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Summary (English) 
 

This thesis consists of 4 self-contained papers, all examining how production risk from natural 

shocks affects decisions regarding the management of natural resources and agriculture in a 

developing country context. This challenge is addressed empirically using different rigorous 

microeconometric approaches. Three of the chapters investigate households’ risk-management 

strategies in resource-based activities, while a fourth chapter focuses on market functioning at the 

face of climate shocks.  The first chapter is developed on the basis of a unique census data from 

artisanal fisheries in Chile. The objective is to examine the mechanisms by which revenues are 

distributed to labor and capital, and how these distributions affect fishing returns. The results 

support mechanisms associated with bargaining power, monitoring costs and outside options, and 

also reveal higher fishing return with larger crew profit shares. Effects seem to differ across 

fisheries. The second chapter uses a balanced panel of rural households from Mozambique to 

provide an empirical examination of the impact of weather shocks on crop portfolio choices as 

well as on the persistency of these changes. Results indicate that crop choice is sensitive to past 

weather shocks, and reallocation seems temporary. This is consistent with a self-insurance 

approach and buffer stock arguments. The third chapter employs rural household data of rice 

producers from Vietnam to examine the risk effect of pesticide use. Results reveal that higher 

uncertainty regarding rainfall relative to pest may cause pesticide use is to exhibit risk-increasing 

characteristics. This finding is consistent across a lottery and a production function approach. The 

fourth chapter studies the link between spatial market efficiency and weather shocks using market 

price and transport cost data from Mozambique. Results indicate that price dispersion is lower 

during drought period and higher after a flood. This finding is consistent with a supply shock after 

a drought and a food transport shock emerging after a flood. Moreover, flood effects are larger 

among closer markets and connected with poorer infrastructure. 
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Resumé (Danish) 
 

Denne afhandling består af fire selvstændige artikler, som alle undersøger, hvordan 

produktionsrisici, stammende fra stød fra naturens hånd, påvirker beslutninger angående styringen 

af naturressourcer og landbrug i en udviklingskontekst. Denne udfordring gribes empirisk an fra 

forskellige tilgange ved hjælp af mikroøkonometriske metoder. Tre af kapitlerne udforsker 

husholdningers risikostyringsstrategier ved ressourcebaserede aktiviteter, mens et fjerde kapitel 

fokuserer på markedsforhold i lyset af klimastød. Det første kapitel er udviklet på grundlag af et 

unikt datasæt om ikke-industrielt fiskeri i Chile. Målet er at undersøge mekanismerne, hvorved 

indtægter fordeles mellem arbejdskraft og kapital, og hvordan denne fordeling påvirker 

indtjeningen ved fiskeri. Resultaterne understøtter mekanismer, som forbindes med 

forhandlingsstyrke, overvågningsomkostninger og alternative beskæftigelsesmuligheder og 

afslører desuden større indtjeningved højere profitandele til besætningen. Effekterne synes dog at 

variere mellem fiskerier. Det andet kapitel bruger et balanceret panel af husholdninger fra 

Mozambiques landdistrikter til en empirisk undersøgelse af effeckten af vejrstød på valget af 

afgrøder såvel som persistensen af disse ændringer. Resultaterne indikerer, at valget af afgrøder er 

følsomt over for tidligere vejrstød og reallokering synes midlertidig. Dette er konsistent  med en 

selvforsikringstilgang samt brugen af lagrede afgrøder som en buffer. Det tredje kapitel benytter 

husholdningsdata for risproducenter fra landdistrikter i Vietnam til at undersøge effekten på risiko 

ved pesticider samt kilden til denne risiko. Resultaterne afslører, at pesticider øger risici pga. 

større usikkerhed ved nedbør relativt til skadedyr. Dette fund er konsistent i forhold til både en 

lotteri- og produktionsfunktionstilgang. Det fjerde kapitel undersøger forbindelsen mellem spatial 

markedseffektivitet og vejrstød ved brug af markedspriser og transportomkostningsdata fra 

Mozambique. Resultaterne indikerer, at prisspredningen er lavere under en tørkeperiode og højere 

efter en oversvømmelse. Dette fund er i overensstemmelse med et udbudsstød efter en tørke og et 

fødevaretransportstød efter en oversvømmelse. Derudover er effekterne af en oversvømmelse 

større mellem markeder der ligger tæt på hinanden og er desuden forbundet med dårligere 

infrastruktur. 
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Introduction 

In agriculture and extractive activities, the quality and quantity of output are not known with 

certainty due to random factors underlying the production process. Production uncertainty is 

generally associated with fluctuating climate conditions, economic oscillations, policy uncertainty 

and individual-specific shock (Bardan and Udry, 1999; Dercon, 2002). In this context, decision 

making under uncertainty is characterized by risk because some possible outcomes have undesired 

effects. In particular, the incidence of natural hazards may lead producers to harvest failure, and 

more volatile market prices, with important implications for production and input decisions.  This 

is aggravated in developing countries because credit and insurance markets are incomplete, asset 

holdings are limited and economies relies more on natural resources-based activities. 

Consequently, ex post coping mechanisms cannot be totally relied upon to protect against these 

exogenous shocks (Paxson, 1992; Townsed, 1994). Furthermore, poor functioning of markets 

make little in ameliorating the impact of climate shocks. Thus, population in developing countries 

tends to be more vulnerable to natural shocks, and more dependent on ex-ante risk management 

strategies.  

 

This thesis consists of four self-contained research papers in which I (and my co-authors) employ 

microeconometric methods to provide novel and empirical evidence to understand how production 

risk from natural shocks in resources-based activities relates to household risk-behavior and 

market functioning in developing countries. While all the chapters include elements of risk, the 

three first chapters follow closely the literature of risk-taking behavior, focusing on household-

individual outcomes. The last chapter explores market functioning, instead. Chapter 2 conducts an 

empirical analysis using the fisheries sector as case. Chapters 3, 4 and 5 document empirical 

evidence focusing on agriculture. While Chapter 2 studies the importance of the remuneration 

regime in fisheries under risk sharing and moral hazard arguments, Chapters 3 and 4 examine the 

role of risk in output and input decisions as ex-ante risk management strategies in agriculture. 

Chapter 5 discusses the importance of agricultural market efficiency to enhance resilience to 

natural shocks. 

 

Chapter 2, “Share Contract Choices and Economic Performance. Empirical Evidence From the 

Artisanal Fisheries Sector in Chile” (published in Marine Resource Economics 30(1):71-95, 

2015) investigates the mechanisms by which fishing revenues are distributed to labor and capital, 
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and how these distributions affect fishing returns in Chilean artisanal fisheries. The literature is 

extensive in assessing incentives involved in sharecropping land tenancy and testing it against 

alternative remuneration regimes. Yet, empirical evidence in fisheries is almost non-existent. This 

limited literature focus on one species and assume a binary status for the share contract regime. I 

instead exploit the variation in crew profit shares and introduce the analysis of multiple species to 

explore divergence across fisheries. I use the generalized propensity score (GPS) methodology and 

the dose-response function approach to estimate the marginal effects of changes in crew profit 

shares on economic performance. The results support share contract choices based on bargaining 

power, monitoring costs, technology, state of fishing resources, and outside option arguments. I 

find significant effects of increasing crew profit shares on vessel owner returns. The results are 

robust in fisheries with limited observability of labor efforts. 

 

Chapter 3, “Weather Shocks and Cropland Decisions in Rural Mozambique”, (joint with Sam 

Jones and Finn Tarp, accepted for publication in Food Policy) provides an empirical examination 

of the impact of weather shocks (drought and flood) on crop portfolio choices as well as on the 

persistence of these portfolio changes of small-scale farmers in Mozambique. We rely on external 

data on water availability to distinguish between drought and flood events, as opposed to self-

reported data. We also account for the bounded nature of land shares and estimate a Pooled 

Fractional Probit (PFP) model. Our results show that crop choice is sensitive to past weather 

shocks. Farmers shift land use away from cash and permanent crops one year after a drought and 

from horticulture and permanent crop after a flood. However, this reallocation seems temporary as 

farmers devote less land to staples after two periods. This is consistent with the aim of maintaining 

a buffer stock of staples for home consumption. 

 

Chapter 4, “Pesticide Use and Agricultural Risk. The Case of Rice Producers in Vietnam” (joint 

with John Rand) examines the risk effect of pesticide use by applying a lottery in combination 

with a production function approach using a dataset of rice producers in Vietnam. We also 

investigate the source of this risk by comparing pesticide productivities under pest and water 

shortage events. Production function results show that an increase in pesticide use can make 

production more risky. This result is supported by the lottery approach showing that more risk 

averse farmers use less pesticide, implying that pesticide is a risk-increasing input. Our results 

suggest that higher rainfall uncertainty (relative to pest) is likely to drive the risk increasing effect. 
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of pesticides. This highlights the importance of considering multiple uncertainties when 

determining risk properties of agricultural inputs. 

 

Chapter 5, “Weather Shocks and Spatial Market Efficiency: Evidence from Mozambique” (joint 

with Hailemariam Ayalew and Peter Fisker) studies the association between weather shocks and 

agricultural market performance in Mozambique. Employing dyadic regression analysis and using 

data on monthly maize prices, transport costs and spatial identification of droughts and flooded 

areas, results show differentiated effects across weather shock types. While price differences 

reduce during drought periods, suggesting a supply shock effect, price dispersion increases after a 

flood, along with increases in food transport costs. Results also reveal some heterogeneity. Floods 

are found to increase price dispersion more in areas where markets are closer to each other and in 

locations that have poorer transport infrastructure.  
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Evidence from the Artisanal Fisheries Sector in Chile. 

 

César Salazar-Espinoza

 

 

Published in Marine Resource Economics 30(1):71-95, 2015 

Abstract 

Typically, crew members in fisheries are remunerated through a share of the total revenues. However, 

there is little empirical evidence on the mechanisms by which revenues are distributed to labor and 

capital, and how these distributions affect economic performance. Under an agency problem 

framework, we estimate a dose-response function to study the formation of contracts and identify the 

marginal effects of changes in crew profit shares on fishing returns in Chilean artisanal fisheries. The 

results support share contract choices based on bargaining power, monitoring costs, technology, state of 

fishing resources, and outside options. We find significant effects of increasing crew profit shares on 

vessel owner returns in the interval (0.25, 0.65). The results vary across fisheries, however. While the 

effects are not significant in the fish group, they are larger and robust for molluscs and crustaceans. The 

latter finding is expected given the differences in the observability of effort across fisheries. 

 

Key words: Artisanal fisheries, share contracts, remuneration regime, continuous treatment effects. 

JEL classification: Q22, D86, D13. 
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1 Introduction 

The share contract remuneration system is broadly adopted in activities that involve the 

exploitation of natural resources such as agriculture, mining, and fishing. In particular, share 

contracts are almost the universal form of remuneration in fisheries. Under this regime, a vessel 

owner’s and crew earnings are tied to crew effort, state of the natural environment, and the 

proportion of the catch value given to the crew. In a context of high uncertainty, missing insurance 

markets, and substantial supervision cost, share contracts are superior to other remuneration 

regimes in coping with both production risk and opportunistic behavior (Platteau and Nugent, 

1992). The literature is extensive in assessing incentives in the form of both risk sharing and 

agency problems involved in sharecropping land tenancy and testing its potential inferiority
1
 over 

alternative regimes.
 2

 Yet, empirical evidence in fisheries is almost non-existent. Exceptions are 

the works by Nguyen and Leung (2009) and Thuy et al. (2013). Unlike these previous studies, in 

which the share system is assigned a binary status as compared to a fixed wage regime, we exploit 

the continuity in our data by observing crew profit shares in order to understand the mechanism by 

which revenues are distributed to labor and capital owners and how these distributions affect 

economic performance. The latter is more in line with theoretical models, which predict that the 

greater the proportion of crew profit, the larger the vessel owner profit will be (McConnell and 

Price, 2006). Furthermore, rather than focusing on one particular species, we take advantage of the 

richness of a unique census data from artisanal fisheries in Chile to introduce the analysis of 

multiple species and explore divergence across fisheries (INE, 2009). Additionally, treating the 

share contract variable as continuous may also uncover potential non-linear effects and shed some 

light on optimal levels of crew profit. We use the generalized propensity score (GPS) 

methodology and the dose-response function approach, as suggested in Hirano and Imbens (2004), 

to calculate the marginal effects. Given the fractional nature of our profit share variable, we 

employ the Fractional Logit model proposed by Papke and Wooldridge (1996) to compute the 

propensity scores. This new, novel methodology has not been applied in fisheries economics. 

 

                                                 

 
1 Earlier, Marshall (1920) suggested that agrarian share contracts are inefficient compared with owner-operated land farming, which has been 
named by the share contract literature as “the Marshallian inefficiency.” However, lately this statement has been conditioned on the magnitude of 

the monitoring and enforcement costs borne by the landlord (Johnson 1959; Cheung 1969). 
2 For more information, see Allen and Lueck (1992); Allen and Lueck (1999); Ackerberg and Botticini (2000), Ackerberg and Botticini (2002); 
Dubois (2002); Pandey (2004); Pender and Fafchamps (2005); Arcan, et al. (2007); Jacobsy and Mansuri (2009); and Bellemare (2009). 
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The rest of the article is structured as follows: Section 2 describes the fisheries sector and briefly 

exposes general aspects of the regulation and functioning of share contracts in Chile. Section 3 

presents the theoretical approach that underlies share contract decisions and the labor-enhancing 

mechanism. Section 4 introduces the empirical strategy to estimate a continuous treatment effect;  

and Section 5 the data used to carry out this study. Finally, Section 6 discusses the main results; 

and Section 7 concludes. 

 

2 Description of the fisheries sector in Chile 

Chile is rich in marine resources. Fisheries are the third most important exporting sector, 

contributing to 1.2% of gross domestic product and generating around 2% of total employment. It 

is officially divided in two sectors: the industrial and the artisanal, or small-scale. While the 

industrial sector represents 69% of total national landings and almost all fishes, the artisanal sector 

contributes with a greater variety of resources, including fishes and benthic resources, accounting 

for 13% of total volume.
3
 The pelagic fisheries are multispecies, with the jack mackerel 

(Trachurus symmetricus) as the predominant species. Other relevant species are the common 

sardine (Strangomera bentincki), anchovy (Engraulis ringens), and South Pacific hoki 

(Macruronus magellanicus).  The Chilean hake (Meluccis gayi gayi) is the main species exploited 

in the demersal fisheries. Pelagic and demersal fisheries are exploited by both industrial and 

artisanal fishers. In contrast, exploitation of benthic resources is almost exclusively undertaken by 

artisanal fishermen. The main benthic species are the Chilean abalone (Concholepas concholepa), 

blue mussels (Aulacomya ater), and the Chilean wedge clam (Tagelus nombeii).  

 

The extraction of marine resources in Chile is regulated by the General Law of Fishing and 

Aquaculture (GLFA).
4
 In addition to traditional regulatory instruments, such as the annual total 

allowable catch (TAC), temporal closure, minimum size, etc., this law contains important 

innovations in the management of the fisheries sector. These are the benthic resource management 

and exploitation area (BRMA), maximum harvest limits (MHL), and the AER (artisanal extractive 

regime). The BRMA basically allocates exclusive rights for fishermen’ organizations to use and 

exploit benthic resources within five miles of the coast, or in inland and interior waters 

                                                 

 
3 In spite of this lower participation, the artisanal sector generates a number of jobs similar to the industrial sector and constitutes the main source of 

direct income for approximately 75,000 households (INE, 2009). 
4 General Law of Fishing and Aquaculture. Law No.18.892 of 1989 and its modifications: Laws No.19.079 and 19.080, both of 1991, and Law No 
20657 of 2013. In Spanish ‘‘Ley General de Pesca y Acuicultura (LGPA). 
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(SUBPESCA, 1995). The MHL is basically an individual quota system with limited transferability 

aimed at creating and allocating individual use rights among vessel owners of the industrial fleet 

operating over main pelagic and demersal species. Finally, the AER system assigns collective 

quotas per area or fishermen organization, allowing great autonomy on distribution, use, and 

control of their collective quotas. These regulations have been ratified in recent modifications 

introduced in the GLFA by the Law No. 20,657 enacted on January 31, 2013. Furthermore, for the 

first time, this new law explicitly regulates the contractual relationship between a vessel owner 

and crew members. The incorporation of this section in the GLFA recognizes the need and 

importance of regulating share contracts, giving support for studies addressing the formation of 

contracts and their economic implications.  

 

The share contract system diverges between industrial and artisanal fisheries. While the crew in 

the industrial sector is remunerated with a combination of a fixed wage per hour and percentage 

participation in the total catch, artisanal vessel owners mainly use share contracts to reward labor 

efforts. According to the latest figures of the fishing census, a fraction of less than 2% of vessel 

owners pay fixed wages, and quite few of them adopt fixed rent contracts (INE, 2009). Thus, share 

contracts are almost the universal remuneration mechanism in artisanal fisheries. Under this 

scheme, vessel owners and crew member prior to the start of the trip, determine how to distribute 

the results of the fishing operation, which will depend on the contribution of each party. This way 

the revenues (after fuel and food expenses are deducted),
5
 are divided among the vessel owner and 

crew members.
6
 If, for instance, the capital owner directly participates in extractive activities 

onboard, he will take a proportion of the share that goes to the crew. Commonly, vessel owners 

contribute not only with capital, but also with their expertise as manager-skippers of the boat.  

 

3 Theoretical approach to the choice of contractual forms 

3.1 Literature review 

Many settings that involve production decisions are characterized by asymmetric information and 

production risk. Contract theory rises as a result of needs for formalizing these two features, as 

often observed in agrarian contracts (Cheung, 1969; Stiglitz, 1974). In the sharecropping case, the 

                                                 

 
5 The deduction of operating costs before distributing gains further strengthens the incentive mechanism via cost sharing, promoting the efficient 
use of inputs. Sharing operation costs is discussed in detail by Matthiasson (1999). 
6 In cases where fishing equipment is provided by a third party, the equipment owner may also receive a portion of the benefits. However, the 

evidence indicates that the latter can be neglected since in less than 2% of the cases, the equipment owner participates directly in the distribution 
(INE, 2009).  
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landowner lets a tenant work a piece of a field and requires part of the tenant’s harvest in return. 

As a tenant’s labor effort is not perfectly unobservable, this gives rise to an agency problem where 

the landowner expects tenants to behave opportunistically. In this setting, sharecropping will 

dominate owned cultivation because of the attenuation of labor shirking problems, and it will be 

superior to fixed rents because of its risk polling advantage (Stiglitz, 1974). The prevailing 

understanding of the literature is that in a riskless environment with perfect information, agents are 

indifferent among fixed wages, and share and fixed rental contracts (Stiglitz, 1974; Reid, 1976)
7
. 

Further, share contracts emerge, as the transaction costs of monitoring and enforcing are costless 

(Cheung, 1969). As soon as risk is taken into consideration, a flat wage is only established in the 

case of a risk-neutral landlord (Stiglitz, 1974). 

 

Although a sharecropping model is a good starting point for obtaining some insights into the 

functioning of lay systems in fisheries, there are some characteristics that differ from those in 

agriculture. First, share contracts are far more dominant in fisheries than in other sectors. Second, 

unlike the fisheries sector, agricultural activities are not usually task oriented; rather they operate 

in a feudalistic environment and within a hierarchical structure that lacks competitiveness. Finally, 

agricultural production is sequential and discontinuous, and the risk of both asset misuse and loss 

of human life are lower in comparison to fisheries (Plourde and Smith, 1989; Platteau and Nugent, 

1992). 

 

As in agriculture, two are the main arguments driving decisions regarding the choice of 

remuneration system in fisheries: risk pooling and opportunistic behavior. In relation to the risk 

pooling argument, Sutinen (1979) and Plourde and Smith (1989) show that when boat owners and 

crew members are risk averse, share contracts are the optimal remuneration system in a stochastic 

environment.
8
 On the other hand, and under the assumption that vessel owners do not directly 

supervise their crews, opportunistic behavior may arise in the form of labor shirking, asset 

mismanagement, output underreporting, and input overreporting. In this context, McConnell and 

Price (2006) point out that share contracts emerge as a mechanism to prevent shirking among 

crew. Empirical evidence investigating the formation of contracts and the impact of the 

                                                 

 
7 Reid (1976) argues that this result remains even in a stochastic environment. 
8 Alternatively, other contractual relationships have been adopted in fisheries, such as piece rate wages and fixed rent contracts. The former consists 

of paying salaries in accordance with catch volume. Although this system may help deal with labor shirking and output underreporting, it has 

disadvantages when catch quality is relevant. The latter makes price risk entirely borne by vessel owners. Fixed rent contracts consist of a fixed 
payment for renting boats. Thus, workers have to bear the entire burden of risk, and asset misuse is more likely to occur. 
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remuneration regime on economic performance in fisheries is scarce. Exceptions are the works by 

Nguyen and Leung (2009) and Thuy et al. (2013).  Nguyen and Leung (2009) find that share 

contracts are more likely to be preferred over fixed wages when it is easier for vessel owners to 

find a local crew. Furthermore, they assert that vessels owners with larger crews prefer flat wages 

over share contracts.  This result was also supported by Thuy et al. (2013). The latter additionally 

finds that share contracts are more likely to emerge in a rural area, probably since the bargaining 

power of crew members is weaker than that of vessel owners. Both studies find support of share-

contracted vessels yielding higher profits than flat-wage contracted vessels. They particularly rely 

on the insurance incentive mechanism in the choice of a remuneration contract. 

 

Risk sharing requires risk aversion in order to explain the origin of share contracts. However, 

recent empirical evidence in both commercial and artisanal fisheries finds that a substantial 

percentage of fishers behaves in either a risk-neutral or a risk-seeking manner (Holland and 

Sutinen, 2000; Eggert and Martinsson, 2004; Eggert and Tveteras, 2004; Strand 2004; Eggert and 

Lokina, 2007).
9
 This has led to the claim that the emergence of share contracts is more in line with 

the problems of moral hazard (McConnell and Price, 2006; Eggert and Lokina, 2007). Therefore, 

empirically speaking the study of incentives given to the crew in the form of profit sharing is 

relevant. Consequently, we follow the model of McConnell and Price (2006), who provide an 

explanation of share contract choices based on the existence of an incentive mechanism to 

alleviate a potential team agency problem.  

 

3.2 The model 

McConnell and Price (2006)’s model assumes two contracting parties: the vessel owner and crew. 

The owner selects a contract, s, that specifies a proportion of the ex-post profit to be paid to the 

crew that maximizes his share of total vessel profit. In this choice, capital owners take as given the 

effect of the share contract on the determination of the quantity and quality of crew labor effort. 

Vessel owner profits under a share contract regime are given by: 

 

    𝜋𝑂 = (1 − 𝑠)(𝑝𝛼𝑥 ∑ 𝑒𝑖 − 𝑉𝐶𝑁
𝑖=1 ),                                             (1) 

 

                                                 

 
9 The authors explain this finding based on evidence showing that fishers make decisions concerning fishing ground locations, target species, and 

gear on a shorter-term basis than farmers do, involving a relatively smaller stake in each trip. Thus, repeated risk- aversion behavior would not be 
optimal because of substantially reducing fishing incomes in the long run (Eggert and Lokina, 2007). 
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and for a representative crew member: 

 

       𝜋𝐶 =
𝑠

𝑁
(𝑝𝛼𝑥 ∑ 𝑒𝑖 − 𝑉𝐶𝑁

𝑖=1 ),                                                           (2) 

 

where i=1,…, N denotes the individual crew member; p denotes price;  the catchability 

coefficient; x the resource stock that is assumed to be random with 𝐸(𝑥) = �̅�; and VC non-labor 

input costs, mainly fuel and food expenses. Production technology is represented by 𝑦 = 𝛼𝑥𝐸, 

where 𝐸 = ∑ 𝑒𝑖
𝑁
𝑖=1 , and ei is the effort level exerted by the ith crewmember. In the model, it is 

assumed that the crew will exert low effort (eL) or high effort (eH) at a non-monetary cost 

represented by a strictly convex function 𝑣(𝑒𝑖). The expected utility of the vessel owner and crew 

members is defined as follows: 

 

                          𝑈𝑂 = 𝐸[𝜋𝑂] = (1 − 𝑠)(𝑝𝛼�̅� ∑ 𝑒𝑖 − 𝑉𝐶𝑁
𝑖=1 )                                             (3) 

 

               𝑈𝑖
𝐶 =

1

𝑁
𝐸[𝜋𝐶] =

𝑠

𝑁
(𝑝𝛼�̅� ∑ 𝑒𝑖 − 𝑉𝐶𝑁

𝑖=1 ) − 𝑣(𝑒𝑖).                                        (4) 

 

The capital owner and crew are assumed to be risk-neutral. The vessel owner chooses a contract 

parameter, s, to induce the crew to select a level of effort, �̂�𝑖, that maximizes the vessel owner’s 

welfare, subject to an individual rationality constraint (i) and an incentive compatibility constraint 

(ii).
10

 The problem is formalized as follows: 

 

                                   max𝑠,𝛾,�̂� 𝑈𝑂 = 𝐸[𝜋𝑂] = (1 − 𝑠)(𝑝𝛼�̅� ∑ 𝑒𝑖 − 𝑉𝐶𝑁
𝑖=1 )                              (5) 

                s.t   (𝑖) 𝑈𝑖
𝐶/�̂� ≥ �̅�𝑖 ,    

                                                     (𝑖𝑖) 𝑈𝑖
𝐶/�̂� ≥ 𝑈𝑖

𝐶/𝑒 ≠ �̂�. 

 

By substituting equation (4) into (ii) and assuming two levels of effort such that 𝑒𝑖 ∈ (𝑒𝐿,𝑒𝐻), a 

solution for s gives us (McConnell and Price, 2006): 

 

                                                 

 
10 In this particular case, (i) means that the crew receives a higher utility with the contract offered by the vessel owner compared to an outside 

option that generates utility �̅�, and (ii) means that the crew is better off by accepting this specific contract than taking any another contract. 
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                                                        𝑠∗ =
[𝑣(𝑒𝐻)−𝑣(𝑒𝐿)]𝑁

𝑝𝛼�̅�[𝑒𝐻−𝑒𝐿]
.        (6) 

 

Equations (5) and (6) define the optimal profit share and guide the inclusion of a series of factors 

that underlie share contract decisions. Hence, we should observe that vessel owners who operate 

in fisheries with lower prices, experience scarce resources, and use labor-intensive fishing 

technology would be more likely to share a larger proportion of the total profit. Furthermore, 

vessel owners that hire larger crews who have better outside opportunities and a higher disutility 

of labor, would grant a larger profit share to their crews.  

 

Finally, from equation (6) we can see that there is a positive relationship between s
*
 and e

*
 such 

that 𝑠∗ = ℎ′(𝑒∗) > 0. Thus, 𝑒∗ = 𝑔(𝑠∗) >0, where g(.) is the inverse function of h’(.). The latter 

expression describes the labor effort-enhancing mechanism. However, the effect on vessel owner 

profit is less clear. Plugging 𝑒∗ = 𝑔(𝑠∗) in equation (1), we obtain: 

𝜋𝑂 = (1 − 𝑠 ∗)(𝑝𝛼𝑥 ∑ 𝑔(𝑠∗) − 𝑉𝐶𝑁
𝑖=1 ). Thus, there exists a tradeoff when analyzing whether or 

not to increase the profit share. On the one hand, there is a marginal cost of increasing s when the 

capital owner gives up a proportion of the total gains. On the other hand, there is a marginal gain 

of increasing the profit share through better incentives that enhance labor effort.  

 

3.3 Other predictions from related literature 

There are other factors affecting the choice of share contracts that are not derived from the model; 

however, they have been supported by an extensive literature on agrarian contracts.  A landlord’s 

monitoring ability and bargaining power are often mentioned as relevant principal’s characteristics 

in explaining the formation of contracts in agriculture. For instance, landlords practicing non-

agricultural occupations, with plots located further from home, and contracting with tenants whose 

abilities are not known, are more likely to have higher costs of monitoring (Ackerberg and 

Botticini, 2000; Jacobsy and Mansuri, 2009),  and  would thus be more inclined to agree to a 

contract with better incentives for the tenants. Furthermore, landowners with higher ex-post 

bargaining power are more likely to sign a contract with lower power incentives. If the agent’s ex-

post bargaining position is weak, the principal cannot commit to high-powered incentives, thus 

agents end up accepting contracts with less favorable conditions (Kvaløy, 2006).  
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Finally, we expect that the incentive mechanism may be species-specific, since observability of 

efforts can differ across fisheries (see Allen and Lueck, 1995) for arguments in the sharecropping 

case).  For instance, molluscs and crustaceans are extracted from the bottom of the sea by diving, 

employing traps, or simply by gathering. In these cases, crew members have to get enter the sea, 

making monitoring more difficult for an onboard vessel owner. Moreover, crew members (divers, 

mainly) have the chance to be more selective in choosing where to search and which individuals to 

harvest, considering characteristics such as size and weight. This would have a direct influence on 

their benefits. On the contrary, if the target species is fish, crew members remain onboard 

irrespective of the fishing technology, making effort easier to observe. Even though there are 

always some imperfections in the observation of efforts associated with less tangible aspects, such 

as motivation, proactivity, and teamwork,
11

 supervision costs are expected to be much higher in 

the former case.  

 

4 Estimation procedure 

We use a continuous treatment effect approach, as proposed by Hirano and Imbens (2004), to 

study the formation of share contracts in artisanal fisheries and identify the marginal effects of 

increasing crew profit share on vessel owner profit. This methodology is an extension of the well-

established and broadly used propensity score methodology for binary treatments (Rosenbaum and 

Rubin, 1983) and multivalue treatments (Imbens, 2000; Lechner, 2001). Hirano and Imbens 

(2004) generalize the unconfoundedness assumption for the binary treatment, renaming it as the 

weak unconfoundedness assumption, since it is not necessary to assume the joint independence of 

all potential outcomes, but only conditional independence for each value of the treatment. This 

methodology, which is highly relevant when assessing training programs with different durations 

(Kluve et al., 2012; Flores et al., 2012), has also been shown to be useful beyond program 

evaluation contexts (see Fryges and Wagner, 2008; Fryges, 2009; and Du and Girma, 2009 for 

some evidence). 

 

We assume a random sample of vessel owners, indexed by i=1,..., N, where each observation, i, 

has a set of potential outcomes, 𝑌𝑖(𝑠) – the vessel owner return – for 𝑠 ∈ 𝛹, which corresponds to 

                                                 

 
11 For instance, in order to diminish potential conflicts between the skipper and crew onboard, the skipper, under a share contract mechanism, 

usually motivates his workers and fosters teamwork by making use of a consultation mechanism by which the skipper encourages the crew to 

participate in decisions regarding the scheduling of fishing trips, and the choice of fishing zones, nets, gear, and procedures to be followed onboard 
or in port. 
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the level of treatment dose – crew profit share. In the continuous case, 𝛹 is an interval [𝑠1, 𝑠2]. For 

each vessel owner, we observe a covariate vector, Xi (boat characteristics, vessel owner 

characteristics, etc.); the crew profit share, s; and vessel owner returns given the crew profit share, 

denoted as 𝑌𝑖 = 𝑌𝑖(𝑠). The aim is to estimate the average dose-response function 𝜇𝑖(𝑠) =

𝐸[𝑌𝑖(𝑠)]. The implementation consists of two parts. First, the methodology requires estimating 

share contract choices to calculate the GPS. Second, the GPS are used to estimate the average 

dose-response function. 

 

4.1 Estimations of share contract choices 

The principal–agent framework assumes that decisions on choosing contracts are modeled as a 

proportion of the profit paid to the crew. Consequently, standard linear models may fail to model 

proportions, as predicted values are not guaranteed to fall into the interval (0,1). Therefore, it is 

crucial to look into models that impose a bounded relationship on the dependent variable. We use 

the Fractional Logit model, as suggested by Papke and Wooldridge (1996), to estimate the 

formation of share contracts. The maximization procedure maximizes the Bernoulli log-likelihood 

function as follows: 

 

        𝑙𝑖(𝛽) = 𝑠𝑖𝑙𝑜𝑔 [𝛬(𝑋𝑖𝛽)]+(1-𝑠𝑖)log[1 − 𝛬(𝑋𝑖𝛽)],                           (7) 

 

where 𝑙𝑖(𝛽) denotes the log-likelihood function; 𝑠𝑖 corresponds to the crew profit share; 𝛬(∙) is 

the cumulative distribution function of the logistic satisfying 0 < 𝛬(∙) < 1, which ensures that the 

predicted values of 𝑠 lie in the interval (0,1); 𝛽 is a vector of the parameters to estimate; and 𝑋𝑖 is 

the vector of relevant covariates explaining share contract choices.  

 

Then, the estimated GPS calculated based on a Bernoulli distribution are as follows:  

 

                               𝑅�̂� =[𝛬(𝑋𝑖 �̂� )]
𝑠𝑖

[1 − 𝛬(𝑋𝑖 �̂�)]
(1−𝑠𝑖)

,                                             (8) 

 

where 𝑅�̂� are the calculated GPS, and �̂� denote the estimated coefficients from equation (7). 
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4.2 Estimation of the dose-response function 

In the second stage, we estimate the conditional expectation of the outcome variable of interest, 𝑌𝑖, 

as a function of the observed value of treatment 𝑠𝑖 and the estimated GPS, �̂�𝑖. As suggested by 

Hirano and Imbens (2004), we employ a quadratic functional form and ordinary least squares 

(OLS) as follows: 

 

      𝐸(𝑌𝑖/𝑠𝑖 , �̂�𝑖) = �̂�0+�̂�1𝑠𝑖 + �̂�2𝑠𝑖
2 + �̂�3�̂�𝑖 + �̂�4�̂�2

𝑖 + �̂�5𝑠𝑖�̂�𝑖,                                 (9) 

  

where �̂�𝑠 are the estimated parameters. In the final step, we estimate the average potential 

outcome at the treatment level, making use of the estimated coefficients from equation (9):  

 

                     𝐸(𝑌(𝑠)̂) =
1

𝑁
∑ [�̂�0+�̂�1𝑠 + �̂�2𝑠2 + �̂�3�̂�(𝑠, 𝑋𝑖) + �̂�4�̂�(𝑠, 𝑋𝑖)

2 + �̂�5𝑠�̂�(𝑠, 𝑋𝑖)]𝑁
𝑖=1 ,         (10) 

 

where �̂�(𝑠, 𝑋𝑖) are the GPS evaluated at the treatment level of interest, s. These average potential 

outcomes are calculated at each level of treatment, increasing by 5% within the interval (0,1). The 

dose-response function comes from depicting the average expected outcome at each level of the 

crew profit share. We bootstrap the standard errors and compute the confidence intervals of the 

expected outcomes at the 5% significance level (1,000 replications). The GPS has the property 

that 𝑋 ⊥ 𝑆; that is, within the same range of 𝑟(𝑆, 𝑋), the probability that S=s does not depend on 

the value of X. Hirano and Imbens (2004) demonstrate that if assignment to the treatment is 

weakly unconfounded given the covariate X, then it is also unconfounded given the GPS. Thus, 

the identification of marginal effects comes from the comparison of the value of the dose-response 

function for a treatment value s with another treatment value s
´
, conditioned on the GPS. 

  

5 Data  

The data we use are from the first Fishing and Aquaculture Census carried out in Chile between 

the years 2008-2009, with questions designed covering the period 2006-2007 as a reference. The 

Census was aimed at quantifying information on social, economic, and cultural characteristics of 

people involved in the fisheries and aquaculture sectors. Furthermore, questions were designed to 

gather information regarding physical infrastructure, equipment, and technology used in fisheries 

and aquaculture, so as to supplement the lack of statistics on production and costs (INE, 2009).  

