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And, as I recall, I had to take some personal

time, see my dad.

— Rust Cohle, True Detective
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INTRODUCTION. 1

Introduction

This thesis consists of three single-authored chapters on high-frequency

market microstructure. All of them are self-contained, and can be read

independently. Chapter 1 examines the extent of herd behavior in a financial

market from 2005 to 2008; in particular, whether herd selling increased

during 2007 and 2008, consistent with a stock market crash. Chapter 2

investigates how portfolio hedging can take advantage of a microstructure

measure (VPIN) of toxic order flow. Finally, Chapter 3 presents a study of

parametric estimation of this measure. In the following, concepts and state

of the art of market microstructure are reviewed, and the three chapters

are introduced.

Market microstructure is a branch of financial economics, that studies

trading mechanisms used for securities. Initial theoretical models of market

microstructure date back to the mid-seventies, and as O’Hara (1995) points

out, their relevance became clear after the crash of 1987, which revealed the

true fragility of financial markets. Under explicit trading rules, the discipline

seeks to explain the formation of prices. The standard econometrician settles

for the supply-demand paradigm, whereas models of market microstructure

provide an explanation for this emerged price.

Liquidity is a crucial concept with different interpretations. The liquidity

of a security market reflects the economic concept of elasticity, whereas

supply and demand for liquidity denote the passive and active side, respec-

tively, of the market. A strict definition of a market’s liquidity is essentially

obtained with a transformation of the observed bid-ask spread. Importantly,

models of market microstructure should feature a price-setting rule used by

the passive side of the market, resulting in a positive spread. Additionally,

the size of this spread should depend on the actions taken from the active

side of the market.

The initial framework of theoretical analyses of security market mi-

crostructure began with the class of inventory models. Common to these

models is the stochastic order flow, which may cause execution problems

for traders and/or inventory risk for the market maker. For instance, Gar-

man (1976) considers a monopolistic market maker who quotes prices and

clear trades. The focal point is to avoid failure, defined by running out
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of inventory or cash. In this setting, the specialist is exposed to the risk

stemming from random arrival of buy and sell orders1. Solving the model

leads to a positive bid-ask spread — the market maker sets the spread to

protect herself against failure. Several inventory models were subsequently

proposed but limitations of these eventually led to the rise of a new class of

models.

Information-based trading models constitute the main pillar of the

theoretical framework in this dissertation. The model by Glosten and

Milgrom (1985) is considered as one of the two cornerstones of information-

based models2. Trading is seen as a game between a market maker and

traders chosen to trade in a random sequence. Some traders only buy or

sell the asset for exogenous reasons (e.g., liquidity or hedging), whereas

the remaining group of traders are endowed with private information of

the risky asset and want to maximize expected profit. Consequently, the

learning market maker is exposed to adverse selection and sets a positive

bid-ask spread for protection.

The first chapter of this thesis analyses herding in financial markets,

which is related to mispricing and often blamed by media of instigating

large stock market trends. Formally, the phenomenon occurs when privately

informed agents trade against own information. Avery and Zemsky (1998)

contribute to this area of the literature by presenting conditions in a quote-

driven market under which herding is possible. In the spirit of Glosten

and Milgrom (1985), they consider a model with event uncertainty and

asymmetric information between traders and the price-setting market maker.

These two ingredients form the basis of a herding-hospitable environment.

Easley et al. (1996, 1997) provide the framework for fitting financial

transaction data to a fully parametric information-based model. Privately

informed agents are only present in the market on days where the funda-

mental value of the risky asset moves. They receive either good or bad news

about this change-in-value, which uniquely determines the direction of their

market orders. The model fit enables inference of the level of informed and

noise trading as well as the famous PIN measure, which has substantial

importance in the market microstructure literature.

1Arrival of these orders are modeled by independent Poisson processes.
2The other is the model of Kyle (1985).
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Inspired by the work of Avery and Zemsky (1998) and Easley et al. (1997),

Cipriani and Guarino (2014) developed a structural model of herding which

may be fitted to financial transaction data. To illustrate their methodological

innovation, they conduct an empirical study on a NYSE traded stock during

1995.

The first chapter of this dissertation contributes to the literature by

extending the model by Cipriani and Guarino (2014), allowing for the dis-

tribution of information in good and bad news to be non-symmetric. This

generalization makes it possible to separately identify the extent of herding

on the buy and sell sides of the market. The main research question of this

chapter is whether herd behavior of informed traders was more prominent

during periods associated with extreme market turbulence compared to pe-

riods of tranquility. This question is answered by an empirical investigation

of a NYSE-traded stock traded from 2005-2008, including the crash of 2008.

Compared to trading in 2005 and 2006, it is statistically significant that the

extent of herd selling increased during this crash, suggesting that rational

herd behavior provides a part of the explanation of financial crises.

The rise of high-frequency traders in recent years has challenged empiri-

cal market microstructure. As O’Hara (2015) points out, technology has

transformed markets, and trading frequencies have increased dramatically.

Markets are now fragmented, and standard trade classification algorithms

used to infer the active side of a trade are exposed to several numerical

problems, e.g., linking trades with quotes, high order cancellation rates and

quote volatility. Furthermore, high trading frequencies imply that variables

in likelihood functions of information-based models will be raised in the

power of millions and calibration becomes demanding.

Researchers and practitioners have therefore been forced to renew and

rethink models of market microstructure. Easley et al. (2012) developed the

volume-synchronized probability of informed trading (VPIN) to measure

toxicity of order flow in high-frequency markets. In contrast to the PIN

model, estimation of this new measure is nonparametric, and the metric

is updated in stochastic time measured on the volume clock. Furthermore,

Easley et al. (2012) present numerical evidence in favor of the VPIN as

predictor of liquidity-induced return volatility. Strikingly, they argue that

the VPIN anticipated the infamous Flash Crash on May 6, 2010. This work
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led to an academic controversy with Andersen and Bondarenko (2014a,b,

2015), disputing the empirical findings in the original work. Several papers

have subsequently either supported or contested the usefulness of the VPIN

as a warning signal of market turbulence.

Chapter 2 contributes to this ongoing debate with an application of the

VPIN in a new setting. From a portfolio manager’s (PM’s) point of view,

the problem of hedging a short position in the European call is investigated.

The PM rebalances her portfolio once at the end of each day using the

risk-minimizing ∆-hedge in a Heston setting, and she is expected to collect

the volatility risk premium during periods of tranquility. However, the

hedging portfolio is subject to losses on days characterized by large intraday

price movements and/or high volatility. The focal point in this chapter

is whether the VPIN metric is able to signal future losses of the portfolio.

The empirical study identifies red numbers in the hedging portfolio on days

subsequent to the bankruptcy of Lehman Brothers in 2008. The VPIN is

then computed using financial transaction data for the SPDR S&P 500

EFT (SPY), and empirical findings reveal that the metric in most cases

signals losses for the hedging portfolio. Thus, the portfolio manager may

use the VPIN to reduce losses, either by expanding her portfolio with VIX

futures and/or adjust her daily risk exposure.

Performance evaluation of the VPIN in Chapter 2 is inspired by the

computational research of Wu et al. (2013) where high VPIN readings

are classified as either true positives of false positives. Assessment of the

VPIN’s ability to predict short-term return volatility is then determined

by the corresponding false-discovery rate. One limitation in the moment

estimation of VPIN is that information in volume time is neglected. A

practitioner capable of including this component when computing the VPIN

will presumably be rewarded with a lower false-discovery rate.

Lin and Ke (2017) provide a theoretical contribution to the literature

by introducing maximum likelihood estimation of VPIN, capturing the

information embedded in volume time. The parametric framework allows

them to stress that VPIN and PIN are two different probability measures.

Moreover, the mathematical analysis indicates that moment estimation of

VPIN becomes unstable on small volume time intervals, whereas maximum

likelihood estimation generates consistent estimates of the model parameter.
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Eventually, Lin and Ke (2017) argue that their parametric estimation

method will improve the VPIN’s performance in terms of predicting return

volatility, yet no studies in the literature have conducted this experiment.

It is therefore pertinent to empirically apply the methodology by Lin and

Ke (2017) to investigate their theoretical conjectures.

The final chapter of this dissertation contributes to the literature by

conducting this study. Maximum likelihood estimation as well as the method

of moment estimation are used to compute the VPIN of SPY traded from

2007-2015. Consistent with theory, empirical findings show that the VPIN

does not approximately measure PIN, and that the moment estimation of

VPIN becomes unstable on small volume intervals. Most importantly, the

results reveal that maximum likelihood estimation of VPIN increases its

predictive power of return volatility.

In conclusion, each of the three chapters in this dissertation has their

own contribution to the literature of high-frequency market microstructure.

Furthermore, they provide results and directions for future research. The

common denominator is how information-based trading may cause large

intraday price movements. The research presented in the last two chapters

shares many common features. In particular, numerical findings in Chapter

3 can directly be used in the setting described in Chapter 2. A conceptual

difference between Chapter 1 and chapters 2-3 is the perception of infor-

mation and time in financial markets. The herding model assumes that

information arrives over a fixed unit time, whereas the VPIN represents a

new paradigm where information is measured on the volume clock. It is

believed that extending the class of information-based models to this volume

clock will improve their usefulness in markets affected by high-frequency

trading.



INTRODUCTION.6

References

Andersen, T. G. and O. Bondarenko (2014a). Reflecting on the vpin dispute. Journal of

Financial Markets 17, 53–64.

Andersen, T. G. and O. Bondarenko (2014b). Vpin and the flash crash. Journal of

Financial Markets 17, 1–46.

Andersen, T. G. and O. Bondarenko (2015). Assessing measures of order flow toxicity

and early warning signals for market turbulence*. Review of Finance 19 (1), 1–54.

Avery, C. and P. Zemsky (1998, September). Multidimensional Uncertainty and Herd

Behavior in Financial Markets. American Economic Review 88 (4), 724–748.

Cipriani, M. and A. Guarino (2014, January). Estimating a structural model of herd

behavior in financial markets. American Economic Review 104 (1), 224–51.

Easley, D., N. M. Kiefer, and M. O’Hara (1997). One day in the life of a very common

stock. Review of Financial Studies 10 (3), 805–835.

Easley, D., N. M. Kiefer, M. O’Hara, and J. B. Paperman (1996). Liquidity, information,

and infrequently traded stocks. The Journal of Finance 51 (4), 1405–1436.

Easley, D., M. Lopez de Prado, and M. O’Hara (2012, 02). Flow toxicity and liquidity in

a high frequency world. Review of Financial Studies 25 (5), 1457–1493.

Garman, M. B. (1976). Market microstructure. Journal of Financial Economics 3 (3),

257–275.

Glosten, L. R. and P. Milgrom (1985). Bid, ask and transaction prices in a specialist

market with heterogeneously informed traders. Journal of Financial Economics 14 (1),

71–100.

Kyle, A. (1985). Continuous auctions and insider trading. Econometrica 53 (6), 1315–35.

Lin, H.-W. W. and W.-C. Ke (2017). An improved version of the volume-synchronized

probability of informed trading. Critical Finance Review 6 (2), 357–376.

O’Hara, M. (1995). Market Microstructure Theory. Blackwell Publishers Cambridge,

Mass.

O’Hara, M. (2015). High frequency market microstructure. Journal of Financial

Economics 116 (2), 257–270.

Wu, K., E. W. Bethel, M. Gu, D. Leinweber, and O. Ruebel (2013, 06). A big data

approach to analyzing market volatility. Algorithmic Finance 2, 241–267.



Chapter 1

Rational Herding
During a Stock Crash

I can calculate the motions of the heavenly
bodies, but not the madness of people

— Isaac Newton
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1. Introduction

Herding behavior in which investors tend to follow the crowd of others

is often accused of instigating large stock market trends, such as asset price

bubbles and financial crises. Thus, it is pertinent to analyze whether herd

buying preceded the Great Recession, and whether herd selling contributed

to the ensuing crash. This paper’s focal point is to investigate whether

rational statistical herding is affected by the macroeconomic environment,

e.g., is herding more prominent during bubbles and crises compared to

periods of tranquility?

Rational statistical herding occurs in financial markets when informed

individuals trade against their private information in order to maximize

expected utility. Private information is modeled as receiving a noisy signal

about the unknown true value of the traded asset. The main problem of

identifying and measuring herding is that private signals are unobservable,

hence impossible to detect herd behavior with certainty. Following Cipriani

and Guarino (2014), this problem is circumvented by presenting a proba-

bilistic microstructure model in which the specific model structure allows

for defining rational herd behavior in terms of quoted bid and ask prices.

The model is fully parametric and classical maximum likelihood estimation

may be carried out using tick data as input. Model estimates are used to

draw inferences about latent private signals, allowing for measurements of

intraday herding.

Even though this methodology is tractable, it still faces several empirical

issues as new markets are transformed by technology and characterized by

higher trading frequencies (O’Hara, 2015). Classification of the direction of

trades (buy or sell) and estimation of model parameters using the number

of trades is quite challenging, if not infeasible, in high frequency market

microstructure (HFT)1. To the best of my knowledge, the only empirical

study to apply the methodology of Cipriani and Guarino (2014) is found

in the very same paper based on tick data with significantly lower trading

frequencies.

1These drawbacks of the new markets led to the development of tools applicable
for HFT research, such as bulk classification and the volume-synchronized probability of
informed trading (VPIN) developed by Easley et al. (2013, 2012).
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With this in mind, there is another question to address: Is measuring

herding meaningful when facing higher trading frequencies for the stock?

And if so, how do the empirical results relate to previous findings in the

literature? The questions raised immediately lead to this paper’s main

contributions. From the empirical perspective, model estimation and anal-

ysis of herding is carried out in financial periods with significantly higher

trading frequencies as well as different macroeconomic environments. The

theoretical contribution is to generalize the structural herding model de-

scribed by Cipriani and Guarino (2014), allowing for asymmetries in the

distribution of informed traders’ signals — this allows me to separately

identify the extent of herding on the buy and sell sides of the market.

The research backbone relies on the theory of market microstructure.

Over the past decades, theoretical market microstructure models have

gained ground in the financial and economic literature. Some models focus

on the market maker’s learning problem determining ask and bid prices

after observing the timing and sequence of trades. Two central corner-

stones in theoretical market microstructure are the models developed by

Kyle (1985) and Glosten and Milgrom (1985). The latter views trading as

a game between traders and the learning market maker who is exposed to

adverse selection caused by the presence of privately informed traders. The

theoretical paper by Avery and Zemsky (1998) considers a model, which is

a special case of the Glosten-Milgrom model. They show that herd behav-

ior arises when there is event uncertainty as well as asymmetric information

between traders and the market maker. Easley and O’Hara (1992) provide

a more structural approach where trading is repeated over several days

while Easley et al. (1997) demonstrate how to estimate this model using

financial transaction data. The model considered in the latter article is

very similar to the original PIN model proposed by Easley et al. (1996).

The concept of herding in financial markets is closely related to mar-

ket microstructure and in particular to asymmetric information according

to Bikhchandani and Sharma (2000)2. A well-known and simple exam-

ple of information-based herding in a non-financial setting is presented by

2See also some of the basic models of information-based herding and cascades by
Bikhchandani et al. (1992) and Welch (1992).
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Banerjee (1992), where privately informed agents — arriving in a random

sequence — must choose between restaurant A and restaurant B after ob-

serving the predecessors’ actions. It is shown how the first individual’s

dining choice, say restaurant A, may create an information cascade by

Bayesian reasoning, i.e. all successive individuals mimic their peers and

dine at restaurant A. In this case, herd behavior is rational and may

cause an informational inefficiency since individuals trade against private

information. Banerjee’s scenario does not fully capture trading on financial

markets where stock prices and trade imbalances move together, and prices

will thus reflect the aggregated information in the direction of trades. How-

ever, if asymmetric information is allowed between the price-setting market

maker and the traders, informed traders may decide to herd buy (sell) the

asset, which in the short run will result in a higher (lower) and increasing

(decreasing) price. Herding is associated with mis-pricing such that the

traded price deviates from the value justified by fundamentals. This is sig-

nificant when discussing and explaining reasons for financial bubbles and

crashes characterized by the price rising above respectively falling beneath

its fundamental value.

One issue of measuring herding relates to the fact that private informa-

tion is modeled by a latent variable: What is observed is the aggressor’s

side of the trade but not the reason behind this action. The majority of the

empirical herding literature is using statistical measures of trade clustering

to detect herding, which is not in the spirit of Avery and Zemsky (1998),

e.g., the reason for a high trade imbalance could be market stress3.

Fortunately, a new methodology to measure herding in financial markets

has been developed in the recent paper by Cipriani and Guarino (2014),

combining and renewing former literature on the theoretical and empirical

work on herd behavior and microstructure modeling.

3Empirical evidence of institutional herding in financial markets where investors
mimic each other has primarily been based on the LHV measure proposed by Lakon-
ishok et al. (1992). Other studies are focusing on market-wide herding where individual
stock returns are compared to overall market returns. Christie and Huang (1995) pro-
pose the CSSD-measure (cross-sectional standard deviation) to capture the extent of
herding while Hwang and Salmon (2004) introduces the HS-measure in a similar set-
ting. Finally, Chang et al. (2000) and Galariotis et al. (2015) look at the cross-sectional
absolute deviation (CSAD) and overall market returns.
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Their model is a continuation of the framework presented by Glosten

and Milgrom (1985) and Avery and Zemsky (1998) where trading is re-

peated over days, and the daily asset value is a realization of a random

variable depending on the arrival or absence of an information event prior

to trading. Trades may come from traders privately informed of the event

or from noise traders trading with exogenous motives (e.g., liquidity and

hedging). Private information is modeled by the reception of a noisy sig-

nal of the unknown asset value. Assuming that the signal has conditional

linear density functions with state-independent precision, allows Cipriani

and Guarino (2014) to define the presence of herd buying (selling) behavior

through a buying (selling) threshold depending on model parameters. In

addition, the identification of the thresholds are used to derive accurate

measures of herding. From the empirical perspective, the model described

in Cipriani and Guarino (2014) is fitted to trade data with likelihood es-

timation using a technique similar to Easley et al. (1997). Estimation

of model parameters is then used to estimate the buying and the selling

threshold, which in turn are used to estimate intraday herding. The em-

pirical study by Cipriani and Guarino (2014) focuses on the stock Ashland

Inc. traded on NYSE in 1995, and their main findings are that on average

herding occurs and causes informational inefficiencies in the market.

This paper contributes with an extension of the model by Cipriani and

Guarino (2014), motivated by the presumption that a buy and a sell or-

der convey different amounts of information. In contrast with Cipriani and

Guarino (2014), it is not assumed that the distribution of the private signal

is symmetric. Instead, it is only required that signals satisfy the reason-

able assumption 2. Under this assumption, the definition of herd buying

(selling) behavior is in equilibrium expressed through a buying (selling)

threshold for the private signal. In addition, expressions for the two equi-

librium thresholds are derived, which in general do not permit closed-form

solutions. Using standard numerical techniques, one may still solve the

two threshold-equations and thereby also estimate model parameters for

a wider range of signal distributions using the methodology from Cipriani

and Guarino (2014). Finally, it is demonstrated how model estimates may

be used to measure intraday herding depending on model parameters, the

distribution of the signal and the daily history of trades.
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The concrete assumption that signals have conditional linear densities

is appealing from a numerical point of view. Closed-form solutions for the

threshold equations are obtained implying a more robust estimation proce-

dure. This treatise specifies a model with conditional linear densities and

a state-dependent precision. As a result, the ability of processing private

information now depends on the unknown state of the world. It is then

shown that the threshold equations still permit closed-form solutions. The

likelihood ratio test may be used to determine if the conditional densities

share the same precision since the model described by Cipriani and Guar-

ino (2014) is nested in this model. Test statistics show that the precision

parameter depends on the state — the signal distribution is not symmetric.

To rehearse, the main purpose of this paper is to investigate if rational

statistical herding represent more or less of the total amount of trading

activity during financial crises compared with tranquil periods. Indārs and

Savin (2017) finds evidence of regular herding in the Moscow Exchange

during days with negative market returns and periods of turmoil (e.g., the

Financial Crisis of 2008), but their study is based on the CSAD-measure

briefly mentioned in footnote 34. To answer the main question, the empir-

ical study in this paper is concentrated on one stock, Ashland Inc., traded

on the New York Stock Exchange between 2005-2008, including a stock

crash associated with the Great Recession5. The model is estimated for

each trading year, and model fits are compared across years. The propor-

tion of trading activity stemming from informed traders with correct signals

(the PIN) is between 7.9% (2008) and 11.8% (2006). Estimates of model

parameters are used to compute public as well as private beliefs. Two ad-

vantages come out of this: (1) Identification of trading periods within each

day where herd behavior was present, and (2) compute the probability of

herding for each trading period. The results show that herd buying and

in particular herd selling increased during 2007 and 2008, consistent with

a stock market crash. In particular, on event days during the stock crash,

on average 4.9% of informed traders were herd selling, whereas 0.3% of

4Indārs and Savin (2017) also finds that extreme upward oil price movements is a
factor associated with herding towards the Moscow Exchange.

5The stock Ashland Inc. is also used in the empirical studies by Easley et al. (1997)
and Cipriani and Guarino (2014).
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informed traders were herd selling before the crash. Finally, it is shown

that herd selling behavior increased during high volatility periods in terms

of the volatility index VIX.

The rest of this paper is organized as follows. Section 2 describes the

model. Section 3 presents and solves the informed trader’s decision prob-

lem. Section 4 analyzes the concept of rational statistical herding behavior.

Measures to infer intraday herding are also derived. Section 5 considers the

problem of estimating model parameters. Section 6 describes the data used

for the empirical study while Section 7 presents the empirical findings. Sec-

tion 8 concludes.

2. The Model

This paper considers a sequential trading model of asymmetric infor-

mation. Trading of a risky asset is viewed as a game between liquid-

ity providers and position takers repeated over several days. Let d =

1, 2, ... denote trading days and introduce the filtered probability space

{Ω, P,F , (Fd)d≥1} to capture the information flow where Ω represents all

possible states of the economy, F is the corresponding σ-algebra and P is

the physical measure. Finally, (Fd)d≥1 is the σ-field generated by the value

process of the risky asset.

Asset. The risky asset has a fundamental value on day d given by

the realization of the random variable Vd depending on the state of the

world. The asset value can only change between days: Vd is revealed at

the end of trading day d and becomes common knowledge prior to trading

the next day. Assume that Vd ∈ {V H
d , V

L
d , vd−1} with V H

d > vd−1 > V L
d

where vd−1 denotes the realization of Vd−1. The σ-field (Fd)d≥1 is generated

by the process (V0, V1, V2, ...), and it is assumed that the closing price is a

P -martingale with respect to (Fd), i.e., E (Vd | Fd−1) = Vd−1 for d = 1, 2, ....

Informational Events. If Vd 6= vd−1, an information event has oc-

curred, and the event is referred to as good (bad) if Vd = V H
d (Vd = V L

d ).

Let ω ∈ {H,L} denote the state of the world during event days. Moreover,

let P (Vd 6= vd−1) = α and P (Vd = V H
d |Vd 6= vd−1) = δ. Thus, prior to

trading, α is the probability that an information event has occurred, and δ
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is the probability that this event is good. Finally, the model assumes that

information events are independently distributed across days.

Trading. Trading of the risky asset takes place over D ≥ 1 days. For

each day d = 1, 2, ..., D, let [0, T ] denote the daily trading interval. Thus,

time is continuous within days but discrete across days. Within each day d,

a sequence of traders, i = 1, 2, ..., Id, enters the market. Individual i arrives

at the random time ti ∈ [0, T ]) with a one-time opportunity to trade or

refrain from trading at quoted prices6. Assume that if i < j then ti < tj,

and there is a bijection between trades and arrival times. Let {B, S,N}
be the action space (buy, sell or no-trade), and let Xd

i ∈ {B, S,N} be the

action taken by individual i observed at time ti ∈ [0, T ] of day d. Figure 1

illustrates the structure of the observations.

Trading Day
1 2 · · · D

Time Action Time Action Time Action

0

T

0

T

0

T

· · ·

t1

t2

t3

t4

t1

t2

t3

t4

t5

t1

t2

t3

t4

t5

B

B

B

N

S

S

B

B

N

B

N

S

N

N

Figure 1: Example of the data structure.

Public History. The model structure is common knowledge among

traders and the market maker. Let hdt = {Xd
1 , ..., X

d
t } denote the publicly

available history of trades before time t + 1 of day d. Moreover, let hd

denote the complete trading history of day d. Past transaction prices are

assumed to be public.

6A trade is defined as buying or selling one unit of the stock.
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Market Maker. The model assumes a risk-neutral and competi-

tive price-setting market maker. The market maker is exposed to asym-

metric information between him and privately informed traders (see The

Traders.). Consequently, the market maker protects himself against this

adverse selection by setting a positive bid-ask spread. Let adt (bdt ) denote

the ask (bid) price at time t of day d. The assumption that the market

maker is competitive implies that

adt = min
{
a > 0

∣∣ a− E (Vd |hdt−1, X
d
t = B, a

)
= 0
}

bdt = max
{
b > 0

∣∣ E (Vd |hdt−1, X
d
t = S, b

)
− b = 0

}
.

The expectation E
(
Vd |hdt−1

)
is referred to as the model price.

Traders. Traders are placed in two groups: informed and noise. In-

formed traders are only present in the market on event days where they

have private information of the unknown asset value. Noise traders are

always present in the market, and they buy or sell with equal probability

ε/2 and refrain from trading with the remaining probability 1 − ε7. On

event days, the probability that an action stems from an informed trader

is µ ∈ (0, 1).

Public Belief. The public belief of the asset value at time t + 1 of

day d is given by P (Vd = v |hdt ) for v ∈ {V H
d , V

L
d , vd−1}. In addition, the

public expectation of the asset value at time t + 1 of day d is given by∑
v vP (Vd = v |hdt ). Let α̃t+1 := P (Vd 6= vd−1 |hdt ) and δ̃t+1 := P (Vd =

V H
d |hdt , Vd 6= vd−1) denote, respectively, the posterior probability of being

in an event day and the posterior probability that this event is good. Bayes’

formula is used to update public beliefs, e.g.,

α̃t+1 = α̃t
P
(
Xd
t |hdt−1, Vd 6= vd−1

)∑
v∈{V H

d ,V L
d ,vd−1} P

(
Vd = v |hdt−1

)
P
(
Xd
t |hdt−1, Vd = v

) .

7These traders act for exogenous motives such as liquidity reasons. The presence of
noise traders ensures that the market does not break down (Avery and Zemsky, 1998).
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Private Belief. On event days, the informed trader receives a private

noisy signal about the unknown asset value. The signal is viewed as a

realization of the random variable Zd
t with support A. The conditional

signal Zd
t |V ω

d has support Aω and a distribution given by the measure νω

with density f(·|τω, ω), ω ∈ {H,L}8. The precision parameter τω may

depend on the state ω and is interpreted as the trader’s ability to process

private information. The model also assumes that the conditional signals

are IID. Finally, let θ = {α, δ, µ, τH , τL, ε} ∈ Θ ⊂ R6 denote the model

parameter.

The signal measure ν = δνH + (1 − δ)νL is the weighted average of

the two state-dependent measures and defines the distribution of Zd
t . It

is natural to define the sequence of posterior signals measures (νt)t≥1 with

νt = δ̃tν
H + (1 − δ̃t)ν

L. The signal realization (Zd
t = z) is used to com-

pute the informed trader’s private belief of being in a good-event day,

pdt (z) := P (Vd = V H
d |hdt−1, Z

d
t = z), as well as his private expectation of the

fundamental asset value, E
(
Vd |hdt−1, Z

d
t = z

)
= V H

d p
d
t (z)+V L

d

(
1− pdt (z)

)
.

2.1. Modeling Private Signals

Private signals are by definition not observable and their distribution

is of great importance for key features of the model (e.g., impact on prices

and herding). The following example introduces the concept of bounded

and unbounded private beliefs.

2.1.1. Example: Bounded Private Beliefs

Consider a signal realization z ∈ A yielding the private belief p(z) =

P
(
Vd = V H

d |Zd
t = z

)
∈ [0, 1]. Assume first that AL = AH (i.e., no signal

realizations reveal the state of the world). As a result, the state-dependent

measures νH and νL are mutually absolutely continuous with respect to

each other, and the Radon-Nikodym derivative g = dνL

dνH
: A → (0,∞)

exists and is unique. In particular, the private belief can be expressed by

8It is in general not assumed that the two state-dependent distributions share the
same support, implying that some signals may reveal the true asset value. More tech-
nically, it is not required that νH and νL are equivalent measures, and the existence of
the Radon-Nikodym derivative of νH with respect to νL (or νL with respect to νH) is
not presumed.
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p(z) = 1/(f(z) + 1) ∈ (0, 1). Thus, neither of the two singletons {0} and

{1} is an atom for the distribution of private beliefs, but it may be case

that 0 and 1 is in A. Smith and Sørensen (2000) will in this setting say

that beliefs are bounded if {0}, {1} /∈ A and unbounded if {0}, {1} ∈ A.

If AH 6= AL and P (Zd
t ∈ AH) > 0 but P (Zd

t ∈ AL) = 0, there is positive

probability attached to a signal realization z perfectly revealing state ω =

H, i.e., p(z) = 1. In a similar way, one may construct the corresponding

case with p(z) = 0. Combining the two scenarios yields that both {0} and

{1} are now atoms for the distribution of private beliefs, and beliefs are

unbounded in the sense of Smith and Sørensen (2000). Consequently, it is

natural to divide the different types of signals into three groups: bounded,

unbounded and unbounded revealing.

With this in mind, it seems reasonable to expand the definition of

bounded and unbounded signals depending on whether the two support

sets coincide.

Definition 1. Private beliefs are said to be bounded if AL = AH . Other-

wise, beliefs are unbounded and

ν ((AH ∩ AcL) ∪ (AcH ∩ AL)) = ν ((AH ∩ AcL)) + ν ((AcH ∩ AL))

measures the level of unboundedness.

Figure 2 shows the trader’s private belief as a function of the private

signal in a setting with unbounded beliefs. Clearly, {0} and {1} are atoms

for the distribution of the private belief, which is increasing in z ∈ AL∩AH .
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Private Belief of High State
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Figure 2: A signal distribution with conditional linear densities f(z|H) = 4z − 1 and
f(z|L) = 3− 4z, implying that AH = [1/4, 1/4 +

√
1/2] and AL = [3/4−

√
1/2 , 3/4].

Let A = AH ∩ AL denote the common support of Zd
t |V H

d and Zd
t |V L

d .

The signal distribution will in the remainder of this paper be required to

satisfy the following assumption.

Assumption 2. Let z′, z′′ ∈ A and assume

i) that the interior of the common support of Zd
t |V H

d and Zd
t |V L

d is

nonempty.

ii) that the conditional signal distributions satisfy the monotone likeli-

hood ratio property: For all z′, z′′ ∈ A with z′ > z′′ it must be the case

that

f(z′|τH , H)

f(z′|τL, L)
≥ f(z′′|τH , H)

f(z′′|τL, L)
.

iii) that there exists a signal realization z? ∈ A satisfying f(z?|τH , H) =

f(z?|τL, L).
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The signal z? is called uninformative, since the informed trader’s private

expectation is unchanged after receiving z?, i.e., E(Vd |hdt−1, Z
d
t = z?) =

E(Vd |hdt−1, Vd 6= vd−1) for any trading history hdt−1. Similarly, the signal

realization z > z? (z < z?) will increase (decrease) the private expectation

and is therefore interpreted as a good (bad) signal9. Clearly, the signal’s

credibility depends on the conditional distributions, which may exhibit

important asymmetries.

Definition 3 (Symmetric Signal Distributions). The signal distribution is

symmetric if f(z′|τL, L) = f(z′′|τH , H) for all z′, z′′ ∈ A with z′ = z? − l
and z′′ = z? + l for l > 0. Otherwise, the signal distribution is asymmetric.

If the signal distribution is symmetric, the probability of receiving a

correct (or wrong) signal does not depend on the state ω. For the asym-

metric case, the confidence in the private signal is state-dependent, which

may affect the extent of herding on the buy and sell sides of the market10.

2.1.2. Example: Conditional Densities

Consider the case f(z|H) = e−z and f(z|L) = 2e−2z with AH = AL =

(0,∞) (exponential distributions). Realize that z? = log(2) and that the

signal distribution is asymmetric. Assume for simplicity that δ = 1/2, and

notice that the Radon-Nikodym of νL with respect to νH exists and is given

by g(z) = 2e−z. As a result, the signal z ∈ (0,∞) yields a private belief of

state ω = H given by

p(z) =
1

2e−z + 1

Furthermore, p(z)→ 1/3 for z → 0, p(z)→ 1 for z →∞ and p(z?) = 1/2.

9Use Bayes’ formula to see that

P (Vd = V Hd |hdt−1, z)

P (Vd = V Ld |hdt−1, z)
=
f(z|τH , H)

f(z|τL, L)

P (Vd = V Hd |hdt−1)

P (Vd = V Ld |hdt−1)
,

and the interpretation of good and bad signals follows from the monotone likelihood
ratio property.

10The informed trader is less likely to reject private information whenever he has
great faith in his signal. Intuitively, greater confidence in signals during good-event
days compared to bad-event days would imply more herd selling than herd buying in
the market.
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Signals are unbounded in the terminology of Smith and Sørensen (2000),

because {1} is included in the support for the distribution of private beliefs.

However, signals are bounded in this setting by definition 1, since not even

the most extreme signal realizations will reveal the true state of the world.

Conditional Densities and Private Belief
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Figure 3: Top panel: Two densities satisfying the monotone likelihood ratio property.
Lower panlel: The updated private belief after observing z. The uninformative signal is
given by the intersection of f(z|H) and f(z|L).

3. The Informed Trader’s Decision Problem

The informed trader’s decision problem (buy, sell or refrain from trad-

ing) is now formulated and then solved. Recall that noise traders buy and

sell one unit of the asset with equal probability (ε/2). Meanwhile, informed

traders seek to maximize expected profit using private as well as public in-

formation. The trader’s payoff depends on the realization of Vd at the end

of day d, his action taken in day d and quoted prices when he was selected

to trade. Thus, the utility function, u : {V H
d , V

L
d }×{B, S,N}×[V L

d , V
H
d ]2,

is given by
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u
(
Vd, X

d
t , a

d
t , b

d
t

)
=


Vd − adt if Xd

t = B,

bdt − Vd if Xd
t = S,

0 if Xd
t = N

.

Clearly, expected profit is positive whenever the trader’s private expec-

tation exceeds (is beneath) the ask (bid) price, and the trader will choose

to buy (sell). That is, Xd
t = B if E(Vd |hdt−1, z

d
t ) > adt , and Xd

t = S if

E[Vd |hdt−1, z
d
t ] < bdt . Whenever the private valuation is inside the bid-

ask spread, E(Vd |hdt−1, z
d
t ) ∈ [bdt , a

d
t ], the trader will refrain from trading.

Combining these observations with assumption 2 implies that the trader’s

decision problem may be expressed in terms of a buying threshold, βdt , and

a selling threshold, σdt , satisfying

βdt = inf
{
z ∈ A |E

(
Vd |hdt−1, Z

d
t = z

)
> adt

}
, (3.1)

σdt = sup
{
z ∈ A |E

(
Vd |hdt−1, Z

d
t = z

)
< bdt

}
. (3.2)

The convention βdt = supA is used if
{
z ∈ A |E

(
Vd |hdt−1, z

)
> adt

}
is

empty while σdt = inf A if
{
z ∈ A |E

(
V d |hdt−1, z

)
< bdt

}
is empty11. Sum-

marizing, the solution to the informed trader’s decision problem is given

by

Xd
t =


B if zdt ≥ βdt

S if zdt ≤ σdt

N if zdt ∈ (σdt , β
d
t )

. (3.3)

This suggests that the latent private signal (Zd
t ) may be inferred through

the observable action Xd
t , since the probability of an action taken by the

informed trader depends on βdt and σdt
12.

11When νH and νL define continuous distributions, the inequalities in (3.1)
and (3.2) become equalities, implying that E

(
Vd |hdt−1, Z

d
t = βdt

)
= adt and

E
(
Vd |hdt−1, Z

d
t = σdt

)
= bdt .

12E.g., the probability of observing Xd
t = B from the informed trader is νt

(
[βdt ,∞)

)
.
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Formulas to compute the two thresholds established by equations (3.1)

and (3.2), respectively, are given in the following proposition.

Proposition 4. The threshold-process (βdt ) is given recursively by

βdt = inf
{
z ∈ A : 0 ≤ α̃tδ̃t(1− δ̃t)∆d

t (z,B)

+ (1− α̃t)
ε

2

(
δ̃t(1− δ)f(z|τH , H)− δ(1− δ̃t)f(z|τL, L)

)}
(3.4)

while the threshold-process (σdt ) is given recursively by the equation

σdt = sup
{
z ∈ A | 0 ≥ α̃tδ̃t(1− δ̃t)∆d

t (z, S)

+ (1− α̃t)
ε

2

(
δ̃t(1− δ)f(z|τH , H)− δ(1− δ̃t)f(z|τL, L)

)}
(3.5)

with

∆d
t (z, x) = f(z|τH , H)P (Xd

t = x |hdt−1, Vd = V Ld )− f(z|τL, L)P (Xd
t = x |hdt−1, Vd = V Hd )

for z ∈ A and x ∈ {B, S,N}. If the set in (3.4) ( (3.5)) is empty, let

βdt = supA (σdt = inf A).

Proof.

See Appendix A.

Prior to trading, posterior beliefs coincide with model parameters: α̃d1 =

α and δ̃d1 = δ. In particular, βd1 and σd1 may be computed as solutions to

equations (3.4) and (3.5), respectively. After observing the action Xd
1 , α̃d2

and δ̃d2 are updated, and βd2 and σd2 may be computed. The following scheme

illustrates this iterative procedure.

Step 1 At time t = 1 equations (3.4) and (3.5) only depend on model

parameters (θ), and βd1 and σd1 are both computed.

Step 2 At time t = 2, Xd
1 is observed and the posterior probabilities α̃d2

and δ̃d2 are updated. Next, βd2 and σd2 are computed using P (Xd
2 |hd1, Vd =

V ω
d ) for ω ∈ {H,L}.

