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Introduction – English

“All that I have to say has already crossed your mind,” said he.

“Then possibly my answer has crossed yours,” I replied.

“You stand fast?”

“Absolutely.”

(Arthur Conan Doyle: The Memoirs of Sherlock Holmes – The Final Problem)

In economics, most decision problems are interdependent. That can make things quite

complicated. If people stay at home because the weather looks gloomy, the weather

does not change in response to their decision. Looking at the sky will still give them

all the information they need to make a choice. But if people decide to sell a stock in

anticipation of a market crash, the stock price responds and hence the very likelihood of

a market crash changes. Whether it is best to buy or to sell cannot be learned from just

examining the fundamentals, however closely – one would also have to find some way

to look into everybody else’s mind. And what is everybody else thinking about? Why,

they are trying to figure out what everybody else may be thinking – and so on.

How can we fruitfully analyze such situations without ending up in an infinite regress

of “he thinks that I think that he thinks that ...”? The most productive and most widely-

used thought construct to understand this problem has been the notion of equilibrium,

first formalized by Nash (1950) and refined, looked for and found ever since. The idea is

simple: If everybody behaves optimally given what he expects the others to do, and has

the correct expectation about what the others are doing, then the game is in equilibrium.

Just as in the conversation between Sherlock Holmes and Professor Moriarty quoted

above: In equilibrium, each player correctly anticipates the action of the other – and still

“stands fast” in his own chosen action.

But this concept, as powerful as it is, does not always yield a unique outcome. An

example of that is already given by Jean-Jacques Rousseau in his metaphor of the stag

hunt:

If it was a matter of hunting a deer, everyone would well realize that he must

remain faithful to his post; but if a hare happened to pass within reach of

one of them, we cannot doubt that he would have gone off in pursuit of it

without scruple. (Discourse on Inequality, 1754)
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Introduction

Rousseau did not write about equilibria, but he effectively proposes that there are two

equilibria in this game: If all hunters stay “faithful to their post”, they can catch the stag

and no single hunter would be better off by running after hares instead. If they all hunt

hares, however, none of them would be better off by trying to hunt a stag on his own.

Of course, “Discourse on Inequality” is not a hunting manual. Rousseau sees the

stag hunt as a metaphor for social cooperation – just as economic models, of which this

thesis contains a few, are meant as metaphors for specific economic problems, expressed

in the formal language of mathematics. What is so puzzling about the stag hunt is

that it appears impossible to say how rational people would behave in it, since several

beliefs can be self-fulfilling: If everybody believes that the others participate in the stag

hunt, they will, too. But if everybody doubts that the others cooperate, then no one

will cooperate and their doubts have been justified. It appears that everything hinges

on what everybody believes on how the others will act – and, given that the others are

facing the same problem, what they believe about what everybody else believes, and so

on.

The first four of the five chapters in this thesis are about such problems of multiple

equilibria in the contexts of financial markets, voting in committees, speculative attacks,

revolutions, investment decisions and price setting. One particular technique that will

appear throughout is the “global game” developed by Carlsson and van Damme (1993),

who actually use the stag hunt as their leading example. They propose that if we consider

higher-order uncertainty – if, to stay in Rousseau’s metaphor, each hunter is sure that

there is a stag to be killed but is not entirely sure whether the others know, or whether

the others know that others know, and so on – then we can describe thresholds of model

parameters above which people will find it uniquely optimal to hunt the stag, and below

which they will go for the hare.

In the first essay, I consider mechanisms of information aggregation (like markets or

committees) in which individuals have strategic complements – i.e., an action becomes

more attractive if more people take it. I show how such complements can naturally arise

from short-term constraints in financial markets, or from wanting to be on the winning

side in a committee vote. If individuals in such situations lack common knowledge (i.e.

if they are unsure about what the other knows), but they do know something about

each other’s knowledge, I show that as people start worrying about each other’s actions,

about others’ beliefs about actions and so on, it is impossible for people to coordinate on

informative behavior. In any equilibrium, people behave according to rumors or ideas,

not according to their knowledge. (This chapter is partially based on my master’s thesis.)

The second essay, written together with Christoph Schottmüller, is about how to

defend against coordinated attacks – such as speculative attacks against currencies, rev-

olutions, or prison riots. Is it better for the defender to show his own strength, or to keep

it secret, to deter potential attackers so that no attack occurs? 230 years ago, Jeremy
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Introduction

Bentham proposed the “panopticon” as an ideal solution to this problem. He suggested

to construct a prison in which the prisoners are separated from each other and guarded

by a central watchtower, while they are unable to see who (if anyone) is in the watch-

tower. Bentham argued that this setup would make it impossible for prisoners to revolt,

and a large philosophical and sociological literature has built on his idea as a metaphor

for modern society.

From a game-theoretical perspective, Bentham’s argument seems unconvincing at

first glance: Why should the fact that prisoners are unable to see the guards make

it impossible for them to coordinate? And why should they not, in equilibrium, hold

correct beliefs about how many guards (if any) were on duty? We show, however, that

Bentham’s intuition is remarkably correct if we consider large groups of attackers, which

are relatively more predictable than smaller groups by the law of large numbers. We

show that this is a fundamental property of defense against large groups – something

that Bentham did not argue formally, but probably understood intuitively.

In the third essay, I show how information asymmetries can lead to strategic sub-

stitutes in risk-taking: a firm only wants to take risks if other firms take less risks. In

the event of an economic crisis, that will guarantee that there are firms left with enough

capital to acquire valuable assets, so that they don’t need to be sold at fire-sale prices.

This leads to subtle ways in which firms try to anti-coordinate and push each other

into taking a particular decision with welfare-decreasing actions, and market crashes can

simply result from an impossibility to anti-coordinate completely.

In the fourth essay, written with Christoph Schottmüller, we take up one of the

most enduring results in microeconomics: the Bertrand paradox, which states that price

competition between two firms is equivalent to perfect competition. (It can also be

rephrased as an impossibility result: That there are no stable cartels in finitely-repeated

interactions.) We ask: Can firms construct any informational mechanism that allows

them to circumvent this result so that there exists an equilibrium in which they make

positive profits? The answer turns out to be no, even though the argument is somewhat

subtle. (This chapter has been published in the Journal of Mathematical Economics.)

Information – what people or firms know about each other and about the world

around them – has played a central role in these first four chapters. In the fifth essay,

also written with Christoph Schottmüller, we consider the role of information in society

from a slightly different angle. We develop an informational theory of privacy: What

is privacy, why would individuals care about it, (why should economists care about it),

and how can privacy increase welfare even though, on the face of it, it introduces an

additional information asymmetry?

We argue that privacy allows individuals to express themselves freely without having

to worry about being discriminated against because of their choices. This benefits the

individuals, and it benefits society because it improves information aggregation.
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All of these chapters start with a short abstract; omitted proofs and supplementary

material can be found at the end of each chapter. The bibliography for all chapters is at

the end of this thesis.
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Introduction – Danish

“All that I have to say has already crossed your mind,” said he.

“Then possibly my answer has crossed yours,” I replied.

“You stand fast?”

“Absolutely.”

(Arthur Conan Doyle: The Memoirs of Sherlock Holmes – The Final Problem)

De fleste beslutningsproblemer i økonomi er indbyrdes afhængige. Det kan gøre tingene

ret komplicerede, for at sige det forsigtigt. Hvis folk bliver hjemme fordi vejret ser mørkt

ud, ændrer vejret sig ikke p̊a grund af deres beslutning. De kan fortsat bare se op til

himlen og f̊a al den information de har brug for at træffe en beslutning. Men hvis folk til

gengæld beslutter sig for at sælge en aktie fordi de forventer et markedscrash, reagerer

aktieprisen og selve sandsynligheden for et crash forandrer sig. Om det er bedst at købe

eller sælge kan man ikke bare lære fra fundamentalinformationen, ligegyldigt hvor nøje

man ser p̊a den – man er ogs̊a nødt til at finde en m̊ade at se ind i folks hoveder p̊a. Og

hvad tænker alle andre s̊a? De forsøger selvfølgelig at finde ud af hvad alle andre tænker

– og s̊a videre.

Hvordan kan vi alligevel analysere s̊adanne situationer p̊a en frugtbar m̊ade, uden at

vi ender i en uendelig gentagelse af “han tænker at jeg tænker at han tænker ...”? Den

mest produktive og mest brugte idé for at forst̊a adfærd har været ligevægts-ideen, som

Nash (1950) først formaliserede og som er blevet forfinet, opsøgt og fundet lige siden.

Ideen er simpel: Hvis alle opfører sig individuelt optimalt, givet hvad de forventer at

de andre gør, og alle har korrekte forventninger om hvad de andre gør, s̊a er spillet i

ligevægt. Ligesom i samtalen mellem Sherlock Holmes og Professor Moriarty ovenfor: I

ligevægten forudser hver spiller den andens aktion – og st̊ar stadigvæk fast p̊a sin egen

aktion.

Men selvom konceptet er meget kraftfuldt, giver det ikke altid et unikt resultat. Et

eksempel for dette kan vi allerede finde hos Jean-Jacques Rousseau og hans metafor om

hjortejagten:

Var man i Begreb med at fange en Hjort, saa følte enhver saare vel, at han

maatte være aarvaagen paa sin Post, men naar en Hare løb forbi, som han
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kunde naae, saa er der ingen Tvivl om, at han uden Betænkning satte efter

den.1 (Om Oprindelsen til Uligheden blandt Menneskene, 1754)

Rousseau skriver ikke om ligevægte, men han foresl̊ar faktisk at der findes to ligevægte

her: Hvis alle jægere bliver “̊arv̊agen p̊a deres post”, kan de fange hjorten og ingen jæger

ville f̊a et bedre resultat af at jagte efter harer. Men hvis de allesammen jagter efter

harer, vil ingen af dem have det bedre hvis han alene prøvede at fange en hjort.

“Om Oprindelsen til Uligheden” er selvfølgelig ikke en lærebog om at jage. Rousseau

ser hjortejagten som en metafor for socialt samarbejde – lige som økonomiske mod-

eller, som der findes nogle af i denne afhandling, er ment som en metafor for specifikke

økonomiske problemstillinger, udtrykt i matematikkens formelle sprog. Det der er s̊a

g̊adefuldt i hjortejagten er at det forekommer umuligt at sige hvordan rationelle folk vil

opføre sig i denne situation, fordi forskellige forventninger kan være selvopfyldende: Hvis

alle tror p̊a at de andre deltager i hjortejagten, skal de ogs̊a selv gøre det. Men hvis alle

tvivler p̊a at de andre samarbejder, vil ingen af dem samarbejde og deres tvivl har været

berettiget. Det ser ud som om alt kommer an p̊a hvad alle tror om hvad alle andre vil

gøre – og, fordi de andre jo har det samme problem, hvad de tænker om hvad alle andre

vil gøre, og s̊a videre.

De første fire af i alt fem kapitler i denne afhandling handler om s̊adanne problemer

med multiple ligevægte i relation til finansielle markeder, afstemninger i komiteer, speku-

lative angreb, revolutioner, investeringsbeslutninger og prissætning. En særlig teknik der

vil blive brugt flere gange er det“globale spil”, udviklet af Carlsson og van Damme (1993),

som faktisk bruger hjortejagten som deres indledende eksempel. De foresl̊ar at hvis vi

tager hensyn til højere-grads-usikkerhed – hvis, for at blive i Rousseaus metafor, hver

jæger ved at der findes en hjort, men ikke ved om de andre ved det, eller om de ved at

de andre ved, og s̊a videre – s̊a kan vi beskrive tærskelsværdier for modelparametrene

over hvilke folk optimalt vil jage hjorten, og under hvilke folk vil jage efter harerne.

I det første essay betragter jeg informationsaggregationsmekanismer (som fx markeder

eller komiteer) hvor individer har strategiske komplementer – dvs en aktion bliver mere

attraktiv hvis flere andre vælger den. Jeg viser hvordan s̊adanne komplementer naturligt

opst̊ar gennem kortsigtighed i finansielle markeder, eller fra at ville være p̊a den vindende

side af en afstemning i en komité. Hvis folk i s̊adanne situationer ikke har fællesviden

(dvs hvis de ikke er sikre p̊a hvad de andre ved), men de ved noget om andre folks viden,

kan jeg vise at folk begynder at bekymre sig om andre folks handlinger, andre folks

forventninger om andre folks handlinger osv, og det bliver umuligt for dem at koordinere

p̊a opførsel der er baseret p̊a deres viden. Der eksisterer kun ligevægte i hvilke folk

handler efter rygter eller ideer. (Dette kapitel er delvist baseret p̊a mit speciale.)

Det andet essay, som er skrevet sammen med Christoph Schottmüller, handler om

1Citeret efter dansk oversættelse af Salomon Goldin, 1800.
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Introduction

optimalt forsvar mod koordinerede angreb – som for eksempel spekulative angreb mod

valuta, revolutioner, eller fængsleoprør. Er det bedre for forsvareren at vise sin egen

styrke, eller at holde den hemmelig, for at afskrække potentielle angribere? For 230 år

siden foreslog Jeremy Bentham et “panopticon” som en ideal løsning til problemet. Han

foreslog at bygge et fængsel hvor fangerne er adskilt fra hinanden og bevogtet fra et

centralt vagtt̊arn, mens de ikke kan se hvem (om nogen) der opholder sig i vagtt̊arnet.

Bentham argumenterede for at denne opsætning ville gøre det umuligt for fangerne at

gøre oprør, og en stor filosofisk og sociologisk litteratur har siden bygget p̊a hans idé som

en metafor for det moderne samfund.

Fra et spil-teoretisk perspektiv forekommer Benthams argument ikke rigtigt overbe-

visende: Hvorfor skulle fangerne ikke kunne koordinere bare fordi de ikke kan se vagterne?

Og hvorfor skulle de ikke, i ligevægt, have en korrekt forventning om hvor mange vagter

(om nogen) der var p̊a vagt? Vi viser dog at Benthams intuition er bemærkelsesværdigt

korrekt hvis vi betragter store grupper, der er mere forudsigelige end mindre grupper

p̊a grund af store tals lov. Vi viser at det er en fundamental egenskab ved forsvar mod

store grupper – noget som Bentham ikke formelt kunne vise, men som han sandsynligvis

forstod intuitivt.

I det tredje essay viser jeg hvordan informationsasymmetrier kan føre til strategiske

substitutter i risiko: En virksomhed vil kun p̊atage sig risiko hvis andre virksomheder

p̊atager sig mindre risiko. Hvis der kommer en økonomisk krise, garanterer dette at der

findes andre virksomheder som har kapital nok til at købe aktiver, s̊a de ikke behøver at

blive solgt til lave priser. Det fører til at virksomhederne forsøger at anti-koordinere og

presse hinanden til at vælge en særlig beslutning, og markedscrashes kan ganske enkelt

resultere ved at det er umuligt at anti-koordinere fuldstændigt.

I det fjerde essay, som er skrevet sammen med Christoph Schottmüller, undersøger

vi et af de mest kendte resultater i mikroøkonomi: Bertrand paradokset, der siger at

priskonkurrence mellem to virksomheder fører til perfekt konkurrence. (Man kan ogs̊a

formulere det som et umulighedsresultat: Der findes ingen stabile karteller i engangsin-

teraktion.) Vi spørger: Kan virksomheder konstruere en informationsmekanisme som

ville gøre det muligt for dem at omg̊a dette resultat s̊a der findes en ligevægt hvor de

tjener positive profitter? Svaret viser sig at være nej, men argumentet er lidt subtilt.

(Dette kapitel er blevet udgivet i Journal of Mathematical Economics.)

Information – hvad folk eller virksomheder ved om hinanden, og om verden omkring

dem – har spillet en central rolle i de første fire kapitler. I det femte essay, ogs̊a skrevet

sammen med Christoph Schottmüller, undersøger vi informationens rolle i samfundet fra

en lidt anden vinkel: vi fokuserer p̊a privacy (som kun utilstrækkeligt kan oversættes

til “privatliv” p̊a dansk). Vi udvikler en informationel teori om privacy: Hvad er det,

hvorfor skulle individer bekymre sig om det, (hvorfor skulle økonomer bekymre sig om

det), og kan privacy øge velfærd selvom det introducerer en informationsasymmetri?

11
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Vi argumenterer for at privacy gør det muligt for individer at udtrykke deres præfer-

encer frit og uden at de behøver at være bekymret over at blive diskrimineret p̊a grund

af deres valg. Det gavner dem, men det gavner ogs̊a samfundet fordi folks præferencer

bliver bedre aggregeret.

Alle kapitler starter med et kort abstract; de fleste beviser og noget supplerende

materiale kan findes i slutningen af hvert kapitel. Litteraturoversigten til alle kapitler

findes i slutningen af denne afhandling.
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Chapter 1

Is Beauty Contagious?

Higher-Order Uncertainty and

Information Aggregation1

Ole Jann

I investigate the robustness of information aggregation to higher-order uncertainty. Con-

sider an asset market where short-lived speculators have information both about the

asset’s fundamental value and the amount and direction of noise trading. In equilib-

rium, each speculator’s trading takes account of both pieces of information and the

market price adjusts to the fundamental information. But if speculators lack common

knowledge about noise trading, they worry about other speculators’ beliefs, beliefs about

beliefs, and so on. Even with minimal higher-order uncertainty, informative trading is

not rationalizable and no informationally efficient equilibrium exists. I discuss how this

result relates to historical events and what it says on how markets should be organized

to make them informationally efficient. In a second application to expert committees, I

show that lack of common knowledge among experts with very precise information makes

them unable to communicate their information to a decision maker whose interests are

aligned with theirs.