The census was conducted on the basis of 14 questionnaires covering the artisanal sector; 
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including fishers, vessel owners, and fishing organizations; the industrial sector, comprising vessel 

owners and factory ships; aquaculture, divided in industrial and small-scale, salaried employees 

working in the processing industry and aquaculture; and fishing services supplied to extractive 

activities and aquaculture. In particular, we use the data on vessel owners operating in the artisanal 

sector.  We dropped vessel owners who either reported their boat was undergoing maintenance, or 

used them for transporting passengers or cargo, and had no crewmembers.
12

 Furthermore, we 

considered only fishing settlements formally recognized by the Chilean government.
13

 Thus, we 

obtained 6,840 observations, distributed across the entire national territory. 

 

Vessel owners report the profit shares given to the parties involved in extraction activities such as 

skipper, fishers, diver, diver’s assistant, and others. We constructed our share contract variable as 

the sum of percentages distributed among these fisher categories. Our outcome variable is the 

logarithm of self-reported monthly average profit during the last fishing season.
14

 

 

[INSERT TABLE 1 ABOUT HERE] 

 

The distribution of the profit share variable for each category of species is shown in Table 1. Most 

of the crew profit shares take values smaller than 0.5 and are greater for molluscs and crustaceans. 

To estimate share contract decisions, we consider a set of covariates characterizing boats, vessel 

owners, state of resources, labor market conditions, and fishing communities. Regarding boat 

characteristics, we control for vessel size by including dummies for the categories of small oar 

boats, small motorboats, launches with a length less than 12 feet, between 12 and 15 feet, and 

between 15 and 18 feet;
15

. To control for vessel material, we introduce dummy variables 

containing categories for wood, fiberglass, and steel
16

. For advanced technology usage, we use a 

dummy for the onboard presence of echo sounders. We consider the number of crew members, 

and control for fishing technology via dummy variables characterizing the type of fishing gear 

                                                 

 
12 Mostly, observations with no crewmembers simply correspond to vessel owners who fish. In this case, principal–agent problems would not be 

present. 
13 According to executive order N°337 on November 11, 2004, which modifies N°240 on August 3, 1998, the official list of artisanal fishing 
settlements amounts to 447, of which we observe 409 in our data. 
14 We use logarithms since vessel owners do not report negative values for profits, and only 60 observations have a value of zero in our sample. 

Furthermore, as profit shares are also in percentages, we can directly calculate marginal effects by the difference between the log of profits at two 
distinct levels of shares. 
15 The category launches with a length between 12 and 14 feet serve as the benchmark. There are no observations in the last category for the algae 

group. Furthermore, there are no boats of medium and large size for the species Chilean abalone. Thus, the baseline changes in these cases. 
16 Vessels made from wood are the baseline. There is no observation for the category “steel” for algae and Chilean abalone. 
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including diving, purse-seine net, driftnet, long line, handline, traps, gathering, and others.
17

 All 

these boat characteristics are intended to proxy for catchability and the use of less/more capital-

intensive technology. It is expected that smaller vessels, made of wood, with more crew members 

and equipped with labor-intensive technologies, have a lower catchability coefficient, and 

consequently are more inclined to agree to a contract with higher power incentives in the form of a 

higher crew profit share. In addition, we introduce a dummy variable indicating if the vessel 

owner experienced any adverse weather or resource scarcity during the last twelve months to 

proxy for resource abundance. We anticipate a positive association with crew profit share, since 

vessel owners probably offer an increase in crew participation so as to enhance labor effort, 

especially in time of resource scarcity. In relation to vessel owner characteristics, we include age, 

education, and experience measured in number of years, to control for vessel owner bargaining 

power. The intuition is that older, more educated, and experienced vessel owners hold higher 

bargaining power and will be more likely to agree to contracts with smaller crew profit share. 

Similarly, we also control for crew bargaining power by introducing the average of both 

experience and years of education at the fishing community level.
18

 Moreover, we included 

dummy variables indicating if the vessel owner had alternative employment in the past year and 

denoting if the vessel owner lives in a different community from where he works, both to proxy 

for monitoring costs. We expect a positive association with crew profit share when supervision 

becomes harder and more costly to the extent that the principal resides further from the unloading 

area and diverts his efforts among several activities. Also, we control for whether or not the vessel 

owner recently moved in the community where he currently lives, taking as reference the national 

census conducted in 2002. We presume that vessel owners who just moved to their current 

location are less familiar with their crew’s abilities, and as such would have increased need to 

incentivize them with higher-incentive contracts.  Moreover, we introduce additional variables at 

the fishing community level to control for labor market conditions and outside options. These are 

the ratios between the number of vessel owners and other fisher categories in each fishing 

community, the unemployment rate in the commune where the fishing community is located, a 

dummy variable if the fishing community is in a rural area, and the size of fishing communities 

measured in number of fishers. We expect that more populous fishing communities with a lower 

                                                 

 
17 Driftnet fishing technology serves as the benchmark. As not all these technologies qualify for each group of species, we only included the 
relevant technologies in each case. For the fish group, these are purse-seine net, long line, and handline; for molluscs, diving and gathering; for 

crustaceans, diving and traps; and for algae, diving and gathering. The species Chilean abalone is exploited by using diving technology only. 
18 Although suboptimal, we expect that crew characteristics control for some of the unobserved agent characteristics that potentially affect 
contractual relationships. 
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vessel owners/crew member ratio have a higher crew member supply, and therefore, a lower crew 

share. Furthermore, it is likely that crew members residing in fishing communities located in rural 

areas and near communes with higher unemployment rate,
19

 have fewer outside options, and are 

more willing to accept a smaller profit share. In addition, we include a dummy variable to denote 

the presence of fishing infrastructure in the community. We expect lower crew shares in fishing 

communities that do not have a unique, well known unloading point. Since the danger of output 

underreporting is likely to increase with the number of alternative landing sites, the vessel owner 

would pay lower crew shares to compensate for larger losses due to the potential higher 

underreporting. Finally, we included a set of covariates to control for regional differences.
20

 

 

[INSERT TABLE 2 ABOUT HERE] 

 

Table 2 summarizes the descriptive statistics regarding the vessel, fishing technology, vessel 

owner, and community characteristics. We divided the sample into four intervals. An artisanal 

vessel owner reports a monthly profit of 257,000 Chilean pesos, on average, from fishing 

activities.
21

 At first sight, there exists a non-linear association between outcomes and shares, and 

higher crew profit proportions are not clearly associated with higher vessel owner profits. There 

are differences in both vessel and technology characteristics across the level of crew profit shares. 

For instance, vessels with share contracts ranging from 1 to 25% are mainly launches, they hire 

more workers, and use driftnet fishing technology. By contrast, vessel owners allocating profit 

shares greater than 25% have smaller boats, hire fewer crew members, and use diving technology. 

Finally, vessel owners that distribute larger profit shares to their crews are more experienced and 

have an alternative occupation.
22

  

 

                                                 

 
19 The unemployment rate was calculated by making use of information from the Survey of Socioeconomic Characterization 2009, conducted 

between November and December of that year. In spite of differences in timing, we expect that the unemployment rate does not differ too much 

from that observed in the period of the collection of fishing census data. Information on rural zone status and the presence of a fishing infrastructure 
was taken from geo-referenced information collected by the National Bureau of Fishing and Aquiculture.  
20 In Chile, the administrative division occurs by region. Currently, there are 15 regions. All estimations were performed by controlling for regional 
fixed effects. Descriptive statistics and results are not shown for space reasons. They are available upon request.  
21 Approximately, this amounts to US$541 at the exchange rate on December 17, 2012. This is slightly higher than the minimum wage set as 

193,000 Chilean pesos (US$406) for 2012. 
22 There are reasons to believe that a potential correlation may arise among several variables. For instance, the rural zone is presumably correlated 

with unemployment rate; crew size with vessel size, materiality and eco-sunder; and age with experience of vessel owner. We explore this concern 

by computing the coefficients of correlations. We obtained a coefficient of correlation of 0.15 for rural area and unemployment rate, 0.52 for crew 
size and large-size launches, 0.24 for large-size launches and steel vessels, 0.40 for large-size launches and usage of eco-sounder, and 0.78 for age 

and experience. Except for the correlation between age and experience, this matter does not seem to be a big problem. We checked it by 

reestimating the share contract equation without either age or experience, finding similar results. These are not shown here, but are available upon 
request.  
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6 Results 

Before starting the discussion, we checked for the sensitivity of the results by addressing several 

concerns. First, as previously argued, the observability of effort can differ across fisheries; thus the 

labor-incentive mechanism may be more important in some fisheries than in others.  We examine 

this by estimating the model for the total sample and several groups of species, namely fish, 

molluscs, crustaceans, and algae. Second, it is expected that price variations determine profit crew 

shares. We lack the necessary data to test this directly. However, we expect that by focusing on 

one particular species whose producers are price takers, the chances that share contracts are driven 

by price differences should diminish. Thereby, we replicate the results by using data exclusively 

for one fishery, Chilean abalone (Concholepas concholepas). This marine resource is one of the 

main molluscs exploited in artisanal fisheries throughout the Chilean coast, and its production is 

almost entirely commercialized in international markets, mainly Asia. Moreover, Chilean 

participation in the abalone market does not exceed 10%. All these characteristics lead us to 

expect that local producers of that Chilean abalone should be price takers and that domestic prices 

paid to fishers from processing plants should follow external market trends (Chávez et al., 2010). 

Results for the Chilean abalone fisheries are not that different from those reported for the group of 

molluscs. Thus, the impossibility of controlling for price differences does not appear to be a matter 

of concern. Third, as a regular practice in artisanal fisheries, some vessel owners who are also 

skippers choose to completely link their gains to their effort and not be rewarded for providing 

capital. However, the central question remains, as it is not obvious that a higher proportion 

rewarding labor relative to capital would lead to an increase in vessel owner profit. We investigate 

this by pooling the skipper and capital shares when observed vessel owner shares are zero. Results 

do not seem to change dramatically (see Table A3). Fourth, there are several variables that were 

insignificant in all or most of the models. They are: the age and experience of vessel owner, the 

average education and experience of crewmembers in a fishing community, rural area, and 

population.  New estimations made after dropping these covariates provide similar results, and do 

not seem to change the results substantially (see Table 3 and Table A4). 

 

We now present the results concerning share contract choices, and then discuss the effect of the 

crew profit share on vessel owner returns.  
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6.1 Determinants of share contract choices 

Results of the Fractional Logit estimations are shown in Table 3.
23

 We focus on the covariates that 

were significant to explaining the formation of contracts. Regarding vessel characteristics, a crew 

receives a higher portion of gains when operating either small oar boats or small motorboats. 

Furthermore, the probability of negotiating a lower crew profit share is higher for vessels with 

better materiality and equipped with an echo sounder.  However, it is only significant for the total 

sample. Larger, better equipped vessels are able to undertake longer fishing trips, reach more 

remote fishing grounds, and tolerate extreme weather conditions. Thus, these results are consistent 

with a lower power of the crew incentive mechanism in more capital-intensive vessels. The 

characteristics of fishing technologies also play a role in determining share contract decisions. 

Having as baseline the use of driftnet, whose performance is less labor dependent, vessel owners 

that employ diving, purse-seine net, handline, traps, gathering, and other technologies
24

 are more 

willing to offer a larger profit share. The latter is expected since the share contract mechanism 

would be much more effective as vessels owners employ more labor-dependent fishing 

techniques.
25

 For instance, handline fishing is an old, simple way of catching fish, whose success 

relies on human skills. Furthermore, divers have the opportunity to be more selective in choosing 

where to fish and which individuals to catch, which may have more influence on vessel owner 

returns. 

 

[INSERT TABLE 3 ABOUT HERE] 

 

Crew size also affects share contract decisions. Vessel owners cede a higher proportion of fishing 

returns when they hire fewer workers. Similar evidence was found by Nguyen and Leung (2009). 

They argue that moral hazard problems are likely to be more serious in contexts where fishing 

returns depend more on labor quality. Thus, vessel owners with fewer crew members may be more 

concerned about quality than quantity and may attempt to induce an increase in the labor 

productivity of each crew member by offering a higher profit share.
26

 

                                                 

 
23 Note that the sum of observations per column does not add up to the total sample since we were not capable of identifying the first reported 
species in 15 cases. Furthermore, observations for the species Chilean abalone are also contained in the main category, molluscs. 
24 Among them, we included fishing with spear guns and a diving technique called the “spider technique.” 
25 In the design of agrarian contracts, Pandey (2004) demonstrates that as capital is relatively more important than labor effort, incentives offered 
directly through capital sharing are more effective. We can reinterpret this result in the context of fisheries by saying that to the extent that labor is 

more important than capital in achieving better results in fishing, vessel owners should reward labor with higher profit shares. 
26 According to alternative arguments, in fisheries with stronger social ties one should encounter a positive association between the share and crew 
size when it is the moral responsibility of vessel owners to take care of crew needs. However, recent technological changes, which have reduced the 
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Moreover, the results show evidence that vessel owners who face environmental problems that 

make it difficult to operate with regularity are more willing to negotiate higher profit shares. The 

latter supports the effort-enhancing mechanism of share contracts in encouraging crew to double 

efforts, especially in times of resource shortages or bad weather conditions. This finding is 

significant for the total sample and the category that groups different species of fish. 

 

There is also evidence on individual characteristics that underlie share contract decisions. Level of 

education is negatively correlated with the level of the crew profit share in the fish group and total 

sample. The latter may respond to differences in bargaining power, as more educated vessel 

owners with better negotiation skills would arrange better conditions for themselves at the expense 

of a lower profit share for crewmembers. 

 

Moreover, vessel owners that have a second occupation or do not reside in the same community 

where they work are more willing to cede a higher percentage of gains. These results are 

significant for the total sample. However, having a second occupation is only significant in the 

categories of fish and molluscs, and not residing in the same community is significant in the algae 

group only. Moral hazard problems are more likely to arise in settings where the principal has less 

chance to exert control over agents or faces higher monitoring cost. Therefore, vessel owners may 

lose control over crew effort when they divert their attention to an alternative activity or they do 

not reside in the fishing settlement in which work is carried out, and probably where most crew 

members live or spend most of their time.
27

 This finding is consistent with similar arguments in 

the sharecropping literature (Ackerberg and Botticini, 2000; Jacobsy and Mansuri, 2009). 

 

In addition, we find that whether or not vessel owners have recently moved to their current 

location matters in explaining levels of crew profit shares. Although the positive and significant 

estimate in one of the groups is consistent with vessel owners giving a higher profit portion to 

unfamiliar crew members, a negative relationship was more recurrently observed. Likely, vessel 

owners, in terms of the choice of contractual partners, seek to hire people in which they can be 

                                                                                                                                                                

 
substitution elasticity between labor and capital in fishing operations, may have shifted this relationship due to the higher productivity-reducing 

effect of working spread under this new setting (Platteau and Nugent, 1992). 
27 Although we cannot truly ensure that vessel owners are indeed manager-skippers, it is highly probable that it is the case. Thus, distance should 

matter lower for monitoring costs. However, another aspect that also affects supervision costs is associated with vessel owners’ opportunity to 

know crew abilities (Ackerberg and Botticini, 2000; Jacobsy and Mansuri, 2009). Therefore, if vessel owners do not reside in the fishing settlement 
where probably most crewmembers live or spend most of their time, it is more likely that they contract with a crew whose abilities are less known. 
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confident of hard work and cooperation to attenuate the problems of adverse selection and/or 

moral hazard. Thus, since trust relationships need time to be strengthened, vessel owners will be 

more willing to set contracts that involve a higher crew participation insofar as they have belonged 

to the fishing community for a longer time. These problems are even more serious as there is no 

legal proof that confirms the veracity of deals, which makes it more difficult to enforce contracts. 

 

Labor market characteristics seem to be important in the negotiation process of share contracts. 

We find dissimilar evidence for the variable vessel owner/crew, however. On the one hand, we 

find a positive sign of the estimate for the total sample, implying that the more the vessel owners 

per crew members in a community, the higher the profit share paid to the crew. In other words, to 

the extent that the supply of potential crew members in a fishing community is not sufficiently 

high to cover the vessel owner’s demand, the profit share offered to the crew should be higher.
28

 

On the other hand, we obtain opposite signs in the mollusc group and for Chilean abalone, which 

questions the validity of the prior statement. We believe that the negative sign observed in the 

extractive activities of molluscs may capture the greater bargaining power of divers, which is 

enhanced in fishing communities where diving is the principal activity. Furthermore, we find that 

we are more likely to observe lower profit shares in fishing communities near communes that have 

a higher unemployment rate. The estimations using the total sample and mollusc group confirmed 

these results. The latter is expected when outside opportunities and reservation wage decline as a 

result of difficulty finding a job. Finally, the presence of fishing infrastructure positively affects 

the proportion of the total gains paid to the crew. Having a unique, defined unloading point should 

considerably reduce the crew’s chances for output underreporting, as the costs of measuring and 

dividing the output decrease significantly. Thus, the positive link between labor effort and profit 

share enhanced by higher crew participation is strengthened as the crew has less room to 

underreport. The latter seems to be more important in the extraction of molluscs. 

 

6.2 The effect of share contracts on vessel owner returns 

Before conducting estimation of the continuous treatment effects, we investigate the common 

support and balancing properties of the GPS. We test common support graphically as in Flores et 

al. (2012), following this procedure. First, we divided the sample into three groups according to 

                                                 

 
28 Local labor supply and demand may be less relevant to explain profit share sizes when vessel owners and crew members do not live in the fishing 

community. Although there are some cases, this fraction is still small (3% for vessel owners, see Table 1), suggesting that the availability of local 
crew members is still important. 
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the values of profit shares, cutting off at the 30
th

 and 70
th

 percentiles of distribution. Second, we 

computed the GPS for the total sample at the median of the treatment value in each group. Finally, 

we plotted the distribution of the GPS of each group against the distribution of the remaining 

groups. We then evaluated common support by looking at the overlap between these two 

distributions. Graphically, there seems to be some overlap among the groups, which would 

validate the use of propensity score methods (see Figure A1). However, this does not guarantee 

that the balancing property of GPS is satisfied. We assess this by regressing each observable 

characteristic on either the predicted values of the treatment or the GPS distribution, as in Imai and 

van Dyk (2004) and Kluve et al. (2012), respectively. Results are reported in Table A1. We 

observe many significant correlations for the covariates in the unconditional regressions. 

However, once controlling for either the predicted values of the treatment or the GPS, the 

coefficients become insignificant and clearly decrease, which provides evidence that the GPS 

properly balances the observable characteristics.
29

 

 

The results of the OLS estimates for the conditional expectation of the outcome are shown in the 

Table A2. The estimated parameters do not have any causal interpretation. However, as 

emphasized by Hirano and Imbens (2004), the coefficients associated with the GPS terms can 

indicate whether the bias introduced by the covariates is significant.  

 

Given these estimated parameters, we calculate a dose-response function to analyze the effect of 

increasing crew profit shares on the economic outcomes. The 95% upper and lower confidence 

intervals are also computed. The dose-response functions plot the conditional expected monthly 

profit estimated at each level of the crew profit share, ranging from zero to one. This is depicted in 

Figure 1 for the total sample and Figure 2 for the categories of species. In addition, the marginal 

effects and significant ranges are shown in Table 4.  

 

[INSERT TABLE 4 ABOUT HERE] 

                                                 

 
29 Some additional issues concerning endogeneity can emerge as this method lies in the assumption of weak unconfoundedness. This assumption 

can be violated in case of reverse causality. For instance, vessel owners reporting larger gains may adjust profit shares downward such that they 

satisfy reservation wages; and thus paying a smaller profit share. However, contractual forms are set before profits are realized and are kept 
invariant in the short term. Moreover, share contracts arise as a strategy to deal with uncertainty through risk sharing, which makes changes in 

profit shares less likely to depend on the contingency. A second possibility is as arising potential unobserved characteristics. For instance, it is 

likely that particular types of principals end up contracting with particular types of agents. For example, vessel owner practicing diving may decide 
to contract with less risk-averse crew members, which would require a lower compensation to take a higher risk. Even though we do not observe 

crew data, we try to address this issue by including crew-community level characteristics, and reducing the heterogeneity as focusing on a particular 

group of species or only one species. Furthermore, if we rely on the recent literature, which finds that a substantial fraction of fishers are risk 
neutral, concerns on matching based on risk preferences should be less relevant. 
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Figure 1 shows a non-linear relationship between the level of crew profit share and outcomes. At 

the beginning, vessel owner profit goes down to the extent that they increase crew profit shares 

until the level of 0.20. After that point, each additional increase in profit share affects vessel owner 

returns positively until the level of 0.75. From that point, the vessel owner profit starts decreasing. 

In particular, the share contract mechanism has two conflicting effects on vessel owner profit. On 

the one hand, it works as a labor-enhancing system that brings extra gains via reduced labor 

shirking. On the other hand, by increasing the profit share, vessel owners give up profit. The 

results show that the second effect seems to dominate in the range from 0.01 to 0.20. After that 

level, the labor-enhancing mechanism starts playing a role. That is telling us two things. First, 

vessel owners can choose to remunerate crew poorly and increase their own profit at the expense 

of crew participation in total gains. However, the latter would be a welfare-reducing allocation, 

since vessel owners would be better off and crew members would be worse off. Second, there is a 

level of share (0.20) from which an increase in crew profit shares would be welfare improving, 

benefiting both vessel owner and crew members. However, raising the profit share above 0.55 is 

not statistically significant. Furthermore, a change in profit share from 0.01 to 0.2 does not 

significantly affect vessel owner profit. Thus, the relevant range is 0.25–0.55. The right hand side 

of Figure 1 depicts on the vessel owner’s marginal gains of increasing profit share at 5%. The 

positive slope and concavity of the treatment effect function tells us that elasticity converges from 

negative to positive levels at a decreasing rate until it reaches a maximum value of 0.012. After 

that point, marginal effects start decreasing and become negative after a share of 0.75. 

 

[INSERT FIGURE 1 ABOUT HERE] 

 

Figure 2 shows that potential outcomes and relevant intervals differ across the categories of 

species. Potential outcomes start increasing above 0.35 for fish and 0.55 for algae. However, these 

results are not statistically significant. Results for molluscs, crustaceans, and Chilean abalone are 

much more consistent under the labor-enhancing mechanism argument. Regarding molluscs, we 

find an inverted U-shaped association between crew profit shares and outcomes, significant at the 

5% level until a value of 0.65. The estimations using only Chilean abalone confirm the inverted U-

shape of the dose-response function, although the significant range of profit shares narrows. Fewer 

significant estimates are likely the result of less variability in crew profit share as focusing on one 

species only. We also find higher outcomes for larger crew participation in crustaceous activity, 
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with significant values ranging from 0.4 to 0.65. This association seems to be linear, though. The 

results in Table 4 indicate that an increase of 5% in crew profit share would have a positive effect 

on the vessel owner profit of 0.008%, on average, on the relevant interval for the total sample. 

This value is much lower compared with the marginal effects obtained for molluscs and 

crustaceans. Whereas the average marginal effect on the relevant range is 0.022 for molluscs 

(0.025 for Chilean abalone), it reaches a value of 0.035 for crustaceans. The higher sensitivity of 

output to the crew’s profit share found in these cases is in line with the higher efficacy expected 

when using share contracts in settings where crew efforts are harder to monitor. Differences 

among fisheries support the notion that vessel owners may still experience trouble observing crew 

efforts in spite of closer monitoring in artisanal fisheries. For instance, the extraction of molluscs 

and crustaceans is carried out by diving; alternatively, molluscs are gathered and crustaceans are 

caught using traps. In any case, it is highly probable that crew members are out of sight of the 

onboard vessel owner-skipper. This gives the labor-enhancing mechanism of share contracts 

special relevance in those fisheries in which the observability of effort is more reduced. 

 

[INSERT FIGURE 2 ABOUT HERE] 

 

7 Discussion and conclusion 

In this article, we study the determinants of share contract choices in artisanal fisheries in Chile 

and their effect on economic performance. Owing to the differences in vessel and operation 

characteristics along levels of crew profit shares, we estimate a continuous treatment effect using 

the GPS approach. Because of the fractional nature of share contract decisions, we estimate the 

Fractional Logit model to compute the propensity scores. 

 

The results indicated that less educated vessel owners and those with another occupation are more 

likely to pay a higher profit ratio. The latter supports arguments based on bargaining power and 

monitoring costs, respectively, in explaining the different levels of contract incentives. 

Furthermore, vessel owners with smaller boats that are equipped with technologies, that require 

are more labor-intensive methods, and experience more volatile environmental conditions were 

more likely to pay higher profit shares. This evidence backs up the arguments based on differences 

in dependence on human effort and the state of fishing resources. Moreover, vessel owners that 

resided in fishing communities with lower unemployment rates and those endowed with a fishing 
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infrastructure are more willing to negotiate a higher profit share. The latter findings support 

explanations based on differences in outside options and fishing community infrastructure. 

 

We found significant effects of increasing crew profit shares on vessel owner returns; however, 

significant ranges vary from a lower limit of 0.25 to values around 0.65, depending on the group 

of species under study. This effect is larger and robust in the mollusc and crustacean groups, 

which is in line with expected differences in the observability of efforts in the vessel owner–crew 

relationship across fisheries. The latter supports allocations with high crew participation in 

attaining maximal fishing returns in artisanal fishing communities in Chile. 

 

The results have relevant policy implications. First of all, our findings suggest that a fair 

distribution of the gains without favoring any of the parties performs well in economic terms. 

Incentive-based instruments have been criticized for their distributional implications; in particular, 

the level, nature, and remuneration of the crew aboard harvesting vessels (Grafton et al., 1996; 

Brandt and Ding, 2008; Abbott et al., 2010). Under a right-based regime, vessel owners are given 

more autonomy on distribution, use, and control of their resources.  This implies that increased 

capital owner’s bargaining power may lead to a reduction in profit crew share. Therefore, a right-

based system may moderate the necessity of higher power incentive contracts, which can affect 

fishing returns. Unfortunately, data limitations do not allow us to conduct an evaluation of right 

based instruments on share contract choices and total fishing returns in Chile. Furthermore, these 

instruments have been gradually extending to the entire artisanal fishery, which makes 

identification harder as relying on cross sectional variation only. Ex-ante and ex-post data to the 

introduction of these incentive-based instruments are necessary to perform a more exhaustive 

evaluation of their distributional impacts and economic consequences.  

 

We found that share contracts are sensitive to the unemployment rate. This may cause difficulty 

for vessel owners meeting their labor needs as economic conditions are better in other sectors- 

Moreover, this may make crew members more vulnerable in times of higher unemployment in 

other sectors since they have to accept lower profit shares because of their fewer outside 

opportunities. The arrangement of a minimum income may help crew members insure against low 

catch rates and, at the same time, augment their reservation wages. This would also attenuate 

vessel owners’ trouble meeting their labor requirements, especially in times of labor scarcity. 
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There is no explicit mention of a minimum income in the modifications introduced in the (GLFA) 

that regulate share contracts in Chile. However, during the debate of this law, it was discussed to 

stipulate that shares corresponding to each crew member must not be below the minimum wage. 

Undoubtedly, this change may generate conflicting effects as the incentive mechanism weakens, 

especially in mollusc and crustacean fisheries. Our results do not permit us to suggest an optimal 

minimum income that balances these potential impacts since share contracts are broadly dominant 

in Chilean artisanal fisheries. Future research should aim to assess the functioning of share 

contracts in contexts where the crew is also remunerated by a combination of a fixed income and a 

percentage of total profit.  

 

We note some limitations. Firstly, our results rely on the assumption of the weak 

unconfoundedness of GPS, which is also known as selection on the observables. Unobserved 

heterogeneity across agents may potentially result in endogeneity issues when particular types of 

principals end up contracting with particular types of agents. For example, vessel owners 

extracting mollusks may decide to contract with highly skilled divers, which would imply a larger 

remuneration share. Our results rely mainly on vessel owner characteristics. Future research 

should include crew member covariates and potentially matched data between principals and 

agents to more closely study the formation of contracts. Secondly, we argue that it is likely that the 

vessel owner can play the role of skipper, which would substantially attenuate labor shirking 

problems, as the crew would be more closely monitored. Unfortunately, we cannot observe this 

feature in our data. We attempt to deal with this issue by extending the analysis to several fisheries 

that potentially vary in terms of observability of crew effort. However, more accurate data on the 

vessel owner’s multiple roles is required to explore this further. 
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Tables  

Table 1. Distribution of the crew profit share variable. 

Interval 
Fish Mollusc Crustacean Algae 

Chilean 

Abalone 
Total 

N° % N° % N° % N° % N° % N° % 

(0,0.25] 946 0.24 216 0.10 59 0.16 38 0.09 28 0.07 1,261 0.18 

(0.25,0.50] 2,240 0.57 1,108 0.53 180 0.49 265 0.63 188 0.50 3,803 0.56 

(0.50,0.75] 641 0.16 653 0.31 121 0.33 91 0.22 145 0.39 1,509 0.22 

(0.75,1] 120 0.03 114 0.05 7 0.02 26 0.06 15 0.04 267 0.04 

Total 3,947 1.00 2,091 1.00 367 1.00 420 1.00 376 1.00 6,840 1.00 

                 Note: Own elaboration. 
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Table 2. Summary statistics for vessel and fishing technology characteristics. 

Variable 

Crew Profit Share 
Total 

(0,0.25] (0.25,0.50] (0.50,0.75] (0.75,1] 

Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev 

Monthly Profit 300,209 627,279 233,566 402,142 281,355 483,912 257,322 429,117 257,322 471,142 

Vessel 
          

Small oar boat 0.055 
 

0.119 
 

0.102 
 

0.161 
 

0.105 
 

Small motor boat 0.537 
 

0.664 
 

0.772 
 

0.797 
 

0.670 
 

Launch (length<12) 0.317 
 

0.210 
 

0.130 
 

0.097 
 

0.208 
 

Launch (12≤length≤15) 0.065 
 

0.015 
 

0.014 
 

0.011 
 

0.024 
 

Launch (15≤length≤18) 0.055 
 

0.119 
 

0.102 
 

0.161 
 

0.105 
 

Wood vessel 0.786 
 

0.861 
 

0.902 
 

0.862 
   

Fiberglass vessel 0.196 
 

0.136 
 

0.141 
 

0.138 
 

0.148 
 

Steel vessel 0.018 
 

0.003 
 

0.004 
 

0.000 
 

0.006 
 

Echo sounder 0.206 
 

0.090 
 

0.094 
 

0.082 
 

0.112 
 

Crew’s size 2.808 1.870 1.936 1.434 2.050 1.481 2.041 1.239 2.126 1.561 

Technology 
          

Diving 0.176 
 

0.311 
 

0.480 
 

0.531 
 

0.332 
 

Purse-seine net 0.061 
 

0.031 
 

0.029 
 

0.056 
 

0.037 
 

Long line 0.383 
 

0.316 
 

0.113 
 

0.074 
 

0.274 
 

Handline 0.038 
 

0.056 
 

0.079 
 

0.074 
 

0.059 
 

Drift-net 0.274 
 

0.186 
 

0.176 
 

0.188 
 

0.201 
 

Traps 0.038 
 

0.036 
 

0.053 
 

0.018 
 

0.039 
 

Picking 0.024 
 

0.043 
 

0.033 
 

0.022 
 

0.036 
 

Others 0.006 
 

0.021 
 

0.037 
 

0.037 
 

0.022 
 

Activity 
          

Ecological problem 0.343 
 

0.296 
 

0.192 
 

0.217 
 

0.278 
 

Vessel owner           
Age 45.065 10.483 45.868 11.409 46.697 11.256 47.677 11.352 45.974 11.222 
Education 7.672 2.800 7.341 2.834 7.517 2.954 7.449 2.929 7.445 2.860 

Experience 26.641 11.30 26.798 12.013 28.296 11.987 28.863 12.287 27.180 11.911 

Another occupation 0.183  0.220  0.167  0.258  0.203  
Not residing in workplace 0.032  0.027  0.037  0.033  0.030  

Move 0.090  0.062  0.044  0.063  0.063  

Community 
          

Crew experience 22.406 3.656 22.942 4.035 24.218 4.258 24.926 4.131 23.202 4.084 

Crew education 7.818 0.714 7.717 0.753 7.883 0.723 7.941 0.921 7.781 0.751 

Vessel owner/crew 0.341 0.234 0.386 0.356 0.407 0.435 0.400 0.428 0.383 0.361 

Unemployment rate 0.105 0.032 0.110 0.033 0.104 0.036 0.103 0.034 0.107 0.034 

Fishing infrastructure 0.559 
 

0.539 
 

0.747 
 

0.715 
 

0.596 
 

Rural 0.518 
 

0.586 
 

0.502 
 

0.471 
 

0.550 
 

Population size 472.416 513.84 424.91 514.329 406.919 512.925 359.996 427.99 427.16 511.36 

Observations 1,261 3,803 1,509 267 6,840 

 Note: Own elaboration based on Census data 
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Table 3. Estimated parameters for the Fractional Logit model. 

Variable 
Fish Mollusc Crustacean Algae Chilean Abalone Total Sample 

Coef Se+ Coef Se+ Coef Se+ Coef Se+ Coef Se+ Coef Se+ 

Vessel              

Small oar boat 0.13** 0.06 0.21** 0.09 -0.18 0.19 0.77 0.23 -0.18 0.19 0.14*** 0.05 

Small motor boat 0.12** 0.05 0.25*** 0.08 -0.17 0.17 0.12 0.20 0.24** 0.12 0.14*** 0.04 

Launch(length<12) 0.03 0.05 0.12 0.08 -0.26 0.16 0.12 0.18   0.05 0.041 

Launch(15≤length≤18) 0.03 0.09 -0.03 0.23 0.35 0.27     0.002 0.09 

Fiberglass vessel -0.04 0.04 0.01 0.05 -0.01 0.13 0.03 0.14 -0.15 0.09 -0.05* 0.03  

Steel vessel -0.15 0.17 0.06 0.23 1.49*** 0.17     -0.12 0.16 

Echo sounder -0.03 0.041 -0.11 0.07 -0.12 0.10 0.05 0.21 0.24 0.15 -0.07** 0.03 

Crew size -0.10*** 0.01 -0.05*** 0.02 -0.19*** 0.05 -0.13*** 0.04 -0.04 0.05 -0.09*** 0.01 

Technology             

Diving   0.15*** 0.05 0.35*** 0.11 0.29*** 0.08   0.34*** 0.03  

Purse-seine net 0.04 0.07         0.14** 0.07 

Long line  -0.001 0.04         -0.01 0.03 

Handline  0.14*** 0.05         0.15*** 0.04  

Traps           0.05 0.05 

Picking           0.16*** 0.05 

Others           0.28*** 0.05 

Activity             

Ecological problem 0.08*** 0.02 -0.02 0.04 -0.06 0.11 0.04 0.08 -0.15** 0.08 0.06*** 0.02 

Vessel owner              

Education -0.01* 0.003 -0.00 0.01 0.001 0.01 -0.01 0.01 -0.01 0.01 -0.01* 0.003 

Another occupation 0.09*** 0.03 0.11*** 0.04 0.04 0.12 0.05 0.07 0.05 0.07 0.09*** 0.02 

Not residing in work 0.04 0.07 0.13 0.08 0.10 0.16 0.41** 0.19 0.09 0.14 0.08* 0.05 

Move -0.10** 0.05 -0.10* 0.06) 0.37* 0.22 0.08 0.13 0.06 0.20 -0.09** 0.04 

Community             

Vessel owner/crew 0.10*** 0.03 -0.13* 0.07 0.01 0.04 0.05 0.24 -0.17 0.13 0.06*** 0.02 

Unemployment rate -0.16 0.44 -1.81*** 0.57 -0.10 1.76 -1.51 1.27) 0.85 1.55 -1.13*** 0.32 

Fishing infrastructure 0.03 0.026 0.08** 0.03 -0.11 0.09 0.01 0.07 0.00 0.09) 0.06*** 0.02 

Constant 0.17* 0.10 0.01 0.16 0.44 0.34 0.33 0.34 -0.20 0.34 0.07 0.08 

Log pseudo-likelihood -1797.1 -977.2 -167.5 -194.7 -174.3 -3154.2  

Observations 3,947 2,091 367 420 376 6,840 

  Note: Own elaboration based on estimations, *** p<0.01, ** p<0.05, * p<0.1, and + robust standard errors. 
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Table 4. Marginal effects of increasing crew profit shares by 5%. 