Step 3 Compute recursively the entire process of both βdt and σdt : Repeat

step 1 and step 2 for the full sequence of trades of day d.
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When νH and νL are discrete, it is not guaranteed that there exists

a signal realization βdt satisfying E
(
Vd |hdt−1, Z

d
t = βdt

)
= adt cf. equation

(3.1) (and vice versa for σdt ), and the threshold is given by the smallest

signal z ∈ A meeting the inequality E
(
Vd |hdt−1, Z

d
t = z

)
> adt . When

νH and νL are continuous distributions, the threshold βdt is the smallest

solution to

0 = α̃tδ̃
d
t (1− δ̃t)∆d

t (z, B)

+ (1− α̃dt )
ε

2

(
δ̃dt (1− δ)f(z|τH , H)− δ(1− δ̃dt )f(z|τL, L)

)
(3.6)

in z ∈ A. Similarly, σdt is the largest solution to

0 = α̃dt δ̃
d
t (1− δ̃dt )∆d

t (σ
d
t , S)

+ (1− α̃dt )
ε

2

(
δ̃dt (1− δ)f(z|τH , H)− δ(1− δ̃t)f(z|τL, L)

)
(3.7)

in z ∈ A. The two thresholds are equivalent with, respectively, the smallest

ask price and largest bid price resulting in zero expected profits for the

market maker at time t of day d.

In addition to assumption 2, two extra criteria are introduced for the

empirical study of herding: bounded private beliefs and tractability. Both

criteria are met in a special case of the reputational cheap talk game de-

scribed by Ottaviani and Sørensen (2006), where privately informed play-

ers have conditional linear densities. Let f(z|τx, x) = Cx + 2τxzx where

x ∈ {−1, 1} is the state of the world (low or high), τx ∈ (0, 1) is the

player’s ability to process information, and z ∈ [0, 1]. The constant Cx is

chosen such that f(·|τx, x) becomes a probability density.

Model Specification I. Assume that

f(z|τH , H) = 1 + τH(2z − 1) (3.8)

f(z|τL, L) = 1− τL(2z − 1) (3.9)

where τH , τL ∈ (0, 1) and z ∈ [0, 1] = AL = AH .

Model Specification II. Assume model specification I with τL = τH = τ .
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Model specification I satisfies assumption 2. In accordance with defi-

nition 1, the restriction τω ∈ (0, 1) implies that beliefs are bounded while

a state-dependent precision parameter, τω, leads to an asymmetric signal

distribution by definition 3. If the precision parameter is independent of

the state (τL = τH), model specification I coincides with the model de-

scribed by Cipriani and Guarino (2014). Finally, tractability is obtained

since solutions to the threshold-equations in proposition 4 both become

closed-form expressions.

Corollary 5. Assume model specification I. Then, βdt and σdt are given

as the smallest solution to the quadratic equation (3.10) and the largest

solution the quadratic equation (3.11), respectively

0 = Bβd
t
(θ, hdt−1)z2 + Cβd

t
(θ, hdt−1)z +Dβd

t
(θ, hdt−1) (3.10)

0 = Bσd
t
(θ, hdt−1)z2 + Cσd

t
(θ, hdt−1)z +Dσd

t
(θ, hdt−1) (3.11)

where the coefficients in the quadratic equations are given in the proof.

Proof.

See Appendix A.
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Conditional Densities for Model Specification I and II
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Figure 4: The black lines represent densities under model specification I with τH =
0.75 > 0.25 = τL. The red lines show the densities under model specification II (τ = 0.5).

4. Herd Behavior

Combining the existence of the uninformative signal z? with the buying

(selling) threshold βdt (σdt ) in proposition 4 leads to a simple definition of

herd buying (selling) behavior. As a starting point, rational herding is

defined in accordance with Avery and Zemsky (1998).

Definition 6. The informed trader is herd buying at time t of day d if

E
(
Vd |hdt−1, z

d
t

)
> adt for zdt < z? (4.1)

E
(
Vd |hdt−1

)
> vd−1 (4.2)

are both satisfied. The informed trader is herd selling at time t of day d if

E
(
Vd |hdt−1, z

d
t

)
< bdt for zdt > z? (4.3)

E
(
Vd |hdt−1

)
< vd−1 (4.4)

are both satisfied.
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Thus, the informed trader exhibits herd buying (selling) behavior if 1)

he receives a signal decreasing (increasing) his valuation of the asset prior

to trading, and then 2) the public history of trades causes both the public

and private valuation of the asset to rise (fall), and it is now profitable (in

expectation) to buy (sell) the asset.

Lemma 7. If zdt ∈ [βdt , z
?) then E(Vd |hdt−1) > vd−1. On the other hand, if

zdt ∈ (z?, σdt ] then E(Vd |hdt−1) < vd−1.

Proof.

See Appendix A.

Note that a signal realization Zd
t = zdt satisfying condition (4.1)—and

thereby also condition (4.2)—occurs with positive probability for βdt ∈
A ∩ (−∞, z?). With this in mind, the definition of herd behavior can

be rephrased in terms of the thresholds βdt and σdt and the uninformative

signal z?.

Definition 8. Herd behavior is present at time t of day d if the measure

of engaging in herding (buying or selling) is positive, that is if

βdt < z? or σdt > z?.

It is conjectured that herding occurs with probability 0 when the mea-

sure of perfectly informative signals tends toward 1, that herd buying occurs

with positive probability when AH ∩ ACL 6= ∅ and that herd selling occurs

with positive probability when AL ∩ AcH 6= ∅.

Assumption 9. Assume that 1− ε > ν1

(
(σd1 , β

d
1)
)
.

The assumption simply says that prior to trading, noise traders are more

likely to refrain from trading than informed traders are. The assumption is

reasonable (verified by model estimates) and has the following implication:

If hd1 = {N} then Xd
2 = N implies that ν1

(
(σd1 , β

d
1)
)
≥ ν2

(
(σd2 , β

d
2)
)

so

1 − ε > ν2

(
(σd2 , β

d
2)
)

by assumption 9. Or more generally, if hdt−1 =

{N, ..., N} and Xd
t = N then 1 − ε > νt+1

(
(σdt+1, β

d
t+1)
)
. This ensures



CHAPTER 1.30

that each no-trade in a consecutive sequence of no-trades in the beginning

of day d increases the probability of a buy or a sell for the informed trader

in period t+1, which has the following interpretation: The learning market

maker becomes more confident of being in a no-event day after observing

the no-trade. Consequently, it is less likely that he is exposed to adverse se-

lection due to asymmetric information, and he reduces the bid-ask spread,

or, equivalently, the distance between the buying threshold and the selling

threshold shrinks.

Lemma 10. Consider the history of trades exclusively containing no-trades.

For each no-trade, the market maker attaches lower probability to being in

an event day. That is, 1 − α̃t+1 > 1 − α̃t if hdt−1 = {N,N, ..., N} and

Xd
t = N .

Proof.

See Appendix A.

As in the models described by Avery and Zemsky (1998) and Cipriani

and Guarino (2014), the combination of asymmetric information and event

uncertainty leads to a positive probability of herd behavior. In addition,

herding can be misdirected, meaning herd buying during a bad-event day

or herd selling during a good-event day.

Proposition 11. During a trading day, herding occurs with positive prob-

ability and can be misdirected.

Proof.

See Appendix A.

4.1. Measuring Rational Statistical Herding

Recall that the informed trader will herd at time t of day d if his private

signal belongs to [βdt , z
?) (buy) or (z?, σdt ] (sell). Thus, herding at time t

on event day d can be represented by the binary variable 1[βd
t ,z

?)(Z
d
t ) +

1(z?,σd
t ](Z

d
t ). This variable is — opposite to Xd

t — by definition not ob-

served, and herd behavior cannot be detected with probability one. How-

ever, using the underlying model assumptions, accurate measures of herding

can be derived (e.g., the probability that the informed trader herd buys is

given by P (Zd
t ∈ [βdt , z

?) |hdt−1)).
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Thus, measuring herding on event days is directly related to inferring

the distribution of the latent variable Zd
t , which can be expressed by the

state-dependent distributions, and the posterior probabilities of the bad-

event and the good-event respectively:

P
(
Zd
t |hdt−1

)
=

∑
v∈{V H

d ,V L
d }

P
(
Vd = v |hdt−1, Vd 6= vd−1

)
P
(
Zd
t |Vd = v, hdt−1

)
=

∑
v∈{V H

d ,V L
d }

P
(
Vd = v |hdt−1, Vd 6= vd−1

)
P
(
Zd
t |Vd = v

)
.

(4.5)

From an econometric point of view, the informed trader’s probability of

statistical herding when he arrives at the market is not of interest. Instead,

the entire daily history of trades, hd, is used to infer the extent of herding

during day d13. At first, consider the probabilities P
(
Zd
t ∈ [βdt , z

?) |hd
)

and P
(
Zd
t ∈ (z?, σdt ] |hd

)
. The former (latter) probability is referred to as

the measure of herd buying (selling). Now, let Ψβd
t

(Ψσd
t
) denote the ratio

between the measure of herd buying (selling) and the potential measure of

herd buying (selling), that is

Ψβd
t

:=
P
(
Zd
t ∈ [βdt , z

?) |hd
)

P
(
Zd
t < z? |hd

) and Ψσd
t

:=
P
(
Zd
t ∈ (z?, σdt ] |hd

)
P
(
Zd
t > z? |hd

)
(4.6)

with Ψβd
t
,Ψσd

t
∈ [0, 1]. Using the terminology of Cipriani and Guarino

(2014), the two parameters are called the proportion of herd buyers and

the proportion of herd sellers, respectively. Finally, let Ψd
β := 1

Id

∑Id
t=1 Ψβd

t

and Ψd
σ := 1

Id

∑Id
t=1 Ψσd

t
denote the daily averages of the two ratios above.

These two parameters will be used to estimate the extent of herd buying

and herd selling behavior on the market.

13Public beliefs will converge toward 0 or 1 due to the high number of trading fre-
quencies. Especially, P

(
Zdt |hd

)
will (approximately) equal either P

(
Zdt |Vd = V Ld

)
or

P
(
Zdt |Vd = V HL

)
.
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4.1.1. Example: The Measure of Herd Buying

Consider model specification II and assume that Vd = V H
d . Note that

z? = 1/2 since f(1/2|τH , H) = f(1/2|τL, L) = 1. The measure of herd

buying at time t is given by

P
(
Zd
t ∈ [βdt , 1/2) |Vd = V H

d

)
=

∫ 1/2

βd
t

1 + τ(2z − 1)dz

= τ

(
1

4
− (βdt )2

)
+ (1− τ)

(
1

2
− βdt

)

if βdt < 1/2 and 0 otherwise. The measure of herd selling can be computed

in a similar way. Parameter values are specified such that herd buying

behavior occurs with a positive probability. Let α̃dt = δ = µ = ε = 0.5

and δ̃dt = 0.6. The parameter choice δ̃dt > δ implies that the model price

has increased during the trading day, which is a necessary condition for an

informed trader to engage in herd buying according to definition 8. Figure

5 illustrates the measure of herd buying as well as the buying threshold βdt

as a function of the precision τ .
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Figure 5: The buying threshold βdt (blue line) and the measure of herd buying behavior
(red line) as a function of the precision τ .
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Clearly, βdt is increasing in τ , whereas the measure of herd buying is

decreasing. If τ → 0 the informed trader’s signal becomes completely un-

informative, and he chooses to buy the asset since δ̃dt > δ. This observation

corresponds to βdt → 0. Notice that the probability of receiving a bad (and

a good) signal converges to 1/2 as τ → 0, and the measure of herd buying

also converges to 1/2 as τ → 0. The proportion of herd buyers, Ψβd
t
, is

obtained by multiplying γβd
t

with (0.5− 0.25τ)−1 and will as a function of

τ have the same shape as the measure of herd buying.

When τ increases, the precision of private information increases, and

the informed trader demands a higher signal realization in order to buy

the asset. This is illustrated by the probability of receiving a bad signal

conditioning on the high state

P
(
Zd
t < 0.5 |Vd = V H

d

)
=

1

2
− 1

4
τ,

which is decreasing in τ . Consequently, if τ increases so does βdt , and

the measure of signal realizations that result in herd buying behavior is

decreasing. When βdt rises above 0.5, herd buying opportunities vanishes.
Contrary to the original PIN model by Easley et al. (1996) and the

subsequent model by Easley et al. (1997), the private noisy signal does not
reveal the true asset value. Consequently, the probability of information-
based trading activity is independent of the precision of the signal in these
models. If informed traders only receive correct signals in this setting
(τ → ∞), the model boils down to the model described by Easley et al.
(1997), and the PIN is equal to PINEKO := αµ

αµ+ε(1−αµ)
14. When τ < ∞,

informed traders may receive incorrect signals or choose to herd, and there-
fore the former expression is adjusted by multiplying with the probability
of receiving a correct signal:

PIN : =
αµ

αµ+ ε(1− αµ)
·
(
(1− δ)P

(
Zdt < 0.5 |Vd = V Ld

)
+ δP

(
Zdt > 0.5 |Vd = V Hd

))
= PINEKO ·

(
1

2
+

1

4
τ

)
.

The PIN measures the proportion of trading activity from informed traders

with a correct signal, and it is obviously increasing in the precision τ .

14If τ ≥ 1 beliefs are unbounded, and the support for the conditional signal shrinks.
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5. The Likelihood

The model is fully parametric and may be fitted to data using classical

maximum likelihood estimation. Recall that θ ∈ Θ ⊂ R6 is the parameter

of interest where Θ = (0, 1)6. In this framework — and opposite to Easley

et al. (1997), where only the daily total numbers of buys, sells and no-trades

are used to infer information about model parameters — the specific order

of trades will convey information. For any trading day d, the probability

of the sequence of trades hdt = {Xd
1 , ..., X

d
t } is given recursively by

P (hdt |θ) =
t∏

s=1

P
(
Xd
s |hds−1, θ

)
. (5.1)

The value on the left-hand side in equation (5.1) is referred to as the action

probability at time t of day d. Since informational events are independent

across days, and Vd−1 is revealed prior to trading of day d, the full model

likelihood over D days is expressed by

L
(
θ|{hd}1≤d≤D

)
= P

(
{hd}1≤d≤D|θ

)
=

D∏
d=1

P (hd|θ). (5.2)

In the numerical implementation it is convenient to rewrite the estima-

tion problem in terms of the loglikelihood function, l(θ|{hd}1≤d≤D) :=

− log
(
L(θ|{hd}1≤d≤D)

)
, converting the problem of maximizing the prod-

uct of action probabilities to minimizing the sum of the log-probabilities15.

The product terms on the right-hand side of equation (5.1) are computed

using the law of total probability:

15The complexity and non-linearity of the likelihood causes several empirical issues
when estimating model parameters. The likelihood function is implemented in C++ due
to the recursive structure as well as the high trading frequencies (need for speed). The
estimation is carried out in the language R using the package Rcpp providing R-functions
and C++-classes, which offers a seamless integration of R and C++. A global optimizer is
required due the complexity of the likelihood function—solutions using general-purpose
optimization functions (based on Nelder-Mead, quasi-Newton and conjugate-gradient
algorithms) searching for a local minimum will depend on the initial parameter values.
Mullen (2014) recommends using the optimizer from the package rgenoud. In addition,
the R-package DEoptim provides a faster global optimizer (DEoptim()) based on the
differential evolution algorithm, which also shows good performance (Mullen, 2014).
The optimizer used will depend on the specific estimation problem.
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P (Xd
t |hdt−1) = P (Vd = V H

d |hdt−1)P (Xd
t |hdt−1, Vd = V H

d )

+ P (Vd = V L
d |hdt−1)P (Xd

t |hdt−1, Vd = V L
d )

+ P (Vd = vd−1 |hdt−1)P (Xd
t |hdt−1, Vd = vd−1), (5.3)

and the problem of estimating θ is then reduced to compute all conditional

probabilities on the right-hand side of equation (5.3).

The total number of trading days is used to infer the event probabilities

α and δ, while intraday observations are used to draw inference of the

remaining model parameters (µ, ε, τH , τL). Therefore, model estimation is

only sensible for a minimum of trading days, and standard deviations are

expected to be highest for estimated event probabilities.

5.1. Computing Action Probabilities

Consider again the model likelihood (5.2) given by the action prob-

abilities in (5.3). Computing all action probabilities requires computa-

tions of P (Xd
t |V ω

d = v, hdt−1) and P (Vd = v |hdt−1) for ω ∈ {H,L} and

v ∈ {V H
d , V

L
d , vd−1}. If an information event has occurred on day d, the

action Xd
t ∈ {B, S,N} can either stem from the informed trader with

probability µ, or it can come from the noise trader with probability 1− µ.

Recall the informed trader’s optimal decision is given by equation (3.3)

saying that the privately informed trader is only willing to buy or sell the

asset for signal realizations above the threshold βdt or for signal realizations

below σdt , respectively. Summarizing,

P (Xd
t = B |V ω

d , h
d
t−1) = µ

∫ 1

βd
t

f(z|τω, ω)dz + (1− µ)
ε

2
(5.4)

P (Xd
t = S |V ω

d , h
d
t−1) = µ

∫ σd
t

0

f(z|τω, ω)dz + (1− µ)
ε

2
(5.5)

for ω = H,L, and P (Xd
t = N |V ω

d , h
d
t−1) equal to the complement of the

two probabilities. If no event occurs, trading is based solely on exogenous

motives and P (Xd
t = B |Vd = vd−1, h

d
t−1) = P (Xd

t = S |Vd = vd−1, h
d
t−1) =

ε/2. Finally, the posterior event probabilities are given by Bayes’ formula



CHAPTER 1.36

P
(
Vd = v |hdt

)
=

P
(
Vd = v |hdt−1

)
P (Xd

t |hdt−1, Vd = v)∑
j∈{V H

d ,V L
d ,vd−1} P (Xd

t |hdt−1, Vd = j)P (Vd = j |hdt−1)

(5.6)

for v ∈ {V H
d , V

L
d , vd−1}. Thus, the action probability for any day d is

obtained by computing the three probabilities (5.4), (5.5) and (5.6), all

depending on the threshold-processes (βdt ) and (σdt ). Formulas for βdt and

σdt were given in proposition 4 followed by the iterative scheme to compute

the two thresholds recursively.

6. Data

Financial intraday data are retrieved from the MTAQ (monthly trades

and quotes) database. The dataset contains transactions and quotes for

stocks traded on different US stock exchanges with time stamps within a

given second. Data cleaning is essential for an accurate model calibration.

This paper follows the cleaning procedures of the MTAQ-file described

by Holden and Jacobsen (2013) and Barndorff-Nielsen et al. (2009)—see

appendix B for a description.

The empirical analysis is concentrated on the stock Ashland Inc. traded

on the New York Stock Exchange (NYSE) over the four-year period 2005-

20081617. Figure 6 shows closing prices for the stock as well as daily closing

values for the VIX. Both time series are retrieved from https://finance.

yahoo.com/18.

16As mentioned earlier, the NYSE stock Ashland Inc. is also used in the empirical
studies by Easley et al. (1997) and Cipriani and Guarino (2014).

17Only transactions stemming from NYSE are considered. More crucially, the empir-
ical study only uses quotes from NYSE based on an investigation of liquidity measure-
ment problems for the given trading period. Angel et al. (2015) report that the NYSE’s
market share in NYSE-listed stocks has decreased from 80% in 2005 to under 40% in
2008. Comparing trade locations obtained from NYSE-quotes with trade locations ob-
tained from the constructed NBBO-file (adjusted for withdrawn quotes) indicates that
NYSE-quotes are sufficient for this study.

18Closing prices for the stock are adjusted for two splits in the given period:
10000/8212 on 07/01/2005 and 511/250 on 15/05/2017.

https://finance.yahoo.com/
https://finance.yahoo.com/
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Daily Stock Prices for Ashland Inc. and VIX
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Figure 6: Daily closing prices for Ashland Inc. and the VIX from 2005 to 2010.

The trade classification algorithm proposed by Lee and Ready (1991),

which requires Level 2 tick data (transactions and quotes), is used to de-

termine the aggressor’s side of each transaction 19 20. Table 1 presents the

total numbers of trades as well as the allocation of buys and sells across

the four trading years.

19Lee-Ready algorithm: If the transaction price is above (beneath) the midpoint for
the quotes posted just before the trade, the trade is classified as a buy (sell). If the
transaction price is equal to the midpoint, the transaction price is compared with the
most recent price movement. If the price has increased (decreased), the trade is classified
as a buy (sell).

20Quotes are registered before trades and should therefore be moved ahead in time.
The delay between quotes and transactions depends on the market. Cipriani and Guar-
ino (2014) (sample from 1995) follow the suggestion by Lee and Ready (1991) and delay
posted quotes 5 seconds. Vergote (2005) suggests a 2-second delay based on an anal-
ysis of stocks traded on NYSE after 2005. Comparing trade locations (at the quote,
inside the spread and outside the spread) for different delays suggests a 1-second delay
consistent with the majority of empirical studies, cf. Holden and Jacobsen (2013).
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Table 1: SUMMARY OF TRANSACTION DATA

Trading Year Trading Days Trades Buys Sells

2005 251 490228 261227 228965
2006 251 513168 271121 242021
2007 251 446459 226624 219825
2008 253 463995 229658 234324

Description: Yearly allocations of buys and sells for the stock Ashland Inc. traded on
NYSE between 2005 and 2008. Transaction data are retrieved from MTAQ (Monthly
Trades and Quotes), and the classification of buys and sells are obtained using the
Lee-Ready algorithm.

Table 1 shows that the order imbalance (difference between buy orders

and sell orders) is positive for all trading years except 2008. Moreover,

the order imbalance is decreasing throughout the entire sample period (on

a yearly basis). The high number of trades emphasizes one important

issue discussed by O’Hara (2015): the problem of estimating the likelihood

function. Combining the speed of Bayesian learning with high trading

frequencies yields serious econometric issues. Essentially, the likelihood

function becomes rapidly flat in the parameter values when increasing the

number of daily actions, and model fitting becomes very difficult if not

infeasible.

In addition, there is the problem of classifying a no-trade action, which

has been previously addressed by Easley et al. (1997) and Cipriani and

Guarino (2014). In both model-settings, the no-trade rule is determined

by intraday trade durations (e.g., if the time between two consecutive trades

exceeds a specified limit, a no-trade action is inserted in between the two

trades). Cipriani and Guarino (2014) propose that the no-trade interval

should equal the ratio between total daily trading time (23400 seconds)

and the average number of trades across days21.

The choice of the no-trade interval in this paper is also based on the dis-

tribution of intraday trade duration times across trading years; a summary

21A trade occurred approximately every 259 seconds on average for the 1995 sample.
If the time between two consecutive trades was greater than 259 seconds and at the
same time beneath k · 259 seconds, k = 1, 2, ..., k no-trades were inserted in between
these two trades.
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of duration times for the 2008 sample is presented in internet appendix

I.A.1. For a given trading year, the no-trade interval is chosen as the av-

erage of trading duration times 2223. As a result, the percentage of buys,

sells and no-trades across years ranges from 29.6% (2007) to 30.2% (2006),

26.1% (2005) to 30.2% (2008) and 40.1% (2008) to 44.2% (2005).

7. Results

Model specifications I and II are fitted to the data described in the

previous section. As a starting point, yearly updated estimates under model

specification I are reported. Table 2 shows the results, while standard

errors of the estimates as well as estimates under model specification II are

reported in tables 10 and 11 in appendix C.

Table 2: MAXIMUM LIKELIHOOD ESTIMATES

Year α̂ δ̂ µ̂ τ̂H τ̂L ε̂ l(θ̂)

2005 0.234 0.696 0.322 0.394 0.161 0.517 933698
2006 0.376 0.695 0.320 0.416 0.077 0.536 961528
2007 0.382 0.500 0.247 0.321 0.307 0.550 824148
2008 0.299 0.319 0.300 0.444 0.330 0.567 835564

Description: Yearly updated maximum likelihood estimates under model specification
I. The last column reports log-likelihood values associated with the estimates.

The yearly updated parameter estimates show that the probability of

the occurrence of an information event ranges between 23.4% (2005) and

38.2% (2007). The estimated probability of the good information event (δ̂)

is decreasing across years, ranging between 69.6% (2005) and 30.0% (2008).

Except for 2008, δ̂ is above or equal to 50%, indicating a non-negative drift

of the stock value for those years. Furthermore, the probability that an

action is information-based (µ̂) is between 24.7% (2007) and 32.2% (2005).

22The no-trade intervals are 10 seconds for 2005 and 2006 and 12 seconds for 2007
and 2008.

23As a robustness check, the empirical analysis in section 7 has been replicated for
other choices of the no-trade interval. Even though the choice of no-trade interval has
an impact on the model calibration, the main findings about herding are not affected.
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A noise trader’s probability of buying or selling is stable across years

(between 51.7% and 56.7%) due to the choice of no-trade interval. Finally,

estimates of τL and τH suggest that the private signal distribution exhibits

important asymmetries. In particular, the direction of this asymmetry

depends on the sample period: Recall that τL and τH are interpreted as the

informed trader’s ability to benefit from private information. For instance,

in 2006 the estimated probability of receiving a bad signal (Zd
t < 0.5)

on a good-event day is 1/2 − 1/4 · 0.416 = 0.396, while the estimated

probability of receiving a good signal during a bad-event day is 0.48124.

The private signal conditioning on the bad information event is almost

completely uninformative in 2006.

According to definition 3, the signal distribution is said to be symmetric

if τL = τH . The model under specification II is nested in the model un-

der specification I, and the likelihood ratio test can be used to investigate

the hypothesis of a symmetric signal distribution. Consider the parametric

space Θ = (0, 1)6 ⊂ R6 and the subset Θ0 = (0, 1)5 ⊂ Θ. Moreover, con-

sider the hypothesis H : θ = (α, δ, µ, τH , τL, ε) ∈ Θ0. The corresponding

size of the likelihood ratio test is given by

Q =
supθ∈Θ0

L
(
θ; {hd}1≤d≤D

)
supθ∈Θ L (θ; {hd}1≤d≤D)

∈ [0, 1],

which is critical for small values25. Test sizes and corresponding P -values

are reported in table 12 in appendix C. Except for 2007, the hypothesis is

rejected for all samples at the 0.01-level, and it is statistically significant

that the signal distribution is asymmetric26. This contradicts the restric-

tion by Cipriani and Guarino (2014), where the privately informed trader’s

ability to process private information is state-independent. As a result, es-

timates under model specification I are used for the further investigation.

24Model assumptions imply that the probability of receiving incorrect signals is in
[1/4, 1/2].

25Wilks’s theorem states that the asymptotic distribution of the random variable
−2 logQ follows a χ2-distribution with 1 degree of freedom.

26Model estimates for the 2007 sample imply a test size equal to 2.85 with a corre-
sponding P -value equal to 0.09.
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Table 3 presents results of information-based trading activity where the

PIN are reported across trading years27.

Table 3: THE PROBABILITY OF INFORMATION-BASED TRADING

2005 2006 2007 2008

PIN 0.079 0.118 0.092 0.087

Description: Yearly estimates of information-based trading activity under model
specification I.

The PIN ranges between 7.9% (2005) and 11.8% (2006). Comparing

with the PIN reported by Cipriani and Guarino (2014) (12% for the 1995

sample), the major increase in trading frequencies has a negative impact on

information-based trading activity. This is mainly due to a lower fraction

of informed traders (µ) with less precise private information (τL and τH).

Finally, estimates and the history of trades are used to compute the

daily posterior beliefs ( ˆ̃αdt and ˆ̃δdt ). In addition, the two threshold-processes

(βdt ) and (σdt ) used to measure rational statistical herding are computed

from posterior beliefs.

7.1. Herding

The empirical investigation of rational statistical herding is concen-

trated on event days. The high frequency of actions implies that public

beliefs approximately converge to their true values, that is, min{α̃dId , 1 −
α̃dId} ≈ 0 and min{δ̃dId , 1− δ̃

d
Id
} ≈ 0. By construction, trading day d is clas-

sified as a good-event day if δ̃dId > K and as a bad-event day if 1− δ̃dId > K

with the arbitrary choice K = 0.9928. In particular, the number of event

days across years are consistent with model estimates in table 2 and

27The expression for the PIN is given by

PIN =
αµ

αµ+ ε(1− αµ)

(
0.5 + δ

(
τH − τL

4

)
+
τL
4

)
where the first term corresponds to the standard PIN introduced by Easley et al. (1997),
and the second term is the probability that the informed trader receives a correct signal.

28Non-reported results show that the main findings of herding are the same forK = 0.9
and K = 0.999.
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total number of trading days reported in table 129. Intuitively, herding is

observed when investors trade in the same direction over a period of time.

Figure 7 illustrates the price (δ̃dt ), the event probability (α̃dt ) and the

trade imbalance for the first 300 actions during 23/06-2008.

Price, Event Probability and Trading Imbalance for Ashland Inc. during 23/06−2008
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Figure 7: The price (dashed black line), event probability (dashed red line) and trading
imbalance (solid black line) during an event day. The upper plot shows the posterior
beliefs, while the lower plot shows the trading imbalance (difference between buys and
sells).

Figure 7 shows a positive dependence between the price (black dashed

line) and the trading imbalance (black solid line). Prior to trading, the price

is δ̂ = 0.299, which immediately drops caused by a consecutive number

of sells at the beginning of the day. The trading imbalance is constant

around trading times 50 and 90, and the price becomes constant. After

this quiet period, an increase in the trading imbalance (and thereby the

price) is observed. The event probability fluctuates more than the price

since updating δ̃dt also depends on the posterior belief α̃dt . Clearly, the

29The numbers of good-event and bad-event days are 64 and 29 for 2005, 53 and 34
for 2006, 39 and 40 for 2007 and finally 27 and 45 for 2008. Based on model estimates,
it is, for instance, expected that the 2008 sample has 0.299 · 0.319 · 253 ≈ 24 good-event
days and 51 bad-event days.
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market maker’s belief about the information event is almost 0 when the

trading imbalance is constant, while it converges to 1 after observing a

steady increase in the trading imbalance.

By definition 8, rational statistical herding is said to be present in data

whenever β̂dt < 0.5 (herd buying) or σ̂dt > 0.5 (herd selling). Consequently,

the threshold-processes are estimated using the parameter estimates re-

ported in table 2.

Buying and Selling Threshold for Ashland Inc. during 23/06−2008
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Figure 8: The blue (red) dashed line shows the buy (sell) threshold βdt (σdt ). The
uninformative signal z? = 1/2 is presented by the horizontal black line. The blue (red)
filled regions indicate the presence (and the measure) of herd buying (selling) behavior.

Figure 8 shows that herd selling behavior is present during the first 90

trades approximately. This is in accordance with figure 7, where the price

in this period is below the price prior to trading, and the trade imbalance

has decreased. Between trading times 90 and 170, the price is above the

initial level, and herd buying behavior is present. At some point, the market

maker becomes almost certain that the good information event occurred

(α̃dt ≈ 1), and the two thresholds boil down to
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βdt =
2µ+ (1− µ)ε−

√
(2µ+ (1− µ)ε)2 + 4µ

(
−µ− (1− µ) ε

2

)
2µ

σdt =
−(1− µ)ε+

√
(1− µ)2ε2 + 4µ(1− µ) ε

2

2µ
.

In particular, estimated model parameters imply that βdt > 0.5 and

σdt < 0.5—in the spirit of Avery and Zemsky (1998), herd behavior is no

longer present in data due to the absence of event uncertainty.

From now on, the empirical investigation will be concentrated on the

entire sample. Table 4 presents a summary of herding frequencies across

days for all four samples.

Table 4: SUMMARY OF HERDING FREQUENCIES

> 5% > 10% > 25% Mean Time Mean Length Length SD Max Length

2005

Herd Buy 0.02 0.01 0.00 7.85 12.56 21.51 183
Herd Sell 0.02 0.01 0.00 9.12 13.02 18.70 139

2006

Herd Buy 0.03 0.01 0.01 9.62 14.34 50.89 679
Herd Sell 0.03 0.00 0.00 10.53 11.63 19.83 183

2007

Herd Buy 0.26 0.21 0.13 40.54 36.00 137.99 1783
Herd Sell 0.21 0.18 0.10 9.65 40.55 169.09 2104

2008

Herd Buy 0.21 0.17 0.10 52.15 14.49 51.64 865
Herd Sell 0.25 0.21 0.11 17.13 23.59 80.48 1158

Description: The first three columns show the proportion of days in which the
percentage of trading periods with herd behavior was higher than 5, 10 and 25.
Column 4 reports the mean period of the day in which herd behavior first occurred,
while the last three columns report mean, standard deviation and maximum for the
number of consecutive trading periods in which herd behavior was present in data.

The left part of table 4 suggests that herding periods were most repre-

sented in data during the stock crash in 2007-2008. For instance, in 25%

(21%) of all event days in 2008, the estimate of the threshold σdt (βdt ) was

above (beneath) 0.5 in at least 5% of all trading periods, compared to 2%

(2%) of event days in 2005. The numbers reported in the last four columns

show that herding was also more pervasive during trading in 2007 and 2008.
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The mean period of the day in which herding first occurred ranges between

7.85 (2005) and 51.15 (2007) for herd buying and between 9.12 (2005) and

17.13 (2009) for herd selling30. The mean length of consecutive trading pe-

riods in which herd selling behavior was present during a trading day was

between 11.63 (2006) and 40.55 (2007)—those numbers are quite variable

according to standard deviations. Finally, a major increase in the maxi-

mum number of consecutive trading periods with herd selling behavior is

detected after 2006.
The proportion of herd buyers at time t of day d, Ψβd

t
, was briefly dis-

cussed in subsection 4.1. This proportion was defined as the ratio between
the measure of herd buying and the potential measure of herd buying

Ψβd
t

=
P
(
Zdt ∈ [βdt , 1/2) |hd

)
P
(
Zdt < 1/2 |hd

)
=

(
δ̃dt τH − (1− δ̃dt )τL

) (
1
4 − (βdt )2

)
+
(
δ̃dt (1− τH) + (1− δ̃dt )(1 + τL)

) (
1
2 − β

d
t

)(
δ̃dt τH − (1− δ̃t)τL

)
1
4 +

(
δ̃dt (1− τH) + (1− δ̃dt )(1 + τL)

)
1
2

if βdt < 1/2 and 0 otherwise31. The proportion of herd buyers of day d

is then computed by the daily average of Ψβd
t
, t = 1, 2, ..., using model

estimates. Let Ψd,y
β (Ψd,y

σ ) denote the proportion of herd buyers (sellers) of

day d in year y ∈ {2005, ..., 2008}. Table 5 presents estimates (averages) of

the proportion of herders for each trading year32.

30For instance, based on the choice of the no-trade interval, herd selling behavior was
on average present in data after one and a half minutes of trading during a trading day
in 2007.

31The proportion of herd sellers at time t of day d is given by

Ψσd
t

=

(
δ̃dt τH − (1− δ̃dt )τL

) (
(σdt )2 − 1

4

)
+
(
δ̃dt (1− τH) + (1− δ̃dt )(1 + τL)

) (
σdt − 1

2

)(
δ̃dt τH − (1− δ̃dt )τL

)
3
4 +

(
δ̃dt (1− τH) + (1− δ̃dt )(1 + τL)

)
1
2

if σdt > 1/2 and 0 otherwise.
32The average of the daily proportion of herders is not equal to the total average

of proportion of herders due to the differing number of trades within days. However,
non-reported results show that the two averages are almost identical.
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Table 5: SUMMARY OF PROPORTION OF HERDERS

Event Days Good-Event Days Bad-Event Days

Average SD Max Average Average

2005

Herd Buy 0.004 0.011 0.089 0.003 0.010
Herd Sell 0.003 0.010 0.081 0.002 0.008

2006

Herd Buy 0.006 0.033 0.308 0.009 0.001
Herd Sell 0.002 0.006 0.054 0.002 0.002

2007

Herd Buy 0.055 0.130 0.629 0.069 0.039
Herd Sell 0.053 0.140 0.649 0.012 0.098

2008

Herd Buy 0.035 0.104 0.556 0.048 0.027
Herd Sell 0.046 0.111 0.536 0.044 0.048

Description: Yearly estimates of the proportion of herd buyers and the proportion of
herd sellers. The left part of the table reports the average, standard deviation and
maximum for all event days. The last two columns show the average during
good-event days and bad-event days, respectively.

The left part of table 5 shows that on average, the proportion of herd

buyers ranges between 0.4% (2004) and 5.5% (2007) across years, while

the proportion of herd sellers is between 0.2% (2006) and 5.3% (2007).

In particular, both the proportion of herd buyers and the proportion of

herd sellers are highest during trading periods in 2007 and 2008, but vary

considerably across days (e.g., for 2008 the standard deviation of the pro-

portion of herd sellers was 14%, while the maximum was 64.9%). The two

last columns reporting the proportion of herders on good-event days and

bad-event days indicate that misdirected herding occurs. For instance, the

proportion of herd sellers was 4.4% on good-event days in 2008.

For further comparison of the extent of herding between trading years,

the log-transformation of the proportion of herders is considered, log(Ψd,y
β )

and log(Ψd,y
σ ), with d = 1, 2, ...Dy and y = 2005, ..., 200833. It is then

33The study is then restricted to event days where the proportion of herd buyers and
the proportion of herd sellers were positive. The log-samples for the proportion of herd
buyers and the proportion of herd sellers then represent 89% and 82%, respectively, of
the original samples. This also shows that the majority of event days are associated
with herding.
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assumed that the level of log-proportion of herders is the same within years

but may differ across years, which is modeled with the linear factor model

(model assumptions are discussed and accepted in internet appendix I.A.2).

More specifically, for the log-proportion of herd sellers it is assumed that

log
(
Ψd,y
σ

)
= γy + εd,y (7.1)

for d = 1, ..., Dy, y = 2005, ..., 2008 and εd,y ∼ N (0,Σ) where

ε1,2005, ..., εD,2008 are independently distributed. This model is also assumed

for herd buyers. Table 6 reports model fits with the 2007 sample used as

reference.