1This chapter is partially based on my master’s thesis ”Speculation and Inefficient Market Equilib-
ria”, which I handed in for evaluation two years into my PhD studies, and reuses some text from that
thesis. An earlier draft has also been circulated under the title: ”When Only the Market Can Vindicate
You: Speculation and Inefficient Market Equilibria”. I am grateful to Olga Balakina, Amil Dasgupta,
Eddie Dekel, Jeppe Druedahl, Nicola Gennaioli, Itay Goldstein, Nenad Kos, Stephen Morris, Michael
Møller, Marco Ottaviani, Alessandro Pavan, Sönje Reiche, Jesper Rüdiger, Christoph Schottmüller,
Peter Norman Sørensen, Annette Vissing-Jørgensen, Xavier Vives and Asher Wolinsky as well as audi-
ences at Copenhagen University, at the DGPE 2013, EEA 2015 (Mannheim), EDGE 2015 (Marseille)
and Oxford University for helpful comments.
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Chapter 1. Is Beauty Contagious?

1 Introduction

This paper shows that information aggregation in financial markets can be paralyzed by

minimal higher-order uncertainty among traders. I demonstrate a novel mechanism by

which small doubt about the beliefs of others (and beliefs about beliefs, and so on) leads

to a contagion of beliefs which destroys any informationally efficient equilibrium. The

result rests mainly on two realistic assumptions: Traders have a short horizon, and they

have information about the number and opinion of irrational noise traders.

To understand the mechanism that drives the result, consider the following example:

A rational speculator believes that irrationally optimistic traders will drive up the price

of a stock. He concludes that he should buy the stock and sell it at a higher price later.

A speculator who believes that other speculators believe that optimists will drive up the

price will therefore believe that these other speculators will buy the stock and drive up

the price, and he will conclude that he should also buy the stock regardless of what he

actually believes about the optimists. And so on, to an ever higher degree, until the idea

that there are optimists in the market takes on a life of its own without anyone having

to believe in it.

If speculators have common knowledge about the actions of noise traders, such con-

tagion of beliefs cannot happen, since everybody knows what everybody knows about

the noise traders, and so on. But with the smallest seed of higher-order uncertainty,

belief contagion eradicates any connection of price to fundamental value. Note that I am

not claiming that the unfounded buying frenzy in the above example is an equilibrium.

But under the assumptions mentioned above, this paper argues that a contagion can be

unavoidable, and it can destroy all informationally efficient equilibria.

This result offers an explanation for the frequent observation that well-informed spec-

ulators seem to trade against their own better knowledge, such as hedge fund managers

who bought tech stocks in 1999 or well-connected bankers who did not get out of the

market in 1929. A similar contagion can also occur in other institutions for information

aggregation, such as expert committees, where it can result in anticipatory obedience

to the biases of a decision maker. Understanding the contagion mechanism, and under

which conditions and assumptions it emerges, has implications for how financial markets

(and other institutions for information aggregation) should be designed to make them

informationally efficient.

I develop a model of an asset market in which speculators have information about the

fundamental value v of the asset. v is realized in period 3, but speculators only live until

period 2 and can either buy in period 1 and sell in period 2, or the other way around.

The speculators therefore want to forecast p2, the price in period 2, which is determined

by the actions of other speculators and noise traders. This problem of trying to forecast

a price that is determined by the actions of others who are trying to make the same
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forecast is what Keynes (1936) famously called the “beauty contest”.2 I naturally extend

Keynes’ metaphor by considering the contagion of beliefs if speculators lack common

knowledge.3

Assume that speculators can observe the order flow from noise traders, xN . If spec-

ulators have common knowledge about v and xN , there exists an equilibrium in which

speculators base their trading on both pieces of information (Proposition 1). In this

equilibrium, p2 is a function of both v and xN . However, p2’s dependence on v is an

equilibrium effect (it only happens if speculators trade on their fundamental informa-

tion), while noise trading is independent of any strategic reasoning. Only xN predicts p2

independently of the strategic decisions of other speculators.

If a speculator believes that xN is very large (i.e. many noise traders are buying),

he expects that p2 will be high, regardless of what other speculators do. (Even if they

all sold, the many buy orders from noise traders would still push the price up.) He will

therefore condition his trading more on what he knows about noise traders than on what

he knows about v. This amplifies the influence that noise traders have on the price, and

the expectation of strong noise trading has been self-fulfilling. Even a speculator who

knows that the actual order flow from noise traders is small can therefore be swayed to

base his behavior on that of noise traders by a self-fulfilling worry that others are doing

the same. Even small higher-order uncertainty can “infect” the beliefs of speculators, as

they worry that others think that there is lots of noise trading, or they worry that others

worry about this, and so on.

I show that this contagion of beliefs among speculators is so powerful that there

exists no Nash equilibrium in which speculators base their trading on any fundamental

information (Proposition 2). This is true even for the smallest possible amount of higher-

order uncertainty. In fact, informative trading is not rationalizable, i.e. any speculator

who holds any consistent set of beliefs about the actions of other speculators will conclude

that it is never optimal to condition his trading on v. In effect, the contagion of beliefs

leads to a “contagion of types,” since all informed speculators act like noise traders, and

no trades based on fundamental information are made. Prices in periods 1 and 2 are

completely independent of v.

Figure 1.1 illustrates the intuition of the first contagion step. The noise order flow xN

from noise traders determines the sign of the price change only in extreme cases, if xN is

very small or very large (shaded areas in the graph). Otherwise (i.e. in the white center

2Keynes took the name from a popular newspaper competition where participants had to choose the
six most beautiful faces among a hundred photographs, and those who chose the most popular faces
could win a prize.

3I use the term “common knowledge” in the sense of Aumann (1976), i.e. something is common
knowledge if everybody knows it, everybody knows that everybody knows it, and so on. “Higher-
order uncertainty” is n-th order uncertainty with an arbitrarily large n, where first-order uncertainty is
uncertainty about a variable, second-order uncertainty is uncertainty about someone else’s belief about
the variable, and so on. Thus higher-order uncertainty implies lack of common knowledge.
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-1 0 1 xN (= order
flow from
noise traders)

Price goes down,
selling is dominant

Price goes up
buying is dominant

Price is determined
by actions of speculators

Contagion Contagion

ωi

i’s uncertainty
about observations
of others, given ωi

Figure 1.1: Illustration of the intuition of contagion. The prize is in equilibrium deter-
mined by the trading of the speculators, and only in extreme cases by the noise traders.
With higher-order uncertainty, a speculator who thinks that the noise trader order flow
is close to the cutoff believes that some other speculators believe that it is beyond the
cutoff (small, magnified rectangle). It is therefore optimal for him to behave as if xN
was beyond the cutoff.

of the graph), the sign of the price change is determined by the trading of speculators,

who trade according to their knowledge about fundamental value. But now assume that

there is small belief uncertainty, so that speculator i observes signal ωi, which is a very

precise signal of xN .4 The small, magnified rectangle shows the problem of a speculator

who receives a signal very close to the lower cutoff, below which speculators have no

influence on the price change. Because of the small uncertainty, he knows that some

other speculators receive a signal that is below the cutoff. These speculators follow their

dominant strategy and sell, which effectively turns them into noise traders. This moves

the cutoff slightly, since there are fewer speculators “available” that could push the price

upwards. It is therefore only rationalizable for i to sell, independently of his knowledge

about v.

The main result of this paper is quite stark, and it needs to be qualified to be

useful. A general prediction that there is no informative trading in financial markets

would quite obviously be at odds with reality. But the results of this paper offer an

explanation at what went wrong in times when asset prices were substantially detached

from fundamentals, such as just before the Great Crash of 1929 or during the dot-com

bubble. In both cases, experts who understood the mispricings refrained from trading

on their information.5 In section 5.2, I discuss several such episodes and relate them to

4I model higher-order uncertainty with the standard global games methodology of Carlsson and van
Damme (1993).

5There was considerable uneasiness in regulatory circles, the Fed, large banks and the media on the
eve of the Great Crash (Galbraith, 1954); fund managers were aware that internet stocks were overpriced
but felt they couldn’t afford to stay out or short-sell (cf. Abreu and Brunnermeier, 2003).
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the model.

Even more importantly, understanding under which conditions the result emerges

can provide insight into how to design financial markets to make them informationally

efficient. The result is robust to the inclusion of some well-informed and long-lived

investors. A market that is made-up mostly of long-term oriented traders, however,

would not exhibit beauty-contest features and this model does not apply. This suggests

that markets in which there is more short-term trading, and times in which people are

looking to make profits quicker, are more susceptible to the belief contagion, and more

likely to lead to informationally inefficient prices. The information structure that leads

to the contagion is also crucial, since contagion does not occur in models with either more

information (i.e. common knowledge) or less information (i.e. no knowledge about noise

trading). While the information structure in this model is not implausible, it is clearly

important whether traders observe (and think about) the current market sentiment when

making their decisions. This offers an explanation for the role that rumors play in

financial markets: Rumors are not necessarily influential because everybody believes

them, but because traders don’t have common knowledge about the fact that no one

believes them. In section 5.1, I discuss which conditions need to be in place to obtain

the result, and which tentative policy implications we can draw.

The contagion mechanism is not exclusive to financial markets; it applies in principle

to all beauty-contest type models. In section 5.3, I briefly sketch an application to voting

in expert committees. Consider an expert committee that has to give a recommendation

between two options. Experts receive a payoff from voting for the winning option, which

is larger than the intrinsic payoff from voting for the better option. A contagion of beliefs

can make it unrationalizable for the experts to systematically vote for the better option.

The speculators in this paper have two pieces of information on which to base their

decision: Fundamental information about the value of the asset, and information about

the behavior of noise traders. This has similarities to the studies on private and public

information by Morris and Shin (2002) and on beauty contests by Allen, Morris, and Shin

(2006), whose central finding is that agents can overweigh information that forecasts the

actions of others, and underweigh information about the state of the world. In this model,

the “predictive” information is about the behavior of noise traders. Since noise traders

sometimes influence the price to an extreme degree (similar to the “noise trader risk”

of De Long et al., 1990), either buying or selling can become the dominant speculator

action for some realizations of noise trader behavior.

The central result of theoretical models of contagion is that small higher-order un-

certainties can be magnified (Rubinstein, 1989) and select between equilibria (Carlsson

and van Damme, 1993). These insights have usually been applied to models in which the

contagion occurs on beliefs about a fundamental variable. But this is not necessary. As

this paper shows, an otherwise insubstantial variable can completely determine behavior.
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It is only necessary that people do not find it inconceivable that this variable could take

values that would make an action strategically dominant. Whether anyone thinks this

is likely is not important. That is how it can become uniquely rationalizable for traders

to condition their behavior on the irrational ideas of a small group of noise traders.

Global games analysis is usually taken to describe selection between two outcomes.

In Morris and Shin (1998), for example, the result is (broadly speaking): For some

fundamental values, a speculative attack occurs, for others it does not. In this model, the

important multiple-equilibrium structure is the existence of two intermediate equilibria:

“all speculators trade in the right direction” (i.e. buy if value is high and sell if it is

low) and “all speculators trade in the wrong direction.” It is the ability of speculators

to choose one of the equilibria that makes informative trading possible. But through

contagion, they are made unable to choose any equilibrium, and informational efficiency

is destroyed. Informative trading happens for no realization of noise trading. Thus the

result is qualitatively different from global games applications that are outcome-centered

and present a selection between the outcomes. The application to voting in committees

(section 5.3) presents this insight even more starkly.

Abreu and Brunnermeier (2003) develop a model in which informed arbitrageurs may

delay selling for some time despite knowing that an asset is overvalued. Since arbitrageurs

are not aware of how many others know of the mispricing, they temporarily cannot

coordinate on selling. This argument is based on a similar intuition as the contagion

which leads to a durable disconnect of prices from value in this paper.

The following section introduces the model under common knowledge and describes

the assumptions in some detail. Section 3 describes the equilibrium without higher-order

uncertainty; section 4 derives the main result if speculators lack common knowledge. The

discussion (section 5) relates the assumptions and result of the model to policy implica-

tions (5.1) and to historical events (5.2). Section 5.3 applies the contagion mechanism

to voting in expert committees; section 6 concludes. All proofs are in the appendix.

2 The Model

2.1 General Structure

Consider the market for one asset. The asset has a fundamental value v of either either

vH or vL, where vH > vL and both values are equally probable. v is realized in period 3.

There is a group of speculators who know v, but they only live until period 2 and can

therefore only trade in periods 1 and 2. In period 1, there are also noise traders who buy

or sell randomly and have a net order flow of xN .

Trading occurs in two periods: In the first period, speculators and noise traders

post buy or sell orders, which are executed according to a linear pricing function with
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unknown market depth. In period 2, prices are set by the market (which we can think of

as being composed of long-term investors, market makers and others). The market does

not know v, but can observe p1 and therefore make inferences about v from observing

p1.

At t = 1, speculators are also informed about xN , i.e. the direction and size of

order flow from noise traders. This seeks to capture the phenomenon that speculators

not only have some information about the value of the asset, but that they can also

observe the current market sentiment – and hence whether their private information is

in line with this sentiment or not. The main result about non-robustness to higher-order

uncertainty emerges when we remove common knowledge about xN by introducing small,

idiosyncratic observation noise – see section 4.1 below.

There is no discounting and speculators are risk-neutral, and there are no budget or

inventory considerations. However, we restrict the amount that any single trader can

trade; such a restriction would otherwise arise naturally from assuming risk-aversion or

budget restrictions.

2.2 Assumptions in Detail

The Players There is a continuum of speculators and a continuum of noise traders.6

The speculators, who are perfectly informed about v, are ordered on the unit interval.

They get a utility of p2 − p1 if they buy in period 1 and p1 − p2 if they sell in period 1,

and 0 if they do nothing.

The uninformed noise traders decide randomly (not necessarily without correlation)

whether to buy or sell one unit of the asset (because of liquidity needs, or irrational

ideas about v). Denote by xS the net order flow from the speculators, and by xN the

net order flow from noise traders in period 1. The order flow xS from speculators is

the result of their strategic trading decisions, while xN is simply the result of some

random process. Specifically, we assume that xN is distributed according to a continous

distribution F that is symmetric around 0 (so that F
(
x
′
N

)
= 1 − F

(
n− x′N

)
) and has

density everywhere on an interval [−n, n] where n ∈ R. We restrict our attention to

cases where n > 1, i.e. there could potentially be more trades from uninformed than

from informed traders.

The Pricing Function in Period 1 Let pt be the market price of the asset in period

t. At the beginning, the asset is trading at price p0, which is the unconditional expected

6The assumption that there are infinitely many traders need not be taken literally - it is simply meant
to represent the fact that traders do not take account of the price impact of their trades, or assume that
they cannot influence the price. The model works just as well in a discrete setting with finite numbers
of speculators and noise traders, see appendix 9.
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value:

p0 =
vH + vL

2
. (1.1)

Let x = xS + xN be the total order flow from speculators and noise traders in period

1. These orders will be cleared by market makers (or a residual market) according to

the linear pricing function

p1 = p0 + λx (1.2)

where λ is an unknown reverse market depth parameter. While λ is similar to Kyle’s

Lambda (Kyle, 1985) in the role it plays in the pricing function, note that it is exoge-

nously given here. We assume that λ is uniformly distributed on the open interval
(

0, λ̂
)

.

To guarantee existence of well-behaved equilibria, we will impose a maximum condition

on λ̂ (i.e. a minimum condition on market depth) below.

The randomness of λ is mainly a technical assumption to make the mapping from

order flow x to price p1 noisy, so that p1 is not fully revealing about x. If that were the

case, the market would be able to observe p1 and perfectly infer who had been trading

(since speculators and noise traders exist in different measure). With a random λ, the

size of the price change is still informative about the trading volume and therefore about

whether informed or uninformed traders were trading more, but it is not fully revealing.

The fact that speculators don’t know λ also precludes the existence of spurious equilibria

in which the speculators submit information by precisely encoding it into the price.

The randomness of λ can also be understood differently if we recall that the mass

of speculators is normalized to one. Without changing the model, we could fix market

depth at a constant, and assume that the mass of noise traders is given by λn and that

of speculators by λ, which would leave the pricing function unchanged. Now the market

depth would be known, but the mass of speculators would be unknown instead.

The Market in Period 2 In period 2, the market is an intelligent player, who has to

set a price p2 at which it is willing to buy or sell any quantity of the asset. I assume that

it gets a utility of − (v − p2)2, so that it will always always maximize utility by setting

p2 = E [v | p1]. We can think of the market in period 2 as a large number of rational

long-term investors, market makers and the like, who are in Bertrand-style competition

and therefore make zero profit and are willing to buy or sell the asset for its expected

value.

Restriction to Trade Size The speculators in period 1 can only buy or sell one unit

of the asset each. The main intuition of this assumption is that the market is large

compared to any single speculator. In the context of this model it is also a technically

desirable assumption, since perfectly informed speculators with no trading or budget

restrictions would otherwise have an incentive to trade arbitrarily large quantities and
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completely correct the price (as there is no fundamental risk for them). Just like in

Glosten and Milgrom (1985), our focus is on the informational content of trades, not on

their size.