Level of Treatment 
Marginal Effects 

Fish Mollusc Crustacean Algae Chilean Abalone Total 

0.05 -0.069 0.051 -0.046 -0.085 0.169 -0.026 

0.10 -0.052 0.04 -0.028 -0.077 0.152 -0.016 
0.15 -0.038 0.047 -0.013 -0.06 0.136 -0.008 

0.20 -0.026 0.044 0.000 -0.061 0.120 -0.001 

0.25 -0.01 0.040 0.009 -0.053 0.105 0.002** 
0.30 -0.009 0.037** 0.018 -0.046 0.089 0.006** 

0.35 -0.003 0.033** 0.024 -0.038 0.075 0.008** 

0.40 0.000 0.029** 0.029** -0.03 0.060 0.010** 
0.45 0.003 0.024** 0.032** -0.021** 0.046** 0.010** 

0.50 0.005 0.020** 0.035** -0.013** 0.032** 0.010** 

0.55 0.005 0.015** 0.036** -0.005** 0.018** 0.009** 
0.60 0.005 0.010** 0.037** 0.004 0.005** 0.007 

0.65 0.003 0.005** 0.038** 0.012 -0.007 0.005 

0.70 0.001 0.000 0.03606 0.022 -0.020 0.003 
0.75 0.000 -0.004 0.035 0.032 -0.032 0.000 

0.80 -0.004 -0.009 0.03372 0.042 -0.044 -0.002 

0.85 -0.008 -0.015 0.03233 0.053 -0.055 -0.005 
0.90 -0.012 -0.020 0.03099 0.064 -0.066 -0.009 

0.95 -0.017 -0.025 0.0298 0.075 -0.076 -0.013 

1.00 -0.022 -0.030 0.02891 0.088 -0.086 -0.016 

                                             Note: Own elaboration based on estimations, ** p<0.05. 
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Figures 

 

Figure 1. Estimated dose-response function and treatment effect function given a change of 5% in 

profit share (Total sample). 

 

  
   Note: Own elaboration based on estimations. 
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Figure 2. Estimated dose-response function and treatment effect function given a change of 5% in 

profit share. Categories of species. 

Fish 

 

Mollusc

 

Crustacean

 

Algae 

 
Chilean Abalone 

 
Note: Own elaboration based on estimations. 
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Appendix A: Additional Tables and Figures. 

 

Table A1. Covariate balance with and without adjustment. Total sample. 
 

 
 

 

 
 

 

 
 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 

 
 

 

 
 

 

 
Source: Own elaboration based on the OLS regression of each covariate against profit shares either 

unconditioned or conditioned on the predicted valued of profit shares and the distribution of propensity 

scores, respectively, *** p<0.01, ** p<0.05, * p<0.1. 
 

 

 
 

 

 
 

 

 
 

 

 
 

 
 

 

 
 

 

 
 

Covariate 

Total sample 

Unconditional 

effect of shares 

Effect of shares 

conditional on E[S/Xi) 

Effect of shares 

conditional on Ri 

Coef. Se Coef. Se Coef. Se 

Vessel        

Small oar boat 0.15*** 0.023 0.0003 0.023 -0.0009 0.023 
Small Motor boat 0.42*** 0.03 0.0008 0.34 0.004 0.034 

Launch(length<12) -0.36*** 0.026 -0.0007 0.029 -0.009 0.029 

Launch(12≤length≤15) -0.11*** 0.012 -0.041** 0.014 -0.041* 0.013 
Launch(15≤length≤18) -0.10*** 0.01 -0.0002 0.012 0.004 0.011 

Wood vessel 0.15*** 0.023 -0.004 0.025 -0.014 0.026 

Fiberglass vessel -0.11*** 0.023 -0.0002 0.027 0.007 0.026 
Steel vessel -0.03*** 0.005 -0.00005 0.006 0.001 0.006 

Echo sounder -0.22*** 0.021 -0.0004 0.023 0.004 0.023 

Crew’s size -1.48*** 0.10 -0.003 0.114 0.031 0.113 

Technology       

Diving 0.50*** 0.03 0.0009 0.34 0.006 0.034 

Purse-seine net -0.05*** 0.012 -0.00009 -0.01 0.001 0.015 
Long line technology -0.53*** 0.028 -0.001 0.032 -0.011 0.03 

Handline technology 0.09*** 0.015 0.0002 0.018 -0.0008 0.018 

Drift-net fishing -0.13*** 0.026 0.0007 0.031 0.007 0.029 
Traps 0.03*** 0.013 0.00006 0.015 -0.001 0.015 

Picking 0.02* 0.012 0.00004 0.01 -0.002 0.014 

Others 0.059*** 0.009 0.0001 0.011 0.001 0.011 

Activity       

Ecological problem -0.23*** 0.029 -0.0004 0.034 -0.007 0.034 

Vessel owner        

Age 4.2*** 0.73 0.008 0.86 0.034 0.863 

Education -0.40** 0.18 -0.0007 0.222 0.026 0.221 
Experience 4.5*** 0.77 0.009 0.916 0.053 0.91 

Another occupation 0.001 0.02 0.000002 0.03 -0.004 0.03 

Not residing in work 0.01*** 0.01 0.00002 0.01 0.001 0.013 
Move -0.08** 0.02 -0.0002 0.018 0.002 0.019 

Community       

Crew experience 4.04*** 0.26 0.008 0.29 0.03 0.296 
Crew education 0.186*** 0.049 0.0003 0.06 0.014 0.056 

Vessel owner/crew 0.13*** 0.024 0.0002 0.027 0.007 0.027 

Unemployment rate -0.005** 0.002 -0.00008 0.003 -0.0001 0.003 
Fishing infrastructure 0.34*** 0.03 0.0007 0.037 0.016 0.036 

Rural -0.10*** 0.032 -0.0002 0.038 -0.005 0.038 

Population size -185*** 33.3 -0.36 39.3 -7.12 39.2 

Observations 6,840 6,840 6,840 
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Table A2. Estimated parameters for the estimation of the expected outcomes. 

Variable 
Fish Mollusk Crustacean Alga 

Chilean 

abalone 
Total 

Coef. Se Coef. Se Coef. Se Coef. Se Coef. Se Coef. Se 

Share 3.01* 1.59 5.85*** 1.95 7.66 5.49 -2.39 5.75 -4.10 7.06 0.57 1.12 

Share^2 -1.92*** 0.63 -2.18** 0.78 -2.92 2.88 0.67 1.99 -3.24 2.26 -1.72*** 0.46 

GPS -25.09*** 8.22 -37.52** 12.79 -56.44 37.25 -37.71 26.41 -13.86 67.84 -38.75** 6.84 

GPS^2 28.36*** 6.93 41.59*** 12.95 62.69* 34.69 33.69 28.60 6.14 67.34 39.25*** 5.97 

Share*GPS -1.96 2.66 -6.71 3.15 -8.61 8.63 3.18 8.92 15.92 11.34 2.58 1.93 

Constant 16.68*** 2.43 19.84** 3.15 23.41** 9.96 22.21** 6.16 16.38 17.09 20.94*** 1.95 

Observations 3,947 2,091 367 420 376 6,840 

           Note: Own elaboration based on estimations, *** p<0.01, ** p<0.05 
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Table A3. Marginal effects of increasing crew profit shares by 5%, vessel owner and skipper 

shares pooled together. 

Level of the treatment 
Marginal effects 

Fish Mollusk Crustacean Alga Chilean abalone Total 

0.05 -0.108** 0.035 -0.231 -0.156 0.168 -0.073** 

0.10 -0.084** 0.035 -0.191 -0.143 0.152 -0.057** 
0.15 -0.064** 0.033 -0.155 -0.129 0.136 -0.044** 

0.20 -0.048** 0.032 -0.124 -0.115 0.120 -0.032** 

0.25 -0.034** 0.030 -0.097 -0.100 0.105 -0.023** 
0.30 -0.023** 0.027 -0.073 -0.086 0.090 -0.015 

0.35 -0.014** 0.025 -0.051** -0.071** 0.076 -0.008 

0.40 -0.007** 0.022** -0.031** -0.057** 0.062 -0.002 
0.45 -0.001 0.018** -0.013** -0.041** 0.048** 0.002** 

0.50 0.003 0.015** 0.004 -0.026** 0.035** 0.006** 

0.55 0.005 0.011** 0.020** -0.010** 0.022** 0.009** 
0.60 0.007 0.008** 0.035** 0.006 0.009** 0.012** 

0.65 0.008 0.004 0.050** 0.023** -0.004 0.014 

0.70 0.008 0.000 0.066** 0.040** -0.016 0.015 
0.75 0.007 -0.004 0.081 0.057** -0.028 0.017 

0.80 0.006 -0.008 0.098 0.076 -0.039 0.018 

0.85 0.005 -0.011 0.115 0.094 -0.050 0.019 
0.90 0.002 -0.015 0.133 0.114 -0.061 0.020 

0.95 0.000 -0.018 0.153 0.134 -0.072 0.020 

1.00 -0.002 -0.021 0.175 0.155 -0.082 0.021 

Source: Own elaboration based on estimations, ** p<0.05 
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Table A4. Estimated parameters for the Fractional Logit model (including the whole set of 

covariates). 

Variable 
Fish Mollusk Crustacean Alga Chilean abalone Total sample 

Coef Se+ Coef Se+ Coef Se+ Coef Se+ Coef Se+ Coef Se+ 

Vessel              

Small oar boat 0.13** 0.06 0.20** 0.10 -0.20 0.19 0.08 0.22 0.02 0.18 0.15*** 0.05 

Small Motor boat 0.13** 0.05 0.24*** 0.08 -0.17 0.17 0.13 0.19 0.38*** 0.12 0.14*** 0.04 

Launch(length<12) 0.03 0.05 0.11 0.08 -0.25 0.16 -0.11 0.17 
  

0.05 0.04 

Launch(15≤length≤18) 0.03 0.10 -0.03 0.24 0.31 0.26 

    

0.00 0.09 

Fiberglass vessel -0.05 0.04 0.01 0.05 -0.02 0.13 -0.04 0.14 -0.19* 0.10 -0.05* 0.03 

Steel vessel -0.13 0.17 0.06 0.24 1.55*** 0.18 

    

-0.12 0.16 

Echo sounder -0.03 0.04 -0.10 0.07 -0.11 0.10 -0.06 0.21 0.19 0.15 -0.07** 0.03 

Crew’s size -0.10** 0.01 -0.05** 0.02 -0.19** 0.05 -0.12** 0.04 -0.01 0.05 -0.09** 0.01 

Technology 
            

Diving 
  

0.15*** 0.05 0.37*** 0.11 0.27*** 0.09 
  

0.37*** 0.05 

Purse-seine net 0.05 0.07 

        

0.14** 0.07 

Long line technology -0.01 0.04 
        

-0.01 0.03 

Handline technology 0.14*** 0.05 

        

0.15*** 0.04 

Traps 

          

0.10 0.09 

Picking 
          

0.22*** 0.07 

Others 

          

0.31*** 0.06 

Activity 

            Ecological problem 0.08*** 0.02 -0.03 0.04 -0.07 0.11 0.04 0.08 -0.11 0.09 0.06*** 0.02 

Vessel owner  

            Age 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.004 0.01 0.01 -0.00 0.00 

Education -0.01* 0.00 -0.00 0.01 0.00 0.01 -0.01 0.01 -0.01 0.01 -0.01* 0.00 

Experience -0.001 0.00 -0.00 0.00 0.00 0.00 -0.01 0.004 -0.01 0.01 -0.00 0.00 

Another occupation 0.10*** 0.03 0.10** 0.04 0.03 0.12 0.06 0.08 0.05 0.07 0.09*** 0.0 

Not residing in work 0.04 0.07 0.13 0.08 0.14 0.15 0.40** 0.19 0.06 0.14 0.08* 0.05 

Move -0.11** 0.05 -0.10* 0.06 0.39* 0.22 0.08 0.13 0.11 0.17 -0.09** 0.03 

Community 

            Crew experience 0.00 0.00 -0.00 0.01 0.02 0.02 -0.00 0.008 -0.03* 0.01 0.00 0.00 
Crew education -0.05** 0.02 -0.02 0.03 0.07 0.06 0.05 0.05 0.07 0.06 -0.01 0.02 

Vessel owner/crew 0.1*** 0.04 -0.17** 0.08 -0.01 0.04 0.11 0.28 -0.22* 0.14 0.07*** 0.02 
Unemployment rate -0.43 0.46 -1.67** 0.06 1.24 1.88 -1.35 1.39 0.13 1.76 -1.29** 0.34 

Fishing infrastructure 0.02 0.03 0.10*** 0.04 -0.10 0.10 -0.05 0.09 0.02 0.10 0.00** 0.00 

Rural -0.02 0.03 0.02 0.04 0.01 0.10 -0.10 0.11 0.24** 0.11 0.01 0.02 
Population size 0.00 0.00 0.00 0.00 -0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Constant 0.63** 0.28 0.21 0.41 -0.88** 0.91 0.07 0.585 -0.65 0.82 0.19 0.20 

Log pseudo-likelihood -1,796.4 -15,466.4 -167.2 -194.5 -173.6 3,154 

Observations 3,947 2,091 367 420 376 6,840 

Note: Own elaboration based on estimations, *** p<0.01, ** p<0.05, * p<0.1, + robust standard errors. 
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Figure A1. Common support area. Total sample. 
 

  

 
 

Note: Own elaboration based on estimations. Group 1 is constituted of observations below the 30 th percentile of the profit share   distribution; 

group 2 contains observation between the 30th and 70th percentiles; and finally group 3 includes observations above 70th percentile. 
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Abstract 

 

Economic development in low income settings is often associated with an expansion of higher-value 

agricultural activities. Since these activities often bring new risks, an understanding of cropland decisions 

and how these interact with shocks is valuable. This paper uses data from Mozambique to examine the 

effect of weather shocks on cropland decisions. We account for the bounded nature of land shares and 

estimate the Pooled Fractional Probit model for panel data. Our results show that crop choice is sensitive 

to past weather shocks. Farmers shift land use away from cash and permanent crops one year after a 

drought and from horticulture and permanent crop after a flood. However, this reallocation seems 

temporary as farmers devote less land to staples after two periods. This is consistent with the aim of 

maintaining a buffer stock of staples for home consumption. 
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1 Introduction 

Development of the agricultural sector in Mozambique remains a pressing policy issue. Despite rapid 

rates of aggregate economic growth for almost two decades, headcount poverty rates and rural 

incomes appear to have remained broadly stagnant, particularly amongst the majority of households 

that rely on smallholder agriculture (Arndt et al., 2012; Jones and Tarp, 2013). Micro-survey 

evidence shows few signs of increased agricultural productivity via adoption of improved inputs 

and/or shifting into higher-return crops (World Bank, 2008; Mather et al., 2008; World Bank, 2012). 

At the same time, Mozambique faces increased risks from climate shocks. For example, estimates by 

UNISDR (2009) ranks Mozambique third among the African countries most exposed to risks from 

multiple weather-related hazards. 

 

This study provides an empirical examination of the impact of weather shocks on crop portfolio 

choices of small-scale farmers in Mozambique. We address the following questions: are crop choices 

sensitive to weather shocks? If so, is there any pattern of reallocation in response to shocks? And, are 

there systematic patterns in response to shocks? For instance, farmers may be more sensitive to more 

severe shocks or farmers living in higher risk areas may be less responsive to weather shocks. 

 

The motivation for studying these questions relates to the impact of risks (and their realization in 

actual shocks) on the economic behavior of households. In the absence of functioning markets for 

credit, insurance and savings, rural households must largely rely on crop choice decisions to manage 

risk (Deron, 2002; Kurukulasuriya et al., 2006). Furthermore, the incidence of shocks may shape 

farmers’ perceptions of the general riskiness of their environment and influence crop portfolio 

choices. Following Gollier and Pratt (1996), farmers may be ‘risk vulnerable’ in the sense that the 

presence of an exogenous background risk (climate) raises their aversion to other risks (e.g., through 

crop choices).  

 

Existing empirical evidence suggests that farmers react to weather risks by diversifying their 

cropping system, which acts as a form of self-insurance (Benin et al., 2004; Di Falco et al., 2010; 

Bezabih and Sarr, 2012; Bezabih and Di Falco, 2012). Rather than focusing on diversification per se, 

we explore changes in cropland allocation across different crop categories. In the case of 

Mozambique, some staples show risk-reducing properties in terms of drought tolerance and ease of 

storage. As such, it is an attractive choice for risk-averse farmers (Arndt and Tarp, 2000; Tarp et al., 
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2002). Equally, it is reasonable to assume that buffer stocks of staple foods, particularly grains, may 

be reduced in response to weather shocks to smooth consumption (Kazianga and Udry, 2006). 

Following a shock, households may prefer to devote a larger share of their land to staple foods in 

order to replace this buffer, implying income from higher value crops may be reduced. Accordingly, 

while diversification is of interest it is important to understand exactly how cultivation choices 

respond to shocks (if at all) as well as the persistence of these portfolio changes. 

 

The remainder of this study is organized as follows: Section 2 reviews literature linking risk and crop 

choice. Section 3 describes key characteristics of the agriculture sector and climate patterns in 

Mozambique. Section 4 presents the data, including geospatial data on water availability, which we 

use to distinguish between drought and flood events. Reliance on external as opposed to self-reported 

data on shocks is helpful. It addresses concerns of systematic reporting bias since weather shocks are 

a function of geographical location (Cameron and Shah, 2013). Section 5 describes our econometric 

model. We model cropland decisions as proportions; and, in order to address the fact that proportions 

are bounded between zero and one, we estimate the Pooled Fractional Probit (PFP) estimator due to 

Papke and Wooldridge (2008). We are unaware of existing studies that apply the PFP while 

controlling for unobserved characteristics. Section 6 discusses the main results; Section 7 considers a 

number of robustness tests; and Section 8 concludes. 

 

2 Existing literature 

Large fluctuations in weather conditions are generally associated with sizeable yield and price risk in 

agriculture. Moreover, since such shocks often affect an entire network, local mutual insurance 

schemes can break-down (Dercon, 2002). Consequently, in contexts of incomplete markets and 

limited asset holdings, ex post coping mechanisms cannot be relied upon to protect against exogenous 

shocks (Paxson, 1992; Townsed, 1994).
1
 Exposure to risk is therefore likely to affect ex ante crop 

choices (Fafchamps, 1992a; Chavas and Holt, 1996; Kurosaki and Fafchamps, 2002).  

 

The concepts of ‘risk’ and ‘shock’ are often used to refer to situations characterized by uncertainty. 

Following Cohen et al. (2008), perceptions of context can be understood as being derived from a 

sequence of past events. The evaluation of risks by individuals can be expected to be dependent on 

                                                 

 
1 Credit constraints, commitment failure and imperfect flows of information among members of the community have been identified in the literature as 
potential causes of inefficiency of these institutions (Deaton, 1991a, 1991b; Fafchamps, 1992b) 
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past experiences. Under this process of adaptive expectation formation, weather risk can be proxied 

by past realizations of weather-related shocks. This means that droughts and floods occurring in the 

(recent) past are likely to shape farmers’ perceptions of the current riskiness of their environment.  

 

The incidence of a natural hazard is one element of background risk. If farmers are risk vulnerable, in 

the sense of Gollier and Pratt (1996), they may display more risk-averse behavior. The latter would 

be consistent with farmers preferring a crop-portfolio with a larger share of staples.
2
 Farmers may 

switch to staples after weather shocks for several reasons. First, some staples are relatively more 

drought resistant and less prone to crop failure during water shortage periods. Consequently, if the 

household consumes one of its crops, this provides self-insurance against production and 

consumption price risk (Fafchamps, 1992a). Second, some staples are less perishable and can be 

stored for future consumption. Food is likely to be expensive after weather shocks when the harvest 

is poor. In this case, households will use their stock of staples to smooth consumption in the current 

period and will expand staples production in the next period so as to replace the depleted stock. Even 

though general empirical evidence suggests that consumption smoothing is limited in low income 

contexts, evidence does point to smoothing through the accumulation and depletion of staples stocks 

(Fafchamps et al., 1998; Kazianga and Udry, 2006). Indeed, Carter and Lybbert (2012) find that 

staples stocks play a more important role amongst very limited consumption smoothers.  

 

A large literature studies the cropland decisions of small landholders in developing countries (see for 

example, Fafchamps, 1992a; Dercon, 1996; Kurosaki and Fafchamps, 2002; Masanjala, 2006; 

Damon, 2010; Chibwana and Fisher, 2012). One strand of the literature has investigated the potential 

advantages of multi-cropping as a risk management device (Adger et al., 2003; Benin et al., 2004; Di 

Falco and Chavas, 2009; Di Falco et al., 2010; Bezabih and Sarr, 2012; Bezabih and Di Falco, 2012). 

In addition, crop choice is identified as an adaptation strategy to climate change. For instance, Seo 

and Mendelsohn (2008) and Kurukulasuriya and Medelson (2008), using data of South-American and 

African farmers respectively, found that crop choices are highly sensitive to changes in precipitation 

and temperature under different climate change scenarios. Di Falco and Veronesi (2013) find that 

crop adaptation is more effective when it is implemented within a portfolio of actions rather than in 

isolation. For example, crop adaptation yields high net revenues when coupled with water 

                                                 

 
2 Some psychological studies suggest that individuals who are continually exposed to high risk environments may not care about the addition of a small 
independent risk (Kahneman and Tversky, 1979). This suggests that controlling for background risk may be important. 
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conservation strategies or soil conservation strategies. We build on this literature, focusing on the 

Mozambican context, to which we now turn. 

 

3 Agriculture and climate in Mozambique 

Primary sector activities, which include agriculture and extractive industries, contribute around 30% 

of Mozambique’s GDP; and agriculture alone employs 80 percent of the work force (Jones and Tarp, 

2013). The agricultural sector remains relatively unproductive and consists mainly of smallholder 

farmers, who represent 85 percent of all rural households (World Bank, 2012). While rural 

agricultural markets are widespread, more than half of total household incomes correspond to the 

value of retained food. Major cash crops are sugar cane, coconuts, cotton, sesame, tobacco and 

cashews, and the main staple crops are maize, sorghum, millet, rice, beans, groundnuts, vegetables 

and cassava. More than 75 percent of small farms cultivate maize or cassava or both, which are also 

the main staples. Agriculture is predominantly rain-fed with less than 0.5 percent of total cropland 

under irrigation, almost all in sugar cane production (World Bank, 2010).  

 

Mozambique has a rainy season lasting from October to April, with an annual average precipitation 

around 1,000 mm. The rural population is frequently affected by extreme weather variations, where 

droughts and floods are the most common weather-related disasters (EM-DAT, 2013). Droughts are 

the most frequent natural phenomenon, occurring mainly in the southern and central districts, with a 

frequency of 7 in 10 and 4 in 10 years, respectively. Although less frequent, floods are more 

destructive and their effects can prevail for a longer time. They primarily occur in southern and 

central regions, along river basins, in low-lying areas, and in zones with poor drainage. They are 

caused by either heavy rainfall or increases in water levels in upstream neighboring countries. 

Climate change will likely make weather fluctuations more frequent and extreme in the future. In 

particular, projections for Mozambique indicate that climate change is expected to increase the 

frequency and magnitude of droughts and floods, imposing important costs on Mozambique’s 

economy and further complications for existing development challenges.  Estimations for the worst 

case scenario suggest that GDP may fall between 4 percent and 14 percent relative to baseline growth 

in the 2040–50 decade in Mozambique if adaptation strategies are not implemented (World Bank, 

2010). However, strongly negative outcomes are unlikely (Arndt and Thurlow, 2013). Changes in 

cropland are one of the key adaptation strategies to understand in order to assist planning by 

policymakers and quantify the impact of climate change (Seo and Mendelsohn, 2008). 
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4 Data  

4.1 Household data 

We use a balanced panel of households from the 2002 and 2005 waves of the Trabalho de Inquérito 

Agrícola (TIA) survey collected by the Ministry of Agriculture of Mozambique in collaboration with 

Michigan State University (Ministério da Agricultura e Desenvolvimento Rural, 2002; 2005).
3
 The 

TIAs are representative of small and medium-size farm households across rural areas of the 11 

provinces in Mozambique (one province, Maputo City, is exclusively urban and not included here).
4
 

The survey consists of a series of questions concerning household demographic characteristics, 

assets, farming techniques, access to services and community characteristics. Data also contains 

farmers’ reports of amounts of hectares allocated to different crops. We use 3,752 observations for 

which data on land shares are available. 

 

Panel (a) of Table 1 reports descriptive statistics on changes in crop decisions from the dataset. It 

shows an increase of 2% in non-staple cropland share between 2002 and 2005. While cash crop and 

horticulture area increased during the period, permanent crop area decreased. The upward trend in 

non-staple crops was due to an overall increase in the cultivation of cash crops and horticulture. On 

average, farmers allocate around 50% of their land to cassava and maize. This percentage has 

remained unchanged during the study period. The uncultivated land share decreased around 2% 

between 2002 and 2005. The decrease in uncultivated land is more likely to reflect an expansion of 

cultivated area rather than changes in fallow land. This in line with the view that agricultural growth 

observed during that period was mainly driven by expansion in land use rather than productivity 

improvements (Mather et al., 2008). 

 

[INSERT TABLE 1 ABOUT HERE] 

 

                                                 

 
3 There are 8 TIA surveys conducted with interruptions during the period 1996-2012 (1996, 2002, 2003, 2005, 2006, 2007, 2008 and 2012). However, 

only the TIA 2002 wave contains a sample that was re-interviewed latter on in 2005, which makes it possible to make a panel solely using these two 
years. We exploit the panel structure of the TIAs since controlling for household heterogeneity is a critical issue when studying land allocation. 
4 The sampling frame of the TIA survey was derived from the Census of Agriculture and Livestock 2000, and used a stratified, clustered sample design 

that is representative of small- and medium-scale farm households at the provincial and national levels, leaving out large commercial farms from the 
design. In particular, households cultivating more than 50 hectares of land or owning more than 20,000 fruit trees, more than 100 heads of cattle or more 

than 500 goats and pigs are classified as large-scale farmers and are not covered by the TIA surveys. Potentially, large-scale farmers may face very 

different trade-offs regarding crop choices than farmers in our sample. Heterogeneity between large and small landholders may be interesting to explore 
in future research. 
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4.2 Geospatial data 

To identify which villages (locations) experienced weather shocks, we rely on information on 

villages’ GPS coordinates recorded in the TIAs. To identify areas that have been flooded, we employ 

geospatial data recorded in the Global Active Archive of Large Flood Events from the Dartmouth 

Flood Observatory (Brakenridge, 2013). To identify drought areas, we use calculations of the 

Standardized Precipitation Index (SPI) by the National Centre for Environmental Predictions 

(NOAA) (McKee, et. al. 1993; 1995).
5
 Specifically, we use a SPI index constructed on 0.5° lat/lon 

grid monthly precipitations of 1949-2014 in Mozambique.
6
 We consider two time-scales. First, we 

compute the SPI over the main rainy season (November-April). When taking into account the rainy 

season, we assume that farmers respond to prospects of a good/bad season which is a function of how 

good/bad the general growing condition was in previous periods. Second, we compute a 3 months 

SPI index over the main planting/sowing period (October-December). That is relevant for most cash 

and staple crops. In a country dependent on rain-fed agriculture, erratic rains in the planting/sowing 

season will increase the probability of crop failure.  

 

The SPI index includes both positive and negative values. Positive SPI values indicate that rainfall 

was above the median precipitation and negative values show that precipitation was below the 

median for that period. We define shock occurrence at the village level. Natural hazards are covariate 

shocks that are highly likely to have a common effect on the whole area of occurrence, and then over 

the entire village’s population. We have a sufficient number of villages (525) to generate enough 

variation in our shock variables. We define two drought variables. First, we compute a drought 

indicator if the SPI value falls at or below minus 0.5. In addition, we exploit the continuity in the 

negative range of the index to explore drought intensity. We use the absolute values. Thus, a larger 

value would indicate a more severe dry cycle.  Finally, we construct measures of the historical 

occurrence of natural shocks by counting the number of events in each village, going back 20 years 

                                                 

 
5 The SPI is based on a long-term precipitation record of at least 50 years of monthly values. This long-term record is fitted to a probability distribution, 
which is then transformed into a normal distribution so that the mean SPI for the location and desired period is zero. 
6 Some other rainfall data sources may eventually be used. For example, remote sensing estimations developed by the Famine Early Warning Systems 

Network (FEWS NET) provide a higher resolution rainfall data at 0.1 degree, corresponding to around 10x10km cells at the equator. However, this data 
is only available from 1995. Thus, the shorter temporal coverage makes it problematic to compute a reliable SPI index since it is highly recommended 

to have at least 50 years of historical rainfall data (McKee et al., 1993, 1995). Alternatively, data with longer temporal coverage is also provided by the 

Climate Research Unit from the University of East Anglia at 0.5 degree. The data used here also has a resolution of 0.5 degree and goes back more than 
50 years, fulfilling the criterion outlined above. 
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to 1984. We use these measures to split the sample and study how weather shocks affect crop land 

decisions conditioned on background risk.
7
  

 

We focus on whether a village was affected by a weather shock in t-1 and/or t-2. That is, shocks in 

2000-2001 and 2003-2004 are used to explain the cropland allocations observed in 2002 and 2005, 

respectively. This lag is used because we are interested in how past events shape future behavior. 

Table 1, panel (b) summarizes the weather shock data; and Figure 1 maps flooded areas for the years 

of interest overlaid with the locations of surveyed villages. It shows that flooding predominantly 

affected villages in southern and central regions, although northern villages were also hit by the 2003 

flood.  

 

All floods identified here were classified at least as class 1 or large flood events. This implies 

significant damage to structures or agriculture, fatalities, and/or a 1-2 decades-long reported interval 

since the last similar event (Brakenridge, 2013). However, floods vary in duration and extension. For 

example, floods in 2004 affected few cities or districts, covering around 4,400 sq. km and lasting for 

almost two weeks. In contrast, floods in 2000, 2001 and 2003 were national-scale disasters as effects 

extended to multiple provinces. To illustrate, these large scale floods covered areas between 200,000 

and 440,000 sq. km, and in some cases lasted for months (2000 and 2001). These large scale natural 

hazards affected around 20 percent of households included in our sample (see Table 1). In particular, 

the 2000 flood is classified as a very large event (class 2) and is remembered as one of the worst 

natural disasters in 50 years in Mozambique (World Bank, 2010).
8
  

 

[INSERT FIGURE 1 ABOUT HERE] 

 

Figure 2 maps findings from the SPI for different years. For 2000 we see a dry cycle in central 

districts and wet cycles in the south. This extremely wet period is consistent with the flood identified 

in Figure 1 in the same year. In addition, drought events are detected in the south region in 2001 and 

                                                 

 
7 In order to guarantee sufficient observations, we use convenient thresholds to distinguish between low and high risk areas. We define a low flood risk 

village as that one has experienced between zero and one flood event in the last 20 years, and a high flood risk village as that one has been hit by a flood 

between 2 and 5 times. Similarly, we use the information on the number of droughts to distinguish low (between zero and 7 droughts] from high drought 
risk villages (between 8 and 11 events). We aim to identify the effect of recent weather shocks on cropland decisions, conditional on villages’ 

background risk. 
8 The available data only allows us to distinguish intensity levels across different flood events but not within floods, which makes it difficult to formally 
test the effect of the duration/severity/magnitude of floods on cropland decisions. 
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in all regions in 2003.
9
 According to the SPI calculated over the rainy season, no droughts occurred 

in 2004. However, the SPI over the plating season does detect erratic rains at the beginning of the 

growing season in the south in 2004. Furthermore, it also shows a delay in precipitation in 2000, as 

illustrated in Figure A1. Table 1 panel (b) shows that the percentage of households included in our 

sample affected by droughts ranges from 5 percent in 2001 to 33 percent in 2003. 

 

[INSERT FIGURE 2 ABOUT HERE] 

 

5 Empirical strategy 

Cropland decisions are commonly measured as proportions bounded between zero and one (Papke 

and Wooldridge, 2008). One challenge in modelling crop allocations in Mozambique is that there is a 

significant fraction of farmers that do not actually allocate land to non-staple crops (more than 50%, 

see Table 1), meaning many observations are corner solutions at zero. We address this statistical 

challenge by using the Pooled Fractional Probit (PFP) estimator. This relies on Bernoulli quasi-

likelihood methods to ensure that estimates of predicted land shares vary between zero and one 

(Papke and Wooldridge, 1996). Furthermore, this model is appropriate for panel data that contains a 

large cross-sectional dimension and relatively few time periods (Papke and Wooldridge, 2008).  

 

We consider a random sample of farmers i = 1,…, N, repeated across time period t=1,…,T. The 

dependent variable yit corresponds to the land share allocated to a particular crop category (see 

below). Our empirical model is specified as: 

 

                𝐸(𝑦𝑖𝑡|𝑥𝑖𝑡, 𝑧𝑖𝑡, 𝑐𝑖) = Φ(𝛽𝑥𝑖𝑡+𝛾𝑧𝑖𝑡−1 + 𝑐𝑖)            (1) 

 

where xit is a vector of household and farm physical characteristics. zit-1 represents a vector of past 

weather shocks, i.e. flood and drought events. Coefficients 𝛽 and 𝛾 denote parameters to be 

estimated; ci refers to individual-specific unobserved characteristics; and Φ is the normal cumulative 

density function. In order to account for the unobserved effects ci, Papke and Wooldridge (2008)
 

                                                 

 
9 We could have used flooded area data and the positive scale of SPI identifying wet scenarios to classify flood events according to the extent of 
seriousness, as in the drought case. However, a flood is a much more complex phenomenon that responds to other parameters than rainfall, which would 

invalidate any classification exclusively based on precipitation levels. For instance, the flood recorded in 2001 affecting mainly the central region 

originated from a very wet season in neighboring Zambia and Zimbabwe that led to the opening of floodgates at the Kariba dam, and waters released 
from the Cahora Bassa Dam in Mozambique, flooding low-lying areas located further downstream. 
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propose a conditional normality assumption to restrict the distribution of ci, given time averages of 

covariates:
10

  

 

   𝑐𝑖 = 𝜓 + 𝜉�̅�𝑖 + 𝜑𝑧�̅�+𝑎𝑖         (2) 

 

where �̅�𝑖 = 𝑇−1 ∑ 𝑥𝑖𝑡
𝑇
𝑡=1  and 𝑧�̅� = 𝑇−1 ∑ 𝑧𝑖𝑡−1

𝑇
𝑡=1  are vectors of time averages; and 𝑎𝑖~𝑁(0, 𝜎𝑎) is a 

residual orthogonal term. With these assumptions, vectors 𝛽 and 𝛾 and associated average partial 

effects (APEs) can be identified up to a positive scaling factor. To see this, plugging (2) in (1) yields: 

 

          𝐸(𝑦𝑖𝑡|𝑥𝑖𝑡, 𝑧𝑖𝑡, 𝑎𝑖) = Φ(𝜓 + 𝛽𝑥𝑖𝑡+𝛾𝑧𝑖𝑡−1 + 𝜉�̅�𝑖 + 𝜑𝑧�̅� + 𝑎𝑖)                (3) 

 

Or equivalently: 

         𝐸(𝑦𝑖𝑡|𝑥𝑖𝑡, 𝑧𝑖𝑡) = 𝐸(Φ[𝜓 + 𝛽𝑥𝑖𝑡+𝛾𝑧𝑖𝑡−1 + 𝜉�̅�𝑖 + 𝜑𝑧�̅� + 𝑎𝑖] | 𝑥𝑖𝑡, 𝑧𝑖𝑡)       (4) 

 

Next, we employ a standard mixing property of the normal distribution (Wooldridge, 2010), yielding: 

 

                    𝐸(𝑦𝑖𝑡|𝑥𝑖𝑡, 𝑧𝑖𝑡) = Φ[(𝜓 + 𝛽𝑥𝑖𝑡+𝛾𝑧𝑖𝑡−1 + 𝜉�̅�𝑖 + 𝜑𝑧�̅�)/(1 + 𝜎𝑎
2)

1

2]           (5) 

 

which can be estimated via maximum likelihood methods treating 𝜎𝑎 as a parameter to be estimated. 