Table 6: TEST STATISTICS FOR THE LOG-PROPORTION OF HERDERS (I)

(a) Herd buyers

Estimate Std. Error t value Pr(>|t|)

2007 (Intercept) -6.15 0.33 -18.74 < .01
2005 -0.67 0.44 -1.52 0.13
2006 -1.67 0.45 -3.69 < .01
2008 -0.89 0.48 -1.87 0.06

(b) Herd Sellers

Estimate Std. Error t value Pr(>|t|)

2007 (Intercept) -6.19 0.36 -17.39 < .01
2005 -0.99 0.48 -2.07 0.04
2006 -1.20 0.49 -2.46 0.01
2008 -0.20 0.49 -0.42 0.68

Description: Test statistics for the log-proportion of herd buyers (upper table) and
herd sellers (lower table) with the ”2007” group used as reference.

The first column reports estimates of the mean value across groups. For

instance, the mean value for log-proportion of herd sellers is estimated at

−6.19 for the 2007 sample and −6.19− 0.99 = −7.18 for the 2005 sample,

respectively. The exponential function of those estimates corresponds to

estimates of the median of the proportion of herders for each sample34.

34If log Ψ ∼ N
(
Ψ,Σ

)
, then Ψ is also the median of log Ψ: P

(
Ψ ≤ eΨ

)
= 0.5.
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Both subtables indicate that the proportion of herders was highest in

2007, consistent with the findings reported in table 4 and table 5 respec-

tively. For herd buyers it is only statistically significant (at the 0.01-level)

that the level of herding between 2006 and 2007 differs. However, estimates

and P -values strongly suggest that herd buying behavior was most promi-

nent in 2007. For herd sellers it is statistically significant (at the 0.05-level)

that the level of herding in 2007 differs from the levels in 2005 and 2006.

The estimate and P -value for the 2008 group indicate that the levels of

herd selling in 2007 and 2008 were close to each other.

Summarizing, herding periods within trading days were present more

frequently in 2007 and 2008 than they were in 2005 and 2006. The pro-

portion of both herd buyers and herd sellers also increased in 2007 and

2008.

7.2. Herding during the Stock Crash

Previous results provide evidence that the extent of herd selling in-

creased during and subsequent to 2007. To investigate this matter, the daily

proportions of herders, Ψd,y
β and Ψd,y

σ , d = 1, ..., Dy and y = 2005, ..., 2008,

are now placed in two groups. The first group associated with trading in

2005 and 2006 (182 event days) is labeled ”Pre-Crash,” while the second

group associated with trading in 2007 and 2008 (150 event days) is la-

beled ”Crash”35. Formally, introduce the factor p : {2005, ..., 2008} →
{”Pre-Crash”,”Crash”} with p(y) = ”Pre-Crash” for y ∈ {2005, 2006} and

p(y) = ”Crash” for y ∈ {2007, 2008} such that Ψd′,y′

β and Ψd′′,y′′

β belongs to

the same group if p(y′) = p(y′′). The further investigation is then based on

a pairwise comparison between the two periods.

Time
2005-01-02

Pre-Crash

2007-01-01

Crash

2008-12-31

35In accordance with figure 6, the entire trading year 2008 is characterized by the
stock crash, whereas 2007 contains periods associated with both the crash and less
turmoiled times. Consequently, it is natural to refer to the 2005-2006 group as ”Pre-
Crash” and the 2007-2008 group as ”Crash”. The ”Crash” period is of course arbitrary,
but non-reported results with other (reasonable) choices of this period show that the
main findings are the same.
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Table 13 and table 14 in appendix C report, respectively, herding fre-

quencies and a summary of the proportion of herders over the two peri-

ods. The findings suggest that the extent of herding was highest during

the stock crash. The nonparametric Mann-Whitney U test is used to de-

tect significant differences between two samples when the normal assump-

tion is not satisfied. Let Ψp denote a randomly selected value from group

p ∈ {PC,C} (abbreviations for the two groups) and consider the null

hypothesis P
(
ΨC > ΨPC

)
= P

(
ΨPC > ΨC

)
with alternative hypothesis

P
(
ΨC > ΨPC

)
6= P

(
ΨPC > ΨC

)
. Test statistics are reported in table 7.

Table 7: SUMMARY OF MANN-WHITNEY U TEST STATISTICS

Herd Buyers Herd Sellers

w Pr w Pr

H : Pr(ΨC > ΨPC) = Pr(ΨPC > ΨC) 14412.0 0.381 16151.0 < .01

Description: Test statistics for the proportion of herders. Test sizes (w) and
corresponding P -values for the nonparametric Mann-Whitney U test are reported.

For the proportion of herd buyers, the null hypothesis is accepted. For

the proportion of herd sellers, the hypothesis is rejected at the 0.01-level.

This suggests that only the proportion of herd sellers changed during the

stock crash.

Again, the linear model is assumed where the level of log-proportion of

herders depends on the period

log
(
Ψd,y
σ

)
= γp(y) + εd,y (7.2)

for d = 1, ..., Dy and y = 2005, ..., 2008, where εd,y ∼ N (0,Σ) and

ε1,2005, ...., εD2008,2008 are independently distributed. This model specifica-

tion may be tested against the model specified by equation (7.1) using the

statistical F -test, which strongly supports the presumption that only herd

selling increased in 2007-2008 36. Consequently, only the model fit for the

log-proportion of herd sellers is reported.

36The F -test yields a test size equal to 0.198 (4.484), with corresponding P -value
equal to 0.821 (0.012) for herd sellers (buyers).
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Table 8: TEST STATISTICS FOR THE LOG-PROPORTION OF HERDERS (I)

(a) Herd Sellers

Estimate Std. Error t value Pr(>|t|)

Pre-Crash (Intercept) -7.28 0.23 -31.87 < .001
Crash 0.98 0.33 2.93 0.004

Description: Test statistics for the log-proportion of herd sellers in 2005-2006 and
2007-2008.

The first column reporting estimates of the mean value for the two

periods (”Pre-Crash” as reference) indicates that herd selling increased

during the stock crash. The two last columns report t-test statistics of

the null hypothesis (the mean values of the two samples are equal). The

hypothesis is rejected at the 0.01-level, and the alternative hypothesis is

accepted: The log-proportion of herd sellers increased during 2007-2008,

consistent with a stock market crash.

7.3. Herding and Market Uncertainty

Finally, one last factor is presumed to be associated with herding in the

stock: market-wide uncertainty proxied by the VIX. Comparing empirical

findings of herding in the stock with the daily VIX values illustrated in

figure 6 suggests a positive dependence between herding in the stock and

the market’s expectation of volatility. To investigate this matter, the level

of daily log-proportion of herders is assumed to depend on the VIX-level.

The online Bloomberg article What History Says About Low Volatility by

Brown (2017) states that a VIX value above 0.2 must be considered high,

which is in accordance with the empirical distribution of VIX values in the

sample period 2005−200837. Therefore, the daily log-proportion of herders

is placed in the ”High VIX” group if corresponding daily VIX values were

above 0.2, and remaining values are placed in the ”Low VIX” group38.

Table 9 presents statistics for the two model fits.

37For the period 01/03/2005−12/31/2010, the median and the average of daily closing
VIX values were 0.14 and 19.0, respectively.

38Non-reported results show that the conclusion of the findings is the same when the
thresholds are equal to 0.15, 0.175 and 0.225 respectively.
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Table 9: TEST STATISTICS FOR THE LOG-PROPORTION OF HERDERS (III)

(a) Herd buyers

Estimate Std. Error t value Pr(>|t|)

High VIX (Intercept) -7.24 0.29 -24.85 < .01
Low VIX 0.38 0.35 1.08 0.28

(b) Herd Sellers

Estimate Std. Error t value Pr(>|t|)

High VIX (Intercept) -6.18 0.29 -21.26 < .01
Low VIX -0.96 0.36 -2.69 0.01

Description: Test statistics for the log-proportion of herd buyers (upper table) and
herd sellers (lower table) where the group ”High VIX” is used as reference.

The VIX-level has an opposite effect on herd buying and herd selling

respectively. During trading days with low market volatility, herd buying

increases, while herd selling decreases. However, test statistics for herd

buyers indicate that the level of herding is not affected by the VIX. This is

not the case for the log-proportion of herd sellers: It is statistically signifi-

cant (at the 0.05-level) that the log-proportion of herd sellers increased in

periods with a high VIX, suggesting that market-wide uncertainty affects

the extent of herd selling in stocks. The findings are consistent with some of

the criticisms of herding, accusing investors of trading against their private

information during tumultuous periods, which in the worst case can insti-

gate stock crashes. Such a claim is somewhat supported by the empirical

findings in table 5, reporting that the amount of misdirected herd selling

behavior was highest in 2008 — a trading year associated with extreme

uncertainty39.

8. Conclusion

The paper described a structural microstructure model in which in-

formed traders and noise traders sequentially trade one unit of a risky

asset in a financial market repeatedly over many days.

39The proportion of herd sellers was 4.4% during good-event days in 2008.
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The fundamental asset value changes on a daily basis, and the informed

trader’s action depends on the realization of a noisy private signal of the

unknown asset value. This results in asymmetric information between the

learning market maker and privately informed traders.

The market maker also faces event uncertainty, resulting in a positive

probability of intraday herding for privately informed traders. In partic-

ular, herd buying (selling) behavior may be expressed through a buying

(selling) threshold given as a function of model parameters. Inspired by

Ottaviani and Sørensen (2006), the noisy signal satisfies 1) bounded pri-

vate beliefs and 2) conditional linear density functions where the trader’s

ability to gain from private information may depend on the state of the

world. Consequently, the signal distribution exhibits asymmetries allowing

for separately identifying the extent of herding on the buy and sell sides of

the market.

Conditional linear densities are assumed to obtain tractability. The

model specification implies closed-form solutions for the two thresholds and

thereby a closed-form expression for the recursive likelihood function. The

empirical study used financial tick data for the NYSE stock Ashland Inc.

traded from 2005 to 2008, including tranquil as well as more tumultuous

periods on the stock market. Model calibrations confirm that the signal

distribution is asymmetric, and parameter estimates are used to compute

public as well as private beliefs, which in turn are used to estimate rational

statistical herding. The extent of herd behavior varies across years. In par-

ticular, herd selling behavior increased in 2007 and 2008, consistent with a

stock market crash. These findings are supported by various test statistics.

Finally, market-wide uncertainty in terms of the VIX-index is identified

as a factor associated with herd selling behavior: Informed investors were

more likely to ignore private beliefs during high volatility periods, and herd

selling behavior increased.

For future research, it will be interesting to conduct the same experi-

ment for a large number of stocks. Stock characteristics such as liquidity

may have an impact on the extent of herding in the stock. Finally, it is ap-

pealing to apply the same methodology to cryptocurrency markets, which

are associated with herding and extreme price movements.
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Appendix A Proofs

Without loss of generality, write V H
d − vd−1 = λHd > 0 and vd−1− V L

d =

λLd > 0. As a result, λLd /λ
H
d = δ/(1− δ) by the martingale assumption.

Proof of Proposition 4. First, the threshold βdt is computed (i.e., equa-
tion (3.6) is derived). The market maker’s ask price is expressed by equa-
tion (3.1). Assuming continuous state-contingent implies

E
(
Vd |hdt−1, Z

d
t = βdt

)
= E

(
Vd |hdt−1, X

d
t = B

)
⇔

P
(
Vd = V H

d |hdt−1, Z
d
t = βdt

)
− P

(
Vd = V H

d |hdt−1, X
d
t = B

)
=

δ

1− δ

(
P
(
Vd = V L

d |hdt−1, β
d
t

)
− P

(
Vd = V L

d |hdt−1, X
d
t = B

) )
, (A.1)

since λLd /λ
H
d = δ/(1−δ). Realize that equation (A.1) and equation (3.6) are

equivalent: Apply Bayes’ theorem to express the informed trader’s private
belief of the good-event by

P
(
Vd = V H

d |hdt−1, Z
d
t = βdt

)
=

f(βdt |τH , H)δ̃t

f(βdt |τH , H)δ̃t + f(βdt |τL, L)(1− δ̃t)
, (A.2)

with δ̃t = P (Vd = V H
d |hdt−1, Vd 6= vd−1) and 1− δ̃t = P (Vd = V L

d |hdt−1, Vd 6=
vd−1)). Now, use Bayes’ theorem to compute the probability of the good-
event conditional on history of trades and a potential buy order at time
t:

P (Vd = V H
d |hdt ) =

P (Xd
t = B |hdt−1, Vd = V H

d )α̃tδ̃t∑
j∈{V H ,V L,v} P

(
Xt = B |hdt−1, V = j

)
P
(
j |hdt−1

) ,
(A.3)

with α̃tδ̃t = P (V H |ht−1), α̃t(1 − δ̃t) = P (V L|ht−1) and (1 − α̃t) = P (Vd =
vd−1|ht−1). In a similar way to (A.2) and (A.3), P

(
V L|ht−1, βt

)
and P (V L|ht−1, Xt = B) are computed. To avoid notational clutter, omit
the ht−1 notation and realize that equation (A.1) can be written as

(1− δ)
(
P
(
Vd = V H

d | βdt
)
− P

(
Vd = V H

d |Xd
t = B

))
= δ

(
P
(
Vd = V L

d | βdt
)
− P

(
Vd = V L

d |Xd
t = B

))
or equivalent

0 =
f(βdt |τH , H)δ̃t(1− δ)− f(βdt |τL, L)(1− δ̃t)δ

f(βdt |τH , H)δ̃t + f(βdt |τL, L)(1− δ̃t)

− P (Xd
t = B |Vd = V Hd )α̃tδ̃t(1− δ)− P (Xd

t = B|V L)α̃t(1− δ̃t)δ
P (Xd

t = B |Vd = V Hd )α̃tδ̃t + P (Xd
t = B |Vd = V Ld )α̃t(1− δ̃t) + ε/2(1− α̃t)

.
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In particular,

0 =
(
f(βt|τH , H)δ̃t(1− δ)− f(βdt |τL, L)(1− δ̃t)δ

)
×{

P (Xd
t = B |Vd = V Hd )α̃tδ̃t + P (Xd

t = B |Vd = V Ld )α̃t(1− δ̃t) +
ε

2
(1− α̃t)

}
−
(
f(βt|τH , H)δ̃t + f(βt|τL, L)(1− δ̃t)

)
×{

P (Xd
t = B |Vd = V Hd )α̃tδ̃t(1− δ)− P (Xd

t = B |Vd = V Ld )α̃t(1− δ̃t)δ
}
.

After some manipulations, the threshold-equation is a decomposition of the
10 terms,

0 =α̃tδ̃
2
t (1− δ)f(βdt |τH , H)P (Xd

t = B |Vd = V H
d ) (A.4)

+ α̃tδ̃t(1− δ̃t(1− δ)f(βdt |τH , H)P (Xd
t = B |Vd = V L

d )

+ (1− α̃t)δ̃t(1− δ)
ε

2
f(βt|τH , H)

− α̃tδ̃tδ(1− δ̃t)f(βdt |τL, L)P (Xd
t = B |Vd = V H

d )

− α̃tδ(1− δ̃t)2f(βdt |τL, L)P (Xd
t = B |Vd = V L

d ) (A.5)

− (1− α̃t)(1− δ̃t)δ
ε

2
f(βdt |τL, L)

− α̃tδ̃2
t (1− δ)f(βdt |τH , H)P (Xd

t = B |Vd = V H
d ) (A.6)

− α̃tδ̃t(1− δ̃t)(1− δ)f(βdt |τL, L)P (Xd
t = B |Vd = V H

d )

+ α̃tδ̃tδ(1− δ̃t)f(βdt |τH , H)P (Xd
t = B |Vd = V L

d )

+ α̃tδ(1− δ̃t)2f(βdt |τL, L)P (Xd
t = B |Vd = V L

d ). (A.7)

Now, four terms cancel out: (A.4)–(A.6) and (A.5)–(A.7). In particular,

0 =α̃tδ̃t(1− δ̃t(1− δ)f(βdt |τH , H)P (Xd
t = B |hdt−1, Vd = V L

d )

+ (1− α̃t)δ̃t(1− δ)
ε

2
f(βdt |τH , H)

− α̃tδ̃tδ(1− δ̃t)f(βdt |τL, L)P (Xd
t = B |hdt−1, Vd = V H

d )

− (1− α̃t)(1− δ̃t)δ
ε

2
f(βdt |τL, L)

− α̃tδ̃t(1− δ̃t)(1− δ)f(βdt |τL, L)P (Xd
t = B |hdt−1, Vd = V H

d )

+ α̃tδ̃tδ(1− δ̃t)f(βdtH)P (Xd
t = B |hdt−1, Vd = V L

d )

=α̃tδ̃t(1− δ̃t)
{
f(βdt |τH , H)P (Xd

t = B |hdt−1, Vd = V L
d )

− f(βdt |τL, L)P (Xd
t = B |hdt−1, Vd = V H

d )
}

+ (1− α̃t)
ε

2

(
δ̃t(1− δ)f(βdt |τH , H)− δ(1− δ̃t)f(βdt |τL, L)

)
.
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The first part of proposition 4 is proved. On the other hand, using the
theoretical expression for the bid price as well as equation (3.2), equation
(3.7) is obtained

0 =α̃tδ̃t(1− δ̃t)
{
f(σdt |τH , H)P (Xd

t = S |Vd = V L
d , h

d
t−1)

− f(σdt |τL, L)P (Xd
t = S |Vd = V H

d , h
d
t−1)
}

+ (1− α̃t)
ε

2

(
δ̃t(1− δ)f(σdt |τH , H)− δ(1− δ̃t)f(σdt |τL, L)

)
. (A.8)

The proposition is proved.

Proof of Corollary 5. The corollary is proved for the general case
τL, τH ∈ (0,∞), allowing private beliefs to be unbounded. In this case, the
support Aω is chosen such that f(·|τω, ω) becomes a probability density for
ω ∈ {H,L},

AH =

{
[0, 1] if τH ≤ 1[
τH−1
2τH

,
τH−1+2

√
τH

2τH

]
if τH > 1

AL =

{
[0, 1] if τL ≤ 1[
τL+1−2

√
τL

2τL
, τL+1

2τL

]
if τL > 1

.

Let aω(τω) = infτω>0Aω and b(τω) = supτω>0Aω for ω ∈ {H,L} and realize
that

f(βdt |τH , H)P (Xd
t = B |hdt−1, Vd = V Ld )− f(βdt |τL, L)P (Xd

t = B |hdt−1, Vd = V Hd )

= −(τH + τL)µ(βdt )2 +

{
2µτHτL

(
−
(
bL(τL)2 − bH(τH)2

)
+

(
bL(τL)

τL
+
bH(τH
τH

)

+ (bL(τL)− bH(τH)
)

+ (1− µ)ε(τH + τL)

}
βdt

+

{
µ
(
−
(
τLbL(τL)2 + τHbH(τH)2

)
+ (bL(τL)− bH(τH))

+ (τLbL(τL) + τHbH(τH)) + τHτL
(
bL(τL)2 − bH(τH)2

)
− (τHbL(τL) + τLbH(τH))− τHτL (bL(τL)− bH(τH))

)
− (1− µ)

ε

2
(τH + τL)

}
,

which is recognized as a quadratic equation in βdt . In addition, see that

δ̃tt(1− δ)f(βdt |τH , H)− δ(1− δ̃dt )f(βdt |τL, L)

= (1− α̃dt )
ε

2

(
2(δτL + δ̃dt τH − δδ̃dt (τH + τL))βdt + (δ̃dt − δ − δ̃dt τH − δτL + δδ̃dt (τH + τL))

)
,

which is a linear equation in βdt . Combining the above two expressions
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implies that equation (3.6) can be written as

0 = Bβd
t
(θ, hdt−1)(βdt )2 + Cβd

t
(θ, hdt−1)βdt +Dβd

t
(θ, hdt−1),

where

Bβd
t
(θ, hdt−1) = −α̃dt δ̃dt (1− δ̃dt )µ(τH + τL),

Cβd
t
(θ, hdt−1) = α̃dt δ̃

d
t (1− δ̃dt )

{
2µτHτL

(
−
(
bL(τL)2 − bH(τH)2

)
+

(
bL(τL)

τL
+
bH(τH
τH

)

+ (bL(τL)− bH(τH)
)

+ (1− µ)ε(τH + τL)

}
+ (1− α̃dt )ε

(
δτL + δ̃dt τH − δδ̃dt (τH + τL)

)
,

Dβd
t
(θ, hdt−1) = α̃dt δ̃

d
t (1− δ̃dt )

{
µ
(
−
(
τLbL(τL)2 + τHbH(τH)2

)
+ (bL(τL)− bH(τH))

+ (τLbL(τL) + τHbH(τH)) + τHτL
(
bL(τL)2 − bH(τH)2

)
− (τHbL(τL) + τLbH(τH))− τHτL (bL(τL)− bH(τH))

)
− (1− µ)

ε

2
(τH + τL)

}
+ (1− α̃dt )

ε

2

(
δ̃dt − δ − δ̃dt τH − δτL + δδ̃dt (τH + τL))

)
.

In a similar way, starting from equation (3.7), the quadratic equation for
σdt is derived

0 = Bσd
t
(θ, hdt−1)(σdt )

2 + Cσd
t
(θ, hdt−1)σdt +Dσd

t
(θ, hdt−1),

with
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Bσd
t
(θ, hdt−1) = α̃dt δ̃

d
t (1− δ̃dt )µ(τH + τL),

Cσd
t
(θ, hdt−1) = α̃dt δ̃

d
t (1− δ̃dt )

{
2µ
(
τHτL

(
aL(τL)2 − aH(τH)2

)
− (τHaL(τL) + τLaH(τH))

+ τHτL (aH(τh)− aL(τL))
)

+ (τH + τL)(1− µ)ε

}
+ (1− α̃dt )ε

(
δτL + δ̃dt τH − δδ̃dt (τH + τL)

)
,

Dσd
t
(θ, hdt−1) = α̃dt δ̃

d
t (1− δ̃dt )

{
µ
( (
τLaL(τL)2 + τHaH(τH)2

)
+ (aH(τh)− aL(τL))

− (τLaL(τL) + τHaH(τH))− τHτL
(
aL(τL)2 − aH(τH)2

)
+ (τHaL(τL) + τLaH(τH))− τHτL (aH(τH)− aL(τL))

)
− (τH + τL)(1− µ)

ε

2

}
+ (1− α̃dt )

ε

2

(
δ̃dt − δ − δ̃dt τH − δτL + δδ̃dt (τH + τL))

)
.

In the special case τL, τH ∈ (0, 1], the expressions boil down to

Bβd
t
(θ, hdt−1) = −α̃dt δ̃dt (1− δ̃dt )µ(τL + τH),

Cβd
t
(θ, hdt−1) = α̃dt δ̃

d
t (1− δ̃dt ) {2µ (τL + τH) + (1− µ)ε (τL + τH)}

+ (1− α̃dt )ε
(
δτL + δ̃dt τH − δδ̃dt (τL + τH)

)
,

Dβd
t
(θ, hdt−1) = α̃dt δ̃

d
t (1− δ̃dt )

{
−µ (τL + τH)− (1− µ)

ε

2
(τL + τH)

}
+ (1− α̃dt )

ε

2

(
δ̃dt − δ − δ̃dt τH − δτL + δδ̃dt (τH + τL))

)
,

Bσd
t
(θ, hdt−1) = α̃dt δ̃

d
t (1− δ̃dt )µ(τL + τH),

Cσd
t
(θ, hdt−1) = α̃dt δ̃

d
t (1− δ̃dt ) {(1− µ)ε (τL + τH)}

+ (1− α̃dt )ε
(
δτL + δ̃dt τH − δδ̃dt (τL + τH)

)
,

Dσd
t
(θ, hdt−1) = α̃dt δ̃

d
t (1− δ̃dt )

{
−(1− µ)

ε

2
(τL + τH)

}
+ (1− α̃dt )

ε

2

(
δ̃dt − δ − δ̃dt τH − δτL + δδ̃dt (τL + τH))

)
.

The corollary is proved.

Proof of Lemma 10. Consider an arbitrary history of trades ht and use
Bayes’ theorem to realize that

P (Vd = v |ht) = P (Vd = v |ht−1)
P
(
Xd
t |ht−1, Vd = v

)∑
v∈{V H

d ,V L
d ,vd−1} P (Vd = v |ht−1)P (Xd

t |ht−1, Vd = v)
.
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For Xt = N , then 1− α̃t+1 > 1− α̃t if and only if

1− ε > (1− α̃t)(1− ε) + α̃t

{
δ̃t

(
µνHt

(
(σdt , β

d
t )
)

+ (1− µ)
ε

2

)
+ (1− δ̃t)

(
µνLt

(
(σdt , β

d
t )
)

+ (1− µ)
ε

2

)}
⇔

1− ε > νdt
(
(σdt , β

d
t )
)
,

which is true under assumption 9.

Proof of Proposition 11. The result is shown by contradiction for the
case of herd buying. Assume that Vd 6= vd−1 and consider an informed
trader with the bad signal Zd

t ∈ [z? − l, z?) for some l > 0. Moreover,
assume that herding occurs with probability 0 during the first K trades
and consider the first k1 + k2 < K periods of trades with Xd

t = N for
t = 1, 2, ..., k1 and Xd

t = B for t = k1 + 1, k1 + 2, ..., k1 + k2. The informed
trader’s belief is unchanged for the first k1 periods. Choose k2 and l > 0
such that

E
(
Vd |hdk1+k2−1, Z

d
k1+k2

)
> vd−1 + ϕ

for fixed ϕ > 0. By lemma 10, choose k1 sufficiently large such that

(1− α̃k1+1) > 1− ϕ ⇔ ϕ > α̃k1+1.

Now, for k1 and k1/k2 large and a fixed ϕ > 0, the following inequality is
obtained

adk1+k2
< vd−1 + ϕ = E

(
Vd |hdk1+k2−1, Z

d
k1+k2

)
,

and the trader will herd buy at time t = k1 + k2 < B. Since P (hk1+k2) > 0
due to the presence of noise traders, the probability of herd buying is
positive at time k1 + k2 < K, contradicting the assumption that herd
buying occurred with probability 0 during the first K trades.

Proof of Lemma 7. The lemma is proved for the case of herd buying
behavior. The proof for herd selling behavior is analogous.

Consider a signal zdt such that E(Vd |hdt−1, Z
d
t = zdt ) > E(Vd |hdt−1, Xt =

B) and zdt < z?. Using assumption 2 to rewrite the inequality yields that
δ̃dt > δ. Moreover, the inequality E(Vd |hdt−1) > vd−1 can be rewritten as

δ̃dt
1− δ̃dt

>
λL

λH
=

δ

1− δ
,

which is trivially satisfied when δ̃dt > δ. The lemma is proved.
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Appendix B Data Cleaning: MTAQ-File

Let a and b denote the ask price and the bid price, respectively. The

MTAQ-file is treated in line with Holden and Jacobsen (2013)40. Only

trades and quotes with time stamps inside 9:30 am - 4:00 pm41 are consid-

ered.

For trades, entries are deleted if the transaction price is equal to zero.

Corrected trades and trades with an abnormal sale condition are also re-

moved from the dataset. Finally, only transactions originating from NYSE

are used.

Only quotes with nonnormal quote conditions are considered. If the bid

price b is greater than the ask price a for the same exchange, the entry is

deleted if only both a > 0 and b > 0. If b > 0 and a = 0, the bid price is

still considered valid since the ask is withdrawn. If the spread (a − b) is

greater than 5 (dollars), the entry is deleted if only both a > 0 and b > 0. If

a > 0 and b = 0, the ask price is valid and the bid has been withdrawn from

the exchange. Finally, if the ask price or ask size equals zero or is missing,

the ask is seen as withdrawn from the exchange. The same applies for the

bid. If an exchange has two or more quotes with identical time stamps, the

last quote is considered in-force for that exchange (order is preserved even

though observations have the same time stamp). Using this approach, two

datasets for quotes are constructed. First, the NBBO (National Best Bid

and Offer) is constructed across exchanges, with one-second accuracy. The

last dataset contains only quotes from NYSE.

Trades and quotes are then matched with a one-second delay (prior

second rule), and transaction prices are compared to ask and bid prices.

The proxies for trade location at the ask/bid, inside the spread and outside

the spread are then used to assess the accuracy of the trades-and-quotes

file. Empirical findings (at the ask/bid and outside the spread) suggest to

use only quotes from the NYSE. Note: Empirical studies after 2008 should

be based on the NBBO-file due to the major decrease in NYSE’s market

share in NYSE-listed stocks, reported by Angel et al. (2015).

40A thorough description of the dataset is given in ’MONTHLY TAQ USER GIDE’:
www.nyxdata.com/doc/2552.

41The time stamps for trades and quotes are measured in seconds after midnight.

www.nyxdata.com/doc/2552
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Appendix C Empirical Findings

Table 10: STANDARD ERRORS OF ESTIMATES (MODEL SPECIFICATION I)

Year s.e.(α̂) s.e.(δ̂) s.e.(µ̂) s.e.(τ̂H) s.e.(τ̂L) s.e.(ε̂)

2005 1.52× 10−7 1.09× 10−7 2.36× 10−7 1.63× 10−7 3.28× 10−7 1.96× 10−7

2006 2.34× 10−7 6.46× 10−7 1.06× 10−6 1.45× 10−6 6.06× 10−7 1.39× 10−7

2007 6.56× 10−7 8.77× 10−7 7.48× 10−7 1.88× 10−7 8.07× 10−7 2.25× 10−7

2008 4.82× 10−6 1.32× 10−5 7.67× 10−6 7.56× 10−6 4.18× 10−6 2.40× 10−7

Description: Standard errors of the estimates reported in table 2. The numbers are
computed using the BHHH-estimator.

Table 11: MAXIMUM LIKELIHOOD ESTIMATES (MODEL SPECIFICATION II)

Year α̂ δ̂ µ̂ τ̂ ε̂ l(θ̂)

2005 0.208 0.729 0.320 0.335 0.516 933784
2006 0.412 0.743 0.318 0.283 0.533 961601
2007 0.395 0.445 0.247 0.299 0.550 824150
2008 0.289 0.344 0.281 0.350 0.568 835583

Description: Yearly maximum likelihood estimates under model specification II. The
last column shows the log-likelihood values associated with the maximum likelihood
estimates.

Table 12: LIKELIHOOD RATIO TESTS

2005 2006 2007 2008

q 171.46 147.52 2.85 38.75
Pr(> |q|) < .01 < .01 0.09 < .01

Description: The first row reports likelihood ratio test sizes for the hypothesis
H : τH = τL for each year. The second row reports corresponding P -values.
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Table 13: SUMMARY OF HERDING FREQUENCIES

> 5% > 10% > 25% Mean Time Mean Length Length SD Max Length

Pre-Crash

Herd Buy 0.03 0.01 0.01 8.68 13.40 38.37 679
Herd Sell 0.03 0.01 0.00 9.78 12.32 19.27 183

Crash

Herd Buy 0.23 0.19 0.11 46.03 21.86 91.52 1783
Herd Sell 0.23 0.19 0.11 13.62 30.00 122.01 2104

Description: The first three columns show the proportion of days in which the
percentage of trading periods with herd behavior was higher than 5, 10 and 25.
Column 4 reports the mean period of the day in which herd behavior first occurred,
while the last three columns report mean, standard deviation and maximum for the
number of consecutive trading periods in which herd behavior was present in data.

Table 14: SUMMARY OF DAILY PROPORTION OF HERDERS

Event Days Good-Event Days Bad-Event Days

Average SD Max Average Average

Pre-Crash

Herd Buy 0.005 0.024 0.308 0.005 0.004
Herd Sell 0.003 0.008 0.081 0.002 0.004

Crash

Herd Buy 0.045 0.118 0.629 0.061 0.032
Herd Sell 0.049 0.127 0.649 0.024 0.070

Description: Yearly estimates of the proportion of herd buyers and the proportion
herd sellers. The left part of the table reports the results average, standard deviation
and maximum for all event days. The last two columns show the average on
good-event days and bad-event days, respectively.

Internet Appendix

I.A.1. Duration Times and the No-Trade Interval

Let Dd
i := tdi − tdi−1 denote the duration in seconds between trades i and

i− 1 of day d. The no-trade interval is based on the empirical distribution

of the Dd
i ’s. Figure 9 shows the histogram of intratrade durations for the

2008 sample.
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Figure 9: Histogram of intraday trade durations for Ashland Inc. during 2008. The
vertical red line denotes the median of trade durations (6 seconds), whereas the blue
line denotes the average of trade durations (12.67 seconds).

Obviously, the distribution for intraday trade durations is asymmetric.

The median value is 6 seconds, and the mean value is 12.61 seconds. The

geometric mean of duration times is 5.71, suggesting that duration times

follow the log-normal distribution. The frequency of duration times may

depend on the time of the day. Table 15 aggregates the frequencies of

trades across daily trading intervals.
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Table 15: SUMMARY OF TRADE DURATIONS

Trading Hour Trades Median Mean S.D.

09:30 am-10:30 am 74425 6 11.64 16.45
10:30 am-11:30 am 63778 7 14.19 19.96
11:30 am-12:30 pm 55049 8 16.39 23.39
12:30 pm-01:30 pm 53119 8 16.90 24.52
01:30 pm-02:30 pm 62933 7 14.19 19.84
02:30 pm-04:00 pm 154684 4 8.71 12.44

Description: Frequency table of trades across trading times. The last three columns
report the median, the mean and the standard deviation of duration times,
respectively.

Clearly, trading is more frequent in the beginning and in end of the

day. Figure 10 presents a box plot of the logarithm of duration times

across trading times.
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Figure 10: Boxplot of intraday trade durations across trading hours during 2008.

I.A.2. Model Diagnostics for the Log-Proportion of Herders

In section 7, it was assumed that the log-proportion of herders followed

the linear model, with mean value depending on the trading year. Model

assumptions are now discussed with relevant diagnostic plots.
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Figure 11: MODEL DIAGNOSTICS FOR LOG-PROPORTION OF HERD BUYERS

Residual Plot for the Log−Proportion of Herd Buyers
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Description: Residual plot (upper) and QQ-plot of residuals (lower) for the
log-proportion of herd buyers.

Figure 11 shows the residual plot (standardized residuals vs. fitted val-

ues) as well as a QQ-plot for standardized residuals for the log-proportion

of herd buyers. The residual plot indicates that the variance does not

depend on mean level (variance homogeneity), while the lower plot is con-

sistent with normality. Finally, figure 12 shows diagnostic plots for the

log-proportion of herd sellers. The conclusion remains unchanged: model

assumptions are accepted.
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Figure 12: MODEL DIAGNOSTICS FOR LOG-PROPORTION OF HERD SELLERS

Residual plot for the Log−Proportion of Herd Sellers
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1. Introduction

This paper attempts to link two disjoint areas in finance, namely, high-

frequency market microstructure (HFMM) and mathematical finance. Specif-

ically, can risk tools from HFMM anticipate daily losses when hedging Eu-

ropean options and thereby improve the hedging strategy?

Market makers supplying options are exposed to two sources of risk:

adverse selection (volatility traders) and large intraday price movements

(inventory risk). To bear this risk, the market-implied volatility is typically

above the realized volatility, and trading European options results a in

nonzero volatility risk premium.

The main problem is described from the portfolio manager’s (PM’s)

point of view, with a short position in the European call. She will attempt

to collect this risk premium by engaging in dynamic delta hedging of the

underlying asset. Because of market frictions (such as transaction costs),

the hedging portfolio is rebalanced only once at the end of each trading

day. The PM is expected to reap the risk premium in periods of tranquility,

whereas the hedging portfolio is subject to losses during market turbulence

characterized by high volatility.

In mathematical finance, volatility arbitrage refers to a hedging strat-

egy that almost surely results in profit. However, the existence of such

strategies is contradicted by market data on options: The volatility is not

constant as assumed in the famous model proposed by Black and Scholes

(1973), but depends on the option’s time-to-maturity and strike level1.

More likely, volatility itself is a random process. As a result, a model true

to market data is incomplete, and it is impossible to perfectly hedge the

European call. To account for stochastic volatility and at the same time

maintain tractability, this paper assumes the option pricing model proposed

by Heston (1993). The arbitrage-free price of the option is on semi-closed

form, and derivatives (Greeks) used for hedging are computed. In com-

parison to the standard Black-Scholes ∆-hedge, the locally risk-minimizing

∆-hedge associated with the minimal-entropy martingale measure is intro-

duced to minimize risk caused by the random nature of volatility.

1These implied volatility patterns are illustrated by the smile/skew. See Cont and
Tankov (2004) for more details.
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Furthermore, the terminal hedging error generated by the model’s risk-

minimizing hedge is derived — a result Ellersgaard et al. (2017) refer to

as the fundamental theorem of derivative trading. The terminal profit-

and-loss of the hedging portfolio is random, and the option dealer is al-

ways exposed to losses when trading European options. Additionally, the

discretization of time will add uncertainty to the terminal hedging error.

With this consideration in mind, two research questions are addressed: 1)

Is it possible to implement a hedging strategy that most likely will gener-

ate profit, and 2) Is the risk-minimizing strategy superior to the standard

Black-Scholes hedge in a risk-minimizing context?

The empirical hedging experiment is conducted on 3-month at-the-

money (ATM) European options written on the S&P 500 index from 2004-

2013. Disjoint trading periods are considered, resulting in 37 hedging port-

folios, each with a short position in the option. The locally risk-minimizing

strategy is superior to the Black-Scholes ∆-hedge in terms of returns and

standard deviations. In most of cases, the PM succeeds collecting the risk

premium. However, significant losses between days are identified for one

hedging portfolio subject to extreme market turbulence on September 15,

2008, and on the following trading days. These losses are caused by high

(low) market exposure on days where the price of the underlying asset was

falling (rising). Thus, a relevant question is whether losses could be reduced

when using information from intraday patterns in the market.

This study considers the volume-synchronized probability of informed

trading (VPIN) to explore certain stock characteristics (e.g., liquidity and

volatility)2. The VPIN metric in an indicator of toxic order flow and is

best known as having sent a signal hours before the Flash Crash on May

6, 2010. Furthermore, Easley et al. (2012, 2010) present evidence that

high VPIN values signal rises in return volatility, and in continuation of

this, Easley et al. (2010, 2011) suggest that the VPIN may be used as

an instrument for volatility arbitrage. In contrast to this, Andersen and

Bondarenko (2014a,b, 2015) reject the VPIN as a good predictor of return

volatility as well as its ability to signal ensuing market turbulence.

