc

e
n
t

Latent Factor 3

1Y 3Y 5Y 7Y 10Y
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

L
o
a
d
in

g
Factor Loadings

Factor 1

Factor 2

Factor 3

Notes: The figure shows the estimated latent factors in the upper panel and in the lower left chart
(solid lines). These are estimated by the first three principal components of the synthetic yields given
by the residuals from projecting yields on the macroeconomic variables. The figure compares these
with the principal components of the observed yield curve (dotted lines). The lower-right chart shows
the estimated factor loadings across maturities as given in Theorem 2.1.

Matching Conditional Yield Curve Volatility

I compare model-implied conditional variances and covariances of the yield curve to
two empirical proxies. First, I construct a realized variance matrix using daily yield
data.27 This measure is likely to be a good proxy of conditional variance, because
realized variance is a consistent estimator of integrated variance (Barndorff-Nielsen

27I construct the realized variance matrix as follows. Let yt,s,n denote the n-maturity yield on day s in
month t and let S denote the total number of daily observations in month t. Following this, I define
the realized covariance between yields with maturities n1 and n2 by

RVt,n1,n2 =

S∑
s=1

(yt,s,n1 − yt,s−1,n1) (yt,s,n2 − yt,s−1,n2) .
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and Shephard, 2004) and conditional variance can be viewed as a noisy measure of
integrated variance.28 As a second proxy, I use a rolling conditional variance matrix
constructed with daily data using a 3-month look-back.

Figure 2.3 shows model-implied conditional variances and covariances along
with the corresponding realized and rolling measures for the 3-month and 10-year
maturities. Mymodel captures low-frequency variation of empirical measures closely
in both the highly volatile period in the beginning of the 1980s and in the periods
with low volatility. Short-lived bursts observed in the empirical proxies that are not
reproduced by my model may be due to measurement errors (Andersen, Bollerslev,
and Meddahi, 2005) and outliers that should not be predictable ex ante (Cieslak
and Povala, 2016).

To provide a formal assessment, I show root mean squared errors in Panels B.1
and B.2 of Table 2.2. Errors are generally lower for long-term yields, which may
reflect that volatility of short-term bond yields is distorted by noise, institutional ef-
fects, and factors specific to Treasury bills, see Cieslak and Povala (2016) and refer-
ences therein. I also run Mincer and Zarnowitz (1969) regressions of the empirical
measures on a constant and the model-implied conditional variances and covari-
ances. Table 2.2 shows the constants, slope coefficients, and adjusted R-squared
values from these regressions. I find that a majority of the constants are estimated
insignificantly. The estimated slope coefficients are between 0.5 and 0.8 with ad-
justed R-squared values between 0.4 and 0.6.

Thus, I conclude that my model can match empirical measures of yield curve
variances and covariances. This finding contrasts with continuous-time term struc-
ture models with stochastic volatility, which result in low and often negative correla-
tion between predicted and realized variances (Christensen, Lopez, and Rudebusch,
2014, Collin-Dufresne, Goldstein, and Jones, 2009, Jacobs and Karoui, 2009). The
success of my model can be attributed to the exponential-quadratic pricing kernel.
Specifically, the distinction between conditional variancematrices under the physical
and risk-neutral probability measures gives my model freedom to capture empirical
volatility as seen in Creal and Wu (2017), Ghysels, Le, Park, and Zhu (2014), and
Joslin and Konchitchki (2018).

Term Structure Decomposition

Next, I show howmymodel decomposes yields into short-rate expectations and term
premia, see (2.16). The estimated decomposition is shown for the 10-year yield in

28See Andersen, Bollerslev, Diebold, and Labys, (2001, 2003), Koopman and Scharth (2013), and
Hansen, Huang, and Shek (2011).
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Figure 2.3: Model-Implied, Realized, and Rolling Variances and Covariances
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Notes: The figure shows model-implied conditional variances and covariances along with empirical
measures given by: (i) Realized variances constructed from daily data (left panel). (ii) Rolling vari-
ances of daily data with a 3-month look-back (right panel). Results are shown results for the 3-month
and 10-year bond yields.
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Figure 2.4: Decomposition of the 10-Year Yield
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Notes: The figure shows the model-implied decomposition of the 10-year yield into short-rate expec-
tations and a term premium. The left chart shows the decomposition implied by my model, whereas
the right chart shows the decomposition implied by the Gaussian term structure model. Shaded areas
represent recessions, as defined by the National Bureau of Economic Research.

the left chart of Figure 2.4. The expected short rates reflect the dynamics of long-
term yields due to the high degree of persistence in yield data. As a result, model-
implied term premia are relatively stable. However, the term premia are counter-
cyclical as investors demand a higher compensation for risk in times of crisis.

Time-varying volatility can be interpreted as a time-varying quantity of risk.
Thus, my model involves time-variation in both the quantity and price of risk, see
(2.7)-(2.8). In contrast, Gaussian term structure models only allow for a time-
varying price of risk. Thus, comparing term premia estimates of my model with
those of the Gaussian term structure model provides an insight into the impact of a
time-varying quantity of risk on term premia. The right chart in Figure 2.4 shows
the term structure decomposition of the Gaussian term structure model. The time-
varying quantity of risk in my model causes stronger counter-cyclicality in term pre-
mia compared to the constant quantity of risk in the Gaussian model. Specifically,
I observe large differences between the models after the financial crisis. My model
implies that term premia decreased slowly and became negative in May 2019. This
result signals an increasing optimism among investors, which is consistent with the
economic expansion. In contrast, the Gaussian term structure model implies term
premia that became negative immediately after the recession. This estimate points
to investors regaining optimism shortly after the recession. It is likely that this result
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Figure 2.5: Short-Rate Expectations Following Forward Guidance
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Notes: The figure shows model-implied 10-year short-rate expectations following the Federal Open
Market Committee announcements containing forward guidance on December 16, 2008 (left chart)
and December 15, 2015 (right chart). The charts compare expectations from my model to those of
the Gaussian term structure model.

arises because the Gaussian model fails to capture the decrease in the quantity of
risk following the recession.

Furthermore, my model disagrees with the Gaussian term structure model in
regard to the effectiveness of forward guidance. If forward guidance works as in-
tended, short-rate expectations should follow central bank communications. In my
model, this is indeed the case for many examples of statements from the Federal
Open Market Committee. For example, as shown in the right chart of Figure 2.5,
my model implies increased short-rate expectations as the committee signaled an
upward path of the federal funds rate during the lift-off from the zero-lower bound
in December 2015. In contrast, the Gaussian term structure model estimates de-
creasing short-rate expectations during this period, which implies that the forward
guidance was not effective. Another example is in December 2008, where the Fed-
eral Open Market Committee indicated that the federal funds rate was likely to
remain low in the future. My model is consistent with markets reacting to this state-
ment as the short-rate expectations remain low. However, short-rate expectations in
the Gaussian term structure model increase over this period, as observed in the left
chart on Figure 2.5. My conclusion that forward guidance is effective is supported by
Carlstrom, Fuerst, and Paustian (2015) andMcKay, Nakamura, and Steinson (2016),
while Hagedorn, Luo, Manovskii, and Mitman (2019) present counter-arguments.
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Figure 2.6: Conditional Variances of and Correlation Between 10-Year Short-
Rate Expectations and Term Premium
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Notes: The figure shows model-implied conditional variances of the 10-year short-rate expectations
and term premium (upper panel). The lower panel shows their conditional correlation implied by the
model. Shaded areas represent recessions, as defined by the National Bureau of Economic Research.

My model also generates time-varying conditional variances of the expected
short rates and term premia. These variances are shown at the 10-year maturity in
Figure 2.6. The variance of short-rate expectations is counter-cyclical and mimics
the behavior of the conditional yield variances. Specifically, the large burst of volatil-
ity in short-term yields in the beginning of the 1980s is transmitted to the volatility
of short-rate expectations. The term premium is more stable. Figure 2.6 also shows
the model-implied conditional correlation between the 10-year short-rate expecta-
tions and term premium. The correlation is negative throughout the majority of
the sample. This is intuitively appealing: Whereas a high term premium signals
that bond market investors fear risk, i.e., pessimism, high expected short rates re-
flect an optimism about future economic conditions. The sign, however, tends to
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reverse during expansions, which may reflect the fact that mid-expansions are typi-
cally characterized by a flattening yield curve and low volatility.29

Specification Test

The ability of the model to decompose the term structure can be tested by projecting
holding period returns, Yt+1,n−1−Yt,n, on a constant and the slope of the yield curve,
(Yt,n − rt)/(n − 1). Under the expectations hypothesis, such regressions give coef-
ficients equal to one. However, Campbell and Shiller (1991) show that empirically
estimated coefficients are negative and exhibit a downward pattern across maturi-
ties. I test the ability of the model to generate coefficients that match the empirical
failure of the expectations hypothesis, which has been named the LPY-I test by Dai
and Singleton (2002).30 The test results are depicted in the upper-left chart of Fig-
ure 2.7. With the exception of the short maturities, my model produces coefficients
that are well within the 95 percent confidence intervals for the empirically estimated
coefficients. Thus, the model passes the LPY-I test.

Dai and Singleton (2002) also propose a LPY-II test which projects the risk-
adjusted holding period returns onto a constant and the slope of the yield curve.31

If the model is well-specified, the resulting coefficients should be equal to one. The
lower-left chart on Figure 2.7 shows that the model-implied 95 percent confidence
interval contains one for all maturities. Hence, my model also passes the LPY-II test.

Traditional affine term structure models with stochastic volatility (Dai and Sin-
gleton, 2000) fail both the LPY-I and LPY-II tests. In contrast, the Gaussian term
structure model passes both tests (Dai and Singleton, 2002), which I confirm in
the right panel of Figure 2.7, but fails to capture time-varying volatility. Thus, the
existing literature poses a trade-off between modeling time-varying volatility and
passing the LPY tests. My model overcomes this trade-off as I simultaneously match
empirical proxies of the conditional yield curve variance matrix and pass both LPY
tests.

29This relationship has been established by Norland (2018) using the VIX index as a measure of
volatility. While the VIX index relates to equity markets, it is positively correlated with volatility
measures related to bond markets, e.g., the Merill-Lynch Option Implied Volatility Estimate (MOVE).
30In particular, I construct yield curve data with maturities 1, 2, . . . , 120 months using the method of
Gürkaynak, Sack, andWright (2007). Then, I regress Yt+1,n−1−Yt,n = c+φT,n(Yt,n−rt)/(n−1)+et,
which results in the empirically estimated coefficients φ̂T,n. I compare these with model-implied
population coefficients obtained by simulating 100,000 observations from my model.
31The risk-adjusted returns are given by Yt+1,n−1−Yt,n−(Ψt+1,n−1−Ψt,n−1)+ΨF

t,n−1/(n−1), where
Yt,n are observed yields, Ψt,n is the model-implied term premium defined in (2.16), and ΨF is the
model-implied forward term premium defined by ΨF

t,n = Ft,n − Et(rt+n), where Ft,n is the forward
rate.
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Figure 2.7: Campbell-Shiller Regression Slope Coefficients

12 48 84 120

Maturities in months

-4

-3

-2

-1

0

S
lo

p
e

Ordinary Regression

12 48 84 120

Maturities in months

-4

-3

-2

-1

0

S
lo

p
e

Ordinary Regression

Data Baseline model Gaussian term structure model 95% Confidence intervals

12 48 84 120

Maturities in months

0

1

2

3

4

S
lo

p
e

Risk-Adjusted Regression

12 48 84 120

Maturities in months

0

1

2

3

4
S

lo
p
e

Risk-Adjusted Regression

12 48 84 120

Maturities in months

-4

-3

-2

-1

0

S
lo

p
e

Ordinary Regression

12 48 84 120

Maturities in months

-4

-3

-2

-1

0

S
lo

p
e

Ordinary Regression

Data Baseline model Gaussian term structure model 95% Confidence intervals

12 48 84 120

Maturities in months

0

1

2

3

4

S
lo

p
e

Risk-Adjusted Regression

12 48 84 120

Maturities in months

0

1

2

3

4

S
lo

p
e

Risk-Adjusted Regression

Notes: The figure shows slope coefficients from ordinary and risk-adjusted Campbell and Shiller
(1991) regressions. For the ordinary regressions, model-implied slope coefficients are obtained by
simulating 100,000 observations in my model (left panel) and the Gaussian term structure model
(right panel). Confidence intervals are estimated with Newey-West robust standard errors with au-
tomatically selected lag length.

2.5 Yield Curve Volatility and Macroeconomic Risk

In this section, I show that the relationship between the yield curve and macroeco-
nomic risk fluctuates over time. My model provides insights into the patterns and
sources of these fluctuations. Specifically, I examine the macroeconomic contribu-
tion to the variances of yields, short-rate expectations, and term premia. Finally, I
relate the model-implied price of variance risk to macroeconomic variables.
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2.5.1 Macroeconomic Contribution to Yield Curve Variances

I analyze the relationship between the yield curve and macroeconomic risk by de-
composing model-implied variances into contributions from macroeconomic vari-
ables and latent yield-curve-specific factors. For this purpose, I apply a recursive
identification scheme assuming that macroeconomic variables are slow-moving and
do not react to contemporary yield-curve-specific shocks. Furthermore, I assume
that the unemployment gap responds to inflation shocks with a one-month lag.
These assumptions are standard in the structural vector autoregressive literature
with Cholesky identification schemes (Bernanke, Boivin, and Eliasz, 2005, Chris-
tiano, Eichenbaum, and Evans, 1999, Stock andWatson, 2001). My approach is also
standard in the macro-finance term structure literature in which more sophisticated
identification methods are not yet widespread. My results are robust to different
orderings of the variables, see Appendix B.3.2.

Given these assumptions, conditional yield variances can be decomposed into
variation generated by, respectively, macroeconomic variables and latent yield-curve-
specific factors. Moreover, the macroeconomic contribution can be decomposed into
an inflation and an unemployment-gap component:

Vart−1 (Yt,n) = Vart−1

(
εinft
)

+ Vart−1

(
εugapt

)
+ Vart−1

(
εyieldt

)
,

where εinft , εugapt , and εyieldt are structural inflation, unemployment-gap, and yield-
curve-specific shocks. I define the macroeconomic share of variance in Yt,n by

Vart−1

(
εinflationt + εunemployment gap

t

)
/Vart−1 (Yt,n) .

Analogously, I construct macroeconomic shares of variance in short-rate expecta-
tions and term premia. The novelty of my analysis compared to the previous liter-
ature is that the macroeconomic shares are time-varying. I characterize the time-
series properties of the term structure of macroeconomic shares in Table 2.3. I em-
phasize two results from these descriptive statistics.