 

To verify estimates from the PFP approach, we also estimate the Correlated Random Effects (CRE) 

Tobit model for panel data, which assumes crop land decisions are simply censored at zero. 

However, if household decisions regarding crop participation and land amounts are determined by 

different underlying decision processes, this approach may be restrictive. Thus, we also estimate the 

Double-Hurdle (D-B) model due to Cragg (1971).
11

 Finally, for comparison, we show results of a 

simple linear fixed effect (FE) model. Note that in all estimations we control for a large number of 

covariates. Descriptive statistics for these covariates are shown in Table 1, panel (c). Further details 

can be obtained on request. 

 

                                                 

 
10 This strategy was first suggested by Chamberlin (1980). 
11 We follow the same strategy as in the PFP model to account for household heterogeneity. 
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With respect to the dependent variable(s), we begin by classifying the household production portfolio 

into staple and non-staple crops; we then study changes in the land share allocated to non-staples. 

Subsequently, we consider a more disaggregated classification covering nine non-overlapping 

categories: cash crops, permanent crops, horticulture, cassava-maize, sorghum-millet, groundnut-

beans, rice, sweet potatoes, and uncultivated land.
12

 This disaggregation is important. First, while 

annual crops are produced from plants which last one season, permanent crops are perennial and not 

replanted after each harvest. Thus, it is not as easy to adjust permanent crop land in the short-run. 

Second, the distinction between cash and food crops is important. Whilst all crops have potential to 

be sold, cash crops are those that are non-edible and which cannot serve as (food) self-insurance. 

Third, similar to staple crops, horticulture has a short farming cycle, needs minimal capital 

investment, and part of its production can be used to satisfy food needs.
13

 However, horticulture is 

generally irrigated and is found more extensively near main urban areas.  

 

Fourth, we distinguish maize and cassava from other staples. These two crops are the main staples in 

rural diets and are also important cash generating source. Fifth, we aggregate sorghum and millet. 

They can be considered general substitutes for maize, but are more drought resistant, and have 

roughly the same growing season. Sixth, groundnuts and beans are studied together. They are often 

used in rotation with the main cereal. Seventh, we distinguish rice from other staples since rice is not 

sensitive to flooding and is mostly sold as a cash crop to urban areas. Finally, we study land 

allocations to sweet potatoes, a classic crop for food security. This crop has a shorter and flexible 

farming cycle and has the capacity to grow in poor growing conditions.  

 

6 Results 

6.1 Weather shocks and non-staple cropland share 

Columns 1-3 of Table 2 report our main results. They are derived from the PFP estimator, from 

which average partial effects are calculated. Column 1 includes only the flood shock variables; 

column 2 replaces the flood shocks with drought shocks; and column 3 includes both flood and 

drought shocks simultaneously, which is our preferred specification.
14

 All specifications include a 

full set of control covariates (shown) as well as the average of covariates to control for unobserved 

                                                 

 
12 Uncultivated land is defined as land that has been ploughed and harrowed previously but has been left without being sown, typically because of lack 
of means to work it, to restore its fertility or to avoid surplus production.  
13 In 2002, there were some missing observations for the horticulture category. For this year, we computed estimates of horticulture land shares by 

subtracting all the rest of crop categories from total land. We then replaced the missing information with these estimates. 
14 Standard errors for the APEs were obtained using 500 bootstrap replications clustered at the household level.  
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household fixed effects (not shown). The remaining columns of Table 2 report results for the same 

specification using alternative estimators. Column 4 is a simple fixed effects panel estimator; column 

5 reports APEs of the CRE model; and columns 6-7 report the participation and quantity equations 

from the D-H model.  

 

Across all specifications and estimators, we note that cropland decisions are sensitive to recent 

weather shocks. Whilst, there are some differences in the magnitude of estimated coefficients, they 

are similar. Results from the D-H model are not directly comparable to the other columns. However, 

they continue to indicate a significant effect of weather shocks on both participation and quantity 

allocated to non-staple crop farming.  

 

Taken together, the estimates show that farmers switch away from higher-value non-staple crops in 

response to prior flooding. On average, farmers reduce the land share allocated to non-staple crops by 

4.2 percent and 2.5 percent following a flood in t-1 and t-2, respectively (Table 2, column 1). The 

marginal effect due to a flood in t-2 is reduced while the marginal effects associated with a flood in t-

1 slightly increase to 4.7 percent after controlling for recent drought shocks (see column 3). In 

comparison, the average farmer reduces the land share allocated to non-staple crops by 8 percent 

after a recent drought event (t-1). In sum, the evidence indicates that farmers are more responsive to 

droughts and that responses to shocks are strongest in the short run.
15

 

 

6.2 Weather shocks and crop portfolio changes 

Table 3 reports results for the effect of past weather shocks on disaggregated crop categories. In 

keeping with the results discussed above, floods drive a switch away from permanent crops and 

horticulture toward both maize-cassava crop farming and uncultivated land. Changes in uncultivated 

land are also driven by the effect of a flood in t-2. While we investigate this latter result further in 

Section 7; we note here that this may be due to the extreme devastation of flooding in 2000 (World 

Bank, 2010). Substantial losses in terms of arable land, equipment and livestock, as well as actual 

displacement of households, may account for the increase in uncultivated land share since many 

farmers were left with limited means to work their land.
16

 We also note that farmers respond to flood 

                                                 

 
15 This difference is significant at 1% (t =124). 
16 On the other hand, more land left without being sown may simply reflect a farmer’s decision to avoid surplus production or more time required to 
restore land fertility after this devastating flood.   
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events in t-1 by reducing the sorghum-millet land share at time t, which is consistent with farmers 

substituting sorghum-millet for other staples. 

 

[INSERT TABLE 3 ABOUT HERE] 

 

Recent droughts produce a similar pattern of reallocation. Farmers move away from cash and 

permanent crop farming to staple crops. While groundnuts-beans increase after a drought in t-1, 

farmers respond by increasing sorghum-millet and sweet potatoes land shares after a drought in t-2. 

However, we did not find statistically significant changes in maize-cassava land shares after a 

drought. The negative effect of droughts on the permanent crop land share must, as already noted, be 

interpreted with caution. However, the most plausible explanation of this result refers to how 

permanent crop farming is carried out and estimated. In most cases, farmers practice inter-cropping 

meaning that it is unusual for tree crops to be the only cultivated crop in an area. Consequently, a 

negative change in permanent crop land share probably indicates that farmers are simply intensifying 

intercropping practices.  

 

We also note that farmers respond to drought events in t-1 by increasing the horticulture land share at 

time t. Horticulture in Mozambique is predominantly carried out in peri-urban areas, and therefore is 

more likely to have access to reliable (e.g., piped) water sources. Additionally, the rice land share is 

reduced after a drought in t-1 and t-2. This persistent effect responds to the fact that the flooded 

condition of rice fields is necessary for rice growth, implying that drought events are an important 

source of production risk for rice. Finally, we note that farmers also tend to increase the land share 

that is uncultivated after a drought in t-2. This may appear to contradict the need to restore household 

food stock. However, although arguably less devastating than floods, droughts can generate 

important material and human losses. Also, depending on their severity, they can exhaust soil quality 

(FAO, 2005). The implication is that farmers may consider it optimal to work intensively on a 

smaller cropped land area following a drought, thereby allowing land to recover.  

 

7 Robustness 

7.1 Timing of drought events 

Poor and erratic rains in the planting/sowing season may lead to a reduction in potential yields and 

overall crop production. In turn, this may induce farmers to alter their crop portfolio. Thus, rather 
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than defining drought events with respect to rain shortages during the rainy season, we re-estimate 

the model and define drought shocks with reference to the main planting/sowing period (October-

December). Since this period is most relevant for cash and staple crops, we focus on these categories 

for clarity.  

 

Table 4 reports our results now using the modified drought indicator. The results suggest that the 

timing of rain shortage is relevant. Specifically, farmers respond to a drought in t-1 by reducing land 

shares to maize-cassava and groundnuts-beans and increasing land allocated to sorghum-millet and 

sweet potatoes. This reduction in the maize-cassava land share may seem inconsistent with food 

security concerns. However, sorghum and millet resist drought better than maize. Also, evidence 

indicates that sorghum, although mostly substituted by maize in the 1940s, is now being promoted to 

provide greater resilience to drought. Furthermore, sweet potatoes are well known for being a classic 

crop for food security. This crop provides, on average, more micro-nutrients per hectare and day than 

maize and cassava, has a shorter and flexible farming cycle and has the capacity to grow in poor 

growing conditions and during post-disaster periods. These characteristics also make sweet potatoes 

one of the preferred crops when maize and cassava fail.  Finally, we also note that, farmers respond 

to drought events in t-2 by reducing the sorghum-millet land share at time t. This is consistent with a 

re-adjustment of their buffer stocks of food staples. That is, in t-1 farmers may have deliberately 

over-produced sorghum-millet to replace a diminished buffer stock. At time t, farmers then lower the 

sorghum-millet land share in line with normal consumption needs.  

 

[INSERT TABLE 4 ABOUT HERE] 

 

7.2 Drought intensity 

A further concern with our definition of drought shocks is that it relies on a binary distinction 

between events. To explore whether this is material, we re-estimate the models in Table 3 replacing 

the binary drought variable with the underlying continuous SPI metric, where a larger number 

indicates a more severe dry cycle. These results are reported in Table 5. As before, we find a negative 

and significant effect of rain shortages on the share of land allocated to non-staple crops. The results 

also show a similar pattern of reallocation – farmers move to sorghum-millet cultivation from cash, 

rice and permanent crop farming. Moreover, impacts are larger in zones affected by more severe 
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drought events. In line with previous results, we also find that uncultivated land increases in the face 

of a more severe drought.  

 

[INSERT TABLE 5 ABOUT HERE] 

 

7.3 Background risks 

Our main results assumed that responses to shocks are homogenous. However, it may be the case that 

individuals who live in higher (background) risk environments react differently to those living in 

lower risk areas. This is important because the decreasing trend in precipitations observed in the last 

years in Mozambique suggest a higher incidence of natural disasters. This may have shaped 

adaptation – i.e. a shock in high risk areas may have a lower impact since farmers are more prepared 

for it.  

 

In Table 6, we test if responses to recent weather shocks vary according to the magnitude of 

background risk. To do so, we interact dummies for low and high risk areas with the drought and 

flood event variables. We define a high flood risk village as one that has been hit by a large flood 

more than once in the last 20 years. High drought risk villages are those that have experienced more 

than 7 droughts over the same period. The table focuses on the effect of recent weather shocks on the 

land share allocated to cassava-maize crops. This is to ease interpretation and minimize chances 

results are driven by agro-ecological conditions.  

 

[INSERT TABLE 6 ABOUT HERE] 

 

We find that farmers living in higher drought-risk villages are more sensitive to floods, but are not 

more/less sensitive to droughts.  The latter suggests a reinforcement effect rather than adaptation in 

high risk areas. Since droughts are more frequent in Mozambique than floods (on average), farmers 

in high drought risk areas may be more aware of the losses from these natural hazards, making them 

more resistant to adoption of a riskier production portfolio. 

 

7.4 Other input choices 

A further concern with our model is that we implicitly ignore how production decisions other than 

crop allocation may adjust to weather shocks. Put differently, interpretation of the estimated APEs 
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for the shock variables requires that all other aspects of production remain fixed.  However, it is 

reasonable to suppose that fertilizer use, livestock activities, off-farm employment and remittances 

(among others) may respond to shocks and that changes in these factors may indirectly affect crop 

allocations. If so, then their presence in the model as covariates effectively over-controls for the 

impact of shocks on crop allocation decisions, ruling out indirect effects. To address this, we first 

remove all ‘suspect’ covariates and re-run the baseline model. These results are reported in column 1 

of Table A1. The results remain fundamentally unchanged, implying that the direct effect of shocks 

on crop allocations is significant and dominant.  

 

As an alternative approach, which also extends our analysis, we consider models for alternative 

outcomes. For instance, previously we noted that the increase in uncultivated land after a weather 

shock may be due to displacement of households from their farm (or part of it). It would also be 

consistent with household members seeking alternative, off-farm income sources. Thus we run the 

reduced form model presented above using the following outcome variables: the share of family 

members in off-farm jobs (i.e, who have wage labor outside the farm); the proportion of family 

members who are self-employed (i.e., undertake activities other than farming); use of fertilizer; and 

receipt of remittances. We find that the occurrence of flood shocks increases the proportion of off-

farm labor as well as the probability of receiving remittances, supporting the notion that these act as 

coping mechanisms for flood events, but not for drought shocks. Moreover, we find that the 

probability of using fertilizer increases after a weather shock. As argued above, this result may be in 

line with a decline in soil quality after a flood/drought, leading farmers to purchase inputs to recover 

productivity soil.  

 

7.5 Crop rotation 

Rotation of crops may be an important driver of land allocation changes.
17

 Again, this was not 

captured (controlled for) in our main specification. To address this, a history of crop allocation 

patterns would be required for each household. However, this is not available in our data. Minimally, 

however, we do have basic information on whether or not the household employed rotation practices. 

According to this, which is only available in 2005, about 35 percent of farmers pursue some form of 

rotation. To examine whether our results may be confounded with crop rotation, we simply re-

                                                 

 
17 For example, beans are normally planted in rotation with the main cereal and cultivations without fertilizers may benefit from the input remains of the 
preceding year from intensive productions, mainly cash crops.   
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estimate our full model excluding households that rotate. Overall our main findings are unchanged 

(results are available on request). Finally, we include crop rotation as an outcome variable and re-

estimate the reduced form model discussed in the previous sub-section. These results are shown in 

the final column of Table A1. They show that rotation is lower among farmers after a weather shock. 

Since food insecurity substantially increases after a natural disaster, agricultural practices whose 

productivity benefits are ambiguous (at least during/after a shock) may be of reduced concern during 

such periods. In sum, we conclude that crop rotation is unlikely to be a key driver of our results. 

 

8 Conclusions 

Agricultural growth and development typically involves transformation in the form and structure of 

rural activities. In particular (some) farmers reallocate resources away from food self-sufficiency 

towards higher value, higher risk agricultural activities. However, farmers may be reluctant to exit 

food crop cultivation as it helps insure them against food shortages. This suggests that an 

understanding of cropland decisions and how they interact with weather shocks is an important 

policy relevant challenge. It is an even more crucial issue in light of the expected higher frequency of 

natural disasters due to climate change. 

 

In this study we combined panel data and geospatial information for Mozambique to analyze the 

impact of weather shocks on cropping activity. We took into account the bounded nature of land 

allocation decisions and used the Pooled Fractional Probit model due to Papke and Wooldridge 

(2008). We found that crop choice is sensitive to recent weather shocks and farmers are more 

responsive to more severe droughts. Farmers tend to reallocate land from high risk to low risk 

cropping activities after a natural hazard. While farmers mainly move out of horticulture and 

permanent crops after a flood, they reallocate resources away from cash and permanent crops when 

hit by a drought. We also found that crop reallocation seems to follow a short-term pattern, which is 

consistent with the maintenance of a buffer stock of food staples within the household.  

 

These findings were found to be robust to alternative definitions of shocks as well as to the exclusion 

of variables that also may be affected by weather events. This indicated that these shocks primarily 

have a direct effect on cropland decisions. In addition, we noted that the share of land that is 

uncultivated tends to rise as a consequence of some weather shocks; and that farmers living in higher 

drought risk areas appear more responsive to flood shocks. 
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Some caveats with respect to our results merit comment. First, in our examination of the 

disaggregated production portfolio, we do not account for simultaneity and correlation among crop 

categories. Second, our framework implicitly assumes that one type of crop is a substitute for others, 

which does not take land suitability constraints into account. Nonetheless, switching to staples is less 

likely to be constrained by agro-ecological conditions – e.g., the distribution of maize-cassava 

production is less dependent on geographical factors. Third, given the limited temporal dimension of 

our panel, we are not able to fully explore longer-run dynamics in cropland decisions. These may be 

important, especially in explaining changes in permanent crops, use of annual rotation, and in 

exploring the role of prices on crop choices. Moreover, while we have uncovered clear evidence of 

short-term farmer responses to weather risks, future development of the sector will depend in 

fundamental ways on structural changes in the wider economy, including the articulation between 

industry and agriculture.  

 

Despite these considerations, an important implication of our empirical findings is that climate 

change, which is expected to increase the frequency of extreme weather events, is likely to have a 

material effect on crop choices in developing countries such as Mozambique. More specifically, it 

may slow the adoption of new commercial crops (or technologies) by smallholder farmers, especially 

where these expose households to food security risks. Additionally, climate change may accelerate 

movement out of agriculture into off-farm activities, potentially spurring an increase in rural-urban 

migration. 
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 Tables 

Table 1. Descriptive statistics for 2002 and 2005 by crop category. 

Variables 
2002 2005 

Mean Dev Mean Dev 

Panel (a) 
    

Non-staple crop land share  0.12 0.16 0.14 0.19 

Non-staple crop land (hect.) 0.33 1.59 0.49 1.56 

Ln(Non-staple crop land) 0.19 0.33 0.27 0.41 
1= Non-staple crop land >0 0.44 0.50 0.44 0.49 

Cash crop land share  0.04 0.11 0.05 0.12 

Permanent crop land share  0.06 0.12 0.05 0.14 
Horticulture land share  0.02 0.04 0.04 0.09 

Maize-cassava land share 0.49 0.22 0.49 0.23 
Sorghum-millet land share 0.08 0.16 0.08 0.15 

Groundnut-beans 0.18 0.16 0.19 0.17 

Sweet potatoes land share 0.02 0.06 0.02 0.05 
Rice land share 0.07 0.16 0.05 0.15 

Uncultivated land share  0.04 0.12 0.02 0.09 

Panel (b)  
    

1= village was hit by a flood (t-2)  0.21 0.41 0.21 0.41 
1= village was hit by a flood (t-1) 0.22 0.41 0.01 0.12 

# times a village has been affected by a flood  (last 20 years) 1.29 1.25 1.29 1.25 

1= village was hit by a drought  (t-2) (rainy season) 0.12 0.32 0.33 0.47 
1= village was hit by a drought  (t-2) (planting season) 0.05 0.22 0.48 0.50 

1= village was hit by a drought  (t-1) (rainy season) 0.05 0.22 0.00 0.00 

1= village was hit by a drought  (t-1) (planting season) 0.00 0.00 0.23 0.42 
# times a village has been affected by a drought (last 20 years) 8.10 1.6 8.10 1.6 

Panel (c)     

Total landholding (ha) 2.14 2.75 2.41 2.94 
Ln(total landholding) 0.97 0.53 1.06 0.52 

# plots 2.43 1.32 2.02 1.15 

# family members 5.78 3.51 6.14 3.83 
% family members with off farm jobs 0.07 0.16 0.13 0.23 

% family members self-employment 0.15 0.23 0.21 0.27 

Head’s education level (years) 2.04 2.33 2.43 2.55 
1= HH received remittances 0.20 0.40 0.24 0.43 

Wealth index 1.96 0.97 2.03 1.02 

% plots with irrigation system 0.06 0.19 0.04 0.18 
% plots with land title 0.01 0.11 0.03 0.15 

1= HH used animal traction 0.21 0.41 0.18 0.38 

1= HH used fertilizer 0.05 0.22 0.05 0.22 
1= HH received extension services 0.15 0.36 0.19 0.39 

1= HH belonged to farm organizations 0.05 0.22 0.09 0.29 

1= HH received market price information 0.31 0.46 0.39 0.49 
Average regional retail maize price (t-1) 2393.29 477.56 2378.46 481.14 

1= village has electricity 0.08 0.26 0.13 0.33 

% sick family members  0.01 0.06 0.02 0.09 
1= HH suffered a death (t-1) 0.04 0.19 0.07 0.26 

1= HH suffered a divorce (t-1) 0.01 0.09 0.03 0.16 

Observations 3,752 3,752 

Source: Authors’ calculations based on TIAs 2002 and 2005, using the balanced panel (N=3,752).  
Note: Panel (a) describes the dependent variables. Panel (b) shows the weather shock variables. 

Panel (c) displays the descriptive statistics for the controls.  
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Table 2. Average partial effects for land allocated to non-staple crops. 
 (1) 

PFP 

 

(2) 

PFP 

 

(3) 

PFP 

 

(4) 

FE 

 

(5) 

CRET 

 

(6) (7) 

Variables Double hurdle model 

Probit Tobit 

Flood (t-2)  -0.025***  -0.012* -0.013* -0.010 0.033** -0.046*** 

 (0.005)  (0.007) (0.009) (0.010) (0.017) (0.012) 

Flood (t-1) -0.042***  -0.047*** -0.048*** -0.060*** -0.077*** -0.066*** 
 (0.007)  (0.007) (0.008) (0.011) (0.026) (0.020) 

Drought  (t-2)  0.001 0.001 0.002 0.013 0.059*** -0.032* 

  (0.008) (0.01) (0.009) (0.013) (0.023) (0.017) 
Drought  (t-1)  -0.085*** -0.083*** -0.120*** -0.142*** -0.258*** -0.184** 

  (0.01) (0.012) (0.022) (0.021) (0.068) (0.087) 

Ln(landholding) 0.054*** 0.055*** 0.057*** 0.062*** 0.267*** 0.117*** 0.290*** 
 (0.008) (0.008) (0.008) (0.009) (0.015) (0.021) (0.021) 

# plots -0.010*** -0.009*** -0.011*** -0.012*** -0.016*** -0.009** -0.009* 

 (0.003) (0.003) (0.003) (0.003) (0.005) (0.005) (0.005) 
# family members -0.004** -0.003** -0.004** -0.004** -0.005* -0.002 -0.006* 

 (0.002) (0.002) (0.002) (0.002) (0.003) (0.005) (0.003) 

% family members with off farm jobs 0.037** 0.037** 0.036** 0.036*** 0.031* 0.028 0.063** 
 (0.014) (0.015) (0.015) (0.014) (0.019) (0.037) (0.032) 

% family members self-employment 0.034*** 0.029** 0.033*** 0.033*** 0.039** 0.024 0.062** 

 (0.012) (0.012) (0.012) (0.012) (0.015) (0.029) (0.024) 
Head’s education level (years) 0.004 0.004 0.004 0.004 0.005 0.004 0.003 

 (0.003) (0.003) (0.003) (0.003) (0.004) (0.007) (0.005) 

1= HH received remittances 0.009 0.009 0.010 0.009 0.013 -0.002 0.021 
 (0.007) (0.008) (0.008) (0.008) (0.010) (0.018) (0.015) 

Wealth index 0.009* 0.006 0.007 0.008 0.011 0.003 0.015 

 (0.005) (0.005) (0.005) (0.005) (0.007) (0.014) (0.009) 
% plots with irrigation system 0.029* 0.027 0.028 0.031* 0.060*** 0.079* 0.048 

 (0.018) (0.017) (0.017) (0.018) (0.023) (0.046) (0.032) 

% plots with land title -0.021 -0.018 -0.019 -0.020 -0.032 -0.031 -0.064 
 (0.021) (0.020) (0.020) (0.021) (0.033) (0.059) (0.056) 

1= HH used animal traction 0.007 0.004 0.0030 0.004 -0.003 0.027 0.001 

 (0.012) (0.012) (0.011) (0.012) (0.017) (0.025) (0.022) 
1= HH used fertilizer 0.099*** 0.100*** 0.106*** 0.113*** 0.180*** 0.096*** 0.119*** 

 (0.021) (0.021) (0.021) (0.019) (0.036) (0.029) (0.026) 

1= HH received extension services 0.004 0.005 0.005 0.006 0.005 0.001 -0.004 

 (0.007) (0.008) (0.008) (0.008) (0.011) (0.019) (0.015) 

1= HH belonged to farm organizations 0.013 0.013 0.014 0.016 0.031 0.042 0.010 

 (0.012) (0.012) (0.012) (0.013) (0.019) (0.028) (0.021) 
1= HH received price information -0.007 -0.003 -0.004 -0.004 0.001 0.012 -0.017 

 (0.006) (0.006) (0.006) (0.006) (0.008) (0.015) (0.011) 

Average regional retail maize price(t-1) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

% sick family members  0.006 0.002 0.004 0.004 -0.011 0.024 -0.071 

 (0.042) (0.041) (0.042) (0.044) (0.039) (0.084) (0.078) 
1= HH suffered a death (t-1) 0.003 0.004 0.004 0.006 0.026 0.037 0.002 

 (0.012) (0.012) (0.012) (0.012) (0.018) (0.028) (0.023) 

1= HH suffered a divorce (t-1) 0.010 0.009 0.010 0.009 0.015 0.089*** -0.040 
 (0.022) (0.021) (0.022) (0.018) (0.025) (0.035) (0.034) 

1= village has electricity 0.075*** 0.069*** 0.074*** 0.055*** 0.075*** 0.085*** 0.081* 

 (0.021) (0.021) (0.022) (0.016) (0.029) (0.031) (0.042) 

Year dummy  Yes Yes Yes Yes Yes Yes Yes 

Observations 7,504 7,504 7,504 7,504 7,504 7,504 7,504 

Note: Columns (1) – (3) display APEs of the PFP estimator Column (4) presents marginal effects of the FE model. The dependent variable 

in these estimations is the land share allocated to non-staples crops. Column (5) shows APEs of the CRE Tobit model. The dependent 
variable in this model is the logarithm of the amount of land allocated to non-staples. Column (6) shows APEs of the Probit model 

corresponding to the first equation of the D-H model. The dependent variable in this model is the probability of farming non-staple crops. 

Column (6) shows APEs of the Tobit model corresponding to the second equation of the D-H model. The dependent variable in this model 
is the logarithm of the amount of land allocated to non-staples crops. All specifications include a full set of control covariates (shown) as 

well as the average of covariates to control for unobserved household fixed effects (not shown). Bootstrapped standard errors for PFP, CRE 

Tobit and D-H models (Replications=500), and clustered standard errors for the FE model are shown in parentheses. *** p<0.01, ** p<0.05, 
* p<0.1. 
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Table 3. Average partial effect estimates of the Pooled Fractional Probit (PFP) model for the land 

share allocated to different crop categories. 

Variables 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

Cash 

crop 

Permanent 

crop 

Horticulture Maize-

Cassava 

Sorghum-

millet 

Groundnut-

beans 

Sweet-

Potatoes 

Rice Uncultivated 

land 

          

Flood (t-2)  -0.006 0.002 -0.003 0.006 0.011** -0.012** 0.002 -0.021** 0.019*** 

 (0.004) (0.005) (0.003) (0.009) (0.005) (0.006) (0.002) (0.004) (0.006) 
Flood (t-1) -0.007 -0.016** -0.008** 0.030** -0.020** 0.002 -0.002 0.003 0.0160* 

 (0.005) (0.006) (0.003) (0.012) (0.004) (0.009) (0.0024) (0.005) (0.009) 

Drought  (t-2) -0.008 0.012 0.002 0.002 0.015** -0.039*** 0.011*** -0.014** 0.0243** 
 (0.005) (0.008) (0.004) (0.013) (0.006) (0.008) (0.004) (0.006) (0.010) 

Drought  (t-1) -0.029** -0.048*** 0.033* 0.039 0.010 0.039* -0.004 -0.058** 0.043 
 (0.011) (0.005) (0.019) (0.025) (0.267) (0.020) (0.005) (0.003) (0.027) 

Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Year dummy Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Observations 7,504 7,504 7,504 7,504 7,504 7,504 7,504 7,504 7,504 

Note: Dependent variables are the land share allocated to crops as indicated in the column headers and which vary between zero and one. 
Column (1) displays APEs for the cash crop category. Column (2) shows APEs for the permanent crop group. Column (3) presents APEs for 

horticulture farming. Column (4) shows APEs for cassava-maize farming. Column (5) displays APEs for sorghum-millet. Column (6) shows 

APEs for groundnut-beans. Column 7 presents APEs for sweet potatoes. Column 8 displays APEs for rice farming.  Column (9) shows APEs 
for the uncultivated land category. APEs were calculated after the estimation of the PFP model. All specifications include a full set of control 

covariates as well as the average of covariates to control for unobserved household fixed effects (not shown). Bootstrapped standard errors 

are shown in parentheses (Replications=500). *** p<0.01, ** p<0.05, * p<0.1. 
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Table 4. Average partial effect estimates of the Pooled Fractional Probit (PFP) model for the land 

share allocated to different crop categories. 

Variables 

(1) (2) (3) (4) (5) 

Cash 

crop 

Maize- 

Cassava 

Sorghum- 

millet 

Groundnut- 

beans 

Sweet- 

Potatoes 

Drought  (t-2) 0.010* -0.023* -0.026*** 0.025*** 0.002 

 (0.006) (0.013) (0.006) (0.009) (0.003) 

Drought  (t-1) -0.011 -0.053*** 0.031*** -0.022** 0.015*** 
 (0.007) (0.014) (0.008) (0.009) (0.005) 

Flood controls Yes Yes Yes Yes Yes 

Control variables Yes Yes Yes Yes Yes 
Year dummy Yes Yes Yes Yes Yes 

Observations 7,504 7,504 7,504 7,504 7,504 

Note: The table replicates selected columns of Table 3. The unique difference is that 

the drought covariate has been modified to reflect rain shortages during the 
planting/sowing season. All specifications include a full set of control covariates as 

well as the average of covariates to control for unobserved household fixed effects 

(not shown). Bootstrapped standard errors are shown in parentheses 
(Replications=500). *** p<0.01, ** p<0.05, * p<0.1. 
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Table 5. Average partial effect estimates of the Pooled Fractional Probit (PFP) using drought 

intensity. 

Variables 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

Non-

staples 

Cash 

crop 

Permanent 

crop 

Horticulture Cassava-

maize 

Sorghum-

millet 

Groundnut-

beans 

Sweet-

Potatoes 

Rice Uncultivated 

land 

Drought Int (t-2) 0.009 -0.013** -0.001 0.020*** -0.023** 0.037*** -0.039*** 0.001 -0.007 0.025*** 

 (0.008) (0.004) (0.008) (0.003) (0.010) (0.006) (0.007) (0.002) (0.008) (0.006) 

Drought Int (t-1) -0.192*** -0.052* -0.146*** 0.054*** -0.0002 0.140*** -0.016 -0.012 -0.056* 0.106*** 
 (0.036) (0.029) (0.027) (0.017) (0.032) (0.051) (0.025) (0.008) (0.031) (0.022) 

Flood controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Control variables Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Year dummy Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Observations 7,504 7,504 7,504 7,504 7,504 7,504 7,504 7,504 7,504 7,504 

Note: The table replicates Table 3 replacing the binary drought indicator with a continuous version. All specifications include a full set of control 

covariates as well as the average of covariates to control for unobserved household fixed effects (not shown). Bootstrapped standard errors are shown in 
parentheses (Replications=500). *** p<0.01, ** p<0.05, * p<0.1. 
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Table 6. Average partial effect estimates by background risk level. 

Variables 
(1) 

 

(2) 

 

Flood (t-1) 0.010 0.019 
 (0.016) (0.015) 

Drought (t-1) -0.068 0.059 

 (0.127) (0.108) 
Flood (t-1)*high risk flood area  0.022 

  (0.019) 

Flood (t-1)*high risk drought area 0.035*  
 (0.021)  

Drought  (t-1)*high risk flood area   -0.022 

  (0.111) 
Drought  (t-1) *high risk drought area 0.108  

 (0.128)  

Flood (t-2) Yes Yes 
Drought (t-2) Yes Yes 

Control variables Yes Yes 

Year dummy Yes Yes 

Number of observations 7,504 7,504 

Note: Dependent variable is the land share allocated to cassava-maize crops. 

Column (1) displays APEs for the model interacting recent weather shocks 

with high drought risk indicators (see text). Column (2) shows APEs for the 
model interacting recent weather shocks with high flood risk indicators (see 

text). APEs were calculated after the estimation of the PFP model. All 

specifications include a full set of control covariates as well as the average 
of covariates to control for unobserved household fixed effects (not shown). 

Bootstrapped standard errors are shown in parentheses (Replications=500). 

*** p<0.01, ** p<0.05, * p<0.1. 

 

 



80 

 

Figures 

Figure 1. Polygons of flooded areas and villages’ locations. 

 
Source: Authors’ elaboration using TIA data and information from Dartmouth Flood 

Observatory. 
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Figure 2. Drought identification based on a 6-month SPI (November-Abril). 

 

 
 

 
 

Note: Red color identifies droughts (SPI lower than -0.5); yellow show normal climate conditions (SPI between -0.5 and 0.5); and green areas identify wet 

periods (SPI greater than 0.5). 
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Appendix A: Additional Tables and Figures. 

 

Table A1. Average partial effect estimates for reduced form model, with alternative dependent 

variables. 

 (1) (2) 

 

(3) 

 

(4) (5) (6) 

Variables     

Flood (t-2)  0.002 0.023** 0.029** -0.018*** 0.015 0.135*** 

 (0.008) (0.011) (0.013) (0.006) (0.019) (0.026) 
Flood (t-1) -0.054*** -0.004 0.026* 0.035*** 0.037* -0.142** 

 (0.007) (0.011) (0.014) (0.009) (0.019) (0.065) 

Drought intensity  (t-2) 0.007 -0.001 0.004 -0.012* 0.019 -0.042* 
 (0.008) (0.010) (0.013) (0.007) (0.019) (0.022) 

Drought  intensity (t-1) -0.191*** 0.005 0.003 0.040* 0.031 -0.668** 

 (0.036) (0.031) (0.041) (0.0237) (0.064) (0.283) 
Ln(landholding) 0.058*** -0.003 0.008 -0.011 0.014 0.050*** 

 (0.008) (0.008) (0.011) (0.009) (0.018) (0.018) 

# plots -0.008*** 0.007** 0.018*** 0.014*** -0.002 0.021** 
 (0.003) (0.003) (0.004) (0.003) (0.007) (0.008) 

# family members -0.003* -0.001 -0.007*** 0.004* -0.002 -0.008*** 

 (0.002) (0.002) (0.003) (0.002) (0.004) (0.002) 
Head’s education level (years) 0.00418 0.007** -0.004 0.003 -0.0005 0.005 

 (0.00258) (0.003) (0.003) (0.003) (0.007) (0.003) 

Wealth index 0.00851* -0.003 0.005 0.010* 0.003 0.015 
 (0.00484) (0.006) (0.007) (0.005) (0.012) (0.009) 

% plots with land title -0.0224 -0.032 -0.006 -0.006 -0.062 0.108* 

 (0.0199) (0.022) (0.029) (0.034) (0.052) (0.056) 
1= HH received extension services 0.008 0.018* 0.029** 0.017* 0.016 0.075*** 

 (0.008) (0.009) (0.011) (0.009) (0.017) (0.021) 

1= HH belonged to farm organizations 0.0172 -0.009 0.025 0.032** 0.008 0.057** 
 (0.012) (0.011) (0.017) (0.016) (0.028) (0.029) 

1= HH received price information -0.0004 0.029*** 0.036*** -0.008 0.018 0.057*** 

 (0.006) (0.007) (0.008) (0.006) (0.013) (0.017) 
Average regional retail maize price(t-1) 0.000 0.000 0.000 0.000 0.000 0.0001*** 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

% sick family members  0.005 0.013 0.031 -0.013 0.138* 0.030 
 (0.042) (0.051) (0.058) (0.028) (0.077) (0.077) 

1= HH suffered a death (t-1) 0.006 -0.005 0.032** 0.001 -0.005 -0.009 

 (0.012) (0.012) (0.016) (0.009) (0.027) (0.030) 
1= HH suffered a divorce (t-1) 0.012 0.021 0.035 0.003 -0.009 0.044 

 (0.021) (0.020) (0.033) (0.022) (0.045) (0.046) 

1= village has electricity 0.061*** -0.029** -0.027 -0.002 0.005 0.024 
 (0.020) (0.012) (0.018) (0.015) (0.038) (0.027) 

Year dummy Yes Yes Yes Yes Yes No 

R square - - - 0.026 0.010 0.070 
Observations 7,504 7,504 7,504 7,504 7,504 3,752 

Note: Column 1 shows the APEs for the land share allocated to non-staple crops without potential endogenous 

variables (irrigation, fertilizer) and controls that may potentially respond to shocks (off-farm activities, remittances 

and animal traction). Column 2 shows the APEs for the proportion of family members with off-farm jobs. Column 3 
reports the APEs for the proportion of family members self-employed. These models are estimated by the PFP and 

include a full set of control covariates and the average of covariates to control for unobserved household fixed 

effects (not shown). Column 3 shows the marginal effects for fertilizer use (1 if farmer uses fertilizer). Column 4 
reports the marginal effects for the receipt of remittance (1 if farmer receives remittances).These models are 

estimated by the FE and include a full set of control covariates. Column 5 presents the marginal effects for crop 

rotation (1 if farmer practices rotation).This model is estimated by the OLS for 2005 and include a full set of control 
covariates, regional and agro-ecological dummies. Bootstrapped standard errors are shown in parentheses 

(Replications=500). *** p<0.01, ** p<0.05, * p<0.1.  
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Figure A1. Drought identification based on a 3-month SPI (October-December). 