2Easley et al. (2012) developed the VPIN as a high-frequency approximation of the
famous PIN measure introduced by Easley et al. (1996).
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Several studies have since then both defended and disputed the appli-

cability of the VPIN3. This study contributes to the literature, with the

usefulness of the VPIN being assessed from the delta hedging PM’s per-

spective.

The SPDR S&P 500 exchange-traded-fund (SPY) traded on NYSE Arca

is used to track the index (SPX). Level 1 tick data of the ETF from 2004-

2013 are used to compute the volume-synchronized probability of informed

trading. The empirical study of the VPIN is concentrated on trading pe-

riods reflecting the 3-month ATM option’s lifetime; that is, VPIN series

are computed over quarterly periods. Eventually, the VPIN series for the

trading period associated with the hedging portfolio whose P&L exhibited

large fluctuations/losses are presented.

This paper contributes to the empirical market microstructure literature

with results showing that high VPIN readings indirectly signaled impending

daily losses for this hedging portfolio. The VPIN’s ability to signal market

turbulence is evaluated with the maximum intermediate return (MIR) of

intraday prices. In particular, high MIR values with a wrong composition

of market exposure may result in losses of the hedging portfolio. However,

the VPIN is not a perfect risk tool; the metric was not able to signal all

losses (type II errors), stressing a drawback of the methodology.

In conclusion, the portfolio manager is advised to rebalance with the

risk-minimizing delta from Heston’s model. This strategy is computation-

ally tractable and superior to the standard Black-Scholes delta hedge. Fur-

thermore, the VPIN signals daily losses in the hedging portfolio and there-

fore may be used to improve the hedge. Two strategies for which the

PM can take advantage from the VPIN are discussed. The first strategy

suggests expanding the portfolio with VIX futures immediately after the

occurrence of VPIN events. This approach is supported by data, showing

that on certain days, VIX increased dramatically after VPIN events were

detected. The final strategy advises the portfolio manager to adjust the

market exposure (delta) when VPIN events occur.

3For instance, see the empirical studies by Easley et al. (2012, 2010, 2011, 2014),
Wu et al. (2013a,b) and Song et al. (2014) (supporting) or Andersen and Bondarenko
(2014a,b, 2015), Pöppe et al. (2016) and Abad et al. (2018) (disputing).
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2. Preliminary Concepts

The financial market consists of a risky asset and a risk-free asset, both

traded continuously up to some fixed time horizon T . As usual, the fil-

tered probability space (Ω,F , (Fs)0≤t≤T , P ) is introduced to capture the

information flow: Ω contains all possible states of the market, F is the

corresponding σ-algebra, P is the physical measure, and (Ft) is the σ-field

generated by the stochastic process (St)0≤t≤T , i.e., Ft = σ {Ss | 0 ≤ s ≤ t}.
In the remainder of this paper, St denotes the value of the risky asset

at time t, and is assumed to solve the stochastic differential equation

dSt = µStdt+
√
νtStdWt

where (Wt)t≥0 is a P -Brownian motion, and the volatility (
√
νt)t≥0 is a

positive process, possibly random. The risk-free asset’s value is given by

the process (Bt)0≤t≤T with dBt = rBtdt where r is constant4.

Let Φ(x) = (x−K)+ for x > 0 and some fixed constant K > 0. Then,

Φ(ST ) denotes the terminal value of the European call with maturity T

and strike price K. The arbitrage-free price at time t < T of the European

call is then given by

C(t, St, νt) = EQ

(
Bt

BT

Φ(ST ) | Ft
)

under the pricing measure Q5. It is assumed that the pricing function

C(·, ·, ·) belongs to class of C1,2,2-functions. To ease the notation, ∂t and ∂x

denote the partial derivatives with respect to the time t and the direction

x, respectively. Finally, Et(·) denotes the conditional expectation given Ft.
The remainder of this paper investigates the risk a portfolio manager

encounters with a short position in the European call, especially how to

improve the daily rebalancing in a risk-minimizing context. Suppose the

portfolio manager sells one European call with expiry T at implied volatility√
νi and wants to hedge this position using the delta of the option.

4The risk-free asset is interpreted as the money account with short rate of interest r.
5Assuming that there exists an equivalent martingale measure.
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For simplicity, consider the Black-Scholes model where (St)t≥0 follows a

geometric Brownian motion with drift µ and constant volatility
√
νt =

√
ν,

while the risk-free rate is fixed to 0. At time t, the portfolio consists of −1

European call and ∆t units of the underlying stock with ∆t ≡ ∂sC(t, St).

The money account Bt is chosen to satisfy the self-financing condition, i.e.,

the net value of this portfolio, Πh
t , is simply

Πh
t = −Ci(t, St) +Bt + ∆h

t St = 0,

where the superscript i implicitly refers to implied volatility (e.g., Ci(t, St)

is the market price of the option), whereas the superscript h emphasizes

that
√
νh is used as hedging volatility. Combining the self-financing condi-

tion, Itǒ’s formula on Ch(t, St) and the Black-Scholes pricing PDE yields

dΠh
t = dCi(t, St)− dCh(t, St) +

1

2

(
νh − ν

)
S2
t ∂ssC

h(t, St).

The terminal P&L holding this portfolio over [0, T ] is given by

P&LhT ≡
∫ T

0

dΠh
t = Ci(0, St)− Ch(0, St) +

∫ T

0

1

2

(
νh − ν

)
S2
t ∂ssC

h(t, St)dt

using the boundary conditions Ch(T, ST ) = Ci(T, ST ) = (ST −K)+. This

result is called the fundamental theorem of derivative trading (FTODT) by

Ellersgaard et al. (2017), and a more general version, where (
√
νt)t≥0 itself

is a diffusion is presented in the next section. Clearly, successful hedging in

a misspecified model depends on the relationship between actual volatility

and the hedging volatility chosen by the portfolio manager. The gamma of

the option is positive, ∂ssC
h(t, St) > 0, and the sign of the terminal hedging

error equals the sign of νh − ν. As a result, if νi > ν, volatility arbitrage

is obtained using either ν or νi as hedging volatility — in the first case,

the P&L is deterministic, whereas it becomes random for the second case6.

A numerical example of the FTODT originally produced by Wilmott and

Ahmad (2005) is illustrated in figure 1.

6Selling the option when ν < νi is in line with buy low, sell high.
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Figure 1: Ten sample paths of the geometric Brownian motion are simulated with
parameter values S0 = 100, µ = 0.1 and

√
ν = 0.1. Market parameters are r = 0.02,√

νi = 0.2, K = 100 and T = 1/4. The portfolio is rebalanced 5000 times for each
combination of sample paths and hedging volatility. Left plot: Actual volatility is used
for hedging. The terminal P&L is deterministic and equals ΠT = erT (Ci(0, ST ) −
C(0, S0)) = 1.99 using the Black-Scholes formula. Right plot: Implied volatility is used
for hedging. The terminal P&L is random but positive.

At first sight, the above example clearly suggests an advantage ob-

tained by ∆-hedging the option using either implied or actual volatility.

However, the example implicitly stresses some of the weaknesses of the

model: Volatility arbitrage is not present in the real world, which con-

tradicts the outcomes of Wilmott’s hedge example. One reason is that

the actual volatility is unknown, and it is thereby impossible to determine

whether the option is mispriced. Even if the option dealer were superior in

estimating actual volatility, the terminal hedging error could still end up

negative. The explanation is that volatility is not constant as prescribed

in a Black-Scholes world. More likely, volatility itself is a diffusion process,

and the terminal hedging error becomes random. Consequently, the option

dealer is always exposed to losses when trading European call options.
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3. The Portfolio Manager’s Hedging Model

The stochastic volatility model proposed by Heston (1993) is assumed.

That is, the bivariate process (St, νt)t≥0 satisfies the system of stochastic

differential equations

dSt = µStdt+
√
νtStdW

1
t

dνt = κ(θ − νt)dt+ σ
√
νtdW

2
t ,

where (W 1
t )t≥0 and (W 2

t )t≥0 are P -Brownian motions, possibly dependent

with correlation coefficient ρ ∈ [−1, 1]. The variance process (νt)t≥0 (CIR)

is continuous as well as non-negative under the assumption κ, θ, σ > 07.

Finally, (νt)t≥0 is mean-reverting with long-term mean θ and rate of mean-

reversion κ. The parameter σ is referred to as volatility-of-volatility.

3.1. Pricing Measures

A necessary condition for an equivalent martingale measure to exist is

µ− r
√
νt

=
√

1− ρ2γ1(t) + ργ2(t) (3.1)

where (γ(t))t≥0 is the bivariate risk premium process adapted (Ft) and

associated with the likelihood process (Lt) restricted to 0 ≤ t ≤ T 8. If

E[LT ] = 1, Girsanov’s theorem introduces an equivalent probability mea-

sure Q given by LT = dQ/dP on FT . In particular,

dWt = −γ(t)dt+ dWQ
t

where (WQ
t )t≥0 is a 2-dimensional standard Brownian motion under Q.

7In addition, the Feller condition σ2 ≤ κθ will imply that νt > 0 for t ∈ [0, T ].
8The likelihood process is given by

Lt = e
∫ t
0
−(γ1(s)dW 1

s +
∫ t
0
γ2(s)dW

2
s )− 1

2 (
∫ t
0
γ2
1(s)ds+

∫ t
0
γ2
2(s)ds).

The discounted process (Ŝt)t≥0 must be a local martingale under the pricing measure
Q requiring that (γ(t))t≥0 satisfies equation (3.1).
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Condition (3.1) is satisfied for

γmin(t) =
µ− r
√
νt
·

(√
1− ρ2

ρ

)
, (3.2)

which Poulsen et al. (2009) show is the risk premium process associated

with the minimal-entropy martingale measure. (Wong and Heyde, 2006)

prove that the proposed choice of γmin
2 (t) implies that E[L(T )] = 1. Thus,

the pricing measure Q exists, and the Q-dynamics of (St, νt)t≥0 are given

by

dSt = rStdt+
√
νtSt

(√
1− ρ2dW 1,Q

t + ρdW 2,Q
t

)
dνt = κQ

(
θQ − νt

)
dt+ σ

√
νtdW

1,Q
t

where (W 1,Q
t )t≥0 and (W 2,Q

t )t≥0 are independent standard Brownian mo-

tions under Q, κQ = κ and θQ = θ− (µ−r)ρσ
κ

; that is, the change-of-measure

generates Q-dynamics with the same parametric form as under P .

3.2. Greeks and Hedging

Let C(t, St, νt) denote the time t price of the European call with ma-

turity T and strike K. Using risk-neutral valuation, the fair price may be

expressed by

C(t, St, νt) = e−r(T−t)EQ
t

(
(ST −K)+

)
= StE

Q̃
t (1ST>K)− e−r(T−t)KEQ

t (1ST>K)

where Q̃ is given by dQ̃/dQ = (Bt/BT )/(St/ST ). If xt = logSt, the price

can be expressed by

C(t, St, νt) = Stp1(t, xt, νt)− e−r(T−t)Kp2(t, xt, νt)

where p1(t, xt, νt) and p2(t, xt, νt) denote the conditional probability at time

t < T that the option expires in-the-money under Q̃ and Q, respectively.
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Theorem 1. The expiry-in-money probabilities are given by

p1(t, xt, νt) =
1

2
+

1

π

∫ ∞
0

Re

[
e−iφ logK f̃(φ)

iφ

]
dφ (3.3)

p2(t, xt, νt) =
1

2
+

1

π

∫ ∞
0

Re

[
e−iφ logKf(φ)

iφ

]
dφ (3.4)

where Re denotes the real part of a complex number, i is the imaginary

unit, and f(φ) and f̃(φ) = f(φ − i)/f(−i) are the conditional character-

istic functions of xT under the pricing measure Q, respectively, under the

measure Q̃. Furthermore,

f(φ) = ec(φ)+d(φ)νt+iφxt (3.5)

where the functions d(·) and c(·) are given in appendix B.

Proof.
A version of the theorem is proved by Heston (1993).

Corollary 2 (Greeks). The option’s ∆ is at time t given by

∆t = ∂sC(t, St, νt) = p1(t, xt, νt) (3.6)

where the conditional probability p1 is derived in theorem 1. Moreover, the

vega of the option is given by

Vt = ∂νC(t, St, νt)

=
1

π

{
St

∫ ∞
0

Re

[
d(φ− i)e

−iφ logK f̃(φ)

iφ

]
dφ

− e−r(T−t)K
∫ ∞

0

Re

[
d(φ)

e−iφ logKf(φ)

iφ

]
dφ

}
(3.7)

where d(·) is given in appendix B.

Proof.
This well-known result is proved in appendix A.
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The ∆-hedging option dealer is investing the Q̃-probability of the European

call is in-the-money at expiry. However, this strategy does not account for

volatility risk, and it is therefore not optimal in a risk-minimizing context.

3.2.1. The Risk-Minimizing Hedge

The risk-minimizing hedge refers to a non-self-financing strategy that

replicates (ST −K)+ and at the same time minimizes the expected squared

deviation between the portfolio value and the value of the option. Föllmer

and Sondermann (1986) provide a formal definition of the risk-minimizing

hedging strategy. However, such a strategy may not exist, but Schweizer

(1991) overcomes this problem proposing the locally risk-minimizing hedge

under the minimal-entropy martingale measure Qmin.

In this model setting, the locally risk-minimizing hedge is given in the

following proposition of Poulsen et al. (2009):

Proposition 3 (Locally risk-minimizing strategy). At time t, the portfolio

manager applying the locally risk-minimizing strategy invests

∆min
t = ∂sC(t, St, νt) +

ρσ

St
∂νC(t, St, νt) (3.8)

units in stock, and C(t, St, νt)−∆min
t St units in the risk-free asset. The price

of the option is given by C(t, St, νt) = e−r(T−t)EQmin
Et ((ST −K)+), where

Qmin is the pricing measure obtained from the process given by equation

(3.2). Furthermore, the dynamics of (St, νt)t≥0 under Qmin are given by

dSt = rStdt+
√
νtSt

(√
1− ρ2dWQmin,1

t + ρdWQmin,2
t

)
dνt = (κ(θ − νt)− ρσ(µ− r)) dt+ σ

√
νtdW

Qmin,2
t

where (WQmin,1
t )t≥0 and (WQmin,1

t )t≥0 are Qmin-Brownian motions.

Proof. For convenience, a heuristic proof is given in appendix A.

The locally risk-minimizing hedge and the ∆-hedge coincide when ρ = 0.

Moreover, the parameterization θQ
min

= θ − ρθ · (µ − r)/κ yields Qmin-

dynamics of (St, νt)t≥0 with the same parametric form as under P . Finally,

the locally risk-minimizing strategy depends on the option’s vega, which

was derived in corollary 2. Plugging this expression into ∆min
t yields
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∆min
t = ∆t +

ρσ

π

{∫ ∞
0

Re

[
D(φ− i)e

−iφ logK f̃(φ)

iφ

]
dφ

− e−r(T−t)K
St

∫ ∞
0

Re

[
D(φ)

e−iφ logKf(φ)

iφ

]
dφ

}
.

It is strongly hinted that in this setting, hedging the European call

results in a nonzero hedging error almost surely. This is illustrated with

an example similar to Wilmott’s hedge example but in the Heston setting,

where model and market parameters are specified in line with the litera-

ture(see table 1). The constant implied volatility is assumed greater than

the initial (and long term) volatility. Thus, the option is overpriced prior

to trading, and a short position in the European call is considered. The

PM then applies the risk-minimizing ∆ to hedge her position with either

actual volatility or implied volatility.

Actual Volatility Implied Volatility
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Figure 2: Ten sample paths of both the underlying and the variance process are
simulated with Euler discretization. The portfolio is rebalanced 5000 times for each
combination of sample paths and hedging volatility.
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Figure 2 shows mark-to-market values of hedging portfolios obtained

by the two strategies. In most cases profit is obtained, but a negative

terminal hedging error also occurs; the PM is always exposed to volatility

risk. Finally, hedging with implied volatility results in smoother P&L paths

in line with Wilmott’s example.

With simple delta hedging, Ellersgaard et al. (2017) derives an expres-

sion for the random terminal hedging error when (St)t≥0 is a locally SDE,

while Leth (2015) shows the result in the Heston setting. Clearly, their

strategy neglects the source of randomness that arises from the volatility

process; that is, risk associated with (W 2,Q
t )t≥0 is not reduced. By contrast,

applying the risk-minimizing strategy will capture both components of risk,

which is mathematically shown in theorem 4.

Theorem 4. Let Ct = C(t, St, νt) ∈ C1,2,2([0,∞) × R × R) be the time-

t price of European call. Assume that the option is sold at initiation for

the market price C(0, S0, ν
i
0), where

√
νi0 is the implied volatility. Applying

the risk-minimizing strategy ∆min with hedging volatility
√
νht leads to a

terminal P&L given by

P&Lmin
T = C(0, S0, ν

i
0)− C(0, S0, ν

h
0 )

+

∫ T

0

e−rt

{(
νht − νt

){1

2

(
S2
t ∂ssC(t, St, ν

h
t ) + σ2∂ννC(t, St, ν

h
t )
)

+ σρSt∂sνC(t, St, ν
h
t )− κ∂νC(t, St, ν

h
t )

}
dt

+ σ
√
νt

(
ρ∂νC

h(t, St, ν
h
t )dW 1,Q

t − dW 2,Q
t

)}
. (3.9)

Proof.
See appendix A.

Unlike the Black-Scholes setting, volatility arbitrage is not present in the

market. The present value of the P&Lmin
T depends on the second-order

Greeks gamma, vomma, vanna and vega. In addition, the hedging error

depends on two stochastic integrals. Even if the PM knew and preferred to

hedge with actual volatility, a hedging error would still occur. In particular,
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setting
√
νht =

√
νt implies that the terminal P&L is decomposed by the

upfront premium and the difference between the two stochastic integrals

σ

∫ T

0

e−rtσ
√
νt

(
ρ∂νC

h(t, St, ν
h
t )dW 1,Q

t − dW 2,Q
t

)
.

Thus, the sign of the hedging error will depend on the trajectories of two

Brownian motions. As Leth (2015) shows, when hedging with Heston’s ∆t

instead, the dW 1,Q
t -term vanishes in equation (3.9). In comparison with

the ∆-hedge, it is therefore expected that the risk-minimizing strategy will

reduce the terminal hedging error due to Cov(dW 1,Q
t , dW 2,Q

t ) = ρdt.

3.2.2. Example: Model Risk

The risk-minimizing strategy introduced in proposition 3 was proposed

to minimize risk induced by the random nature of volatility. In addition,

model risk is an important consideration when choosing the hedging strat-

egy. For instance, what is the outcome of using the standard Black-Scholes

delta hedge in a Heston world?

Table 1: SPECIFICATION OF MARKET AND MODEL PARAMETERS

Parameters S0 K r T νi µ ν0 κ θ σ ρ

Values 100 100 0.02 1/4 0.32 0.1
√

0.2 4.75
√

0.2 0.5 −0.5

Using the model specification from table 1, 300 sample paths of the un-

derlying and the variance process are simulated with Euler discretization9.

Pricing and hedging are then conducted under two pricing measures: Qmin

and Qmg. The former measure is the minimal martingale measure generated

by (γmin
t )t≥0 from equation (3.2), while the latter measure is obtained by

replacing the stock drift µ with the risk-free rate r10. This simulation study

is akin to that of Leth (2015), but with a different setting and objective11.

Finally, four different strategies are considered:

9Model parameters are consistent with empirical findings in the literature (e.g., Er-
aker (2004)).

10(Ŝt)t≥0 is assumed to be a P -martingale, which corresponds to the standard change-
of-measure in the Black-Scholes model.

11The objective is to investigate drawbacks of using the Black-Scholes ∆-hedge in the
Heston setting.
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1. The risk-minimizing ∆-hedge under Qmin.

2. The risk-minimizing ∆-hedge under Qmg.

3. The Heston ∆-hedge under Qmg.

4. The Black-Scholes ∆-hedge under Qmg.

As usual, the portfolio consists of the short position in the option, long in

the underlying, and the money account chosen to meet the self-financing

condition. For each sample path (and each strategy), the portfolio is re-

balanced on a daily basis (63 times). Terminal hedging errors under the

different strategies are illustrated in figure 3.

Risk−Min. Hedge Risk−Min. Hedge (MG.) Delta Hedge (Heston) Delta Hedge (BS)
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Figure 3: For each simulated path, the terminal hedge error is computed with the
locally risk-minimizing hedge (under both Qmin and Qmg.), Heston’s ∆-hedge (Qmg.)
and the Black-Scholes ∆ (Qmg.). Top row: terminal hedging errors as a function of ST .
Bottom row: terminal values of the hedging portfolios as a function of ST , where the
blue lines represent (ST −K)+.

Terminal errors fluctuate most under the two ∆-strategies, where it ap-

pears that the out-the-money scenarios result in the largest hedging errors.

The reason is that ρ = −0.5, and the ∆-hedging trader invests too heavily

in the stock. Terminal hedging errors under the two risk-minimizing strate-

gies do not differ significantly, and they appear do be ’symmetric’ around

ST = K.
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The estimate of the hedging error proposed by Poulsen et al. (2009) is

used to assess the performance of the four strategies: the standard devia-

tion of terminal hedge errors relative to the initial value of the option in

percentages are computed12. Table 2 reports the estimates.

Table 2: ESTIMATED HEDGING ERRORS

Strategy ∆min ∆min (Qmg) Heston-∆ (Qmg) BS-∆ (Qmg)

Error 23.22 23.73 27.53 25.8

Description: Estimated hedging errors under the four strategies.

The risk-minimizing strategies are superior to both ∆-hedges in terms

of hedging errors. For instance, the Heston ∆-hedging trader may re-

duce the hedging error by a factor of ≈ 15% when switching to the risk-

minimizing strategy. Comparing the two risk-minimizing strategies, the

estimated hedging error is not significantly affected by the choice of pric-

ing measure. This is convenient for the PM due to well-known numerical

difficulties of estimating the stock drift µ. Finally, the results show that no

advantage is obtained by using Heston’s ∆ instead of the standard B-S ∆.

4. The VPIN

Easley et al. (2012) developed the volume-synchronized probability of

informed trading (VPIN) used as an indicator of toxic order flow. They

argue that the VPIN has incremental predictive power for models of short-

term return volatility and may be used to signal imminent market turmoil.

Strikingly, Easley et al. (2012, 2010) conclude that the VPIN metric sig-

naled the Flash Crash on May 6, 2010. Those findings led to a controver-

sial debate with Andersen and Bondarenko (2014a,b, 2015) disputing the

VPIN’s capacity to predict return volatility as well as signaling ensuing

market turbulence. Thus, in isolation, an empirical study of the VPIN has

relevance, and if the metric signals intraday price movements, it may be

used to reduce losses of the hedging portfolio, which is rebalanced on a

daily basis.

12Algebraically, this corresponds to 100 ·
√

VarP (ΠT )/(e−TEQ((ST −K)+).
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Moment estimation of VPIN is nonparametric and utilizes intraday

trade data to estimate the probability of informed trading given a fixed-

sized trading volume13. Let V B
t and V S

t be buy and sell volume of trading

period t such that OIt = |V B
t − V S

t | and TTt = V B
t + V S

t denote the ab-

solute order imbalance and total trades, respectively. The VPIN metric is

then the moment estimator of E(OIt)/V BS with V B
t + V S

t = V BS and is

derived as follows:

1. Trade classification: Buy and sell volume are computed. The bulk

Volume Classification (BVS) introduced by (Easley et al., 2013) is

used to determine the direction of order flow:

(a) Sequential trades are aggregated using time or volume bars with

bar price equal to the last transaction14. Let Pi and Vi denote

the price and volume, respectively, of bar i.

(b) Assuming ∆Pi := Pi − Pi−1 ∼ N (0, σ∆P ) where σ∆P is the

standard deviation of price changes between all bars, the clas-

sification algorithm then assigns buy and sell volume of bar i

by

barBuyi = Vi ·N
(

∆Pi
σ∆P

)
barSelli = Vi − V B

i ,

where N(·) is the CDF of the standard normal distribution.

2. Volume bucketing: Sequential bars are grouped into equal volume

buckets of an exogenously defined size V BS, resulting in N buckets.

Moreover, let OIτ and TTτ denote absolute order imbalance and total

trades, respectively, of bucket τ .

3. Estimation: By construction, TTτ = V BS for all τ . If the mapping

b assigns bar i to bucket b(i), order imbalance for bucket τ , OIτ =

V B
τ − V S

τ , is determined by

13This is not equivalent to the PIN measure, which measures the probability of in-
formed trading for a given fixed time interval.

14Using the last price is an arbitrary choice. One could also use the average of trans-
action prices within the bar.
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V B
τ =

∑
i : b(i)=τ

ViZ

(
∆Pi
σ∆P

)

V S
τ =

∑
i : b(i)=τ

Vi

(
1− Z

(
∆Pi
σ∆P

))
= V BS − V B

j .

Eventually, E(OIτ |V BS) is estimated by the moment estimator

E(OIτ |V BS) ≈ 1

n

τ∑
j=τ−(n−1)

OIj,

where n denotes the sample length.

Combining the three above steps leads to the VPIN metric

V PINτ =
1

n× V BS

τ∑
j=τ−(n−1)

OIj (4.1)

for τ > n − 1. Summarizing, computation of the VPIN requires 1) deter-

mining order flow, 2) choosing the equal-volume bucket size V BS and 3)

the sample length n. It is important to emphasize that step 1 is solely

used to measure order flow in a high-frequency market microstructure, and

other trade classification algorithms may be used1516.

Given a trade classification rule, the equal-volume bucket size V BS and

the sample length n are still left to be specified. One specification in the

literature is setting V BS equal to one-fiftieth of average daily volume. If

n = 50, the VPIN then reflects order imbalances of buckets across a trading

day of average volume. Lin and Ke (2017) contribute by mathematically

showing that the VPIN becomes unstable for small volume buckets, which

is empirically supported in a study by Leth (2019)17.

15For instance, the trade classification algorithm proposed by Lee and Ready (1991)
that requires Level 2 tick data (transactions and quotes).

16Easley et al. (2013) provides numerical evidence that standard classification al-
gorithms depending on Level 2 tick data do not offer greater accuracy, whereas the
BVS-procedure is obviously superior in terms of computational cost.

17Additionally, Lin and Ke (2017) propose an improved estimator of the VPIN (in
terms of predicting order flow toxicity) that captures the information in volume time.
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The parameter setting (n, V BS) = (100, 1/100) is used for the empirical

investigation, where V BS = 1/k is shorthand notation for 1/k′th of average

daily volume for a given trading period. Appendix C reports findings under

different combinations of n and V BS, including (n, V BS) = (50, 1/50).

4.1. Performance Evaluation of the VPIN

High VPIN readings proxies toxic order flow, which will affect liquidity

when market makers start demanding liquidity. This effect may imply large

price returns. The hypothesis is that the VPIN serves as warning signal of

impending market turbulence.

Inspired by the work of Song et al. (2014) and Leth (2019), a daily VPIN

event is defined as the first time the CDF of the VPIN hits an exogenously

given threshold c from below. For notational convenience, trading day d

contains nd subsequent trades, (1, ..., nd), and pi denotes the price of trade

i.

Definition 5. On trading day d, the VPIN event is specified by the hitting

time

i?d = inf{i ∈ {1, ..., nd} : CDF(VPIN)i > c & CDF(VPIN)i−1 ≤ c}

if maxi CDF(VPIN)i > 0 for i ∈ {1, ..., nd}.

The daily rebalanced hedging portfolio is subject to losses if volatility is

high and/or large price movements occur. To capture both scenarios, the

maximum intermediate return is used as proxy for intraday return volatility.

On trading day d, let Rj,k := pk/pj − 1 be the return between pj and pk for

1 ≤ j < k ≤ nd. The daily maximum intermediate return is then given by

MIR = Rj∗,k∗ (4.2)

where the pair of trades (j∗, k∗) are called sentinels and maximize the in-

termediate returns over all combinations of trades between 1 and nd, i.e.,

(j∗, k∗) = arg max0≤j<k≤nd
|Rj,k|. (4.3)



CHAPTER 2. 91

The daily MIR value is either negative or positive18. For instance, a neg-

ative maximum intermediate return indicates that the largest price move-

ment was downward. The VPIN’s ability to signal market turbulence is

then measured with respect to MIR. For a given period (e.g., the lifetime

of the European option), daily MIR values are computed, and positive and

negative values are separated from each other. Eventually, the average of

negative outcomes, M , and the average of positive outcomes, M , are both

computed. Finally, binary VPIN events are classified as true positives or

false positives by comparing the MIR value between the VPIN event and

the final trade of the day with the two daily averages.

Definition 6. On trading day d, a VPIN event with hitting time i?d is

labeled

• True positive (TP) if the MIRi?d,nd
> M or MIRi?d,nd

< M .

• False positive (FP) if MIRi?d,nd
∈ [M,M ].

If no VPIN event was detected but MIR0,nd
/∈ [M,M ], the day is labeled

false negative (FN).

False negatives (type II errors) refer to trading days characterized by

high volatility but with normal VPIN readings. Additionally, days with

small MIR values and no VPIN events are classified as true negatives.

5. Data

The empirical experiment is concentrated on periods of trading from

2004/04/01-2013/07/03 (2331 trading days). The initial trading date is

chosen such that hedging portfolios will reflect quarterly periods. The

experiment requires market data on both the underlying index (index spot,

zero rate and dividend yield) and on options (daily market prices expressed

through implied volatilities for various combinations of strike prices and

time-to-maturities relative to the spot index). In addition, time series for

realized and implied volatilities are needed. Finally, financial tick data

for a stock selected to track the underlying index are required in order to

compute reliable VPIN series.

18In principle, the daily MIR may equal 0 if all prices are identical.
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5.1. Options Data

Market data on options are similar to data used by Ellersgaard et al.

(2017) and Leth (2015) and may be downloaded from http://web.math.

ku.dk/~rolf/Svend/
19. On each trading day, the index spot, Black-Scholes

implied volatilities depending on strike prices and time-to-maturities, zero

rates and dividend yields are all observed. Strike prices and time-to-

maturities are relative to the spot index, where the moneyness (K/S)

ranges between 1.3 and 0.7, and time-to-maturity is between 1 month and

36 months (182 combinations/prices/implied volatilities). Table 6 in ap-

pendix C shows market data on options on a given trading day.

A 3-month European option on the S&P 500 index is considered. Ini-

tially, the option is purchased at-the-money, and the position is then hedged

on a daily basis prior to expiry. After expiry, a new 3-month ATM European

option is purchased, and the procedure is repeated. This design results in

a total of 37 portfolios over disjoint trading intervals where the first option

is traded on 2004/04/01, and the last option expires on 2013/07/03.

5.2. Volatility Data

Time series of daily volatilities are used for two purposes:

1. As input in the daily ∆-hedge formula.

2. As valuation of the option (implied volatility).

5.2.1. Implied Volatility

The raw market data on options reports implied volatilities for various

combinations of maturities and strike prices relative to the spot index. This

is illustrated by figure 11 in appendix C, showing implied volatilities from

2008/07/02 - 2008/09/30 for ATM options with maturities of 1-month,

2-months and 3-months. However, valuation of the hedging portfolio re-

quires daily updates of the implied volatility for the 3-month ATM option

purchased at initiation of the trading period.

Cubic splines are used to recreate the series of implied volatilities. For

instance, a 3-month option purchased on 2008/07/02 expires on 2008/09/30,

19Data from 2004-2009 are provided by a major commercial bank, while more recent
data are retrieved from the database OptionsMetrics.

http://web.math.ku.dk/~rolf/Svend/
http://web.math.ku.dk/~rolf/Svend/
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and daily updated implied volatilities for that specific option may be re-

constructed with 2-dimensional interpolation and extrapolation utilizing

all implied volatilities observed from 2008/07/02 - 2008/09/3020.

5.2.2. Realized Volatility

For the S&P 500 index, (true) daily spot volatilities are proxied by high

frequency volatility estimates from the Oxford-Man Institute of Quantita-

tive Finance Realized Library21. The series of daily realized volatilities are

retrieved for all trading days from 2004/04/01 - 2013/07/03. Figure 4 shows

the spot index as well as realized and daily updated implied volatilities for

each trading period.

S&P 500 Index (upper) and Implied and Realized Volatility (lower)
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Figure 4: The upper plot shows the S&P 500 index. The lower plot shows realized
volatilities (red dashed line) as well as the daily implied volatility (solid black lines) for
a 3-month call option, initially purchased at-the-money.

20At initiation, both the index spot and implied volatilities for ATM options with
1-month, 2-month and 3-month maturities are observed. This scenario repeats itself the
next trading day. Now, interpolate first in the strike-direction and then in the maturity-
direction to obtain a daily updated estimate of the implied volatility for the 3-month
ATM option purchased at initiation.

21Daily realized variance estimates may be downloaded from: https://realized.

oxford-man.ox.ac.uk/data/download.

https://realized.oxford-man.ox.ac.uk/data/download
https://realized.oxford-man.ox.ac.uk/data/download
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5.3. Intraday Stock Data

The SPDR S&P 500 EFT traded on NYSE Arca with ticker SPY is used

to track the S&P 500 index. Among ETFs, the SPY is one of the most

actively traded and is widely considered as the best to track the S&P 500

index. Level 1 tick data from 2004-2013 are retrieved from the TAQ (trades

and quotes) database, and data cleaning follows the procedure described

by Holden and Jacobsen (2013). Additionally, only transactions during the

core trading session (9:30 a.m. to 4:15 p.m. ET) are considered22. Table

7 in appendix C reports summary statistics (#trades, total volume, daily

volume, shares per trade and price) of the data for each of the 37 trading

periods. After 2004/09/29, the average daily volume was never below 10

million, peaking around and subsequent to the Great Recession in 2008

with almost 100 million shares per day (in average).

5.3.1. Data Aggregation: Time Bars

As explained in the previous section, the first step of computing the

volume-synchronized probability of informed trading is to determine buy

and sell volume. This paper uses the bulk volume classification, grouping

sequential trades into time bars. Buy and sell volume is then computed as

a fraction of total volume. The buy fraction for bar i is simply given by

N(∆Pi/σ∆P ), where N(·) is the CDF of the standard normal distribution,

∆Pi = Pi−Pi−1 is the price change between bar i and bar i− 1, while σ∆P

is the standard deviation of price changes between bars. A limitation of

the data is that trading is closed between days opposite to the empirical

study by Easley et al. (2013) that uses futures traded around the clock.

In particular, the price change between two consecutive bars overnight is

expected to be higher than the price change between two consecutive bars

of the same trading day. This problem is circumvented by omitting price

changes overnight23.

22Corrected trades and trades with an abnormal sale condition are also removed from
the dataset. Only trades from NYSE Arca are considered.

23In the beginning of day d, the first trade is not included in a time bar but instead
used to compute the price change for the initial time bar. Bulk classification is then
applied on all transactions of day d. The procedure is then repeated for the next day.
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6. Numerical Results

The hedging experiment is constructed in the spirit of Ellersgaard et al.

(2017) and Leth (2015). In particular, partial results on the daily hedging

outcome are related to results reported by Leth (2015)24.

At initiation of trading period j, the European call is shorted, the hedg-

ing portfolio contains ∆1 units long in the underlying, and the money ac-

count chosen in accordance with the self-financing condition, i.e.,

Πh
1 = −C1 + ∆1S1 +B1 = 0.

This procedure is repeated for the remaining trading days k = 2, ..., nj

of period j. For each k ∈ {2, ..., nj}, the daily mark-to-market value of

the hedging portfolio Π̃k and the gain/loss between today and yesterday

dP&Lk are computed, and finally the portfolio is rebalanced to meet the

self-financing condition, that is,

Π̃k = −Ck + ∆k−1Ske
qk−1(tk−tk−1) +Bk−1e

rk−1(tk−tk−1)

dP&Lk = Π̃k − Πk−1,

and Bk solves Πk = −Ck + ∆kSk +Bk = Π̃k. At maturity nj, the terminal

hedge error Π̃nj
and an estimate of the portfolio’s quadratic variation over

the option’s lifetime, QVj =
∑nj

k=1 |dP&Lk|2, are both reported. The ex-

periment is conducted for all 37 trading periods, hedging with both realized

and implied volatility used as input in the hedging formula25.

6.1. Profit-and-Losses

As a starting point, the upper plot in figure 5 shows the P&L on a day-

to-day basis for all 37 hedging portfolios using the risk-minimizing strategy

hedging with implied volatility.

24Leth (2015) examines the terminal P&L under different hedging models where the
objective is to maximize the Sharpe ratio. The purpose of this hedging experiment is
to illustrate that the optimal risk-minimizing strategy can not prevent significant daily
losses of the hedging portfolio. Moreover, the deterministic findings differ since both the
hedging periods and the volatility series are different.

25Also, model estimates reported by Eraker (2004) are used in the hedging formula.
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P&L (risk−minimizing hedge)
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Figure 5: Top: P&Ls on a day-to-day basis for each of the 37 hedging portfolios. The
locally risk-minimizing ∆-hedge is used with implied volatility. Bottom: Corresponding
terminal hedging errors for each of the 37 portfolios.

In most of the cases, the terminal hedge error is positive (28), and the

option dealer succeeded picking up the risk premium. However, 9 hedging

portfolios end up on the wrong side. In particular, one trading period is

associated with a major loss as well as significantly fluctuations in the value

difference between consecutive trading days. The lower plot reveals that

this is period 18 (2008-07-02 - 2008-09-30). Finally, panels in figure 5 in-

dicate that hedging with implied volatility results in smoother P&L paths,

which is consistent with the numbers reported in the last two columns in

table 8 in appendix C. Consequently, hedging with implied volatility will

produce the smallest quadratic variation (on average). This outcome is

supported by table 3, reporting summary statistics of terminal hedge er-

rors and quadratic variations for combinations of hedging strategies and

hedging volatilities.
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Table 3: SUMMARY OF HEDGE ERRORS AND QUADRATIC VARIATIONS

(a) Risk-Minimizing Hedge

Hedging Volatility P&L s.e.(P&L) t value Pr(> |t|) QV s.e.(QV )

Realized 5.17 1.85 2.80 0.008 2.04 0.82
Implied 4.80 1.61 2.97 0.005 0.71 0.16

(b) ∆-Hedge (Black-Scholes)

Hedging Volatility P&L s.e.(P&L) t value Pr(> |t|) QV s.e.(QV )

Realized 5.13 2.26 2.27 0.029 3.37 1.52
Implied 4.18 2.09 2.00 0.053 0.55 0.16

Description: Summary statistics of terminal hedge errors and quadratic variations.
Upper table: Estimates obtained using the locally risk-minimizing hedge. Bottom
table: Estimates obtained using the standard ∆-hedge.