First, I observe that the macroeconomic shares vary over wide ranges. For exam-
ple, themacroeconomic contribution to variance in the 3-month yield varies between
0.02 and 55.56 percent. The ranges are similar for yields of bonds with longer ma-
turities. Thus, in some periods, latent yield-curve-specific factors fully account for
movements in the yield curve, whereas macroeconomic shocks explain more than
half of the variation in other periods. On average, macroeconomic shocks explain
7.92 percent of the 3-month yield variance. This average is consistent with the con-
stant macroeconomic share obtained with a Gaussian term structure model, which
equals 7.72 percent for the 3-month maturity. The models agree on average for all
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Table 2.3: Descriptive Statistics of Macroeconomic Shares of Yield Variances

Maturities in years

0.25 0.5 1 2 3 5 7 10

Average 7.92 8.51 7.61 7.14 7.33 7.91 8.14 7.91

Std. dev. 7.94 7.95 7.27 6.87 7.00 7.51 7.67 7.59

Skewness 2.07 2.01 2.58 2.33 2.06 1.88 1.80 1.84

Kurtosis 9.07 8.84 12.79 10.41 8.44 7.48 7.11 7.43

Min 0.02 0.05 0.03 0.03 0.02 0.00 0.01 0.00

Max 55.56 56.24 54.03 45.05 45.91 46.39 50.84 53.86

Median 5.23 6.40 5.78 5.16 5.27 5.48 5.66 5.49

Autocorrelation 0.71 0.71 0.68 0.64 0.65 0.67 0.69 0.69

Quantiles:

10 percent 1.06 1.20 1.18 0.99 0.97 1.03 1.05 0.95

25 percent 2.53 2.97 3.05 2.82 2.73 2.9 2.84 2.74

75 percent 10.85 11.74 9.76 9.11 9.25 10.57 11.17 10.87

90 percent 17.68 19.34 16.02 15.96 16.39 17.89 18.26 17.73

Gaussian term
structure model 7.72 8.29 8.39 8.03 8.01 8.17 7.93 6.92

Note: The table shows descriptive statistics of the estimated shares of yield variances deter-
mined by the macroeconomic variables. The statistics are reported in percent. The table also
shows the constant macroeconomic share of variances estimated using the Gaussian term
structure model.

considered maturities. Since the Gaussian term structure model captures the aver-
age level of yield curve variance, this result can be interpreted as a validation of my
model specification.

Second, the sample kurtosis along with the quantiles suggest that there are oc-
casional large month-to-month fluctuations. Some of these occasions can be tied to
meaningful economic events. For example, when the first round of quantitative eas-
ing was announced in November 2008, the macroeconomic share of variance in the
10-year yield increased from 5 to 28 percent. The intention of quantitative easing
is that central banks impact long-term yields directly by large-scale asset purchases.
Thus, successful quantitative easing programs result in a tighter link between long-
term yields and the dual mandate. This intuition is indeed consistent with an in-
creased macroeconomic share of variance in the 10-year yield. Another example is
when Donald Trump was elected president in the end of 2016, where it was gen-
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erally believed that Trump’s stimulus plans would lead to higher interest rates.32

During the month following the election, the macroeconomic share of variance in
the 10-year yield indeed increased from 5 to 25 percent. More recently, the Fed-
eral Reserve announced in January 2019 that the monetary policy tightening cycle
would be put on hold due to factors unrelated to the domestic economy.33 During
this month, the macroeconomic share of the 3-month yield variance fell from 16
to 3 percent. This anecdotal evidence is consistent with the widespread idea that
macroeconomic announcement effects impact financial markets (Andersen, Boller-
slev, Diebold, and Vega, 2007, Balduzzi, Elton, and Green, 2001, Bollerslev, Cai, and
Song, 2000, Feunou, Fontaine, and Roussellet, 2019, Fleming and Remolona, 1999,
Johannes, 2004, Piazzesi, 2005).

The link between variance in long-term yields and macroeconomic risk can be
generated through two channels, namely short-rate expectations and term premia,
as shown by the term structure decomposition in (2.16). Table 2.4 shows descrip-
tive statistics of the macroeconomic shares of variances in 5- and 10-year short-rate
expectations and term premia.

Macroeconomic variables account for 0.32 to 75.66 percent of the variance in
10-year short-rate expectations and 41.88 percent on average. The macroeconomic
share of variance in the 10-year term premium ranges between 0.36 and 68.58
percent, with an average of 21.30 percent. These averages do not align with the
Gaussian term structure model that implies macroeconomic shares of 26.36 and
26.16 percent for the 10-year short-rate expectations and term premium. These
differences arise because the Gaussian term structure model obtains a different de-
composition of yields by ignoring the time-varying quantity of risk, as discussed in
Section 2.4.4. Thus, even if our interest lies in explaining variation across the full
sampling period, it is important to account for time-varying volatility. The results
also show that macroeconomic shocks explain more variation in, respectively, short-
rate expectations and term premia compared to the yield curve. Hence, investors
pay closer attention to macroeconomic risk when forming expectations about future
monetary policy compared to when they price bonds. This is consistent with the
idea of unspanned macroeconomic risk proposed by Joslin, Priebsch, and Singleton
(2014).

32See, for example, “How high can US rates go in the Trump era?" Financial Times, December 13,
2016, https://www.ft.com/content/b5551882-c057-11e6-81c2-f57d90f6741a.
33“Federal Reserve puts rate rises on hold as global economy slows", Financial Times, January 30,
2019, https://www.ft.com/content/2565e154-24b7-11e9-b329-c7e6ceb5ffdf.
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Table 2.4: Descriptive Statistics of Macroeconomic Shares of Variances in the
Decomposition of 5- and 10-Year Yields

Short-rate expectations Term premia

Maturity 5-year 10-year 5-year 10-year

Average 40.24 41.88 34.08 21.30

Std. dev. 18.12 18.28 14.91 12.44

Skewness -0.12 -0.15 0.38 0.88

Kurtosis 1.94 1.96 2.85 3.78

Min 0.23 0.32 0.73 0.36

Max 75.8 75.66 75.84 68.59

Median 40.29 42.04 32.33 19.06

Autocorrelation 0.89 0.90 0.67 0.69

Quantiles:

10 percent 15.49 16.67 15.23 6.55

25 percent 26.25 27.64 23.60 12.11

75 percent 56.56 58.60 43.63 28.80

90 percent 64.51 65.57 54.52 38.32

Gaussian term
structure model 33.36 26.36 48.36 26.16

Note: The table shows descriptive statistics of the estimated shares of variances in short-
rate expectations and term premia determined by the macroeconomic variables. The
statistics are reported in percent. The table also shows the constant macroeconomic
share of variances estimated using the Gaussian term structure model.

2.5.2 Historical Joint Behavior of the Yield Curve and Macroeconomic Risk

Next, I characterize the historical relationship betweenmovements in the yield curve
and macroeconomic variables throughout my sample. Since investors and policy
makers typically care about horizons longer than one month, I consider fluctuations
in macroeconomic shares of variances over 5-year periods. Figure 2.8 shows 5-year
moving-average macroeconomic shares of the 3-month and 10-year yield variances
along with variances of the 10-year short-rate expectations and term premium.

In the upper-left chart on Figure 2.8, I observe a U-shaped pattern in themacroe-
conomic share of the 3-month yield variance. Specifically, macroeconomic variables
are important short-term yield factors in the 1970s and 1980s, but cease to be rele-
vant during the Great Moderation starting from the mid-1980s. This result is intu-
itively appealing as the stabilization of macroeconomic variables reduces the extent
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Figure 2.8: 5-Year Moving-Average Macroeconomic Shares of Variances
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Notes: The figure shows 5-year moving averages of the macroeconomic contribution to variances in
the 3-month and 10-year yields, 10-year short-rate expectations, and the 10-year term premium.
Shaded areas represent recessions, as defined by the National Bureau of Economic Research.

to which these shocks can explain volatility in financial markets. In the aftermath
of the financial crisis, however, the link between the macroeconomic variables and
short-term yields has strengthened. Figure 2.8 also decomposes the macroeconomic
contribution into inflation and the unemployment gap. The role of inflation attenu-
ates over time and only accounts for a small fraction of the short-term yield variance
after the Great Moderation. The unemployment gap, on the other hand, accounts
for the increasing macroeconomic share after the financial crisis, which coincides
with the recovery of the unemployment rate.

The upper-right chart on Figure 2.8 shows the trend in themacroeconomic share
of the 10-year yield variance. This trend can be described by a W-shape with low
values during the Volcker period and in the aftermath of the early 1990s recession.
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The W-shape is driven by inflation, while the contribution from the unemployment
gap is stable. The macroeconomic shares of variances in the decomposition of the
10-year yield provides additional insights, see the lower charts of Figure 2.8.

First, the macroeconomic share of variance in the 10-year short-rate expecta-
tions exhibits an upward trend since the Great Moderation. Thus, the expectations
hypothesis is an increasingly important channel for how macroeconomic variables
shape the yield curve. One interpretation is that there is a growing belief among in-
vestors that the Federal Reserve’s commitment to the dual mandate is credible. The
upward trend is primarily attributed to the unemployment gap with the exception
of the financial crisis and its aftermath, where inflation accounts for more variation.
This result is consistent with survey data on CPI inflation from the Survey of Profes-
sional Forecasters. To show this, I plot the median one-quarter and one-year ahead
forecasts of CPI inflation along with the dispersion of these forecasts defined by the
difference between the 75th and 25th quantiles in Figure 2.9. I observe that the
median forecasts vary more during recessions and in particular during the financial
crisis. Moreover, the dispersions are larger during recessions. I capture this pattern
in the model-implied conditional variance of inflation, which is plotted in the lower
panel of Figure 2.9 for forecasting horizons of one quarter and one year.

Second, the macroeconomic share of variance in the 10-year term premium
decreases rapidly in the 1980s, but evolves around a constant mean in the remainder
of the sample with counter-cyclical fluctuations caused primarily by inflation. Thus,
my model is consistent with a counter-cyclical inflation risk premium, as estimated
by Buraschi and Jiltsov (2005), Chernov and Mueller (2012), and D’Amigo, Kim,
and Wei (2018). The contribution of the inflation risk premium is particularly high
during the financial crisis. In my model, a counter-cyclical inflation risk premium
is generated by the exponential-quadratic pricing kernel, which allows investors to
price the risk associated with both negative and positive inflation shocks. I illustrate
this mechanism by simulating 100,000 paths of my model under the risk-neutral
(Q) and physical (P) probability measures and estimating kernel density functions
of these simulated series. I plot the conditional densities of the inflation variable
along with their ratio (Q/P) for the one-month and ten-year horizons in Figure
2.10.

The risk-neutral densities are wider than the physical ones, which reflects the
presence of variance risk premia, or, equivalently, different conditional variances
under the probability measures. This difference is more pronounced for the long
horizon, which involves more uncertainty and thus a larger risk compensation. Dif-
ferences in the conditional variances result in U-shaped density ratios such that in-
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Figure 2.9: Inflation Survey Expectations and Model-Implied Conditional In-
flation Variance
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Notes: The figure shows the median of inflation survey forecasts from the Survey of Professional
Forecasters in the upper panel. The middle panel shows forecast dispersions defined by the difference
between the 75th and 25th quantiles. These data are available at quarterly frequency from the third
quarter of 1981. The lower panel shows the model-implied conditional inflation variance from July
1981. Shaded areas represent recessions, as defined by the National Bureau of Economic Research.
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Figure 2.10: Conditional Physical and Risk-Neutral Inflation Densities
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Notes: The figure showsmodel-implied conditional densities under the physical and risk-neutral prob-
ability measures (upper panel). The lower panel shows ratios of the risk-neutral to physical densities.
The densities are estimated by the Epanechnikov kernel function applied to 100,000 simulated paths
with horizon of one month and 10 years. The simulations are initiated at the sample average from
January 1990. The bandwidth is selected by the optimal choice for estimating normal densities.

vestors are averse to both high and low states of the distribution of inflation. Thus,
my model allows investors to demand a premium for deflation fears, which can gen-
erate a counter-cyclical inflation risk premium. In this respect my model is similar to
Roussellet (2018). An implication of this result is that a symmetric inflation target
enhances the efficiency of monetary policy during recessions.
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Figure 2.11: 5-Year Moving-Average Macroeconomic Shares of Variances from
1990-2019
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Notes: The figure shows 5-year moving averages of the macroeconomic contribution to variances in
the 3-month and 10-year yields, 10-year short-rate expectations, and the 10-year term premium. The
model is estimated using data from January 1990 to June 2019. Shaded areas represent recessions,
as defined by the National Bureau of Economic Research.

Subsample Analysis: January 1990 to June 2019

Applications in term structure modeling often start the sample in 1990 to avoid
issues related to the Volcker period. As a robustness check, I show in Figure 2.11 that
the time-varying patterns of macroeconomic shares of yield curve volatility identified
after the Great Moderation for the full sample continue to hold when the model is
estimated using the shorter sample.

For the 3-month yield, I reproduce half of the U-shaped trend in the 5-year
moving-average macroeconomic share of variance with the increase driven by the
unemployment gap only. The levels of the ratios are higher than observed from

72



Figure 2.8, reflecting that the short-maturity loading on unemployment gap is over-
estimated compared to the full sample. For the 10-year yield, I find that the macroe-
conomic share of variance is increasing after 1995 due to inflation, which is consis-
tent with the results obtained using the full sample. I also generate macroeconomic
shares of the variances in the 10-year short-rate expectations and term premium
that are similar to the full-sample results.

2.5.3 Variance Risk Premia and Macroeconomic Risk

A central distinction of my model from the Gaussian term structure model is the fact
that I allow investors to be compensated for variance risk, as defined by Theorem
2.3. This compensation is not earned by investments in Treasury bonds, as shown
in the bond yield equation (2.11). Rather, the variance risk premium is demanded
by investors in the broader fixed-income market through interest-rate derivatives.

Although my model results in time-varying variance risk premia, I abstract from
analyzing these dynamics because they – by the assumption of constant risk-neutral
volatility – are solely given by the specification of volatility under the physical mea-
sure. Instead, I focus on the average variance risk premia.

Following Carr and Wu (2009), I report variance risk premia as ratios of ex-
pected variance under the physical measure. Thus, I show the sample average of
Γt,n as a fraction of the sample average of Et(Vart+1(Yt+2,n)) in the left chart of Fig-
ure 2.12. As expected, the variance risk premia are negative across all maturities,
which is consistent with the stylized fact that implied volatilities exceed realized
volatilities. The sizes of the variance risk premia are between 30 to 70 percent of
the expected variance. This ratio decreases in magnitude across maturities with a
small hump at the short end of the yield curve. Thus, fixed-income investors pay
large premia for protection against variance risk, particularly in the short end of
the yield curve. These results are aligned with existing estimates of variance risk
premia in Treasury bond markets (Choi, Mueller, and Vedolin, 2017, Trolle, 2009,
Trolle and Schwartz, 2015).

As a novel contribution to the literature, I analyze the link between variance risk
premia and themacroeconomic variables. The right chart in Figure 2.12 decomposes
the variance risk premia into contributions from the macroeconomic variables and
the latent yield-curve-specific factors. A majority of the variance risk premia, be-
tween 80 and near 100 percent, are related to macroeconomic uncertainty. This
share is increasing with maturity. Thus, fixed-income investors demand large com-
pensations for exposure to macroeconomic uncertainty, whereas uncertainty related
to latent yield-curve-specific factors is less important for variance risk premia. It fol-
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Figure 2.12: Variance Risk Premia
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Notes: The figure shows model-implied variance risk premia. The left panel presents the ratios of
average variance risk premia to the average expected variance under the physical measure. The
right panel decomposes the average variance risk premia into macroeconomic and latent yield-curve-
specific contributions. Results are shown for different maturities.

lows that macroeconomic uncertainty can increase trading activity in fixed-income
derivative markets. To the extent that monetary policy is determined by inflation
and unemployment gap through the dual mandate, my model is consistent with
Cieslak and Povala (2016).