With the introduction of fundamental risk or agency concerns, a similar size restric-

tion would emerge endogenously. It also does in the real world: Even a trader who is

absolutely sure of himself will normally not be allowed to trade very large quantities.7

All traders (speculators, noise traders and the market) are free of inventory consid-

erations. Speculators can either buy one unit in period 1 and then sell it in period 2, or

sell in period 1 and buy back in period 2, or they can abstain from trading at all. Selling

and later buying back can also be thought of as a short sale (which has an inherent short

horizon, even if we were to assume that speculators were not short-term interested). The

market in period 2 is willing to trade any number of units at a fixed price.

Perfectly informed Speculators The speculators in this model are perfectly in-

formed not only about the true value of the asset, but also about how the noise traders

are (overall) trading. We could think of xN being as the market sentiment, i.e. the

current (irrational) movement of prices or the direction of the current mispricing.8 The

speculators learn v and xN at the beginning of period 1.

The speculators do not know the inverse market depth λ, the other source of noise

in the model. The noise in λ mostly serves to reduce the informativeness of p1 such

that p1 doesn’t fully reveal who has been trading in which direction (and thus reveal v).

The market only knows the probability distributions of v and xN , and observes p1 at the

beginning of period 2 before deciding which price to offer.

Timing of the Model The timing is shown in figure 1.2.

While the market behaves rationally in using all information that is contained in p1,

it is conceivable that it could also condition on order flow in period 2 when speculators

liquidate their holdings. In particular, it could act similar to the market makers of

Glosten and Milgrom (1985) and adjust p2 conditional on whether it receives buy or sell

orders. But the assumption that all speculators liquidate their holdings in period 2 is

merely a simplification. In reality, many or even most traders are short-term oriented

not because they have to liquidate their holdings every few days or weeks, but because

their holdings get evaluated, by themselves or their superiors, at market prices in short

time intervals. For their motivation and strategic choice, this is equivalent to a world in

7Securities trading companies usually institute rules that limit trading by any one trader, similar
to the trade size restriction of this model. Several scandals of “rogue trading” in recent years have
highlighted the importance of such restrictions by illustrating the damage than can be done if they are
circumvented.

8Cf. the discussion on insider trading by Leland (1992), who works with a similar assumption, and
the “private learning channel” that speculators have in Cespa and Vives (2015).
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t
t = 0 t = 1 t = 2 t = 3

� All speculators learn v

� p0 = vH+vL
2

� Noise traders trade xN

� Speculators observe xN
and trade xS

� p1 = p0 + λ(xN + xS)

� Market observes p1

� p2 = E[v|p1]

� Speculators unwind their
positions at p2

� True value
v is realized

Speculators’ investment horizon

Figure 1.2: The timing of the model. The dashed line shows the speculators’ investment
horizon, which does not stretch to the realization of fundamental value in period 3 as
speculators need to unwind their position in period 2.

which they had to completely sell off and rebuild their portfolio frequently – but it does

not per se allow the investors in our model to deduce any information about the order

flow from the orders they face in period 2.

3 The Adjustment Equilibrium under Common Knowl-

edge

We start by analyzing the game without higher-order uncertainty, where there exists an

equilibrium in which p1 and p2 adjust to v on average. In this equilibrium, the market

in period 2 assumes that p1 is informative about v. In particular, it assumes that if

p1 > p0, it is more likely that v = vH and vice versa. p2 is set accordingly. If |xN | < 1,

the speculators can therefore influence p2 by their trading, and they buy if vH and sell

otherwise. If |xN | ≥ 1, however, whether p1 is above or below p0 is determined by the

direction of the noise trading, and speculators cannot influence p1 sufficiently. It is then

optimal for them to just trade in the same direction as the noise traders.

The market adjusts its expectation of v according to the function p2(p1), which takes

the behavior of the speculators and the distribution of xN into account. If p1 > p0, for

example, they know that overall order flow in the first period was positive, and that

therefore either |xN | < 1 and v = vH , or that |xN | ≥ 1 and the speculators just followed

the herd. The existence of the equilibrium is assured by a maximum condition on inverse

market depth, which guarantees that it will always be optimal for the speculators to

follow their equilibrium strategy.

Proposition 1. (Adjustment equilibrium) It is an equilibrium if every speculator follows

the strategy given by table 1.1 and the market sets p2 = π(p1)vH + (1− π(p1)) vL, where

π(p1) is the belief of the market that v = vH , given p1. This is under the condition that

market depth is sufficient, i.e.

λ̂ ≤ φ
(vH − vL)

n+ 1
. (1.3)
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vL vH

xN≥1 Buy Buy
xN ∈ (−1, 1) Sell Buy
xN ≤ −1 Sell Sell

Table 1.1: Equilibrium strategy of the speculators. Only trading for xN ∈ (−1, 1) is
informative.

The precise expressions of π(p1) and φ are given in the proof.

The intuition of the proof is the following: If speculators follow their equilibrium

strategies, p1 will contain some information about v. The function π(p1), which takes

account of the distributions of xN and λ, gives the probability (and hence the equilib-

rium belief of the market) that v = vH for every p1. Since all possible prices occur in

equilibrium, we do not need to consider out-of-equilibrium beliefs.

The speculators, on the other hand, will make an expected profit by following their

equilibrium strategies, since the price movement in period 1 is always small enough (if

market depth is sufficient, which is where the maximum condition on λ̂ comes from). In

particular, it is always either p0 < p1 < p2 or p0 > p1 > p2. Because a single speculator

has only limited influence on p1, no single speculator has an incentive to deviate. If a

speculator would deviate from his equilibrium strategy, he would make a loss equal to

the profit of his equilibrium strategy. The maximum condition on λ̂ in (1.3) guarantees

that there is no “overshooting” in expectation, i.e. if all speculators buy in period 1, p1

still doesn’t rise above v.

Figure 1.3 shows an exemplary price path in the adjustment equilibrium, where noise

is small (i.e. |xN | < 1). The speculators then face a coordination problem: They can

either all buy or all sell, which will place p1 either above or below p0. In both cases they

make a profit, and both cases constitute an equilibrium of their coordination game. In

the Nash equilibrium, however, the market must optimally extract information from p1,

which is only the case if speculators trade towards the fundamental value v.

If |xN | ≥ 1 the speculators cannot influence whether p2 will be above or below p1,

since they cannot neutralize the noise trading and there is no coordination game among

them. It is dominant for them to follow the herd of noise traders – regardless of whether

it is right or wrong. If the noise traders are wrong, that means that the speculators will

drive the market price further away from its correct value even though they know better,

and even though the investors would gladly enrich them by buying the asset at a more

correct price. Figure 1.4 shows such a price path. The price gets pushed too far away

from p0 (into the grey area), so that the speculators are not able to move it above p0

again. Once noise trading has pushed the price into the “grey area” of the graphs, p1 and

p2 will not return to the informative “white area” and are therefore uninformative.

De Long et al. (1990) describe a similar effect when they consider “noise trader risk”:
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p0 + λ

p0 − λ

p0 = vL+vH
2

p2(p1)

vH

p2(p1)

p0 + λ(xN + 1)

p0 + λ(xN − 1)

p0 + λxN

vL

Speculator’s
profit

Speculator’s
alternative profit

t = 0 t = 1 t = 2 t = 3

Figure 1.3: The equilibrium price path in the adjustment equilibrium for a given set
of parameters, where v = vH (asset value high) and 0 > xN > −1 (noise traders sell
the asset). Noise trading is small, i.e. noise traders do not push the price outside
the white area in the center. All speculators buy the asset, thus pushing the price to
p1 = p0+λ(xN +1). The market observes p1 > 0 and sets p2(p1) > p1, so that speculators
make a profit.
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Figure 1.4: Another equilibrium price path in the adjustment equilibrium. Now xN <
−1, i.e. noise traders push the price into an area (given by the gray shade) where it is the
dominant action for speculators to sell. Unlike in the previous figure, the coordination
game between speculators does not have multiple equilibria and thus no information
submission is possible.

In their model, rational and informed arbitrageurs in an overlapping-generations model

could correct mispricings that arise through noise trading. But since arbitrageurs are

short-lived and the market could get even more irrational (noise trade is randomly dis-

tributed), they refrain from fully correcting the mispricings. In my model, the direction

of the noise order flow (and therefore also the direction of the mispricing in the next

period) is known to the speculators, and they can therefore choose to trade against their

information and therefore avoid the noise trader risk. They drive prices further away

from fundamentals while doing so, as in models of speculative bubbles such as Abreu

and Brunnermeier (2003).

4 Higher-Order Uncertainty

4.1 The Adjustment Equilibrium without Common Knowledge

Now consider the problem of the speculators in the adjustment equilibrium described

above and take the market’s strategy as given. As we have seen above, for xN ∈ (−1, 1)

the speculators are playing a coordination game with two equilibria: They can either

all sell or all buy; in either case they make a positive profit and no speculator would
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optimally choose a different action (cf. figure 1.3 on page 24). Only trading in the correct

direction (buying for vH and selling for vL) can be part of a Nash equilibrium where the

market optimally plays its equilibrium strategy.

This coordination among speculators works under the assumption that xN is common

knowledge, i.e. the ratio between informed and noise traders is common knowledge

among the informed traders. Given that both v and xN are information that is not

publicly available to everyone (otherwise the market would be fully informed), it is

plausible to consider what happens if xN is known very precisely to the speculators, but

not common knowledge. We will see that in this case, no set of values of xN remains

for which the speculators ever trade on their information. Their worries about other

speculators’ information about xN (and their worries about other speculators’ worries

and so on) lead them to completely disregard any fundamental information, and the

adjustment equilibrium collapses.

We loosen the common knowledge assumption in a way that is similar to the canonical

models of Carlsson and van Damme (1993) and Morris and Shin (1998). Assume that

instead of learning xN , every speculator i observes some ωi. All ωi are independently

drawn from a uniform distribution on [xN − ε, xN + ε], i.e. an interval of length 2ε

around the true xN , with ε > 0 but small. Every single speculator will then know after

observing ωi that xN ∈ [ωi − ε, ωi + ε]. But about the signal of another speculator

j he will only know that ωj ∈ [ωi − 2ε, ωi + 2ε], and he only knows that j believes

that xN ∈ [ωi − 3ε, ωi + 3ε], and so on. Then, even if the observation of every single

speculator is extremely precise, it is only common knowledge that xN ∈ [−n, n] – which

is identical to the prior. We are interested in the case where ε → 0, i.e. all speculators

are arbitrarily well-informed about xN , but lack common knowledge of it. In this slightly

modified game, we can show the following proposition:

Proposition 2. Assume that the market follows a strategy where p2 > p1 if p1 > p0 and

p2 < p1 if p1 < p0. Then any rationalizable strategy of the speculators’ coordination game

has the property that all speculators buy if they observe ωi > ε and sell if ωi < −ε. For

ε→ 0, this gives a uniquely rationalizable equilibrium where all speculators buy if ωi ≥ 0

and sell otherwise.

Note that this is not a canonical application of the global games refinement, since the

speculators’ coordination game is not supermodular: Once p1 is on the right side of p0,

every additional speculator who trades decreases the profits of the other speculators.9

Still, it is possible to show that the above strategy is uniquely rationalizable, as the

9As an illustration, consider the case where v = vH and xN = −0.2. If all other speculators increase
their probability of buying from 0.5 to 0.7, buying becomes more attractive. If they increase their
probability of buying from 0.8 to 0.9, however, buying becomes less attractive. Thus the game is not
supermodular.
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dominance regions where it is always optimal to buy or sell “infect” the undominated

region where there were multiple equilibria in the complete information game.

Intuitively, every single speculator reasons along the following lines:

I know that xN is within a small interval around my observation ωi. If ωi

is in (−1, 1), it is my best guess that all speculators together could overcome

the noise so that p1 correctly reflects our private information. I also know that

the other speculators have a very precise idea about xN—but my knowledge

about their knowledge is a little less precise than my own knowledge about

xN . If I consider my knowledge about their knowledge about my knowledge,

it gets even less precise.

In particular, if ωi is very close to 1, I think it is very likely that many

other speculators have received a signal above 1 and will therefore play what

they believe is the dominant strategy of buying. So I should buy if I observe

ωi very close to but below 1, regardless of what my information about v.

The others will reason the same way, so that if I observe ωi somewhat less

close to 1, I know that many others will observe a ωj closer to 1, and buy for

the reason outlined above. Such contagion carries on, and vice versa from ωi

close to −1. So I will choose to sell if ωi < 0 and buy if ωi ≥ 0, and disregard

my private information about v.

Figure 1.5 depicts the intuition of the contagion argument in a graph similar to the ones

above. The proof formalizes this iterative reasoning by defining an elimination process

that starts with the set of all possible strategies and then removes, in each step, strategies

that are never a best response to any other strategy in the remaining set. In this way,

the proof is in the vein of the original work by Carlsson and van Damme (1993) while

taking up and modifying some ideas from Frankel et al. (2003).

If the trading of all speculators is only dependent on ωi and independent of v, p1 will

actually be completely uninformative about v. Hence there is no Nash equilibrium of a

game in which xN is not common knowledge where the market treats p1 as informative.

4.2 A Non-Adjustment Equilibrium

If informative trading is not rationalizable, which equilibrium can we expect the whole

market to be in? It depends on the perspective we take on the role the market in period

2. If we see it as a non-thinking actor who simply follows the decision role laid out in

proposition 1, the story ends here: Without common knowledge, speculators never trade

informatively, and still the market sets p2 as if p1 were informative. All price movements

in p1 and p2 are pure noise.

Almost the same happens if we treat the lack of common knowledge as an unlikely

event, or an event that the market does not expect. Since the market cannot observe
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t

Price

p0 + λ

p0 − λ

Always optimal
to buy

Always optimal
to sell

Contagion ”from below”

Contagion ”from above”

p0 = vL+vH
2

vH

p0 + λxN

vL

t = 0 t = 1 t = 2 t = 3

Figure 1.5: Contagion in the absence of common knowledge. Even though xN > −1, the
speculators’ coordination game no longer has multiple equilibria. A speculator observing
xN > −1 but close to −1 is worried that others might believe that xN < −1, or that
others might believe that others believe this, etc. This contagion carries on, such that
selling becomes optimal for all xN < 0 and buying for all xN > 0.

whether speculators trade informatively or not, it would continue in treating p1 as infor-

mative.

But if we are to take the role of the market as as rational actor seriously, we must

assume that in equilibrium it is not “fooled” by p1 and correctly believes that p1 is

uninformative, in which case it would set p2 = p0, the prior. Consequently, the trading

strategy of the speculators derived in proposition 2 would no longer be optimal. Trading

on v, however, does not become optimal. Instead there exists a different equilibrium:

Proposition 3. (Non-adjustment equilibrium) It is an equilibrium if speculators with

probability min {|ωi| , 1} either buy if ωi < 0 or sell if ωi ≥ 0 (and neither buy or

sell with the complementary probability), and the market believes that p1 is completely

uninformative and therefore sets p2 = p0.

If the market believes p1 to be uninformative, the speculators already know that

p2 = p0 and the only gain they can make is by providing liquidity to noise traders. Since

this means they do not act on their information about v, the market is correct to believe

that p1 is uninformative.

This equilibrium actually exists independently of whether there is common knowledge

or not, as there is no strategic complementarity in the speculators’ actions. No player has

an incentive to deviate from their equilibrium strategies: The market would not benefit
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from assuming that prices contain information, and the speculators cannot gain from

unilaterally (or as a group) submitting information (and thereby driving p1 away from

p0). In this interplay of “not talking” and “not listening”, the equilibrium is similar to the

“babbling equilibrium” of cheap-talk games (Farrell and Rabin, 1996). There, the sender

randomizes between messages such that her message has no correlation to her private

information, and the receiver ignores any messages by the sender. This constitutes an

equilibrium, albeit (when it comes to everyday communication) perhaps not a plausible

one.

The non-adjustment equilibrium is also similar to uninformative equilibrium of Ben-

habib and Wang (2015), and it is an extreme case of the less informative equilibrium

of Cespa and Vives (2015). In both cases, the uninformativeness of the equilibria also

emerges through short-term constraints in the models.

4.3 Without Common Knowledge, the Market Cannot Be In-

formationally Efficient

The rationalization result derived in proposition 2 is clear and general: Consider any

equilibrium of the complete-information game in which the market treats p1 as informa-

tive by setting p2 > p1 if p1 > p0 and vice versa. Clearly, the adjustment equilibrium

and any small perturbation of it belong in this class. Now relax the common knowledge

assumption about xN by introducing the smallest seed of doubt about whether the other

speculators are making the same observation as you. For ε very small, which is the case

we are interested in, the speculators are still generically 100% sure that xN is small,

they are almost equally sure that everybody else knows that xN is small, and so on

... but not ad infinitum. They no longer have common knowledge about this fact, and

this small seed of doubt means that the strategies that would constitute the adjustment

equilibrium are no longer rationalizable – which means that they cannot be part of a

Nash equilibrium. Without common knowledge, therefore, no equilibrium can exist in

which the market correctly beliefs that p1 is informative.

Recall also that this result requires no assumptions on the shape of F , the distri-

bution of xN , except that it is continuous, symmetric and has density everywhere. In

particular, this means that F could be shaped such that an arbitrarily large mass of F

is inside [−1, 1]. Then the noise was almost always small and trading in the adjustment

equilibrium would be almost fully revealing. Even in this model, contagion would occur

and the adjustment equilibrium would not exist. The frequency of large |xN | is therefore

not important for the relevance of the model – the pure possibility that xN is outside

[−1, 1] is sufficient.
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5 Discussion

5.1 When Does Contagion Occur, and What Can We Learn

from It?