The risk-minimizing hedge is preferred over the ∆-hedge in terms of

standard deviations of terminal hedge errors. Clearly, a skilled forecaster

may be rewarded by hedging with actual volatility due to a higher P&L.

However, this comes with a cost in terms of a more volatile hedging portfolio

measured by the quadratic variation as well as a higher standard deviation

of the P&L. For instance, consider the hypothesis H0 : P&LhT = 0 with

alternative hypothesis P&LhT 6= 0. Under the risk-minimizing hedge, the

two-sided t-test leads to p-values of 0.008 and 0.005 for actual volatility

and implied volatility, respectively — profit is obtained at the 0.01 level.

In the remainder of this paper, only findings under the risk-minimizing

strategy hedging with implied volatility are considered. This strategy was

optimal in a risk-minimizing setting but still could not prevent significant

losses from 2008/07/02 - 2008/09/3026.

6.2. VPIN

The VPIN series are computed across all 37 periods, where bulk volume

classification is used to determine the order flow. Tables 12–17 in appendix

C report summary statistics of the volume buckets and the VPIN series

under different parameter settings and bar sizes across trading periods.

26All hedging strategies realized major losses in that period cf. table 8-10.
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It appears that

• The average, median and standard deviation of the VPIN are increas-

ing in the bar size

• The VPIN is decreasing in the volume bucket size consistent with the

findings by Abad-Diaz and Yagüe (2012)27.

• The average and the median of the VPIN are approximately for all

combinations of (n, V BS) (see figure 6).

In the remainder of this study, only empirical findings under the specifica-

tion (n, V BS) = (100, 1/100) are presented. The results and conclusions

obtained with the common specification (n, V BS) = (50, 1/50) are very

similar and reported in appendix C.
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Figure 6: Average and median of the VPIN series across trading periods under the
specifications (25, 1/25), (50, 1/50), and (100, 1/100), respectively.

27They argue that ”VPIN specifications employing lower VBS to compute order im-
balance may incorporate transitory as well as permanent information, whereas VPIN
specifications that consider higher VBS to compute order imbalance may mainly incor-
porate fundamental information about stocks (as in PIN model).”.
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6.2.1. Signaling Losses (2008/07/02− 2008/09/30)

The top plot in figure 7 shows daily gains/losses for the hedging portfolio

of period 2008/07/02 − 2008/09/30 (trading period 18). The red points

indicate daily losses greater than 10% relative to the initial valuation of

the European option (see table 8). In particular, the hedging portfolio was

subject to significant losses from 2008/09/15− 2008/09/22.
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Figure 7: Top plot: Daily gains/losses for hedging portfolio 18 (2008/07/02 −
2008/09/30). Bottom plot: The VPIN during the same period.

To investigate if losses during bad days were anticipated, the VPIN

series for the relevant period are considered. The bottom plot in figure 7

indicates a dependence between significant losses in the hedging portfolio

and high readings of the VPIN. The performance evaluation of the VPIN

described in section 4.1 enables determining whether the VPIN signaled or

was (implicitly) impacted by losses in the hedging portfolio.
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Figure 8: CDF(VPIN), VPIN, and price of the SPY on September 15, 2008. The left
axis shows the values of CDF(VPIN) and the VPIN, while the right axis shows the value
of the SPY. The dashed line represents the threshold 0.9.

Figure 8 shows the VPIN, the CDF(VPIN)28 and the price of SPY

on September 15, 2008. The VPIN is steadily increasing through the

day, whereas the SPY hits its maximum at 10:55 and exhibits extreme

fluctuations from 14:18 and until the end of the day. Compared to this,

CDF(VPIN) reaches the threshold 0.9 at 12:49 and stays above 0.9 in the

remainder of the day. A VPIN event was detected before extreme intraday

price movements. This observation is supported by numerical evidence.

The daily average of negative (positive) MIR readings of the option’s life-

time was M = −0.022 (M = 0.027), whereas the MIR between the VPIN

event and the final trade of the day was −0.029, i.e., a true positive.

Moreover, figure 12 in appendix C shows that the period from 2008/09/15-

2008/09/22 was characterized by a VPIN event until 12:10 at 2008/09/19.

It appears that order flow became and stayed toxic in the vast major-

ity of this period except for trading day 2008/09/22. This observation is

28The CDF is estimated from the out-of-sample empirical distribution.
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supported by numerical evidence in table 4, reporting daily values of P&L,

valuation of the option, standardized moneyness29, risk-minimizing ∆, real-

ized volatility relative to implied volatility, MIR and classification of events

from 2008/09/12-2008/09/22.

Table 4: P&L AND MIR

dP&L C m(νi, T − t) ∆min
√
νr MIR VPIN-event

2008-09-12 0.95 21.46 -0.151 0.425 0.239 0.017 TN
2008-09-15 -7.58 3.93 -1.134 0.098 0.462 -0.029 TP
2008-09-16 -0.86 6.84 -0.821 0.179 0.512 0.044 TP
2008-09-17 -3.94 0.54 -1.944 0.012 0.492 -0.036 TP
2008-09-18 -2.81 3.95 -1.057 0.120 0.630 0.070 TP
2008-09-19 -7.16 16.92 -0.130 0.438 0.525 -0.090 TP
2008-09-22 -6.64 2.52 -1.207 0.092 0.268 -0.035 FN

Description: Summary statistics of the hedging portfolio, MIR values and VPIN
events from 2008/09/12-2008/09/22.

September 12 is described by quiet market conditions. The daily MIR

was low and no VPIN event was detected. Additionally, realized volatility

was approximately equal to the option’s implied volatility. The standard-

ized moneyness close to 0 reflects the size of ∆min. The following five days

are characterized by extreme volatility (
√
νr) and losses in the hedging

portfolio. Prices rose when ∆min was low and dropped when ∆min was

high. For all five days, high VPIN readings led to corresponding high MIR

values (absolute terms), and events were classified as true positives. On

2008-09-19, CDF(VPIN) fell and stayed below the threshold 0.9 (see figure

9). However, figure 13 in appendix C reveals that large price movements

also occurred on 2008-09-22, consistent with the huge loss (−6.64). This

outcome is only captured by a high MIR value — neither the VPIN nor

realized volatility indicates market turbulence. In this case, large price

movements were not caused by toxic order flow but market uncertainty30.

Importantly, using the VPIN as a warning signal may imply type II errors.

29The standardized moneyness is defined by m(νi, T − t) = log(S/K)/(
√
νi(T − t)),

i.e, the number of standard deviations the current spot price is above the strike.
30Prices were constantly decreasing during the day due to uncertainty about the gov-

ernment’s $700 billion bailout plan after the bankruptcy of Lehman Brothers.
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Figure 9: CDF(VPIN), VPIN, and price of the SPY on September 19, 2008. The left
axis shows the values of CDF(VPIN) and the VPIN, while the right axis shows the value
of the SPY. The dashed line represents the threshold 0.9.

6.2.2. Signaling Losses: May 6, 2010 (The Flash Crash)

A final study of the Flash Crash on May 6, 2010, is conducted. This date

has been the root of the disagreement between Easley et al. (2012, 2010)

and Andersen and Bondarenko (2014a,b, 2015). Did the VPIN anticipate

the temporary crash on May 6? Previous studies are based on the E-

mini S&P 500 futures contract traded around the clock, and the trading

period — affecting both the BVS-scheme and V BS — is chosen in order

to analyze the Flash Crash. In contrast, this paper relies on the ETF

SPY, and the choice of trading period simply reflects the option’s lifetime

(quarterly periods). Additionally, this study illustrates the impact of the

Flash Crash on the hedging portfolio.

Figure 10 demonstrates the VPIN, CDF(VPIN) and the SPY price on

May 6, 2010. The SPY was subject to significant losses and crashed at

14:46, whereas the VPIN was steadily increasing through the day, and

CDF(VPIN) reached the threshold 0.9 at 12:03. From 14:27 and some

time after the crash, CDF(VPIN) was close to 1. Between the VPIN event



CHAPTER 2. 103

at 12:03 and the final trade of the day, MIR was equal to −0.096. In

comparison, the daily average of negative MIR values during the hedging

period was −0.025. Table 5 reveals that the hedging portfolio was subject

to a loss of 1.50 (4.1% of the initial price of the European call) on May

6, 2010. This loss was the second largest during the option’s lifetime and

caused by large intraday price movements foreseen by the VPIN event (true

positive). Additionally, the fast recovery of the crash prevented an even

greater loss.

Table 5: P&L AND MIR (THE FLASH CRASH)

dP&L C m(νi, T − t) ∆min
√
νr MIR VPIN-event

2010-05-05 0.26 19.43 -0.285 0.384 0.199 0.016 TN
2010-05-06 -3.14 8.12 -0.810 0.208 0.839 -0.096 TP

Description: Summary statistics of the hedging portfolio, MIR values and VPIN
events from 2010/05/05-2010/05/06.

The findings in figure 10 also support the study by Easley et al. (2012)

arguing that extreme values of the VPIN (given by the CDF(VPIN)) an-

ticipated the crash. Andersen and Bondarenko (2014b) dispute this since

the VPIN kept rising after the crash. However, the metric is updated in

real time and is based on order imbalances. If volume falls but imbalance

remains high, the VPIN will increase. In contrast to the moment estima-

tion of VPIN, maximum likelihood estimation of the metric proposed by

Lin and Ke (2017) is capable of capturing this phenomenon31. Applying

their methodology, Leth (2019) shows that the toxicity of order flow was

falling ex-post the crash32.

31Maximum likelihood estimation of the VPIN also captures the information in volume
time.

32In particular, the VPIN peaked ex ante the crash, and the level of informed trading
was decreasing after the crash.
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Figure 10: CDF(VPIN), VPIN, and price of the SPY on May 6, 2010. The left axis
shows the values of CDF(VPIN) and the VPIN, while the right axis shows the value of
the SPY. The dashed line represents the threshold 0.9.

6.3. Forces at Work: Improving the Hedging Strategy with VPIN

The empirical findings suggest that volume-synchronized probability of

informed trading anticipated daily losses in the hedging portfolio. In this

setting, it is assumed that the PM rebalances her portfolio once at the end

of day. Relaxing this assumption, enables the PM to reduce the losses on

days where VPIN events are detected.

Expanding the Hedging Portfolio with VIX

Tables 4—5 showed that losses in the hedging portfolio occurred on days

with extreme levels of realized volatility. In addition, on these days, high

VPIN readings led in all cases to significant large maximum intermediate

returns; that is, the VPIN signaled high daily volatility. This observation

suggests that expanding the portfolio with long VIX futures when VPIN

events are detected will reduce downside risk in the hedging portfolio33.

The benefit of this strategy is illustrated in figures 16-17 in appendix C:

33Easley et al. (2011) propose a similar strategy used for volatility arbitrage.
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On September 15, 2008, and May 6, 2010, respectively, the volatility index

increased dramatically after the VPIN event occurred; profit could have

been made by buying VIX.

Adjusting ∆

In this setting, a portfolio manager applies the risk-minimizing ∆-hedge

to rebalance her portfolio one time at the end of day. As theorem 4 states,

the hedging portfolio is always exposed to losses due the random nature

of volatility. However, the discretization of time will also impact the daily

P&L. The numbers reported in table 4 and 5 show that extreme intraday

return patterns led to significant losses. The explanation is that the port-

folio manager does not adjust her ∆ in continuous time, and the option’s

convexity will favor itself. Two undesirable scenarios are observed from

table 4:

• Intraday falling prices can amplify losses of the hedging portfolio

when the PM invests heavily in the underlying; that is, when ∆min is

sufficiently large.

• Intraday rising prices can amplify losses of the hedging portfolio when

the PM is too precautious; that is, when ∆min is sufficiently small.

The two cases above may be prevented by immediately readjusting the

∆min when observing a VPIN event at time t. Table 4 showed that high

VPIN readings in most cases signaled extreme MIR values that reflect large

intraday price movements (and/or high realized volatility). Furthermore,

this situation will affect the ∆min, with impact determined by the second-

order Greek gamma, ∂S∆min > 0. Thus, in the case of low risk exposure,

∆min
t < k, and a VPIN event at time t, the PM may consider to immediately

rebalance her portfolio with the modified delta

∆VPIN
t := ∆min

t ·
(
1 + 1[0,k]

(
∆min
t

)
· g (CDF(V PINt))

)
(6.1)

where g : (0, 1] → [0, (1 −∆min
t )/∆min

t ] is an increasing function, and k is

sufficiently small.34.

34Clearly, a similar expression for a modified delta can be derived in the case of high
risk exposure.
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The expression (6.1) can be perceived as a forecast/expectation of the

future value of ∆min
t , and the economic reasoning is that the PM increases

her exposure when risk premiums are high.

It is important to emphasize that the performance of the proposal above

depends on the direction of subsequent price movements. However, moment

estimation of the VPIN proposed by Easley et al. (2012) ignores the signed

order imbalance when updating the metric in real time. This problem may

be circumvented when using a more sophisticated estimation method of the

VPIN. Lin and Ke (2017) provide a parametric framework for estimating

the VPIN. Their method captures the information from volume time (time

taken to fill a bucket), and generates consistent estimates of the model

parameter for the underlying model, including the bucket-updated prob-

ability of good-news, which reflects the direction in which the market is

moving. Combining intraday estimates of this parameter with a potential

VPIN event enables the PM to benefit from the above strategy. Such an

experiment is beyond the scope of this paper, but Leth (2019) conducts a

large empirical study on maximum likelihood estimation of the VPIN for

SPY from 2007-2015. Using findings from that study will form the basis of

a new experiment, investigating the numerical outcome from adjusting the

risk-minimizing delta when the VPIN signals market turbulence.

7. Conclusion

This paper investigates how to eliminate downside risk when delta hedg-

ing European options, particularly considering whether risk tools from

high-frequency market microstructure can improve sophisticated hedging

strategies from mathematical finance.

The problem is presented from the portfolio manager’s (PM’s) point of

view, who takes a short position in the European call. By engaging in dy-

namic delta hedging, she may take advantage of the excess spread between

implied and realized volatility and collect this volatility risk premium. Fur-

thermore, the PM is restricted to rebalance her portfolio only once at the

end of each the trading day. The market is incomplete, and therefore, the

terminal hedging error becomes random. In addition, the discretization of

time adds extra uncertainty to this hedging error.
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First, the paper seeks to answer whether a risk-minimizing strategy from

the Heston setting outperforms the standard Black-Scholes delta hedge, as-

sessed by the return and standard deviation of the hedging portfolio; sec-

ond, the paper aims to determine whether the volume-synchronized prob-

ability of informed trading (VPIN), used as predictor of short-term return

volatility, can signal impending losses of the hedging portfolio.

Market data on 3-month at-the-money European call options written

on the SPX from 2004-2013 are used in an empirical hedging experiment.

The PM takes a short position in the option, and creates her delta hedged

portfolio. The terminal P&L will in most cases end up positive, and profit

is obtained at the 0.01 level. In addition, the risk-minimizing strategy

from the Heston setting is superior to the Black-Scholes ∆-hedge in a risk-

minimizing context. However, the risk-minimizing hedge is not able to

prevent significant losses in the hedging portfolio during extreme market

turbulence on trading days of September 2008.

This paper contributes with an empirical investigation of the VPIN

in a new setting. The study is conducted using the ETF SPY for quar-

terly periods, reflecting the option’s lifetime. The findings show that high

VPIN readings signaled large intraday price movements on days, where the

portfolio was subject to losses. These losses occurred when the PM either

had high market exposure and intraday prices were falling, or low market

exposure and intraday prices were rising. In particular, if the portfolio

manager had reacted to warning signals from the VPIN, losses could have

been prevented.

Eventually, two suggestions for reducing losses in the hedging portfolio

using the VPIN are discussed. The first strategy is to expand the hedging

portfolio with VIX futures immediately after a VPIN is detected. The sec-

ond strategy is to scale market exposure in the underlying asset, conditional

on the VPIN event. Arguably, this strategy must rely on the parametric

estimation method of the VPIN developed by Lin and Ke (2017) that en-

ables the portfolio manager to infer the direction in which the market is

moving.

Trivially, inventory risk is of great importance for investors, supplying

options to the market. In future research, it is therefore pertinent to con-

duct a study that investigates the performance of the two above strategies.
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Appendix A Proofs

Proof of Corollary 2. Consider a European call with strike αK writ-
ten on the underlying (αSt)t≥0, with α and K being positive constants.
Risk-neutral valuation yields

C(t, αSt, νt) = αStp1(t, xt, νt)− αe−r(T−t)Kp2(t, xt, νt) = αC(t, St, νt),

and the price function is homogeneous of degree one with respect to St and
K. Thus, Euler’s homogeneous function theorem may be applied to obtain

C(t, St, νt) = St∂sC(t, St, νt) +K∂KC(t, St, νt) ⇔

∂sC(t, St, νt) =
C(t, St, νt)−K∂KC(t, St, νt)

St

Now, Leibniz’s integral rule yields

∂KC(t, St, νt) = ∂Ke
−r(T−t)EQ

(
(ST −K)+)

)
= e−r(T−t)

∫ ∞
K

∂K(y −K)q(y)dy

= −e−r(T−t)p2(t, xt, νt).

Combining these expressions, the ∆ of the option is given by

∆t = ∂sC(t, St, νt) = p1(t, xt, νt). (A.1)

For deriving vega, realize that

∂νC(t, St, νt) = St∂νp1(t, xt, νt)− e−r(T−t)K∂νp2(t, xt, νt).

Combining Leibniz’s integral rule with Cauchy-Riemann equations results
in semi-closed expressions for the two derivatives:

∂νp1(t, xt, νt) =
1

π

∫ ∞
0

Re

[
d(φ− i)e

−iφ logK f̃(φ)

iφ

]
dφ

∂νp2(t, xt, νt) =
1

π

∫ ∞
0

Re

[
d(φ)

e−iφ logKf(φ)

iφ

]
dφ.

Summarizing, the vega of the option is given by

Vt =
1

π

∫ ∞
0

Re

[
d(φ− i)e

−iφ logK f̃(φ)

iφ

]
− e−r(T−t)K

St
Re

[
d(φ)

e−iφ logKf(φ)

iφ

]
dφ.

The corollary is proved.
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Proof of Proposition 3 (heuristic). El Karoui et al. (1997) show
how to determine the locally risk-minimizing hedge. Otherwise, consider
the self-financing hedging portfolio with the short position in the European
call, and long ∆t in the underlying. The value process of this portfolio, Πt,
has dynamics given by

dΠt = (...)dt+ (∆t − ∂sC(t, St, νt))dSt + ∂νC(t, St, νtdνt.

Taking the conditional variance of this expression yields

Vart(dΠt) =

{
(∆t − ∂sC(t, St, νt))

2S2
t νt + (∂νC(t, St, νt))

2σ2νt

+ 2(∆t − ∂sC(t, St, νt)∂νC(t, St, νt)Stσρνt

}
dt,

which is convex in ∆(t), and thereby minimized locally in time by

∆min
t = ∂sC(t, St, νt) +

ρσ

St
∂νC(t, St, νt)

as promised.

Proof of Theorem 4. Consider the self-financing hedging portfolio with
the short position in the European call, and long ∆min

t units in the under-
lying, where

∆min
t = ∂sC(t, St, ν

h
t ) + (ρσ/St) · ∂νC(t, St, ν

h
t ),

and
√
νh denotes the hedging volatility. The desired result is obtained by

combining dynamics of the self-financing condition, dynamics of the pricing
function, and Heston’s PDE, respectively.

First, the money account B satisfies by construction the self-financing
condition

Πh
t = −C(t, St, ν

i
t) +

(
∂sC(t, St, ν

h
t ) + (ρσ/St) · ∂νC(t, St, ν

h
t )
)
St +Bt = 0.

Applying Itǒ’s formula on the above expression yields

dΠh
t = −dCi(t, St, νt) +

(
∂sC(t, St, ν

h
t ) + (ρσ/St) · ∂νC(t, St, ν

h
t )
)
dSt + dBt

= −dCi(t, St, νt) + +rCi(t, St, νt)dt

+
(
∂sC(t, St, ν

h
t ) + (ρσ/St) · ∂νC(t, St, ν

h
t )
)

(dSt − rStdt) . (A.2)
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Second, using the bivariate version of Itǒ’s formula on C(t, St, ν
h
t ) implies

that

dC(t, St, ν
h
t ) = ∂tC(t, St, ν

h
t )dt+ ∂sC(t, St, ν

h
t )dSt + ∂νC(t, St, ν

h
t )dνt

+
1

2

(
∂ss(dSt)

2 + ∂ννC(t, St, ν
h
t )(dνt)

2
)

+ ∂sνC(t, St, ν
h
t )dStdνt

= ∂tC(t, St, ν
h
t )dt+ ∂sC(t, St, ν

h
t )dSt + κθ∂νC(t, St, ν

h
t )dt

+νrt

{
1

2

(
S2
t ∂ssC(t, St, ν

h
t ) + σ2∂ννC(t, St, ν

h
t )
)

+σρSt∂sνC(t, St, ν
h
t )− κ∂νC(t, St, ν

h
t )

}
dt+ σ

√
νrt dW

2,Q
t .

(A.3)

Third, the price of the European call satisfies Heston’s partial differential
equation; thus, for νt = νht the following equality holds almost surely,

rC(t, St, ν
h
t ) =∂tC(t, St, ν

h
t ) + rSt∂sC(t, St, ν

h
t ) + κθ∂νC(t, St, ν

h
t )

+ νht

{
1

2

(
S2
t ∂ssC(t, St, ν

h
t ) + σ2∂ννC(t, St, ν

h
t )
)

+ ρσSt∂sνC(t, St, ν
h
t )− κ∂νC(t, St, ν

h
t )

}
. (A.4)

Substituting expression (A.4) into expression (A.3) yields

0 =− dC(t, St, ν
h
t ) + rC(t, St, ν

h
t )dt− ∂sC(t, St, ν

h
t )(rStdt− dSt)

+
(
νt − νht

){1

2

(
S2
t ∂ssC(t, St, ν

h
t ) + σ2∂ννC(t, St, ν

h
t )
)

+σρSt∂sνC(t, St, ν
h
t )− κ∂νC(t, St, ν

h
t )

}
dt+ σ

√
νtdW

2,Q
t . (A.5)

Finally, subtract equation (A.5) from the dynamics of the hedging portfolio
(A.2) to obtain dynamics of Πh

t given by
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dΠh
t =dC(t, St, ν

h
t )− dC(t, St, ν

i
t)− r

(
C(t, St, ν

h
t )− C(t, St, ν

i
t)
)
dt

+
(
νht − νt

){1

2

(
S2
t ∂ssC(t, St, ν

h
t ) + σ2∂ννC(t, St, ν

h
t )σ2

)
+ σρSt∂sνC(t, St, ν

h
t )− ∂νC(t, St, ν

h
t )κ

}
dt

+
√
νtσ
(
ρ∂νC(t, St, ν

h
t )dW 1,Q

t − dW 2,Q
t

)
=ertd

(
e−rt

(
C(t, St, ν

h
t )− C(t, St, ν

i
t)
))

+
(
νht − νt

){1

2

(
S2
t ∂ssC(t, St, ν

h
t ) + σ2∂ννC(t, St, ν

h
t )
)

+ σρSt∂sνC(t, St, ν
h
t )− κ∂νC(t, St, ν

h
t )

}
dt

+
√
νtσ
(
ρ∂νC(t, St, ν

h
t )dW 1,Q

t − dW 2,Q
t

)
At last, the present value of the portfolio equals P&Lmin

T =
∫ T

0
e−rtdΠh

t and
is given by

P&Lmin
T =C(0, S0, ν

i
0)− C(0, S0, ν

h
0 )

+

∫ T

0

e−rt

{(
νht − νt

){1

2

(
S2
t ∂ssC(t, St, ν

h
t ) + σ2∂ννC(t, St, ν

h
t )
)

+ σρSt∂sνC(t, St, ν
h
t )− κ∂νC(t, St, ν

h
t )

}
dt

+
√
νtσ
(
ρ∂νC(t, St, ν

h
t )dW 1,Q

t − dW 2,Q
t

)}
using the boundary condition C(T, ST , ν

i
T ) − C(T, ST , ν

h
T ) = (ST − K)+.

The theorem is proved.
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Appendix B Formulas for c(·) and d(·)

The two functions c(·) and d(·) in theorem 1 are given by

c(φ) = riφ(T − t) +
κθ

σ2

(
(κ− ρσiφ+ h)(T − t)− 2 log

(
1− geh(T−t)

1− g

))
d(φ) =

κ− ρσiφ+ h

σ2

(
1− eh(T−t)

1− geh(T−t)

)

with

h =
√

(ρσiφ− κ)2 − σ2(−φ2 − iφ) and g =
κ− ρσiφ+ h

κ− ρσiφ− h
.

Appendix C Empirical Findings: Figures and Tables
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Figure 11: Daily implied volatilies for European options with maturity 1-month, 2-
months and 3-months, respectively. Implied volatilities are observed from 2008/07/02
to 2008/09/30 (63 trading days and 189 observations).
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Table 7: SUMMARY OF SPY TICK DATA

Option Period #Trades Total Volume Daily Volume Shares per Trade Price

1 2004-04-01 - 2004-06-29 1.74× 106 5.53× 108 9.07× 106 317 112.47
2 2004-06-30 - 2004-09-28 1.65× 106 5.68× 108 9.01× 106 344 110.81
3 2004-09-29 - 2004-12-29 2.58× 106 6.62× 108 1.03× 107 256 116.68
4 2004-12-30 - 2005-03-30 3.41× 106 8.03× 108 1.30× 107 235 119.27
5 2005-03-31 - 2005-06-28 2.25× 106 8.89× 108 1.41× 107 395 117.90
6 2005-06-29 - 2005-09-27 2.49× 106 9.27× 108 1.50× 107 372 122.37
7 2005-09-28 - 2005-12-29 2.52× 106 1.14× 109 1.75× 107 452 122.56
8 2005-12-30 - 2006-03-31 2.20× 106 1.08× 109 1.72× 107 492 128.13
9 2006-04-03 - 2006-06-29 2.10× 106 1.47× 109 2.37× 107 699 127.74
10 2006-06-30 - 2006-09-28 1.83× 106 1.37× 109 2.18× 107 749 128.53
11 2006-09-29 - 2006-12-29 1.76× 106 1.36× 109 2.12× 107 769 138.82
12 2007-01-03 - 2007-04-02 2.20× 106 1.91× 109 3.08× 107 867 141.94
13 2007-04-03 - 2007-07-02 3.17× 106 2.48× 109 3.94× 107 781 150.28
14 2007-07-03 - 2007-10-01 5.82× 106 4.39× 109 6.96× 107 753 148.03
15 2007-10-02 - 2007-12-31 4.73× 106 3.33× 109 5.28× 107 702 149.02
16 2008-01-02 - 2008-04-02 6.06× 106 4.42× 109 7.01× 107 728 134.70
17 2008-04-03 - 2008-07-01 5.05× 106 3.01× 109 4.78× 107 595 136.69
18 2008-07-02 - 2008-09-30 8.78× 106 4.39× 109 6.97× 107 500 124.20
19 2008-10-01 - 2008-12-30 1.53× 107 6.43× 109 1.02× 108 419 90.75
20 2008-12-31 - 2009-04-01 1.40× 107 5.76× 109 9.15× 107 411 80.34
21 2009-04-02 - 2009-07-01 8.68× 106 3.83× 109 6.08× 107 441 89.07
22 2009-07-02 - 2009-09-30 5.29× 106 2.52× 109 3.99× 107 475 99.22
23 2009-10-01 - 2009-12-30 4.96× 106 1.96× 109 3.11× 107 394 108.50
24 2009-12-31 - 2010-04-01 6.27× 106 2.46× 109 3.90× 107 391 111.97
25 2010-04-05 - 2010-07-01 9.71× 106 3.52× 109 5.59× 107 362 112.31
26 2010-07-02 - 2010-09-30 6.57× 106 2.59× 109 4.11× 107 394 109.66
27 2010-10-01 - 2010-12-30 5.37× 106 2.05× 109 3.26× 107 382 119.70
28 2010-12-31 - 2011-03-31 4.98× 106 1.99× 109 3.15× 107 398 130.13
29 2011-04-01 - 2011-06-30 5.15× 106 2.03× 109 3.22× 107 393 131.53
30 2011-07-01 - 2011-09-29 8.40× 106 3.53× 109 5.60× 107 419 120.78
31 2011-09-30 - 2011-12-29 6.08× 106 2.72× 109 4.31× 107 446 121.59
32 2011-12-30 - 2012-03-30 3.24× 106 1.60× 109 2.54× 107 494 134.40
33 2012-04-02 - 2012-06-29 3.81× 106 1.92× 109 3.05× 107 505 134.80
34 2012-07-02 - 2012-09-28 2.69× 106 1.40× 109 2.22× 107 521 139.74
35 2012-10-01 - 2013-01-02 3.20× 106 1.81× 109 2.87× 107 565 141.80
36 2013-01-03 - 2013-04-04 2.61× 106 1.62× 109 2.58× 107 621 151.80
37 2013-04-05 - 2013-07-03 3.84× 106 1.96× 109 3.10× 107 509 161.27

Description: Summary statistics of SPY trade data across the 38 trading periods.
Numbers reported in the last three columns are averages.
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Table 8: RISK-MINIMIZING HEDGE: SUMMARY OF P&L

Option Period Initial Price σimp.
1 σreal.

1 P&Limp.
T P&Lreal.

T QV imp. QV real.

1 2004-04-01 - 2004-06-29 34.06 0.156 0.087 17.98 15.61 0.370 0.429
2 2004-06-30 - 2004-09-28 33.25 0.150 0.089 10.61 11.40 0.136 0.443
3 2004-09-29 - 2004-12-29 30.37 0.139 0.070 -2.72 -3.11 0.451 0.401
4 2004-12-30 - 2005-03-30 31.10 0.126 0.037 9.16 9.94 0.113 0.202
5 2005-03-31 - 2005-06-28 31.88 0.131 0.083 6.20 8.06 0.229 0.196
6 2005-06-29 - 2005-09-27 30.91 0.120 0.066 7.83 6.56 0.448 0.355
7 2005-09-28 - 2005-12-29 33.61 0.129 0.092 1.21 1.05 0.288 0.286
8 2005-12-30 - 2006-03-31 34.56 0.125 0.084 3.51 3.35 0.485 0.398
9 2006-04-03 - 2006-06-29 33.96 0.115 0.077 3.05 2.75 0.313 0.322
10 2006-06-30 - 2006-09-28 38.50 0.132 0.076 6.28 7.45 0.360 0.313
11 2006-09-29 - 2006-12-29 38.52 0.126 0.050 1.75 1.88 0.353 0.298
12 2007-01-02 - 2007-04-02 40.52 0.124 0.094 1.56 3.00 1.041 1.237
13 2007-04-03 - 2007-07-02 42.48 0.129 0.092 -1.76 0.19 0.564 0.529
14 2007-07-03 - 2007-10-01 50.74 0.148 0.051 -11.16 -1.46 2.024 1.775
15 2007-10-02 - 2007-12-31 58.21 0.171 0.065 -0.24 -3.11 0.635 0.875
16 2008-01-02 - 2008-04-02 69.65 0.228 0.168 8.38 15.95 0.551 1.515
17 2008-04-03 - 2008-07-01 63.40 0.230 0.138 20.70 17.53 0.640 1.266
18 2008-07-02 - 2008-09-30 59.04 0.235 0.170 -31.70 -35.33 3.692 7.953
19 2008-10-01 - 2008-12-30 76.01 0.323 0.336 -6.92 9.93 2.930 27.985
20 2008-12-31 - 2009-04-01 63.89 0.355 0.214 6.71 13.00 0.697 1.135
21 2009-04-02 - 2009-07-01 60.74 0.382 0.341 15.53 12.09 0.278 0.857
22 2009-07-02 - 2009-09-30 44.87 0.268 0.225 3.96 8.39 0.152 0.311
23 2009-10-01 - 2009-12-30 48.43 0.250 0.176 11.27 11.39 0.183 0.375
24 2009-12-31 - 2010-04-01 43.92 0.211 0.072 13.37 13.28 0.251 0.447
25 2010-04-05 - 2010-07-01 37.03 0.169 0.072 -5.13 -8.01 0.841 1.672
26 2010-07-02 - 2010-09-30 55.26 0.284 0.193 12.76 14.49 0.285 0.542
27 2010-10-01 - 2010-12-30 47.08 0.220 0.151 11.72 11.91 0.279 0.240
28 2010-12-31 - 2011-03-31 41.73 0.179 0.054 7.16 6.93 0.402 0.325
29 2011-04-01 - 2011-06-30 41.21 0.167 0.080 14.62 13.20 0.224 0.496
30 2011-07-01 - 2011-09-29 37.05 0.151 0.107 1.24 -24.23 0.155 12.899
31 2011-09-30 - 2011-12-29 79.71 0.368 0.323 16.31 15.51 0.533 3.149
32 2011-12-30 - 2012-03-30 55.53 0.235 0.061 15.90 20.78 0.187 0.280
33 2012-04-02 - 2012-06-29 39.62 0.153 0.079 8.13 10.70 0.155 0.358
34 2012-07-02 - 2012-09-28 41.78 0.167 0.116 7.44 10.33 0.602 0.484
35 2012-10-01 - 2013-01-02 40.19 0.154 0.136 -3.37 -6.22 4.287 4.179
36 2013-01-03 - 2013-04-04 39.20 0.149 0.080 4.81 4.63 0.280 0.178
37 2013-04-05 - 2013-07-03 36.90 0.132 0.174 -8.63 -8.56 0.834 0.959

Description: Summary of terminal hedge errors and quadratic variations across
trading periods using Heston’s risk-minimizing hedge. The highlighted rows indicate
the hedging portfolios associated with biggest losses. The superscript ’impl’
emphasizes that implied volatility is used as hedging volatility.
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Table 9: HESTON DELTA HEDGE: SUMMARY OF P&L

Option Period Initial Price σimp.
1 σreal.

1 P&Limp.
T P&Lreal.

T QV imp. QV real.

1 2004-04-01 - 2004-06-29 34.06 0.156 0.087 17.77 14.57 0.405 0.427
2 2004-06-30 - 2004-09-28 33.25 0.150 0.089 5.84 4.77 0.213 0.160
3 2004-09-29 - 2004-12-29 30.37 0.139 0.070 4.43 4.07 0.126 0.108
4 2004-12-30 - 2005-03-30 31.10 0.126 0.037 5.57 5.36 0.332 0.262
5 2005-03-31 - 2005-06-28 31.88 0.131 0.083 8.17 9.83 0.364 0.372
6 2005-06-29 - 2005-09-27 30.91 0.120 0.066 11.13 9.82 0.101 0.093
7 2005-09-28 - 2005-12-29 33.61 0.129 0.092 5.30 5.56 0.285 0.282
8 2005-12-30 - 2006-03-31 34.56 0.125 0.084 8.47 8.47 0.083 0.091
9 2006-04-03 - 2006-06-29 33.96 0.115 0.077 -3.99 -4.73 0.630 0.744
10 2006-06-30 - 2006-09-28 38.50 0.132 0.076 10.09 10.96 0.150 0.172
11 2006-09-29 - 2006-12-29 38.52 0.126 0.050 8.30 8.89 0.076 0.074
12 2007-01-02 - 2007-04-02 40.52 0.124 0.094 0.48 2.54 1.998 2.456
13 2007-04-03 - 2007-07-02 42.48 0.129 0.092 6.32 8.84 0.122 0.136
14 2007-07-03 - 2007-10-01 50.74 0.148 0.051 -20.03 -5.33 2.991 3.898
15 2007-10-02 - 2007-12-31 58.21 0.171 0.065 -12.56 -17.34 1.792 2.143
16 2008-01-02 - 2008-04-02 69.65 0.228 0.168 -3.78 3.43 0.651 1.463
17 2008-04-03 - 2008-07-01 63.40 0.230 0.138 18.49 14.75 0.961 1.939
18 2008-07-02 - 2008-09-30 59.04 0.235 0.170 -37.34 -37.01 5.554 10.713
19 2008-10-01 - 2008-12-30 76.01 0.323 0.336 -24.49 -3.70 2.537 34.312
20 2008-12-31 - 2009-04-01 63.89 0.355 0.214 -2.10 2.77 0.366 0.513
21 2009-04-02 - 2009-07-01 60.74 0.382 0.341 20.69 20.14 0.377 1.648
22 2009-07-02 - 2009-09-30 44.87 0.268 0.225 11.67 17.56 0.110 0.392
23 2009-10-01 - 2009-12-30 48.43 0.250 0.176 17.48 19.50 0.304 1.060
24 2009-12-31 - 2010-04-01 43.92 0.211 0.072 16.42 17.69 0.533 0.576
25 2010-04-05 - 2010-07-01 37.03 0.169 0.072 -15.35 -18.78 1.260 3.767
26 2010-07-02 - 2010-09-30 55.26 0.284 0.193 19.43 22.64 0.345 1.354
27 2010-10-01 - 2010-12-30 47.08 0.220 0.151 18.60 20.17 0.207 0.540
28 2010-12-31 - 2011-03-31 41.73 0.179 0.054 13.84 15.20 0.320 0.528
29 2011-04-01 - 2011-06-30 41.21 0.167 0.080 10.04 8.45 0.490 0.644
30 2011-07-01 - 2011-09-29 37.05 0.151 0.107 -10.93 -35.88 0.875 17.674
31 2011-09-30 - 2011-12-29 79.71 0.368 0.323 23.80 26.97 0.740 5.848
32 2011-12-30 - 2012-03-30 55.53 0.235 0.061 24.29 31.47 0.235 0.608
33 2012-04-02 - 2012-06-29 39.62 0.153 0.079 -1.21 0.27 0.280 0.199
34 2012-07-02 - 2012-09-28 41.78 0.167 0.116 14.60 17.36 0.232 0.264
35 2012-10-01 - 2013-01-02 40.19 0.154 0.136 -7.07 -11.13 4.436 3.815
36 2013-01-03 - 2013-04-04 39.20 0.149 0.080 13.82 14.67 0.157 0.305
37 2013-04-05 - 2013-07-03 36.90 0.132 0.174 1.99 2.74 0.464 0.634

Description: Summary of terminal hedge errors and quadratic variations across
trading periods using the Heston’s delta hedge. The highlighted rows indicate the
hedging portfolios associated with biggest losses. The superscript ’impl’ emphasizes
that implied volatility is used as hedging volatility.
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Table 10: BLACK-SCHOLES DELTA HEDGE: SUMMARY OF P&L

Option Period Initial Price σimp.
1 σreal.