2.6 The 2019 Yield Curve Inversion and Macroeconomic Risk

The 10-year U.S. Treasury bond yield declined by 50 basis points between April and
June 2019. The yield curve inverted with the 10-year yield below the 3-month yield
during May. Yield curve inversions draw attention from policy makers and investors
because history shows that inversions are strong predictors of recessions. Indeed,
the yield curve has inverted before every recession since 1971. However, the time
between inversion and recession varies and history shows examples of yield curve
inversions that are not followed by recessions. A yield curve inversion is therefore
subject to debate on whether a recession will occur and when this is likely to happen.

Long-term yields may fall below short-term yields because investors expect a
slow-down in future economic growth. Such expectations are reflected in the yield
curve by low short-rate expectations, and thus low long-term yields for a given term
premium. Inversions that are credible warnings of economic slowdowns and poten-
tial recessions should therefore be driven by declining short-rate expectations and,

74



furthermore, this decline should be related to macroeconomic variables. I therefore
use my model to show whether the recent yield curve inversion is driven by macroe-
conomic variables through low short-rate expectations, and thus is likely to pose a
warning of an economic slowdown. My model is promising for this purpose because
it can analyze time-varying variances conditional on current economic conditions.
In contrast, the Gaussian term structure model can only draw conclusions that are
valid on average across the full sample.

To support my arguments, I begin by analyzing the yield curve inversion in
August 2006 that preceded the financial crisis. Panel (a) in Figure 2.13 analyzes
the yield curve from May to October 2006. The left-hand chart shows the spread
between the 10-year and 3-month yields along with the corresponding spreads in
short-rate expectations and term premia. I observe that the decline in the yield
spread can be attributed almost exclusively to the short-rate expectations. The right-
hand chart shows that themacroeconomic contribution to the variation in short-rate-
expectations spread was consistently around 35 percent over the period. Thus, the
inversion in 2006 is related to macroeconomic risk through short-rate expectations.

Given these insights, I return to the yield curve inversion in 2019. Panel (b) in
Figure 2.13 shows the analysis of the yield curve between February and July 2019.
I observe that the decline in the yield spread is mainly driven by a decline in the
term-premium spread, unlike the yield curve inversion in 2006. In fact, the short-
rate-expectations spread was stable over the period and its contribution to the yield
spread becoming negative in May is small. Furthermore, the macroeconomic contri-
bution to variation in the short-rate-expectations spread declined by 25 percentage
points over the period. Thus, I find that the relationship between short-rate expec-
tations and the real economy weakened over the period in which the yield curve
inverted. Rather, investors increasingly formed short-rate expectations based on in-
formation not related to inflation and unemployment gap.
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Figure 2.13: Analysis of Yield Curve Inversions
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(b) The 2019 Yield Curve Inversion
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Notes: The figure shows yield curve movements from May 2006 to October 2006 in panel (a) and
from February 2019 and July 2019 in panel (b). Left-hand charts shows the 10-year-minus-3-month
spread in yields, short-rate expectations, and term premia. The yield curve inverted in August 2006
and May 2019. Right-hand charts shows the macroeconomic contribution to variances in the short-
rate-expectations spread.
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These results indicate that the yield curve inversion in May 2019 is only weakly
related to macroeconomic risk through short-rate expectations. I therefore conclude
that the recent inversion is not likely to signal an imminent recession. The strength
of the current U.S. economy supports this conclusion. For instance, in May 2019 the
unemployment rate had been at or below 4 percent for more than a year. Moreover,
it has been argued that the relationship between yields and macroeconomic risk is
currently weak due to distress in bond markets caused by low levels of interest rates
and quantitative easing programs that are yet to be reversed.34

What does the yield curve inversion, then, reflect? Global factors and in partic-
ular the trade war between the U.S. and China are likely to play a role. Obviously,
these circumstances can impact the domestic economy and contribute to a recession
in the future. My results therefore do not reject all signs of a recession. However, I
emphasize that the yield curve inversion is not currently related to macroeconomic
risk and therefore does not signal that the risk of a recession is imminent. Thus,
the Federal Reserve should not begin a cycle of monetary policy easing based on the
yield curve inversion.

2.7 Conclusion

Using a novel macro-finance term structure model with time-varying volatility and
variance risk premia, I document a time-varying relationship between the yield
curve and macroeconomic risk. In particular, I estimate macroeconomic shares of
yield curve volatility that fluctuate over time both at the monthly frequency and over
longer periods. I relate large month-to-month fluctuations to meaningful economic
events. I characterize the historical joint dynamics of yields and macroeconomic
risk. First, I show a U-shaped pattern in the link between the short end of the yield
curve and macroeconomic risk. Macroeconomic variables are important short-term
yield factors in the 1970s-1980s, become less relevant during the Great Moderation,
and regain importance after the financial crisis. Second, investors increasingly form
expectations on future short rates based on macroeconomic risk. Third, macroeco-
nomic shares of variation in 10-year term premia increase during the financial crisis
due to deflation fears.

In conclusion, my results show that the assumption of constant volatility in
standard Gaussian term structure models shield information about: (i) Fluctuations

34Research from Pictet Wealth Management concludes that “the distortions created by extraordinary
post-crisis monetary policies have led to the breakdown in the relationship between interest rate
expectations and economic growth" (“Why the yield curve is not the economic guide it once was,"
April 2, 2019, https://www.ft.com/content/15d4048e-552f-11e9-91f9-b6515a54c5b1).
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in the relationship between the yield curve and macroeconomic risk. (ii) Counter-
cyclicality of term premia. (iii) The demand of compensation for macroeconomic
uncertainty.

My model provides new insights about the predictive power of the 2019 yield
curve inversion for a future recession. I find a weak link between the recent inversion
and current conditions of the economy. Specifically, the large decline in long-term
yield is not driven by inflation and the unemployment gap. I conclude that the yield
curve inversion does not reflect low expectations on future economic growth and,
consequently, is not likely to predict a recession in the near future.
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Appendix

B.1 Technical Appendix

B.1.1 Structural Justification of Exponential-Quadratic Pricing Kernels

I provide two examples from the equilibrium asset pricing literature that result in
exponential-quadratic pricing kernels. In both examples, the pricing kernel is deter-
mined by the marginal rate of intertemporal substitution of a representative house-
hold with Epstein and Zin (1989), Kreps and Porteus (1978), and Weil (1990) re-
cursive preferences.

78



Long-Run Risk Model with Second-Order Projection Solution

Consider an indirect utility function given by

Ut =
1

1− 1
ψ

C
1− 1

ψ

t + β
(
Et
[
U1−α
t+1

]) 1
1−α

and a pricing kernel given by

Mt+1 = β exp(−rt)
(
Ct+1

Ct

)− 1
ψ

(
Ut+1

Et
(
U1−α
t+1

))−α ,
where Ct is consumption. Bansal and Yaron (2004) specify a model with a long-
run growth factor, gt, and a volatility factor, σt. The state vector also includes log
consumption, ct = logCt. The state dynamics are given by

∆ct+1 = µc + xt + σcσtzc,t+1,

gt+1 = ρggt + σgσtzg,t+1,

σ2
t+1 = 1− ρσ + ρσσ

2
t + σσεσ,t+1,

where zc,t+1 ∼ i.i.d. N (0, 1), zg,t+1 ∼ i.i.d. N (0, 1), and zσ,t+1 ∼ i.i.d. N (0, 1).
Bansal and Yaron (2004) propose an analytical solution using a log-linearization.

This approximation results in an exponential-affine pricing kernel. However, Pohl,
Schmedders, and Wilms (2018) argue that a first-order approximation is likely to
generate large numerical errors. In response, Andreasen and Jørgensen (2019) solve
the model using a second-order projection in which

ut = γu0 + γuXXt +X ′tγ
u
XXXt,

ũt = γũ0 + γũXXt +X ′tγ
ũ
XXXt,

where ut = logUt, ũt = logEt
(
U1−α
t+1

)
, and Xt = [c′t, g

′
t, σ

2′
t ]′. The implied log pricing

kernel is then given by

logMt+1 = log β − rt −
1

ψ
∆ct+1 − αut+1 + αũt+1

∝ ξ′Xt+1 +X ′t+1ΞXt+1

with ξ = − 1
ψ
− αγuX + αγũX and Ξ = γuXX + γũXX . This pricing kernel is a special case

of (2.5) with constant prices of risk.
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Long-Run Risk Model with Time-Varying Wealth-Consumption Ratio

Monfort and Pegoraro (2012) note that the exponential-quadratic kernel can be
justified by a long-run risk model with a time-varying wealth-consumption ratio as
considered in Hansen and Heaton (2008) and Hansen, Heaton, Roussanov, and Lee
(2007). Here, I derive the details to clarify this justification. Indirect utility is spec-
ified by

Ut =

{
(1− β)C1−ρ

t + β
[
Et
(
U1−γ
t+1

)] 1−ρ
1−γ

} 1
1−ρ

.

The log-consumption dynamics are defined by

∆ct+1 = µc + ρcxxt + σczt+1,

where xt is the state vector that follows first-order vector autoregressive dynamics
given by

xt+1 = Φxt + Σzt+1

with zt ∼ i.i.d. N (0, I). Indirect utility is related to the ratio of wealth to consump-
tion by

Wt

Ct
=

1

1− β

(
Ut
Ct

)1−ρ

.

When the wealth-consumption ratio is constant, i.e., when ρ = 1, the model implies
a linear-exponential pricing kernel given by

logMt+1,1 = µM + ρMxxt + σMzt+1.

In the more realistic case of ρ 6= 1, Hansen and Heaton (2008) derives an approxi-
mate solution by expanding around the case of ρ = 1:

logMt+1,1

≈ logMt+1,1|ρ=1 + (ρ− 1)

[
1

2
z′t+1Γ1zt+1 + z′t+1Γ1xt + %0 + %Mxxt + %Mzzt+1

]
.

Thus, by allowing for a time-varying wealth-consumption ratio, the pricing kernel
becomes quadratic as in (2.5) with prices of risk given by ξt = %Mz + Γ1xt and
Ξ = 1

2
Γ1.

80



B.1.2 Proof of Theorem 2.4

The proof follows the steps in Joslin, Singleton, and Zhu (2011) closely. I rely on
invariant affine transformations of the state vector, Xt, given by Pt = c + CXt,
where transformation of the observed macroeconomic variables can be prevented
by restricting

c =

cx
0

 , C =

Cx 0

0 Inm

 . (B.1)

The following lemma gives the model parameters resulting from this rotation.

Lemma 2.1 Consider the affine transformation Pt = c + CXt restricted by (B.1).
Applying this transformation to the model in (2.3)-(2.10) gives an observationally
equivalent model with state vector Pt = (ρ′t,mt)

′ and parameters given by

µP = c+ CµX −
L∑
l=1

CΦ
(l)
X C

−1c,

Φ
(l)
P = CΦ

(l)
X C

−1, l = 1, . . . , L

ΣP = CΣX ,

A
(k)
P = CA

(k)
X C−1, k = 1, . . . , K

B
(k)
P = CB

(k)
X C−1, k = 1, . . . , K

αP = αX − β′xC−1
x cx,

β′P = β′XC
−1,

µQ
P = c+ CµQ

X − CΦQ
XC

−1c,

ΦQ
P = CΦQ

XC
−1,

V Q
P = CV Q

XC
′.

Proof. Straightforward.

To prove uniqueness, I apply the following lemma, which is identical to Propo-
sition 1 in JSZ. Although my model differs from the Gaussian term structure model
considered in JSZ, the lemma remains valid because the model involves Gaussian-
affine risk neutral dynamics, which is the only part of the model invoked in the proof
of the result.
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Lemma 2.2 The model defined by (2.3)-(2.10) with synthetic yields defined in (2.17)
is observationally equivalent to a model in real ordered Jordan form with r⊥mt ≡ rt −
αm − β′mmt = ι′xt, where ι is a vector of ones. The parameters determining the Q-
dynamics of this model are given by µQ

x = (kQ∞, 0, . . . , 0)′, a positive definite matrix V Q
x ,

and ΦQ
x = diag(JQ

1 , J
Q
2 , . . . , J

Q
D), where for d = 1, . . . , D,

JQ
d =


λQd 1 . . . 0

0 λQd . . . 0
...

... . . . 1

0 . . . 0 λQd

 .

Proof. See JSZ.

Given these lemmas, I prove Theorem 2.4. The portfolios of synthetic yields
given by ρt = WY ⊥mt are affine transformation of the latent factors because

ρt = WY ⊥mt = Wax +Wbxxt = aW + bWxt.

Thus, Pt = c+ CXt with

c =

aW
0

 , C =

bW 0

0 Inm

 . (B.2)

By an application of Lemma 2.1, the model can be rotated into an equivalent model
with state vector given by Pt. I prove by contradiction that this model is unique.
Suppose that two models with state vector Pt exist. Assume that these models are
parametrized by, respectively, Θ1 and Θ2. By Lemma 2.2, each model is observa-
tionally equivalent to the model in real ordered Jordan form with r⊥mt = ι′xt, whose
parametrization I denote by ΘJ . It follows that Θ1 = ΘJ = Θ2.

B.1.3 Proof of Theorem 2.5

By Lemma 2.2, the model defined by (2.3)-(2.10) with synthetic yields defined in
(2.17) can be rewritten in real ordered Jordan form and the rotation only affects pa-
rameters of the Q-dynamics and the short-rate equation. These rotated parameters
are given by{

αX , βx, µQ
x , ΦQ

x , V Q
x

}
=
{

0, ι, kQ∞e1, J(λQ), V Q
x

}
,
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where e1 is a vector of zeros except with the first entry equal to one and V Q
x is positive

definite. Given the model in Jordan form from Lemma 2.2, I apply the invariant
transformation Pt = c + CXt with c and C given by (B.2). By an application of
Lemma 2.1, the parameters of the rotated model are given by ΘQ

ρ = {kQ∞, λQ, V Q
ρ }

and

ΘP
P ≡

{
µP , {Φ(l)

P }Ll=1, ΣP , {A(k)
P , B

(k)
P }Kk=1

}
=
{
c+ CµX −

∑L
l=1 CΦ

(l)
P C

−1c, {CΦ
(l)
X C

−1}Ll=1, CΣX , {CA(k)
P C−1, CB

(k)
P C−1}Kk=1

}
.

Since ΘP
X =

{
µX , {Φ(l)

X }Ll=1,ΣX , {A(k)
X , B

(k)
X }Kk=1

}
is not involved in the rotation into

the Jordan form, restricting ΘP
P is not necessary to preclude rotations of the state

vector given ΘQ
ρ = {kQ∞, λQ, V Q

ρ }.
Restrictions are, however, necessary to identify parameters of the conditional

mean under the P-measure. To ensure a unique Cholesky decomposition, ΣPΣ′P , I
restrict the diagonal of the lower triangular matrix ΣP to be strictly positive. More-
over, since A(k)

P and B(k)
P enter the model in quadratic form, I require the first ele-

ments in these matrices to be non-negative. The following lemma derives an upper
bound for K that is necessary for identification.