The main result of this paper is quite stark, as it shows that informative trading only

happens if speculators have common knowledge of all model variables. Common knowl-

edge is an exacting requirement that is often unlikely to be met in reality, especially

given that the very idea of information aggregation is that the information is not known

to everyone. I would therefore like to point out which assumptions of the model are cru-

cial for obtaining the contagion result. That allows us to make predictions about which

real-world conditions promote or preclude informational ineffiency through contagion.

In general, it can be said that:

� Contagion does not occur if speculators do not have short-horizons, but live until

period 3. However, if we endow only a few speculators with long horizons, there

is no qualitative change – the remaining speculators are still subject to the same

contagion.

� While contagion occurs regardless of any specific assumptions about the likelihood

of certain actions by noise traders, contagion does not occur if speculators do not

consider a large enough set of trading behavior ex ante conceivable.

� If speculators have no knowledge about xN , contagion does not happen (since

there is no information about the beliefs of others that would be reason for worry).

Introducing higher-order uncertainty of other variables than xN does not appear

to change anything.

Short horizons A central assumption of the model is that the information about

the value v is known only to short-term speculators. This is not to suggest that all

information arrival at financial markets works in this way, but just that the theory of

contagion only applies to situations where this is the case. In general, however, it does

not seem a wholly unreasonable assumption that speculators could be better informed

than some long-term investors. Just consider that most professional money managers

would count as “speculators” in the context of this model if we consider sufficiently long

time periods—a few weeks, say, or a quarter. Few of them are allowed and capable

of raking up massive losses over such a time frame even if they claim to have superior

knowledge that will in the end be vindicated.

Empirical evidence suggests likewise that a large proportion of stock positions are

opened for a very limited amount of time, with the expectation of making a profit in

less time that it takes to see two quarterly earnings reports. The average holding period
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of stocks in the United States is three to four months—not even enough to receive

a full dividend payment, let alone profit from long-term business or macroeconomic

developments.10 And even where assets are not bought and sold within days or seconds,

those who decide about trading them have their performance evaluated at market prices

at very short intervals. If a trader buys an asset at time t for the price pt, it does not

matter to him whether he sells the asset at t+ 1 and it contributes pt+1 − pt to his cash

holdings, or whether he still holds it at t + 1 and it contributes pt+1 − pt to the overall

appreciation of his holdings since t.

If all speculators lived until period 3, they would always trade on their information

and no contagion would occur. But if we start out with the model in this paper and

add a number of long-lived informed investors, the result is robust – up to a point.

Consider, for example, a modified model in which there is a measure µ < 1 of informed

investors, who always buy if v = vH and sell otherwise. This would be akin to shifting

the distribution of xN by µ, so that noise trading is given by x̂N = xN ± µ, depending

on v. As long as the distribution of x̂N has density both below −1 and above 1 so that

it reaches into the dominance regions, contagion occurs.

In general, the contagion result is remarkably robust to small changes in the payoffs

of the speculators. This matters, for example, if we assume that speculators get a small

additional payoff from trading in the “right” direction, because there was an exogenous

chance that they could live longer. To see why this is the case, note that the payoff

structure of a speculator looks like this (+ denotes positive profits, − negative profits):

Speculator’s action at t = 1:

Result:

p2 > p1 p2 < p1

Buy + -

Sell - +

A speculator that decides whether to buy or to sell will only ever compare two values

in the same colum, since there is no uncertainty in the rationalization argument as to

which way the price will move. (Assuming that a speculator lives until period three

with a certain probability would mean that he plays the game given by the matrix above

with a certain probability, and another game otherwise.) The chain of rationalizability

arguments that led to the contagion result therefore only relies on the fact that the values

in the main diagonal are larger than the other values in the same column. As long as

the intrinsic payoff of trading on v, and the probability of being long-lived, are small

enough, the contagion result obtains.

10The “World Bank Financial Development Indicators” show stock market turnover ratios, which is
the inverse of average holding period. In the United States in 2008, for example, trade volume was 4.35
times as high as total market capitalization. Since this is the mean holding period and the distribution
is truncated at 0, the median holding period is probably much lower.
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Noise trading Some authors (e.g. Dow and Gorton, 1994, p. 825) argue that the

presence of noise traders has to be explained. But the absence of noise traders would

mean that all traders, at all times, act rationally to maximize their expected payoff from

trading. There are two main types of traders for whom that does not apply. Firstly,

substantial research on behavioral finance has shown that traders, institutional or private,

fall prey to a large number of irrational biases. Secondly, even a rational trader might

find it optimal to sell an asset (whose price he expects to rise) for liquidity reasons – for

example when he needs to access his savings to retire or pay unforeseen expenses.

Once we accept the assumption that there are noise traders in the market, the ques-

tion naturally arises whether additional assumptions about the actions of noise traders

are necessary. Note, however, that the only two assumptions about the distribution F of

xN that are used in the proof of proposition 2 are (a) that the probability density func-

tion of F is continuous and (b) that F has density everywhere on [−n, n]. It is therefore

only required that speculators consider any order flow from noise traders conceivable –

they don’t have to think it likely. In fact, if we assume that xN was normally distributed

around 0, we could make the standard deviation of this distribution arbitrarily small

without in any way containing the contagion. The distribution of the order flow from

noise traders could be so concentrated that speculators were almost sure that xN was

in (−1, 1). In that case, trading in the common-knowledge equilibrium (proposition 1)

would almost always be informative and E[(v − p2)2] would get arbitrarily small in this

equilibrium. Yet as soon as we introduce the smallest higher-order uncertainty about

xN , contagion carries through all the way and informative trading is not rationalizable.

The information available to speculators When I have considered higher-order

uncertainty in this paper, I have limited this uncertainty to the realization of xN and

continued to assume common knowledge of v. This begs the question of what would

happen if there was also higher-order uncertainty of v, so that every speculator would

worry also about other speculators’ belief about v. Could there be a similar contagion

of beliefs that might even restore dependence of the speculators’ actions on v?

The answer is no, at least in a setup like in this paper where there are no possible

values of v for which any action by the speculators would be dominant. There is simply

no possible belief about v to “start” a contagion of beliefs. In the case of uncertainty

about xN , this is the belief that another speculator might think that another speculator

might think etc. that xN is so large or so small that buying or selling is the dominant

action. Without such “dominance regions”, there can be no contagion. In the teminology

of Weinstein and Yildiz (2007), the “richness assumption” fails on v, since the parameter

space of v is not rich enough to contain dominance regions.

It is possible to think of situations where there are conceivable fundamental values

that make buying or selling dominant. If, for example, speculators know that they live
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until period 3 with some probability, and v is extremely large with some probability, they

might find it dominant to buy the asset. This reinforces the point (made above) that a

sufficient long-term orientation of the speculators can break the chain of contagion.

Finally, a crucial requirement of contagion is that speculators actually have an ob-

servation of xN , since it is the worry about other speculators’ beliefs of xN that keeps

the contagion alive. If speculators are completely unaware of xN and only observe v,

their only consideration is whether xN is outside the dominance regions with enough

probability to make informative trading profitable. We therefore have the seemingly

curious result that contagion fails both if speculators have less and more information

(i.e. no information or common knowledge of xN). If speculators fall prey to contagion,

the market would function much better if they did not have access to information about

the market sentiment. The sort of coverage that is most beloved by newspapers and tv

stations the world over – “Panic at NYSE! Euphoria as Asian Markets Open!” – can thus

have a hugely detrimental effect by giving informed speculators information about the

noise in the market without generating common knowledge about it. Common knowledge

would only be generated if all speculators followed the same news sources, had common

knowledge about this fact, and also had common knowledge about the fact that they all

understand the news in the same way – a tall order. Ultimately, the contagion argument

rationalizes a folk argument among economists: The hype and sensationalist coverage

surrounding financial markets can magnify the “psychological moods” of the market and

eradicate cool-headed, rational trading – and everybody would be better off without it.

5.2 Examples of the Mechanism at Work

As an example of the paralysis of informative trading described in this paper, consider the

so-called Dot-com bubble in the late 1990s and early 2000s. In the context of this model,

we could think of internet stocks as being worth either vL (“most of these companies

will never make a profit”) or vH (“they will change the economy forever and be hugely

profitable”). Many market participants did not know which was the case, but because vH

was extremely large their unconditional prior vL+vH
2

was also large. The uncertainty was

large enough to make it plausible that it would only be resolved quite far into the future

(what if internet companies needed to grow for a decade before turning huge profits?),

far beyond the investment horizon of most investors.

Many sophisticated fund managers knew that internet stocks were overvalued, i.e.

that v = vL.11 But to coordinate on an informative sell-off of internet stocks, they would

need common knowledge about the fact that there were enough informed traders. As we

have seen, it does not matter how large the number of informed speculators is in relation

11See for example the discussion in Abreu and Brunnermeier (2003, p. 175). Brunnermeier and Nagel
(2004) document that hedge funds were heavily invested in tech stocks, and argue that this was not
because they believed prices to be reasonable.
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to the number of noise traders. Without common knowledge, the sheer possibility that

there could be many noise traders infects everyone’s beliefs, despite the fact that all

speculators know this not to be the case. So even a well-informed and sophisticated fund

manager who knew that stocks were overvalued, and who knew that there were enough

others to support a sufficiently large sell-off, feared that others would not sell because

they feared that still others would not sell, and he would therefore not sell himself.

A similar pattern emerges when we consider what is perhaps the most notorious

market movement in history, the “Great Crash” of 1929. The crash was by no means

unexpected, as many experts had come to realize throughout 1929 that stock prices were

unsustainably high. Galbraith (1954, ch. 2) describes the uneasiness in regulatory circles

and the various attempts to deflate the bubble, and also documents prescient warnings by

well-known bankers, financial services and the New York Times. But without common

knowledge about the fact that informed traders could outnumber noise traders, there

was no informative sell-off.

1929 also offers a glimpse into how an equilibrium shift from the non-adjustment

to the adjustment equilibrium can occur when common knowledge is generated. On

October 24 (“black thursday”), prices fell suddenly and violently by nearly 13%. They

swiftly recovered (the closing was only 2.1% down that day), but the event had shown

that there were many traders in the market willing to sell. What was even more important

was that, since everybody could reasonably assume that everybody else would follow the

market closely enough to notice such an event, the preponderance of informed traders

was now also common knowledge. In the following days, despite no substantial economic

news (cf. Shiller, 2000, p. 94), informed market participants could now coordinate on

selling, and the Dow fell over 23% in two days.

As an example of (unprofitable) out-of-equilibrium behavior, consider the spread

between Royal Dutch and Shell stocks in the late 1990s. The stocks were trading at

different exchanges, but prices should have been at a fixed proportion, because cash

flows were paid in a fixed proportion. Instead, there was a spread that was quite stable

around 8% (cf. Froot and Dabora, 1999). It appears that the market was in a non-

adjustment equilibrium where the many traders who were aware of the unreasonable

spread could not coordinate on trading to narrow it, since they didn’t have common

knowledge about their on combined strength in the market. When the hedge fund Long-

Term Capital Management (LTCM) began to trade against the spread in 1997, there

was sufficient trading in the opposite direction to maintain the spread – as we would

expect from the model, as informed speculators had settled on trading against changes

in the spread instead of betting on it to close.12

12The managers at LTCM, however, were “mystified” – cf. Lowenstein (2000, p. 148).
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A is chosen B is chosen

Vote for A 1000 0
Vote for B 0 1

Table 1.2: Payoffs of committee members, assuming that A is the better option. (If B
is the better option, the payoffs 1 and 1000 change places.)

5.3 An Application to Voting in Committees

The main theoretical insight of this paper can be applied to other settings besides finan-

cial markets. This section sketches an application to voting in committees.

A decision maker has to decide between two options, A and B. One of them is better

than the other; the decision maker gets a payoff of 1 for choosing the better option and

0 otherwise. The decision maker does not know which option is better, but he gets

help from a committee of experts, who all know which option is better. As an example,

consider a department head who has to choose between two applicants for an academic

position, or an authority that has to decide whether to approve a new drug.

Committee members (experts) are on the unit interval. They strongly prefer that the

better option gets chosen, but they also get a small payoff if they back the worse option

and it gets chosen. They get nothing if they vote for a losing option. Their payoffs,

assuming that A is the better option, are shown in table 1.2.

The timing is as follows:

1. All experts observe whether A or B is better.

2. All experts decide simultaneously whether to vote for A or B.

3. The decision maker observes the proportion a of experts that voted for A and

makes a choice.

There is a simple and robust Nash equilibrium where all experts vote for the better

option, and the decision maker implements the option that gets the majority of the

votes. Now assume that there are some outside forces that influence the vote count

or its transmission, so that the decision maker observes â = a + θ instead of a, where

θ ∼ N(0, σ). Let σ be small. This could also be thought of as influencing the decision

maker himself, for example a bias in his perception or another source of information that

he has besides the expert committee. One could think of a pharmaceutical company

lobbying for or against the approval of a new medication, or an unknown bias on the

side of the department head for one candidate or another. For σ sufficiently small, the

equilibrium strategies remain the same, and the worse option is only chosen in very few

cases (only if θ /∈ (−0.5, 0.5)).

Now assume that all experts observe θ at the same time that they observe which

option is better. The equilibrium of this game is almost the same: Experts vote for
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the better option if θ ∈ (−0.5, 0.5), vote for A if θ ≥ 0.5 and for B if θ ≤ −0.5. The

decision maker chooses A if â ≥ 0.5 and B otherwise, and the better option is chosen if

θ ∈ (−0.5, 0.5), which is usually the case since σ is small by assumption.

Now, however, assume that instead of observing θ perfectly, each expert i observes

signal ωi which is i.i.d. uniformly distributed on [θ−ε, θ+ε], and we are interested in the

case where ε→ 0. Experts are still very precisely informed, but lack common knowledge

about θ. They still have common knowledge about which option is better.

We can now use the same technique as in the proof of proposition 2 to show that

the dominance regions infect the multiple-equilibria region. Taking the decision maker’s

strategy as given, there is no rationalizable strategy for any expert that conditions voting

on which option is best. The informationally efficient equilibrium gets destroyed com-

pletely, and instead we get an equilibrium in which each expert votes A if ωi > 0 and B

otherwise, and the decision maker follows their recommendation. The options are chosen

randomly depending on the realization of θ, and the better option gets chosen only half

of the time. This is despite the fact that it is common knowledge among the experts

which option is better, the “transmission noise” |θ| is small with very high probability,

and experts as well as the decision maker prefer the better option. It is enough that the

experts consider it remotely conceivable that the department head would ignore their

recommendation (i.e. that the distribution of θ has density outside of (−0.5, 0.5)) to

make them use their very precise observation of her bias to always choose the candidate

to which she is leaning. This anticipatory obedience even occurs if her bias is almost

always negligibly small.

The implications of this model are similar to recommendations for financial markets

above. If experts derive sufficient intrinsic motivation from voting for the correct option,

the contagion collapses. No contagion occurs if we simply place 2 in the upper right,

and −2 in the lower left field of table 1.2. Furthermore, experts should, if possible, be

kept in ignorance of the biases that influence the decision maker: As we have seen above,

the informationally efficient equilibrium continues to exists if we introduce θ but keep it

hidden from the experts.

6 Conclusion

Perhaps the main reason for the triumph of market-based economic systems is that

no other mechanism can transmit information about scarcity, efficiency and ability as

realiably, fast and cheaply as the price mechanism (cf. Hayek, 1945). We live in a system

of financial capitalism because financial markets are the ultimate way of transmitting

information: Financial assets are standardized and fungible, all information other than

prices is stripped away, information flow is immediate and transaction costs minimal.
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But the well-functioning of financial markets requires that they actually incorporate the

information that is held by market participants.

This paper describes a mechanism that can destroy informational efficiency if traders

only care about the short run and have knowledge about the irrational moods and pas-

sions of the market. Both assumptions are compatible with empirical observations. The

effect of the latter assumption also supports the conclusion that the spread of rumors

and ideas can be highly destructive even in a market that is mainly populated by ra-

tional traders. Rumors need a medium to spread, and accordingly Shiller (2000) hast

pointed out that “the history of speculative bubbles begins roughly with the advent of

newspapers.”

The concrete uses of the model lie in providing advice on how to prevent belief

contagion in financial markets (section 5.1) and explaining observed behavior (section

5.2). But the theoretical contribution goes beyond. As we have seen in section 5.3,

contagion can destroy information aggregation in other settings if actions are strategic

complements. Ultimately, the role of contagion in magnifying noise trading and detaching

market prices from fundamentals is only one application, if perhaps the most important,

of the general theoretical insight. Contagion only requires that actions are strategic

complements, and that people find it conceivable that the world would be in a state

where each of them had a uniquely optimal action. Then, with even minimal higher-

order uncertainty, contagion guarantees that for any state of the world, there is a uniquely

rationalizable action. And crucially, as this paper argues, the signal that they condition

their actions on need not be fundamental. It can be irrational ideas about the prospects of

dot-com companies or the biases of a decision maker, but it might just as well be any other

idea that is not ruled out by prior beliefs. A general pattern emerges by which higher-

order uncertainty can detach outcomes from the fundamental variables that actually

matter. Instead, behavior is determined by the spurious realizations of meaningless

signals, purely out of the self-fulfilling belief that others are following these signals. There

are connections to the theories of groupthink (Janis, 1972) and preference falsification

(Kuran, 1997), which suggest other applications to political behavior, decision making

in groups and the collection of knowledge in organizations.
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7 Appendix: Proofs

Proof of Proposition 1. Part 1: The market has no incentive to deviate (and

π(p1) is obtained by Bayes’ rule).