 

 
 

 
 

Note: Red color identifies droughts (SPI lower than -0.5); yellow show normal climate conditions (SPI between -0.5 and 0.5); and green areas identify wet 

periods (SPI greater than 0.5). 
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Pesticide Use and Agricultural Risk. The Case of Rice Producers in 

Vietnam. 
 

César Salazar-Espinoza and John Rand

  

 
Abstract 

 
The excessive and unsustainable use of pesticides has generated concern due to their potential detrimental 

effects on farmers’ health, environment and agricultural sustainability. Thus, the overuse of chemical 

pesticides remains an important development issue, and understanding pesticide input decisions is a key 

requisite to sound policy-making. This paper examines risk effects of pesticide use by applying a lottery 

game in combination with a more traditional production function approach employing a dataset on rice 

producers in Vietnam. Using pest and water shortage shock events for identification, production function 

results show that an increase in pesticide use can make production more risky. This result is supported by 

the lottery approach showing that more risk averse farmers use less pesticide, implying that pesticide is a 

risk-increasing input. Our results suggest that higher rainfall uncertainty (relative to pest) is likely to drive 

the risk increasing effect of pesticides. This highlights the importance of considering multiple uncertainties 

when determining risk properties of agricultural inputs. 

 

. 
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1 Introduction 

The adoption of yield-enhancing chemical inputs such as pesticides has broadly been promoted in 

developing countries as a manner to boost agricultural productivity (Fernandez-Cornejo et al., 1998). 

However, the excessive and unsustainable use of toxic pesticides has created concerns due to its 

detrimental effects on health, the environment and agricultural sustainability (Pimentel et al., 1992; 

FAO, 2001). These negative effects include damage to agricultural land, fisheries, fauna and flora, 

and destruction of natural predators of pests. Furthermore, increased mortality and morbidity of 

humans due to exposure to pesticides are also recorded to be important (Antle and Pingali, 1994; 

Crissman et al., 1994; Pingali et al., 1994). These concerns are even more serious in developing 

countries due to lower skill/knowledge levels, limited provision of extension services to disseminate 

less intensive pesticide practices, financing constraints with regards to acquisition of suitable safety 

equipment, and a weak legislation (Wilson and Tisdell, 2001).  

 

Use of pesticides is remarkably high in Asian economies (Pingali et al., 1994). In particular, it has 

more than tripled in Vietnam since 1990, and pesticide regulation has not evolved accordingly as it 

remains far less rigorous than pesticide regulations in more advanced economies (Phung et al., 

2012).
1
 Consequences on farmer’s health have been reported to be serious (Dasgupta et al., 2007), 

and it has also been found that farmers overuse pesticide inputs beyond the economic optimum 

(Dung and Dung, 1999; Huang et al., 2002; Pemsl et al., 2005). Thus, understanding the overuse of 

pesticides remain an important issue, and is for Vietnam in line with the challenge of entering into a 

new development phase, in which sustainability of agriculture production and the environment are 

fundamental pillars (World Bank, 2011). 

 

This paper analyzes the relationship between pesticide use and farmer specific risk characteristics, 

which is key for understanding pesticide input choices. A risk-reducing input is normally identified 

through two distinct characteristics observed in data (Quiggin, 1991): First, an input is labelled risk 

reducing when its use reduces the variance of production. Second, all else equal, a risk averse 

producer would use more risk-reducing inputs than a risk neutral one.
2
 Empirical evidence using 

                                                 

 
1 Since the early 1990s, the Plant Protection Department of Vietnam’s Ministry of Agriculture and Rural Development is in charge of the pesticide 

management, including the approval, restriction, and prohibition of chemicals.  
2 Quiggin (1991) also argues that a producer with output insurance using less pesticide may also be consistent with the risk-reducing view. However, the 

evidence for this mechanism is mixed (Horowitz and Lichtenberg, 1993; Babcock and Hennesey, 1996; and Smith and Goodwin, 1996). Moreover, 

agriculture insurance is rather new in Vietnam; the government started a pilot program in 2011. Recent surveys (CIEM et al., 2011; 2013) have not 
found substantial adoption of such insurance, and in the following we therefore do not test this potential mechanism. 
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either approach is mixed. However, while most of the production variance studies obtain results 

consistent with the notion of pesticide being risk-increasing (see for example Regev et al., 1997; 

Shankar et al., 2008; Krishna et al., 2009), recent studies using lotteries to elicit risk aversion support 

the risk-decreasing view (Gong et al., 2012; Liu and Huang, 2013). In this paper, we test the risk 

effects of pesticide use by using both the lottery (experimental) and the production function 

(econometric) approach on a sample of farmers in Vietnam. To our knowledge, no empirical studies 

exploring the consistency regarding the risk property of pesticides using identical samples have been 

done previously in the literature. Furthermore, Horowitz and Lichtenberg (1994) argue that risk 

effects of pesticide use may be determined by an interaction of multiple sources of uncertainty. The 

importance of these sources can vary across different farming activities, locations and periods. With 

the exception of Shankar et al. (2008), empirical evidence regarding this aspect remains quite scarce. 

In this paper, we therefore also investigate the source of this risk effect by using information on the 

occurrence of pest and drought shocks to proxy for bad and good states of nature with regards to pest 

density and rainfall in rice farming, respectively. 

 

The rest of the article is organized as follows: Section 2 describes characteristics of the agriculture 

sector, pesticide use and shocks in Vietnam. Section 3 reviews a conceptual framework that links 

pesticide use, risk-taking behavior and shocks. Section 4 presents the data used; and section 5 the 

econometric model. Section 6 discusses the main results. Section 7 considers a number of robustness 

tests; and Section 8 concludes. 

 

2 Agriculture, shocks and pesticide use in Vietnam 

Agriculture is the most important economic activity in terms of job creation in Vietnam, and 

constitutes the main source of livelihood for around 70% of the population. Paddy rice production is 

one of the main agricultural activities, covering 65% of the area under cultivation. Rice has long been 

the major source of food and income for rural households. Many farmers both consume and sell their 

rice, which is typically grown two to three times per year on small landholdings formed by multiple 

plots (Phung, 2012). Rice production remains a labor intensive practice, with most workers being 

family members, but some farms hire extra labor and rent mechanized equipment. Rice farming 

requires significant amount of water to flood the fields. For instance, producing one kilogram of 

unprocessed rice in Vietnam is estimated to use on average 2.500-3.000 liters of water (Chu Thai, 
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2013). Since the flooded condition of rice fields is necessary for rice growth, drought events become 

one of the most important sources of risk in rice production.  

 

Pest infestation is also a substantial source of risk. If left unmonitored, it can cause enormous 

productivity losses or even in some cases it can lead to total crop failure. Vietnamese farmers have 

tackled this problem by increasing the use of pesticides. In fact, more than 95% of farmers report to 

apply some variety of pesticides on their crops (CIEM et al., 2011; 2013). To illustrate, the use of 

chemical inputs rose from 14,000 tons under 837 trade names in 1990 to 50,000 tons under more than 

3,000 trade names in 2008 (Phung et al., 2012). Even though agricultural pesticide use has played a 

crucial role in expanding rice cultivation and enhancing rice productivity in Vietnam, incorrect 

pesticide application, including too frequent, more toxic
3
 and excessive quantities of pesticide is 

common among Vietnamese farmers (Dung and Dung, 1999; Klemick and Lichtenberg, 2008).
4
 The 

lack of knowledge about the manipulation and the correct use of safety clothing is also an issue of 

public concern (Meisner, 2005).
5
 An improper manipulation, storage and disposal of pesticide jointly 

with weak pesticide law enforcement and an inadequate use of protective equipment put farmers at 

high risk of being harmed by pesticide exposure. Accordingly, hospital records,
6
 self-reported farmer 

data and medical tests suggest a high prevalence of pesticide poisoning in Vietnam. For example, 

Murphy et al., (2002) found that around 30% of a sample of farmers surveyed in a village in Nam 

Dinh province in northern Vietnam reported to suffer from at least one symptom of pesticide 

poisoning. Similar evidence of acute pesticide poisoning was shown by Dasgupta et al. (2007) in a 

sample of farmers tested for blood cholinesterase in several districts in the Mekong Delta region in 

southern Vietnam. The most common short-term health effects were associated with dermal (skin 

irritation), ocular (eye irritation), neurological (headaches, dizziness and insomnia) and respiratory 

symptoms (exhaustion, shortness of breath and sore throat).
7
 Training and farmer field school 

programs in Integrated Pest Control Management (IPM) have been implemented to make farmers 

                                                 

 
3 Pesticides classified as highly toxic according to the World Health Organization (WHO) such as carbofuran, endosulfan, methamidophos, 

monocrotophos, and methyl parathion are banned in Vietnam. However, farmers have been found to still apply these chemical classes on their fields 
(Meisner, 2005). 
4 When not considering toxicity information on pesticides, on average, it is found that non-poor farmers use significantly larger quantities of chemical 
pesticide than the poor. 
5 The use of protective clothing such as gloves, glasses and shoes is not common among Vietnamese farmers. Apart from usual budget constraint 

arguments that make protective clothing unfordable for the poorer, other reasons include farmers’ reluctance to wear safety clothing since they consider 
it uncomfortable or inappropriate when having to work under high temperatures.      
6 Health problems may be underestimated by official figures because many cases are never registered in hospitals and health centers. The most common 

reasons for that are erroneous diagnostics since pesticide poisoning can mimic other common health problems, reluctance to see a doctor because of fear 
that drawing attention to themselves can result in the loss of their job or simply budget constraints to afford adequate medical attention. 
7 There are also potential and less understood long-term health effects of using pesticides that may emerge only year to decades later. For example, a 

variety of pesticides are considered carcinogens, while others are associated with poor reproductive outcomes, neurologic and respiratory disorders, and 
impairment of the immune system (WHO, 1990).  
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aware about the risks of pesticide use for human health and the environment. These programs are 

aimed at promoting the use of alternative pest control actions through more closely monitoring and 

use of natural enemies.  Furthermore, the government has also tried to convince farmers to refrain 

from insecticide sprays after rice seeding through massive campaigns. The main goal of these 

programs has been to decrease pesticide use, particularly the use of the most toxic chemicals. 

However, pesticides continue to be used broadly in rice farming beyond sustainable levels (Klemick 

and Lichtenberg, 2008). In this paper we focus on the production risk effect of pesticide use to 

understand this overuse. 

 

3 Conceptual framework  

Reducing uncertainty as regards to agricultural output over time has been one of major factors for 

promoting pesticide use.  Pest uncertainty mainly comes from limited information on pest density, 

severity, chemical dosage needed to deal with it, and effectiveness of pesticide application. The latter 

has led to increased risk regarding both production yield and profits. Thus, the intuitive reason for 

applying pesticides is to reduce production risk, which would lead to adoption among capital 

constrained and relative more risk averse farmers (Federer, 1979). However, an alternative view 

states that pesticide use may in fact increase risk, arising from uncertainties related to other crop 

growing conditions (Lazarus and Swanson, 1983; Pannel, 1991). Horowitz and Lichtenberg (1994) 

demonstrate that the risk effect of pesticides will depend on the interaction and relationship between 

different types of agricultural uncertainties.  

 

To see this, assume a production function, 𝑓(𝑥𝑝, 𝒙, 𝜀), where 𝑥𝑝 denotes pesticide input, 𝒙 is a vector 

of all other inputs, and 𝜀 is a random production error. Suppose that 𝜀 is ordered from bad states to 

good states of nature, implying that the derivative with respect to the random variable is positive, i.e, 

𝑓𝜀(𝑥𝑝, 𝒙, 𝜀) > 0. In addition, we assume that pesticides increase production regardless the state of 

nature, i.e., 𝑓𝑥𝑝
(𝑥𝑝, 𝒙, 𝜀) > 0. Following Horowitz and Lichtenberg (1994), pesticide input 𝑥𝑝 is risk-

decreasing if 𝑓𝑥𝑝𝜀(𝑥𝑝, 𝒙, 𝜀) < 0, that is, pesticides increase output more in bad states than in good 

states of nature. This means that pesticide use is risk-increasing if 𝑓𝑥𝑝𝜀(𝑥𝑝, 𝒙, 𝜀) > 0, indicating that 

pesticide increases output more in good states than in bad states of nature. Quiggin (1991) proves that 

this definition is equivalent to saying that more risk averse producers use more (less) of a risk-

decreasing (increasing) input that less risk averse producers. 
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When 𝜀 mainly represents uncertainty about pest density (and its distribution), one would expect 

pesticides to raise output more (less) when pest density is high (low), making pesticide use risk-

decreasing. However, alternative sources of agricultural production uncertainty, i.e., rainfall, can also 

be important risk influencing factors, especially in rice production. More importantly, one would 

expect that pesticide productivity is higher (lower) during high (low) rainfall periods (significantly 

above predicted averages) since there are more (less) crops to protect, which makes pesticides a risk-

increasing input when considering its use in the context of multiple uncertainties. When these 

multiple sources of uncertainty are highly correlated factors that promote crop growth, also 

encouraging weeds or insect pest, pesticide use is more likely to be risk-increasing.  

 

Traditionally, testing the risk effect of pesticides has relied on econometric estimations of risk using a 

production function approach, and the evidence seems to support the risk-increasing view (see for 

example Regev et al., 1997; Shankar et al., 2008; Krishna et al., 2009). However, recent empirical 

work using experimental approaches to elicit risk preferences find that more risk averse farmers 

apply larger quantities of pesticide, supporting the standard view of pesticides being risk-reducing 

(Gong et. al., 2012; Liu and Huang, 2013). From this empirical literature, three fundamental 

conclusions emerge. First, results seem to be approach-dependent. The latter have been suggested by 

Reynaud et al. (2010). They found differences in farmers’ attitudes elicited by stated and revealed 

methods, suggesting an effect due to the approach. Nevertheless, they prove some consistency and 

coherence across experimental and econometric elicitation methods. Second, risk effects have been 

estimated for a small number of farmers, questioning representativeness such that inconsistencies 

across approaches may be associated with sample characteristics. Third, differences may be driven by 

the context in which agricultural decisions take place. Thus, more evidence in favor of the risk-

reducing view in some studies may simply reflect that pest density is more of a concern in these 

locations or was more serious at the time when data was collected. Alternatively, other sources of 

agricultural production uncertainty may have been more important in studies finding more support 

for the risk-increasing argument. For example, Shankar et al. (2008) studied the risk properties of 

Genetically Modified (GM) technology and pesticides among a sample of cotton producers in South 

Africa, accounting for multiple sources of uncertainty. They found a strong correlation between the 
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random variables capturing rainfall and pest density, which is consistent with theoretical conditions 

under which the risk-increasing thesis is more likely to hold.
8
  

 

Thus, whether reported differences in results can be attributed to variations in methodologies, sample 

characteristics, farming activities, locations, etc., is rather difficult to determine. In this paper, we try 

to overcome this problem and understand these differences, focusing on a sample of rice farmers in 

the Vietnamese context.  

 

4 Estimation procedure 

First, we present the experimental approach to study the risk property of pesticides using a lottery 

game. Second, we introduce the Just-Pope production function method, broadly used to examine risk 

characteristics of inputs in agriculture.  

 

4.1 Pesticide input and risk aversion 

The first approach consists of setting up an estimating equation in which pesticide input decisions 

depend on risk aversion. Given the censured nature of our dependent variable measuring pesticide 

use, we estimate the Tobit model, which assumes corner solutions. The model is specified as follows: 

 

     𝑥𝑝𝑖 = 𝑚𝑎𝑥(0, 𝛿𝑧𝑖 + 𝜑𝑤𝑖 + 𝛾𝑟𝑖 + 𝑢𝑖) ,      𝑢𝑖\𝑧𝑖, 𝑤𝑖, 𝑟𝑖~𝑁(0, 𝜎𝑢
2)                 (1) 

 

Where 𝑥𝑝𝑖 corresponds to a measure of pesticide input applied to a farm i, 𝑧𝑖 contains a vector of 

socioeconomic and farm level characteristics, wi defines measures of states of nature with regard to 

pest and other growing conditions, respectively, 𝑟𝑖 stands for a measure of risk aversion, and ui is the 

normally distributed error term. 

 

The parameters 𝛾 and φ are the coefficients of interest. If 𝛾 > 0, more risk averse farmers use larger 

amount of pesticides, then pesticide is risk-reducing. Similarly, if 𝛾 < 0, farmers who are more risk 

farmers use less inputs, then pesticide is risk-increasing. Furthermore, if pesticide use is sensitive to 

the risk environment, φ will be positive (negative) when pest infestation is high (low) and negative 

(positive) as other growing conditions are bad (good).  

                                                 

 
8 For more evidence supporting the risk-increasing argument see Auld and Tisdell (1987), Antle (1988), Pannel (1990), Horowitz and Lichtenberg, 
(1993), Hurd (1994) and Regev et al. (1997). 
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4.2 Pesticide input and production risk  

In order to investigate the risk effect of pesticides, we alternatively apply the framework outlined by 

Just and Pope (1979). This approach provides a method for estimating the marginal risk effect of 

inputs. The Just-Pope (JP) production function is specified as: 

 

  𝑦𝑖 = 𝑓(𝑥𝑖, 𝜀𝑖) = 𝑞(𝑥𝑖, 𝛼) + ℎ(𝑥𝑖 , 𝛽)𝜀𝑖                   (2) 

 

Where 𝑦𝑖 is the level of output for farm i, xi is a vector of inputs for farm i, 𝑞(. ) is the mean function 

(or determinist part) that relates inputs to levels of output, 𝛼 is a vector of parameters attached to the 

mean function,  ℎ(. ) is the variance function (or risk part) that associates inputs to output variability, 

𝛽 is the parameter vector attached to the risk function, and ε is the exogenous production shock with 

mean 𝐸(𝜀𝑖) = 0 and 𝑉𝑎𝑟(𝜀𝑖) = 1. Defining 𝑉𝑎𝑟(𝑦𝑖) = ℎ2(𝑥𝑖, 𝛼𝑖, 𝛽), we can observe that inputs are 

allowed to influence both mean output and output risk. One key requirement for this specification is 

that it should not impose any a priori restriction on the effect of inputs on production risk, that is, 

𝜕𝑉𝑎𝑟(𝑦𝑖𝑡)

𝜕𝑥𝑖𝑡
<=> 0.  

 

The JP production function (2) is estimated by Feasible Generalized Least Squares (FGLS).
9
 First, 

we estimate the parameters of the mean function 𝑦𝑖 = 𝑞(𝑥𝑖 , 𝛼) + 𝑒∗. Lichtenberg and Zilberman 

(1986) argue that pesticide is a damage control input whose contribution lies in their ability to 

increase the share of potential output by reducing damage from pest infestation. Thus, pesticides 

input should be treated differently in the production analysis than conventional inputs.
10

 Following 

Krishna et al. (2009), we combine the damage control framework with Just-Pope econometric 

methods to account for this characteristic. Let us define 𝐺(𝑥𝑐) as the damage abatement function. 

This function captures the destructive capacity of the damaging agent eliminated by the application 

of a level of control inputs xc.
11

 By making the distinction between regular inputs xr and control 

inputs xc, the damage-production function is defined as follows: 𝑞(𝑥𝑖, 𝛼) = 𝐴 ∏ 𝑥𝑖𝑟𝑘
𝛼𝑘𝑛𝑟

𝑘=1 𝐺(𝑑𝑥𝑐𝑖), 

where nr now indicates the total number of conventional inputs, and 𝐺(𝑥𝑐𝑖) = [1 − exp(𝜇 −

                                                 

 
9 Saha et al. (1997a) found that the FLGS does not perform well in the case of small samples, and the Maximum Likelihood Estimator (MLE) should be 
applied as it is more efficient and unbiased.  Given the size of our sample, our results should be robust to the use of alternative estimators. 
10 Lichtenberg and Zilberman (1986) found that standard production function specifications overestimate the productivity of damage control inputs.   
11 The abatement function is defined on the (0, 1) interval with G = 1 denoting complete eradication of the destructive capacity and G = 0 denoting zero 
elimination; it is monotonically increasing; and it approaches a value of unity as damage-control agent use increases. 
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𝜎𝑥𝑐𝑖)]−1 is a logistic function.
12

 Ease of convergence in the nonlinear least square (NLS) method was 

the main reason of the choice of a logistic function.  

 

In the second stage, the parameters of the variance function are estimated by OLS using the predicted 

residuals from the mean function �̂�𝑖
∗ = ℎ(𝑥𝑖 , 𝛽)𝜀𝑖 assuming a Cobb-Douglas functional form for 

ℎ(𝑥𝑖, 𝛽).13 By taking natural logarithms on both sides, and absolute values of  �̂�𝑖
∗ yields: 

 

            𝑙𝑛| �̂�𝑖
∗| = 𝛽 +  ∑ 𝛽𝑘𝑙𝑛𝑥𝑘𝑖

𝑛
𝑘=1          (3) 

 

Where 𝛽𝑘 corresponds to estimates of the risk marginal effect of inputs, 
𝜕𝑉𝑎𝑟(𝑦𝑖)

𝜕𝑥𝑘𝑖
 . If 𝑥𝑝𝑖 denotes the 

amount of pesticide input used by farm i and 𝛽𝑝 the marginal risk effect of pesticides, we have that 

pesticide is risk-reducing if 𝛽𝑝 < 0, or risk-increasing if 𝛽𝑝 > 0.   

 

In a final stage, since equation (1) is a heteroskedastic regression, we attain asymptotic efficiency in 

estimation of the parameters 𝛼 of the mean function by applying weighted regression with 

incorporating weights ℎ−1(𝑥𝑖, �̂�).  

 

To test the relative importance of different sources of randomness in determining the risk properties 

of pesticides, we augment the mean function including interactions between pesticide inputs and the 

different uncertainty drivers (i.e. pest and rainfall). In other words, we estimate changes in 

productivity of using pesticides along states of nature of both pest and rainfall, that is, 

𝑓𝑥𝑝𝜀1
(𝑥𝑝, 𝒙, 𝜀1), and 𝑓𝑥𝑝𝜀2

(𝑥𝑝, 𝒙, 𝜀2), where 𝜀1 and 𝜀2 relates to pest and rainfall, respectively. Thus, 

pesticide is more likely to be risk-reducing (risk-increasing) when 𝑓𝑥𝑝𝜀1
(. ) is relatively more (less) 

important than 𝑓𝑥𝑝𝜀2
(. ). 

 

5 Data  

We use data from the Vietnam Access to Resources Household Survey (VARHS). The VARHSs are 

longitudinal surveys conducted every second year from 2006 by the Institute of Labor Science and 

                                                 

 
12 This specification has been used in the literature before, yielding sensible results (see Lichtenberg and Zilberman, 1986; Carrasco-Tauver and Moffit, 

1992;  Krishna et al., 2009) 
13 Alternative specifications such as linear and quadratic forms were also considered for the variance function. Results remain the same, however. 
Details can be obtained under request. 
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Social Affairs of the Ministry of Labor, Invalids and Social Affairs with the technical support from 

Department of Economics at the University of Copenhagen. This survey constitutes one the main 

data sources on the current state of the rural population of Vietnam regarding access to productive 

resources. Data collection is done in rural areas of 12 provinces (covering 161 districts and 456 

communes). In particular, the survey collects regularly information on households’ demographic 

characteristics, assets, saving, credit, incomes as well as production, farm inputs and shocks. Lottery 

questions to elicit risk aversion measures were introduced from the fourth wave of VARHS in 2010 

(CIEM et al., 2011; 2013). However, farmers’ responses to lotteries in 2012 show inconsistencies 

that make us suspect about their reliability. Consequently, we only use the 2010 data covering 2,205 

households. 

 

5.1 Lottery and risk aversion measures 

To construct a measure of risk aversion, we use two hypothetical
14

 questions included in the VARHS 

to elicit individual’s risk attitudes: “Consider an imaginary situation where you are given the chance 

of entering a state-run lottery where only 10 people can enter and 1 person will win the prize. How 

much would you be willing to pay for a 1 in 10 chance of winning a prize of 2,000,000 Vietnamese 

Dongs (VND)?” and “How much would you be willing to pay for a 1 in 10 chance of winning a prize 

of 20,000,000 VND”?
15

  

 

[INSERT TABLE 1 ABOUT HERE] 

 

The lottery questions were submitted to the entire sample of household heads, but only around 37% 

of respondents answered as being willing to purchase the lottery. Out of 1,386 others, about 14% did 

not answer and 48% refused to pay a positive price. High non-responses and zero-answers rates were 

also found in Hartog et al. (2002) and Guiso and Paiella (2008) in similar lottery questions. There are 

two possible explanations for this pattern. First, some people may consider gambling as morally 

objectionable. The perception of gambling may be shaped by legal, sociological and ethical 

                                                 

 
14 Some concerns can emerge as it is believed that subjects should perform better if they earn some money for their actions. However, Camerer and 

Hogarth (1999) found that the presence and amount of financial incentives do not seem to affect average performance in many tasks. In particular, they 
found that increased incentives do not change average behavior in risky gambles substantively. This suggests that intrinsic motivation is still sufficient 

to perform well in hypothetical lottery tasks. 
15 These values are equivalent to US$100 and US$ 1,000, respectively. Whereas winning the first prize would imply on average an increase of around 
5% in household wealth, the second prize would raise wealth in about 50%. Thus, it is probably that the set of incentives differs between lotteries, 

although a correlation is expected. The second lottery represents a relatively large risk.  We consider this as robustness check because expected utility 

maximizers behave as risk-neutral individuals with respect to small risks even if they are averse to larger risks (Arrow, 1970). Thus, we expect that the 
larger lottery prize is a better strategy for eliciting risk attitudes when relying on expected utility. 
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considerations. In Vietnam, except for the state-run lottery and a few five-star resorts running low 

profile casinos for foreigners only, gambling of any kind is illegal.
16

 This makes it harder to 

distinguish the zero-answers that truly reflect strong risk aversion from those that reflect the usual 

variety of reasons for not answering. Second, a higher non-response rate was likely due to the 

complexity of the question, which might have required long time to understand and provide a 

sensible answer. Furthermore, lottery questions were introduced abruptly by the interviewers as part 

of a broader survey, without any set of introductory questions. The latter may have also led many 

respondents to skip this question. However, this strategy may have its advantages. First, asking 

questions abruptly would avoid that the way how introductory questions are framed distort the 

answers and therefore the elicitation of the true preference parameter. Second, the strategy with no 

“warm up” questions may have effectively discarded respondents with a poor understanding of the 

question, avoiding bringing in noisy answers (Guiso and Paiella, 2008).  

 

[INSERT FIGURE 1 ABOUT HERE] 

 

Figure 1 shows the distribution of the willingness to pay for non-zero answers. The reported price 

ranges from 1,000 to 2,000,000 and 10,000,000 for the lottery with a small and big prize, respectively 

(5.5% of respondents offered more than 2,000,000 in the small prize lottery. We omit these responses 

because such a price leads to a sure loss). For the small price lottery, the bulk of the responses are 

from 1,000 up to 200,000. In the big prize lottery, the distribution is more dispersed; around 80% of 

values are between 1,000 and 1,000,000. In both cases, the median is substantially smaller than the 

mean, signaling distribution with a long right tail.  

 

These prices can be considered as reservation prices above which households would reject the lottery. 

We use them to compute formal measures of absolute risk aversion by applying Expected Utility 

(EU) theory as in Hartog et al. (2002) and Dang (2012).
17

 Alternatively, we characterize attitudes 

toward risk qualitatively. We denote risk averse farmers with a dummy variable taking the value of 1 

if farmers report a price lower than the expected gain offered by the lottery; risk neutral if this price is 

                                                 

 
16 Around 68% of respondents in the 2012 VARHS state that gambling is a severe problem in their communities.  
17 EU implies that the utility of wealth W, without participation in a lottery with a winning price Z and probability α , is equal to expected utility when 

participating at reservation price λ: 𝑈(𝑊) = (1 − 𝛼)𝑈(𝑊 − 𝜆) + 𝛼𝑈(𝑊 + 𝑍 − 𝜆). By applying a second order Taylor expansion of the right hand side 

around 𝑈(𝑊), we have: 𝑈(𝑊) = 𝑈(𝑊) + 𝛼𝑍𝑈′(𝑊) − 𝜆𝑈′(𝑊) + 𝑈′′(𝑊)((1 − 𝛼)𝜆2 +  𝛼(𝑍 − 𝜆)2)/2. After rearranging, we yield the Arrow-Pratt-

measure of absolute risk aversion as: 𝐴(𝑊) = −
𝑈′′(𝑊)

𝑈′(𝑊)
=

𝛼𝑍−𝜆

0.5𝜆2+0.5𝛼𝑍2−𝛼𝜆𝑍
. 
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equal to the expected gain; and risk lover if the price is higher than the expected gain. Descriptive 

statistics are shown in Table 1. Among the individuals willing to purchase the lottery, the great 

majority (81% in the small and 86% in big prize lottery) is risk averse; around 6% are risk neutral; 

and 7-8% risk lovers. A high degree of risk aversion among Vietnamese farmers has been reported in 

the literature before. For instance, Nielsen et al. (2013) find substantial risk aversion under different 

risk preference elicitation methods among a sample of 300 rural households in northern Vietnam. The 

authors classify 84% of the respondents as risk averse, with 52% being very risk averse. Similar 

levels of risk aversion are also found in Tanaka et al. (2010). Strong risk aversion among Vietnamese 

farmers is not surprising; given the substantial risk they have to face, i.e. natural disasters, crop and 

livestock diseases, illness, etc., and the lack of adequate formal insurance mechanisms and limited 

government assistance to deal with shocks (Nielsen et al., 2013).  

 

5.2 Production, household and weather shock data 

We use data on the total value of pesticides per square meter applied in rice production as dependent 

variable in equation (1).
18

  In this model, we control for the following socioeconomic and farm level 

characteristics: a dummy to denote the gender of household head taking the value of one if the farmer 

is male; household head’s age in number of years; schooling measured by the number of years of 

formal education (actual and squared values); farm size measured in total land in square meters; 

number of household members; a dummy denoting if at least one family member received pest 

extension services the last twelve months; total household wealth constructed using fixed asset values 

(livestock, equipment and machinery), liquid asset values (savings, crop stores), and all consumer 

durables; total household incomes including wages, incomes gained from agricultural and off-farm 

activities, sales of assets, etc.; a dummy variable indicating whether households received transfers 

from government and/or family members/relatives (public/private sources); and geographical 

characteristics such as land terrain and soil quality that may condition the negative effects of shocks 

on agricultural activities.
19

  

                                                 

 
18 By simply summing the value of all pesticides, we are ignoring the fact that different substances have different levels of toxicity and degradability. A 
better measure that accounts for this heterogeneity should consider a higher weight to highly toxic and persistent pesticide. For example, 

epidemiological studies have linked the adverse effect observed on human and animal health with the use of certain classes of pesticides: carbamates, 

organophosphates and pyrethroids. Unfortunately, information on type, chemical class, name and therefore toxicity of pesticides are not available in the 
survey. 
19 We proxy land terrain and soil quality using self-reported information by household heads in the VARSH survey. Land terrain is constructed using 

household heads’ answers on the topography of their plot: “In general, what is the slope of this plot? Flat, slight slope, moderate slope or steep slope?” 
This variable ranges from 1 (flat terrain) to 4 (steep slope).  We define a dummy variable to proxy for land terrain, which takes the value of 1 if the 

average across plots is less than 2, meaning that household’s plots are on average flat.  Soil quality is measured by household heads’ answers on land 

fertility of their plot: “Compared to the average land fertility in the village, is the quality of this plot: less than the average, average, or better than the 
average? This variable ranges from 1 (less than the average) to 3 (better than the average). To compute a household level indicator of soil quality, we 
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In order to estimate equation (2), we use the quantities and values of inputs used in rice production. 

Total output of farms consists of kilos of rice per square meter. The inputs include labor, seeds, 

fertilizers, pesticides, irrigation and the use of improved seeds. Labor is expressed in total number of 

days per square meter; seeds include total value of seed applied per square meter; fertilizer is 

measured by total value of fertilizers per square meter; pesticide use intensity is proxied by total 

value of pesticides per square meter; irrigation consists of a dummy variable that takes the value of 

one if the farm uses any no-manual irrigation system, zero otherwise; improved seed is a dummy 

variable indicating if the farmer uses this technology, zero otherwise; and proxies for land terrain and 

soil quality. 

 

Finally, information on shocks is obtained by directly asking households to report whether or not 

they suffered any shock from a predetermined list. Then, they are requested to rank the shocks in 

order of importance and to provide an estimation of the monetary loss in terms of Vietnamese Dong 

(VND). Thus, the data allows us to disaggregate overall shocks into two groups of interest: pest and 

drought shocks. We assume that the occurrence of pest shocks would reflect a bad state of nature 

regarding pest infestation. Furthermore, the incidence of past droughts as a proxy for water 

availability may be a good indicator of a bad state of nature in other crop growing conditions.   

 

Descriptive statistics of the set of controls, production and shocks variables used in the analysis are 

shown in Table 2.  

 

[INSERT TABLE 2 ABOUT HERE] 

 

From the Table we see that total rice production was lower in 2010 than other in 2008 and 2012 

(CIEM et al., 2011; 2013). A higher incidence of natural shocks may have led farmers to crop failure, 

and then to the poorer yields observed in 2010. In this context, our data reveals that around 31 

percent of households experienced a pest shock between 2009 and 2010 with an average monetary 

loss of 1,107 (000 VND), representing 8% decrease in household income per capita.  Although pest 

shocks are more prevalent, drought events are also important. Our data shows that 13% of households 

reported to have been affected by a drought between 2009 and 2010. Average monetary losses after 

                                                                                                                                                                    

 
define a dummy variable which takes the value of 1 if soil quality of plots is average or better than the average. Additionally, we include dummies for 
North, Central and South Vietnam.  
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the incidence of a drought, on average, amounted to 300.000 VND, representing 2% decrease in 

household income per capita.  

 

6 Results 

6.1 The effect of risk aversion on pesticide use 

Table 3 reports results for the pesticide input demand estimation (equation 1). Columns 1-3 show the 

estimated coefficients for the total sample with risk aversion measures calculated with responses to 

the small prize lottery.
20

  While columns 1-2 include measures of absolute risk aversion, column 3 

considers a dummy variable for risk averse farmers. Column 1 includes dummies for shock events; 

column 2 incorporates monetary losses instead of dummy indicators. The remaining columns report 

the results as computing risk aversion measures with answers to the big prize lottery.  