Lemma 2.3 Consider the variance specification given by

Vt = ΣPΣ′P +
K∑
k=1

A
(k)
P εt−1ε

′
t−1A

(k)′

P +
K∑
k=1

B
(k)
P Vt−1B

(k)′

P , (B.3)

where ΣP is lower triangular with strictly positive elements on the diagonal. Let A(k)
P

and B(k)
P be diagonal matrices for k = 1, . . . , K. Then, a necessary condition for the

parameters to be identified is K ≤ floor
(

1
2
nX + 1

2

)
, where nX is the dimension of Vt.

Proof. I give the proof for a trivariate model, but the arguments can be extended
to higher dimensions. I assume that K = floor

(
1
2
nX + 1

2

)
= 2 and show that this

degree of generalization gives the maximum number of identified parameters. The
ARCH and GARCH terms of the BEKK GARCH model can be treated separately.
Furthermore, the arguments for the two terms are identical. I focus on the ARCH
term below. Let

A
(1)
P =


a1,1 0 0

0 a1,2 0

0 0 a1,3

 and A
(2)
P =


a2,1 0 0

0 a2,2 0

0 0 a2,3

 .
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Then,

A
(1)
P εtε

′
tA

(1)′

P + A
(2)
P εtε

′
tA

(2)′

P =
(
a2

1,1 + a2
2,1

)
ε2

1,t (a1,1a1,2 + a2,1a2,2) ε1,tε2,t (a1,1a1,3 + a2,1a2,3) ε1,tε3,t

(a1,1a1,2 + a2,1a2,2) ε1,tε2,t

(
a2

1,2 + a2
2,2

)
ε2

2,t (a1,2a1,3 + a2,2a2,3) ε2,tε3,t

(a1,1a1,3 + a2,1a2,3) ε1,tε3,t (a1,2a1,3 + a2,2a2,3) ε2,tε3,t

(
a2

1,3 + a2
2,3

)
ε2

3,t


Suppose that a2,1, a2,2, and a2,3 are identified. Then, a1,1, a1,2, and a1,3 follows from
the coefficients on respectively ε2

1,t, ε2
2,t, and ε2

3,t. This leaves the following three
equations to show that a2,1, a2,2, and a2,3 are indeed identified:

a2,1a2,2 = c1

a2,1a2,3 = c2

a2,2a2,3 = c3.

This system is obviously identified. Thus, the model is identified withK = floor(1
2
nX

+1
2
). Naturally, it follows that the model is also identified withK < floor

(
1
2
nX + 1

2

)
.

Now, suppose that K exceeds floor
(

1
2
nX + 1

2

)
= 2, say K = 3. For the ARCH equa-

tion, this leaves nX(nX +1)/2 = 6 equations to identifyKnX = 9 parameters, which
is not feasible.

B.2 Model Specification

In this appendix, I show that the specified model in terms of lag length under the
physical measure and generalization of the conditional variance matrix is preferred
by the data. I also provide parameter estimates and results from misspecification
testing which indicate that the model is well specified.

B.2.1 Lag Length of Macroeconomic Variables

I test for the lag length of the macroeconomic variables under the physical measure
given the choice of generalization of the conditional variancematrix ofK = 2. Model
selection with respect to the choice of K is considered in Section B.2.3. Table B.1
shows information criteria and likelihood-ratio tests for general-to-specific model
selection. The maximum number of lags considered is an annual lag length, L = 12.
I only report results for lag lengths of one months and for each quarter, i.e., L =

{1, 3, 6, 9, 12}. Choices of L in-between these values do not give further insights.
The table unambiguously shows that an extensive lag structure is needed to match
the data. The maximal lag length, L = 12, is preferred by all information criteria,
and the likelihood-ratio tests reject all specifications with lower lag lengths.
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Table B.1: Criteria for Lag-Length Selection of Macroeconomic Variables

Log-likelihood AIC BIC HQC LR-test

L=12 -335.10 868.21 942.43 756.75 -

L=9 -371.11 936.22 1009.17 784.87 72.02 [0.00]

L=6 -391.72 953.44 1017.55 820.84 41.22 [0.00]

L=3 -421.78 989.56 1044.80 875.71 60.12 [0.00]

L=1 -445.50 1020.99 1070.27 919.63 47.44 [0.00]

Note: The table shows criteria for lag-length selection of the macroeconomic
variables under the physical measure. Log-likelihood values relate to the estima-
tion of the physical dynamics. Information criteria are the Akaike Information
Criterion (AIC), Bayesian Information Criterion (BIC), and Hannan-Quinn Infor-
mation Criterion (HQC). Minimum values of these criteria across model specifica-
tions are in bold. Likelihood-ratio-(LR-)test statistics are reported with p-values
in brackets. The test is performed under the null that the log-likelihood value for
a given L is equivalent to that of the model with L+1. The models are estimated
with the K=2 components in the conditional variance matrix.

B.2.2 Lag Structure in Latent Factors

By allowing for a lag structure not only in the macroeconomic variables, but also in
the latent factors, I estimate a maximum log-likelihood value of −226.30. However,
this model involves (L − 1) · N2

x = 99 additional parameters, which result in infor-
mation criteria given by 868.26 (AIC), 1024.55 (BIC), and 544.97 (HQC). Thus,
with the exception of the HQC for which the penalty is extremely small, I find that
the additional number of parameters involved in allowing for a lag structure in the
latent factors is not justified by a sufficiently large improvement in the in-sample
fit. In addition, I find that the many additional parameters result in the estimation
problem in large estimation inaccuracy.

B.2.3 Generalization of the Conditional Variance Matrix

With three latent factors and two macroeconomic variables, the model is identified
with up to K = 3 components in the conditional variance matrix, see part (ii) of
Theorem 2.5 in the main paper. In this appendix, I test the model with choices of
K = {1, 2, 3}. First, I consider information criteria and likelihood-ratio tests in Ta-
ble B.2. I observe a large increase in the log-likelihood value from choosing K = 2

compared to the simplest model with K = 1. This difference persists when punish-
ing for the additional parameters as reflected by all information criteria. Moreover,
the difference is statistically significant. Thus, as explained in the main paper, it is
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Table B.2: Criteria for Generalization of the Conditional Variance Matrix

Log-likelihood AIC BIC HQC LR-test

K=3 -332.69 873.38 951.35 756.75 -

K=2 -335.10 868.21 942.43 757.19 1.30 [0.99]

K=1 -363.75 915.50 985.98 810.09 57.30 [0.00]

Note: The table shows criteria for selection of the generalization of the con-
ditional variance matrix under the physical measure. Log-likelihood values
relate to the estimation of the physical dynamics. Information criteria are the
Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), and
Hannan-Quinn Information Criterion (HQC). Minimum values of these criteria
across model specifications are in bold. Likelihood-ratio-(LR-)test statistics are
reported with p-values in brackets. The test is performed under the null that
the log-likelihood value for a given K is equivalent to the model with K+1. The
models are estimated with the L=12 lags in the macroeconomic variables.

necessary to include multiple components in the conditional variance matrix to fit
the data. In contrast, the improvement in fit obtained by increasing K to K = 3

is modest and the AIC and BIC are lower for K = 2. The HQC is practically the
same for the models with K = 2 and K = 3. Finally, the difference between these
specifications is not statistically significant. As a result, K = 2 seems to be sufficient
to match the data.

B.2.4 Parameter Estimates

Parameter estimates of the selected model are shown in Tables B.3, B.4, and B.5.
Almost all parameters are highly significant by conventional standard normal critical
values.

B.2.5 Misspecification Testing

Figure B.1 shows the standardized residuals, their histograms superimposed with
the Gaussian density, and autocorrelation functions. The figure also shows autocor-
relation functions of the absolute values of standardized residuals, which serve as a
test of the ability of the conditional variance matrix to eliminate ARCH effects. The
standardized residuals appear to be Gaussian and the autocorrelation functions of
both levels and absolute values are mostly insignificant. There is, however, some
autocorrelation in the residual of the equation for inflation.
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Table B.3: Parameter Estimates Related to the Physical Conditional Mean

µP

-0.103 (0.180) -0.253 (0.048) 0.069 (0.027) -0.014 (0.060) -0.058 (0.023)

Φ
(1)
P

0.990 (0.007) 0.026 (0.049) -0.035 (0.175) -0.032 (0.035) -0.050 (0.036)

-0.001 (0.003) 0.935 (0.017) 0.226 (0.057) 0.021 (0.009) 0.000 (0.013)

0.002 (0.001) -0.005 (0.007) 0.851 (0.025) -0.002 (0.005) 0.018 (0.006)

0.001 (0.003) -0.017 (0.018) 0.025 (0.061) 1.057 (0.030) -0.124 (0.056)

-0.001 (0.001) 0.002 (0.007) 0.052 (0.027) -0.002 (0.020) 0.889 (0.065)

Φ
(2)
m Φ

(3)
m

-0.071 (0.039) 0.030 (0.061) 0.005 (0.033) 0.003 (0.051)

0.012 (0.036) 0.175 (0.061) -0.014 (0.037) 0.010 (0.056)

Φ
(4)
m Φ

(5)
m

0.052 (0.033) 0.017 (0.048) -0.057 (0.037) -0.009 (0.054)

0.034 (0.038) 0.007 (0.058) -0.058 (0.040) 0.019 (0.061)

Φ
(6)
m Φ

(7)
m

-0.010 (0.037) 0.003 (0.052) 0.047 (0.033) 0.002 (0.049)

0.054 (0.035) -0.018 (0.059) -0.024 (0.030) -0.064 (0.059)

Φ
(8)
m Φ

(9)
m

-0.048 (0.039) 0.049 (0.048) 0.062 (0.041) 0.027 (0.058)

0.030 (0.031) -0.051 (0.056) 0.052 (0.034) -0.008 (0.054)

Φ
(10)
m Φ

(11)
m

-0.029 (0.038) 0.021 (0.055) 0.003 (0.037) -0.002 (0.053)

0.052 (0.034) -0.008 (0.054) -0.035 (0.032) 0.115 (0.056)

Φ
(12)
m

-0.013 (0.022) -0.042 (0.041)

0.021 (0.021) -0.087 (0.044)

Note: The table shows parameter estimates related to the conditional mean of the state vector un-
der the physical measure. Robust standard errors computed by the Huber sandwich estimator are
reported in parentheses.
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Table B.4: Parameter Estimates Related to the Physical Conditional Variance

ΣP

0.247 (0.037) - - - -

-0.007 (0.011) 0.084 (0.011) - - -

-0.025 (0.008) -0.019 (0.007) 0.030 (0.008) - -

-0.081 (0.013) 0.046 (0.008) -0.025 (0.010) 0.000 (0.000) -

0.003 (0.015) -0.025 (0.018) -0.002 (0.018) -0.054 (0.016) 0.000 (0.000)

diag(A(1)
P ) diag(A(2)

P ) diag(B(1)
P ) diag(B(2)

P )

0.026 (0.106) 0.448 (0.050) 0.893 (0.009) 0.087 (0.107)

0.133 (0.081) 0.408 (0.046) 0.892 (0.011) 0.072 (0.119)

0.290 (0.075) 0.282 (0.085) 0.883 (0.034) -0.096 (0.177)

0.013 (0.111) 0.409 (0.047) 0.901 (0.010) 0.080 (0.110)

0.267 (0.164) 0.246 (0.196) 0.418 (0.260) 0.745 (0.155)

Note: The table shows parameter estimates of the conditional variance-matrix of the state vector
under the physical measure. Robust standard errors computed by the Huber sandwich Estimator are
reported in parentheses.

Table B.5: Parameter Estimates Related to the Risk-Neutral Measure

βm µQ
m ΦQ

m − Inm
(V Q
m)1/2

0.943
(2.5×10-4)

4.087
(0.009)

-0.023
(0.001)

-0.042
(1.9×10-4)

0.925
(0.436)

-

-0.196
(0.3×10-4)

17.091
(0.048)

-0.051
(0.005)

-0.191
(0.001)

0.076
(0.230)

0.6× 10-5
(0.012)

kQ∞ λQ − 1 (V Q
ρ )1/2

0.020
(0.069)

-0.003
(1.6×10-4)

1.251
(0.3×10-5)

- -

-0.024
(0.6×10-4)

-0.213
(0.8×10-7)

0.393
(0.018)

-

-0.138
(0.004)

-0.027
(0.083)

-0.086
(0.070)

0.165
(0.062)

Note: The table shows parameter estimates related to the risk-neutral measure.
Robust standard errors computed by the Huber sandwich estimator are reported
in parentheses.
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Figure B.1: Misspecification Testing
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Notes: The figure shows misspecification tests of the standardized residuals shown in the first
column. Charts in the second column exhibit histograms of the standardized residuals with a
Gaussian density function superimposed. The third and fourth columns show autocorrelation
functions of, respectively, levels and absolute values of standardized residuals for lags between
1 and 20 with 95% confidence intervals computed under the assumption that the standardized
residuals are Gaussian white noise series.
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B.3 Robustness Checks

B.3.1 Measures of Macroeconomic Variables

In this appendix, I apply the model to alternative choices of macroeconomic vari-
ables. In particular, I substitute CPI inflation with, respectively, core CPI and per-
sonal consumption expenditures (PCE) inflation, and the unemployment gap with
the Chicago Fed National Activity Index. The empirical performance of the model
does not change by the choice of macroeconomic variables. Instead, I focus on the
broader validity of the main results related to the relationship between macroeco-
nomic variables and the yield curve through time.

Core CPI Inflation

The literature has suggested that core inflationmeasures, i.e., inflation that excludes
food and energy prices, are better indicators of the path of future inflation compared
to headline inflation (Blinder and Reis, 2005, Mishkin, 2007). Core CPI inflation is
available from the U.S. Bureau of Labor Statistics. As in the main paper, I use the
unemployment gap as a measure of economic activity. The macroeconomic share
of variance in bond yields, 10-year short-rate expectations, and the 10-year term
premium are summarized in Table B.6.

By excluding food and energy prices from the CPI inflation series, inflation
shocks explain more variation of yields on average, especially at the short end of
the yield curve. This is consistent with the findings in Ajello, Benzoni, and Chyruk
(2018), who show that while the impact of shocks to food and energy inflation on the
yield curve is small, core-inflation shocks have a large impact on yields, in particular
at short maturities. The macroeconomic shares of variances to the decomposition of
the 10-year yield into short-rate expectations and term premium are smaller than
those obtained with CPI inflation in the main paper. However, I maintain the con-
clusion that macroeconomic shocks primarily explain yield variation through the
expectations channel. Using core CPI inflation also results in highly time-varying
macroeconomic shares of variances with wide ranges and large month-to-month
changes.