Assume that the speculators follow their equilibrium strategies and consider the case

where p1 > p0. The market can then, from observing p1, draw conclusions about v. Let

π(p1) be the conditional probability that v = vH after observing a certain p1, Pr(vH |p1).

It is

π(p1) = Pr(vH |p1) =
Pr(p1 ∩ vH)

Pr(p1)

=
Pr(p1 ∩ vH ∩ |xN | < 1) + Pr (p1 ∩ vH ∩ xN ≥ 1)

Pr (p1 ∩ |xN | < 1) + Pr (p1 ∩ xN ≥ 1)

=

n∫
−1

g
(
p1−p0

xN+1

)
dF (xN)

n∫
−1

(1 + 1xN>1) g
(
p1−p0

xN+1

)
dF (xN)

where g is the density of λ. Since g
(
p1−p0

xN+1

)
= 1

λ̂
if if 0 < p1−p0

xN+1
< λ̂ and 0 otherwise, we

can rewrite this as

π(p1) =

n∫
p1−p0
λ̂
−1

dF (xN)

n∫
p1−p0
λ̂
−1

(1 + 1xN>1) dF (xN)

=
1− F

(
p1−p0

λ̂
− 1
)

2− F
(
p1−p0

λ̂
− 1
)
− F

(
max

{
p1−p0

λ̂
− 1, 1

}) .
Pr(vL|p1) is the complementary probability 1 − π(p1), so that the expected value of v

given p1 is E [v|p1] = π(p1)vH + (1− π(p1)) vL. A similar argument applies to the case

where p1 < p0. If p1 = p0, the price contains no information and p2 should be set equal

to the prior.

p1 is between p0 − λ̂(n + 1) and p0 + λ̂(n + 1). For xN ∈ {−n, n}, all possible p1

occur with positive density, so that in equilibrium all possible p1 occur with positive

probability and there can be no out-of-equilibrium beliefs.

Part 2: Speculators make a positive profit in equilibrium.

Now assume that the market follows its equilibrium strategy. Consider the case

where p1 > p0, meaning that either |xN | < 1 and v = vH or simply xN ≥ 1.13 If they

follow their equilibrium strategies, the speculators’ buy orders will drive the price to

13An analogous argument applies where p1 < p0.
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p0 + λ(xN + 1) > p0, and in period 2 all speculators will be able to sell their holdings at

π(p1)vH + (1− π(p1)) vL. Their profit is then π(p1)vH + (1− π(p1)) vL− p0− λ(xN + 1),

which can also be written as

F
(

max
{
p1−p0

λ̂
− 1, 1

})
− F

(
p1−p0

λ̂
− 1
)

4− 2F
(

max
{
p1−p0

λ̂
− 1, 1

})
− 2F

(
p1−p0

λ̂
− 1
) (vH − vL)− λ (xN + 1) .

Since every speculator knows xN , the expected profit is

E

 F
(

max
{
p1−p0

λ̂
− 1, 1

})
− F

(
p1−p0

λ̂
− 1
)

4− 2F
(

max
{
p1−p0

λ̂
− 1, 1

})
− 2F

(
p1−p0

λ̂
− 1
)
∣∣∣∣∣∣xN

 (vH − vL)− λ̂

2
(xN + 1) .

Since p1 is increasing in xN , F
(

max
{
p1−p0

λ̂
− 1, 1

})
and F

(
p1−p0

λ̂
− 1
)

are also (weakly)

increasing in xN . The expression therefore becomes minimal for xN = n. If at this

minimal point it is still non-negative, speculators make a positive expected profit in

equilibrium; this is the case if

λ̂ ≤ E

 F
(

max
{
p1−p0

λ̂
− 1, 1

})
− F

(
p1−p0

λ̂
− 1
)

4− 2F
(

max
{
p1−p0

λ̂
− 1, 1

})
− 2F

(
p1−p0

λ̂
− 1
)
∣∣∣∣∣∣xN = n

 (vH − vL)

n+ 1
.

≤ φ
(vH − vL)

n+ 1

This gives a minimum condition for market depth, which is simply given by the spread

between high and low value, adjusted for the number of market participants and some

adjustment factor φ that depends on the precise shape of F . If this minimum condition

is fulfilled, speculators make a non-negative expected profit in equilibrium. Note that

φ ∈ (0, 1/2) since the expression in the expectation is at least 0 (if p1−p0

λ̂
> 2) and at most

1/2 (if p1−p0

λ̂
≤ 2), and both cases occur.

Part 3: No single speculator has an incentive to deviate from his equilib-

rium strategy.

Part 2 shows that every speculator has, after having observed v and xN , a non-

negative expected profit from following his equilibrium strategy. If his equilibrium action

is to buy, then p1 − p0 ≥ 0, and p0 − p1 ≥ 0 if his equilibrium action is to sell. If he

were to do nothing instead, his profit would be 0, which is not better. If he were to do

the opposite, his profit would be non-positive, which is also not an improvement. All

speculators hence optimally follow their equilibrium strategies.

Proof of Proposition 2. A strategy is a function s(ω), where s : [−n− ε, n + ε]→ [0, 1]
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k
′ − 2ε k k

′
2k
′ − k k

′
+ 2ε

1
2ε

Figure 1.6: Illustration of the proof for the lemma. For small ε, the distribution of
the signals of the other speculators is a symmetric triangular distribution around the
own signal. Given that all speculators that receive a signal lower than k sell, a mass of
speculators that is given by the shaded area on the left will always sell. Their sell orders
will at least cancel out the buy orders by a mass of speculators given by the shaded area
on the left, so that the maximum number of buy orders is given by the white area between
the two shaded areas. If it should be undominated to buy with positive probability after
receiving signal k

′
, the white area would have to be larger than −k′−ε. If k

′−k is below
the upper bound given by the definition of B(k, ε), that is not possible.

gives the probability of buying, given any observation ω. Let Σ be the set of all strategies.

Define the iterative-dominance function ρ : P(Σ) → P(Σ) where P is the power set.

Given a set of strategies Σ
′
, ρ returns a set of strategies ρ(Σ

′
) that is identical to the

first one except that all strategies in Σ
′

that are never a best-reponse to any strategy in

Σ
′

have been removed. Let ρ2(Σ) = ρ(ρ(Σ)) and so on; a strategy s is rationalizable if

∀n ∈ N : s ∈ ρn(Σ).

What does ρ(Σ) look like, where Σ is the set of all strategies? Clearly, no strategy

that puts probability higher than 0 on buying for any ωi ∈ [−n − ε,−1 − ε] is in ρ(Σ),

since otherwise the speculator would be buying with positive probability even though he

knows for sure that p1 > p2.

Let B(k, ε) =
{
k
′ ∈ R|

∣∣k′ − k∣∣ < 2ε
(

1 + ε−
√

(1 + ε)2 + k + ε
)}

be an open ball

around k with a size that depends on k and ε. Note that the size of B(k, ε) is always

below 4ε if k ≥ −1− ε. The following lemma establishes that we can use this ball B(k, ε)

to exclude elements from ρ(Σ
′
) if no strategy that buys for k is in Σ

′
. The proof is

illustrated in figure 1.6.

Lemma 1. If Σ
′

contains no strategy that puts positive probability on buying for any ωi

with −1− ε ≤ ωi < k < −ε, then ρ(Σ
′
) contains no strategy that puts positive probability

on buying for any ωi ∈ B(k, ε).

Proof. Consider the reverse, i.e. there exists a k
′ ∈ B(k, ε) such that there is a strategy

s ∈ ρ(Σ
′
) with s(k

′
) > 0. (Only k

′
> k is possible by assumption.) If speculator i gets the

signal ωi = k
′
, he knows that

∫ k
k′−2ε

dH speculators will sell, with H being the distribution

of the signals of other speculators conditional on receiving signal ωi = k
′
. For ε very
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small, this conditional distribution is approximately a symmetric triangular distribution

on [k
′ − 2ε, k

′
+ 2ε], and therefore

∫ k
k′−2ε

dH ≈ (2ε−(k
′−k))2

8ε2
. If a mass (2ε−(k

′−k))2

8ε2
of

speculators is always selling, the maximum mass of net buy orders is (since every sell

order cancels one buy order)

1− (2ε− (k
′ − k))2

4ε2
=

4ε(k
′ − k)− (k

′ − k)2

4ε2
.

Since the signal is ωi = k
′
, the minimum number of buy orders to make xN +xS positive

and therefore make buying profitable is −k′ − ε (remember that k
′
< 0). Buying can

therefore only make sense after receiving ωi = k
′

if the maximum number of buy orders

is larger than the minimum number of buy orders required to make buying profitable,

i.e.

−k′ − ε <
4ε(k

′ − k)− (k
′ − k)2

4ε2

(k
′ − k)2 − 4ε(k

′ − k)− 4ε2(k
′
+ ε− k + k) < 0

(k
′ − k)2 − (4ε+ 4ε2)(k

′ − k)− 4ε2(k + ε) < 0

The last inequality is not true for k
′

very large or very small, so that it must be true

between the two solutions for the corresponding equality (since these solutions exist) and

we get that buying can only be profitable for k
′

if

2ε
(

1 + ε+
√

(1 + ε)2 + k + ε
)
> k

′ − k > 2ε
(

1 + ε−
√

(1 + ε)2 + k + ε
)
.

But that is incompatible with k
′ ∈ B(k, ε).

Using this lemma, we can show that there is no k < −ε such that there exists a

strategy s with s(k) > 0 and s ∈ ρm(Σ) for all m ∈ N. Assume to the contrary that

there exists a non-empty set of such ks and let k̂ be the infimum of this set. Then

∀k < k̂ : s(k) = 0, and we can pick a k̄ that is arbitrarily close to but below k̂. Since

k̂ < −ε, there exists a k̄ such that k̂ ∈ B(k̄, ε). Then it follows from the lemma that

there cannot exist a strategy that has positive probability of buying anywhere in an open

ball around k̄.

We can show analogously that there is no k > ε such that there is a strategy s with

s(k) < 1 and and s ∈ ρm(Σ) for all m ∈ N. Hence the only rationalizable strategies are

those that sell with probability 1 for all ωi < −ε and buy for all ωi > ε.

Proof of proposition 3. First, I show existence if there is common knowledge of xN . As-

sume that the market follows its equilibrium strategy, so that p2 = p0. It is then profitable
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for any speculator to buy at p1 < p0 or sell at p1 > p0. Speculators therefore trade against

the noise traders until either all of them have posted an order or x = 0 and p1 = p0. No

speculator has any incentive to deviate: Those who post orders either make a positive

profit (if |xN | > 1) or no profit (otherwise), and those who do not post orders (since

other informed speculators have already driven the price back to p0) would lose money

by trading (since they would move the price above p0 if they bought or below p0 if they

sold).

Now assume that the speculators follow this strategy. Then p1 contains absolutely no

information about v, since the speculators only either do nothing or counteract the noise

traders (whose actions are independent of v), and none of their behavior is conditional

on v. The market can therefore only follow its prior and set p2 = p0.

In the game without common knowledge, consider the following argument: If each

speculator can only observe his signal ωi, it is still optimal to buy if ωi ≤ −1, because

in expectation p1 < p0 regardless of the behavior of other speculators. Now consider the

case where ωi ∈ (−1, 0). If all other speculators buy with probability −ωj upon observing

ωj ∈ (−1, 0), they will on average buy with probability −xN , which means that p1 will be

0 in expected terms. Every single speculator is then indifferent between buying or selling

or doing nothing. Therefore, it is an equilibrium if all speculators buy for ωi ≤ −1, buy

with probability −ωi for ωi ∈ (−1, 0), sell with probability ωi if ωi ∈ (0, 1) and always

sell if ωi ≥ 1. The non-adjustment equilibrium remains completely undisturbed if xN is

no longer common knowledge.

A brief remark on out-of-equilibrium beliefs: In this equilibrium, total order flow x

will be between 1−n and n−1, meaning that p1 ∈
[
p0 + λ̂(1− n), p0 + λ̂(n− 1)

]
. Out-

of-equilibrium beliefs are what the market thinks if p1 should lie outside that interval.

But it is clearly not optimal for the market to assume that prices outside this interval

are informative. If it did, and accordingly set some p2 > p0 + λ̂(n − 1) after observing

p1 > p0 + λ̂(n − 1), the speculators would have an incentive to try to push p1 above

p0 + λ̂(n − 1) regardless of whether v = vH or v = vL, so that p1 would not be any

more informative than it was before. If, on the other hand, they were to set p2 with

p0 < p2 < p0 + λ̂(n− 1) after observing p1 > p0 + λ̂(n− 1), the speculators would have

no incentive to drive prices out of equilibrium range at all, even if they could submit

information in this way.

8 Appendix: Which Equilibrium is Pareto-Preferred?

Proposition 4. If f (the density of xN) is single-peaked, speculators prefer the adjust-

ment to the non-adjustment equilibrium.

To simplify notation, let pH2 (p1) be the expected value of v given p1 if p1 > p0, and
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pL2 (p1) the expected value of v given p1 if p1 < p0. We make use of the following lemma:

Lemma 2. If 2 > p1−p0

λ̂
it is

∂pH2 (p1)

∂p1
< 0 (and hence also

∂pL2 (p1)

∂p1
> 0). If 2 ≤ p1−p0

λ̂
, then

pH2 = pL2 = p0 and consequentially
∂pH2 (p1)

∂p1
=

∂pL2 (p1)

∂p1
= 0.

Proof. It is pH2 (p1) = π(p1)vH + (1− π(p1)) vL, or

pH2 (p1) =
1− F

(
p1−p0

λ̂
− 1
)

2− F (kH)− F
(
p1−p0

λ̂
− 1
)vH +

1− F (kH)

2− F (kH)− F
(
p1−p0

λ̂
− 1
)vL.

Since kH = max
{(

p1−p0

λ̂
− 1
)
, 1
}

, there are two possible cases:

1. 2 > p1−p0

λ̂
. Then kH = 1 and

pH2 (p1) =
1− F

(
p1−p0

λ̂
− 1
)

2− F (1)− F
(
p1−p0

λ̂
− 1
)vH +

1− F (1)

2− F (1)− F
(
p1−p0

λ̂
− 1
)vL.

As F
(
p1−p0

λ̂
− 1
)

is monotonously growing in p1, and since vH > vL, it is then

∂pH2 (p1)

∂p1
< 0.

2. 2 ≤ p1−p0

λ̂
. Then kH = p1−p0

λ̂
− 1 and

pH2 (p1) =
vH + vL

2
= p0.

Proof of Proposition 4. Speculators’ expected profit from the efficient equilibrium is the

sum of expected profits if |xN | < 1 and |xN | ≥ 1 . More precisely, it is

Pr (|xN | < 1)

(
E
[
pH2 (p1)||xN | < 1

]
− p0 −

λ̂

2
(E [xN ||xN | < 1] + 1)

)

+ Pr(|xN | = 1)

(
E
[
pH2 (2λ)

]
− p0 −

λ̂

2
(2)

)
(1.4)

+ Pr (|xN | > 1)

(
E
[
pH2 (p1)|xN > 1

]
− p0 −

λ̂

2
(E [xN |xN > 1] + 1)

)
(Note that, because of symmetry, we can restrict ourselves to the expected prices if

p1 > p0.) All three summands are clearly positive, as we can see from lemma 2 and the

proof of proposition 1.
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In the inefficient equilibrium, expected profit for any speculator is positive only if

|xN | > 1, so that overall expected profit from the inefficient equilibrium is

Pr (|xN | > 1)
λ̂

2
(E [xN |xN > 1]− 1) .

If the expression “(Expected profit from efficient equilibrium)−(Expected profit from

inefficient equilibrium)” is positive, speculators prefer the efficient equilibrium. We can

write this expression as the sum of some positive terms and the term

Pr (|xN | > 1)

(
E
[
pH2 (p1)|xN > 1

]
− p0 −

λ̂

2
(E [xN |xN > 1] + 1)− λ̂

2
(E [xN |xN > 1]− 1)

)
.

(1.5)

From the proof of proposition 1 we know that E
[
pH2 (λ(n+ 1))

]
− p0 − λ̂

2
(n+ 1) > 0.

From lemma 2, it follows that then also E
[
pH2 (λ(xN + 1))|xN > 1

]
> p0 + λ̂

2
(n+ 1).

That means that if

λ̂

2
(n+ 1)− λ̂

2
(E [xN |xN > 1] + 1)− λ̂

2
(E [xN |xN > 1]− 1) (1.6)

is positive, then expression (1.5) is also positive. (1.6) simplifies to n+1−2E [xN |xN > 1],

which is positive if n+1
2
> E [xN |xN > 1]. If f(x) is falling in |x|, that is the case.

It should be noted that this is a sufficient, but not a necessary condition: The dif-

ference between expected payoffs from the efficient and the inefficient equilibrium can

well be positive even if n+1
2

< E [xN |xN > 1]. But it can be shown that the efficient

equilibrium is not always preferred: If f is not falling in its argument, it is possible that

speculators actually prefer the inefficient equilibrium. Intuitively, that is the case if f has

a lot of mass towards n and −n, so that large bubbles (which are profitable for rational

speculators in the inefficient equilibrium) become very likely. In the efficient equilibrium,

the market adjusts π(p1) accordingly, and speculators’ expected profit margins in the ef-

ficient equilibrium (which is now not very efficient) become very low. In the inefficient

equilibrium, on the other hand, speculators could now make large expected gains, since

their profit is higher the further noise traders drive p1 away from p0.