 

[INSERT TABLE 3 ABOUT HERE] 

 

Regarding the control variables, we find that training in pest management is negatively and 

significantly associated with pesticide use. The latter could be the result of the expansion of 

Integrated Pest Management (IPM) and training programs in Vietnam. In addition, we find that 

wealth, income and access to credit are key determinants of pesticide use, which would indicate that 

budget constraints remain important for pesticide demand. Further, households with more family 

labor use less pesticide. The negative association could indicate that households substitute pesticides 

for family labor, when the adoption of pest management practices (such as manual weeding) is labor 

intensive. Moreover, the coefficient on farm size is positive and significant, which indicates 

additional evidence of the importance of budget constraints. Furthermore, pesticides are used more 

intensively in better plots (flat terrain and good soil). Better agro-ecological conditions imply higher 

yields and therefore more crop to protect in case of a severe pest. Finally, human capital 

characteristics such as a producer’s age and education are found to be significant determinants of 

pesticide use. Older farmers using more pesticide may reflect reluctance of older people to switch to 

potentially more unknown pesticide less-intensive practices. Education is also positively associated 

with pesticide use. This result contradicts previous finding (Liu and Huang, 2013). However, the 

                                                 

 
20 Columns 1-3 in Table 3 report a smaller number of observations because we omit those responses with willingness to pay greater than 2.000.000 

VND. 
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positive association may be related to the fact that education may ease saving and access to credit 

(Knight et al., 2003). 

 

We are interested in examining the risk property of pesticide use. We find that our measure of risk 

aversion is significant and negative, indicating that risk averse farmers apply on average less 

pesticides. This result remains robust to the use of different lottery prizes, quantitative and qualitative 

risk aversion measures,
21

 the inclusion of farm and socioeconomic characteristics, and shocks 

variables as controls. This finding would suggest evidence in favor of pesticide being a risk-

increasing input, and an indication that multiple risks are important when analyzing production input 

decisions in rural Vietnam. 

 

To explore it further, we focus our attention on the effect of pest and drought shocks on pesticide 

input use. We note that the occurrence of pest shocks does not enter significantly in any of the 

specifications in Table 3. In contrast, drought events are clearly associated with a reduction in 

pesticide use. This would suggest that farmers care about general growing conditions, and farmers 

find it optimal to reduce the amount of pesticides in water shortage periods due to reduction in 

production volumes. These results are robust to the use of monetary measures of shocks.   

 

6.2 The effect of pesticide input on production risk 

Table 4 reports results from estimating the mean function (equation 2) and the variance function 

(equation 3). Column 1 shows estimated coefficients for the mean function
22

 by NLS and column 2 

presents estimations of the variance production function by OLS. 

   

[INSERT TABLE 4 ABOUT HERE] 

 

Traditional inputs have positive marginal effects, consistent with theory. In the damage-production 

function, we assume that irrigation, improved seeds and pesticides are control inputs so that they do 

not affect yield directly but only indirectly through impacts on the potential output. The parameters 

of irrigation and pesticide input in the abatement damage function are positive and significant, 

                                                 

 
21 In addition to the Arrow-Prat and qualitative measures of risk aversion, we also used the values of willingness to pay in our regressions. Results point 
to the same direction; farmers with smaller willingness to pay use less pesticide.  
22 We calculated the Breusch Pagan test to evaluate the null hypothesis of homoscedasticity against alternative hypotheses of heteroskedasticity. The 

Breusch-Pagan LM statistic is 378.93, strongly rejecting the null hypothesis. The latter supports the multiplicative heteroskedastic model and suggests 
that the Just and Pope specification is an appropriate framework for the analysis of the risk effect of pesticides in Vietnam.  
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highlighting the role that these inputs play in controlling potential crop damage coming from water 

stress and pest infestation, respectively. 

   

Results for the variance function shed some light on the risk property of inputs. Overall, estimates 

suggest that chemical fertilizers, improved seeds and irrigation reduce yield variability and hence 

production risk. The finding on irrigation is in line with the argument that farmers maintain irrigation 

as a way of insurance against potential yield losses from water stress. The key role that irrigation 

plays to reduce production fluctuations confirms the importance of supplying a stable and continuous 

flow of hydric resources in rice production. In contrast, the positive marginal effect on seeds and 

pesticides suggests that these inputs are risk-increasing. Note in particular, that the positive marginal 

risk of pesticides is in line with risk averse farmers using less amount of pesticides (shown in section 

6.1), suggesting consistency across experimental and production function methods. 

 

6.3 What is the main source of risk in pesticide use in Vietnam? 

In the previous sections we documented that the risk-increasing characteristic of pesticide use is not 

dependent on chosen methodology. What then is the main source of the risk effect of pesticides? 

Following Horowitz and Lichtenberg (1994), the risk-increasing property of pesticides is more likely 

to arise in settings in which uncertainty regarding other growing conditions, i.e. rainfall, is relatively 

more important than pest infestation. To explore this further, we expand the mean function 

specification and include interactions of our proxies for the state of nature regarding pest and rainfall 

with pesticide use. Thus, we compare marginal productivities of using pesticide during the incidence 

of pest and rainfall shocks. As using the damage function specification with additive error, the NLS 

estimator fails to converge. We therefore assume a quadratic functional form to ease convergence. 

Results are showed in Table 5. We interact pesticide inputs with shocks indicators in columns 1; in 

column 2 we replace the drought indicator with monetary losses. We find that productivity of using 

pesticide is not statistically different from zero when farmers are affected by pest. This result remains 

when using measures of pest losses. In other words, marginal damage reduction does not seem to be 

higher during less favorable growing conditions, such as periods of high pest density or when pests 

are more damaging, suggesting an unclear risk-reducing effect of pesticides. In contrast, we find that 

pesticide productivity is lower during drought periods (column 1), suggesting a risk-increasing effect 

of pesticides. The latter indicates on aggregate that the risk-increasing effects of pesticide use may be 

larger than its risk-reducing effect. 
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Although both pest and drought risk are important sources of uncertainty in agricultural production in 

Vietnam, farmers seem to react more to adverse drought related events as compared to pest related 

shocks. This could signal that farmers either have better knowledge of pest incidence probabilities 

and adjust optimal behavior accordingly (pests are internalized), or that application of pesticides 

continuously are implemented at high probability pest levels (leading on average to inefficient 

overuse of pesticides) independent of realized pest shocks. Our results suggest that it is the latter 

mechanism that dominates in the case of Vietnamese farmers, potentially with detrimental 

consequences for the future. 

 

7 Robustness 

7.1 Non-responses and zero price observations 

One concern with the analysis is non-response bias or “zero responses”. We therefore estimate the 

pesticide use equation excluding these observations. However, significant differences between 

farmers willing to participate in the lottery and those who were not can make the exclusion of non-

participants problematic. To explore these divergences, Table A1 presents mean difference tests for 

the balancing properties between participants and non-participants in the lottery. Results confirm 

differences between the two groups. We therefore apply the inverse probability weights (IPW) to 

account for a potential bias when excluding zero and non-response observations. Results are shown 

in columns 1-4 of Table A2. We conclude that the exclusion of zero-price answers and non-

respondents do not change results fundamentally.  

 

7.2 Risk aversion and other inputs 

An additional concern with the lottery approach is that a negative association of the risk aversion 

measure with pesticide use may be reflecting general aversion to investment rather than something 

particular to pesticide use. Put differently, risk averse farmers may use less amount of pesticides 

because they are not willing to incur additional risk, and if so, results may not be attributable to the 

fact that pesticide is risk-increasing. To address this, we explore the association between risk 

aversion and fertilizer use, an input that involves even larger investments (see Table 2). If results are 

driven by general aversion to investment, then we should find that more risk averse farmers also use 

fewer quantities of fertilizer. Results are shown in Table A2, columns 7 and 8, showing that risk 

aversion increases the use of fertilizer input. This result is therefore consistent with fertilizer use 
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reducing production variance, and thereby being labelled as a risk-decreasing input. Thus, we 

conclude that our risk aversion measure is not reflecting overall aversion to investment. 

 

7.3 Self-reported data 

A further concern with our definition of drought shocks is that it relies on self-reported data. That 

may raise a systematic reporting bias since weather shocks data may not be a function of 

geographical location. Alternatively, we use calculations of the Standardized Precipitation Index 

(SPI) by the National Centre for Environmental Predictions (NOAA) (McKee, et al., 1993; 1995) to 

identify dry cycles.  Specifically, we use a 9-month time scale index constructed on 0.5° lat/lon grid 

monthly precipitations of 1949-2014 over the main rice growing season in Vietnam (October-June).
23

 

Due to the absence of information on households’ locations, we extrapolate this information at the 

district level. The SPI index is a continuous indicator that ranges from negative to positive values. 

Thus, larger values indicate a better state of nature with regard to rainfall. Statistics of the SPI 

confirms a dry cycle in 2010.  In this year, the SPI ranged from -2.38 to -0.5 with a mean of -1.43, 

suggesting a dry agricultural season, mainly in northern and central Vietnam (see Figure A1).  

Results are presented in columns 5 and 6 of Table A2, and are qualitatively the same as reported in 

the main specifications. Farmers apply larger quantities of pesticide in periods with higher rainfall, 

and the inclusion of a rainfall-based drought index does not affect conclusions regarding our risk 

aversion measures.
24

 

 

7.4 Specification and unobserved characteristics 

A concern with the production function estimates is that they are likely to be specification dependent. 

As robustness check, we re-estimate the mean function for quadratic and Cobb-Douglas 

specifications.  Furthermore, we also estimate the JP production function using panel data for 2010 

and 2012. Descriptive statistics for the panel are shown in Table A3. Here, risk marginal effects of 

input are identified by using the variance that farmers experience within their own farms. We assume 

a linear quadratic functional specification for the mean function in this case. An advantage of this 

specification is that the farm-specific effect is additive, which is a requirement for the JP model 

(Eggert and Tveteras, 2004; Gardebroek et al., 2010). Results are presented in Table A4 and A5. As 

                                                 

 
23 A drought occurs if the SPI value falls at or below minus 1.0. Similarly, wet periods are identified with values equal or greater than 1.0. A value 
between -1 and 1 indicates no climatic anomaly. 
24 Findings on pesticide productivity being higher during better growing conditions measured by the SPI index remains robust to the use of panel data, 

suggesting a more likely risk-increasing effect of pesticides (see Table A5).  
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before, traditional inputs have positive marginal effects, consistent with theory. The quadratic term is 

negative and significant for all inputs, excepting pesticides, suggesting some evidence of decreasing 

marginal returns. The risk-increasing property of pesticides is also robust in the FE specification, and 

interestingly the FE estimates for the mean function show a U-inverted shape relation between 

pesticides and yield, suggesting a threshold from which pesticides start becoming effective in 

enhancing yields. Estimates of the variance function using a Cobb-Douglas specification gives 

similar conclusions. In fact, pesticide use is the only input that is consistently found to be risk-

increasing throughout all specifications.  

 

8 Conclusions 

The excessive and unsustainable use of pesticides has created concerns because of its detrimental 

effects on farmers’ health, the environment and agricultural sustainability. Thus, the overuse of 

chemical pesticide remains an important development issue, and understanding pesticide input 

decisions is a key requisite to sound policy-making. This paper examines the risk effects of pesticide 

use by using a lottery in combination with a production function approach on the same dataset of rice 

farmers in Vietnam.  We also investigate the sources of the risk effects of pesticides.  

 

Results from the lottery approach indicated that risk averse farmers are more likely to use fewer 

quantities of pesticide. Findings from the production function approach showed that pesticides 

increase production risk. Thus, both approaches consistently give evidence in the same direction, 

supporting the hypothesis of pesticide use being a risk-increasing input. The latter discards any 

incidence of the approach in determining the risk property of inputs. 

 

We also found that the reduction in pesticide productivity in drought periods may be significant and 

that it may offset potential higher benefits from damage reduction when pest is high, suggesting that 

the risk-increasing effect of pesticides may dominate.  This is consistent with pesticide use being a 

risk-increasing input, as pest damage may not be independent of rainfall; pesticide productivity will 

then be lower during drought periods since pesticide use is not dynamically optimally adjusted to the 

lower yields. These findings were found to be robust to alternative definitions of risk aversion and 

weather shocks, the use of different functional forms and panel data, and the exclusion of non-lottery 

participation observations. In addition, we noted that our results are not driven by general aversion to 

investment. 
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However, one additional caveat deserves attention. Our results may be crop-specific since trade-offs 

between pest and drought risk are supposed to vary across different cropping activities. For example, 

maize is relatively more resistant to water stress than rice and therefore pesticides may be more likely 

to be risk-decreasing in maize production. However, focusing on rice has some advantages. Rice is 

the major crop in Vietnam and is typically grown by most rural households (CIEM, et al., 2011; 

2013). This characteristic reduces concerns that our results can be confounded by selection into rice 

production.  

 

Despite these considerations, our findings have important implications for the success of government 

interventions to address concerns of the excessive use of pesticides. For an instrument aimed at 

reducing a pollutant input to work, it is necessary to understand the risk character of this input. If it is 

found that the input is risk-decreasing/increasing, then risk management instruments are quite likely 

to substitute/complement the inputs in the production process (Rossen and Hennessy, 2003; 

Schoengold et al., 2014). For example, crop insurance has been proposed as an instrument for 

reducing pesticides, arguing that it provides a substitute for the risk management benefits of 

pesticides (Babcock and Hennesey, 1996; and Smith and Goodwin, 1996).  Based on the evidence 

that pesticides are positively correlated with production risk, crop insurance may instead exacerbate a 

pollution problem. Even with moral hazard, which reduces the use of all inputs, the high level of risk 

aversion among Vietnamese farmers would still lead to the observed risk effects (Ramaswami, 1993). 

This suggests that policies promoting more sustainable agricultural practices such as the Integrated 

Pest Management (IPM), and communicational programs addressed to increasing farmers’ awareness 

of pesticide risk may display advantages over other risk management instruments.  
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Tables  

Table 1. Descriptive statistics for lottery answers and risk attitudes. 2010.  

Variables 
Small prize lottery Big prize lottery 

Mean Dev Mean Dev 

Categories      

Non response 14.2  14.0   

Zero price 48.7  48.5   

Positive price 37.1  37.5   

Total 100  100   

      

Risk categories      

Risk averse 81.0  86.1   

Risk neutral 5.6  6.3   

Risk loving 7.9  7.6   

Inconsistent 5.5  0.0   

Total 100  100   

      

Absolute risk aversion  0.59 0.69 0.07 0.06  

Note: Risk categories are defined among observations with positive 
willingness to pay. 
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Table 2. Household, production and shock variables. 2010.  

Variables Mean St dev Min Max 

Household characteristics      

1= HH is male 0.86 0.35 0 1  

Head’s age (years) 49.24 12.92 14 91  

Head’s schooling (N grades) 5.66 3.84 0 12  

Farm size (m2) 8,600 11,372 0 138,500  

# family members 4.87 1.91 1 15  

1= HH received pest extension  0.35 0.48 0 1  

1= HH borrowed money 0.53 0.50 0 1  

Household’s incomes (000 VND) 66,555 87,189 0 2,076,720  

Household’s wealth (000 VND) 40,962 49,796 0 814,600  

1 = HH received public-private  0.86 0.35 0 1  

Output and input variables      

Output (kg) 1,747 4,095 0 116,400  

Land (sqr meter) 4,503 7,513 50 118,000  

Labor (days)  106 75.84 0 650  

Seed value (000 VND) 844 1,918 0 48,000  

Fertilizer (000 VND) 2,366 7,750 0 250,000  

Pesticide (000 VND) 1,057 6,565 0 250,000  

Yield (kilos/sqr meter) 0.42 0.16 0 2.0  

1 = farmers irrigate 0.86 0.35 0 1.0  

1 = farmer use improved seed 0.75 0.43 0 1.0  

Labor per sqr meter (days/sqr meter)  0.04 0.03 0 0.3  

Seed per sq meter (000 VND/sqr meter) 0.24 0.24 0 6.9  

Fertilizer per sq meter (000 VND/sqr meter) 0.59 0.62 0 10.0  

Pesticide per sqr meter (000 VND/sqr meter) 0.15 0.21 0 2.7  

1 = Good soil quality  0.77 0.42 0 1  

1= Flat land terrain 0.66 0.48 0 1  

Shock variables      

1= farmers was hit by a pest shock 0.31 0.46 0 1  

1= farmers was hit by a drought shock 0.13 0.33 0 1  

Loss after a pest shock (000 VND) 1,107 4,384 0 126,600  

Loss after a drought shock (000 VND) 300 1,747 0 41,000  

Observations 2,205 

Note: Own elaboration based on dataset. 

  



112 

 

Table 3. Estimates of the Tobit model for the logarithm of pesticide value per square meter. Total 

sample.  

Variables (1) (2) (3) (4) (5) (6) 

Risk aversion       

Absolute risk aversion (small prize) -0.025*** -0.023**     
 (0.009) (0.009)     

Absolute risk aversion (big prize)    -0.247** -0.246**  

    (0.104) (0.104)  
1= Risk averse  (small prize)   -0.019    

   (0.016)    

1= Risk averse (big prize)      -0.045** 
      (0.019) 

Shocks       
1= farmers experienced a pest  0.002  0.003 0.003  0.002 

 (0.006)  (0.006) (0.007)  (0.007) 

1= farmers  experienced a drought   -0.016**  -0.016** -0.019**  -0.019** 
 (0.008)  (0.008) (0.008)  (0.008) 

Monetary loss       

Ln(Loss after a pest shock)  0.001   0.001  
  (0.001)   (0.001)  

Ln(Loss after a drought shock)  -0.003**   -0.003***  

  (0.001)   (0.001)  

Control variables       

1= HH is male -0.002 -0.001 -0.001 0.000 0.001 0.007 

 (0.009) (0.009) (0.009) (0.009) (0.009) (0.009) 
Ln(Head’s age)  0.030** 0.023** 0.029** 0.034*** 0.034*** 0.035*** 

 (0.012) (0.012) (0.012) (0.012) (0.012) (0.012) 

Ln(Head’s schooling ) 0.028** 0.024** 0.028** 0.026** 0.026** 0.025** 
 (0.012) (0.012) (0.012) (0.012) (0.012) (0.012) 

Ln(Head’s schooling )^2 -0.006 -0.005 -0.006 -0.005 -0.005 -0.005 

 (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) 
Ln(farm size)  -0.010*** -0.005 -0.011*** -0.011*** -0.011*** -0.011*** 

 (0.003) (0.004) (0.003) (0.003) (0.003) (0.003) 

Ln(# family members) -0.030*** -0.027*** -0.030*** -0.033*** -0.033*** -0.032*** 
 (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) 

1= HH received pest extension  -0.013** -0.008 -0.014** -0.012* -0.011* -0.010 

 (0.006) (0.006) (0.006) (0.006) (0.006) (0.006) 
1= HH borrowed money 0.013** 0.014*** 0.013** 0.015*** 0.015*** 0.015*** 

 (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) 

Ln(Household’s wage)  0.012*** 0.011*** 0.013*** 0.012*** 0.012*** 0.012*** 
 (0.004) (0.004) (0.004) (0.003) (0.003) (0.003) 

Ln(Household’s wealth)  0.00286*** 0.003*** 0.003** 0.003*** 0.003*** 0.003*** 

 (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 
1 = HH received public- transfers 0.002 0.004 0.000 -0.004 -0.004 -0.003 

 (0.007) (0.007) (0.007) (0.008) (0.008) (0.008) 

1 = Good soil quality  0.013** 0.016*** 0.012* 0.011* 0.011* 0.012* 
 (0.006) (0.006) (0.007) (0.007) (0.006) (0.007) 

1= Flat land terrain 0.035*** 0.028*** 0.035*** 0.034*** 0.034*** 0.0345*** 

 (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) 
Constant 0.065 0.091 0.070 0.059 0.059 0.079 

 (0.065) (0.064) (0.066) (0.066) (0.066) (0.067) 

Zone dummies Yes Yes Yes Yes Yes Yes 
Observations 2,156 2,156 2,156 2,205 2,205 2,205 

Note: Columns (1)-(3) display the estimated coefficients for the total sample using responses to the small lottery 

prize. Columns (4)-(6) use answers to the big lottery prize. The dependent variable is the logarithm of the pesticide 
value per square meter used in rice production. All specifications are estimated by the Tobit model and include a full 

set of control covariates. Robust standard errors in parentheses.*** p<0.01, ** p<0.05, * p<0.1 
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Table 4.  Estimation of mean and variance functions. 

Variables 
(1) 

Mean 

(2) 

Variance 

 

Inputs    

1= farmers irrigate  -0.042***  
  (0.006)  

1 = farmer use improved seed  -0.011**  

  (0.005)  
Labor per sq meter  0.069*** -0.033  

 (0.013) (0.087)  

Seed value sq meter 0.043*** 0.049***  
 (0.013) (0.015)  

Fertilizer value per sq meter 0.101*** -0.089***  

 (0.009) (0.009)  
Pesticide value sq meter  0.112***  

  (0.017)  

1 = Good soil quality  0.054*** 0.0005  

 (0.015) (0.0046)  

1= Flat land terrain 0.086*** -0.001  

 (0.017) (0.005)  

Damage control inputs    

𝜇 -0.821***   

 (0.228)   

Pesticide value sq meter 7.132**   
 (2.896)   

1= farmers irrigate 1.125***   

 (0.247)   
1 = farmer use improved seed -0.094   

 (0.185)   

    
Zones dummies Yes Yes  

    

Constant 0.636*** 0.164***  
 (0.042) (0.008)  

    

R square - 0.108  
Observations 2,199 2,199  

Note: Column (1) displays the estimated coefficients of the 

yield function. The dependent variable is kilos of rice per 

square meter. This specification is estimated by NLS. 
Column (2) shows the coefficients for the variance function. 

The dependent variable is the absolute value of predicted 

errors of the mean function. This specification is estimated by 
OLS. Robust standard errors in parentheses for the mean 

function.*** p<0.01, ** p<0.05, * p<0.1. 

 

  



114 

 

Table 5.  Estimation of mean functions with interactions. Dependent variable: Yield. 

Variables 
(1) 

 

(2) 

 

 

Inputs    

1= farmers irrigate 0.038*** 0.038***  
 (0.008) (0.008)  

1 = farmer use improved seed 0.008 0.004  

 (0.007) (0.007)  
Labor per sq meter  2.527*** 1.947***  

 (0.322) (0.332)  

Labor per sq meter^2 -9.306*** -7.325***  
 (2.261) (2.152)  

Seed value sq meter 0.153*** 0.177***  

 (0.0251) (0.025)  
See value per sq meter^2 -0.031** -0.037***  

 (0.006) (0.007)  

Fertilizer value per sq meter 0.075*** 0.070***  

 (0.010) (0.009)  

Fertilizer value per sq meter^2 -0.009*** -0.009***  

 (0.002) (0.002)  
Pesticide value sq meter 0.132** 0.138***  

 (0.052) (0.050)  

Pesticide value per sq meter^2 0.026 0.040  
 (0.042) (0.045)  

1 = Good soil quality  0.010* 0.019***  

 (0.006) (0.006)  
1= Flat land terrain 0.042*** 0.026***  

    

Shocks    
1= farmers experienced a pest  -0.019**   

 (0.008)   

1= farmers  experienced a drought   -0.031***   
 (0.010)   

Ln(Loss after a pest shock)  0.000  

  (0.000)  
Ln(Loss after a drought shock)  -0.000**  

  0.000  

Pesticide*pest shock 0.065   
 (0.049)   

Pesticide*drought shock -0.109*   
 (0.064)   

Pesticide*pest loss  0.000  

  (0.000)  
Pesticide*drought  loss  0.000  

  (0.000)  

    
Zones dummies Yes Yes  

Constant 0.192*** 0.187***  

 (0.015) (0.014)  
    

R square 0.415 0.436  

Observations 2,199 2,199  

Note: Column (1) displays the estimated coefficients of the 
augmented yield function as assuming interaction of pesticide 

input with shock indicators. Column (2) replaces drought 

indicators with monetary losses. The dependent variable is kilos 

of rice per square meter. Models are estimated by OLS, and 

include zone dummies. We use a quadratic functional form. 

Robust standard errors in parentheses.*** p<0.01, ** p<0.05, * 
p<0.1. 
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Figures 

 

Figure 1. Histogram of the willing to pay for the hypothetical lottery. Positive willingness to pay (000 

VND) 

 

 

 

Source: Own elaboration based on dataset. 
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Appendix A: Additional Tables and Figures. 

 

Table A1. Difference in means (participants vs. non-participants in the lottery) 

Variables 

Small prize lottery Big prize lottery 

Mean 
Differences p-value 

Mean 
Differences p-value 

Non-part Part Non-part Part 

1= HH is male 0.84 0.87 0.03 0.07* 0.84 0.88 0.03 0.03** 

Head’s age (years) 49.14 49.31 0.18 0.76 49.06 49.55 0.49 0.39 

Head’s schooling (N grades) 5.47 5.92 0.44 0.01*** 5.47 5.97 0.50 0.00*** 

Farm size (m2) 8,973 7,973 -999.5 0.05** 9,017 7,901 -1,115 0.03** 

# family members 4.92 4.78 -0.14 0.10* 4.94 4.76 -0.18 0.03** 

1= HH received pest extension  0.37 0.32 -0.05 0.03** 0.37 0.32 -0.06 0.01*** 

1= HH borrowed money 0.52 0.53 0.01 0.69 0.52 0.54 0.01 0.53 

Household’s incomes (000 VND) 62,941 71,737 8,795 0.02** 63,105 72,348 9,243 0.02** 

Household’s wealth (000 VND) 39,279 43,083 3,804 0.09* 39,569 43,301 3,732 0.09* 

1 = HH received public-private  0.80 0.75 -0.05 0.01*** 0.80 0.75 -0.05 0.01*** 

1= farmers experienced a pest 0.33 0.27 -0.07 0.00 0.33 0.27 -0.06 0.00*** 

1= farmers  experienced a drought   0.13 0.12 -0.02 0.23 0.13 0.12 -0.02 0.22 

1 = Good soil quality  0.76 0.77 0.01 0.71 0.76 0.77 0.00 0.81 

1= Flat land terrain 0.63 0.69 0.06 0.00*** 0.63 0.70 0.07 0.00*** 

Observations 1,389 768     1,382 823     

Note: p<0.01, ** p<0.05, * p<0.1. 
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Figure A1. Spi index. 2010-2012.  

 

 

 

 

Note: Red color identifies droughts (SPI lower than -1); while white color shows normal climate conditions (SPI between -1 and 1); and green areas 
identify wet periods (SPI greater than 1). 
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Table A2. Estimates of the Tobit model for the logarithm of pesticide/fertilizer value per square 

meter.  Excluding non-participants (Weighted regression). 

Variables (1) (2) (3) (4) (5) (6) (7) (8) 

Risk aversion         

Absolute risk aversion (small prize) -0.026***    -0.025**    
 (0.010)    (0.010)    

Absolute risk aversion (big prize)   -0.178*   -0.185* 0.402**  

   (0.107)   (0.110) (0.183)  
1= Risk averse  (small prize)  -0.014       

  (0.016)       

1= Risk averse (big prize)    -0.034*    0.083** 
    (0.020)    (0.030) 

Shocks         
1= farmers experienced a pest  -0.007 -0.005 -0.008 -0.009 -0.007 -0.008 0.001 0.004 

 (0.012) (0.012) (0.013) (0.012) (0.012) (0.014) (0.024) (0.024) 

1= farmers  experienced a drought   -0.028* -0.028* -0.034** -0.034**   0.024 0.024 
 (0.015) (0.015) (0.015) (0.014)   (0.029) (0.029) 

SPI index     0.066*** 0.067***   

     (0.016) (0.016)   
         

Controls Yes Yes Yes Yes Yes Yes Yes Yes 

Geographical variables Yes Yes Yes Yes Yes Yes Yes Yes 
Zones dummies Yes Yes Yes Yes Yes Yes Yes Yes 

         

Constant 0.010 0.022 -0.017 -0.005 0.090 0.076 0.054 0.025 
 (0.103) (0.105) (0.107) (0.107) (0.010) (0.101) (0.246) (0.247) 

Observations 768 768 819 819 768 819 819 819 

Note: Columns (1)-(3) display the estimated coefficients for the sub-sample of non-zero respondents to the small lottery prize. 

Columns (4)-(6) use answers to the big lottery prize. The dependent variable is the logarithm of the pesticide value per square 
meter used in rice production. Columns (7)-(8) show the estimated coefficients for the logarithm of the fertilize value per square 

meter used in rice production All specifications are estimated by the Tobit model and include a full set of control covariates. 

Robust standard errors in parentheses.*** p<0.01, ** p<0.05, * p<0.1. 
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Table A3. Production and shock variables. 2010-2012 panel. 

Variables 
2010 2012 

Mean St dev Min Max Mean St dev Min Max 

Output and input variables         

Output (kg) 1,839 4,272 0.0 116,400 2,111 4,671 1.0 89,700 
Land (sqr meter) 4,727 7,702 144 118,000 4,727 8,313 45.0 145,000 

Labor (days)  109 77 0.0 650 108 87 0.0 1,000 

Seed value (000 VND) 894 2,002 0.0 48,000 910 1,960 0.0 36,081 
Fertilizer (000 VND) 2,496 8,148 0.0 250,000 2,319 6,264 0.0 144,401 

Pesticide (000 VND) 1,147 6,942 0.0 250,000 1,048 6,621 0.0 216,597 

Yield (kilos/sqr meter) 0.42 0.15 0.0 1.9 0.48 0.63 0.0 7.2 
1 = farmers irrigate 0.85 0.35 0.0 1.0 0.88 0.32 0.0 1.0 

1 = farmer use improved seed 0.74 0.44 0.0 1.0 0.76 0.43 0.0 1.0 

Labor per sqr meter (days/sqr meter)  0.04 0.03 0.0 0.3 0.04 0.06 0.0 0.6 
Seed per sq meter (000 VND/sqr meter) 0.24 0.25 0.0 6.9 0.25 0.33 0.0 3.4 

Fertilizer per sq meter (000 VND/sqr meter) 0.59 0.60 0.0 10.0 0.62 0.64 0.0 12.1 

Pesticide per sq meter (000 VND/sqr meter) 0.15 0.21 0.0 2.7 0.16 0.25 0.0 2.9 

Shock variables         

1= farmers experienced a pest  0.31 0.46 0.0 1.0 0.30 0.46 0.0 1.0 

1= farmers experienced a drought  0.13 0.34 0.0 1.0 0.09 0.28 0.0 1.0 
Loss after a pest (000 VND) 1,133 4,539 0.0 126,600 1,302 5,321 0.0 138,994 

Loss after a drought (000 VND) 301 1,773 0.0 41,000 91.04 637 0.0 13,745 

Spi index -1.43 0.60 -2.38 -0.5 0.50 0.55 -0.6 1.2 

Observations 1,947 1,947 

Note: Own elaboration based on dataset. Figures correspond to the balanced panel. Values are deflated (2010=100). 
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Table A4.  Estimation of mean and variance functions for alternative functional forms and 

panel data. 

Variables 

(1) 

Quadratic 

Mean 

(2) 

Variance 

(3) 

Cob Douglas 

Mean 

(4) 

Variance 

(5) 

Quadratic 

Mean (FE) 

(6) 

Variance (FE) 

Inputs       

1= farmers irrigate 0.039*** -0.003 0.119*** -0.030*** -0.006 -0.011 

 (0.008) (0.005) (0.029) (0.007) (0.012) (0.009) 
1 = farmer use improved seed 0.007 -0.002 -0.001 -0.016*** 0.024*** -0.000 

 (0.007) (0.003) (0.022) (0.005) (0.009) (0.005) 

Labor per sq meter  2.493*** 0.153** 0.067*** -0.063 -0.222 0.727*** 
 (0.322) (0.067) (0.013) (0.097) (0.380) (0.091) 

Labor per sq meter^2 -9.246***    9.979***  
 (2.243)    (1.671)  

Seed value sq meter 0.138*** -0.003 0.039*** 0.048*** 0.306*** 0.047*** 

 (0.025) (0.012) (0.013) (0.017) (0.077) (0.018) 

See value per sq meter^2 -0.031***    -0.0811***  

 (0.007)    (0.029)  

Fertilizer value per sq meter 0.078*** -0.021*** 0.092*** -0.074*** 0.025 -0.003 
 (0.010) (0.007) (0.010) (0.010) (0.027) (0.011) 

Fertilizer value per sq meter^2 -0.010***    0.006  

 (0.002)    (0.006)  
Pesticide value sq meter 0.137*** 0.048*** 0.054*** 0.044** -0.216* 0.081*** 

 (0.049) (0.013) (0.009) (0.019) (0.128) (0.021) 

Pesticide value per sq meter^2 0.042    0.312**  
 (0.049)    (0.146)  

       

Geographical variables Yes Yes Yes Yes No No 
Zones dummies Yes Yes Yes Yes No No 

Year variable No No No No Yes Yes 

       
Constant 0.175*** 0.094*** 0.588*** 0.176*** 0.320*** 0.061*** 

 (0.014) (0.006) (0.043) (0.009) (0.0294) (0.010) 

       
R square 0.403 0.039 - 0.076 0.372 0.074 

Observations 2,199 2,199 2,199 2,199 3,894 3,894 

Note: Column (1) displays the estimated coefficients of the yield function as assuming a quadratic functional form. 

This specification is estimated by OLS. Column (3) assumes a Cob-Douglas production function. The Cob-Douglas 
function is estimated by NLS. Finally, column (4) shows estimations using the panel 2010-2012 and assuming a 

quadratic function for the mean. This latter is estimated by FE and includes a dummy variable for the year 2012 (not 

shown). In these columns, the dependent variable is kilos of rice per square meter. Columns 2, 4 and 6 show the 
estimates of variance functions, respectively. The dependent variable is the absolute value of predicted errors. Robust 

standard errors in parentheses.*** p<0.01, ** p<0.05, * p<0.1. 
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Table A5.  Estimation of mean functions with interactions. Fixed effect estimator (FE). 

Dependent variable: Yield. 

Variables 
(1) 

 

(2) 

 

(3) 

 

 

Inputs     
1= farmers irrigate -0.007 -0.007 -0.004  

 (0.012) (0.012) (0.012)  

1 = farmer use improved seed 0.022*** 0.024*** 0.019**  
 (0.009) (0.009) (0.009)  

Labor per sq meter  -0.268 -0.233 -0.202  

 (0.365) (0.374) (0.369)  
Labor per sq meter^2 10.14*** 10.04*** 9.786***  

 (1.718) (1.681) (1.676)  
Seed value sq meter 0.308*** 0.305*** 0.303***  

 (0.078) (0.077) (0.074)  

See value per sq meter^2 -0.0816*** -0.081*** -0.078***  

 (0.031) (0.030) (0.029)  

Fertilizer value per sq meter 0.025 0.025 0.028  

 (0.028) (0.027) (0.028)  
Fertilizer value per sq meter^2 0.006 0.006 0.006  

 (0.006) (0.006) (0.006)  

Pesticide value sq meter -0.199* -0.219* -0.196  
 (0.111) (0.122) (0.120)  

Pesticide value per sq meter^2 0.310** 0.316** 0.285**  

 (0.139) (0.144) (0.138)  
1 = Good soil quality      

     

1= Flat land terrain     
     

Shocks     

1= farmers experienced a pest  -0.004 -0.007   
 (0.010) (0.009)   

1= farmers  experienced a drought   -0.054    

 (0.037)    
Spi index  -0.019   

  (0.013)   

Ln(Loss after a pest shock)   0.000  
   (0.000)  

Ln(Loss after a drought shock)   -0.000**  

   (0.000)  
Pesticide*pest shock -0.092 -0.063   

 (0.087) (0.080)   

Pesticide*drought shock 0.172    
 (0.348)    

Pesticide* Spi index  0.084*   

  (0.043)   
Pesticide*pest loss   -0.000  

   (0.000)  

Pesticide*drought  loss   0.000  
   (0.000)  

     

Year variables Yes Yes Yes  
Constant 0.332*** 0.323*** 0.313***  

 (0.029) (0.028) (0.0296)  

     

R square 0.378 0.373 0.379  

Observations 3,894 3,894 3,894  

Note: Column (1) displays the estimated coefficients of the augmented yield 
function as assuming interaction of pesticide input with shock indicators. 