The 5-yearmoving averages of the estimatedmacroeconomic shares of variances
are depicted Figure B.2. These exhibit similar patterns as the trends estimated us-
ing headline inflation. In particular, the U-shape is maintained at the short end of
the yield curve. For long-term yields, I observe increased macroeconomic shares of
variances after the Volcker period and in the most recent part of the sample.
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Figure B.2: 5-Year Moving-Average Macroeconomic Shares of Variances with
Core CPI Inflation
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Notes: The figure shows 5-year moving averages of the macroeconomic contribution to variances
in the 3-month and 10-year yields, 10-year short-rate expectations, and the 10-year term pre-
mium. The macroeconomic variables are core CPI inflation and the unemployment gap. Shaded
areas represent recessions, as defined by the National Bureau of Economic Research.
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PCE Inflation

Since PCE inflation is an important indicator for U.S. policy makers, I also report
results using this measure of inflation. I obtain PCE inflation data from the U.S. Bu-
reau of Economic Analysis and continue to use the unemployment gap as a measure
of economic activity. Macroeconomic shares of variances in yields, 10-year short-
rate expectations, and 10-year term premia are summarized in Table B.7. These
are quantitatively similar to the results reported in the main paper for CPI inflation
when considering variation in the yield curve. The macroeconomic shares are, how-
ever, larger on average for the 10-year short-rate expectations and term premium
compared to the main paper. This difference may reflect that the Federal Reserve
does indeed pay attention to PCE inflation, which results in a tighter link between
investors’ beliefs about future monetary policy and the macroeconomic variables.

The 5-year moving averages of the macroeconomic shares are reported in Fig-
ure B.3. For the 3-month and 10-year yields, the patterns in these series are similar
to those obtained with CPI inflation. For the 10-year short-rate expectations, the
upward trend is only observed between 1985 and 1990, whereafter the macroeco-
nomic shares are constant. For the macroeconomic shares of variance in the 10-year
term premium, I find an even stronger link to inflation than reported in the main
paper. This result suggests that the inflation risk premium involving PCE inflation is
higher than that of CPI inflation.

Chicago Fed National Activity Index

The unemployment gap is a measure of economic slack. Another interpretation of
economic activity, which has been applied in macro-finance, is growth in real vari-
ables. In the following, I apply the model to CPI inflation and the 3-month moving
average of growth in the Chicago Fed National Activity Index (CFNAI) index.35

Table B.8 summarizes the macroeconomic shares of variances in yields, 10-year
short-rate expectations, and 10-year term premia with these data. Compared to
the results obtained with the unemployment gap in the main paper, I find slightly
lower average macroeconomic shares of yield curve variances, but similar ranges
and kurtosis. This difference may reflect that the unemployment gap is more closely
related to the yield curve through monetary policy rules and the Federal Reserve’s
dual mandate compared to growth in real variables.

35The Chicago Fed National Activity Index is constructed by a weighted average of 85 economic indi-
cators within four categories: production and income (23 indicators); employment, unemployment,
and hours (24 indicators); personal consumption and housing (15 indicators); and sales, orders, and
inventories (23 indicators). The data series are adjusted for inflation.
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Figure B.3: 5-Year Moving-Average Macroeconomic Shares of Variances with
PCE Inflation
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Notes: The figure shows 5-year moving averages of the macroeconomic contribution to vari-
ances in the 3-month and 10-year yields, 10-year short-rate expectations, and the 10-year term
premium. The macroeconomic variables are PCE inflation and the unemployment gap. Shaded
areas represent recessions, as defined by the National Bureau of Economic Research.

The 5-year moving averages of the macroeconomic shares are reported in Fig-
ure B.4. The conclusions obtained on macroeconomic shares of yield curve variances
with the unemployment gap in themain paper aremaintainedwith the CFNAI series.
However, the estimated role of macroeconomic variables for the term structure de-
composition is different from the main paper. In particular, the CFNAI series and CPI
inflation accounts for almost 100 percent of the variation in short-rate expectations
throughout the sample. This difference is due to the role of the CFNAI series only,
as the results for CPI inflation are similar to those reported in the main paper. Thus,
whereas shocks to the unemployment gap have become increasingly important for
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Figure B.4: 5-Year Moving-Average Macroeconomic Shares of Variances with
the CFNAI Series
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Notes: The figure shows 5-year moving averages of the macroeconomic contribution to vari-
ances in the 3-month and 10-year yields, 10-year short-rate expectations, and the 10-year term
premium. The macroeconomic variables are CPI inflation and the CFNAI series. Shaded areas
represent recessions, as defined by the National Bureau of Economic Research.
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explaining movements in short-rate expectations, the CFNAI series has consistently
been a very important factor that investors consider when forming these expecta-
tions. I also estimate higher macroeconomic shares of variance in the 10-year term
premium with the CFNAI series.

B.3.2 Cholesky Ordering

Themain results of the paper are based on the standard assumptions that (i) macroe-
conomic variables do not respond to contemporaneous shocks to the latent factors,
and (ii) the unemployment gap does not respond to contemporaneous inflation
shocks. I show that my results are not sensitive to these assumptions by evaluat-
ing the model under alternative orderings of the variables.

First, I consider assumption (i) by reversing the ordering of the macroeconomic
variables and latent factors. Thus, I assume that the three latent factors respond
to macroeconomic shocks with a delay of one month. I maintain assumption (ii).
The resulting macroeconomic shares of variances in yields, 10-year short-rate ex-
pectations, and 10-year term premia are detailed in Table B.9. By ordering latent
factors before the macroeconomic variables, I obtain larger macroeconomic shares
on average compared to those reported in the main paper in Table 2.3. However, the
macroeconomic shares remain highly time-varying with wide ranges and occasional
large month-to-month changes.

Next, I assume that inflation is slower moving than the unemployment gap,
violating assumption (ii), but maintaining assumption (i). By construction, this al-
teration only affects the decomposition of macroeconomic shares into inflation and
the unemployment gap, but not the total macroeconomic shares. I show the decom-
position of the 5-year moving average of the macroeconomic shares in Figure B.5.
When comparing with Figure 2.8 in the main paper, I see that reversing the order of
the macroeconomic variables has no implications for my conclusions. In fact, even
quantitatively, there are very few differences between the results reported in Figure
B.5 and those reported for the chosen order in the main paper.
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Figure B.5: 5-Year Moving-Average Macroeconomic Shares of Variances with
Alternative Cholesky Ordering
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Notes: The figure shows 5-year moving averages of the macroeconomic contribution to variances
in the 3-month and 10-year yields, 10-year short-rate expectations, and the 10-year term pre-
mium. These are identified under the assumption that inflation responds to unemployment-gap
shocks with a delay of one month. Shaded areas represent recessions, as defined by the National
Bureau of Economic Research.
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Chapter 3

A Joint Model for the Term Structures of
Interest Rates and Realized Volatility

Anne Lundgaard Hansen
University of Copenhagen

I develop a term structure model that describes the yield curve and realized bond
market volatility jointly. Mymodel includes ameasurement equation for the realized
yield covariance matrix expressed by the sum of a conditional covariance matrix and
a mean-zero error. The conditional covariance matrix is described by a multivariate
GARCH-type model. My model admits closed-form solutions for no-arbitrage bond
yields, term premia, conditional yield curve volatility, and multi-step ahead forecasts
of both yields and realized volatility. I derive an exact algorithm for filtering latent
state variables of my model from the basic principles of the Kalman filter. An em-
pirical application to U.S. Treasury data shows that my model matches the realized
yield curve covariance matrix both in- and out-of-sample. Finally, I show that the
risk-neutral dynamics extracted from first and second moments of the yield curve
do not describe the pricing of interest-rate derivatives.

Keywords: Discrete-time term structure model, realized yield curve covariance
matrix, multivariate GARCH, non-linear Kalman filter.

JEL classification: C13, C32, G12.
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3.1 Introduction

This paper introduces a novel method for modeling the term structure of volatility
in no-arbitrage bond yields. Bond market volatility is an important input for risk
management and the pricing of fixed-income derivatives. In addition, Cieslak and
Povala (2016) argue that the decomposition of bond yield volatility into volatilities of
short-rate expectations and term premia contains important economic information,
e.g., on the uncertainty about the expected future path of monetary policy.

Modeling bond market volatility has proven difficult in traditional continuous-
time affine term structure models with stochastic volatility (Jacobs and Karoui,
2009). These models imply bond yields that are linear functions of the quadratic
variation in yields, i.e., that bond yields span bond market volatility (Dai and Single-
ton, 2000, Duffie and Kan, 1996). This prediction has, however, been rejected by an
extensive body of literature (Andersen and Benzoni, 2010, Collin-Dufresne, Gold-
stein, and Jones, 2009). Collin-Dufresne and Goldstein (2002) propose models with
so-called "unspanned stochastic volatility" (USV) restrictions to relieve the tension
between bond yields and volatility. But, Joslin (2017) shows that these restrictions
are rejected by the data.

In this paper, I propose a discrete-time model that describes the term struc-
tures of interest rates and their quadratic variation jointly. Specifically, I use real-
ized volatility to approximate quadratic variation (Andersen and Bollerslev, 1998,
Andersen, Bollerslev, Diebold, and Labys, 2001). My model explores the result that
a realized covariance matrix can be expressed by the sum of a conditional covari-
ance matrix and an error with mean zero and variance given by multivariate real-
ized quarticity (Barndorff-Nielsen and Shephard, 2002, 2004). I use a multivariate
GARCH-type model to describe the conditional covariance matrix in a parsimonious
way. These ideas are integrated into a no-arbitrage term structure model with a
low-dimensional latent state vector.

My model is tractable: I derive closed-form solutions for bond yield levels, term
premia, conditional yield variances and covariances, and their multi-step ahead fore-
casts. In addition, I set up my model as a state space model with measurement equa-
tions for both yield levels and realized variances and covariances. Then, I show that
this non-linear state space model can be estimated by a filtering algorithm derived
from the basic principles of the standard, linear Kalman (1960) filter. The filter is
exact, unlike existing algorithms for non-linear state space models such as the ex-
tended (see Jazwinski, 1970) and unscented Kalman filters (Julier, Uhlmann, and
Durrant-Whyte, 1995).
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This work is most closely related to Cieslak and Povala (2016), who propose
a continuous-time term structure model with both yield and volatility factors. My
approach offers three advantages over their important contribution. First, my model
is complete in the sense that there is a well-founded measurement equation for the
realized covariance matrix. Therefore, my model admits computation of multi-step
ahead forecasts of the realized yield curve covariance matrix. Second, I avoid intro-
ducing additional factors in my model by using a GARCH-type framework to model
the conditional covariance matrix. Thus, my model is consistent with the stylized
fact that bond markets can be characterized by a few, e.g., three, factors Litterman
and Scheinkman (1991). And finally, my model can be estimated by an exact filter-
ing algorithm, whereas Cieslak and Povala (2016) rely on an approximation.

My approach is also related to the Realized GARCH framework proposed by
Hansen, Huang, and Shek (2011), the MEM model by Engle and Gallo (2006), and
the HEAVY model by Shephard and Sheppard (2010). Similarly to my approach,
these models describe returns and realized measures of volatilities jointly. I show
how these ideas can be embedded into term structure modeling with no-arbitrage
restrictions and multivariate dynamics. Finally, the proposed term structure model
is a generalization of the models in Heston and Nandi (2003) and Koeda and Kato
(2015). Specifically, my generalizations allow for (i) time-varying conditional cor-
relations in the state vector, hence genuinely multivariate dynamics, and (ii) the
inclusion of realized variances and covariances in the measurement equation.

The paper proceeds as follows: I present my model in Section 3.2. Section 3.3
summarizes the model as a non-linear state space model and derives a Kalman-type
filtering algorithm. In Section 3.4, I present an empirical analysis on U.S. Treasury
data. I show that my model captures yield curve levels and the associated realized
covariance matrix with a high precision. I also present encouraging out-of-sample
results for forecasting the realized covariancematrix withmulti-step ahead horizons.
These promising results are obtained despite evidence that the linear relationship
between bond yields and volatility is weak. My model therefore contrasts with the
traditional continuous-time affine term structure models with stochastic volatility
for which USV restrictions are needed to capture bond market volatility. Finally, I
compare model-implied risk-neutral volatility to implied volatility from options on
Treasury bonds. I demonstrate that there are differences between these series, which
can be interpreted as an indication that the risk-neutral dynamics extracted from first
and second moments of bond yields alone do not generalize to those determining
prices of interest-rate derivatives. Section 3.5 concludes and discusses promising
paths for future research.
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Notation: I introduce the following notation for the manipulation of matrices. For a
symmetric matrix A, let vec (A) be a function that performs a vectorization by stack-
ing the columns of A to a vector. Likewise, vech (A) performs a half-vectorization
by stacking the columns of the lower triangular part of A. Define the elimina-
tion matrix, E , such that Evec(A) = vech (A) and the duplication matrix, D, by
Dvech (A) = vec(A). Let diag(A) denote the vector with elements given by the di-
agonal of the square, but not necessarily symmetric, matrix A. Finally, I define a
matrix square root A1/2 such that A1/2(A1/2)′ = A.

3.2 Model

Consider N zero-coupon bonds with maturities n1, n2, . . . , nN and denote a yield
curve by Yt = (Yt,n1 , Yt,n2 , . . . , Yt,nN )′. The yield curve is modeled at the monthly
frequency ∆t. Yields are, however, also observed at a higher frequency between
each time interval [t, t + 1[, e.g., daily. Denote these intra-period yields by yt,s =

(yt,s,n1 , yt,s,n2 , . . . , yt,s,nN )′ for s = 0, 1, . . . , S where yt,0 = Yt. The realized covariance
matrix is constructed by cumulating the outer products of ∆yt,s = yt,s − yt,s−1 over
s = 1, 2 . . . , S:

RVt =
S∑
s=1

∆yt,s∆y
′
t,s.

In this section, I build a model for the yield curve, Yt, and the realized yield
covariance matrix, RVt. I start by summarizing results from the literature that relate
realized variances and covariances to conditional variances and covariances. Then,
I set up a term structure model for the yield curve and its conditional covariance
matrix.

3.2.1 Relating the Realized and Conditional Covariance Matrices

As an outset for my model, consider the following well-established results. Ander-
sen, Bollerslev, Diebold, and Labys (2001, 2003) argue that for semi-martingale
processes:

(i) Quadratic variation is related to conditional variance up to a mean-zero error.

(ii) Quadratic variation can be approximated by realized variance.

Furthermore, Barndorff-Nielsen and Shephard (2004) show that:
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(iii) For a general class of continuous stochastic volatility semi-martingales with
spot covariance matrix Ψt, as S →∞,

√
S

{
vech (RVt)− vech

(∫ t+1

t

Ψ(u)du

)}
L→ N (0, IQt),

where IQt denotes integrated quarticity as defined in Barndorff-Nielsen and
Shephard (2004).

(iv) Integrated quarticity can be consistently estimated by realized quarticity. In
particular, define ξt,s = vech

(
∆yt,s∆y

′
t,s

)
and

RQt =
S∑
s=1

ξt,sξ
′
t,s −

1

2

S−1∑
s=1

(
ξt,s+1ξt,s + ξt,s+1ξ

′
t,s

)
. (3.1)

Then S RQt converges in probability to IQt.

The observations in (i)-(iv) imply that when intra-period sampling is frequent, i.e.,
for S large, the realized covariance matrix can be written by the sum of a conditional
covariance matrix and a mean-zero error with variance given by realized quarticity.