Corollary. There are distributions of xN so that the efficient equilibrium exists, but

speculators ex ante prefer the inefficient equilibrium.

Proof. Consider the the case where Pr (xN = 1) = Pr(xN = −1) = ε and Pr(xN =

n) = Pr(xN = −n) = 1
2
− ε. Then the expected payoff in the inefficient equilibrium is

(1− 2ε) λ̂
2

(n− 1), while the expected payoff from the efficient equilibrium is

E
[
εpH2 (p0 + λ(1 + xN))

∣∣xN = 1
]

+ E
[
εpH2 (p0 + λ(1 + xN))

∣∣xN = −1
]

44



Chapter 1. Is Beauty Contagious?

+E
[
(1− 2ε) pH2 (p0 + λ(1 + xN))

∣∣xN = n
]
− λ̂

2
− (1− 2ε)

λ̂

2
n− p0.

Let Di = E
[
pH2 (p0 + λ(1 + xN))

∣∣xN = i
]
−p0. Then the difference between profits from

the efficient and inefficient equilibrium is

εD1 + εD−1 + (1− 2ε)Dn − λ̂ (ε+ (1− 2ε)n) . (1.7)

If we take the maximal λ̂ such that the efficient equilibrium still exists,14 we have λ̂ =

2 Dn
1+n

, and (1.7) becomes

εD1 + εD−1 +
(1− 4ε)− (1− 2ε)n

1 + n
Dn.

For this always to be positive, it would have to be

D1 +D−1

2
/Dn >

4ε− 2εn− 1 + n

2ε(1 + n)
.

Intuitively, this means that as ε gets arbitrarily small, the prices that result in period 1

from xN = 1 and xN = −1 would have to become infinitely more informative than the

prices that result from xN = n and xN = −n. But a price p1 that results from xN = n

lies within the price range
[
p0 + λ̂(−2), p0 + 2λ̂

]
with constant probability 2

1+n
because

of the price formation process through noisy λ. Therefore, the prices resulting from

xN = 1 and xN = −1 can never be infinitely more informative than the prices resulting

from xN = n. Therefore, there exists a distribution for xN so that for a large enough λ̂

speculators prefer the inefficient to the efficient equilibrium.

These conditions on the shape of f might seem rather abstract, but they have an

intuitive interpretation. f is falling in distance from 0 if the correlation between noise

traders’ decisions is sufficiently small (they might make their decisions independently, or

their actions might even be negatively correlated). In these cases, speculators will always

prefer the efficient equilibrium. But high correlation between the decisions of the noise

traders means nothing else than strong herding. If noise traders are sufficiently prone to

strong herding, all rational market participants weakly prefer an equilibrium in which

no information is transmitted to a partially revealing equilibrium.

14For very small λ̂, speculators always prefer the efficient equilibrium.
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9 Appendix: A Discrete Model where Speculators

have Market Power

The model can also be written with a finite number of speculators and noise traders, such

that signle speculators actually have market power and can influence the price. While

this makes some of the expressions less tractable and slightly changes the proofs, the

main theorems remain intact and the two equilibria still exist. Assume in the following

that there is a finite number n of noise traders and m of speculators.

Proposition 5. (Efficient equilibrium) It is an equilibrium if every speculator follows

the strategy “If xN ≤ −1, sell and if xN ≥ 1 buy. If |xN | < 1, buy if v = vH and sell if

v = vL.” and the market sets

p2 = pH2 (p1) = π(p1)vH + (1− π(p1)) vL if p1 > p0 (1.8)

p2 = pL2 (p1) = (1− π(p1)) vH + π(p1)vL if p1 < p0 (1.9)

p2 = p0 if p1 = p0, (1.10)

where

π(p1) =


1−F(b p1−p0

λ̂
−mc)

2−F (kH)−F(b p1−p0
λ̂
−mc) if p1 > p0

1−F(d p1−p0
λ̂

+me)
2−F (kL)−F(d p1−p0

λ̂
+me) if p1 < p0

where π(p1) is the market’s belief that v = vH if p1 > p0 or that v = vL if p1 < p0, respec-

tively, with kH = max
{⌊

p1−p0

λ̂
−m

⌋
, m− 1

}
and kL = min

{⌈
p1−p0

λ̂
+m

⌉
, −m+ 1

}
,

if and only if

λ̂ ≤ E

 F (kH)− F
(⌊

p1−p0

λ̂
−m

⌋)
2− F (kH)− F

(⌊
p1−p0

λ̂
−m

⌋)
∣∣∣∣∣∣xN = n

 vH − vL
m+ n

. (1.11)

Proof (similar to the continuous case). Part 1: The market has no incentive to

deviate (and π(p1) is the correct belief).

Assume that the speculators follow their equilibrium strategies and consider the case

where p1 > p0. The market can then, from observing p1, draw conclusions about v. Let

π(p1) be the conditional probability that v = vH after observing a certain p1, Pr(vH |p1).

It is

π(p1) = Pr(vH |p1) =
Pr(p1 ∩ vH)

Pr(p1)
=

Pr(p1 ∩ vH ∩ |xN | < m) + Pr (p1 ∩ vH ∩ xN ≥ m)

Pr (p1 ∩ |xN | < m) + Pr (p1 ∩ xN ≥ m)
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since Pr(p1 ∩ xN ≤ −m) = 0.

If g is the probability density function of λ, we can express this as

π(p1) =

1
2

m−1∑
y=−m+1

f(y)g
(
p1−p0

y+m

)
+ 1

2

n∑
y=m

f(y)g
(
p1−p0

y+m

)
1
2

m−1∑
y=−m+1

f(y)g
(
p1−p0

y+m

)
+

n∑
y=m

f(y)g
(
p1−p0

y+m

) .

The product in all the sums, f(y)g
(
p1−p0

y+m

)
, gives the probability that xN = y and

λ = p1−p0

y+m
, in which case the parameters would lead to the given p1 if speculators always

bought in period 1. The first sum in the numerator is hence the overall probability that p1

would be observed as a result of some xN ∈ [−m+ 1,m− 1] if speculators always bought

the asset. Since, if xN ∈ [−m+ 1,m− 1], speculators buy the asset only if v = vH , this

probability has to be multiplied by 1
2

to give the probability Pr(p1 ∩ vH ∩ |xN | < m).

The second sum in the numerator gives the probability that p1 would be observed as

the result of some xN ≥ m. Since v = vH in only half of these cases, we again need to

multiply with 1
2

(albeit for different reasons) to get the unconditional probability that p1

would happen as the result of some xN > m and that also v = vH . In the numerator,

therefore, we have the overall probability that a given p1 is observed and is informative.

In the denominator, we then have the overall probability that a given p1 is observed.

This is given by the expression from the numerator, only that now all cases in which

xN > m are considered (since they all lead to p1 > p0), whereas only half of them are

informative. The fraction therefore gives the ratio between the number of cases in which

p1 is observed and it is v = vH and the overall number of cases in which p1 is observed.

This is the conditional probability Pr(vH |p1).

We can simplify the expression: Since λ is uniformly distributed on the interval(
0, λ̂
)

, g
(
p1−p0

y+m

)
= 1

λ̂
if 0 < p1−p0

y+m
< λ̂ and 0 otherwise. For any p1 > 0, it is 0 < p1−p0

y+m
,

but g
(
p1−p0

y+m

)
is nonzero only for y > p1−p0

λ̂
−m. We can write

π(p1) =

kH∑
y=d p1−p0

λ̂
−me

f(y) +
n∑

y=kH+1

f(y)

kH∑
y=d p1−p0

λ̂
−me

f(y) + 2
n∑

y=kH+1

f(y)

=
1− F

(⌊
p1−p0

λ̂
−m

⌋)
2− F

(⌊
p1−p0

λ̂
−m

⌋)
− F (kH)

where kH = max
{⌊

p1−p0

λ̂
−m

⌋
, m− 1

}
. Therefore, given the speculators’ strategies,

π(p1) gives the correct beliefs in equilibrium.
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Pr(vL|p1) is the complementary probability 1 − π(p1), so that the expected value of

v given p1 is E [v|p1] = π(p1)vH + (1− π(p1)) vL. A similar argument applies to the case

where p1 < p0. If p1 = p0, the price contains no information and p2 should be set equal

to the prior.

p1 is between p0 − λ̂(m + n) and p0 + λ̂(m + n). For xN ∈ {−n, n}, all possible p1

occur with positive probability, so that in equilibrium (where xN ∈ [−n, n]) all possible

p1 occur with positive probability and there can be no out-of-equilibrium beliefs.

Part 2: Speculators make a positive profit in equilibrium.

Now assume that the market follows its equilibrium strategy. Consider the case

where p1 > p0, meaning that either |xN | < m and v = vH or simply xN ≥ m. If they

follow their equilibrium strategies, the speculators’ buy orders will drive the price to

p0 +λ(m+xN) > p0, and in period 2 all speculators will be able to sell their holdings at

pH2 = π(p1)vH +(1− π(p1)) vL. Their profit is then pH2 −p1, or π(p1)vH +(1− π(p1)) vL−
p0 − λ(m+ xN), which can also be written as 1− F

(⌊
p1−p0

λ̂
−m

⌋)
2− F (kH)− F

(⌊
p1−p0

λ̂
−m

⌋) − 1

2

 vH+

 1− F (kH)

2− F (kH)− F
(⌊

p1−p0

λ̂
−m

⌋) − 1

2

 vL−λ(m+xN)

(1.12)

=
F (kH)− F

(⌊
p1−p0

λ̂
−m

⌋)
4− 2F (kH)− 2F

(⌊
p1−p0

λ̂
−m

⌋)(vH − vL)− λ(m+ xN)

xN is known to the speculators. Then we can write expression 1.12 in expected terms

(given xN):

E

 F (kH)− F
(⌊

p1−p0

λ̂
−m

⌋)
4− 2F (kH)− 2F

(⌊
p1−p0

λ̂
−m

⌋)
∣∣∣∣∣∣xN

 (vH − vL)− λ̂

2
(m+ xN).

Since p1 is monotonically increasing in xN , and therefore F
(⌊

p1−p0

λ̂
−m

⌋)
and F (kH−1)

are weakly increasing in xN , the whole expression becomes minimal for xN = n, where

it is

E

 F (kH)− F
(⌊

p1−p0

λ̂
−m

⌋)
4− 2F (kH)− 2F

(⌊
p1−p0

λ̂
−m

⌋)
∣∣∣∣∣∣xN = n

 (vH − vL)− λ̂

2
(m+ n).

If this is positive, then speculators will make an expected profit by following their

equilibrium strategies for all xN (the case where xN is negative is analogous and leads
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to the same result). We can reformulate the condition as

λ̂ ≤ E

 F (kH)− F
(⌊

p1−p0

λ̂
−m

⌋)
2− F (kH)− F

(⌊
p1−p0

λ̂
−m

⌋)
∣∣∣∣∣∣xN = n

 vH − vL
m+ n

which is simply the spread between high and low value, adjusted for the number of

market participants and some adjustment factor that depends on the precise shape of f .

Part 3: No single speculator has an incentive to deviate from his equilib-

rium strategy.

As speculators always make a profit in equilibrium, it would not be profitable for any

speculator to deviate by not trading at all. But what if a speculator decided to sell if

his equilibrium action would be to buy? We have to distinguish three cases (note that

“buy” would never be an equilibrium action if xN ≤ −m):

1. xN = −(m − 1). In this case it is x = 1 in equilibrium, and if a single speculator

decided to sell instead of buying, x would be −1. Since p2(p1) is point-symmetric

around (p0, p0) (i.e. p2(p1)− p0 = p0 − p2(p0 − (p1 − p0)) because of the symmetry

assumption on f), the speculator who sold would gain just as much in expectation

as he would have by buying. Since he is thus indifferent, there is no incentive to

deviate from equilibrium strategies.

2. xN = −(m− 2). Then x = 2 in equilibrium, but if a single speculator sold instead

of buying, the resulting net order flow would be 0, so that p1 = p0. Then it would

also be p2 = p0, so that the speculator would make no gain at all by selling, whereas

he could have made a positive profit by buying.

3. xN > −(m− 2). Then x > 2 in equilibrium, and a single speculator can only lower

x to some slightly lower, but still positive number. Then p2 = pH2 (p1) > p1, so that

the speculator would actually make a loss by selling in period 1.

We can therefore conclude that no speculator has an incentive to deviate from his equi-

librium strategy if p1 > p0. A similar argument applies where p1 < p0 (i.e. if speculators

bought instead of selling).
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Chapter 2

How Jeremy Bentham would defend

against coordinated attacks1

Ole Jann and Christoph Schottmüller

We consider the use of information in deterring coordinated attacks, for example a cen-
tral bank defending a currency peg or a government facing a revolution. Bentham (1787)
proposed the “panopticon” as an ideal solution: Potential attackers are deterred by se-
crecy about the defender’s strength. We compare different information structures in a
model of coordinated attacks. We uncover a fundamental property of defending against
a large but finite group and show that Bentham’s intuition is correct. Our results pro-
vide insights into the applications of Bentham’s ideas across the social sciences, and
recommendations for the general problem of defense against coordinated attacks.

1A previous version of this paper has been published as TILEC Discussion Paper 2015-018 and as
University of Copenhagen Discussion Paper 15-11. We are grateful for helpful comments by Alberto
Alesina, Eric van Damme, Eddie Dekel, Jeff Ely, Nicola Gennaioli, Heidi Kaila, Nenad Kos, Pablo
Kurlat, Marco Ottaviani, Alessandro Pavan, Jens Prüfer, Tomas Sjöström, Joel Sobel and Peter Norman
Sørensen as well as from audiences at Bocconi University, the University of Copenhagen, the University
of Lund, Tilec, SING 2016 (Odense) and GAMES 2016 (Maastricht).
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Morals reformed – health preserved – industry invigorated – instruction

diffused – public burthens lightened – Economy seated, as it were, upon a

rock – the gordian knot of the Poor-Laws not cut, but untied – all by a simple

idea in Architecture! (Bentham, 1787)

1 Introduction

We analyze situations in which a single player is in conflict with a group of others, and the

group members’ actions are strategic complements. Consider, for example, a government

threatened by a revolution: Each potential revolutionary has to decide whether to show

up for a demonstration, and larger demonstrations are more likely to succeed – but no one

wants to be the only one to show up. A speculative attack on a currency peg requires the

participation of many speculators – but if the attack fails because not enough speculators

participate, those who participated will lose money.

In both cases, the single player would like to prevail with a minimum use of resources

(security forces, currency reserves) by discouraging the group from acting in the first

place. In this paper, we consider how he can accomplish this goal by choosing the right

information structure. The information structure determines which information about

his own strength will be revealed when he chooses a costly strength level at a later stage.

Our surprising result is that in many situations, complete secrecy is optimal. That is, the

single player foregoes the option to publicly commit himself to a strength level. Secrecy

mirrors the idea of the “panopticon” proposed by Bentham (1787) – an innovative prison

concept in which prisoners were to be kept unable to see the guards as well as separated

from each other.

The general problem that we consider has many applications, some of which we

discuss later in the paper. Our main analysis concentrates on a succinct and graphic

example close to Bentham’s idea: The question of how to construct a prison.2 The prison

warden faces a trade-off, as guards are costly but more guards offer more protection.

The prison design allows a choice over how much information about the guard strength

is available to the prisoners. This can make coordination among individual prisoners, in

the absence of institutions that allow for explicit coordination, easier or harder. Ideally,

the prison warden would prefer to maintain order in the prison and prevent revolts and

breakouts while using a minimum of guards. The optimal prison design will exploit the

prisoners’ coordination problem in order to prevent them from revolting.

Bentham proposed that the isolation of the prisoners, together with their lack of

2Bentham tried to construct the actual panopticon according to his plans, using considerable time on
the purpose while trying to convince successive governments of the idea. Unlike him, we mostly see the
prison as a metaphor for the mechanisms we want to analyze. Taking our formal model as a practical
guide to prison construction is done at the reader’s own risk.
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knowledge of how many guards (if any) were on duty, would make coordination and

thus a successful revolt impossible.3 Through the lense of game theory, this argument

appears unconvincing. Rational prisoners should be able to implicitly coordinate, and

in equilibrium they should be able to infer the choice of the prison warden about guard

strength. We find, however, that Bentham’s intuition plays out: In a large prison,

where prisoners have no information about guard strength before independently choosing

whether to revolt or not, there is only one equilibrium in which the warden randomizes

between minimal guard levels and prisoners almost never revolt.

The result arises from a fundamental property of large populations. If there are many

prisoners who have no way of coordinating, their aggregate behavior is relatively more

predictable than if there were only a handful of them.4 This means that there can be

no equilibria in which the warden chooses a positive guard strength which he neither

wants to adjust up- or downwards, and in which a successful revolt is sufficiently likely

to induce prisoners to revolt (since otherwise the warden would like to use fewer guards).

We show that this main insight is robust to several modifications and extensions, which

we discuss in section 4.2.

We construct a simple model in which a warden chooses a costly guard level. After-

wards, each prisoner decides for himself whether to revolt or not. A revolt is successful

if the number of revolting prisoners is larger than the guard level; otherwise the revolt

fails and revolting prisoners get punished.

We compare four different information structures, also shown in table 2.1: (1a) Pris-

oners can observe the guard level and coordinate (“benchmark model”). (1b) Prisoners

cannot observe the guard level but can coordinate (“benchmark model”). (2) Prisoners

can observe the guard level but face a coordination problem (“transparency model”). (3)

Prisoners cannot observe the guard level and face a coordination problem (“panopticon”).