Column (2) replaces drought indicators with the SPI index; Column (3) 

incorporates monetary losses, instead. All the models are estimated by FE and 
include a dummy variable for the year 2012. We assume a quadratic functional 

form. In all the columns, the dependent variable is kilos of rice per square 

meter. Robust standard errors in parentheses.*** p<0.01, ** p<0.05, * p<0.1. 
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Weather Shocks and Spatial Market Efficiency. Evidence from 

Mozambique. 

 

César Salazar-Espinoza, Hailemariam Ayalew and Peter Fisker

 

      Abstract 

The aim of this paper is to study the effect of weather shocks (drought and flood) on agricultural market 

performance in Mozambique. To do so, we employ dyadic regression analysis and use data on monthly 

maize prices, transport costs and spatial identification of droughts and flooded areas. Results show 

differentiated effects of different weather shocks. While a drought causes price differences between 

markets to reduce, suggesting a supply shock effect, price dispersion increases during flood periods, along 

with increases in food transport costs. Results also reveal some heterogeneity: Floods are found to 

increase price dispersion more among markets that are closer to each other and connected by poorer 

transport infrastructure. 
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1 Introduction 

In the last two decades, the world has witnessed an increase in the frequency and severity of natural 

disasters. Such prevalence of natural hazards has disrupted social and economic systems in a variety 

of ways. According to the Centre for Research on Epidemiology of Disasters (EM-DAT, 2011), since 

1970 more than five billion people have been affected by natural hazards and over one trillion US 

dollars have been incurred in financial losses. These problems are more severe in developing 

countries where economies rely more on the agricultural sector, and whose population is more 

exposed and vulnerable to extreme natural events. In particular, Mozambique is frequently affected 

by extreme climatic variations: fifty-two weather-related disasters occurred during the last thirty 

years, of which thirty-three corresponded to either drought or flood events (EM-DAT, 2013). 

 

In this paper, we exploit variation in the incidence of droughts and floods across periods and markets 

to study the relationship between weather shocks and agricultural market efficiency in Mozambique. 

Empirical literature has put a lot of attention on the impact of natural hazards on household-

individual outcomes (see for example Paxson, 1992; Rosenzweig and Binswanger, 1993; Jensen, 

2000; Rose, 2001; Ito and Kurosaki, 2009; Maccini and Yang, 2009). However, studies examining 

the effect of weather-related shocks on market performance are less common (Aker, 2010a).  

 

Spatial market efficiency is one of the crucial components for successful policy transmission and 

effectiveness. If markets are spatially segmented, it will lead to fragmentation of economic agents 

and households across space. This, in turn, undermines the transmission of price incentives necessary 

to exploit market advantages. The latter may lower resilience to localized shocks. For example, crop 

failure occurring unevenly across markets leads to price differences, signaling potential benefits 

through spatial and temporal arbitrage. If markets work poorly, trade from surplus to deficit areas 

will not be promoted, which in turn exacerbates the cost of food crisis (Ó Gráda, 2007). Thus, the 

attainment of spatial market efficiency is crucial to exploit the comparative advantages of 

specialization, reduce price fluctuations and ameliorate the impacts of weather shocks, thereby 

accelerating the process of economic development (Baulch, 1997). 

 

Since the end of the war in 1992, profound market liberalization reforms and substantial investments 

in roads have been carried out in Mozambique (Tarp et al., 2002). Accordingly, the existing empirical 

evidence suggests that spatial market integration has improved during the post reform period; 
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however, it is still inadequate due to high transfer costs (Penzhorn and Arndt, 2002; Tostao and 

Brorsen, 2005). The persistence of poor road infrastructure and long distances from north to south 

appears to be limiting spatial trade between maize surplus and deficit regions, generating large 

differences between farm-gate and urban prices of agricultural products. Arndt et al. (2012a) showed 

that these marketing margins are one of main responsible for the persistent poverty observed in 

Mozambique. Cirera and Arndt (2008) highlight the role of road infrastructure improvements for 

enhancing agricultural market performance.  

 

Our study expands on the existing literature in the following ways: First, rather than focusing solely 

on drought events, we extend the analysis to flood shocks. This distinction is important given the 

different potential mechanisms through which weather shocks affect market price dispersion. While 

droughts mainly affect market performance via a negative supply shock, floods are likely to affect 

both production (as a supply shock) and trade flows due to an increase in transport costs. 

Furthermore, this natural hazard merits special attention in Mozambique since climate change will 

potentially have substantial economic implications through the flooding impact channel (Chinoswsky 

and Arndt, 2012; Arndt and Thurlow, 2013). Second, instead of using precipitation data from a few 

meteorological stations, this paper identifies droughts by combining satellite measures of greenness, 

rainfall and temperature.  

 

The remainder of this study is organized as follows: Section 2 describes key characteristics of the 

agriculture sector, maize market and climate patterns in Mozambique. Section 3 introduces the 

conceptual framework. Section 4 presents the data, including remote sensing and climate data, which 

we use to distinguish between drought and flood events. Section 5 describes our econometric model. 

Section 6 discusses the main results; and Section 7 concludes.  

 

2 Agriculture, maize market and weather shocks in Mozambique 

The agricultural sector contributes around 30% of the Gross Domestic Product (GDP) and employs 

80% of the workforce in Mozambique (Jones and Tarp, 2013). The sector remains relatively 

unproductive and mainly consists of small-land holders, comprising 85% of the total rural households 

(The World Bank, 2012). Agriculture is mainly rain-fed with less than 0.5% of the total cropland 

under irrigation, almost all in sugar cane production (The World Bank, 2010). Maize, which is one of 

main staple and cash crop, dominates the agricultural sector of Mozambique. This crop is grown in 
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the main rainy season (October-March), harvested in April/May and mainly commercialized in the 

post-harvest season (May-September). Its production varies across regions. While the northern and 

central regions are net producers, accounting for around 90% of national production, the southern 

areas are net consumers.
1
  

 

Thus, interregional trade is very important for Mozambique economy. Surplus production in central 

and northern areas is not only exported to the south but also to neighboring countries such as Malawi. 

Furthermore, the south also meets its demand through imports from South Africa.
2
 Maize markets in 

Mozambique operate in a free market system, where the government plays a limited role. 

Commercialization is largely carried out by many informal traders
3
 on small-scale basis with a rapid 

turnover of product and storage between three days and a week (Alemu and Van Schalkwyk, 2009).
4
 

Since informal traders have limited access to credit and are not usually the owners of the transport 

equipment, they are more sensitive to transaction costs (Cirera and Arndt, 2008). 

 

Maize production is quite volatile in Mozambique due to fluctuating climate conditions (Penzhorn 

and Arndt, 2002; Cirera and Arndt, 2008; Acosta, 2012). Mozambique is extremely prone to weather-

related shocks, ranked third in Africa. Estimations suggest that annually the country loses around one 

percent of GDP due to weather-related shocks (World Bank, 2014). Droughts and floods are the most 

frequent natural phenomena in Mozambique (EM-DAT, 2013). The incidence of drought shocks is 

higher in the southern region (7 times each 10 year) compared to the central (4 times each 10 year) 

and the northern (2 times every ten year) regions. Although less recurrent, floods are also destructive 

and their effects can prevail for several months (World Bank, 2010). These also primarily occur in 

southern and central regions, along river basins, in low-lying areas, and in zones with poor drainage 

system. They are caused by not only excessive rainfall but also increases in water courses from rivers 

in upstream neighboring countries. Estimations suggest that every year around 100 km of roads are 

affected by flood events, which results a direct loss of approximately US$700,000 (GFDRR, 2012).  

                                                 

 
1 The north region concentrates more than half of the population of the country and also accounts for about 60% of Mozambique’s maize sales. 

However, it has the lowest proportion of households growing maize in Mozambique (Tschirley et al., 2006).  
2 Imports of white maize grain from South Africa amounted to around USD 20.000.000 between 2008 and 2009 (Acosta, 2012). 
3 Informal trades are defined as those that neither have permanent physical infrastructure nor are registered with the tax authority. In Mozambique, 

informal traders buy maize grain in bulk and sell it to other buyers, but they may also sell maize grain in small quantities to consumers, then acting as 

both wholesalers and in some occasions as retailers (Abdula, D., 2005). 
4 In a survey conducted in Maputo and Xai Xai, more than half of the informal traders reported selling between 1 to 10 bags of 70 kg of maize grain per 

week. Furthermore, purchases of maize by informal traders take place in assembly points usually located along the main roads. Informal traders reach 

those points by public transportation. Transport back to the selling points (places where they intend to sell) is done by trucks that come back from rural 
areas after delivering consumer goods. It can take several days a truck to appear (Abdula, D., 2005).  
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The existence of a poor road infrastructure exacerbates the impact of floods. For example, moving 

grain from northern and central provinces to the south becomes practically impossible during the 

rainy season when the Zambezi River
5
 gets flooded, disconnecting the north from the rest of the 

country. The consequences are aggravated because other transport options are quite limited. For 

example, maritime transport in Mozambique is an expensive and inefficient alternative, with limited 

vessel availability and low frequency of service (Tostao and Brorsen, 2005; Cirera and Arndt, 2008). 

Moreover, existing rail links in Mozambique were built up to facilitate east-west trade between 

colonial powers, as opposed to north-south trade (Tschirley et al., 2006). Projections indicate that 

climate change is expected to increase the frequency and magnitude of natural hazards. As a result, 

droughts and floods will probably present large future threats to Mozambique’s economy (World 

Bank, 2010; Arndt and Thurlow, 2013).
6
  

 

3 Conceptual framework  

Markets are said to be integrated if it is possible to transfer physical flows of product or price shocks 

from one market to another. Two main approaches have been traditionally used to conceptualize 

market integration. The first approach follows a flow-based view, suggesting that trade flows are 

sufficient, but no necessary for market integration. Thus, the observation of price shocks being 

transmitted even in absence of trade can also be seen as a signal of market integration. The second 

approach follows a price-based notion of efficiency, in which two markets are in a competitive 

equilibrium if there is zero marginal profit to arbitrage (Barret and Liu, 2002). Under this approach, 

two locations may reach spatial efficiency if they do not trade because there is no positive arbitrage 

to do so. This is the case when transaction costs are high.
7
 

 

This paper follows the spatial efficiency approach to market integration.
8
 The standard view on 

spatial market equilibrium suggests that the price difference between two markets which engage in an 

identical good depends on the transaction costs between them (Enke, 1951; Samuelson; 1952; Stigler; 

1966; and Takayama and Judge, 1971).  

                                                 

 
5 The Zambezi river separates the northern region from the central and south regions, acting as a natural barrier to north-south trade. 
6 The four possible scenarios for climate change indicate that climate will become hotter and more volatile in Mozambique (Arndt et al., 2012b). 
7 The argument of trade being neither necessary nor sufficient for market integration supports the inclusion of market-pair observations for which trade 

may be discontinuous or very limited. On the other hand, including those observations may reveal additional insights on markets being continuously in 

autarky, important for implications and interpretations at the face of the occurrence of floods. 
8 Since trade is not a sufficient condition for market integration and price data is more observable than trade flows, the existing economic literature has 

focused more on the spatial efficiency approach. Furthermore, quantity-based measures of integration tell us nothing about welfare consequences. Thus, 

focusing on price-based notions of market integration allows economists to inform if trade patterns are efficient, and propose policy recommendations to 
improve resource allocation across markets (Barret and Liu, 2002). 
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Consider two markets (𝑖 and 𝑗) that undertake trade of a homogeneous commodity. Assume 𝑃𝑖𝑡 and 

𝑃𝑗𝑡 are the autarky prices in market 𝑖 and 𝑗 at time 𝑡, respectively. 𝑇𝐶𝑖𝑗 is the transaction cost from 

market 𝑖 to 𝑗 or vis versa. Market 𝑖 and 𝑗 are said to be spatially efficient if the price of maize in the 

importing market 𝑗 is equal to the price in the exporting market 𝑖 plus the transaction cost between 

the two markets (Baulch, 1997).  More specifically, 𝑖  and 𝑗 will be in the long-run competitive 

equilibrium if and only if the following “no spatial arbitrage” condition holds: 

 

𝑃𝑗𝑡 − 𝑃𝑖𝑡 − 𝑇𝐶𝑖𝑗 = 0                                                                  (1) 

 

𝑃𝑗𝑡−𝑃𝑖𝑡−𝑇𝐶𝑖𝑗 < 0                                                                   (2) 

 

Equation (1) and (2) are called the Euler’s equations. Equation (1) represents the situation where the 

marginal profit of spatial arbitrage is zero and markets are spatially efficient, whereas in equation (2) 

spatial arbitrage is negative or not profitable, that is, price differential is below transaction cost. This 

condition represents the autarky regime, and does not imply necessarily spatial inefficiency but it is 

commonly associated with lack of integration (Barret and Liu, 2002).  

 

Equation (1) and (2) can be used to derive some predictions regarding the association between 

weather shocks and spatial market efficiency. Droughts in general affect only production, and will 

not have any effect on transaction cost. By assuming that transaction costs between 𝑖 and 𝑗 remain 

constant and one/both markets are affected by a drought, increasing prices more in one market 

compared to another, arbitrage opportunities may emerge. If markets work relatively efficient, price 

transmission will take place, and we should expect a reduction in price dispersion between markets. 

 

Alike droughts, floods can be considered as a negative supply shock which can adversely affect 

production of a commodity. The earlier predictions also apply to this case. However, floods will also 

affect the price differential between markets through their effect on transaction cost. Transaction 

costs may increase during a flooding period, because of damage or obstruction on roads and main 

market accesses. Predictions from the comparative static analysis suggest a positive effect on the 

equilibrium price dispersion at the face of floods. 
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4 Data 

4.1 Market information 

We use data on prices and transport costs from the “Sistema De Informação De Mercados Agrícolas 

De Moçambique” (SIMA, 2011). SIMA was established in 1991 by the Ministry of Agriculture and 

Rural Development (MADER) of Mozambique in order to collect and disseminate information on 

agricultural markets, including prices, transport costs, opportunities and market perspectives. The 

information is made public by bulletins published weekly on its website for selected markets. We use 

the data on monthly maize prices of 25 markets and transport costs between markets over the 

2005:01-2012:06 period.
9
 Transport costs are used to proxy for transaction costs.

10
 We choose white 

maize as the reference good because it is relatively homogenous and broadly demanded in 

Mozambique, which allows comparison across markets in the country. Additionally, we employ 

information on mobile network, distance, road quality and diesel prices in our estimations. Mobile 

phone development is expected to lead to increased market efficiency (Aker, 2010b). We proxy for 

the presence of mobile network in a market by using village level data from the Trabalho de Inquérito 

Agrícola (TIA).
11

 Distances between markets are calculated using longitudes and latitudes and the 

Vincenty formula, which serves as a rough estimate of actual travel distances. Road network 

information is provided by the African Development Bank Group for 2005. This data informs on 

quality of primary and secondary roads in Mozambique by recording the type of road connecting two 

markets as paved, gravel or earth (see Figure A1). Local diesel prices are estimations for Maputo city 

to construct the Consumer Price Index (CPI). They are provided by the National Statistics Institute 

(Instituto National de Estadistica, INE) of Mozambique. Descriptive statistics of the variables used in 

the estimations are summarized in Table 1. 

 

[INSERT TABLE 1 ABOUT HERE] 

 

Maize price fluctuations are quite high in Mozambique.  Prices per kilo range from around 2.000 to 

14.000 MZN, with a mean of 4.800 MZN in the study period. Transport costs are less volatile, 

                                                 

 
9 We aggregate the weekly price data at a monthly basis because it is less likely that arbitrage operates at a weekly basis. In other words, a larger weekly 
price differential may be driven by other factors than arbitrage.  
10 Transaction costs may also include handling costs, fixed costs and other less measurable costs associated with identification of business and 

negotiation, monitoring and enforcement of contracts, risk, etc. However, transport costs are the main component of transaction costs. 
11 We only have three point of information: 2005, 2007 and 2011. A market near a village reporting to have mobile network is assumed to have also 

mobile network. We notice a gradual development of this technology. While in 2007, 11 out of 25 markets did not have mobile network, only 2 markets 

in 2007 were not found to have mobile phone coverage. From 2011 on, the TIA data suggests that all the markets included in this analysis enjoy of 
mobile network. 
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ranging from 870 to 1.130 MZN per kilo. However, these costs account for an important proportion 

of the total maize value: around 20% of the total price corresponds to transport costs. Overall, 

transaction costs are relatively high for agricultural products since their value is considerably lower 

compared with manufactured products or services. Thus, logistical considerations may matter more 

in agriculture (Barret et al., 2001). Only 57% of the routes considered here are connected by a paved 

road, and primary and secondary roads in the north are in relatively poorer conditions than in the 

central and south regions (see Figure A1). Markets are distributed over the entire territory, with inter-

market distances ranging from 4 km to over 1,660 km. 

 

Figure 1 presents a graphical inspection of monthly maize prices, transport costs and diesel prices. 

We notice substantial price variation during the sample period. May 2005 to June 2006 and May 

2008 to June 2009 are the main periods of higher maize prices. There was also a moderate increase in 

prices from June 2007 to March 2008, August 2009 to January 2010 and August 2010 to January 

2011. Increments in transport costs and oil prices are factors that could potentially lead to higher 

market prices. For example, from September to November 2005, and August to October 2009 both 

price of maize and transport costs exhibit a similar upward trend. Similarly, there is also a downward 

trend in both price and transport costs from March to July 2006 and March to May 2009. However, 

the major price peak periods from November 2005 to March 2006 and June 2007 to March 2008 are 

not in line with diesel or transport costs series. This may suggest the existence of climate-related 

factors. Since maize production is highly sensitive to droughts, and food transportation costs are 

supposed to be affected by flooding, we expect climatic shocks to have a lion’s share contribution to 

this observed price variation in Mozambique. 

 

[INSERT FIGURE 1 ABOUT HERE] 

 

4.2 Weather shock data 

4.2.1 Flood events 

To identify flood shocks, we use data recorded in the Global Active Archive of Large Flood Events 

(G.R.Brakenridge, 2013) from the Dartmouth Flood Observatory. The information documented in 

this archive is derived from news, governmental, instrumental, and remote sensing sources, and is 

updated continuously. Floods recorded here are classified at least as class 1 or large flood events, 

implying significant damage to structures or agriculture, fatalities, and/or 1-2 decades-long reported 
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interval since the last similar event (G. R. Brakenridge, 2013). We match flooded areas with market 

locations to identify whether or not a market in a determined period was flooded.
12

 We define two 

flood indicators: a dummy variable taking the value of 1 if only one market was affected, and a 

second dummy denoting that both markets were hit by a flood. To disentangle a transport cost shock 

from a potential supply shock as the result of a flood, we exploit the timing of flood occurrence in the 

following way. We implicitly assume that the full impact of a flood on transportation costs is felt 

while the flood lasts. This approach has some limitations since road infrastructure may suffer severe 

damages that compromise the normal functioning of roads in the short-term. For example, during 

road reparation periods transport costs may remain high. Unfortunately, we do not observe whether 

or not a road was damaged in our data. Thus, in the absence of this information, our approach seems 

to be more conservative, and estimates should be considered as lower bounds. On the other hand, 

floods may also lead to crop failure which is consistent with a supply shock. Thus, since floods occur 

mainly during the planting/sowing season (November-March), the identification of floods over the 

“flood period” may be more in line with a transport shock, hiding relevant information on the supply 

shock side effect. To identify this effect, we assume that production failure will materialize stronger 

on price dispersion from the harvesting period on. In this period, the trade mechanism starts taking 

place, which will potentially ease the exploitation of arbitrage rents. Thus, we additionally create 

cumulative supply flood shock indicators, starting from May (harvest-commercialization month) until 

the end of the agricultural season (September).  

Additionally, we explore an alternative strategy. We define a third flood indicator, which takes the 

value of 1 if the main primary/secondary road connecting two markets was flooded, and none of the 

markets were directly affected.  Transport costs are also supposed to increase in this case. 

 

Descriptive statistics for these indicators are presented in Table1. Flood areas are shown in Figure 2.  

 

[INSERT FIGURE 2 ABOUT HERE] 

 

                                                 

 
12 Some concerns can arise as this definition may leave out districts whose main markets were not affected, but a flood hit a considerable area of the 

district. To explore this further, we calculate the percentage of the total area of districts that were affected by a flood. We then calculate a correlation 

coefficient to study the statistical association between our flood indicator and this value. We find a strong association (0.83), suggesting that our flood 
indicators are good proxies. 
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Figure 2 shows that flooding is a more recurrent phenomenon in southern and central regions. Floods 

may affect specific areas only, for example cities or districts as in 2005 and 2010; but floods 

commonly turn out to be national disasters as effects extend to several provinces or even entire 

regions. To illustrate, large scale floods hit Mozambique in 2006, 2007, 2008 and 2012, covering 

areas up to 350,000 sq. km. Economic damages are reported to be quite substantial. For example, the 

2007 flood, recorded one of the worst natural disasters in Mozambique in the last 30 years, generated 

economic losses of around US$ 100 million (EM-DAT, 2013). On average, these large scale natural 

hazards affected about 30% of markets included in our sample.
13

  

 

4.2.2 Drought events 

To identify drought shocks, we construct two drought indicators. First, we follow Fisker (2014) in 

using predicted anomalies in the Normalized Difference Vegetation Index (NDVI).
14

 By anomalies 

we mean the deviation from a long-run average for a specific month, and we predict the greenness 

using lagged anomalies in rainfall and temperature. NDVI is calculated as the ratio between near 

infrared radiation and visible red radiation; a higher index value is related to a greener land surface. 

NDVI data is obtained from the MODIS Terra satellite.
15

 The link between anomalies in NDVI and 

climatic background variables for every month is modeled using up to 11 lags so that it is only what 

has happened during the preceding months is included. The estimations include monthly information 

on the NDVI, rainfall,
16

 temperatures at night and temperatures at daytime
17

 before aggregating to 

yearly averages. This leads to a satellite based drought-indicator with a spatial resolution of 

0.25*0.25 degrees that takes greenness into consideration, but importantly leaves out all 

anthropogenic causes of changes in greenness. The technical aspects regarding the estimation of 

                                                 

 
13 Flood damages can vary considerably depending on the type of the flood. For example, floodwater moving faster can damage road severely, implying 
substantial flood repair costs and in some cases, new road construction costs. In contrast, floodwater rising slowly and then falling slowly may have 

minor impacts, especially on paved roads (Chinowsky and Arndt, 2012). Unfortunately, the available data only allows us to distinguish intensity levels 

across different flood events but not within floods, which makes it difficult to formally test the effect of the duration/severity/magnitude of floods on 

market performance. Alternatively, we could have combined flood and rainfall data to identify wet cycles and then distinguish more severe flood events. 

However, a flood is a much more complex natural phenomenon, which responds to other parameters than only localized rainfall. For instance, floods in 

Mozambique may originate from very wet season in neighboring countries Zambia and Zimbabwe. 
14 From space it is possible to observe the surface of the earth and measure the light that is emitted at different wavelengths. Vegetation indexes such as 

the Normalized Difference Vegetation Index translate visible red and near infrared radiation into a decimal number between -1 and 1 which describes 
the greenness of a specified geographical area. 
15 It has been orbiting Earth daily since 2000. 
16 While greenness is best seen from above, rainfall is harder to measure using satellites. This study uses data from the Tropical Rainfall Measuring 
Mission (TRMM) which to our knowledge is the most precise and valid remote sensing estimate of rainfall for the relevant period. In terms of spatial 

extent and resolution, the TRMM data is not as good as our measures of greenness and land surface temperature. It includes pixels of 0.25 degrees, 

which seems sufficient for our purpose.  
17 Like NDVI, land surface temperature is measured from space globally using the MODIS Terra satellite, and again, the product in use has a spatial 

resolution of 0.05 degrees.  Anomalies in both daytime and nighttime temperatures are included in the model. On average, it is expected that daytime 

temperatures affect greenness negatively since hotter means drier in most parts of the world. Nighttime temperatures are likely to affect greenness 
positively, however, since cold also becomes a serious constraint for plant growth in some areas. 
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predicted greenness is described in Fisker (2014). We define that a drought occurs if the average 

predicted greenness value falls at or below minus 1.0.
18

   

 

Second, we use the Standardized Precipitation-Evapotranspiration Index (SPEI), a more commonly 

used drought index based on rainfall and temperature. The calculation of the SPEI is based on similar 

equations as the Standardized Precipitation index (SPI), but adds the component of 

evapotranspiration (Vincente-Serrano et. al, 2010). The SPEI is a multiscalar index based on long 

time series data of temperature and rainfall. Thus, the onset, duration and magnitude of drought 

conditions can be determined with respect to normal conditions defined over historical climate 

regularities. In particular, we use a 6 month time scale index with a 0.5 degrees spatial resolution 

based on monthly precipitation and potential evapotranspiration information back to 1901 from the 

Climatic Research Unit of the University of East Anglia. Contrary to the predicted NDVI described 

above, this index is based on observations from weather stations. This entails a number of advantages 

as well as drawbacks. A clear advantage is that, in the calculation of the index, it is possible to relate 

the climatic variation to a longer period of historical data. This generally increases the precision of 

the measure by allowing for a better understanding of the long-run average. In addition, close to 

weather stations, the measures of rainfall and temperature will probably be more precise than satellite 

observations. Two potential drawbacks arise when compared to the predicted NDVI: firstly, weather 

stations may be located far from each other, and the data for the area in between is roughly speaking 

an interpolation. This means that the error of the observed data increases with the distance to a 

weather station, which is most likely to be located near urban centers. Secondly, data derived from 

weather stations does not include greenness as a variable. This means that conditions that might 

affect the dry-ness of an area apart from rain and temperature are not captured by the index. Similar 

to the predicted NDVI, and following McKee et al. (1993; 1995), we define a drought event any time 

the SPEI value reaches an intensity of -1.0 or less.  

 

The assumption is that a drought affects price dispersion smoothly over the agricultural season. The 

computation of the drought indexes on the basis of preceding months allow us to account for this 

dynamic by assuming a weaker effect during the sowing/planting season, which gradually become 

                                                 

 
18 A similar classification is employed when using alternative drought indexes, for example, the Standardized Precipitation-evapotranspiration Index 
(SPEI). The NDVI has been standardized into a z-score to make it comparable with this index so that this classification also makes sense for the NDVI. 
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stronger until reaching the harvesting and commercialization period. Then, the effect vanishes 

gradually when reaching the onset of the next agricultural season.   

 

 Identification of wet and dry areas at the district level by the NDVI index is shown in Figure 3.  

 

[INSERT FIGURE 3 ABOUT HERE] 

 

A first observation is that droughts of different intensities occur unevenly across the country, which 

would ease crop risk sharing. Our index detects pronounced dry cycles in the south and north regions 

in 2005, central and southern areas in 2008 and the central region in 2012. Negative values of the 

drought index in 2005 and 2008 are consistent with the huge picks in maize prices observed in those 

years (see Figure A2). In particular, these droughts are recorded as one of the worst natural disasters 

in the last 30 years. According to official figures, an estimated of 1.4 million of people were affected 

by severe food shortage in 2005, and more than half million suffered food insecurity in 2008 (EM-

DAT, 2013). Descriptive statistics for drought shocks identified by either the NDVI or SPEI are 

similar (see Table 1).  

 

5 Estimation procedure 

Spatial market integration has typically been tested by looking at the co-movements or long-run 

relationship between spatial prices. Vector autoregressive (VAR) models, including co-integration 

analyses have been extensively used to examine this relationship. In general, these methods have 

been criticized since they often assume stationary transaction costs, as well as unidirectional and/or 

continuous trade patterns, assumptions commonly violated in developing countries (Barrett and Li, 

2002). Two alternative econometric approaches are intended to overcome these issues: the threshold 

autoregressive (TAR) and parity bounds models (PBM). The TAR models are a class of regime-

switching models in which the different regimes are defined by whether the price differential is less 

than, equal to or greater than a critical threshold value. One of the drawbacks of the TAR model is 

that it is highly parameterized and often assumes fixed transaction costs (Fackler and Goodwin 

2001). On the other hand, the PBM approach lies in the statistical identification of upper and lower 

bounds of transfer costs. Thus, markets are classified as efficient when the price differential is within 

those bounds. One drawback of the PBM model is that they are static models and the consistency of 

the results relies heavily on the validity of the distributional assumptions (Barrett, 2001). In this 
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paper, we follow Aker (2010a; 2010b) to exploit both the temporal and spatial variation in the data, 

and apply a dyadic regression analysis to study the association between weather shocks (drought and 

flood events) and maize market performance. 

 

5.1 Supply shock specification 

We first assume that both droughts and floods affect directly price dispersion. This may be more 

consistent with a supply shock. We use the absolute value of inter-market price differences as our 

measure of market efficiency.
19

 Let us define 𝑌𝑖𝑗,𝑡 = |𝑝𝑖𝑡 − 𝑝𝑗𝑡| as the absolute value of the price 

difference between market i and j at time t. We estimate the following equation: 

 

        𝑌𝑖𝑗,𝑡 = 𝛽0 + 𝛽1𝑊𝐹𝑖𝑗,𝑡+ 𝛽2𝑊𝐷𝑖𝑗,𝑡 + 𝛽3𝑇𝐶𝑖𝑗,𝑡 + 𝑎𝑖𝑗 + 𝜃𝑡 + 𝑢𝑖𝑗,𝑡        (3) 

 

The absolute price dispersion between two markets is a function of transport costs between the 

market pair ij at time t denoted by TCij,t, a drought indicator 𝑊𝐷𝑖𝑗,𝑡, and a flood indicator 𝑊𝐹𝑖𝑗,𝑡 

taking the value of 1 if a drought/flood event affected one/both markets i and j at time t, zero 

otherwise. The parameter aij denotes market pair fixed effects, reflecting time-invariant covariates 

that could be correlated with price dispersion and shocks. 𝜃𝑡 are time-varying unobserved factors and 

𝑢𝑖𝑗,𝑡 corresponds to the market pair-year error term.
20

 The parameters of interest are 𝛽1 and 𝛽2. 

Reliable transport costs data is particularly important as the impact of flood is supposed to be 

transmitted through an increase in transport costs. Unfortunately, as in many developing countries, 

data on transport costs is only available for a few market pairs at a relatively low frequency. Given 

this limitation, we first compute the monthly average of transport costs and use it as control. This 

seems a sensible strategy given that the panel structure of our model will take care on the cross-

sectional variation in transport costs, primarily a function of distance between markets. Thus, the 

monthly average of transport costs will pick up reasonably well the temporal variation in transport 

costs.  

 

 

 

                                                 

 
19 Other measures of price dispersion, such as the sample variance of prices, the coefficient of variation (CV), and the maximum and minimum (max-

min) prices across markets over time have been also used in the literature before.  
20 For example, they include geographic location, urban status and market size. 
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5.2 Transport cost shock specification 

Alternatively, we assume that while droughts affect price dispersion directly, floods do it through 

transportation costs. This corresponds to a supply shock due to a drought and a transport shock as a 

result of flooding. We here follow a different strategy to account for transport costs. We use existing 

information to predict transport cost values for each market pair along the study period. Thus, 

although TC is not fully observable for all the market pairs and months, it can be related to 

observable data through a function 𝑇𝐶 = 𝑓(𝑍, 𝑊𝐹, 𝛿). Where f is a known function, Z is a vector of 

observed characteristics affecting transportation costs such as distance, road quality and diesel prices 

and 𝛿 is a parameter vector to be estimated. We here assume that flood shocks (WF) also affect 

transport costs. Thus, for each observation 𝑖𝑗, 𝑡 we estimate 𝑇�̂�𝑖𝑗,𝑡 = 𝑓(𝑍, 𝑊𝐹, 𝛿). Pagan (1984) calls 

𝑇�̂�𝑖𝑗,𝑡 a generated regressor. Then, we remove flood indicators from equation (3) and include these 

estimates in the price dispersion equation as follows: 

  

            𝑌𝑖𝑗,𝑡 = 𝛽0 +  𝛽1𝑊𝐷𝑖𝑗,𝑡 + 𝛽2𝑇�̂�𝑖𝑗,𝑡(𝑊𝐹𝑖𝑗,𝑡) + 𝑎𝑖𝑗 + 𝜃𝑡 + 𝑢𝑖𝑗,𝑡                            (4) 

 

6 Results  

6.1 Homogenous effects 

6.1.1 Price dispersion and supply shock  

Table 2 presents our baseline results. We here include both droughts and floods affecting directly 

price dispersion. Columns 1-2 show estimates by OLS. Here we include both time-variant and 

invariant covariates, and control for market fixed effects. Columns 3-6 report our main results. They 

are derived from the Fixed Effect (FE) estimator. While columns 3 and 4 control for mobile network, 

columns 5 and 6 include market pair time-trends, instead.
21

 Column 7-8 presents the results of the 

model with a lagged dependent variable as control. This specification assumes that performance in 

period t depends on performance in period t-1. They are obtained by applying the Arellano-

Bover/Blundell-Bond estimator (Arellano and Bover, 1995; Blundell and Bond, 1998).
22

 All 

specifications include monthly and agricultural year season dummies as well a common time trend as 

controls.  

                                                 

 
21 We remove the mobile network variables because of their time-trend nature. 
22 This estimator assumes additional moment conditions to the Arellano and Bond (1991) estimator that are proved to enhance the efficiency and reduce 

the bias in the GMM estimator when ρ is close to one (Wooldridge, 2010). Furthermore, the use of first-differencing allows for a possible nonstationary 
process. 
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 [INSERT TABLE 2 ABOUT HERE] 

 

Since our specification is a time-series dyadic linear regression, the standard errors must be corrected 

for spatial and temporal dependence. We first cluster the standard errors at the market pair level, 

which allows for dependence between market pairs over time. Then, we use dyadic standard errors 

(Fafchamps and Gubert, 2007), which correct for spatial dependence, but do not allow for temporal 

independence.  

 

Time-invariant controls in OLS estimations show expected results. Price dispersion is higher among 

markets that are more distant from each other. This result is expected since transport costs are a 

function of distance. There is also evidence that road infrastructure matters for spatial market 

efficiency. Markets connected by a paved road are more likely to equalize prices, and therefore are 

spatially more efficient. Better road infrastructure connecting markets may encourage trade flows 

from surplus to deficit zones, since transport costs are lower. Furthermore, better roads increase 

competition by reducing barriers to market entry. Distance and road quality are capturing the long 

term and fixed component of transport costs. We also control for a direct measure of transport costs 

that varies over time. In all specifications, we find that transportation costs increase price dispersion. 

Overall, a 1 MZN/kg increase in transport costs between markets increases price dispersion by 0.33 

MZN/kg. The latter suggests that time-variant effects of transportation costs are also relevant to 

control for. We also find for the FE estimator that market price differences reduce when diesel prices 

augment. This may seem inconsistent with transport costs enhancing price differences. Nevertheless, 

a negative effect of diesel prices is not unreasonable since an increase in oil prices can be seen as a 

common shock, causing an increase in production costs simultaneously in all markets. However, this 

effect reverses when controlling for the lag of the dependent variable, which is more in line with a 

general escalations in the costs of food transportation. Finally, we find that mobile phone 

development reduces price dispersion. This has already been noticed in the literature before (Aker, 

2010b). 

 

We now turn to the discussion of the association between natural hazards and price dispersion. We 

find that price dispersion is lower during drought shock periods. This result is robust to the inclusion 

of other covariates, market fixed effects, market pair fixed effects, different drought indicators, a 
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lagged of the dependent variable, as well as time dummy variables. This result is still significant to 

the use of dyadic standard errors.  The negative relationship is evidence of markets performing well 

at the face of a supply shock. This is consistent with improvements in spatial price efficiency 

reported in Mozambique in the post-reform period (Tostao and Brorsen, 2005). This effect seems to 

be larger when both markets are affected. A supply shock occurring in both markets should produce a 

simultaneous increase in prices, leading to a more likely equalization of prices at high levels. The 

latter would imply a larger reduction in price gap. On average, price dispersion reduces around 95 

MZN/kg after a drought affecting both markets, representing 8.4 percent decrease as compared with 

mean price dispersion. A small impact is not surprising since maize is a storable crop that can be 

saved and consumed after harvesting, which would attenuate price fluctuation.  This value is similar 

to the 10 percent decrease found in Aker (2010a) for the millet market in Niger.  