3.2.2 Term Structure Model

Define a filtration Ft = {Yi,RVi,RQi}ti=1.36 My model describes yields, Yt, and
the realized covariance matrix, RVt, but treats realized quarticity, RQt as exoge-
nous. I build a no-arbitrage term structure model based on the notion that the yield
curve can be described by a low-dimensional factor structure (Duffie and Kan, 1996,
Duffie, Pan, and Singleton, 2000, Litterman and Scheinkman, 1991). Therefore, let
Xt denote a latent p-dimensional state vector. No-arbitrage bond yields and their
covariance matrix are derived given {Xt, Xt−1, . . .}. Section 3.3.3 shows how the
latent state vector Xt can be filtered from Ft.

Measurement Equations

Observed bond yields are given by the sum of the no-arbitrage equilibrium yield, Ỹt,
given by

Ỹt,n = − 1

n
logEQ

[
exp

(
−

n−1∑
i=0

Ỹt+i,1

) ∣∣∣∣∣ Xt, Xt−1, . . .

]
, (3.2)

36Since RVt and RQt are constructed using intra-period data between t and t+ 1 (not included), it is
technically more correct to denote the filtration by Ft+ s−1

S
. However, since time is discrete with inter-

vals ∆t in the considered model, I define Ft = {Yt,RVt,RQt, Yt−1,RVt−1,RQt−1, . . . , Y1,RV1,RQ1}.
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and a measurement error, εYt ∼ i.i.d. (0, RY ), where RY is a matrix of free parame-
ters:

Yt = Ỹt + εYt , (3.3)

Based on results from Section 3.2.1, I also write the realized covariance matrix as a
sum of the conditional covariance matrix of Ỹt+1 given {Xt, Xt−1, . . .}, Var(Ỹt+1|Xt,

Xt−1, . . .), and a mean-zero error. This error reflects both a Gaussian noise with co-
variance matrix estimated by RQt, an error introduced by approximating quadratic
variation by realized volatility, and potential measurement errors in the high-freq-
uency yield observations yt,s. I accommodate these errors by introducing εRVt ∼(
0, RRV

t

)
with RRV

t = RQt+RRV, where RRV is a matrix of free parameters.37 Further-
more, let (RRV

t )−1/2εRVt be i.i.d. Thus,

vech (RVt) = vech
(
Var(Ỹt+1|Xt, Xt−1, . . .)

)
+ εRVt . (3.4)

This equation is a multivariate extension of the measurement equation for realized
volatility in the realized GARCH model in Hansen, Huang, and Shek (2011).

Modeling No-Arbitrage Equilibrium Bond Yields, Ỹt
Let the one-period spot interest rate Ỹt,1 be given by an affine function of the state
vector, Xt:

Ỹt,1 = δ0 + δ′1Xt. (3.5)

The state vector follows a vector autoregressive process with a conditional covari-
ance matrix Ωt = Var(Xt+1|Xt, Xt−1, . . .):38

Xt+1 = µ+ ΦXt + Ω
1/2
t Zt+1 (3.6)

where Zt ∼ i.i.d. N (0, Ip) and Ω
1/2
t is a p × p matrix. The conditional covariance

matrix is modeled by

Ωt = CC ′ + AZtZ
′
tA
′ +BΩt−1B

′ (3.7)

with A and B diagonal matrices. This specification adopts the structure of the BEKK
model from Engle and Kroner (1995), but is distinct from a standard multivariate
GARCH framewrok by letting Zt rather than Ω

1/2
t−1Zt determine Ωt. The volatility

model can be viewed as a multivariate generalization of that in Heston and Nandi
(2003).
37The measurement error covariance matrix RRV

t can also be defined by an appropriate multiplication
of RQt and RRV. The empirical results in Section 3.4 are robust to this choice of specification.
38Note that this notation follows the stochastic volatility literature but contrasts with the GARCH
literature.
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Including standardized errors Zt in the conditional covariance matrix can be
intuitively appealing. In the standard GARCH framework, a large shock results in
an increased variance in the following period. In the model in (3.7), however, the
degree to which a shock generates more variance in the following period depends
inversely on the current level of conditional volatility. That means that if the econ-
omy is in a state of low uncertainty when a large shock arrives, then there will be
a larger impact on future volatility than there would have been if the shock had
arrived in an already highly uncertain period.

Finally, under a standard exponential-linear pricing kernel, see, e.g., Ang and
Piazzesi (2003), the risk-neutral dynamics of Xt is given by:

Xt+1 = µQ + ΦQXt + Ω
1/2
t ZQ

t+1 (3.8)

with ZQ
t ∼ i.i.d. N (0, Ip) and

Ωt = CC ′ + AZQ
t Z

Q′
t A

′ +BΩt−1B
′. (3.9)

Model Solution

The model implies a closed-form solution for the risk-neutral expectation in (3.2),
hence for no-arbitrage bond yields. This result is given in the next theorem.

Theorem 3.1 Define čn and cn for n = 0, 1, . . . such that vec (čn) = (A⊗ A)′E ′cn and
assume that (Ip − 2čn) is positive definite. Then, the no-arbitrage yield of a n-period
zero-coupon bond under the model in (3.5)-(3.9) is given by

Ỹt,n = − 1

n
{an + b′nXt + c′nvech (Ωt)} , (3.10)

where the loadings are given recursively by

an+1 = −δ0 + an + b′nµ
Q + c′nvech (CC ′)− 1

2
ln [det(Ip − 2čn)] ,

b′n+1 = −δ′1 + b′nΦQ,

c′n+1 = c′nE(B ⊗B)D +
1

2
(bn ⊗ bn)′D.

The recursions are initiated at n = 0 with a0 = 0, b0 = 0p×1, and c0 = 0p(p+1)/2×1.

Proof. See Appendix C.1.

Corollary 3.1 It follows that the conditional covariance between the n- and m-period
bond yields, Yt+1,n and Yt+1,m, given {Xt, Xt−1, . . .} is given by

Cov(Ỹt+1,n, Ỹt+1,m|Xt, Xt−1, . . .) =
1

nm

{
αn,m + β′n,mvech (Ωt)

}
(3.11)
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with

αn,m = c′nE(A⊗ A) [Ip2 + diag(vec (Ip))] (A⊗ A)′E ′cm
β′n,m = (bm ⊗ bn)′D.

These conditional covariances define the elements in the conditional covariance
matrix Var(Ỹt+1|Xt, Xt−1, . . .) in (3.4).

Spanning of Conditional Volatility

According to (3.11), conditional variances and covariances of yields span Ωt and,
furthermore, bond yields span Ωt through (3.10). Therefore, my model implies that
bond yields span conditional yield variances and covariances. In the terminology of
Engle, Lilien, and Robins (1987), the model-implied bond yields exhibit ARCH-in-
mean effects.

The spanning may be weak if the loading on vech (Ωt), cn, is estimated to be
small. Weak spanning will, however, not deteriorate the ability of the model to
estimate conditional variances and covariances because (i) Ωt is determined deter-
ministically from Zt and Ωt−1, and (ii) the observed realized covariance matrix helps
recovering both Ωt and the loadings αn,m and βn,m. This contrasts with the tradi-
tional continuous-time affine term structure model with stochastic volatility when
relying on yield curve level data to identify yield volatilities (Collin-Dufresne, Gold-
stein, and Jones, 2009, Jacobs and Karoui, 2009).

Statistical Properties

From the recursive structure of bothXt and Ωt, it is straightforward to show that the
h-step conditional first moments of the state vector and the associated conditional
covariance matrix are given for h > 0 by

E (Xt+h|Ft) =
h−1∑
i=0

Φiµ+ ΦhE(Xt|Ft),

vech (E (Ωt+h|Ft)) =
h−1∑
i=0

[E(B ⊗B)D]ivech (CC ′ + AA′) + [E(B ⊗B)D]hvech (E(Ωt|Ft))

assuming Zt+h independent from Ft for h > 0. Section 3.3.3 presents an algorithm
for filtering the model, hence obtaining E(Xt|Ft) and E(Ωt|Ft). It follows that if
the eigenvalues of Φ and (B ⊗B) are inside the unit circle, then unconditional first
moments are

E (Xt) = (Ip − Φ)−1 µ, (3.12)

vech (E (Ωt)) = E (Ip2 −B ⊗B)−1 vec (CC ′ + AA′) . (3.13)
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The expression for E (Ωt) is an input in the Kalman-type algorithm derived in Section
3.3.3. Given the moments of the state vector process, the h-step conditional first
moments of yields and the realized covariance matrix are given by

E (Yt+h,n|Ft) = − 1

n
{an + b′nE(Xt+h|Ft) + c′nvech (E(Ωt+h|Ft))} ,

E (RVt+h,n,m|Ft) =
1

nm

{
αn,m + β′n,mvech (E(Ωt+h|Ft))

}
,

where RVt,n,m is the realized covariance between Yt,n and Yt,m. Therefore, the model
facilitates closed-form expressions for multi-step ahead forecasting of both yields
and their realized variances and covariances. The unconditional moments of Yt and
RVt are given analogously.

Term Premia

Term structure models can be used to study term premia, i.e., risk premia in bond
markets. There are multiple definitions in the literature. I work with the following:

TPt,n = Ỹt,n − Ỹ Q=P
t,n , (3.14)

where Ỹ Q=P
t,n is computed by (3.2) under the assumption that investors are risk-

neutral, i.e.,

Ỹ Q=P
t,n = − 1

n
logE

[
exp

(
−

n−1∑
i=0

Ỹt+i,1

) ∣∣∣∣∣ Xt, Xt−1, . . .

]
. (3.15)

It follows that if investors actually are risk-neutral, then Ỹt,n = Ỹ Q=P
t,n and TPt,n = 0.

The following theorem gives a closed-form solution for the risk-neutral yield and
hence for the term premium.

Theorem 3.2 Define čQ=P
n and cQ=P

n for n = 0, 1, . . . such that vec
(
čQ=P
n

)
= (A ⊗

A)′E ′cQ=P
n and assume that (Ip−2čQ=P

n ) is positive definite. Then, the risk-neutral yield
of a n-period bond under the model in (3.5)-(3.9) is given by

Ỹ Q=P
t,n = − 1

n

{
aQ=P
n + bQ=P′

n Xt + cQ=P′
n vech (Ωt)

}
, (3.16)

where

aQ=P
n+1 = −δ0 + aQ=P

n + bQ=P′
n µ+ cQ=P′

n vech (CC ′)− 1

2
ln
[
det(Ip − 2čQ=P

n )
]
,

bQ=P′
n+1 = −δ′1 + bQ=P′

n Φ,

cQ=P′
n+1 = cQ=P′

n E(B ⊗B)D +
1

2
(bQ=P
n ⊗ bQ=P

n )′D.

The recursions are initiated at n = 0 with aQ=P
0 = 0, bQ=P

0 = 0p×1, and cQ=P
0 =

0p(p+1)/2×1.
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Proof. Follows straightforwardly by an application of Theorem 3.1.

Corollary 3.2 It follows that under the risk-neutral measure, the conditional covari-
ancematrix between the n- andm-period bond yields, Yt+1,n and Yt+1,m, given {Xt, Xt−1, . . .}
is given by

CovQ=P(Ỹt+1,n, Ỹt+1,m|Xt, Xt−1, . . .) =
1

nm

{
αQ=P
n,m + βQ=P′

n,m vech (Ωt)
}

(3.17)

where

αQ=P
n,m = cQ=P′

n E(A⊗ A) [Ip2 + diag(vec (Ip))] (A⊗ A)′E ′cm
βQ=P′
n,m = (bQ=P

m ⊗ bQ=P
n )′D.

Corollary 3.3 The term premium of a n-period bond is given by

TPt,n = − 1

n

{
(an − aQ=P

n ) + (bn − bQ=P
n )′Xt + (cn − cQ=P

n )′vech (Ωt)
}

(3.18)

with loadings given in Theorems 3.1 and 3.2.

3.3 Econometric Method

3.3.1 State Space Model

The model described in Section 3.2 can be written as a state space model. The
measurement equations follow from (3.3) and (3.4) along with the model solutions
in (3.10) and (3.11). Specifically, by stacking the loadings appropriately and scaling
by periods to maturity, the measurement equations are given by

Yt = a+ bXt + c vech (Ωt) + εYt , (3.19)

vech (RVt) = α + β vech (Ωt) + εRVt . (3.20)

The loadings (a, b, c, α, and β) depend on the parameters of the model although
this dependency has been suppressed to ease notation. The transition equations are
given by (3.6)-(3.7). Define εt = [εY

′
t , ε

RV′
t ]′ with

Rt =

RY 0

0 RRV
t


such that R−1/2

t εt is i.i.d. I assume that the errors in the measurement and transition
equations (εt and Zt) are independent.
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3.3.2 Parameters and Econometric Identification

The parameters of the model are Θ = {δ0, δ1, µ,Φ, C, A,B, µ
Q,ΦQ, RY , RRV}. I in-

troduce the following parameter restrictions to ensure econometric identification,
i.e., to prevent affine transformations of Xt given by X̌t = v + V Xt along with
Ω̌t = V ΩtV

′. These restrictions are similar to the identification scheme in Cieslak
and Povala (2016). First, setting µ = 0p×1 ensures identification of δ0. Second, as
noted in Dai and Singleton (2000), both Φ and Ωt determine the interdependencies
in Xt+1. I therefore restrict Φ to be diagonal. Third, restricting δ1 to a vector of ones
identifies the diagonal elements of A and B. Fourth, C lower triangular with posi-
tive elements on the diagonal ensures that Ωt is positive definite. Finally, to ensure
identification of the parameters in Ωt, let the first entries of A and B be positive
(Engle and Kroner, 1995).

3.3.3 Kalman-Type Filtering Algorithm

This section presents an algorithm for filtering the latent states in the non-linear
state space model described in Section 3.3.1. The algorithm is derived from the basic
principles of the standard, linear Kalman (1960) filter, hence I refer to the method
as a Kalman-type filter. The Kalman-type filter is exact for the model considered
here, unlike existing non-linear filters, namely the extended and unscented Kalman
filters (see Jazwinski, 1970 and Julier, Uhlmann, and Durrant-Whyte, 1995). The
following theorem gives the algorithm.

Theorem 3.3 Consider the state space model defined by the transition equations in
(3.6)-(3.7) and themeasurement equations in (3.19)-(3.20). LetMt = [Y ′t , vech (RVt)′]′

and define the constants Ψ = E(B ⊗B)D and

κ = E
[
vech (A(ZtZ

′
t − Ip)A′) vech (A(ZtZ

′
t − Ip)A′)

′]
.

Assume that E(Ωt) < ∞. Then, for well-chosen values of X̂0|0, Ω̂0|0, V X
0|0, V

Ω
0|0, and

V X,Ω
0|0 , best linear mean-squared prediction can be obtained by the following recursion.

State prediction

X̂t|t−1 = E [Xt|Ft−1] = µ+ ΦX̂t−1|t−1,

vech
(

Ω̂t|t−1

)
= E [vech (Ωt) |Ft−1] = vech (CC ′ + AA′) + Ψvech

(
Ω̂t−1|t−1

)
,

V X
t|t−1 = E

[
(Xt − X̂t|t−1)(Xt − X̂t|t−1)′

]
= ΦV X

t−1|t−1Φ′ + E(Ωt−1),

V Ω
t|t−1 = E

[
vech

(
Ωt − Ω̂t|t−1

)
vech

(
Ωt − Ω̂t|t−1

)′]
= ΨV Ω

t−1|t−1Ψ′ + κ,
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V X,Ω
t|t−1 = E

[
vech

(
Xt − X̂t|t−1

)
vech

(
Ωt − Ω̂t|t−1

)′]
= ΦV X,Ω

t−1|t−1Ψ′.