In cases (1a) and (1b), preventing a revolt is only possible when choosing the guard

level such that a revolt by all prisoners would not be successful. In (2), “a union of

hands” is required for a successful revolt for any intermediate guard level, i.e. any guard

level that doesn’t offer protection against a revolt by all prisoners. As the actions of the

prisoners are strategic complements, there are two equilibria in the prisoners’ subgame

(after the warden has chosen an intermediate guard level): All prisoners revolt, or none

does. One of these, the successful revolt, is preferred by the prisoners, but in this

3Bentham (p. 46): “Overpowering the guard requires an union of hands, and a concert among minds.
But what union, or what concert, can there be among persons, no one of whom will have set eyes on
any other from the first moment of his entrance? ... But who would think of beginning a work of hours
and days, without any tolerable prospect of making so much as the first motion towards it unobserved?”
Bentham’s plans also ensured that prisoners could not see into the guards’ “lodge”: “To the windows of
the lodge there are blinds, as high up as the eyes of the prisoners in their cells can, by any means they
can employ, be made to reach.”

4This follows from the law of large numbers, i.e. by the same logic that the average of a number of
dice rolls tends to be closer to 3.5 if the dice is rolled more often.
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Guard level observable
Yes No

Coordination problem between prisoners
No (1a) Benchmark (1b) Benchmark
Yes (2) Transparency (3) Panopticon

Table 2.1: The four information structures we consider.

equilibrium each of them puts himself at the mercy of the others – he does not want

to be caught as the only one revolting. Following the global games literature, we select

an equilibrium by assuming that the prisoners, being isolated from each other, do not

achieve common knowledge of the guard level. Without common knowledge, they need

to reason about each others’ beliefs to make an optimal choice as in Rubinstein (1989)

or Carlsson and van Damme (1993): ’I believe that a revolt can be successful, but what

if the others think that it cannot? Then they would not revolt, and neither should I.’

This “infection of beliefs” makes it possible to reliably prevent a revolt with a much lower

guard level than in the benchmark model. While the number of guards needed to deter

revolts still rises linearly in the number of prisoners, the slope is usually much lower than

one.

Finally, in the last model, the panopticon, it is not immediately obvious what kind

of equilibria there are. Knowing that the guard level will not be observed, the warden

has an incentive to choose a low guard level, but that will make him very vulnerable to

revolts by even a few prisoners. Especially if there are many prisoners, it might seem

sensible to always set a sufficiently high guard level to prevent substantial revolts.

Instead, we find that – if the number of prisoners is large – there is a unique equi-

librium in mixed strategies in which the warden randomizes between the lowest possible

guard levels, and each prisoner randomly chooses whether to revolt or not. The individ-

ual probability of revolting and the probability of a successful breakout are very small if

the number of prisoners is large. This guarantees that revolts can be prevented almost

surely with just one guard, as Bentham predicted. No other equilibria exist – neither

pure nor mixed, symmetric or asymmetric.

To get a sense of the intuition, consider the following arguments.5 There can be

no equilibria in pure strategies, since that would either mean that there is a successful

attack for sure, or never. In the former case, the warden would like to increase the

number of guards; in the latter case he would like to decrease it (or the prisoners would

like to switch from revolting to not revolting). In any mixed equilibrium, each prisoner

revolts with a certain probability. For large numbers of prisoners, the overall behavior of

the prison population becomes relatively more predictable by the law of large numbers.

This implies that the probability of a breakout is very low in equilibrium because the

5We deepen this intuition in section 3.4 and provide a formal proof in the appendix.
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warden would otherwise have an incentive to increase the guard level due to the high

predictability of a breakout. If a successful breakout is unlikely, however, the prisoners

would never want to revolt in the first place if the warden chooses relatively high guard

levels with positive probability. But then the warden would want to lower his guard level,

so that there cannot be any equilibria in which the warden chooses a relatively high guard

level. This argument leads to the conclusion that there is only one equilibrium, in which

the warden mixes between the two lowest guard levels. This fact makes the panopticon

the optimal information structure for large groups of prisoners, where it performs far

better than the other structures. Graph 2.1 compares the expected warden payoff in the

three information structures for large numbers of prisoners.

Warden
payoff

Number of
prisoners (N)

−45

Benchmark

Transparency

−θ∗

Panopticon

Figure 2.1: A comparison of the warden payoff in the three information structures. The
benchmark case is most expensive, as the warden needs as many guards as there are
prisoners. In the transparency case, the warden can prevent breakouts with a lower
number of prisoners; but the required number of guards still grows linearly in N . In the
panopticon, the warden payoff is bounded from below by a constant as N grows larger.
For small N , the panopticon is not necessarily optimal.

This result resembles Bentham’s ideas.6 He envisioned the impossibility of a “con-

cert among minds” to such a degree that prisoners would not even think about revolting

together with other prisoners, and would simply concentrate their thinking on the pos-

sibility of being caught and disciplined. If the number of prisoners is large, our model

exhibits the same property: For any prisoner, the probability that any of the other pris-

oners will revolt is close to zero, and the prisoner de facto finds himself in a game only

between himself and the warden – where the warden chooses a mixing between having

one guard and having no guards at all that just assures the prisoner’s docility. By putting

each prisoner in a situation where he is almost sure that no other prisoner will revolt,

6Bentham explicitly stated that a single guard, i.e. a minimal guard level, would be sufficient: “[...]so
far from it, that a greater multitude than ever were yet lodged in one house might be inspected by a
single person;”
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the panopticon thus makes optimal use of the prisoners’ coordination problem.

The contribution of this paper is two-fold. Firstly, our model allows us to theoretically

underpin the social science literature that followed Bentham. The idea of the panopticon

has been influential in philosophy, sociology and political science; our model is the first

that formally examines and explains how and why the panopticon can work. This allows

us, for example, to identify the law of large numbers as the driving force behind the

mechanics of the panopticon. Secondly, our model is descriptive of some situations in

which a central player has to defend against coordinated attacks and our results have

policy implications for these situations, for example, the optimality of secrecy.

In the 230 years since Bentham first proposed the panopticon, many scholars have

interpreted it as a metaphor for modern society. Most prominently, Foucault (1975)

points out that panopticism, a system in which individuals self-discipline because of the

omnipresent possibility of being disciplined, has made modern society possible. Order

is no longer maintained by overwhelming force or a ”contest of violence” between those

opposing and those defending it, as in our first model. Instead, the docility of individuals

allows for cost-saving minimal enforcement: There is neither wasteful use of resources

through unused guard capacity nor fruitless attempts at revolting.7 This was a prereq-

uisite for the establishment of organizations, firms, schools in which individuals have

internalized the rules and behave in the desired way without constant supervision. It

was this “accumulation of men” (p. 220) that, besides the accumulation of capital, made

the industrial take-off of the early 18th century possible. Our result captures some of the

intuition on how and why panopticism would work in a formal, game-theoretical model.

Moreover, modern society has at its center the individual, not the family or tribe

or any other unit. This is crucial for maintaining the self-disciplining aspect of the

panopticon, which relies on every prisoner reasoning on his own and choosing what is

optimal for him, and facing strategic uncertainty about the choices of others. Others

(e.g. Zuboff, 1988) have suggested that modern computers and indeed the internet are

panoptica, where everyone can at any time be under surveillance – an idea that has

gained credence by recent revelations of mass surveillance by intelligence agencies. Our

results, especially the comparison of information structures 2 and 3, suggest that if

the true level of surveillance is revealed (or there is a danger of revelation), efficacious

enforcement becomes much more expensive in equilibrium – a reason why whistleblowers

might indeed pose a threat to enforcement by panopticon.

These results show that “order” as used by Foucault, or the central prison metaphor

of our theory, are neutral concepts: The free, democratic society might defend itself

7“Hence the major effect of the Panopticon: to induce in the inmate a state of conscious and per-
manent visibility that assures the automatic functioning of power. So to arrange things ... that the
perfection of power should tend to render its actual exercise unnecessary, ... that the inmates should be
caught up in a power situation of which they are themselves the bearers.” (Foucault, 1975)
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against an uprising for the sake of social welfare, while a repressive dictatorship might

deploy secret surveillance methods to suppress dissent and rebellion. We are interested

in the mechanisms by which this is done, and our results are positive, not normative.

Our results also have much more direct applications to situations where one actor can

use the coordination problem of his opponents against them. Especially the problem of

a central bank defending a currency peg against speculators has received much attention

in the economic literature (e.g. Flood and Garber, 1984; Obstfeld, 1986; Morris and

Shin, 1998). The problem of a player (usually called ”policymaker”) who is attacked by

a group has also been analyzed with a focus on signaling and information manipulation

(Edmond, 2013), signaling through defensive measures (Angeletos and Pavan, 2013),

reputation (Huang, 2014) and the optimal stopping problem when under attack (Kurlat,

2015). In contrast to these studies, we consider strength to be a costly choice of the

defending player instead of a randomly drawn type and we consider a basic, one-shot

game in which the defending player cannot lie about his strength.

The main contrast to these studies is that we consider the information structure – how

much information the central player releases about his own strength – as an instrument,

under the realistic assumption that he also has to choose how many resources he should

use to defend himself. This leads us to different conclusions from any of the other

studies – namely, that the single player can optimally exploit the coordination problem

of the attackers by maintaining absolute secrecy about his own strength. In section 4.1,

we discuss how our results apply to the problem of a central bank defending against

speculators. Under assumptions that are very similar to those made by seminal papers

in the field, we can show that the central bank optimally keeps the level of reserves a

secret.

Our paper is also related to the game-theoretic literature on global games and com-

mon knowledge. In the model where the guard level is known and prisoners face a

coordination problem, we make use of the seminal results on global games; see Carls-

son and van Damme (1993), Morris and Shin (1998), and Morris and Shin (2003) for a

survey. The “infection of beliefs” that occurs among prisoners was already described by

Rubinstein (1989). We build on this literature but endogenize the ”state of nature”as an

active choice of the central player, by adding an extra perturbation to the model.

Chwe (2003) provides a discussion of the panopticon and higher-order knowledge.

The panopticon, he argues, creates common knowledge among prisoners of being in the

same situation – an idea that is connected to Bentham’s plan of having a chapel above

the watchtower in his panopticon. Indeed we find that no asymmetric equilibria exist in

our panopticon model, i.e. all the prisoners behave exactly the same in equilibrium.
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2 Model

This section describes the general setup common to all three models. Details concerning

the information structure that differ across the three models are described in the following

section.

First, the warden chooses a guard level γ ∈ R+. Second, N prisoners decide simulta-

neously and independently whether to revolt (r) or not revolt (n). All revolting prisoners

break out if the number of revolting prisoners is strictly larger than γ. Otherwise, no

prisoner breaks out. The payoffs are as follows: Each prisoner values breaking out by

b > 0. If the prisoner revolts but cannot break out, he bears a cost −q < 0. This cost

can be interpreted in two ways: It could either represent a punishment for prisoners who

unsuccessfully try to escape or it could denote a cost of effort (in the latter case b should

be interpreted as the benefit of breaking out net of this effort cost). If a prisoner does

not revolt, his utility is 0; see table 2.2 for a summary of these payoffs.

breaks out does not break out
r b −q
n 0 0

Table 2.2: Payoff prisoner conditional on breaking out or not

The warden experiences a disutility denoted by −B < 0 whenever a breakout occurs;

apart from that he only cares about the costs of the guards. The costs of the guards are

linear in γ with slope normalized to 1, i.e. guard costs are −γ. Consequently, the utility

of the warden is −B − γ if a breakout occurs and −γ otherwise. Each player maximizes

his expected utility. Finally, we make an assumption on the size of the disutility B. The

assumption implies that the warden would prevent a revolt (by setting γ = N) if he

knew that all prisoners play r for sure.

Assumption 1. B ≥ N + 1.

The reasoning behind this assumption is as follows. If B < N , there is – independent

of the specific information structure – a very robust equilibrium in which the guard level

is zero and all prisoners revolt. This is a somewhat uninteresting case that we want

to neglect. For technical reasons, we assume B ≥ N + 1 (instead of B > N) as it

significantly simplifies the analysis.

We want to point out two other modeling choices we made: First, the warden’s

utility depends only on whether there is a breakout and not on how many prisoners

break out (or by how much the number of revolting prisoners exceeds the guard level).

In this sense, the disutility B corresponds to an image or reputation concern, or a regime

preference. Also in the other applications mentioned in the introduction this assumption

appears reasonable: A central bank will mainly care about whether it was able to hold
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the announced peg (and less about how many speculators attacked the peg in case of

an successful attack), a government about whether it can stay in power or not. Second,

prisoners that do not revolt will not break out (or have at least no benefit from doing

so). Think of a prisoner sitting calmly in his cell who will not escape even if others

do. Again this fits also the example of speculating against a currency peg: If one does

not speculate against the peg, one cannot benefit from a successful attack. It should be

noted, however, that our model is robust to deviations from this assumption as long as

they do not destroy the strategic complementarity which is at the core of our model –

see section 4.2 for details.

3 Analysis

3.1 Benchmark model: Perfect coordination

The first model is a benchmark where we assume the coordination problem of the pris-

oners away. We distinguish two possibilities: First, the prisoners observe the guard level

set by the warden before they have to choose their actions. Assuming the coordination

problem away means here that – given the guard level – the prisoners can coordinate on

the prisoner optimal Nash equilibrium of the resulting subgame.8 Hence, all prisoners

play r if γ < N and all play n otherwise. Given assumption 1, it is then optimal for

the warden to choose γ = N . The payoff of the warden is −N while the payoff of each

prisoner is zero.

Second, we consider the possibility that the prisoners do not observe the guard level.

As we allow perfect coordination between the prisoners, prisoners will either all revolt or

all not revolt. This is due to the strategic complementarity between prisoners: Revolting

is relatively better for a given prisoner if other prisoners revolt too. Given that either all

or no prisoners revolt, the only two guard levels that can be best responses by the warden

are zero and N . Furthermore, the game has no pure strategy equilibrium because of the

non-observability of the guard level: If the warden chose a guard level of zero (N), the

prisoners would best respond by revolting (not revolting). But then the guard level of

zero (N) is not a best response. Therefore, we only have a mixed strategy equilibrium in

which the warden mixes between the two guard levels of zero and N and the prisoners

mix between “all revolt” or “no one revolts”. The mixing probabilities are such to keep

the other side indifferent. Note that the expected warden payoff is −N since the warden

is indifferent between the equilibrium strategy and choosing a guard level of N for sure

(which guarantees a payoff of −N). The prisoners have an expected payoff of zero as

they are indifferent between their equilibrium strategy and not revolting for sure which

8This is equivalent to the prisoner optimal correlated equilibrium of the subgame because of the
strategic complementarity in the game among the prisoners.
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gives every prisoner a payoff of zero.

Both possibilities of our benchmark lead therefore to the same equilibrium payoffs for

all players. In this benchmark model, the warden has to use a large amount of resources

to prevent a revolt. The reason is that we assumed that the prisoners had no coordination

problem. In the following model, we introduce the coordination problem and show how

the warden can exploit this problem to his advantage. In terms of prison design, one

might view the benchmark model as a prison in which all prisoners are kept in the same

room and find it easy to resolve their coordination problem by communicating with each

other. In this interpretation, prisoners are – as Bentham suggested – kept separately in

the following models and will therefore face a coordination problem.

3.2 The transparency model

In the second model, prisoners first observe the guard level and then choose simultane-

ously and independently whether to revolt or not. If the guard level is weakly above N ,

it is a dominant action for each prisoner to play n. If the guard level is strictly below 1,

it is a dominant action for each prisoner to play r. For guard levels between 1 and N , the

optimal choice of a prisoner depends on what the other prisoners choose: If strictly more

than γ− 1 other prisoners revolt, a given prisoner best chooses r himself. It is, however,

optimal to choose n if less than γ − 1 other prisoners revolt. There are two equilibria

in the subgames in which γ ∈ [1, N): All prisoners revolt or no prisoner revolts. Conse-

quently, the prisoners face a coordination problem. Following the approach in the global

games literature, we select one of the two equilibria by relaxing the assumption that γ

is common knowledge among the prisoners. More precisely, we show that introducing

an arbitrarily small amount of noise into how prisoners observe the guard level leads to

a unique equilibrium prediction. Figure 2.2 shows the intuition behind this equilibrium

selection through infection.

The perturbation works in the following way: The warden chooses an intended guard

level γ̃. The true guard level is then drawn from a normal distribution with mean γ̃ and

variance ε′ > 0.9 That is, the warden has a “trembling hand”. Each prisoner receives a

noisy signal of γ: This signal is drawn from a uniform distribution on [γ − ε, γ + ε] with

ε > 0. We are interested in the Bayesian Nash equilibrium of this game as ε→ 0. In fact,

we show that this Bayesian game generically has a unique Bayesian Nash equilibrium as

ε→ 0. Furthermore, this equilibrium does not depend on ε′. We select this equilibrium

in the original game.10

9In the context of a prison, one might think here of a normal distribution truncated at zero. The
truncation affects neither results nor derivation.