1 P&Limp.
T P&Lreal.

T QV imp. QV real.

1 2004-04-01 - 2004-06-29 34.06 0.156 0.087 17.88 11.91 0.258 0.309
2 2004-06-30 - 2004-09-28 33.25 0.150 0.089 9.59 11.11 0.101 0.407
3 2004-09-29 - 2004-12-29 30.37 0.139 0.070 2.92 2.35 0.058 0.215
4 2004-12-30 - 2005-03-30 31.10 0.126 0.037 6.57 5.65 0.071 0.152
5 2005-03-31 - 2005-06-28 31.88 0.131 0.083 6.46 8.29 0.112 0.170
6 2005-06-29 - 2005-09-27 30.91 0.120 0.066 7.59 4.58 0.067 0.248
7 2005-09-28 - 2005-12-29 33.61 0.129 0.092 3.76 4.32 0.093 0.265
8 2005-12-30 - 2006-03-31 34.56 0.125 0.084 5.85 3.26 0.086 0.389
9 2006-04-03 - 2006-06-29 33.96 0.115 0.077 -2.39 -4.02 0.263 0.393
10 2006-06-30 - 2006-09-28 38.50 0.132 0.076 8.23 9.21 0.108 0.240
11 2006-09-29 - 2006-12-29 38.52 0.126 0.050 7.67 10.29 0.044 0.227
12 2007-01-02 - 2007-04-02 40.52 0.124 0.094 -2.27 -1.87 1.886 3.311
13 2007-04-03 - 2007-07-02 42.48 0.129 0.092 4.94 12.50 0.052 0.246
14 2007-07-03 - 2007-10-01 50.74 0.148 0.051 -13.23 0.64 1.687 2.860
15 2007-10-02 - 2007-12-31 58.21 0.171 0.065 -5.87 -10.44 0.749 1.287
16 2008-01-02 - 2008-04-02 69.65 0.228 0.168 1.68 11.19 0.289 1.493
17 2008-04-03 - 2008-07-01 63.40 0.230 0.138 19.14 10.24 0.637 2.029
18 2008-07-02 - 2008-09-30 59.04 0.235 0.170 -32.74 -38.94 4.199 9.792
19 2008-10-01 - 2008-12-30 76.01 0.323 0.336 -35.18 -9.46 1.835 53.100
20 2008-12-31 - 2009-04-01 63.89 0.355 0.214 -2.22 3.67 0.267 0.327
21 2009-04-02 - 2009-07-01 60.74 0.382 0.341 17.97 14.49 0.217 1.255
22 2009-07-02 - 2009-09-30 44.87 0.268 0.225 7.53 16.30 0.074 0.558
23 2009-10-01 - 2009-12-30 48.43 0.250 0.176 13.84 15.91 0.130 1.195
24 2009-12-31 - 2010-04-01 43.92 0.211 0.072 16.20 16.80 0.228 0.543
25 2010-04-05 - 2010-07-01 37.03 0.169 0.072 -11.83 -18.64 0.677 3.733
26 2010-07-02 - 2010-09-30 55.26 0.284 0.193 15.44 16.90 0.203 1.485
27 2010-10-01 - 2010-12-30 47.08 0.220 0.151 15.18 14.41 0.145 0.786
28 2010-12-31 - 2011-03-31 41.73 0.179 0.054 8.81 9.63 0.225 1.291
29 2011-04-01 - 2011-06-30 41.21 0.167 0.080 11.99 7.64 0.219 0.558
30 2011-07-01 - 2011-09-29 37.05 0.151 0.107 -6.19 -30.56 0.404 21.727
31 2011-09-30 - 2011-12-29 79.71 0.368 0.323 19.03 18.01 0.440 6.490
32 2011-12-30 - 2012-03-30 55.53 0.235 0.061 20.20 32.83 0.154 1.074
33 2012-04-02 - 2012-06-29 39.62 0.153 0.079 2.95 7.86 0.063 0.398
34 2012-07-02 - 2012-09-28 41.78 0.167 0.116 12.24 18.11 0.204 0.663
35 2012-10-01 - 2013-01-02 40.19 0.154 0.136 -3.93 -10.05 3.930 3.816
36 2013-01-03 - 2013-04-04 39.20 0.149 0.080 10.71 13.03 0.097 0.854
37 2013-04-05 - 2013-07-03 36.90 0.132 0.174 -3.97 2.67 0.212 0.935

Description: Summary of terminal hedge errors and quadratic variations across
trading periods using the Black-Scholes delta hedge. The highlighted rows indicate the
hedging portfolios associated with biggest losses. The superscript ’impl’ emphasizes
that implied volatility is used as hedging volatility.
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Table 11: SUMMARY OF VPIN ESTIMATES I

Option Period barSize s.d.(#Buckets) Min(#Buckets) Max(#Buckets) Average(VPIN) Median(VPIN) s.d.(VPIN)

1 2004-04-01 - 2004-06-29 0.5 14.55 27 95 0.236 0.236 0.059
2 2004-06-30 - 2004-09-28 0.5 14.83 28 93 0.228 0.216 0.050
3 2004-09-29 - 2004-12-29 0.5 12.00 17 89 0.220 0.215 0.037
4 2004-12-30 - 2005-03-30 0.5 12.82 22 83 0.231 0.227 0.045
5 2005-03-31 - 2005-06-28 0.5 15.95 21 90 0.242 0.233 0.053
6 2005-06-29 - 2005-09-27 0.5 15.05 28 92 0.250 0.251 0.047
7 2005-09-28 - 2005-12-29 0.5 18.56 10 115 0.234 0.226 0.055
8 2005-12-30 - 2006-03-31 0.5 13.58 27 103 0.217 0.214 0.034
9 2006-04-03 - 2006-06-29 0.5 22.15 15 119 0.222 0.216 0.056
10 2006-06-30 - 2006-09-28 0.5 13.48 20 89 0.209 0.204 0.041
11 2006-09-29 - 2006-12-29 0.5 14.17 21 94 0.225 0.221 0.042
12 2007-01-03 - 2007-04-02 0.5 26.04 21 143 0.243 0.211 0.098
13 2007-04-03 - 2007-07-02 0.5 21.91 9 105 0.238 0.219 0.069
14 2007-07-03 - 2007-10-01 0.5 26.82 15 134 0.217 0.202 0.071
15 2007-10-02 - 2007-12-31 0.5 21.67 11 108 0.223 0.223 0.054
16 2008-01-02 - 2008-04-02 0.5 15.98 21 101 0.196 0.188 0.048
17 2008-04-03 - 2008-07-01 0.5 12.88 26 92 0.208 0.205 0.040
18 2008-07-02 - 2008-09-30 0.5 22.11 23 130 0.210 0.191 0.074
19 2008-10-01 - 2008-12-30 0.5 20.19 6 118 0.211 0.201 0.055
20 2008-12-31 - 2009-04-01 0.5 10.80 23 71 0.218 0.210 0.054
21 2009-04-02 - 2009-07-01 0.5 11.96 27 96 0.244 0.231 0.061
22 2009-07-02 - 2009-09-30 0.5 13.12 26 90 0.258 0.242 0.068
23 2009-10-01 - 2009-12-30 0.5 17.18 8 93 0.244 0.230 0.061
24 2009-12-31 - 2010-04-01 0.5 19.07 20 119 0.233 0.225 0.054
25 2010-04-05 - 2010-07-01 0.5 20.05 21 126 0.223 0.216 0.073
26 2010-07-02 - 2010-09-30 0.5 11.09 31 71 0.236 0.231 0.052
27 2010-10-01 - 2010-12-30 0.5 18.46 15 103 0.254 0.247 0.057
28 2010-12-31 - 2011-03-31 0.5 19.68 22 131 0.247 0.243 0.068
29 2011-04-01 - 2011-06-30 0.5 15.72 19 101 0.244 0.235 0.050
30 2011-07-01 - 2011-09-29 0.5 23.04 17 124 0.237 0.218 0.080
31 2011-09-30 - 2011-12-29 0.5 16.96 16 103 0.240 0.236 0.054
32 2011-12-30 - 2012-03-30 0.5 10.72 32 72 0.264 0.259 0.057
33 2012-04-02 - 2012-06-29 0.5 10.74 32 85 0.260 0.247 0.065
34 2012-07-02 - 2012-09-28 0.5 15.48 25 99 0.286 0.280 0.068
35 2012-10-01 - 2013-01-02 0.5 16.41 24 115 0.292 0.270 0.090
36 2013-01-03 - 2013-04-04 0.5 13.27 25 89 0.291 0.281 0.075
37 2013-04-05 - 2013-07-03 0.5 17.61 27 111 0.269 0.254 0.078

Description: Summary of the VPIN series across trading periods. Time bars of
30-seconds are used, and V BS equals one-fiftieth of the average daily volume.
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Table 12: SUMMARY OF VPIN ESTIMATES II

Option Period barSize s.d.(#Buckets) Min(#Buckets) Max(#Buckets) Average(VPIN) Median(VPIN) s.d.(VPIN)

1 2004-04-01 - 2004-06-29 1 14.55 27 95 0.273 0.267 0.067
2 2004-06-30 - 2004-09-28 1 14.83 28 93 0.268 0.253 0.067
3 2004-09-29 - 2004-12-29 1 12.00 17 89 0.261 0.253 0.048
4 2004-12-30 - 2005-03-30 1 12.82 22 83 0.271 0.263 0.052
5 2005-03-31 - 2005-06-28 1 15.95 21 90 0.286 0.270 0.066
6 2005-06-29 - 2005-09-27 1 15.05 28 92 0.291 0.288 0.060
7 2005-09-28 - 2005-12-29 1 18.56 10 115 0.277 0.261 0.069
8 2005-12-30 - 2006-03-31 1 13.58 27 103 0.255 0.248 0.044
9 2006-04-03 - 2006-06-29 1 22.15 15 119 0.269 0.254 0.074
10 2006-06-30 - 2006-09-28 1 13.48 20 89 0.255 0.248 0.052
11 2006-09-29 - 2006-12-29 1 14.17 21 94 0.271 0.268 0.052
12 2007-01-03 - 2007-04-02 1 26.04 21 143 0.292 0.259 0.115
13 2007-04-03 - 2007-07-02 1 21.91 9 105 0.283 0.266 0.077
14 2007-07-03 - 2007-10-01 1 26.82 15 134 0.270 0.247 0.093
15 2007-10-02 - 2007-12-31 1 21.67 11 108 0.276 0.273 0.073
16 2008-01-02 - 2008-04-02 1 15.98 21 101 0.249 0.242 0.061
17 2008-04-03 - 2008-07-01 1 12.88 26 92 0.254 0.249 0.050
18 2008-07-02 - 2008-09-30 1 22.11 23 130 0.259 0.242 0.092
19 2008-10-01 - 2008-12-30 1 20.19 6 118 0.263 0.251 0.072
20 2008-12-31 - 2009-04-01 1 10.80 23 71 0.253 0.248 0.056
21 2009-04-02 - 2009-07-01 1 11.96 27 96 0.294 0.290 0.056
22 2009-07-02 - 2009-09-30 1 13.12 26 90 0.295 0.283 0.073
23 2009-10-01 - 2009-12-30 1 17.18 8 93 0.277 0.267 0.065
24 2009-12-31 - 2010-04-01 1 19.07 20 119 0.280 0.271 0.063
25 2010-04-05 - 2010-07-01 1 20.05 21 126 0.264 0.260 0.091
26 2010-07-02 - 2010-09-30 1 11.09 31 71 0.283 0.280 0.059
27 2010-10-01 - 2010-12-30 1 18.46 15 103 0.291 0.287 0.073
28 2010-12-31 - 2011-03-31 1 19.68 22 131 0.284 0.273 0.083
29 2011-04-01 - 2011-06-30 1 15.72 19 101 0.286 0.276 0.063
30 2011-07-01 - 2011-09-29 1 23.04 17 124 0.287 0.266 0.096
31 2011-09-30 - 2011-12-29 1 16.96 16 103 0.286 0.282 0.068
32 2011-12-30 - 2012-03-30 1 10.72 32 72 0.286 0.286 0.055
33 2012-04-02 - 2012-06-29 1 10.74 32 85 0.302 0.294 0.071
34 2012-07-02 - 2012-09-28 1 15.48 25 99 0.324 0.314 0.076
35 2012-10-01 - 2013-01-02 1 16.41 24 115 0.321 0.302 0.100
36 2013-01-03 - 2013-04-04 1 13.27 25 89 0.324 0.314 0.080
37 2013-04-05 - 2013-07-03 1 17.61 27 111 0.313 0.302 0.091

Description: Summary of the VPIN series across trading periods. One-minute time
bars are used, and V BS equals one-fiftieth of the average daily volume.
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Table 13: SUMMARY OF VPIN ESTIMATES III

Option Period barSize s.d.(#Buckets) Min(#Buckets) Max(#Buckets) Average(VPIN) Median(VPIN) s.d.(VPIN)

1 2004-04-01 - 2004-06-29 2 14.55 27 95 0.320 0.311 0.076
2 2004-06-30 - 2004-09-28 2 14.83 28 93 0.326 0.313 0.079
3 2004-09-29 - 2004-12-29 2 12.00 17 89 0.312 0.307 0.061
4 2004-12-30 - 2005-03-30 2 12.82 22 83 0.329 0.322 0.060
5 2005-03-31 - 2005-06-28 2 15.95 21 90 0.339 0.325 0.076
6 2005-06-29 - 2005-09-27 2 15.05 28 92 0.344 0.338 0.071
7 2005-09-28 - 2005-12-29 2 18.56 10 115 0.329 0.309 0.083
8 2005-12-30 - 2006-03-31 2 13.58 27 103 0.311 0.302 0.053
9 2006-04-03 - 2006-06-29 2 22.15 15 119 0.332 0.318 0.089
10 2006-06-30 - 2006-09-28 2 13.48 20 89 0.314 0.303 0.071
11 2006-09-29 - 2006-12-29 2 14.17 21 94 0.324 0.320 0.061
12 2007-01-03 - 2007-04-02 2 26.04 21 143 0.343 0.314 0.132
13 2007-04-03 - 2007-07-02 2 21.91 9 105 0.346 0.320 0.100
14 2007-07-03 - 2007-10-01 2 26.82 15 134 0.339 0.318 0.122
15 2007-10-02 - 2007-12-31 2 21.67 11 108 0.340 0.342 0.091
16 2008-01-02 - 2008-04-02 2 15.98 21 101 0.322 0.307 0.086
17 2008-04-03 - 2008-07-01 2 12.88 26 92 0.309 0.305 0.062
18 2008-07-02 - 2008-09-30 2 22.11 23 130 0.322 0.300 0.113
19 2008-10-01 - 2008-12-30 2 20.19 6 118 0.328 0.314 0.093
20 2008-12-31 - 2009-04-01 2 10.80 23 71 0.314 0.308 0.056
21 2009-04-02 - 2009-07-01 2 11.96 27 96 0.341 0.334 0.061
22 2009-07-02 - 2009-09-30 2 13.12 26 90 0.341 0.334 0.075
23 2009-10-01 - 2009-12-30 2 17.18 8 93 0.335 0.321 0.079
24 2009-12-31 - 2010-04-01 2 19.07 20 119 0.332 0.318 0.080
25 2010-04-05 - 2010-07-01 2 20.05 21 126 0.312 0.310 0.110
26 2010-07-02 - 2010-09-30 2 11.09 31 71 0.336 0.334 0.071
27 2010-10-01 - 2010-12-30 2 18.46 15 103 0.346 0.341 0.081
28 2010-12-31 - 2011-03-31 2 19.68 22 131 0.335 0.323 0.094
29 2011-04-01 - 2011-06-30 2 15.72 19 101 0.343 0.335 0.071
30 2011-07-01 - 2011-09-29 2 23.04 17 124 0.341 0.314 0.126
31 2011-09-30 - 2011-12-29 2 16.96 16 103 0.339 0.329 0.077
32 2011-12-30 - 2012-03-30 2 10.72 32 72 0.339 0.341 0.065
33 2012-04-02 - 2012-06-29 2 10.74 32 85 0.359 0.355 0.069
34 2012-07-02 - 2012-09-28 2 15.48 25 99 0.370 0.361 0.084
35 2012-10-01 - 2013-01-02 2 16.41 24 115 0.379 0.364 0.097
36 2013-01-03 - 2013-04-04 2 13.27 25 89 0.375 0.359 0.095
37 2013-04-05 - 2013-07-03 2 17.61 27 111 0.368 0.358 0.102

Description: Summary of the VPIN series across trading periods. Two-minute time
bars are used.
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Table 14: SUMMARY OF VPIN ESTIMATES IV

Option Period barSize s.d.(#Buckets) Min(#Buckets) Max(#Buckets) Average(VPIN) Median(VPIN) s.d.(VPIN)

1 2004-04-01 - 2004-06-29 3 14.55 27 95 0.361 0.354 0.088
2 2004-06-30 - 2004-09-28 3 14.83 28 93 0.366 0.353 0.086
3 2004-09-29 - 2004-12-29 3 12.00 17 89 0.354 0.351 0.065
4 2004-12-30 - 2005-03-30 3 12.82 22 83 0.363 0.358 0.067
5 2005-03-31 - 2005-06-28 3 15.95 21 90 0.377 0.360 0.086
6 2005-06-29 - 2005-09-27 3 15.05 28 92 0.378 0.368 0.074
7 2005-09-28 - 2005-12-29 3 18.56 10 115 0.368 0.355 0.093
8 2005-12-30 - 2006-03-31 3 13.58 27 103 0.349 0.341 0.063
9 2006-04-03 - 2006-06-29 3 22.15 15 119 0.367 0.356 0.099
10 2006-06-30 - 2006-09-28 3 13.48 20 89 0.347 0.337 0.069
11 2006-09-29 - 2006-12-29 3 14.17 21 94 0.356 0.352 0.069
12 2007-01-03 - 2007-04-02 3 26.04 21 143 0.384 0.351 0.145
13 2007-04-03 - 2007-07-02 3 21.91 9 105 0.384 0.354 0.108
14 2007-07-03 - 2007-10-01 3 26.82 15 134 0.386 0.365 0.135
15 2007-10-02 - 2007-12-31 3 21.67 11 108 0.384 0.388 0.103
16 2008-01-02 - 2008-04-02 3 15.98 21 101 0.356 0.342 0.086
17 2008-04-03 - 2008-07-01 3 12.88 26 92 0.351 0.346 0.069
18 2008-07-02 - 2008-09-30 3 22.11 23 130 0.361 0.344 0.120
19 2008-10-01 - 2008-12-30 3 20.19 6 118 0.368 0.355 0.103
20 2008-12-31 - 2009-04-01 3 10.80 23 71 0.351 0.350 0.056
21 2009-04-02 - 2009-07-01 3 11.96 27 96 0.381 0.379 0.068
22 2009-07-02 - 2009-09-30 3 13.12 26 90 0.372 0.359 0.075
23 2009-10-01 - 2009-12-30 3 17.18 8 93 0.369 0.364 0.083
24 2009-12-31 - 2010-04-01 3 19.07 20 119 0.371 0.359 0.092
25 2010-04-05 - 2010-07-01 3 20.05 21 126 0.357 0.351 0.123
26 2010-07-02 - 2010-09-30 3 11.09 31 71 0.372 0.374 0.076
27 2010-10-01 - 2010-12-30 3 18.46 15 103 0.379 0.377 0.085
28 2010-12-31 - 2011-03-31 3 19.68 22 131 0.383 0.373 0.109
29 2011-04-01 - 2011-06-30 3 15.72 19 101 0.368 0.364 0.077
30 2011-07-01 - 2011-09-29 3 23.04 17 124 0.374 0.348 0.139
31 2011-09-30 - 2011-12-29 3 16.96 16 103 0.378 0.373 0.087
32 2011-12-30 - 2012-03-30 3 10.72 32 72 0.378 0.377 0.066
33 2012-04-02 - 2012-06-29 3 10.74 32 85 0.387 0.382 0.074
34 2012-07-02 - 2012-09-28 3 15.48 25 99 0.403 0.397 0.084
35 2012-10-01 - 2013-01-02 3 16.41 24 115 0.401 0.387 0.097
36 2013-01-03 - 2013-04-04 3 13.27 25 89 0.403 0.396 0.100
37 2013-04-05 - 2013-07-03 3 17.61 27 111 0.395 0.377 0.107

Description: Summary of the VPIN series across trading periods. Three-minute time
bars are used, and V BS equals one-fiftieth of the average daily volume.
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Table 15: SUMMARY OF VPIN ESTIMATES V

Option Period VBS Average(VPIN) Median(VPIN) s.d.(VPIN)

1 2004-04-01 - 2004-06-29 1/25 0.213 0.209 0.050
2 2004-06-30 - 2004-09-28 1/25 0.209 0.196 0.052
3 2004-09-29 - 2004-12-29 1/25 0.201 0.201 0.033
4 2004-12-30 - 2005-03-30 1/25 0.210 0.207 0.041
5 2005-03-31 - 2005-06-28 1/25 0.224 0.217 0.044
6 2005-06-29 - 2005-09-27 1/25 0.225 0.217 0.042
7 2005-09-28 - 2005-12-29 1/25 0.211 0.201 0.055
8 2005-12-30 - 2006-03-31 1/25 0.189 0.190 0.029
9 2006-04-03 - 2006-06-29 1/25 0.205 0.201 0.053
10 2006-06-30 - 2006-09-28 1/25 0.187 0.182 0.033
11 2006-09-29 - 2006-12-29 1/25 0.212 0.210 0.036
12 2007-01-03 - 2007-04-02 1/25 0.224 0.201 0.087
13 2007-04-03 - 2007-07-02 1/25 0.215 0.203 0.053
14 2007-07-03 - 2007-10-01 1/25 0.209 0.197 0.064
15 2007-10-02 - 2007-12-31 1/25 0.212 0.209 0.047
16 2008-01-02 - 2008-04-02 1/25 0.190 0.184 0.045
17 2008-04-03 - 2008-07-01 1/25 0.189 0.182 0.034
18 2008-07-02 - 2008-09-30 1/25 0.199 0.186 0.072
19 2008-10-01 - 2008-12-30 1/25 0.195 0.188 0.049
20 2008-12-31 - 2009-04-01 1/25 0.195 0.188 0.043
21 2009-04-02 - 2009-07-01 1/25 0.235 0.234 0.040
22 2009-07-02 - 2009-09-30 1/25 0.234 0.226 0.052
23 2009-10-01 - 2009-12-30 1/25 0.221 0.213 0.041
24 2009-12-31 - 2010-04-01 1/25 0.216 0.215 0.047
25 2010-04-05 - 2010-07-01 1/25 0.209 0.202 0.070
26 2010-07-02 - 2010-09-30 1/25 0.227 0.223 0.039
27 2010-10-01 - 2010-12-30 1/25 0.231 0.229 0.048
28 2010-12-31 - 2011-03-31 1/25 0.226 0.217 0.063
29 2011-04-01 - 2011-06-30 1/25 0.223 0.212 0.041
30 2011-07-01 - 2011-09-29 1/25 0.227 0.211 0.067
31 2011-09-30 - 2011-12-29 1/25 0.225 0.219 0.045
32 2011-12-30 - 2012-03-30 1/25 0.232 0.229 0.034
33 2012-04-02 - 2012-06-29 1/25 0.243 0.237 0.053
34 2012-07-02 - 2012-09-28 1/25 0.269 0.266 0.055
35 2012-10-01 - 2013-01-02 1/25 0.271 0.259 0.077
36 2013-01-03 - 2013-04-04 1/25 0.266 0.260 0.054
37 2013-04-05 - 2013-07-03 1/25 0.258 0.251 0.062

Description: Summary of the VPIN series across trading periods. One-minute time
bars are used, and V BS equals one-twenty-fifth of the average daily volume.
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Table 16: SUMMARY OF VPIN ESTIMATES VI

Option Period VBS Average(VPIN) Median(VPIN) s.d.(VPIN)

1 2004-04-01 - 2004-06-29 1/50 0.273 0.267 0.067
2 2004-06-30 - 2004-09-28 1/50 0.268 0.253 0.067
3 2004-09-29 - 2004-12-29 1/50 0.261 0.253 0.048
4 2004-12-30 - 2005-03-30 1/50 0.271 0.263 0.052
5 2005-03-31 - 2005-06-28 1/50 0.286 0.270 0.066
6 2005-06-29 - 2005-09-27 1/50 0.291 0.288 0.060
7 2005-09-28 - 2005-12-29 1/50 0.277 0.261 0.069
8 2005-12-30 - 2006-03-31 1/50 0.255 0.248 0.044
9 2006-04-03 - 2006-06-29 1/50 0.269 0.254 0.074
10 2006-06-30 - 2006-09-28 1/50 0.255 0.248 0.052
11 2006-09-29 - 2006-12-29 1/50 0.271 0.268 0.052
12 2007-01-03 - 2007-04-02 1/50 0.292 0.259 0.115
13 2007-04-03 - 2007-07-02 1/50 0.283 0.266 0.077
14 2007-07-03 - 2007-10-01 1/50 0.270 0.247 0.093
15 2007-10-02 - 2007-12-31 1/50 0.276 0.273 0.073
16 2008-01-02 - 2008-04-02 1/50 0.249 0.242 0.061
17 2008-04-03 - 2008-07-01 1/50 0.254 0.249 0.050
18 2008-07-02 - 2008-09-30 1/50 0.259 0.242 0.092
19 2008-10-01 - 2008-12-30 1/50 0.263 0.251 0.072
20 2008-12-31 - 2009-04-01 1/50 0.253 0.248 0.056
21 2009-04-02 - 2009-07-01 1/50 0.294 0.290 0.056
22 2009-07-02 - 2009-09-30 1/50 0.295 0.283 0.073
23 2009-10-01 - 2009-12-30 1/50 0.277 0.267 0.065
24 2009-12-31 - 2010-04-01 1/50 0.280 0.271 0.063
25 2010-04-05 - 2010-07-01 1/50 0.264 0.260 0.091
26 2010-07-02 - 2010-09-30 1/50 0.283 0.280 0.059
27 2010-10-01 - 2010-12-30 1/50 0.291 0.287 0.073
28 2010-12-31 - 2011-03-31 1/50 0.284 0.273 0.083
29 2011-04-01 - 2011-06-30 1/50 0.286 0.276 0.063
30 2011-07-01 - 2011-09-29 1/50 0.287 0.266 0.096
31 2011-09-30 - 2011-12-29 1/50 0.286 0.282 0.068
32 2011-12-30 - 2012-03-30 1/50 0.286 0.286 0.055
33 2012-04-02 - 2012-06-29 1/50 0.302 0.294 0.071
34 2012-07-02 - 2012-09-28 1/50 0.324 0.314 0.076
35 2012-10-01 - 2013-01-02 1/50 0.321 0.302 0.100
36 2013-01-03 - 2013-04-04 1/50 0.324 0.314 0.080
37 2013-04-05 - 2013-07-03 1/50 0.313 0.302 0.091

Description: Summary of the VPIN series across trading periods. One-minute time
bars are used, and V BS equals one-fiftieth of the average daily volume.
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Table 17: SUMMARY OF VPIN ESTIMATES VII

Option Period VBS Average(VPIN) Median(VPIN) s.d.(VPIN)

1 2004-04-01 - 2004-06-29 1/100 0.343 0.339 0.074
2 2004-06-30 - 2004-09-28 1/100 0.336 0.320 0.067
3 2004-09-29 - 2004-12-29 1/100 0.334 0.328 0.051
4 2004-12-30 - 2005-03-30 1/100 0.340 0.334 0.056
5 2005-03-31 - 2005-06-28 1/100 0.353 0.337 0.076
6 2005-06-29 - 2005-09-27 1/100 0.358 0.356 0.062
7 2005-09-28 - 2005-12-29 1/100 0.348 0.339 0.076
8 2005-12-30 - 2006-03-31 1/100 0.326 0.318 0.051
9 2006-04-03 - 2006-06-29 1/100 0.341 0.327 0.082
10 2006-06-30 - 2006-09-28 1/100 0.326 0.319 0.060
11 2006-09-29 - 2006-12-29 1/100 0.344 0.339 0.055
12 2007-01-03 - 2007-04-02 1/100 0.364 0.338 0.126
13 2007-04-03 - 2007-07-02 1/100 0.357 0.335 0.091
14 2007-07-03 - 2007-10-01 1/100 0.349 0.321 0.112
15 2007-10-02 - 2007-12-31 1/100 0.353 0.353 0.086
16 2008-01-02 - 2008-04-02 1/100 0.323 0.310 0.074
17 2008-04-03 - 2008-07-01 1/100 0.323 0.314 0.056
18 2008-07-02 - 2008-09-30 1/100 0.329 0.311 0.112
19 2008-10-01 - 2008-12-30 1/100 0.334 0.320 0.087
20 2008-12-31 - 2009-04-01 1/100 0.316 0.312 0.056
21 2009-04-02 - 2009-07-01 1/100 0.357 0.354 0.054
22 2009-07-02 - 2009-09-30 1/100 0.364 0.355 0.072
23 2009-10-01 - 2009-12-30 1/100 0.347 0.341 0.072
24 2009-12-31 - 2010-04-01 1/100 0.348 0.332 0.082
25 2010-04-05 - 2010-07-01 1/100 0.329 0.327 0.106
26 2010-07-02 - 2010-09-30 1/100 0.350 0.347 0.062
27 2010-10-01 - 2010-12-30 1/100 0.362 0.359 0.078
28 2010-12-31 - 2011-03-31 1/100 0.354 0.346 0.097
29 2011-04-01 - 2011-06-30 1/100 0.350 0.338 0.066
30 2011-07-01 - 2011-09-29 1/100 0.355 0.332 0.112
31 2011-09-30 - 2011-12-29 1/100 0.354 0.349 0.079
32 2011-12-30 - 2012-03-30 1/100 0.352 0.352 0.056
33 2012-04-02 - 2012-06-29 1/100 0.366 0.362 0.073
34 2012-07-02 - 2012-09-28 1/100 0.383 0.372 0.076
35 2012-10-01 - 2013-01-02 1/100 0.386 0.366 0.101
36 2013-01-03 - 2013-04-04 1/100 0.383 0.382 0.080
37 2013-04-05 - 2013-07-03 1/100 0.377 0.366 0.103

Description: Summary of the VPIN series across trading periods. One-minute time
bars are used, and V BS equals one percentage of the average daily volume.
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1. Introduction

This paper investigates whether maximum likelihood estimation (MLE)

of the volume-synchronized probability of informed trading (VPIN) can im-

prove its predictive power for short-term volatility. VPIN was developed

by Easley et al. (2012) to measure the toxic order flow in markets charac-

terized by high-frequency trading. The VPIN metric originated from the

market microstructure, particularly the well-known probability of informed

trading (PIN) model proposed by Easley et al. (1996). Easley et al. (2008)

considered a modified PIN model focusing on trading volume. They could

also derive the expected order imbalance and total traded volume, respec-

tively, for a fixed unit of time. Their computations reveal that the ratio of

the two expectations approximately measures the PIN.

Inspired by this result, Easley et al. (2012) proposed moment estima-

tion to measure the PIN in high-frequency markets. The estimator (for

method of moment estimation: MME) was labeled VPIN and derived from

the fundamental assumption that the arrival of information is modeled on

a volume clock, and not calendar time as for the PIN model. However, Lin

and Ke (2017) show mathematically that the moment estimator approxi-

mates a probability measure for a given fixed-size trading volume labeled

VPIN, whereas PIN is a probability measure for a given fixed time inter-

val. Theoretically, the two measures do not coincide. The MLE utilizing

information in volume enabled Lin and Ke (2017) to fully estimate both

PIN and VPIN parametrically.

Presumably, moment estimation and full parametric estimation of the

VPIN will lead to different outcomes; thus, it is relevant to compare the

important characteristics of the two estimators. Moreover, it is pertinent to

investigate whether the moment estimator can numerically measure PIN.

Abstracting from the disagreement between the two probability mea-

sures, (through moment estimation) VPIN has played a central role in the

empirical market microstructure literature in recent years. Easley et al.

(2012) find that VPIN is a good predictor of short-term return volatility

and may be used as a warning signal for imminent market turmoil. The

economic interpretation is that high VPIN values are related to toxic order

flow, which negatively affects the market makers (high-frequency traders).
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Over time, the market makers will withdraw from their positions and start

demanding liquidity. This impact on market liquidity may affect the intra-

day price returns in what might be referred to as liquidity-induced volatility.

Importantly, Easley et al. (2012, 2010) conclude that VPIN anticipated the

Flash Crash of May 6, 2010, emphasizing that the metric is a powerful tool

for signaling market turbulence.

This empirical work began a debate with Andersen and Bondarenko

(2014a, 2015) on the opposite side. These studies claim that VPIN has

no incremental predictive power for models of short-term volatility 1. As

regards the Flash Crash of May 6, 2010, Andersen and Bondarenko (2014b)

observe that VPIN kept on rising after the crash. They question whether

VPIN was impacted by the crash or was predicting the crash. Their main

conclusion is that VPIN is an inferior warning signal for market turmoil.

Numerous empirical studies have contributed to this debate, the major-

ity of them based on in-sample performance2. Wu et al. (2013a) advocate

the usefulness of the VPIN on the basis of an enormous study of around

100 of the most liquid futures contracts over a period of five and a half

years involving about 3 billion trades. They propose to assess the perfor-

mance of the VPIN using a binary outcome where the events related to high

VPIN values are labeled either true or false positives depending on max-

imum intermediate returns (MIR) for a given event horizon. Considering

over 16,000 VPIN parameter combinations (including the event horizon),

Wu et al. (2013a) identify the optimal parameter settings that lead to false

discovery rates of around 7%. As Abad et al. (2018) correctly pointed out,

this in-sample optimization approach reminds one of data snooping.

This work contributes an out-of-sample study of the VPIN’s predictive

power for short-term volatility. VPIN is computed using both the moment

estimator and the recently developed MLE method capturing information

from volume time. The MLE is also used to compute the PIN measure.

1Especially, Andersen and Bondarenko (2015) states that VPIN predicts short-term
volatility solely because ex-ante volatility distorts the trade classification algorithm; this
is used in the estimation of VPIN.

2See the empirical work by Abad-Diaz and Yagüe (2012), Easley et al. (2012, 2010,
2011, 2014), Wu et al. (2013a,b), and Song et al. (2014) (supporting), or Andersen and
Bondarenko (2014a,b, 2015), Pöppe et al. (2016), and Abad et al. (2018) (disputing).
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This paper is strongly believed to be the first to conduct a comprehensive

empirical study on the maximum likelihood estimation of VPIN.

Assessment of VPIN’s (PIN’s) performance is similar to the binary eval-

uation proposed by Wu et al. (2013a), preferring small false discovery rates.

Inspired by the in-sample optimal VPIN parameter settings identified by

Wu et al. (2013a) and Song et al. (2014), only a few volume bucket size and

support window combinations are considered. The remaining parameters

are fixed, with the daily average trading volume from the previous year

used to compute the relevant volume bucket size. This setting is appropri-

ate for answering the research questions of this paper: Does VPIN (PIN)

have incremental predictive power for short-term return volatility? Can

the MLE of VPIN improve this predictive power? Does VPIN empirically

measure PIN?

This empirical study focuses on the SPRD S&P500 ETF (SPY) traded

between 2007-2015. The findings reveal that VPIN does not approximately

measure PIN. Thus, only MLE may be used to estimate PIN. Moreover, the

moment estimation of VPIN produces false discovery rates ranging from

15% to 23%. In comparison, the MLE of VPIN leads to false discovery rates

ranging from 10%− 15%, indicating a clear improvement. Strikingly, PIN

is an inferior predictor of short-term return volatility, with false discovery

rates of approximately 50%. This result supports the theoretical disagree-

ment between VPIN and PIN, and further suggests that the toxic order

flow in high-frequency markets should be modeled on the volume clock.

Empirical findings are supplemented with a minor case study, illustrat-

ing a significant shortcoming of the methodology proposed by Wu et al.

(2013a): complete neglect of type II errors. The false discovery rate is

likely to move opposite to the number of type II errors, and performance

evaluation of VPIN must be based on the practitioner’s specific problem.

The F1-score, the harmonic mean of precision and sensitivity, is used to

capture this performance trade-off. From the results, the lowest false dis-

covery rate does not coincide with the optimal F1-score. This indirectly

criticizes the empirical findings of Wu et al. (2013a). Finally, the MLE of

VPIN yields the best outcomes in terms of larger F1-scores. This result

supports the findings on false discovery rates: the MLE of VPIN improves

its predictive power for short-term volatility.
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Further, this paper presents an example on the Flash Crash of May 6,

2010. VPIN anticipated this crash, and advantages of the MLE of VPIN

are demonstrated. For instance, the method shows the selling volume of

the informed traders dramatically increasing (falling) prior (subsequent)

to the crash. In addition, the toxic order flow affected the selling volume

in accordance with theory. The VPIN metric stopped increasing after the

crash, in contrast to the findings from the moment estimation of VPIN. If

volume falls but imbalance remains high, the moment estimator of VPIN

might increase and the market makers may incorrectly identify this as toxic

order flow. In contrast, the MLE method captures the information in

volume time, which increases (decreases) after (before) the crash. Now,

the market makers would realize that the sell orders after the crash were

actually submitted by noise traders.

The rest of this paper is organized as follows. Section 2 presents an

overview of the PIN model. Section 3 presents the VPIN model, including

the moment estimation and maximum likelihood estimation of the VPIN

metric. Section 4 describes the trade data used for empirical investiga-

tion. Section 5 discusses how to assess the performance of the VPIN. The

empirical design is described in section 6, and the numerical findings are

presented in section 7. Section 8 concludes the paper.