Measurement prediction

Ŷt|t−1 = E [Yt|Ft−1] = a+ bX̂t|t−1 + c vech
(

Ω̂t|t−1

)
,

vech
(
R̂Vt|t−1

)
= E [vech (RVt) |Ft−1] = α + βvech

(
Ω̂t|t−1

)

with mean-squared error St|t−1 =

SYt|t−1 SY,RVt|t−1

SY,RV
′

t|t−1 SRV
t|t−1

, where

SYt|t−1 = E
[
(Yt − Ŷt|t−1)(Yt − Ŷt|t−1)′

]
= bV X

t|t−1b
′+cV Ω

t|t−1c
′+bV X,Ω

t|t−1c
′+cV X,Ω′

t|t−1 b
′+RY ,

SRV
t|t−1 = E

[
vech

(
RVt − R̂Vt|t−1

)
vech

(
RVt − R̂Vt|t−1

)′]
= βV Ω

t|t−1β
′ +RRV

t ,

SY,RVt|t−1 = E
[
(Yt − Ŷt|t−1)vech

(
RVt − R̂Vt|t−1

)′]
= cV Ω

t|t−1β
′ + bV X,Ω

t|t−1β
′.

Kalman gains

KX
t = V X

t|t−1b
′S−1
t|t−1 + V X,Ω

t|t−1c
′S−1
t|t−1,

KΩ
t = V X,Ω′

t|t−1 b
′S−1
t|t−1 + V Ω

t|t−1c
′S−1
t|t−1.

Filtering

X̂t|t = E [Xt|Ft] = X̂t|t−1 +KX
t

(
Mt − M̂t|t−1

)
,

vech
(

Ω̂t|t

)
= E [vech (Ωt) |Ft] = vech

(
Ω̂t|t−1

)
+KΩ

t

(
Mt − M̂t|t−1

)
,

V X
t|t = E

[
(Xt − X̂t|t)(Xt − X̂t|t)

′
]

= (Ip −KX
t b)V

X
t|t−1 −KX

t cV
X,Ω′

t|t−1 ,

V Ω
t|t = E

[
vech

(
Ωt − Ω̂t|t)

)
vech

(
Ωt − Ω̂t|t

)′]
= (Ip(p+1)/2−KΩ

t c)V
Ω
t|t−1−KΩ

t bV
X,Ω
t|t−1,

V X,Ω
t|t = E

[(
Xt − X̂t|t

)
vech

(
Ωt − Ω̂t|t

)′]
= V X,Ω

t|t−1(Ip(p+1)/2 −KΩ
t c)

′ − V X
t|t−1b

′KΩ′
t .

Proof. See Appendix C.1

The algorithm can be initialized at the unconditional first moments of Xt and
Ωt as given in (3.12) and (3.13). These priors are diffuse when the initial mean
squared errors, V X

0|0, V
Ω

0|0, and V
X,Ω

0|0 , have high values. Given the prediction errors
et = [(Yt − Ŷt|t−1)′, vech(RVt − R̂Vt|t−1)′]′ and associated mean-squared error matrix
St|t−1, my model can be estimated by quasi-maximum likelihood.
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3.4 Empirical Analysis

3.4.1 Data

The empirical analysis focuses on end-of-month yields of U.S. Treasury bonds from
January 1990 to August 2019. I construct monthly realized variances and covari-
ances along with realized quarticity based on daily data. Zero-coupon bond yields
for maturities between one and ten years are available from Gürkaynak, Sack, and
Wright (2007) at the daily frequency. I use yields of bonds with maturities of 1, 2,
3, 5, 7, and 10 years and realized variances of 2-, 5-, and 10-year bond yields along
with their covariances.39

Figure 3.1 shows the data for the 2- and 10-year maturities. The 2-year yield
is impacted by jumps in the Federal Funds rate, whereas the 10-year yield exhibits
a more persistent downward slope. Realized variances are time-varying with many
short-lived bursts. Since the realized quarticities determine the measurement error
variance of the measurement equation for the realized covariance matrix, these data
indicate the extent that one can expect a conditional variance model to match the
variance bursts. Note that the realized quarticities display large jumps during the
dot-com bubble and the financial crisis, indicating that these periods are particularly
characterized by ex-ante unpredictable events.

3.4.2 Estimation

Model Specification and Additional Parameter Restrictions

The yield curve can be summarized by a three-dimensional state vector, i.e., p =

3 (Litterman and Scheinkman, 1991). With a three-dimensional state vector, the
model allows for six latent factors driving the conditional yield curve covariance
matrix. However, I only include data on six variances and covariances given by
the realized covariance matrix of the 2-, 5-, and 10-year bond yields. A principal
component analysis shows that three factors explain 99.56 percent of the variation
in this realized covariance matrix. I therefore restrict the model such that there are
two heteroskedastic state variables and one state variable with constant variance.
This is easily implemented by imposing one zero-row and -column in the matrices
A and B in (3.7). Note that the element in δ1 corresponding to the homoskedastic
state variable must still be normalized, e.g., to one, to ensure identification of the
constant variance.

39Cieslak and Povala (2016) argue that realized variances of maturities below two years are distorted
by money market noise and institutional effects.
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Figure 3.1: Data
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Notes: The figure shows monthly 2- and 10-year yields along with their realized variances
and quarticities constructed from daily data. The data is sampled from January 1990 to
August 2019.

I also restrict the measurement error variance parameters RY and RRV to be
diagonal matrices. The measurement errors of the realized covariance matrix are
still allowed to be correlated through the realized quarticity, RQt.

Estimation Results

Parameter estimates are shown in Appendix C.2 and Figure 3.2 shows the filtered
state variables and the time-varying part of the filtered conditional state covariance
matrix, Ω̂t|t. The third element in the state vector, X̂3,t|t, is homoskedastic such that
the time-varying part of Ω̂t|t relates to the first two elements of X̂t|t only. I observed
from the figure that the conditional variances of X̂1,t|t and X̂2,t|t are clearly time-
varying with particular sharp bursts during the 1998 Russian crisis, the early 2000’s
dot-com bubble, and the financial crisis. The filtered covariance, Ω̂1,2,t|t, exhibits
interesting variation around and after the financial crisis: The covariance increase
during the spring 2008 as the Federal Reserve begins to lower the Federal Funds rate
target and take action to prevent a housing bust. As the Lehman Brothers defaults
in September 2008 and global markets begin to panic, the covariance falls sharply.
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Figure 3.2: Filtered State Vector and Conditional Covariance Matrix
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Notes: The figure shows the filtered state vector X̂t|t and the time-varying variances and
covariances in Ω̂t|t.

The covariance falls abruptly again in June 2011 as markets react to the fear of a
Greek default.

The filtered state vector is related to, but different from, the principal com-
ponents of the yield curve. Specifically, Figure 3.3 shows that the first and third
elements in X̂t|t are related to the first principal component, often interpreted as
the level of the yield curve. The second element in X̂t|t is related to the second prin-
cipal component, hence the yield curve slope. It is well-known that the first three
principal components of the yield curve can approximate the latent factors filtered
from affine term structure models with a constant covariance matrix. Joslin, Sin-
gleton, and Zhu (2011) even show that such models can be identified by rotating
the latent state vector into principal components of the yield curve. It is therefore
a novel result that time-varying conditional variances and covariances, when iden-
tified through realized measurements, change the interpretation of the yield curve
factors. This result is also an indication that conditional variances and covariances
are priced in the yield curve.
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Figure 3.3: Filtered State Variables Versus Principal Components
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Notes: The figures shows scatter plots of the filtered state vector X̂t|t against the first three
principal components of the yield data.

3.4.3 In-Sample Performance

Table 3.1 shows the in-sample fit in terms of yield levels and the realized covariance
matrix. Starting with yield levels, the average root mean squared error is about
four basis points per annum, which is highly precise. Considering individual matu-
rities reveals that the state vector and its conditional covariance matrix are filtered
such that some maturities (2, 5, and 7 years) are priced almost perfectly while the
remaining maturities are priced with an error.

The realized covariance matrix is matched with a precision of 0.2 to 0.3 basis
points per annum. For reference, Cieslak and Povala (2016) match realized vari-
ances and covariances with root mean squared errors of 0.4 to 0.9 basis points per
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Table 3.1: In-Sample Performance

Yield Levels

Maturity 1-year 2-year 3-year 5-year 7-year 10-year Average

Model 8.992 2.4×10−6 1.426 9.8×10−6 6.3×10−6 3.825 4.032

Realized Yield Variances Realized Yield Covariances

Maturity 2-year 5-year 10-year (2,5)-year (2,10)-year (5,10)-year

Model 0.285 0.205 0.284 0.247 0.264 0.240

Naive 0.751 0.664 0.593 0.657 0.489 0.568

Notes: The upper panel shows root mean squared errors of model-implied against observed yield
levels. The lower panel shows root mean squared errors of model-implied conditional variances
and covariances against realized variances and covariances. These are compared to a naive model,
where errors are constructed by the realized measures subtracted their sample mean. All numbers
are reported in basis points per annum.

annum, although different samples and sampling frequencies impede a direct com-
parison. As another benchmark, I compare these measures with a naive model,
where realized variances and covariances are given by their sample mean. I observe
that the naive model results in root mean squared errors that are two to three times
larger compared with those from my model.

Figure 3.4 shows the time series of model-implied conditional against realized
variances and covariances. As expected from gauging the realized quarticity data
in Figure 3.1, the pricing errors are particularly large during the dot-com bubble
and the financial crisis. The model also does not predict the responses of realized
variances to the Federal Reserve’s mid-course correction in 1995-96. In conclusion,
prediction errors are small on average and, for the second moments, higher in peri-
ods with high realized quarticity.

Cross-Validation

The estimation sample involves six maturities of yields, but only the realized covari-
ance matrix of three of the yields. This choice allows me to cross-validate my model
by assessing the fit to variances and covariances of the yields for which realized mea-
sures are not included in the estimation. Table 3.2 shows the resulting root mean
squared errors and compares them to the naive model. I observe that my model
outperforms the naive benchmark for all but (1,3)- and (1,7)-year covariances for
which the models performance equally well.
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Figure 3.4: Realized and Model-Implied Covariance Matrix
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Table 3.2: Cross Validation

Realized Yield Variances Realized Yield Covariances

Maturity 1-year 3-year 7-year (1,3)-year (1,7)-year (3,7)-year

Model 0.374 0.401 0.617 0.442 0.370 0.441

Naive 0.509 0.633 0.751 0.437 0.374 0.547

Notes: The table shows root mean squared errors in basis points per annum of model-
implied conditional variances and covariances against realized variances and covariances for
maturities that are not included in the estimation. These are compared to a naive model,
where errors are constructed by the realized measures subtracted the sample mean.

Model-Implied Term Premium

Figure 3.5 shows the model-implied decomposition of the 10-year yield into a risk-
neutral yield, Ỹ Q=P

t,n , and a term premium. The term premium is counter-cyclical,
which is consistent with existing literature (Adrian, Crump, and Moench, 2013, Kim
and Orphanides, 2007, 2012). The term premium dynamics are, however, different
from estimates obtained in affine term structure models with constant conditional
variances and covariances. Specifically, I estimate term premia whose dynamics
are largely unrelated to the downward trend in the 10-year yield, whereas affine
models generally result in premia whose dynamics mimic those of the yields (Jardet,
Monfort, and Pegoraro, 2013, Kim and Wright, 2005, Kozicki and Tinsley, 2001).
This result is similar to Hansen (2019), who argues that the introduction of time-
varying volatility can break the strong relationship between yields and term premia.

The Role of Conditional Volatility

My model allows the conditional covariance matrix Ωt to directly impact model-
implied bond yields, risk-neutral yields, and term premia through (3.10), (3.16),
and (3.18). While it is well-established that the yield curve does not span stochastic
volatility, it is largely unexplored whether the predictable component of volatility
is spanned by the yield curve. To investigate the role of conditional volatility in the
yield curve, consider the following model-implied bond yield, risk-neutral yield, and
term premium under unspanned conditional volatility:

Ỹ UCV
t,n = − 1

n
{an + b′nXt} ,

Y Q=P,UCV
t,n = − 1

n

{
aQ=P
n + bQ=P′

n Xt

}
,

TPUCVt,n = − 1

n

{(
an − aQ=P

n

)
+
(
bn − bQ=P

n

)′
Xt

}
.
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Figure 3.5: Decomposition of the 10-Year Yield
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Notes: The figure shows how the model decomposes the 10-year yield into a risk-
neutral yield and a term premium. The decomposition is computed from the solution
for risk-neutral yields given in Theorem 3.2. Shaded areas show periods of recession
as defined by the NBER.

Table 3.3: Root Mean Squared Errors Under Unspanned Conditional Volatility

In-Sample Performance: Yield Levels

Maturity 1-year 2-year 3-year 5-year 7-year 10-year Average

Yield 0.043 0.129 0.239 0.464 0.643 0.854 0.489

Risk-Neutral Yield 0.036 0.076 0.112 0.170 0.214 0.262 0.165

Term Premium 0.012 0.062 0.147 0.339 0.501 0.698 0.383

Notes: The table shows root mean squared errors of Ỹ UCVt,n against Ỹt,n (yield), Y Q=P,UCV
t,n

against Y Q=P
t,n (risk-neutral yield), and TPUCVt,n against TPt,n (term premium). The numbers are

reported in basis points per annum.

Table 3.3 reports the root mean squared errors that incur under unspanned con-
ditional volatility assuming that my model is correctly specified. These errors are
small with an average of 0.5 basis points for yields and even smaller for risk-neutral
yields and term premia. Thus, the linear impact of conditional volatility on the yield
curve is small.
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Table 3.4: Rolling Forecasting Performance

Realized Yield Variances Realized Yield Covariances

Maturity 1-year 5-year 10-year (1,5)-year (1,10)-year (5,10)-year

Horizons:

1-month 0.658 0.731 0.775 0.729 0.859 0.785

6-month 0.666 0.794 0.889 0.752 0.891 0.878

12-month 0.677 0.881 0.925 0.786 0.933 0.976

Notes: The table shows the out-of-sample root mean squared errors of my model relative to
the naive model, where errors are constructed by the realized measures subtracted their sample
mean. Forecasts are constructed by re-estimating the model over a rolling window. The window
length is 20 years resulting in the test sample from January 2010 to August 2019.

3.4.4 Forecasting the Realized Covariance Matrix

One advantage of a model for both levels and the realized covariance matrix is that it
can generate multi-step ahead forecasts of the realized covariance matrix. I evaluate
the ability of my model to produce reliable forecasts by a rolling forecasting exercise.
Thus, I re-estimate mymodel over a rolling windowwith a length of 20 years, hence,
the out-of-sample forecasting performance is tested on the sample from January
2010 to August 2019. I compare the performance of the model to the naive model
that estimates realized variances and covariances by the sample average over the
rolling sample. Root mean squared errors relative to those of the naive model are
shown in Table 3.4 for forecasting horizons of 1, 6, and 12 months. Numbers lower
than one indicate that my model forecasts are more precise than the rolling sample
average. The table shows that my model uniformly outperforms the naive forecasts
with root mean squared errors that are up to 35 percent lower.