 

Regarding the effect of flood, we find that a flood occurring in one market affects significantly and 

positively price differences. A flood affecting both markets is not statistically significant; 

nevertheless, the effect remains positive. Although this result is robust to a set of covariates, markets 

fixed effects, market pair fixed effects, a lagged dependent variable, a series of time-dummies, this 

effect turns insignificant when including market pair time trends and correcting for spatial 

dependence. Inconclusive evidence of a direct effect of flood on prices dispersion may suggest that 

other mechanisms than supply shocks may be more important for interpretations.  

 

6.1.2 Price dispersion and transport cost shock 

We then estimate transport costs at the market pair level and replicate the above results by including 

these estimates. Table A1 displays transport cost regressions.  In this model, we control for distance 

between markets, road quality, diesel prices, a dummy for the main commercialization period, market 

fixed effects and a series of time dummies. First, we assume that a flood has no effect on transport 

costs. Results are shown in column 1. Then, we include flood indicators as explanatory variables. 

Column 2 includes flood indicators informing whether or not one or two markets were affected. 

Column 3 adds our alternative flood block-road indicator. Results are intuitive: transport costs 

increase with distance, diesel prices and are lower among markets that are connected by a paved 

road. Floods also contribute to increase transport costs. A flood affecting one market and blocking 

the road between them are found to have a significant and positive effect on transport costs. On 
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average, a flood affecting one market increases transport costs in 260 MZN/kg (33%), while a flood 

blocking the road leads to an augment of 122 MZN/kg (14%).   

 

Table 3 shows the results for price dispersion with predicted transport costs for the market pairs. In 

column 1-4, we include predicted transport costs not explained by flood. In this specification, we 

keep flood indicators in the main equation, assuming a flood can still affect price dispersion directly. 

Columns 2 and 4 add the flood block-road indicator. Columns 5-8 use predicted transport cost values 

from regressions including flood indicators as controls.  We here remove flood indicators and diesel 

prices from our model of price dispersion, assuming that these effects are captured through transport 

costs. Columns 5 and 7 use the values predicted by a flood affecting markets directly. Columns 6 and 

8 employ values predicted by adding the flood block-road indicator. In all the specifications, we 

correct for spatial dependence using a bootstrapping-dyadic procedure suggested by Fafchamps and 

Söderbom (2014). We choose a bootstrapping technique here due to the inclusion of generated 

regressors in the price dispersion equation.
23

  

 

[INSERT TABLE 3 ABOUT HERE]  

 

Main findings remain. Price dispersion is lower in drought periods. This result is only significant 

when identifying droughts by the SPEI index, though. The coefficients of flood affecting one or both 

markets are statistically insignificant. However, our flood block-road indicator is negative and 

significant. A reduction in price dispersion after a flood blocking the road while markets remain 

unaffected seems contradictory with a food transport shock story. Comments regarding imprecisions 

in the identification of blocked road deserve some attention here. We cannot guarantee that indeed 

our flood block-road indicator is correctly informing on the operability of the road. Even so, it is 

highly likely that there may exist other tertiary or even vicinal roads, alternative to the main one, than 

can be used to potentially bypass a flood. Unfortunately, we do not observe that in our data with the 

required precision. Thus, a negative effect on price dispersion may respond to this imprecision. 

However, this alternative flood indicator does contribute to improve predictions of transport costs. 

Our estimates reveal that transport costs yield much better to explain price dispersion as they are 

predicted using flood indicators, and precision improves even more when adding the flood block-

                                                 

 
23  Results are fundamentally the same as computing the dyadic standard errors. Results are not shown in the paper but can be obtained from the authors 
under request. 
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road indicator. For example, marginal effects of transport costs are considerably high, close to 1, as 

flood events are not used to predict transport costs. The estimated coefficient lowers to values around 

0.7 as including flood indicators affecting one or both markets, and reduces to 0.5 as adding the three 

flood indicators together. An average increase of 0.5 MZN/kg in price dispersion after a 1 MZN/kg 

increase in transport costs is more consistent with marginal effects found in settings where flooding is 

a relatively rare phenomenon (Aker, 2010a).  

 

The latter is more in line with a specification in which flood effects on price dispersion are picked up 

indirectly through transportation costs. However, as discussed before, the supply shock effect can 

take longer to be transmitted into the markets since there is a gap between the main 

commercialization period and the months in which floods usually hit Mozambique.  We exploit this 

timing to examine a potential supply shock. We assume that a supply shock will reflect stronger in 

prices since trade takes place. Results are shown in Table 4.  

 

[INSERT TABLE 4 ABOUT HERE]  

 

We find some evidence of a flood supply shock. Markets affected by a flood reduce their price gap 

along the commercialization period, and the magnitude of the effect becomes lower to the extent we 

reach the end of the agricultural season. However, this effect is only statistically significant the first 

two months. 

 

6.2 Heterogeneous effects of floods 

The results above suggest that the effect of floods is better captured through transport costs. That 

implies that floods affect price dispersion mainly via impacts on road operability and therefore on 

trade potentiality.  Better road infrastructure can help minimize the impact of such a natural disaster. 

Thus, we expect that flood effects are conditioned on road characteristics. We explore this further in 

this section.  

 

Table 5 reports the results for the interaction of flood indicators and road characteristics. Column 1 

and 2 include interactions with distance; column 3 and 4 show interactions with a variable denoting a 

paved road connecting markets. All specifications include drought indicators, transport costs, diesel 

prices, monthly and year dummy variables as controls.  
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[INSERT TABLE 5 ABOUT HERE] 

 

The results suggest some evidence that the impact of floods on market performance is conditioned on 

distance and road characteristics.  First, we note that the increase in price dispersion is larger among 

closer markets. This effect is only significant when both markets are affected, though. Neighboring 

markets have more similar prices and trade more since transport costs are lower. Thus, any shock that 

disturbs their connectivity may have a stronger impact on their price differential.  

 

Second, we find that the effect of floods on price dispersion is lower among markets connected by a 

paved road. This association is also negative and significant when both markets are affected.  This 

suggests that flood effects can be attenuated as having better road infrastructure since flooding is 

more likely to cause stronger impacts on unpaved roads. This is relevant for the Mozambican 

economy given the current poor road infrastructure and a higher expected frequency and severity of 

floods due to climate change (Chinowsky and Arndt, 2012).  

 

7 Conclusions  

Markets that are spatially more integrated enjoy the advantages of price transmission and higher 

product availability. Furthermore, spatially efficient markets are more resilient to natural disasters, 

attenuating product scarcity and fluctuating prices. This paper intends to examine the relationship 

between weather shocks and agricultural market efficiency in Mozambique. For this purpose, we 

estimate dyadic regression equations using monthly maize prices, transport costs and weather shock 

indicators derived from satellite, rainfall and temperature data. 

  

We found that the effect depends on the type of weather shocks. While price differences reduce 

during drought periods, price dispersion increases after a flood. A reduction in price dispersion 

coming after drought periods suggests a supply shock effect given by a strong association between 

rainfall availability and agricultural production. In contrast, an indirect positive association between 

floods and price dispersion is more consistent with a shock in transport cost.  Results also revealed a 

potential supply shock after a flood. Price gap between flooded markets narrows along the 

commercialization period. Finally, we uncovered some heterogeneity in the results. Floods were 

found to raise price dispersion more among markets that are closer to each other and connected by 

poorer road infrastructure.  
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Our results are consistent with previous literature finding a substantial number of markets in autarky 

in Mozambique, that is, where transport costs exceed price differential (Tostao and Brorsen, 2005; 

Cirera and Arndt, 2008). Although this does not imply inefficiency, since arbitrage is not profitable, 

it is commonly associated with lack of spatial integration. Poor road accesses already make transport 

costs substantially high in Mozambique. We found that transport costs become even more prohibited 

during flood periods, exacerbating this lack of integration. 

 

Some caveats with respect to our results deserve some comments. First, we lack of precise 

information on other potential factors that were ongoing during the study period and that may have 

enhanced agricultural market development. For example, road improvements and the adoption of 

new technology for collecting price information can have important implications for market 

performance (Cirera and Arndt, 2008; Aker, 2010b). Furthermore, demand-side factors such as 

changes in market size and income levels are also supposed to drive price dispersion.  Nevertheless, 

to the extent that these processes do not change fundamentally and/or develop gradually over time, 

the inclusion of market-pair fixed effects and market-pair trends may suffice to pick up these 

changes. Special mention deserves substantial investments undergoing during the study period to 

support the sustainable development of the road transport-infrastructure network along Mozambique 

and their neighboring countries. Specifically, the 10th EDF Country Strategy Paper and National 

Indicative Program (CSP/NIP) for Mozambique committed €130, 62 million to the transport 

infrastructure sector and regional integration for the period 2008-2013. One of the emblematic 

projects funded by this program was the construction of the Zambezi Bridge, opened in August of 

2009. Certainly, this bridge connecting the north with rest of the country led to promoting north-

south trade. More cautious analysis is needed to evaluate the contribution of these road rehabilitations 

projects in enhancing spatial market efficiency. Second, food aid programs are usually implemented 

during water shortage food periods, which are more likely to arise after natural disasters. These 

programs help reduce price fluctuations by stabilizing food supply. If these programs were important 

during the period, we may be underestimating the effect of weather shocks. Yet, our estimates can be 

considered as lower bound impacts. Finally, markets near borders may also have substantial trade 

with neighboring countries, implying that they may be more spatially integrated with international 

markets.  For example, surplus production in the north is regularly exported to Malawi. Similarly, 

South Africa is the main supplier of white maize grain to southern Mozambique, a maize deficit 
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region. However, in spite of this substantial trade, empirical evidence shows a weak price 

transmission of maize prices between Mozambique and South Africa, suggesting limited spatial 

efficiency between domestic and international markets in Mozambique (Acosta, 2012).
24

 

 

Despite these limitations, an important implication of our results is that markets work relatively 

efficient during supply shock periods in Mozambique. However, it does not imply that markets are 

fully integrated. Maximizing welfare implies not only the achievement of market efficiency but also 

the minimization of transaction costs, which are traditionally assumed exogenous. In Mozambique, 

there still persist substantial social inefficiencies due to trade barriers and excessive transaction costs, 

exacerbated by poor road infrastructure and a high incidence of flood shocks. Climate change, which 

is expected to increase the frequency of extreme weather events, demands better efforts to enhance 

resilience to supply and food transport shocks. Particularly, the increased frequency and intensity of 

floods will potentially lead to more rapid deterioration of road stocks and therefore an increase in 

maintenance costs (Chinoswsky and Arndt, 2012). Further developments in the functioning of 

markets and investments in resilient and reliable road infrastructure are necessary to continue 

improving spatial arbitrage within Mozambique and between Mozambique and its neighbors, and 

strengthening resilience to natural shocks. Investments in other transport alternatives, such as 

railways and maritime transport, should also be promoted. 

 

References 

Abdula, D. 2005. “Improving maize marketing and trade policies to promote household food security 

in southern Mozambique.” M.S. Thesis. Department of Agricultural Economics, Michigan State 

University. East lansing. 

Acosta, A. 2012. “Measuring spatial transmission of white maize prices between South Africa and 

Mozambique: An asymmetric error correction model approach.” African Journal of Agricultural 

and Resource Economics 7(1):1-13. 

Aker, J. 2010a. “Rainfall shocks, markets and food crises: the effect of drought on grain markets in 

Niger.” Revue d’Economie de Developpement 24(1): 71-108. 

                                                 

 
24 A highly prohibitive import tariff and the structure of a value added tax (VAT) are some of the barriers that limit a more efficient price transmission 

between southern Mozambique and South Africa. The 17% VAT seems to be particularly detrimental for maize grain market efficiency for two reasons. 

First, the tax is charged on maize grains, but not on rice and wheat, generating a clear disadvantage for this product. Second, maize meals are exempted 
from VAT, but not maize grains, discouraging sales of imported maize grain in Mozambique. Thus, most of the imports of maize grain are carried out 

by industrial millers. In fact, evidence suggests that maize grain for sale at retail in Maputo is almost entirely domestic, in spite of a potential arbitrage 

of importing from South Africa (Tschirley et al., 2006). Other reasons include complex import procedures, and some aspects related to the South 
African marketing system which emerge as important impediments for many small traders operating informally. 



144 

 

Aker, J. 2010b. “Information from markets near and far: Mobile phones and agricultural markets in 

Niger.” Applied Economics 2(3): 46-59. 

Alemu, Z. and H. Van Schalkwyk. 2009. “Market integration in Mozambican maize markets. 

Organization for Social Science Research in Eastern and Southern Africa.” Ethiopia.    

Arellano, M and S. Bond. 1991. “Some test of specification for panel data: Monte Carlo evidence and 

an application to employment equations.” The Review of Economic Studies 58(2):227-297 

Arellano, M., and O. Bover. 1995. “Another look at instrumental variables estimation of error 

component models.” Journal of Econometrics 68:29-51. 

Arndt, C. and J. Thurlow. 2013. “Climate uncertainty and economic development: Evaluating the 

case of Mozambique to 2050.” WIDER Working Paper, No. 2013/042, UNU-WIDER, Helsinki. 

Arndt, C., M.A. Hussain, E. S., V. Nhate, F. Tarp and J. Thurlow. (2012a). Explaining the evolution 

of poverty. The case of Mozambique. American Journal of Agricultural Economics 94(4): 854-

872. 

Arndt, C., P. Chinowsky, K. Strzepek and J. Thurlow. (2012b). Climate change, growth and 

infrastructure investment: The case of Mozambique. Review of Development Economics 16(3): 

463-475. 

Barrett, C. 2001. “Measuring integration and efficiency in international agricultural markets.” Review 

of Agricultural Economics 23(1): 19-32. 

Barrett, C. and J. Li. 2002. Distinguishing between equilibrium and integration in spatial price 

analysis. American Journal of Agricultural Economics 84(2): 292-307. 

Baulch, B. 1997. “Transfer costs, spatial arbitrage, and testing for food market integration.” 

American Journal of Agricultural Economics 79 (2): 477-487. 

Blundell, R., and S. Bond. 1998. “Initial conditions and moment restrictions in dynamic panel-data 

models.” Journal of Econometrics 87(1):115-143. 

Centre for Research on the Epidemiology of Disasters (EM-DAT). 2011. International Disaster 

Database. Unversite Catholicque de Louvain, Brussels, Belgium. 

Centre for Research on the Epidemiology of Disasters (EM-DAT). 2013. International Disaster 

Database Retrieved June 06, 2013, from www.emdat.be 

Chinowsky, P. and C. Arndt. 2012. “Climate change and roads: A dynamic stressor-response model.” 

Review of Development Economics 16(3):448-462. 

Cirera, X., and C. Arndt. 2008. “Measuring the impact of road rehabilitation on spatial market 

efficiency in maize markets in Mozambique.” Agricultural Economics 39(1): 17-28. 



145 

 

Gráda, C. 2007. “Making famine history.” Journal of Economic Literature 45(1): 5-38. 

Enke, S. 1951. “Equilibrium among Spatially Separated Markets: Solution by Electrical Analogue.” 

Econometrica 19(1): 40–7. 

Fafchamps M., and F. Gubert. 2007. “The formation of risk sharing networks.” Journal of 

Development Economics 83(2): 326–350. 

Fafchamps M. and M. Söderbom. 2014. “Network proximity and business practices in African 

manufacturing.” World Bank Economic Review 28(1): 99-129. 

Fackler, P. and B. Goodwin. 2001. “Spatial price analysis.” In Handbook of Agricultural Economics, 

Chapter 17, Volume 1. eds. B. Gardner and G. Rausser. Amsterdam: Elservier Science. 

Fisker, P. 2014. “Green lights: Quantifying the economic impacts of drought.” IFRO Working paper. 

Department of Food and Resource Economics and Changing Disasters, University of Copenhagen. 

GFDRR. 2012. “Mozambique: Disaster risk financing and insurance country note.” DRFI Country 

Working Paper 

G.R.Brakenridge. (2013). Retrieved from http://floodobservatory.colorado.edu/Archives/index.html 

Jones, S and F. Tarp. (2013). Jobs and welfare in Mozambique. WIDER Working Paper, No.    

2013/045, UNU-WIDER, Helsinki. 

Jensen, R. 2000. “Agricultural volatility and investments in children.” The American Economic 

Review 90 (2): 399-404. 

Takahiro I. and K. Takashi. 2009. “Weather risk, wages in kind, and the off-farm labor supply of 

agricultural households in a developing country.” American Journal of Agricultural Economics 

91(3):697-710. 

Maccini S. and D. Yang. 2009. “Under the weather: health, schooling, and economic consequences 

of early-life rainfall.” The American Economic Review 99 (3): 1006–1026. 

McKee, T., N. Doesken and J. Kleist. 1993. “The relationship of drought frequency and duration to 

time scale.” Proceedings of the Eighth Conference on Applied Climatology (ss. 179–184). 

Anaheim, California: Boston, American Meteorological Society. 

McKee, T., N. Doesken and J. Kleist. 1995. “Drought monitoring with multiple timescales.” 

Proceedings of the Ninth Conference on Applied Climatology (ss. 233–236). Dallas, Texas: 

Boston American Meteorological Society. 

Pagan, A. 1984. “Econometric issues in the analysis of regressions with generated regressors.” 

International Economic Review 25 (1): 221-247. 



146 

 

Paxon, C. 1992. “Using weather variability to estimate the response of savings to transitory income 

in Thailand.” The American Economic Review 82 (1):15-33. 

Penzhorn, N. and C. Arndt. 2002. “Maize markets in Mozambique: testing for market integration.” 

Agrekon 41(2): 146–159. 

Rose, L. 2001. “Ex ante and ex post labor supply response to risk in a low-income area.” Journal of 

Development Economics 64 (2): 371–388. 

Rosenzweig M. and H. Binswanger. 1993. “Wealth, weather risk and the composition and 

profitability of agricultural investments.” The Economic Journal 103 (416):56-78. 

Samuelson, P. 1952. “Spatial price equilibrium and linear programming.” The American Economic 

Review 42(3): 283–303. 

SIMA. 2011. “Sistema de informação de mercados agrícolas.” Electronic Database. Ministry of 

Agriculture and Rural Development, Maputo 

Stigler, G. 1966. The Theory of Price. New York: Macmillan Press. 

Takayama, T. and G. Judge. 1971. Spatial and temporal price allocation models. Amsterdam: North-

Holland. 

Tarp, F., C. Arndt, H. T. Jensen, S. Robinson, R. Heltberg. (2002). “Facing the development 

challenge in Mozambique: An economywide perspective.” IFPRI Research Report 126, 

International Food Policy Research Institute, Washington, DC. 

Tostao, E. and B. Brorsen. 2005. “Spatial efficiency in Mozambique’s post reform maize markets.” 

Agricultural Economics 33(2): 205–214. 

 Tschirley, D., D. Abdula and M. Weber. 2006. “Toward improved maize marketing and trade 

policies to promote household food security in central and southern Mozambique.” Research 

report N 60E. Ministry of Agriculture. Directorate of Economic. 

Vicente-Serrano S.M., S. Beguería and J. López-Moreno. 2010. “A Multi-scalar drought index 

sensitive to global warming: The Standardized Precipitation Evapotranspiration Index – SPEI.” 

Journal of Climate 23:1696-1718. 

Wooldridge, J. 2010. “Econometric Analysis of Cross Section and Panel Data”. 2nd ed., Vol. 1, MIT 

Press Books. 

World Bank. 2010. “Economics of adaptation to climate change - Mozambique.” Washington D.C. 

World Bank. 2012. “Country Partnership Strategy FY12-15 for the Republic of Mozambique.” 

Washington D.C. 



147 

 

World Bank. 2014. “Mozambique. Recovery from Recurrent Floods 2000-2013: Recovery 

Framework Case Study.”  Washington D.C.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



148 

 

Tables  

 

Table 1. Descriptive statistics. 

Variables Observations Mean St. dev. Min Max 

Absolute price difference per kilo (000 MZM) 27,000 1.13 0.97 0.00 8.80 

Maize price per kilo (000 MZN) 27,000 4.80 1.89 1.42 13.85 

Transport cost per kilo (000 MZN) 27,000 0.87 0.16 0.55 1.33 

Diesel price per liter (000 MZN) 27,000 22.98 4.21 14.07 30.24 

Distance (kilometers) 27,000 629.14 364.07 4.01 1660.93 

Mobile network in one market 27,000 0.25 0.44 0.00 1.00 

Mobile network in both markets 27,000 0.69 0.46 0.00 1.00 

1 if road connecting i and j is paved 27,000 0.57 0.50 0.00 1.00 

1 if one market hit by a flood 27,000 0.03 0.17 0.00 1.00 

1 if both markets hit by a flood 27,000 0.01 0.10 0.00 1.00 

1 if the road was blocked 27,000 0.05 0.22 0.00 1.00 

1 if one market hit by a drought (NDVI) 27,000 0.22 0.42 0.00 1.00 

1 if both markets hit by a drought (NDVI) 27,000 0.07 0.25 0.00 1.00 

1 if one market is by a drought (SPEI6) 27,000 0.27 0.44 0.00 1.00 

1 if both markets hit by a drought (SPEI6) 27,000 0.06 0.24 0.00 1.00 

Note: Values are deflated by the consumer price index (base=2005). 
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Table 2. Estimated effects of drought and flood on price dispersion. 
Variables  (1) 

 

(2) 

 

(3) 

 

(4) 

 

(5) 

 

(6) (7) (8) 

Flood (one market) 0.083** 0.081* 0.072** 0.071** 0.029 0.025 0.118*** 0.113*** 
 (0.035) (0.035) (0.036) (0.034) (0.036) (0.036) (0.033) (0.034) 

Flood (both markets) 0.009 0.014 0.045 0.047 0.028 0.025 -0.031 -0.033 

 (0.058) (0.058) (0.058) (0.058) (0.053) (0.052) (0.048) (0.048) 
Drought NDVI (one market) -0.045**  -0.039**  -0.036**  0.028  

 (0.017)  (0.018)  (0.018)  (0.019)  

Drought NDVI (both markets) -0.080***  -0.086***  -0.107***  -0.047*  
 (0.026)  (0.026)  (0.026)  (0.025)  

Drought SPEI6 (one market)  -0.043***  -0.053***  -0.039***  -0.028* 

  (0.015)  (0.015)  (0.015)  (0.015) 
Drought SPEI6 (both markets)  -0.125***  -0.101***  -0.106***  -0.107*** 

  (0.025)  (0.025)  (0.025)  (0.025) 
Transport cost (MZM/kilo) 0.332*** 0.321*** 0.334*** 0.323*** 0.334*** 0.326*** 0.309*** 0.279*** 

 (0.051) (0.051) (0.051) (0.050) (0.052) (0.051) (0.063) (0.059) 

Mobile network (one market) -0.113*** -0.119*** -0.075* -0.079*     
 (0.037) (0.038) (0.043) (0.042)     

Mobile network (both markets) -0.235*** -0.250*** -0.215*** -0.229***     

 (0.044) (0.045) (0.045) (0.046)     
Diesel price (MZN$/liter) -0.004 -0.005* -0.004 -0.005* -0.004 -0.005* 0.011*** 0.012*** 

 (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.002) (0.002) 

Distance (km) 0.001*** 0.001***       
 (0.00001) (0.00001)       

1 if paved road  -0.177*** -0.177***       

 (0.049) (0.049)       
Lagged dependent variable       0.441*** 0.440*** 

       (0.011) (0.011) 

Constant 0.343*** 0.372*** 0.831*** 0.845*** 0.734*** 0.733*** 0.081 0.108* 
 (0.082) (0.081) (0.081) (0.079) (0.072) (0.069) (0.066) (0.061) 

         

Dyadic s.e.         
Flood (one market) 0.056 0.081 0.073 0.071 0.059 0.057   

 (0.0742) (0.076) (0.076) (0.075) (0.079) (0.079)   

Flood (both markets) 0.018 0.014 0.045 0.047 0.026 0.027   
 (0.093) (0.091) (0.094) (0.092) (0.092) (0.091)   

Drought NDVI (one market) -0.044  -0.039  -0.046    

 (0.047)  (0.047)  (0.047)    
Drought NDVI (both markets) -0.081  -0.090*  -0.099*    

 (0.054)  (0.054)  (0.053)    

Drought SPEI6 (one market)  -0.043  -0.053*  -0.047*   
  (0.028)  (0.028)  (0.029)   

Drought SPEI6 (both markets)  -0.125**  -0.101**  -0.097*   

  (0.052)  (0.052)  (0.053)   
Market fixed effect Yes Yes No No No No No No 

Market pair fixed effects No No Yes Yes Yes Yes Yes Yes 

Monthly dummies Yes Yes Yes Yes Yes Yes Yes Yes 
Yearly dummies Yes Yes Yes Yes Yes Yes Yes Yes 

Time trend Yes Yes Yes Yes Yes Yes Yes Yes 

Market pair time trend No No No No Yes Yes Yes Yes 
R-squared 0.219 0.220 0.065 0.066 0.120 0.120   

Observations 27,000 27,000 27,000 27,000 27,000 27,000 26,700 26,700 

Number of market pairs 300 300 300 300 300 300 300 300 

Note: Columns (1), (3), (5) and (7) include NDVI drought indicators. Columns (2), (4), (6) and (8) use the SPEI index. Columns (1) – 

(2) display OLS estimations.  Column (3-4) presents results of the FE model. They include mobile network controls. Columns 5-6 

show FE estimations with market pair time trends. We here remove mobile network controls. Columns 7-8 present the Arellano-
Bover/Blundell-Bond estimator. The dependent variable in all the estimations is the price differential between two markets. Standard 

errors clustered by market pair are in parentheses. Cross-sectional dyadic standard errors are also provided below. Missing values in 

the dyadic s.e. denote that this specification cannot be used with the specific standard error correction. All prices are deflated by the 
Mozambican Consumer Price Index (CPI). *** p<0.01, ** p<0.05, * p<0.1 
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Table 3. Estimated effects of drought and flood on price dispersion with predicted transaction costs. 
Variables  (1) 

 

(2) 

 

(3) 

 

(4) 

 

(5) (6) (7) (8) 

Flood (one market) 0.011 -0.032 0.001 -0.037     
 (0.072)  (0.076) (0.072) (0.076)     

Flood (both markets) -0.002 -0.036 -0.005 -0.039     

 (0.146) (0.146) (0.142) (0.142)     
Flood (block-road)  -0.195**  -0.198**     

  (0.070)  (0.068)     

Drought NDVI (one market) -0.039 -0.037   -0.042 -0.045   
 (0.056) (0.056)   (0.056) 0.056   

Drought NDVI (both markets) -0.080 -0.078   -0.087 -0.092   

 (0.076) (0.076)   (0.075) (0.075)   
Drought SPEI6 (one market)   -0.052 -0.053   -0.054 -0.055 

   (0.034) (0.033)   (0.034) (0.034) 
Drought SPEI6 (both markets)   -0.101* -0.101*   -0.104* -0.108* 

   (0.055) (0.054)   (0.056) (0.058) 

Predicted transport cost (MZM/kilo) 0.933*** 1.026*** 0.949***   1.040*** 0.684*** 0.487*** 0.695*** 0.498*** 
 (0.2588) (0.263) (0.247) (0.252) (0.202) (0.186) (0.194) (0.179) 

         

Constant -0.128 -0.20* -0.169 -0.526*** 0.189*** 0.384*** 0.156*** 0.349*** 
 (0.104 0.108) (0.105 )  (0.127) (0.087) (0.081) (0.084) (0.077) 

         

Market pair fixed effects Yes Yes Yes Yes Yes Yes Yes Yes 
Monthly dummies Yes Yes Yes Yes Yes Yes Yes Yes 

Yearly dummies Yes Yes Yes Yes Yes Yes Yes Yes 

Time trend Yes Yes Yes Yes Yes Yes Yes Yes 
Market pair time trend Yes Yes Yes Yes Yes Yes Yes Yes 

R-squared 0.122 0.124 0.123 0.124 0.121 0.120 0.122 0.120 

Observations 27,000 27,000 27,000 27,000 27,000 27,000 27,000 27,000 
Number of market pairs 300 300 300 300 300 300 300 300 

Note: Columns (1), (2), (5) and (6) include droughts indicators identified by the NDVI index. Columns (3), (4), (7) and (8) use the 

SPEI index. Columns (1) – (4) display estimations with predicted transport costs without flood indicators. Columns (2) and (4) include 

the flood block-road indicator in the main equation. Columns (5)-(8) show results with transport costs predicted by flood indicators. 
Columns (5) and (7) only use the flood indicators informing whether one or both markets were affected to predict transport costs. 

Columns (6) and (8) include also the flood block-road indicator to predict transport costs. The dependent variable in all the estimations 

is the price differential between two markets. We use the FE estimator in all the models. Cross-sectional-dyadic bootstrapped standard 
errors are in parentheses. All prices are deflated by the Mozambican Consumer Price Index (CPI). *** p<0.01, ** p<0.05, * p<0.1 
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Table 4. Estimated effects of flood supply shock on price dispersion with predicted transport costs. 
Variables (1) (2) (3) (4) (5) 

Flood (one market) (May) -0.087     

 (0.085)     
Flood (both markets) (May) -0.236*     

 (0.131)     

Flood (one market) (May-Jun)  -0.103    
  (0.074)    

Flood (both markets) (May-Jun)  -0.198*    

  (0.106)    
Flood (one market) (May-Jul)   -0.116   

   (0.083)   

Flood (both markets) (May-Jul)   -0.146   
   (0.113)   

Flood (one market) (May-Aug)    -0.091  
    (0.074)  

Flood (both markets) (May-Aug)    -0.133  

    (0.104)  
Flood (one market) (May-Sep)     -0.096 

     (0.065) 

Flood (both markets) (May-Sep)     -0.132 
     (0.102) 

Predicted transport cost (MZM/kilo) 0.493*** 0.499*** 0.509*** 0.516*** 0.529*** 

 (0.179) (0.179) (0.179) (0.179) (0.179) 
      

Constant 0.380*** 0.377*** 0.369*** 0.356*** 0.346*** 

 (0.077) (0.077) (0.077) (0.077) (0.077)  
      

Drought indicators Yes Yes Yes Yes Yes 

Market pair fixed effects Yes Yes Yes Yes Yes 
Monthly dummies Yes Yes Yes Yes Yes 

Yearly dummies Yes Yes Yes Yes Yes 

Time trend Yes Yes Yes Yes Yes 
Market pair time trend Yes Yes Yes Yes Yes 

R-squared 0.121 0.121   0.121 0.121 0.1214 

Observations 27,000 27,000 27,000 27,000 27,000 
Number of market pairs 300 300 300 300 300 

Note: Columns (1)-(5) display estimations with transport costs predicted by the three flood 

indicators. We control for droughts identified by the SPEI index. The dependent variable in all the 

estimations is the price differential between two markets. We use the FE estimator in all the 
models. Cross-sectional-dyadic bootstrapped standard errors are in parentheses. All prices are 

deflated by the Mozambican Consumer Price Index (CPI). *** p<0.01, ** p<0.05, * p<0.1 
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Table 5. Heterogeneous effects of flood on price dispersion. 
Variables (1) 

 

(2) 

 

(3) 

 

(4) 

 

Flood (one market) 0.219* 0.194 0.093 0.062 
 (0.130) (0.132) (0.093) (0.096) 

Flood (both markets) 0.314*** 0.293** 0.221 0.197 

 (0.116) (0.118) (0.160) (0.161) 
Flood (block-road)  -0.211*  -0.157* 

  (0.113)  (0.088) 

Flood (one)*distance -0.0002 -0.000286   
 (0.0002) (0.000227)   

Flood (both)*distance -0.001*** -0.001***   

 (0.0002) (0.0002)   
Flood (block-road)*distance  0.000   

  (0.0001)   
Flood (one)*paved  road    -0.064 -0.062 

   (0.107) (0.107) 

Flood (both)*paved  road   -0.301* -0.301* 
   (0.156) (0.156) 

Flood (block-road)*paved road    0.025 

    (0.081) 
     

Constant 0.730*** 0.729*** 0.731*** 0.728 

 (0.069) (0.069) (0.069) (0.069) 
     

Other covariates Yes Yes Yes Yes 

Drought indicators Yes Yes Yes Yes 
Market pair fixed effects Yes Yes Yes Yes 

Monthly dummies Yes Yes Yes Yes 

Yearly dummies Yes Yes Yes Yes 
Time trend Yes Yes Yes Yes 

Market pair time trend Yes Yes Yes Yes 

R-squared 0.121 0.121 0.120 0.121 
Observations 27,000 27,000 27,000 27,000 

Number of market pairs 300 300 300 300 

Note: Columns (1)-(2) display interactions between flood indicators and distance. 

Columns (3)-(4) show interactions between flood indicators and paved road. Other 
covariates include monthly average of transport costs and diesel prices. We control 

for droughts identified by the SPEI index. The dependent variable in all the 

estimations is the price differential between two markets. We use the FE estimator 
in all the models. Cross-sectional dyadic standard errors in parentheses *** p<0.01, 

** p<0.05, * p<0.1 
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Figures 

Figure 1. Evolution of maize price, transport cost and diesel price in Mozambique. 

 

Source: Authors’ elaboration using SIMA data and information from INIA  
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Figure 2. Flood events and affected markets in Mozambique. Period 2005-2012. 

  

  

Source: Authors’ elaboration using information from Dartmouth Flood Observatory  
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Figure 3. Drought identification by the NDVI index in Mozambique. Period 2005-2012. 

   

   

 

Source: Authors’ elaboration using remote sensing data from the MODIS Terra satellite and the Tropical Rainfall Measuring Mission (TRMM). 
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Appendix A: Additional Tables and Figures. 

 

Table A1. Predictions of transport costs. 
Variables (1) 

 

(2) 

 

(3) 

 

Flood (one market)  0.221 0.260* 

  (0.156) (0.159) 

Flood (both markets)  -0.0319 -0.00864 
  (0.0847) (0.0842) 

Flood (block-road)   0.122** 

   (0.0582) 
Distance (km) 0.00115*** 0.00115*** 0.00114*** 

 (4.75e-05) (4.67e-05) (4.64e-05) 

1 if paved road  -0.850** -0.825** -0.817** 
 (0.395) (0.371) (0.372) 

Diesel price (MZM/liter) 0.0241*** 0.0246*** 0.0253*** 

 (0.00603) (0.00611) (0.00647) 

1 if commercialization  period -0.0421 -0.0420 -0.0430 

 (0.0409) (0.0410) (0.0411) 
    

Constant 0.676 0.642* 0.623 

 (0.411) (0.387) (0.390) 
    

Market fixed effects Yes Yes Yes 

Monthly dummies Yes Yes Yes 
Yearly dummies Yes Yes Yes 

Time trend Yes Yes Yes 

R-squared 0.681 0.683 0.685 
Observations 1,383 1,383 1,383 

Number of market pairs 116 116 116 

Note: Columns (1) shows estimations of transport costs without flood 

indicators. Column (2) adds flood indicators informing whether one or two 
markets were affected. Column 3 includes the flood block-road indicator. 

The dependent variable in all the estimations is transport costs between two 

markets. We use the OLS estimator in all the models. Standard errors 
clustered by market pairs are in parentheses. All prices are deflated by the 

Mozambican Consumer Price Index (CPI). *** p<0.01, ** p<0.05, * p<0.1 
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Figure A1. Road network by road status classification in Mozambique.  

 

Source: Authors’ elaboration using information from the Africa infrastructure country diagnostic. 
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Figure A2. Drought indexes and monthly average maize price.  

 

 

Source: Authors’ elaboration using SIMA data and information from droughts indexes.  
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