2. The PIN Model (Easley et al., 1996)

The original PIN model views the trading of a risky asset as a game

between liquidity providers (the market maker) and liquidity consumers

(the traders). Trading takes place over D days, and is continuous within

days where the market maker quotes the bid and ask prices at any time in

[0, T ], while the traders submit their market orders of one unit of the risky

asset. These market orders are driven by exogenous causes (e.g., demand

for liquidity) or private information. Consequently, the bid–ask spread

occurs from information-based trading, and is related to adverse selection.

Private information is modeled by an information event occurring prior

to trading, affecting the daily fundamental value of the asset. Events oc-

cur on a daily basis with probability α ∈ (0, 1), and are assumed to be

independently distributed. Additionally, events are either good news with

probability δ ∈ (0, 1) or bad news with probability 1− δ.
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Formally, assume that S = {good-news,bad-news,no-news}. Prior to

trading, nature draws an ω ∈ S, and only privately informed traders have

access to this information. When trading is closed, ω is revealed to all

market participants.

For a unit trading period (e.g., one day), (Easley et al., 1996) assume

that the arrival of buy and sell orders from noise traders is modeled by two

independent Poisson processes with arrival rates εB and εS, respectively.

Furthermore, the arrival of informed market orders is modeled by a Pois-

son process with rate µ. Summarizing, θ = (α, δ, µ, εB, εS) is the model

parameter, with the likelihood of observing any daily trading sequence of

orders containing bd buys and sd sells, hd := (bd, sd), given by

L (θ;hd) =
∑
ω∈S

P (ω)P (hd | ω)

= αδ · dpois(bd;µ+ εB) · dpois(sd; εS)

+ α(1− δ) · dpois(bd; εB) · dpois(sd;µ+ εS)

+ (1− α) · dpois(bd; εB) · dpois(sd; εS),

where dpois(x;λ) denotes the density for the Poisson distribution with ar-

rival rate λ > 03. Thus, the daily likelihood is a mixture of three Poisson

probabilities. Since the information events are assumed to be indepen-

dently distributed across days, the likelihood of observing the full history

{hd}1≤d≤D is given by

L (θ; {hd}1≤d≤D) =
D∏
d=1

L (θ;hd) , (2.1)

and the maximum likelihood estimator θ̂ is obtained by maximizing equa-

tion (2.1).

3The density function is given by

dpois(x;λ) =
λxe−λ

x!
,

where x ∈ N ∪ {0} and λ > 0.
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Assuming δ = 1/2, the opening quotes’ spread is given by

Ask− Bid =
αµ

εS + εB + αµ
(V − V ),

where V and V denote the expectation of V conditional on good news

and bad news, respectively. The first term, αµ/(εS + εB + αµ), denotes

the probability that the first trade that occurs is information-based; this

is called the probability of information-based trading (PIN). The relation-

ship between the PIN and certain stock characteristics (e.g., liquidity and

asset returns) has been an important topic in the market microstructure

literature4. However, empirical PIN estimation studies are very demand-

ing in high-frequency markets characterized by (among other factors) a

tremendously large number of daily trades. For instance, the variables in

the likelihood function of equation (2.1) will be raised to the power of mil-

lions when considering the most traded stocks, and estimation becomes

problematic, if not infeasible.

3. Volume-Synchronized Probability of Informed Trading

The VPIN model proposed by Easley et al. (2012) is a generalization of

the PIN model in a high-frequency setting. The PIN model is estimated for

a given fixed time interval and depends on the total number of buy and sell

orders. In contrast, the VPIN provides the probability of informed trading

given a fixed-size trading volume, and relies on the buy and sell volume used

to compute the order imbalances. On a given trading day, the arrival of the

buy (sell) volume, {vBi }i≥1 ({vSi }i≥1), is modeled by a Poisson process, with

the rate depending on the current state of the world5. Sequential trades are

placed in equal-volume buckets of exogenous size vbs, where each bucket is

treated as equivalent to a period for information arrival in the PIN model;

that is, an information event affects the volume bucket with probability α6.

Thus, the model parameter is still θ with similar interpretation, but the

4For instance, see Easley et al. (2002) and Easley et al. (2010).
5The random variable V Bi is Poisson distributed with parameter εB + µ conditional

on good news. In the event of bad news or no news, only liquidity traders would buy
the asset, implying that vBi is Poisson distributed with parameter εB .

6Similar to the PIN model, the event is good news with probability δ.
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arrival of news is now measured on a volume clock instead of equal time

units (e.g., one trading day). The objective is to approximate the original

PIN measure; this new high-frequency measure, labeled VPIN, denotes the

probability of informed trading, given a fixed-size trading volume (vbs).

Both models need to classify the direction of the order flow, which turns

out to be extremely difficult in high-frequency market microstructure7. A

solution to this problem is discussed in section 4, but for now, both buy

and sell volumes are assumed given.

The remainder of this section presents two VPIN estimation methods.

The first approach originates from Easley et al. (2012), and is based on sim-

ple moment estimation of order imbalance and total volume measured on

the volume clock. The second method proposed by Lin and Ke (2017) uses

parametric maximum likelihood estimation to calibrate the VPIN model.

In contrast to the moment estimation of VPIN, this method captures the

information in volume time and provides the estimates used to determine

the level of (un)informed trading.

3.1. VPIN: Moment Estimation

Given a trade classification algorithm to determine the order flow di-

rection, let vBt and vSt denote, respectively, the total buy and sell volume

of trading period t. Also, let OIt = vBt − vSt and TTt = vBt + vSt denote,

respectively, the order imbalance and total trade of period t. Assuming the

PIN model, where the buy and sell orders are modeled by two independent

Poisson processes with constraint εB = εS = ε, Easley et al. (2008) show

that E|OIt| ≈ αµ and E(TTt) = 2ε + αµ. Consequently, they conclude

that

E(|OIt|)
E(TTt)

∈ (0, 1] (3.1)

serves as a good approximation of PIN (αµ/(εB + εS + αµ)) when εB = εS.

7Trade classification algorithms utilizing Level 2 data encounter several problems in
high-frequency market microstructure, such as size and memory of databases, timing
and merging of quotes and trades, high-order cancellation rates, and quote volatility.
Additionally, informed traders may use limit orders to trade, and discerning information
from trade data could be problematic.
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The expression (3.1) is then estimated by the averages of E|OIt| and

E(TTt), respectively, based on a volume time scale. Formally, this moment

estimator, labeled VPIN, is computed in the following two steps:

1. Volume bucketing: Let vbs be an exogenously defined volume size.

Sequential trades (bars) are then grouped into equal-volume buckets

of size vbs. The buy and sell volumes of bucket τ are given by

V B
τ =

∑
i : b(i)=τ

vBi

V S
τ =

∑
i : b(i)=τ

vSi = vbs− V B
τ ,

where b is the surjective mapping assigning trade i to bucket b(i).

Thus, the order imbalance of bucket τ is given by |OIτ | = |V B
τ −V S

τ |,
while total trades is equal to vbs by construction.

2. Estimation: At bucket level, the expected order imbalance is esti-

mated by the moment estimator

E|OIτ | ≈
1

n

τ∑
j=τ−(n−1)

OIj,

where n is a user-defined sample length.

Summarizing, the procedure above results in the VPIN metric given by

VPINmmeτ =
1

n× vbs

τ∑
j=τ−(n−1)

|OIj| (3.2)

for τ > n − 1. However, this metric is not a moment estimator of the

expression in equation (3.1) due to the binding constraint V B
τ + V S

τ = vbs,

but rather the moment estimator of
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VPIN ≡
E
(∣∣V B

τ − V S
τ

∣∣ | vbs)
E (V B

τ + V S
τ | vbs)

=
E
(
|V B
τ − V S

τ | | vbs
)

vbs

≈ αµ

2ε+ µ

6= αµ

2ε+ αµ

for α ∈ (0, 1) and εB = εS. Consequently, the estimator VPINmme measures

approximately the VPIN, and not PIN. The difference between the two

measures is emphasized in definition 1.

Definition 1. The original PIN metric measures the probability of in-

formed trading for a fixed (unit) time interval, and is given by

PIN ≡ αµ

εB + εS + αµ
. (3.3)

The VPIN metric measures the probability of informed trading for a fixed-

size trading volume vbs, and is given by

VPIN ≡ αµ

εB + εS + µ
. (3.4)

Summarizing, VPINmmeτ from equation (3.2) is the VPIN moment esti-

mator in definition 1 when εB = εS, and is computed in three steps: (1)

determine the order flow in terms of buy and sell volume, (2) choose an

equal-volume bucket size vbs, and (3) set the sample length n8.

3.2. VPIN: Maximum Likelihood Estimation

The moment estimator of VPIN neither estimates PIN nor approxi-

mately measures VPIN when εB 6= εS. Furthermore, the estimator does

not capture the information in the duration time of equal-volume buckets.

8Step (1) can be independent of the VPIN computation.
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At the bucket level, V B
τ and V S

τ are observed and satisfy condition

V B
τ + V S

τ = vbs for τ = 1, ..., N , where vbs is the fixed-size trading volume.

Moreover, the duration time of bucket τ , tτ , is available; that is, the time

taken to fill bucket τ is observed. Formally, this stopping time is recursively

given by

tτ = inf
{
t ≥ tτ−1 :

∑
i : b(i)=τ

V B
i + V S

i = vbs
}
− tτ−1,

with the convention t0 := 0. Thus, the joint distribution of (V B
τ , V

S
τ , tτ )1≤τ≤n

may be used to estimate the unobserved model parameter θ ∈ Θ. Let g

denote the density of (V B
τ , V

S
τ , tτ ), conditional on V B

τ + V S
τ = vbs, which

may be expressed by the law of total probability,

g(b, s, t; Θ) =
∑
ω∈S

P (ω)g(b, s, t|ω; Θ)

=
∑
ω∈S

P (ω)g(b,s)(b, s|ω, t; θ)gt(t|ω; θ), (3.5)

where S = {good-news,bad-news,no-news}. Here, g(b,s)(·; θ) denotes the

density of (V B
τ , V

S
τ ), while gt(·; θ) is the density of the random variable tτ .

Let ω ∈ S and j ∈ {B, S} be given, and realize that

V j
τ |tτ =

∑
i:b(i)=τ

V j
i |tτ ∼ Pois(tτ (εj + µ(j, ω)))

with

µ(j, ω) =

µ if ((ω = good-news) ∩ (j = B)) ∪ ((ω = bad-news) ∩ (j = S))

0 otherwise.

Now,

V j
τ |(ω, tτ , V B

τ + V S
τ = vbs) ∼ Bin

(
vbs,

εj + µ(j, ω)

εS + εB + µ(j, ω)

)

for ω ∈ S and j ∈ {B, S}, where Bin(n, p) denotes the Binomial distribution

of n ∈ {0}∪N trials, each with success probability p ∈ (0, 1). Furthermore,

condition V B
τ + V S

τ = vbs implies
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g(b,s)(b, s|tτ , ω; θ) = gb(b|tτ , ω; θ)

= gs(s|tτ , ω; θ)

= dbin

(
s; vbs,

εS + µ(S, ω)

εS + εB + µ(S, ω)

)
= dbin

(
b; vbs,

εB + µ(B,ω)

εS + εB + µ(B,ω)

)
,

where dbin(·;n, p) denotes the density of the Binomial distribution with n

trials, each with success probability p.

Finally, tτ is, by definition, the waiting time for occurrence of the vbs’th

event for the Poisson distributed variable (V B
i + V S

i ), implying that

tτ |(ω, V B
τ + V S

τ = vbs) ∼ Γ(vbs, (εS + εB + µ(B,ω) + µ(S, ω))),

where Γ(n, λ) denotes the Gamma distribution with rate λ > 0 and shape

n > 0. Summarizing,

g(b, s, t; θ) = αδ · dbpin

(
s; vbs,

εS
εS + εB + µ

)
· dgam (t; vbs, εS + εB + µ)

+ α(1− δ) · dbin

(
s; vbs,

εS + µ

εS + εB + µ

)
· dgam (t; vbs, εS + εB + µ)

+ (1− α) · dbin

(
s; vbs,

εS
εS + εB

)
· dgam (t; vbs, εS + εB) ,

where dgam(·;n, λ) is the density of the Gamma distribution with rate

λ > 0 and shape n9. For bucket τ , the (proportional) likelihood of observing

hτ := (bτ , sτ , tτ ) is then given by

9The density is given by

dgam(t;n, λ) =
1

Γ(n)
λe−λt(λt)n−1

for t > 0, where Γ(n) :=
∫∞
0
xn−1e−xdx is the Gamma function.
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L(θ;hτ ) = αδ(εB + µ)bτ εsτS e
−tτ (εB+εS+µ)

+ α(1− δ)(εS + µ)sτ εbτB e
−tτ (εB+εS+µ)

+ (1− α)εbτB ε
sτ
S e
−tτ (εB+εS). (3.6)

Assuming the observations are independently and identically distributed

across buckets, the complete history of bucket data {hτ}1≤τ≤n results in

the full model log-likelihood10

l(θ; {hτ}1≤τ≤n) := −
n∑
τ=1

logL(θ;hτ ). (3.7)

Finally, the maximum likelihood estimator is given by

θ̂ = arg min
θ∈Θ

l(θ; {hτ}1≤τ≤n).

Using MLE, the estimators of PIN and VPIN for bucket τ are given re-

spectively by

PINmle
τ (θ̂) =

α̂µ̂

ε̂S + ε̂B + α̂µ̂
and VPINmle

τ (θ̂) =
α̂µ̂

ε̂S + ε̂B + µ̂
, (3.8)

both expressions implicitly depending on the sample length n and bucket

size vbs.

The MLE of the model parameter θ allows for the practitioner to com-

pute both PIN and VPIN, whereas the moment estimation method (alge-

braic) is restricted to the VPIN metric under εB = εS. Also, MLE enables

a more precise interpretation of informed trading. If the volume falls but

imbalance remains high, the VPIN will rise, and one may incorrectly con-

clude that this is due to informed trading. However, if εB 6= εS, the higher

imbalance may be from liquidity trading in a no news volume period11.

10The global optimizer used in this paper minimizes the object function. Thus, the
log-likelihood is scaled with −1.

11On May 6, 2010, the moment estimation of VPIN generated values that kept on
rising after the “Flash Crash“.
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3.2.1. Numerical Stability

Following Lin and Ke (2009), the marginal likelihood obtained from

equation (3.6) is rewritten. The reformulated likelihood expression is based

on two principles:

• If ex+y, the expression ex+y (sign(x)elog |x|+y) is more stable than exey

and (xey) when computing ex+y12.

• The absolute computing error of a function f will increase with

|f ′(x)| according to Eldén and Wittmeyer-Koch (1990). Especially,

log(ex+y−m + ez−m) + m with m = max(x + y, z) is more accurate

than log(ex+y + ez).

From the two principles, the reformulated likelihood is given by

L(θ;hτ ) = log

(
3∑
i=1

emi(τ)−mmax(τ)

)
+mmax(τ), (3.9)

where

m1(τ) = log (αδ) + bτ log (εB + µ) + sτ log (εS)− t (εB + εS + µ)

m2(τ) = log (α(1− δ)) + bτ log (εB) + sτ log (εS + µ)− t (εB + εS + µ)

m3(τ) = log (1− α) + bτ log (εB) + sτ log (εS)− t (εB + εS) ,

and mmax(τ) = max(c1(τ), c2(τ), c3(τ)). Importantly, Lin and Ke (2017)

introduce a typo in their reformulated likelihood function, which thus differs

from the correct expression in equation (3.9).

The likelihood is implemented in C++ and estimated in R using the

package Rcpp, providing R-functions as well as a C++-library facilitating the

interface between the two languages. Because of the non-convex program-

ming problem, the estimation procedure follows the suggestion of Mullen

(2014), and is carried out in two steps:

1. The global optimizer DEoptim() in the R-package DEoptim() generates

the initial model parameter estimates.

12For instance, the language R has ≈ e709.78 as upper benchmark. If x = 1000 and
y = −500, the expression exey results in an overflow, whereas ex+y is computable.
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2. The initial solution is used as start guess in R-function optim() uti-

lizing the gradient-based Nelder-Mead method.

As with the moment estimation of VPIN, a rolling window of n buckets

is considered for the estimation of θ at time τ . For each sample, θ̂τ is the

maximum likelihood estimator of θ ∈ Θ computed applying the two steps

above. The MLE of (V)PIN is given by equation (3.8). The practitioner is

rewarded with an improved estimator of (V)PIN capturing the information

in volume time and clearly interpreting the degree of informed trading

and liquidity trading, respectively, but the reward comes with a price.

Compared to the moment estimation of VPIN, the MLE approach has

a significant larger computational cost. Moreover, the method is relevant

only for markets in which the parameters can be accurately estimated.

4. Data

Level 1 trading data of the SPRD S&P 500 ETF (SPY) between 2007-

2015 from the TAQ (trades and quotes) database are used for the empir-

ical investigation. The data are treated in line with Holden and Jacobsen

(2013), and the cleaning procedure is described in details in appendix A.

Note that only the transactions with positive price and normal sale con-

dition reported in the core trading session are considered; they represent

approximately 96% of all trades. The summary statistics of trades and

volume across years are reported in tables 12 and 13 in appendix B.

A significant shortcoming of the TAQ datafile is that the ’aggressor’

flag is not reported; that is, it does not appear whether the buyer or seller

initiated the trade. Classifying the order flow in a high-frequency world is

non-trivial, and needs a suitable trade classification algorithm. Addition-

ally, the model setting in section 3 requires that the chosen trade classi-

fication samples with some fixed (unit) time (e.g., 10 seconds). The bulk

volume classification (BVC) algorithm meets all the criteria.

4.1. Bulk Volume Classification

The BVC algorithm introduced by Easley et al. (2013) generates bars

by aggregating sequential trades over short time or volume intervals. Thus,

a bar is a collection of trades assigned the total volume of all associated
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transactions as well as the nominal bar price depending on the prices in-

cluded in the bar. By construction, the volume is random for time bars,

whereas the time becomes random when aggregating over volume intervals.

Formally, let vi and pi denote the volume and price, respectively, of

bar i with ∆pi := pi − pi−1. BVC utilizes the standardized price change,

∆pi/σ∆p, where σ∆p is the standard deviation of price changes across bars,

to classify the fraction of buy and sell volume in probabilistic terms. In

particular, it is assumed that ∆pi/σ∆p has CDF Z, and buy and sell volume

are computed as

vBi := vi · Z
(

∆pi
σ∆p

)
vSi := vi − vBi .

Other trade classification algorithms utilizing individual trades and quotes

may be considered13. Clearly, the BVS algorithm is superior in terms of

lower computational cost. Furthermore, BVC is not subject to problems

such as quote volatility and the timing between trades and quotes. Easley

et al. (2013) present numerical evidence that standard classification algo-

rithms do not result in greater accuracy, whereas Easley et al. (2016) show

that bulk volume classifications are better linked to information-based trad-

ing proxies.

As suggested by Song et al. (2014), the nominal bar price is by con-

struction equal to the average of prices in the bar. The specification of

nominal bar price will, along with the bar type (time or volume), alter the

distribution of ∆pi/σ∆p. Easley et al. (2012) assume the standard normal

distribution, whereas Easley et al. (2016) consider the t-distribution to ac-

count for fat tails present in the data. Finally, Wu et al. (2013a) find the

t-distribution preferred in some cases when optimizing the performance of

the VPIN.

13For instance, the famous trade classification algorithm proposed by Lee and Ready
(1991) depending on Level 2 tick data (transactions and quotes).
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4.1.1. Time Bars

This subsection considers three different choices of time bars: 10-second

bars, 30-second bars, and one-minute bars. For instance, sampling with

10-second bars will result in 2340 observations per day, which on average

compresses the original data size by more than 99%. If the volume bucket

is equal to one-fiftieth of the daily average volume, 47 time bars are on

average used to fill a bucket.

Figure 1 illustrates the distribution of ∆pi/σ∆p for the different lengths

of time bars, where the normal distribution appears to be a reasonable

approximation14.
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Figure 1: Histograms of standardized price changes of time bars in 2015. The red line
illustrates the density of the (standard) normal distribution.

In contrast to SPY, most of the futures used in a vast part of the pub-

lished literature are traded around the clock. Consequently, the overnight

market is expected to distort the distribution of price changes for SPY.

This problem is avoided by only calculating the time bars when the market

is open and thereby excluding the overnight price changes 15.

14The distribution is symmetric around 0, and fat tails are not present in the data.
15At the beginning of day d, the opening trade is excluded from time bar 1, and is

instead used to compute the price change of the initial bar. The BVC algorithm is then
applied on all the remaining transactions of day d, and the procedure is repeated for the
next day.
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5. Assessing the Performance of VPIN

Evaluating the ability of VPIN to signal impending market turbulence

requires strict definitions of warning signals/VPIN events. The intuition

behind warning signals is that high VPIN values proxy toxic order flows,

impacting liquidity; this effect can result in large price returns. Following

Song et al. (2014), a VPIN event is defined by the CDF of the VPIN hitting

an exogenously given threshold c from below. The time when CDF(VPIN)

stays above c is called the event time.

Definition 2. VPIN events are recursively specified by

ij = inf{i′ ≥ ij−1 : CDF(VPIN)i′ > c & CDF(VPIN)i′−1 ≤ c}

ij = inf{i′ ≥ ij−1 : CDF(VPIN)i′ ≤ c & CDF(VPIN)i′−1 > c}

with i0 = i0 = 0. That is, ij is the jth event measured in volume time

(bucket number). The event time is given by ηj := ij − ij.

The definition of event and event time is a prerequisite for assessing the

ability of VPIN to signal impending market stress. Intuitively, the event

succeeds in signaling market turbulence when the price volatility during

the event time is larger than expected. This is formalized in the following

definition.

Definition 3. Assuming M to be a given volatility measure, consider a

VPIN event with event time η. The event is labeled

• true positive (TP) if the corresponding M value is greater than the

average value of M over randomly selected time intervals of equal

duration η, and

• false positive (FP) if the corresponding M value is less than the aver-

age value of M over randomly selected time intervals of equal duration

η.
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From this event classification, Wu et al. (2013a) consider the false dis-

covery rate

FDR =
#TP

#FP + #TP
(5.1)

for the performance evaluation of VPIN. The FDR is directly linked to the

precision (or positive predictive value) by PPV = 1− FDR; that is, a low

FDR indicates that VPIN events most likely lead to a true positive.

Standard volatility measures based on the realized return over the pe-

riod η are inappropriate for classifying true and false positives. The VPIN

is updated in volume time, and the average return between buckets may

be small, but a huge intermediate return could have occurred. To capture

scenarios like this, the volatility measure M in definition 3 is modeled by

the maximum intermediate return (MIR).

5.1. Maximum Intermediate Return

Consider a list of N prices, (p0, ..., pN−1), and let Rj,k := pk/pj − 1

denote the return between prices j and k for 0 ≤ j < k < N . The MIR is

then given by

MIR = Rj∗,k∗ , (5.2)

where the pair of trades (j∗, k∗) are the sentinels and maximize the inter-

mediate returns over all trade combinations; that is,

(j∗, k∗) = arg max0≤j<k<N |Rj,k|. (5.3)

The MIR may be computed by brute force with a double-nested loop to

search for sentinels among all feasible combinations in equation (5.3). The

computational cost of this approach is undesirable since the algorithm will

read the N prices N(N + 1)/2 times16. This computational problem is

circumvented by using the algorithm introduced by Wu et al. (2013a).

16Such algorithms are in computational complexity labeled N2-algorithms. If N =
2 · 106 (see table 12), the double-nested loop will read the N prices 2 · 1012 + 106 times!
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5.1.1. MIR Algorithm

If R and R denote the largest and smallest intermediate returns, re-

spectively, where R (R) is referred to as the maximum intermediate gain

(loss), then MIR is either equal to R or R. Let j be the position of the

last appearance of the maximum price and j be the first occurrence of the

minimum price. MIR is then computed with the following algorithm:

1. If j < j, the maximum intermediate return is given by MIR = R.

2. If j = j, the maximum intermediate return is equal to 0.

3. If j > j, the intermediate return pj/pj − 1 may be equal to the

maximum intermediate loss R, but there may exists other returns

with larger absolute values. Therefore, the N prices are placed in

three groups depending on their position relative to j and j: (L)

j ≤ j, (M) j < j < j, and (R) j > j for j = 0, ..., N − 1. Each

group then contains its own maximum intermediate return, to serve

as candidate for the global maximum intermediate return:

(L) The minimum price in this group is used to compute the maxi-

mum intermediate gain RL.

(R) The maximum price in this group is used to compute the maxi-

mum intermediate gain RR.

(M) The recursion to create three new groups is used to compute

the middle group’s maximum intermediate return RR.

Finally, the MIR is equal to either R, RL, RR, or RR.

To further decrease the computational cost, time bars are considered in-

stead of actual trades. If each bar carries the minimum and maximum trade

prices in the bar along with their indexes, the algorithm above will in gen-

eral generate MIR values identical to the values obtained from individual

trades17.

17If a bar includes both the minimum and maximum price, with the former entering
last, the maximum intermediate loss can be computed, but it may be impossible to
determine whether an intermediate gain with larger absolute value exists.
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6. Empirical Design

Following the notation used by Wu et al. (2013a), let β denote the

number of buckets per day (on average), σ denote the support window (in

days), and η denote the event horizon (also in days). Parameters σ and

η represent a fraction of buckets per day; for example, fifty buckets are

used to compute VPIN when β = 100 and σ = 1/2. Table 1 reports the

VPIN parameter specifications used for the empirical design; the values are

in accordance with the optimal parameter settings proposed by Wu et al.

(2013a) and Song et al. (2014).

Table 1: SPECIFICATION OF VPIN PARAMETERS

Description Values

β Buckets per day (average) {100, 200, 500, 100}
σ Support window (days) {1/4, 1/2, 1}
η Event duration (days) {1/10, 1/4, 1/2}
c VPIN threshold {0.9, 0.99}
BVC Bulk volume classification (time bars) 10 seconds

Description: Specification of the VPIN parameters.

First, the VPIN is computed across trading years under different β

and σ combinations. Both moment estimation and maximum likelihood

estimation are considered. The latter method is also used to compute the

PIN. The characteristics of the three series are then presented; it is possible

to determine whether VPIN approximately measures PIN. In contrast to

the majority of empirical studies in the literature, the computations are out-

of-sample. The daily average of volume from the previous sample (year)

is used to compute the volume bucket size for the current sample, and

the (V)PIN is updated in real time. From the practitioner’s perspective, a

(V)PIN metric performing well in out-of-sample will reinforce the argument

that (V)PIN is a good tool for signaling market turbulence.

Second, (V)PIN events are detected from the computed (V)PIN series

under the threshold c. From figure 5 in appendix B, the log-normal distribu-

tion is a reasonable approximation of V(PIN), and the corresponding CDF

is used to identify extremely toxic order flow. The events are then classi-

fied as true or false positives under η. For each event, the associated MIR
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value is computed and compared with the average MIR of 10000 randomly

selected time intervals. If the positive (negative) MIR is above (below) the

average MIR, the event is classified as a true positive; otherwise, it is a false

positive. Finally, the false discovery rates for a given η between 2008-2015

for all the β and σ combinations are computed and reported. The optimal

specification of (β, σ) is the pair yielding the smallest false discovery rate.

This experiment allows for comparing the predictive power for short-term

return volatility between the three series. For instance, is (V)PIN a good

predictor of short-term return volatility? Is the maximum likelihood esti-

mation of (V)PIN superior to the moment estimation of VPIN in terms of

false discovery rates?

Eventually, two less extensive studies are conducted. The first highlights

a significant drawback when the false discovery rate is used as performance

evaluation for VPIN; that is, type II errors are neglected. Raising the

CDF-threshold will likely increase the likelihood of true positives at the

expense of more type II errors. This performance trade-off is completely

suppressed in the research by Wu et al. (2013a) and Song et al. (2014), but

may be captured by using other methods, as illustrated in a simple but

useful example.

The final study focuses on the Flash Crash of May 6, 2010, where the

relative advantages of the MLE of VPIN in a stressed market are illustrated,

such as capturing information from the volume time and inferring the level

of informed and noise trading prior to the crash.

7. Results

As a starting point, the (V)PIN series are computed across all trading

years, with the relevant (β, σ) combinations listed in table 1. The fixed-size

volume for a trading year will clearly depend on β as well as the average

daily traded volume from the preceding year reported in table 1318.

Tables 6a–6i in appendix B present the summary statistics for the maxi-

mum likelihood estimator of θ, which is used to compute VPINmle, VPINmle,

and PINmle, respectively.

18For instance, when β = 100, the volume bucket size in 2010 was approximately
equal to 2.16× 106.
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The estimates vary with the specific choice of (β, σ) but are, in general,

quite stable. The left-hand side of tables 7a–7i shows the average and

standard error (only for the two parametric measures) of the three (V)PIN

series across the trading years19.

7.1. Does VPIN Measure PIN?

Easley et al. (2012) claim that the moment estimator of VPIN over-

comes numerical difficulties when estimating PIN models in highly active

markets. This assertion implicitly assumes that VPIN approximates PIN,

which may be tested using the maximum likelihood estimator of PIN (and

VPIN). Two loss functions are used to assess whether the moment esti-

mator of VPIN approximately measures VPIN and/or PIN. First, consider

the quadratic distance between (VPINmleτ )τ≥1 and x,

L1(x) =
1

N

N∑
τ=1

(VPINmmeτ − xτ )2 ,

for x equal to either VPINmle or PINmle. This approach yields a direct

comparison between the two series. The second loss function computes the

ratios between the series x and the reference VPINmme:

L2(x) =
1

N

N∑
τ=1

xτ
VPINmmeτ

The right-hand side of tables 7a–7i in appendix B reports the findings

across trading years for all the nine β and σ combinations. For simplicity,

only the findings for (β, σ) = (100, 1) and (β, σ) = (500, 1) reported in

the following table are discussed in this section; however, the conclusion

remains unchanged.

19Maximum likelihood estimation of the underlying model parameter is also used to
estimate the Hessian matrix, which is used to compute standard errors. For VPINmme,
the standard deviation is reported.
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Table 2: COMPARISON OF VPIN ESTIMATORS

(a) (β, σ) = (100, 1)

Year VPINmme VPINmle PINmle L1(VPINmle) L1(PINmle) L2(VPINmle) L2(PINmle)

2008 0.258 (0.083) 0.243 (0.028) 0.344 (0.026) 0.005 0.014 0.997 1.417
2009 0.215 (0.041) 0.214 (0.029) 0.359 (0.029) 0.004 0.040 1.027 1.721
2010 0.228 (0.058) 0.248 (0.03) 0.372 (0.028) 0.003 0.026 1.126 1.707
2011 0.243 (0.074) 0.24 (0.03) 0.372 (0.029) 0.005 0.024 1.041 1.624
2012 0.213 (0.032) 0.216 (0.03) 0.398 (0.032) 0.004 0.052 1.032 1.888
2013 0.237 (0.05) 0.201 (0.033) 0.478 (0.039) 0.008 0.087 0.867 2.077
2014 0.216 (0.061) 0.242 (0.03) 0.354 (0.028) 0.004 0.024 1.185 1.743
2015 0.241 (0.071) 0.241 (0.03) 0.368 (0.029) 0.004 0.023 1.049 1.609

(b) (β, σ) = (500, 1)

Year VPINmme VPINmle PINmle L1(VPINmle) L1(PINmle) L2(VPINmle) L2(PINmle)

2008 0.419 (0.12) 0.349 (0.015) 0.514 (0.011) 0.009 0.018 0.861 1.302
2009 0.377 (0.065) 0.31 (0.015) 0.501 (0.012) 0.009 0.025 0.840 1.373
2010 0.386 (0.085) 0.332 (0.016) 0.533 (0.012) 0.005 0.027 0.876 1.431
2011 0.398 (0.11) 0.325 (0.016) 0.525 (0.012) 0.010 0.024 0.840 1.394
2012 0.354 (0.046) 0.284 (0.016) 0.524 (0.014) 0.008 0.036 0.807 1.499
2013 0.383 (0.073) 0.293 (0.017) 0.577 (0.014) 0.012 0.050 0.773 1.554
2014 0.367 (0.094) 0.325 (0.015) 0.493 (0.012) 0.005 0.022 0.915 1.408
2015 0.39 (0.1) 0.325 (0.016) 0.512 (0.012) 0.009 0.023 0.854 1.376

Description: The left-hand side of table a (b) reports the summary statistics for the
three (V)PIN series across the trading years under model specification (β, σ) = (100, 1)
((β, σ) = (500, 1)). Standard errors are computed using the BHHH-estimator. The
right-hand side presents the values computed by the two loss functions L1(·) and L2(·)
for comparison of the (V)PIN series.

The left-hand side of the two subtables shows the averages and standard

errors of the VPIN series for all trading years20. The last four columns

report the values for the two loss functions. Consistent with theory, the

values for L1(·) indicate that the moment estimator of VPIN is most precise

for measuring VPIN. This is supported by the ratios reported in the last

two columns: on average, PINmle is 72% (42%) higher than PINmle in the

upper (lower) table, whereas VPINmle is 4% (15%) higher (lower). Finally,

the numbers reveal that the VPINmme metric becomes unstable for small

volume buckets (equivalently for large β) when measuring VPIN. This is

consistent with the theoretical conjecture by Lin and Ke (2017).

Summarizing, moment estimation of VPIN does not measure PIN, nor

is it a compelling measure of the VPIN for large β. It is therefore pertinent

to compare all three metrics’ ability to predict short-term volatility.

20For VPINmme, the standard deviation is reported.
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7.2. False Discovery Rates

The main research question is whether maximum likelihood estimation

would improve the predictability of VPIN for changes in short-term volatil-

ity. To answer this question, the false discovery rates for both methods are

computed and compared. Finally, the PIN metric?s ability to predict flow

toxicity is investigated.

MME of VPIN

Tables 8–9 in appendix B report the false discovery rates under moment

estimation of VPIN for the two thresholds c = .9 and c = .99, respectively.

The VPIN’s ability to predict short-term volatility is significantly stronger

considering the .99-threshold. For instance, if the event horizon is η = 1/4,

the false discovery rates are between 0.297 and 0.381 when the VPIN events

are detected with a CDF threshold of 0.9. At best, the VPIN succeeded

only in anticipating short-term volatility in two-thirds of all events. When

c = 0.99, the false discovery rates shrink to the 0.149–0.372 range21. This

result is consistent with the empirical findings of Wu et al. (2013a) and

Song et al. (2014) showing the importance of the CDF threshold. The case

of c = 0.9 is not considered in the remainder of this analysis.

Table 3 identifies the best pair of (β, σ) resulting in the lowest false

discovery rates for η ∈ {1/10, 1/4, 1/2}. In this setting, the optimal choice

of buckets per day and support window coincides for all the three event

horizons; that is, (β, σ) = (500, 1). The resulting false discovery rates are

0.2299, 0.1494, and 0.1602, respectively22.

Table 3: MME OF VPIN: OPTIMAL FALSE DISCOVERY RATES

β σ η False discovery rate

500 1 1/10 0.2299
500 1 1/4 0.1494
500 1 1/2 0.1602

Description: Optimal false discovery rates under moment estimation of VPIN given
the threshold c = 0.99.

21The same conclusion is obtained for η = 1/10 or η = 1/2.
22For instance, 84% of the times a VPIN event is detected, the price of SPY would

rise or fall within 3.25 hours more than expected.
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Finally, the false discovery rates for β = 1000 are also reported in the

appendix; the predictability of short-term volatility is not monotonically

decreasing in the fixed-size volume.

MLE OF VPIN

The false discovery rates computed from the VPINmme metric are pre-

sented in table 10. This metric is superior to the MME for predicting flow

toxicity: 22 of the 27 scenarios show lower false discovery rates. Further-

more, the optimal choice for VPINmme, (β, σ) = (500, 1) still leads to lower

false discovery rates under MLE for all the three event horizons. The two

metrics agree only on the optimal bucket size (β = 500), as illustrated in

table 4, which reports the lowest false discovery rates for each η.

Table 4: MLE OF VPIN: OPTIMAL FALSE DISCOVERY RATES

β σ η False discovery rate

500 1/2 1/10 0.1538
500 1 1/4 0.1007
500 1/4 1/2 0.1476

Description: Optimal false discovery rates under maximum likelihood estimation of
VPIN given the threshold c = 0.99.

A direct comparison between the two VPIN estimators shows strong

evidence that the MLE method indeed improves the predictability for short-

term volatility. This improved performance comes with a price in terms

of computational cost in parametric estimation using high-frequency trade

data. However, both the estimators agree on the optimal bucket size (β =

500), and the (fast) method of moment estimation may be used to identify

parameter β before the maximum likelihood estimation of VPIN.

MLE of PIN

Section 3 (definition 1) stated that VPIN and PIN are two different

measures. Moreover, numerical evidence has shown that the moment esti-

mation of VPIN does not approximately measure PIN. However, the MLE

of the model parameter (α, δ, µ, εB, εS) also may be used to estimate PIN,

thus raising the question whether PIN is a good predictor of short-term

volatility.



CHAPTER 3.162

This matter has never been investigated in published the high-frequency

market microstructure literature, since all previous studies have relied on

the method of moment estimation of VPIN, incorrectly perceived as a proxy

for PIN.

The false discovery rates for the PINmle-metric are reported in table 11.

Strikingly, this method yields extremely high false discovery rates ranging

from 38.2% to 55.8%. The majority of rates are around 50%, indicating

a significantly worse outcome than similar values obtained from the VPIN

metric. These findings reinforce the argument that toxic order flow in a

high-frequency market microstructure landscape is more accurately mod-

eled on the volume clock rather than a fixed time interval.