3.4.5 Risk-Neutral versus Option-Implied Volatility

My model implies a risk-neutral covariance matrix given by (3.17). In this section,
I compare this model-implication with implied volatilities from prices of options on
Treasury bonds. This exercise can showwhether the risk-neutral dynamics extracted
from the Treasury bond market generalize to the broader fixed-income market.

Specifically, I compare risk-neutral volatilities (the square root of risk-neutral
variances) to the Merrill Lynch option volatility estimate (MOVE) index, which is a
weighted average of implied volatilities from one-month options on 2-year, 5-year,
10-year and 30-year Treasury bonds with weights 20, 20, 40, and 20 percent. For a
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Figure 3.6: Model-Implied Risk Neutral Volatility and the MOVE Index
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Notes: The figure shows a linear combination of model-implied risk-neutral volatil-
ities of maturities 2, 5, and 10-year with weights 20, 20, and 40 percent along with
the MOVE index.

fair comparison, I construct a corresponding weighted average of the model-implied
risk-neutral volatilities of the 2, 5, and 10-year bonds with weights 20, 20 and 60
percent.

Figure 3.6 shows that there are large differences in the variation of the se-
ries. Specifically, model-implied risk-neutral volatilities are generally lower than
the MOVE index. The average difference between the series is 33 basis points.
These findings are consistent with a negative variance risk premium as documented
in Treasury bond markets by Choi, Mueller, and Vedolin (2017) and Trolle and
Schwartz (2009).

Thus, the risk-neutral dynamics extracted from the cross-section of yield curve
levels and the realized yield covariance matrix do not describe the risk-neutral sec-
ond moments implied by derivatives. It follows that the estimated risk-neutral dy-
namics may be improved by including implied volatilities from Treasury options in
the measurement equation along with a variance risk premium. I leave this exten-
sion for further research.
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3.5 Conclusion

I present a new framework that jointly describes the term structures of interest rates
and realized volatility. My approach relies on well-established results showing that a
realized covariance matrix can be expressed by the sum of a conditional covariance
matrix and a mean-zero error. From this result, I set up a measurement equation
that relates the conditional yield covariance matrix implied by a parsimonious model
to an observed realized covariance matrix. I cast these ideas into a tractable term
structure model with a conditional covariance matrix given by a GARCH-type model.

My approach offers numerous advantages over existing methods. First, unlike
traditional continuous-time affine term structure models with stochastic volatility,
a weak relationship between bond yield levels and volatility does not obstruct the
ability of my model to match realized volatility. Second, my model can capture both
yield levels, variances, and covariances while maintaining a low-dimensional factor
structure. Third, the measurement equation for realized volatility enables compu-
tation of multi-step ahead volatility forecasts. Furthermore, my model facilitates
computation of these forecasts in closed form. Finally, despite non-linearities in the
state-space model, I show that my model can be estimated by an exact filtering
algorithm derived from the basic principles of the standard, linear Kalman filter.

I evaluate the empirical performance of my model using U.S. Treasury bond
yield data at the monthly frequency with realized volatility constructed from daily
data. The data is considered from January 1990 to August 2019. Both in- and out-of-
sample results are promising. However, I show that risk-neutral volatility dynamics
may be improved by using volatility implied from prices of options on Treasury bonds
perhaps along with a variance risk premium.

Another promising direction for future research relates to understanding the
relationship between bond yields and bond market volatility. While I find evidence
that realized volatility affects the filtered state vector, I show that the linear depen-
dence between bond yields and bond market volatility is weak. Therefore, it is likely
that volatility is priced in the yield curve in a non-linear way. An understanding of
the specification and modeling of such non-linearity is warranted.
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Appendix

C.1 Proofs

C.1.1 Proof of Theorem 3.1

Lemma 3.1 Consider a vector Zt ∼ N (0, Ip). Define a p × 1 vector ξ and a p × p

symmetric matrix Ξ. Then, given that Ip − 2Ξ is positive definite,

E [exp (ξ′Zt + Z ′tΞZt)] = det (Ip − 2Ξ)−1/2 exp

(
1

2
ξ′ξ

)
.

Proof of Lemma 3.1.

E [exp (ξ′Zt + Z ′tΞZt)] =

∫ ∞
−∞

exp (ξ′z + z′Ξz) (2π)−p/2 exp

(
−1

2
z′z

)
dz

=

∫ ∞
−∞

exp (ξ′z) (2π)−p/2 exp

(
−1

2
z′ (Ip − 2Ξ) z

)
dz

= E
[
exp

(
ξ′(Ip − 2Ξ)1/2Zt

)]
det (Ip − 2Ξ)−1/2

with Zt ∼ N (0, (Ip − 2Ξ)−1). Finally,

E
[
exp

(
ξ′(Ip − 2Ξ)1/2Zt

)]
= exp

(
1

2
ξ′(Ip − 2Ξ)1/2 (Ip − 2Ξ)−1 (Ip − 2Ξ)1/2ξ

)
= exp

(
1

2
ξ′ξ

)
.

�

Proof of Theorem 3.1. Let P̃t,n denote the no-arbitrage price of a n-period bond.
Given a risk-neutral probability measure Q,

P̃t,n+1 = EQ

[
exp

(
−

n∑
i=0

Ỹt+i,1

) ∣∣∣∣∣ Xt, Xt−1, . . .

]
= EQ

[
exp

(
−Ỹt,1

)
P̃t+1,n

∣∣∣ Xt, Xt−1, . . .
]
, (C.1)

where Ỹt,1 is the yield of a one-period bond. Suppose the solution to (C.1) is given
by

P̃t,n = exp (an + b′nXt + c′nvech (Ωt)) = exp (an + b′nXt + c̃′nvec (Ωt)) , (C.2)
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where c′n = c̃′nD. Then,

P̃t,n+1 =EQ
[
exp

(
−Ỹt,1 + an + b′nXt+1 + c̃′nvec (Ωt+1)

) ∣∣∣ Xt, Xt−1, . . .
]

= exp
(
−Ỹt,1 + an + b′n(µQ + ΦQXt) + c̃′nvec (AA′ +BΩtB

′)
)

× EQ
[
exp

(
b′nΩ

1/2
t ZQ

t+1 + c̃′nvec
(
AZQ

t+1Z
Q′
t+1A

′
)) ∣∣∣ Xt, Xt−1, . . .

]
.

Next, note that c̃′nvec
(
AZQ

t+1Z
Q′
t+1A

′
)

= c̃′n(A⊗A)vec
(
ZQ
t+1Z

Q′
t+1

)
= c̃′n(A⊗A)(ZQ

t+1⊗
ZQ
t+1) = (ZQ

t+1 ⊗ Z
Q
t+1)′(A⊗ A)′c̃n = ZQ′

t+1unvec((A⊗ A)′c̃n)ZQ
t+1, where the function

unvec is defined such that unvec(vec (A)) = A for some square matrix A. Define
čn = unvec[(A⊗A)′c̃n] = unvec[(A⊗A)′E ′cn]. Then, if čn is symmetric with Ip− 2čn

positive definite, it follows from an application of Lemma 3.1 that

EQ
[
exp

(
b′nΩ

1/2
t ZQ

t+1 + c̃′nvec
(
AZQ

t+1Z
Q′
t+1A

′
)) ∣∣∣ Xt, Xt−1, . . .

]
= det (Ip − 2čn)−1/2 exp

(
1

2
b′nΩtbn

)
= det (Ip − 2čn)−1/2 exp

(
1

2
(bn ⊗ bn)′vec (Ωt)

)
.

Thus, it follows that P̃t,n+1 can be written as in (C.2) with loadings given by the
recursions in Theorem 3.1. Finally, note that čn is indeed symmetric given the re-
cursion for cn.

C.1.2 Proof of Theorem 3.3

Lemma 3.2 Consider the filtration Ft = {Zt,Zt−1, . . . ,Z1} and define et = Zt −
E[Zt|Ft−1]. Then, for any non-degenerate random variable Xt,

E [Xt|Ft] = E [Xt|Ft−1] + E [Xt|et] . (C.3)

Proof of Lemma 3.2. Since Ft = {Ft−1, et}, E [Xt|Ft] = E [Xt|Ft−1, et]. Next, the
prediction error, et is mean zero and for s = 1, . . . , t− 1,

E [Zse′t] = E
[
Zs (Zt − E[Zt|Ft−1])′

]
= E [ZsZ ′t]− E [E [ZsZ ′t|Ft−1]] = 0

because Zs ∈ Fs ⊆ Ft−1 and by the law of iterated expectations. Thus, Ft−1-
measurable processes are uncorrelated with et. It follows that E [Xt|Ft−1, et] =

E [Xt|Ft−1] + E [Xt|et].
�
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Proof of Theorem 3.3. LetMt denote a vector of measurements observed at time t:
Mt = [Y ′t , vech (RVt)

′]′ and denote by m the dimension ofMt, i.e., m = N + (N +

1)/2. Then, the measurement equations can be written as

Mt =

 Yt

vech (RVt)

 =

a
α

+

 b

0NRV×p

Xt +

c
β

 vech (Ωt) +

εYt

εRVt

 ,

= A+ BXt + Cvech (Ωt) + εt,

where A = (a′, α′)′, B = (b′,0′NRV×p)
′, C = (c′, β′)′, and NRV is the number of mea-

surements in the measurement equation for the realized covariance matrix. Note
that εt ∼ (0, Rt) with R

−1/2
t εt i.i.d.

The best mean-squared prediction at time t, M̂t|t−1, is given by

M̂t|t−1 = A+ BE [Xt|Ft−1] + CE [vech (Ωt) |Ft−1]

= A+ BX̂t|t−1 + Cvech
(

Ω̂t|t−1

)
. (C.4)

Given the autoregressive structure of Xt and Ωt, the best predictions of these vari-
ables are easily derived by

X̂t|t−1 = E[Xt|Ft−1] = µ+ ΦE[Xt−1|Ft−1] = µ+ ΦX̂t−1|t−1, (C.5)

vech
(

Ω̂t|t−1

)
= E[vech (Ωt) |Ft−1] = vech (CC ′ + AA′) + Ψvech

(
Ω̂t−1|t−1

)
,

where Ψ = E(B ⊗B)D. I use Lemma 3.2 to derive the filtered state vector, X̂t|t:

X̂t|t = E[Xt|Ft] = E[Xt|Ft−1] + E[Xt|Mt − M̂t|t−1] = X̂t|t−1 + E[Xt|Mt − M̂t|t−1].

(C.6)

It follows from (C.5) that X̂t|t−1 is linear if X̂t−1|t−1 is linear. The second term in
(C.6) is a best linear predictor if there exist a Γ ∈ Rp×m such that

E[Xt|Mt − M̂t|t−1] = Γ
(
Mt − M̂t|t−1

)
(C.7)

and [
Xt − Γ

(
Mt − M̂t|t−1

)]
⊥
(
Mt − M̂t|t−1

)
.

Then,

E
{[
Xt − Γ

(
Mt − M̂t|t−1

)](
Mt − M̂t|t−1

)′}
= 0p×m

⇔ Γ = E
[
Xt

(
Mt − M̂t|t−1

)′]
S−1
t|t−1, (C.8)
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where St|t−1 = E
[(
Mt − M̂t|t−1

)(
Mt − M̂t|t−1

)′]
. From (C.6), (C.7), and (C.8),

the filtered state vector is given by

X̂t|t = X̂t|t−1 + E
[
Xt

(
Mt − M̂t|t−1

)′]
S−1
t|t−1

(
Mt − M̂t|t−1

)
. (C.9)

Using (C.4) and Zt ⊥ εt, it follows that

E
[
Xt

(
Mt − M̂t|t−1

)′]
= E

[
Xt

(
Xt − X̂t|t−1

)′]
B′ + E

[
Xtvech

(
Ωt − Ω̂t|t−1

)′]
C ′

= E
[(
Xt − X̂t|t−1

)(
Xt − X̂t|t−1

)′]
B′ + E

[(
Xt − X̂t|t−1

)
vech

(
Ωt − Ω̂t|t−1

)′]
C ′

= V X
t|t−1B′ + V X,Ω

t|t−1C
′

with V X
t|t−1 = E[(Xt − X̂t|t−1)(Xt − X̂t|t−1)′] and V x,Ω

t|t−1 = E[(Xt − X̂t|t−1)vech(Ωt −
Ω̂t|t−1)′]. Defining the Kalman gain for Xt, KX

t , as in Theorem 3.3 completes the
derivation of the filtered states X̂t|t. Analogous steps are taken to show the filtered
conditional state covariance matrix:

vech
(

Ω̂t|t

)
= E[vech (Ωt) |Ft]

= E[vech (Ωt) |Ft−1] + E[vech (Ωt) |Mt − M̂t|t−1]

= vech
(

Ω̂t|t−1

)
+KΩ

t

(
Mt − M̂t|t−1

)
with KΩ

t = (V X,Ω′

t|t−1B′ + V Ω
t|t−1C ′)S

−1
t|t−1 and V Ω

t|t−1 = E[vech(Ωt − Ω̂t|t−1)vech(Ωt −
Ω̂t|t−1)′]. Finally, the mean-squared errors follow straightforwardly.
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C.2 Parameter Estimates

Table C.1: Parameter Estimates

Estimate Standard Deviation Estimate Standard Deviation

δ0 8.380 (0.065) ΦQ
1,3 0.109 (0.038)

Φ1,1 0.999 (0.001) ΦQ
2,1 -0.004 (0.003)

Φ2,2 0.990 (0.009) ΦQ
2,2 0.984 (0.006)

Φ3,3 0.979 (0.009) ΦQ
2,3 0.003 (0.007)

C1,1 0.018 (0.017) ΦQ
3,1 -0.002 (0.008)

C2,1 -0.066 (0.038) ΦQ
3,2 -0.066 (0.013)

C2,2 0.179 (0.024) ΦQ
3,3 0.949 (0.009)

C3,1 8.20×10−14 (4.43×10−7) RY1 0.008 (0.001)

C3,2 9.59×10−7 (1.81×10−4) RY2 2.31×10−21 (3.34×10−18)

C3,3 1.44×10−4 (0.018) RY3 2.03×10−4 (1.33×10−5)

A1,1 0.044 (0.019) RY4 2.52×10−19 (1.19×10−16)

A2,2 0.154 (0.031) RY5 6.42×10−21 (7.54×10−19)

B1,1 0.762 (0.036) RY6 0.001 (1.29×10−4)

B2,2 0.615 (0.073) RRV
1 2.22×10−5 (4.29×10−6)

µQ
1 0.047 (0.086) RRV

2 6.31×10−22 (5.42×10−20)

µQ
2 0.871 (0.442) RRV

3 8.74×10−20 (5.16×10−18)

µQ
3 0.650 (0.168) RRV

4 1.05×10−6 (8.19×10−7)

ΦQ
1,1 1.007 (0.012) RRV

5 8.15×10−23 (7.99×10−21)

ΦQ
1,2 0.143 (0.090) RRV

6 1.84×10−5 (4.86×10−6)

Notes: The table shows parameter estimates and standard deviations computed by the Huber
sandwich estimator.
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