7.3. Exhibit I: Type II Errors

A significant drawback of concentrating solely on minimizing the false

discovery rate is that type II errors/false negatives (FN) as well as true

negatives (TN) are neglected. For instance, in an empirical study, Leth

(2019) shows that VPIN failed to predict large intraday price movements

on September 22, 2008, under the c = 0.99 threshold. A high thresh-

old (such as c = 0.99) may result in a low false positive rate, FPR =

#FP/(#FP + #TN), at the expense of a low true positive rate (sensitiv-

ity), TPR = #TP/(#TP + #FN), as graphically illustrated by the ROC

(receiver operating characteristic) curve. This performance trade-off is not

captured by the false discovery rate and therefore completely ignored in

empirical studies by Wu et al. (2013a) and Song et al. (2014). However,

consider the F1-score,

F1(c) =
2×#TP

2×#TP + #FP + #FN
,

interpreted as the harmonic mean of precision and sensitivity under the

threshold c. The combined metric takes values in the unit interval with

large values preferred, and computation of the score requires classification

of type II errors. However, the methodology used to compute false discovery

rates is unsuitable for counting false negatives (and true negatives) owing

to the overwhelmingly large number of trade sequence combinations for a

given event horizon.
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Thus, a novel but simple approach is proposed instead. The MIR is

computed on a daily basis for all the trades resulting in about 252 MIR

values. The trading days with MIR value below (above) the 0.025-quantile

(0.975-quantile) of all MIR values are labeled high volatility. On trading

days with VPIN events, the MIR is computed between the first hitting time

and final trade, thus allowing for classifying the true and false positives.

High-volatility days with no VPIN events are classified as false negatives,

whereas the days with neither event type are true negatives. This empirical

study is conducted with the specification (β, σ) = (500, 1) under the two

thresholds c1 = 0.9 and c2 = 0.99. Table 5 reports the relative performance

of the F1 score for relevant cases.

Table 5: F1-SCORES

Fmle1 (0.99)/Fmle1 (0.9) Fmme1 (0.99)/Fmme1 (0.9) Fmle1 (0.9)/Fmme1 (0.9) Fmle1 (0.99)/Fmme1 (0.99)

0.770 0.763 1.113 1.123

Description: The first two columns present the relative performance of thresholds
c = 0.99 and c = 0.9 for the given VPIN estimator. The last two columns show the
relative performance of the two VPIN estimators for the given threshold c.

The F1-scores ratio is used as a measure for relative performance. The

left-hand side of table 5 shows the threshold c = 0.99 relative to c = 0.9

reducing the F1-score with 23.0% (23.7%) under maximum likelihood (mo-

ment) estimation of VPIN. Thus, the CDF threshold c = 0.9 yields the best

performance for VPIN as predictor of volatility events in terms of larger

F1-score from fewer type II errors. This highlights a potential shortcoming

from solely focusing on the false discovery rate, and performance evaluation

of VPIN must be based on the practitioner’s specific problem23.

The right-hand side of table 5 reports the relative performance of the

two VPIN estimators. Compared with the moment estimation of VPIN,

MLE will improve the F1-score by 11.3% (12.3%) under the threshold

c = 0.9 (c = 0.99). In line with the results of false discovery rates, the

VPINmmm-metric is a superior predictor of short-term volatility.

23For instance, a portfolio manager investing with buy-and-hold strategies is prone to
change the composition of his portfolio if volatility events are likely to occur. On the
other hand, an option dealer rebalancing her ∆-hedged portfolio on a daily basis will
prefer fewer type II errors at the expense of lower precision.
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7.4. Exhibit II: The Flash Crash

Finally, the VPINmle-metric’s performance as a warning signal for ex-

treme market turbulence is illustrated. The analysis is concentrated on the

Flash Crash of May 6, 2010, an event that has drawn much attention in

the academic literature in recent years.

The VPINmle utilizes the volume time when estimating the model pa-

rameter θ. When β = 500, the average duration time to fill a volume bucket

in 2010 was 55.7 seconds, with the median duration time of 38.5 seconds.

On the other hand, the average and median of the May 6 duration times

were 17.9 seconds and 12.9 seconds, respectively. Figure 2 indicates that

the duration decreased dramatically around 14:00, with the falling prices

accelerating right around 14:32. The price reached its minimum at 14:46,

and by 15:00, the SPY had recovered from the crash24.
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Figure 2: The black line illustrates the time elapsed to fill a volume bucket (size)
measures with 10-second bars. The red line represents the price of SPY.

24The SEC/CFTC report states that the crash began around 14:32 and ended by
15:00.
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According to Easley et al. (2012), the order flow became increasingly

toxic before the crash, contributing to liquidity providers (high-frequency

traders) withdrawing from the market and instead consumed liquidity. This

observation is consistent with extremely low duration times almost one

hour before the crash. Figure 3 illustrates the VPINmle-metric along with

its CDF. The VPIN starts increasing just before 14:00. At 14:26, the CDF

reaches the user-determined threshold 0.99. The VPIN rapidly increased

prior to the crash, followed by a similar decline in value, abstracting from

the sudden spike around 14:52 due to extreme market condition (see figure

4).
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Figure 3: The black line shows the VPIN on May 6, 2010, obtained with maximum
likelihood estimation. The VPIN parameters are set to (β, σ) = (500, 1/4). The red line
illustrates the corresponding CDF of VPIN.

The method of moment estimation associates extreme VPIN values with

high order imbalances. In contrast, the parametric framework identifies

the forces at work. Four new measures are illustrated in figure 4: EOI =

|2αδµ + εB − αµ − εB| (expected order imbalance), IV = µ (informed

volume), NV = εB + εS (noise volume), and NOI = |εB − εS| (noise order

imbalance).
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During the crash, the order imbalance is extremely high, which is caused

by both informed and noise trading. Informed volume increases from 14:00,

and the order flow becomes toxic. However, the noise order imbalance

is close to 0 at 14:26, and thereafter starts to rise; this constitutes the

beginning of the crash. Finally, informed trading starts declining before

the end of the crash, whereas the VPIN reaches it maximum subsequent

to the crash after a temporary spike. The reason for this is an unforeseen

drop in sell volume from uninformed traders. Eventually, the noise traders?

selling volume accelerates again.

Andersen and Bondarenko (2014b) argue that the original VPIN metric

is useless as a warning signal for imminent market turbulence, since this

measure keeps on rising after the crash. However, the moment estimator

is derived under the assumption εB = εS, clearly in contrast to the panel

”NOISE ORDER IMBALANCE”. If the volume falls but order balance

remains high, the VPINmme metric will keep on rising. By capturing the

information in volume time, the maximum likelihood estimator will enable

the market makers to perceive the sell orders as in fact stemming from

noise traders.
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NOISE ORDER IMBALANCE NOISE VOLUME

EXPECTED ORDER IMBALANCE INFORMED VOLUME
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Figure 4: Left panel: The top plot shows the expected order imbalance obtained from
estimates of the model parameter, whereas the order imbalance solely generated by
uninformed traders (|εB − εS |) is illustrated in the bottom plot. Right panel: Informed
volume (µ) is represented by the red line in the upper plot, while the blue line indicates
volume from uninformed traders (εB + εS).

8. Conclusion

This paper examines whether maximum likelihood estimation of the

VPIN metric improves its predictive power for short-term return volatility.

The MLE method, which captures information in volume time, was recently

developed by Lin and Ke (2017), and enables the estimation of a modified

PIN model in high-frequency market microstructure. Not only VPIN but

also PIN may be computed, which is typically difficult to estimate in highly

active markets.

The main contribution of this paper is to conduct a large empirical

investigation on the MLE of VPIN. The empirical study is concentrated

on the SPRD S&P500 ETF (SPY) traded from 2007-2015, with the VPIN

computations done out-of-sample. So far, studies in the literature, whether

supporting or disputing the usefulness of VPIN as a real-time indicator

of toxic order flow, have been based solely on the moment estimation of

VPIN. In contrast, this paper directly compares the two VPIN estimator
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performances as predictor of short-term return volatility. Moreover, this

work contributes with a similar investigation of the usefulness of the PIN

metric.

The findings show that maximum likelihood estimation of VPIN is su-

perior to the moment estimation of VPIN for predicting large intraday

price movements. Under moment estimation, toxic order flow reflected by

high VPIN readings would in 77%− 85% of the cases — depending on the

event horizon — lead to large price movements. With maximum likelihood

estimation of VPIN, the corresponding precision (positive predictive rate)

was between 85% and 90%. In addition, the moment estimation of VPIN

became unstable for small volume buckets that are typically optimal in

empirical applications.

The results also reveal that VPIN does not approximately measure PIN,

emphasizing the theoretical disagreement between the two measures. Only

the MLE of the model parameter should be used to compute PIN.

As regards the PIN’s ability to anticipate peaks in return volatility, the

results are striking. When the toxic order flow was measured by extreme

PIN values, the positive predictive rate was about 50%, and thus inferior to

VPIN. This observation reinforces the argument that flow toxicity is more

accurately measured on the volume clock.

This paper can motivate future research through a minor case study il-

lustrating a performance trade-off between the positive predictive rate and

type II errors captured by the F1-score. The practitioner’s key preference

may be to avoid type II errors. However, the performance evaluation of

VPIN in this work, which is similar to the methodology used by Wu et al.

(2013a), neglects false negatives. An optimal positive predictive rate may

lead to a suboptimal F1-score. Thus, it is pertinent to conduct a larger

study investigating this decision problem from the practitioner’s perspec-

tive.
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Appendix A Cleaning High-Frequency Trade Data

Data cleaning follows the procedure by Holden and Jacobsen (2013).

Only trades with time stamps between 9:30 am and 4:00 pm are considered.

The entries with transaction price less than or equal to zero are deleted.

The corrected trades and trades with abnormal sale condition are also

removed from the dataset. These restrictions correspond to the following

conditions in the datafile:

• Only trades during the core trading session: utcsec ∈ [34000, 56000]

(seconds after midnight).

• Only trades with positive prices: price > 0.

• Only trades with normal sales conditions: cond ∈ [””,”@”,”E”,”F”,”I”,”FI”].

• Only trades that are not corrected: corr ∈ [”0”,”00”].

For more details see https://www.nyse.com/publicdocs/nyse/data/Daily_

TAQ_Client_Spec_v3.0.pdf.

https://www.nyse.com/publicdocs/nyse/data/Daily_TAQ_Client_Spec_v3.0.pdf
https://www.nyse.com/publicdocs/nyse/data/Daily_TAQ_Client_Spec_v3.0.pdf
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Appendix B Empirical Findings: Figures and Tables
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Figure 5: Left plot: Histogram of the logarithm of VPIN under maximum likelihood
estimation for a given trading year. Right plot: Histogram of the logarithm of PIN under
maximum likelihood estimation. In both panels, the red line represents the density from
the normal distribution (with mean and variance equal to the sample mean and sample
variance, respectively, of the relevant series.
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Table 6: MLE — SUMMARY STATISTICS (β = 100)

(a) (β, σ) = (100, 1/4)

Year α̂ δ̂ µ̂ ε̂B ε̂S

2008 0.465 (0.11) 0.516 (0.18) 2.292× 105 6.161× 104 6.154× 104

2009 0.416 (0.11) 0.506 (0.2) 5.762× 105 5.099× 104 5.083× 104

2010 0.425 (0.11) 0.496 (0.2) 2.817× 105 4.289× 104 4.372× 104

2011 0.417 (0.11) 0.497 (0.19) 2.773× 105 4.518× 104 4.579× 104

2012 0.371 (0.11) 0.502 (0.21) 4.554× 105 2.668× 104 2.645× 104

2013 0.358 (0.11) 0.512 (0.22) 5.222× 105 2.467× 104 2.521× 104

2014 0.444 (0.11) 0.509 (0.2) 5.822× 104 2.101× 104 2.103× 104

2015 0.43 (0.11) 0.526 (0.19) 7.712× 104 2.307× 104 2.357× 104

(b) (β, σ) = (100, 1/2)

Year α̂ δ̂ µ̂ ε̂B ε̂S

2008 0.458 (0.074) 0.512 (0.12) 2.539× 105 5.923× 104 5.913× 104

2009 0.411 (0.076) 0.515 (0.13) 6.740× 105 4.684× 104 4.689× 104

2010 0.428 (0.077) 0.495 (0.13) 2.389× 105 3.861× 104 3.939× 104

2011 0.422 (0.075) 0.494 (0.13) 2.140× 105 4.143× 104 4.196× 104

2012 0.38 (0.075) 0.506 (0.15) 4.431× 105 2.343× 104 2.335× 104

2013 0.329 (0.073) 0.507 (0.15) 6.308× 105 2.177× 104 2.209× 104

2014 0.442 (0.078) 0.505 (0.14) 5.079× 104 1.893× 104 1.903× 104

2015 0.427 (0.075) 0.52 (0.13) 7.833× 104 2.086× 104 2.139× 104

(c) (β, σ) = (100, 1)

Year α̂ δ̂ µ̂ ε̂B ε̂S

2008 0.467 (0.052) 0.512 (0.086) 1.722× 105 5.528× 104 5.530× 104

2009 0.407 (0.053) 0.522 (0.1) 8.722× 105 4.411× 104 4.422× 104

2010 0.443 (0.054) 0.497 (0.093) 1.583× 105 3.541× 104 3.597× 104

2011 0.426 (0.053) 0.493 (0.093) 2.104× 105 3.805× 104 3.855× 104

2012 0.374 (0.051) 0.504 (0.1) 4.569× 105 2.253× 104 2.248× 104

2013 0.308 (0.049) 0.515 (0.12) 6.515× 105 2.020× 104 2.040× 104

2014 0.445 (0.054) 0.5 (0.096) 4.655× 104 1.746× 104 1.757× 104

2015 0.428 (0.053) 0.517 (0.092) 7.662× 104 1.901× 104 1.944× 104

Description: Maximum likelihood estimates of the model parameter across trading
years for the three different support window choices. Standard errors are computed
using the BHHH-estimator. The bucket size (β) is equal to 100.
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Table 6: CONTINUED (β = 200)

(d) (β, σ) = (200, 1/4)

Year α̂ δ̂ µ̂ ε̂B ε̂S

2008 0.477 (0.072) 0.512 (0.12) 2.674× 105 5.697× 104 5.677× 104

2009 0.422 (0.073) 0.504 (0.12) 6.319× 105 4.853× 104 4.822× 104

2010 0.426 (0.073) 0.496 (0.13) 3.123× 105 4.066× 104 4.124× 104

2011 0.413 (0.071) 0.497 (0.13) 3.131× 105 4.263× 104 4.303× 104

2012 0.355 (0.071) 0.502 (0.15) 5.022× 105 2.591× 104 2.572× 104

2013 0.346 (0.072) 0.51 (0.15) 5.692× 105 2.380× 104 2.428× 104

2014 0.457 (0.074) 0.506 (0.12) 6.227× 104 1.975× 104 1.988× 104

2015 0.433 (0.072) 0.527 (0.12) 8.586× 104 2.154× 104 2.204× 104

(e) (β, σ) = (200, 1/2)

Year α̂ δ̂ µ̂ ε̂B ε̂S

2008 0.475 (0.051) 0.509 (0.082) 2.608× 105 5.457× 104 5.467× 104

2009 0.421 (0.052) 0.511 (0.088) 6.642× 105 4.472× 104 4.461× 104

2010 0.441 (0.052) 0.501 (0.087) 2.539× 105 3.630× 104 3.690× 104

2011 0.427 (0.051) 0.495 (0.089) 2.383× 105 3.900× 104 3.939× 104

2012 0.368 (0.05) 0.501 (0.1) 4.795× 105 2.284× 104 2.267× 104

2013 0.331 (0.048) 0.513 (0.11) 5.807× 105 2.095× 104 2.135× 104

2014 0.462 (0.052) 0.505 (0.087) 5.328× 104 1.782× 104 1.797× 104

2015 0.438 (0.051) 0.521 (0.085) 8.328× 104 1.952× 104 2.006× 104

(f) (β, σ) = (200, 1)

Year α̂ δ̂ µ̂ ε̂B ε̂S

2008 0.485 (0.036) 0.509 (0.056) 1.657× 105 5.122× 104 5.123× 104

2009 0.421 (0.036) 0.509 (0.063) 7.837× 105 4.213× 104 4.203× 104

2010 0.456 (0.037) 0.5 (0.06) 1.307× 105 3.341× 104 3.396× 104

2011 0.438 (0.036) 0.495 (0.061) 2.010× 105 3.579× 104 3.604× 104

2012 0.372 (0.035) 0.498 (0.067) 3.926× 105 2.184× 104 2.169× 104

2013 0.331 (0.033) 0.516 (0.074) 5.033× 105 1.926× 104 1.948× 104

2014 0.462 (0.037) 0.504 (0.061) 5.232× 104 1.654× 104 1.666× 104

2015 0.441 (0.036) 0.52 (0.059) 8.647× 104 1.788× 104 1.833× 104

Description: Maximum likelihood estimates of the model parameter across trading
years for the three different support window choices. Standard errors are computed
using the BHHH-estimator. The bucket size (β) is equal to 200.
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Table 6: CONTINUED (β = 500)

(g) (β, σ) = (500, 1/4)

Year α̂ δ̂ µ̂ ε̂B ε̂S

2008 0.514 (0.045) 0.511 (0.068) 2.767× 105 5.004× 104 5.021× 104

2009 0.452 (0.045) 0.507 (0.073) 6.090× 105 4.399× 104 4.403× 104

2010 0.446 (0.044) 0.495 (0.074) 3.054× 105 3.676× 104 3.704× 104

2011 0.444 (0.044) 0.5 (0.076) 2.812× 105 3.799× 104 3.858× 104

2012 0.375 (0.043) 0.506 (0.084) 4.670× 105 2.420× 104 2.413× 104

2013 0.376 (0.044) 0.509 (0.085) 5.317× 105 2.208× 104 2.250× 104

2014 0.485 (0.045) 0.502 (0.07) 6.950× 104 1.772× 104 1.785× 104

2015 0.467 (0.045) 0.523 (0.071) 8.834× 104 1.907× 104 1.963× 104

(h) (β, σ) = (500, 1/2)

Year α̂ δ̂ µ̂ ε̂B ε̂S

2008 0.517 (0.032) 0.509 (0.048) 2.392× 105 4.790× 104 4.825× 104

2009 0.46 (0.032) 0.506 (0.05) 5.723× 105 4.051× 104 4.044× 104

2010 0.463 (0.032) 0.495 (0.05) 2.130× 105 3.293× 104 3.331× 104

2011 0.457 (0.031) 0.498 (0.051) 2.096× 105 3.477× 104 3.529× 104

2012 0.395 (0.031) 0.504 (0.057) 4.053× 105 2.125× 104 2.121× 104

2013 0.377 (0.031) 0.509 (0.056) 4.293× 105 1.923× 104 1.948× 104

2014 0.49 (0.032) 0.503 (0.049) 6.227× 104 1.609× 104 1.625× 104

2015 0.473 (0.032) 0.52 (0.049) 8.830× 104 1.743× 104 1.792× 104

(i) (β, σ) = (500, 1)

Year α̂ δ̂ µ̂ ε̂B ε̂S

2008 0.521 (0.022) 0.509 (0.033) 1.908× 105 4.533× 104 4.569× 104

2009 0.462 (0.023) 0.503 (0.035) 5.265× 105 3.831× 104 3.816× 104

2010 0.47 (0.023) 0.496 (0.035) 1.570× 105 3.064× 104 3.090× 104

2011 0.463 (0.022) 0.498 (0.035) 1.645× 105 3.223× 104 3.254× 104

2012 0.398 (0.022) 0.501 (0.038) 2.104× 105 2.035× 104 2.031× 104

2013 0.388 (0.022) 0.512 (0.038) 2.338× 105 1.756× 104 1.780× 104

2014 0.49 (0.023) 0.502 (0.035) 6.180× 104 1.501× 104 1.515× 104

2015 0.472 (0.022) 0.518 (0.035) 9.252× 104 1.612× 104 1.655× 104

Description: Maximum likelihood estimates of the model parameter across trading
years for the three different support window choices. Standard errors are computed
using the BHHH-estimator. The bucket size (β) is equal to 500.
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Table 7: COMPARISON OF VPIN ESTIMATORS (β = 100)

(a) (β, σ) = (100, 1/4)

Year VPINmme VPINmle PINmle L1(VPINmle) L1(PINmle) L2(VPINmle) L2(PINmle)

2008 0.258 (0.1) 0.216 (0.051) 0.307 (0.05) 0.007 0.013 0.883 1.268
2009 0.215 (0.064) 0.191 (0.052) 0.303 (0.053) 0.006 0.027 0.936 1.452
2010 0.228 (0.076) 0.207 (0.056) 0.324 (0.057) 0.006 0.023 0.965 1.499
2011 0.243 (0.092) 0.205 (0.055) 0.325 (0.056) 0.008 0.022 0.903 1.435
2012 0.213 (0.059) 0.191 (0.059) 0.355 (0.062) 0.007 0.045 0.946 1.697
2013 0.236 (0.084) 0.196 (0.062) 0.398 (0.063) 0.009 0.060 0.878 1.714
2014 0.216 (0.079) 0.206 (0.054) 0.293 (0.054) 0.006 0.016 1.034 1.477
2015 0.241 (0.089) 0.203 (0.053) 0.297 (0.054) 0.007 0.012 0.891 1.304

(b) (β, σ) = (100, 1/2)

Year VPINmme VPINmle PINmle L1(VPINmle) L1(PINmle) L2(VPINmle) L2(PINmle)

2008 0.258 (0.092) 0.225 (0.037) 0.325 (0.036) 0.007 0.014 0.928 1.345
2009 0.215 (0.051) 0.206 (0.039) 0.336 (0.04) 0.005 0.034 1.005 1.617
2010 0.228 (0.065) 0.229 (0.042) 0.358 (0.042) 0.006 0.029 1.060 1.661
2011 0.243 (0.082) 0.225 (0.041) 0.35 (0.041) 0.007 0.022 0.989 1.542
2012 0.213 (0.042) 0.213 (0.043) 0.392 (0.045) 0.005 0.054 1.028 1.868
2013 0.236 (0.065) 0.2 (0.046) 0.461 (0.05) 0.009 0.086 0.889 2.004
2014 0.216 (0.07) 0.228 (0.041) 0.331 (0.04) 0.005 0.022 1.132 1.657
2015 0.241 (0.08) 0.224 (0.04) 0.336 (0.041) 0.006 0.019 0.981 1.484

(c) (β, σ) = (100, 1)

Year VPINmme VPINmle PINmle L1(VPINmle) L1(PINmle) L2(VPINmle) L2(PINmle)

2008 0.258 (0.083) 0.243 (0.028) 0.344 (0.026) 0.005 0.014 0.997 1.417
2009 0.215 (0.041) 0.214 (0.029) 0.359 (0.029) 0.004 0.040 1.027 1.721
2010 0.228 (0.058) 0.248 (0.03) 0.372 (0.028) 0.003 0.026 1.126 1.707
2011 0.243 (0.074) 0.24 (0.03) 0.372 (0.029) 0.005 0.024 1.041 1.624
2012 0.213 (0.032) 0.216 (0.03) 0.398 (0.032) 0.004 0.052 1.032 1.888
2013 0.237 (0.05) 0.201 (0.033) 0.478 (0.039) 0.008 0.087 0.867 2.077
2014 0.216 (0.061) 0.242 (0.03) 0.354 (0.028) 0.004 0.024 1.185 1.743
2015 0.241 (0.071) 0.241 (0.03) 0.368 (0.029) 0.004 0.023 1.049 1.609

Description: The left-hand side of the tables reports summary statistics for the three
(V)PIN series across trading years for the three different support window choices. For
VPINmme, the standard deviation is reported, whereas standard errors for the two
parametric series are computed using the BHHH-estimator. The right-hand side
presents the values computed with the two loss functions L1(·) and L2(·) for
comparison between the (V)PIN series. The bucket size (β) is equal to 100.
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Table 7: CONTINUED (β = 200)

(d) (β, σ) = (200, 1/4)

Year VPINmme VPINmle PINmle L1(VPINmle) L1(PINmle) L2(VPINmle) L2(PINmle)

2008 0.328 (0.12) 0.261 (0.04) 0.383 (0.037) 0.011 0.014 0.830 1.248
2009 0.278 (0.075) 0.225 (0.04) 0.369 (0.04) 0.009 0.027 0.845 1.376
2010 0.291 (0.09) 0.241 (0.042) 0.39 (0.041) 0.009 0.024 0.864 1.410
2011 0.306 (0.11) 0.237 (0.042) 0.393 (0.043) 0.012 0.023 0.809 1.378
2012 0.268 (0.066) 0.211 (0.044) 0.418 (0.047) 0.011 0.046 0.814 1.586
2013 0.295 (0.095) 0.216 (0.047) 0.46 (0.048) 0.015 0.057 0.763 1.607
2014 0.276 (0.095) 0.241 (0.04) 0.349 (0.038) 0.008 0.015 0.930 1.360
2015 0.303 (0.11) 0.237 (0.04) 0.359 (0.04) 0.010 0.012 0.812 1.247

(e) (β, σ) = (200, 1/2)

Year VPINmme VPINmle PINmle L1(VPINmle) L1(PINmle) L2(VPINmle) L2(PINmle)

2008 0.328 (0.11) 0.269 (0.029) 0.398 (0.027) 0.009 0.015 0.862 1.298
2009 0.278 (0.062) 0.24 (0.03) 0.396 (0.029) 0.007 0.031 0.897 1.478
2010 0.292 (0.079) 0.266 (0.032) 0.422 (0.029) 0.006 0.028 0.948 1.524
2011 0.307 (0.099) 0.257 (0.031) 0.416 (0.03) 0.009 0.024 0.885 1.457
2012 0.268 (0.049) 0.231 (0.032) 0.449 (0.034) 0.007 0.051 0.879 1.701
2013 0.295 (0.075) 0.223 (0.034) 0.512 (0.036) 0.013 0.077 0.782 1.797
2014 0.276 (0.085) 0.263 (0.03) 0.386 (0.027) 0.005 0.021 1.010 1.501
2015 0.303 (0.096) 0.257 (0.03) 0.396 (0.029) 0.007 0.018 0.885 1.380

(f) (β, σ) = (200, 1)

Year VPINmme VPINmle PINmle L1(VPINmle) L1(PINmle) L2(VPINmle) L2(PINmle)

2008 0.328 (0.1) 0.286 (0.021) 0.415 (0.018) 0.006 0.014 0.916 1.344
2009 0.279 (0.051) 0.249 (0.022) 0.415 (0.021) 0.006 0.034 0.918 1.539
2010 0.292 (0.07) 0.284 (0.023) 0.437 (0.02) 0.003 0.026 1.002 1.558
2011 0.307 (0.091) 0.274 (0.023) 0.437 (0.021) 0.006 0.024 0.933 1.509
2012 0.268 (0.038) 0.239 (0.023) 0.449 (0.023) 0.005 0.046 0.905 1.693
2013 0.295 (0.06) 0.233 (0.024) 0.524 (0.025) 0.010 0.075 0.801 1.831
2014 0.276 (0.076) 0.275 (0.022) 0.409 (0.02) 0.004 0.023 1.045 1.566
2015 0.303 (0.086) 0.274 (0.023) 0.428 (0.02) 0.005 0.023 0.936 1.482

Description: The left-hand side of the tables reports summary statistics for the three
(V)PIN series across trading years for the three different support window choices. For
VPINmme, the standard deviation is reported, whereas standard errors for the two
parametric series are computed using the BHHH-estimator. The right-hand side
presents the values computed with the two loss functions L1(·) and L2(·) for
comparison between the (V)PIN series. The bucket size (β) is equal to 100.
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Table 7: CONTINUED (β = 500)

(g) (β, σ) = (500, 1/4)

Year VPINmme VPINmle PINmle L1(VPINmle) L1(PINmle) L2(VPINmle) L2(PINmle)

2008 0.418 (0.13) 0.329 (0.029) 0.486 (0.023) 0.014 0.017 0.808 1.241
2009 0.376 (0.089) 0.285 (0.029) 0.465 (0.025) 0.014 0.023 0.779 1.288
2010 0.385 (0.11) 0.296 (0.03) 0.49 (0.026) 0.014 0.024 0.787 1.338
2011 0.398 (0.13) 0.293 (0.03) 0.486 (0.026) 0.018 0.023 0.757 1.315
2012 0.355 (0.076) 0.254 (0.03) 0.498 (0.029) 0.017 0.039 0.731 1.434
2013 0.383 (0.11) 0.264 (0.032) 0.537 (0.029) 0.023 0.048 0.708 1.464
2014 0.367 (0.11) 0.297 (0.028) 0.438 (0.024) 0.011 0.015 0.840 1.271
2015 0.39 (0.13) 0.296 (0.029) 0.451 (0.025) 0.014 0.012 0.776 1.219

(h) (β, σ) = (500, 1/2)

Year VPINmme VPINmle PINmle L1(VPINmle) L1(PINmle) L2(VPINmle) L2(PINmle)

2008 0.418 (0.13) 0.337 (0.021) 0.498 (0.016) 0.012 0.017 0.832 1.268
2009 0.376 (0.076) 0.301 (0.021) 0.488 (0.017) 0.011 0.025 0.822 1.346
2010 0.385 (0.094) 0.319 (0.022) 0.517 (0.018) 0.009 0.027 0.847 1.403
2011 0.398 (0.12) 0.312 (0.022) 0.507 (0.018) 0.013 0.024 0.809 1.361
2012 0.355 (0.057) 0.277 (0.022) 0.523 (0.02) 0.011 0.041 0.793 1.501
2013 0.383 (0.087) 0.278 (0.023) 0.573 (0.02) 0.018 0.057 0.741 1.554
2014 0.367 (0.1) 0.315 (0.021) 0.473 (0.017) 0.008 0.020 0.892 1.364
2015 0.39 (0.12) 0.313 (0.021) 0.484 (0.017) 0.011 0.018 0.825 1.310

(i) (β, σ) = (500, 1)

Year VPINmme VPINmle PINmle L1(VPINmle) L1(PINmle) L2(VPINmle) L2(PINmle)

2008 0.419 (0.12) 0.349 (0.015) 0.514 (0.011) 0.009 0.018 0.861 1.302
2009 0.377 (0.065) 0.31 (0.015) 0.501 (0.012) 0.009 0.025 0.840 1.373
2010 0.386 (0.085) 0.332 (0.016) 0.533 (0.012) 0.005 0.027 0.876 1.431
2011 0.398 (0.11) 0.325 (0.016) 0.525 (0.012) 0.010 0.024 0.840 1.394
2012 0.354 (0.046) 0.284 (0.016) 0.524 (0.014) 0.008 0.036 0.807 1.499
2013 0.383 (0.073) 0.293 (0.017) 0.577 (0.014) 0.012 0.050 0.773 1.554
2014 0.367 (0.094) 0.325 (0.015) 0.493 (0.012) 0.005 0.022 0.915 1.408
2015 0.39 (0.1) 0.325 (0.016) 0.512 (0.012) 0.009 0.023 0.854 1.376

Description: The left-hand side of the tables reports summary statistics for the three
(V)PIN series across trading years for the three different support window choices. For
VPINmme, the standard deviation is reported, whereas standard errors for the two
parametric series are computed using the BHHH-estimator. The right-hand side
presents the values computed with the two loss functions L1(·) and L2(·) for
comparison between the (V)PIN series. The bucket size (β) is equal to 100.
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Table 8: MME OF VPIN: FALSE DISCOVERY RATES I (c = 0.9)

β σ η False discovery rate

100 1/4 1/10 0.4167
200 1/4 1/10 0.3842
500 1/4 1/10 0.4275

1000 1/4 1/10 0.3666
100 1/2 1/10 0.3918
200 1/2 1/10 0.4074
500 1/2 1/10 0.3518

1000 1/2 1/10 0.4181
100 1 1/10 0.3959
200 1 1/10 0.3384
500 1 1/10 0.3219

1000 1 1/10 0.3522
100 1/4 1/4 0.3720
200 1/4 1/4 0.3529
500 1/4 1/4 0.3776

1000 1/4 1/4 0.3482
100 1/2 1/4 0.3197
200 1/2 1/4 0.3723
500 1/2 1/4 0.2849

1000 1/2 1/4 0.3406
100 1 1/4 0.3485
200 1 1/4 0.2759
500 1 1/4 0.3023

1000 1 1/4 0.3559
100 1/4 1/2 0.3714
200 1/4 1/2 0.3348
500 1/4 1/2 0.3499

1000 1/4 1/2 0.3265
100 1/2 1/2 0.3208
200 1/2 1/2 0.3029
500 1/2 1/2 0.2648

1000 1/2 1/2 0.2979
100 1 1/2 0.3093
200 1 1/2 0.2931
500 1 1/2 0.3333

1000 1 1/2 0.3183

Description: False discovery rates under moment estimation of VPIN given the
threshold c = 0.9.
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Table 9: MME OF VPIN: FALSE DISCOVERY RATES II (c = 0.99)

β σ η False discovery rate

100 1/4 1/10 0.2541
200 1/4 1/10 0.2683
500 1/4 1/10 0.2486

1000 1/4 1/10 0.2778
100 1/2 1/10 0.3486
200 1/2 1/10 0.2795
500 1/2 1/10 0.3415

1000 1/2 1/10 0.3388
100 1 1/10 0.3596
200 1 1/10 0.2772
500 1 1/10 0.2299

1000 1 1/10 0.2778
100 1/4 1/4 0.2418
200 1/4 1/4 0.2967
500 1/4 1/4 0.2486

1000 1/4 1/4 0.1597
100 1/2 1/4 0.2800
200 1/2 1/4 0.2547
500 1/2 1/4 0.3089

1000 1/2 1/4 0.3802
100 1 1/4 0.2809
200 1 1/4 0.2376
500 1 1/4 0.1494

1000 1 1/4 0.1667
100 1/4 1/2 0.2336
200 1/4 1/2 0.2683
500 1/4 1/2 0.1618

1000 1/4 1/2 0.1736
100 1/2 1/2 0.2571
200 1/2 1/2 0.2547
500 1/2 1/2 0.2358

1000 1/2 1/2 0.2149
100 1 1/2 0.2247
200 1 1/2 0.1881
500 1 1/2 0.1602

1000 1 1/2 0.2222

Description: False discovery rates under moment estimation of VPIN given the
threshold c = 0.99.
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Table 10: MLE OF VPIN: FALSE DISCOVERY RATES (c = 0.99)

β σ η False discovery rate

100 1/4 1/10 0.2655
200 1/4 1/10 0.2182
500 1/4 1/10 0.1993
100 1/2 1/10 0.3065
200 1/2 1/10 0.2340
500 1/2 1/10 0.1538
100 1 1/10 0.3077
200 1 1/10 0.3049
500 1 1/10 0.2230
100 1/4 1/4 0.2566
200 1/4 1/4 0.1879
500 1/4 1/4 0.1624
100 1/2 1/4 0.2903
200 1/2 1/4 0.1809
500 1/2 1/4 0.1538
100 1 1/4 0.2692
200 1 1/4 0.1951
500 1 1/4 0.1007
100 1/4 1/2 0.2035
200 1/4 1/2 0.1636
500 1/4 1/2 0.1476
100 1/2 1/2 0.1935
200 1/2 1/2 0.2021
500 1/2 1/2 0.1674
100 1 1/2 0.2885
200 1 1/2 0.2317
500 1 1/2 0.1583

Description: False discovery rates under maximum likelihood estimation of VPIN
given the threshold c = 0.99.
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Table 11: MLE OF PIN: FALSE DISCOVERY RATES (c = 0.99)

β σ η False discovery rate

100 1/4 1/10 0.5193
200 1/4 1/10 0.4987
500 1/4 1/10 0.4430
100 1/2 1/10 0.5364
200 1/2 1/10 0.5417
500 1/2 1/10 0.4979
100 1 1/10 0.5246
200 1 1/10 0.4400
500 1 1/10 0.4459
100 1/4 1/4 0.5401
200 1/4 1/4 0.5113
500 1/4 1/4 0.4693
100 1/2 1/4 0.5182
200 1/2 1/4 0.5250
500 1/2 1/4 0.4772
100 1 1/4 0.4590
200 1 1/4 0.4867
500 1 1/4 0.4268
100 1/4 1/2 0.5579
200 1/4 1/2 0.5263
500 1/4 1/2 0.4934
100 1/2 1/2 0.5409
200 1/2 1/2 0.5167
500 1/2 1/2 0.4606
100 1 1/2 0.4508
200 1 1/2 0.4933
500 1 1/2 0.3822

Description: False discovery rates under maximum likelihood estimation of PIN given
the threshold c = 0.99.
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Table 12: SUMMARY OF SPY TICK DATA: TRADES

Year #Trades Average(#Trades) Min(#Trades) Max(#Trades) Shares per Trade

2007 4.98× 107 1.98× 105 4.91× 104 7.45× 105 679
2008 1.43× 108 5.64× 105 1.59× 105 2.25× 106 508
2009 1.40× 108 5.55× 105 8.25× 104 1.24× 106 399
2010 1.25× 108 4.98× 105 1.26× 105 1.50× 106 365
2011 1.28× 108 5.09× 105 1.69× 105 1.60× 106 364
2012 7.67× 107 3.07× 105 1.00× 105 5.82× 105 397
2013 6.79× 107 2.69× 105 1.04× 105 7.37× 105 381
2014 7.89× 107 3.13× 105 1.21× 105 1.24× 106 274
2015 9.57× 107 3.80× 105 1.21× 105 2.28× 106 253

Description: Summary statistics of SPY trade data across trading years. The first
column reports total trades/year. Columns 2–4 report, respectively, the average,
minimum, and maximum of the daily traded volume across years. The last column
shows the shares per trade (average).

Table 13: SUMMARY OF SPY TICK DATA: VOLUME

Year Total Volume Average(Volume) Min(Volume) Max(Volume)

2007 3.34× 1010 1.33× 108 2.95× 107 4.86× 108

2008 6.60× 1010 2.61× 108 5.44× 107 7.68× 108

2009 5.44× 1010 2.16× 108 3.46× 107 4.73× 108

2010 4.57× 1010 1.81× 108 4.64× 107 5.65× 108

2011 4.66× 1010 1.85× 108 5.71× 107 6.00× 108

2012 3.04× 1010 1.22× 108 4.78× 107 2.36× 108

2013 2.58× 1010 1.02× 108 4.17× 107 2.78× 108

2014 2.17× 1010 8.60× 107 3.30× 107 3.09× 108

2015 2.39× 1010 9.47× 107 2.81× 107 3.81× 108

Description: Summary statistics of SPY trade data across trading years. The first
column reports the total traded volume across years. The last three columns report,
respectively, the average, minimum, and maximum of the daily traded volume across
years.
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