10The reader familiar with the global games literature might wonder why we introduce a “tremble”
in the warden’s action. The reason is that the parameter which is observed with noise (the guard level
γ) is an endogenous choice in our model while the usual global game approach would assume noisy
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γ

N

1

θ∗

(r dominates)

(n dominates)

(infection)

(infection)

Figure 2.2: Infection of beliefs among prisoners: If γ ≥ N , not revolting is a strictly
dominant strategy for all prisoners. If γ < 1, revolting is strictly dominant. If γ ∈ [1, N)
and γ is common knowledge, there are two pure equilibria: Everybody revolts or no one
revolts. When common knowledge is destroyed by the perturbation, beliefs get infected
so that for γ < θ∗, n is the unique equilibrium action, and r is the unique equilibrium
action for γ > θ∗.

Note that this setup eliminates common knowledge of the guard level. A prisoner

observing signal θ knows that the true guard level is in [θ− ε, θ+ ε]; he knows that each

other prisoner knows that γ ∈ [θ − 3ε, θ + 3ε]; he knows that each other prisoner knows

that he knows that γ ∈ [θ − 5ε, θ + 5ε] and so on. Higher order beliefs will therefore

play a role in determining the equilibrium. This appears to be a natural feature in a

coordination game where the driving force of one’s choice are exactly the expectations

over what others do (which itself is driven by what others believe I do and therefore

beliefs over beliefs and beliefs over beliefs over beliefs etc.).

The following lemma contains the main technical result for the Bayesian game.

Lemma 1. Let ε′ > 0. Assume that bN/(q + b) 6∈ N and define11

θ∗ =

⌈
bN

q + b

⌉
.

Then for any δ > 0, there exists an ε̄ > 0 such that for all ε ≤ ε̄, a player receiving a

signal below θ∗ − δ will play r and a player receiving a signal above θ∗ + δ will play n.

The lemma states that for generic parameter values – whenever bN/(q + b) is not an

integer – prisoners in the Bayesian game will revolt when they observe a signal below

θ∗ − δ and will not revolt if they observe a signal above θ∗ + δ. In the limit – as the

prisoners’ observation noise ε approaches zero – δ approaches zero as well. Put differently,

observation of an exogenous parameter chosen randomly by nature. Since γ is a strategic choice (made
before the prisoners act), prisoners could infer γ correctly in equilibrium despite the noisy observation
if the warden did not “tremble”. Consequently, prisoners would have common knowledge of γ despite
the noise.

11The ceiling dxe is the lowest integer above x, i.e. dxe = min{n : n ∈ N and n > x}.
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prisoners play a cutoff strategy with cutoff value θ∗ in the limit: Whenever they receive

a signal below the cutoff, they play r and whenever they receive a signal above the cutoff

they play n.

Now consider the warden’s decision problem (in the limit as ε → 0). If the guard

level is strictly above θ∗, then all prisoners will receive signals above θ∗ and will therefore

not revolt. If the guard level is strictly below θ∗, then all prisoners will receive a signal

below θ∗ and will revolt. Consequently, the optimal guard level for the warden is θ∗ (or

“slightly above and arbitrarily close” to θ∗). In the limit as ε′ → 0, the warden can ensure

this guard level by simply choosing γ̃ = θ∗. This gives us the following outcome for our

second model.

Result 1. The equilibrium outcome selected by the global game approach is the following:

The warden chooses a guard level equal to θ∗ and every prisoner plays n.

Clearly, the warden does better in this equilibrium than in the benchmark model: He

prevents a revolt for sure while using guard level θ∗ instead of the guard level N . The

reason is that he can utilize the coordination problem among prisoners in his favor. More

technically, the so-called “infection argument” is at work: Consider a prisoner receiving

a noisy signal above N . It is then quite likely that the guard level is above N and also

quite likely that one other prisoner receives a signal above N + ε (where it is a dominant

action to play n). Consequently, a prisoner receiving a signal above N finds it optimal

to not revolt. Now consider a prisoner receiving a signal just below N : This prisoner

will consider it quite likely that at least one other prisoner receives a signal above N in

which case this prisoner will play n (as we just established). So, even if the guard level is

below N , it is unlikely that all other prisoners revolt and therefore a prisoner receiving

a signal just below N will still play n. In this way, the dominance region (signals above

N + ε) “infects” lower and lower signals in the sense that players with these lower signals

also find it optimal to play n. A similar infection starts from signals below 1 where it is

optimal to play r. Eventually (in the limit), this infection from both sides leads to the

unique equilibrium.

3.3 The Panopticon

The third model is the one that closely mirrors Bentham’s original idea. Now the warden

chooses γ, but it cannot be observed by the prisoners, who also face a coordination

problem.1213 We concentrate on equilibria in which all prisoners play r with the same

12Bentham (1787) emphasized the lack of communication possibilities (leading directly to a coordi-
nation problem): “These cells are divided from one another, and the prisoners by that means secluded
from all communication with each other, by partitions in the form of radii issuing from the circumfer-
ence towards the center, and extending as many feet as shall be thought necessary to form the largest
dimension of the cell.”

13If we allowed prisoners to communicate in a cheap talk way and selected the prisoner optimal equi-
librium in this communication game, we would be back in the benchmark model. Such communication
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probability p in equilibrium. In the supplementary material, we show that this is without

loss of generality, i.e. no prisoner asymmetric equilibria exist in this game.

Equilibria only exist in mixed strategies: If the prisoners revolted for sure, the warden

would best respond by setting the guard level to γ = N . Consequently, the revolt is

unsuccessful and revolting is not a best response for the prisoners. Alternatively, the

warden would best respond with γ = 0 if the prisoners played n for sure. But in this

case revolting is a best response. Consequently, the prisoners (and possibly also the

warden) will mix and revolts will succeed with some probability in equilibrium.

The number of prisoners playing r follows a binomial distribution as every prisoner

plays r with probability p and the prisoners’ choices are independent. Call this distribu-

tion G and its probability mass function g. More precisely, g(m) =
(
N
m

)
pm(1− p)N−m is

the probability that m prisoners revolt given that each prisoner revolts with probability

p.

Clearly, the warden’s best response puts positive probability only on integers between

0 and N for γ. Therefore, the warden’s maximization problem is

max
γ∈{0,1,...,N}

−(1−G(γ))B − γ. (2.1)

Denote the warden’s (mixed) strategy by the distribution F with probability mass func-

tion f . The warden has to be indifferent between any two γ0 and γ1 in the support of F

which means that the following equation has to hold

B (G(γ0)−G(γ1)) = γ0 − γ1 (2.2)

for any γ0 and γ1 in the support of F . Note that G is S-shaped because it is a binomial

distribution, i.e. g is first strictly increasing (up to the mode of G) and then strictly

decreasing. This property leads – together with assumption 1 – to the following result.

Lemma 2. In any mixed strategy equilibrium, the support of F consists of at most two

elements and these two elements are adjacent, i.e. the warden mixes between γ1 and

γ1 + 1 with γ1 ∈ {0, . . . , N − 1}. For any γ1 ∈ {0, . . . , N − 1}, there exists a unique

p ∈ (0, (γ1 + 1)/N) such that γ1 and γ1 + 1 are the two global maxima of the warden’s

utility.

We illustrate the lemma using figure 2.3. For every individual revolt probability p,

we get a cumulative density function G(m) that gives the probability that m or fewer

prisoners revolt – in other words, the probability that a guard level γ = m successfully

prevents a breakout. This function G is (multiplied by B) given by the dots (we con-

centrate on values at integers). The dashed line gives the cost of setting a guard level

is usually not considered in stag hunt type coordination problems as every prisoner weakly benefits if
the other prisoner plays revolt; messages are therefore not very credible.
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γN

B ∗G 45◦-line

γ1γ1 + 1

Figure 2.3: Equilibrium in the panopticon-model.

γ, which is simply γ. The warden optimally mixes between guard levels that maximize

the difference between B ∗ G(γ) and γ. Intuitively, he trades off the additional cost of

increasing the guard strength with reducing the probability of a breakout. Choosing

a higher γ than γ1 + 1, for example, would increase the cost by much more than the

probability of preventing breakouts (weighted by the disutility of a breakout), and is

therefore not optimal. If there are several guard levels where the difference is equivalent,

the warden is indifferent between them. The example illustrates our two intermediate

results: (a) The warden will never mix between more than two guard levels, since the

concavity of G (above the mode) means that the difference between G and cost cannot

be equal in three or more points. (b) For every γ1, γ1 + 1 we can find a p such that the

warden is indifferent between the two guard levels, by finding a p such that the resulting

G has the maximum distance from the 45-degree line at γ1 and γ1 + 1. The condition

p < (γ1 + 1)/N is equivalent to saying that γ1 is weakly above the mode of G. That is,

the optimal guard level will be in the concave part of G which is again in line with figure

2.3.

In equilibrium, each prisoner must be indifferent between revolting and not revolting.

This indifference condition is given by

Eγ [−qGN−1(γ − 1) + b(1−GN−1(γ − 1))] = 0 (2.3)

where the expectation over γ is taken with respect to the warden’s optimal strategy F and

GN−1 is the binomial distribution with N − 1 prisoners, i.e. gN−1(m) =
(
N−1
m

)
pm(1 −

p)N−1−m. Note that the probability of revolting p and the guard level γ1 of a mixed

equilibrium are determined simultaneously by (2.1) and (2.2) as the warden’s own mixing

probability does not play a role in these conditions. Given these two values, (2.3) will
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determine the equilibrium mixing probability of the warden.

We now turn to the question which guard levels can be chosen in equilibrium. Lemma

2 stated that we can concentrate on equilibria where the warden mixes over γ1 and γ1 +1

for γ1 ∈ {0, . . . , N−1}. Furthermore, the warden’s incentives do not pose an obstacle for

the existence of such an equilibrium for any γ1 ∈ {0, . . . , N−1} as there is always a p for

which γ1 and γ1 + 1 are optimal. Whether an equilibrium exists for γ1 ∈ {0, . . . , N − 1}
is determined by the prisoner’s indifference condition. More precisely, a mixed strategy

equilibrium where the warden mixes over γ1 and γ1 + 1 exists if and only if a prisoner

strictly preferred to revolt if the warden played γ1 for sure and strictly preferred not to

revolt if the warden played γ1 + 1 for sure (holding fixed the probability p with which

the other prisoners revolt). Defining

∆(γ) = −qGN−1(γ − 1) + b(1−GN−1(γ − 1)) (2.4)

as the utility difference of a prisoner between playing revolt and no revolt if the warden

uses γ guards for sure, this can be expressed as follows: An equilibrium in which the

warden mixes between γ1 and γ1 + 1 exists if and only if ∆(γ1) > 0 > ∆(γ1 + 1). In this

case, the equilibrium mixing probability with which the warden plays γ1 is

z =
−∆(γ1 + 1)

∆(γ1)−∆(γ1 + 1)
. (2.5)

Note that several equilibria can exist because ∆ is not necessarily monotone: While both

terms in (2.4) are directly decreasing in γ, there is an indirect effect through p: A higher

γ is only optimal for the warden if the revolt probability p is higher. This, however,

implies that ∆ increases. Which of the two effects dominates (direct effect through γ or

indirect effect through p) is a priori unclear. However, ∆(0) > 0 as revolting is dominant

if the guard level is zero and ∆(N) < 0 as not revolting is dominant when the guard

level is N . Consequently, at least one equilibrium exists.

Given that potentially several equilibria exist, we are especially interested in the

warden optimal equilibrium. The following lemma shows that the warden optimal equi-

librium is the one with the lowest guard level. This equilibrium will also have the lowest

revolt probability p.

Lemma 3. Suppose there are two mixed equilibria: In equilibrium 1, the warden mixes

over γ1 and γ1 + 1 and in equilibrium 2 the warden mixes over γ2 and γ2 + 1. Then the

warden’s equilibrium payoff is higher in equilibrium 1 if and only if γ1 < γ2. Furthermore,

the prisoners’ equilibrium probability of playing r is lower in equilibrium 1 if and only if

γ1 < γ2.

So far, we focused on completely mixed equilibria. However, there can be semi-mixed

equilibria as well: the warden plays a pure strategy while the prisoners mix. Take a guard
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level γ ∈ {1, . . . , N − 1}. There is a range of values for p such that γ is the warden’s

optimal choice. The prisoner is willing to mix if he is indifferent between revolting and

not revolting, that is, if ∆(γ) = 0. This indifference condition holds for exactly one p.

If the p solving the indifference condition is accidentally within the range of p values for

which γ is the maximizer of the warden’s utility we have an equilibrium. The following

lemma, however, states that semi-mixed equilibria are not warden optimal.

Lemma 4. For every semi-mixed equilibrium, there is a completely mixed equilibrium in

which the expected warden payoff is higher.

We have therefore established the following for the panopticon model:

Result 2. In every equilibrium, the prisoners mix over r and n. The warden mixes

between some γ1 and γ1 +1 in the warden optimal equilibrium. However, other equilibria

(in which the warden mixes over γ2 and γ2 + 1 with γ2 > γ1 or the warden does not mix)

can exist.

3.4 Comparison of the models

The prisoners are indifferent between all models: In the transparency model and bench-

mark 1a, they did not revolt and therefore had a payoff of zero. In the panopticon and

benchmark 1b, prisoners were indifferent between revolting and not revolting as they

played a mixed strategy. Hence, their expected utility was again zero as this is the pay-

off from playing n. The warden optimal model will therefore also be the welfare optimal

model. Clearly, the two benchmark models are worst for the warden: His payoff is −N
which is the cost of preventing a breakout for sure by employing an abundance of guards.

If he prevents communication, he can achieve the same outcome at cost θ∗ ≤ N . In the

panopticon model, he is also weakly better off than in the benchmark, since he always

has the option of setting a guard level of N and ensuring a payoff of −N . He is indeed

indifferent to doing so if the equilibrium in which the warden mixes over N − 1 and N is

the only existing mixed equilibrium. If other equilibria exist, the warden will be strictly

better off in those than in the benchmark model.

The interesting comparison is between the transparency model and the panopticon.

Which of these two models is warden optimal depends on the parameter values of the

model. In general, however, we can show that for large values of N , the panopticon

model has a unique equilibrium in which the warden’s payoff is bounded from below by

a constant. In the transparency model, the warden payoff is given by −θ∗ = −
⌈
bN
q+b

⌉
,

which falls linearly in N and therefore becomes very negative for large N . We can

therefore always find an N such that the panopticon is optimal for all N > N . Also, since

the proof of the following theorem establishes that G(0) → 1 in the unique equilibrium

for N →∞, the probability of successful breakouts in the panopticon converges to zero.
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Theorem 1. Take b and q as given. Let N be sufficiently large and B such that assump-

tion 1 is satisfied. Then, the warden mixes between 0 and 1 in the unique equilibrium of

the panopticon model. The warden’s payoff is – for N sufficiently high – higher in this

equilibrium than in the transparency model.

In the panopticon, the probability of a breakout is arbitrarily close to zero and GN−1(0)

is arbitrarily close to one for sufficiently high N .

γ γ

(A) small N (B) large N

N N

B ∗G 45◦-line 45◦-line

γ1 γ1 + 1 γ1γ1 + 1

Figure 2.4: An illustration of theorem 1.

After having derived the intermediate results about the panopticon model in section

3.3, we can extend the intuition for theorem 1 that we gave in the introduction. Recall

that there are three requirements for an equilibrium where the warden mixes between

guard levels γ1 and γ1+1: (i) The warden must be indifferent between the guard levels, (ii)

both guard levels must be better than all other guard levels, and (iii) the prisoners must

be indifferent between revolting and not revolting. Figure 2.4 shows, similar to figure

2.3, a distribution G of attacking prisoners so that the first two requirements are fulfilled.

In particular, by (2.2), a line through the points (γ1, BG(γ1)) and (γ1 + 1, BG(γ1 + 1))

would be parallel to the 45◦ line.

The third requirement can only be fulfilled if the probability of a successful revolt is

sufficiently high, since it is otherwise optimal for the prisoners to never revolt. In panel

(A), where N is relatively small, this is possible: There is a positive probability that the

number of revolting prisoners is larger than γ1. Hence we can find a mixing probability

for the warden that makes prisoners indifferent between revolting and not revolting. But

if N gets larger (panel B), the probability of a successful revolt converges to 0 for both

γ1 and γ1 + 1 since the binomial distribution G becomes more concentrated around pN
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(which is always smaller than γ1) for large N . Then there exists no mixing between these

two guard levels that would actually make the prisoners indifferent, and thus requirement

(iii) can not be fulfilled for large N and γ1 > 0. The only equilibrium for large N is the

one where γ1 = 0. Then each prisoner has the possibility of successfully revolting on his

own, and therefore no longer cares about the probability with which others revolt.

To get some more intuition for the uniqueness result in the panopticon, consider also –

as an example – the equilibrium where the warden mixes over N−1 and N (which is used

here because it is particularly tractable). The warden is only indifferent between the two

guard levels if the marginal cost of adding the Nth guard, which is 1, equals the marginal

benefit of reducing the probability of a breakout by increasing the guard level by one.

This marginal benefit is Bg(N) ≥ (N + 1)pN where the inequality holds by assumption

1. Hence, pN ≤ 1/(N + 1) and p ≤ N
√

1/(N + 1) in this equilibrium. Now consider the

problem of a prisoner. In this equilibrium, he prefers to revolt only if all other prisoners

revolt. The probability that all other prisoners revolt is gN−1(N − 1) = pN−1. Since p ≤
N
√

1/(N + 1) by the warden’s indifference condition, we get gN−1(N−1) ≤ (N+1)−
N−1
N .

This term converges to 0 for large N , so that it becomes extremely unlikely that there is

a successful revolt. The prisoner therefore strictly prefers not revolting to revolting, i.e.

∆(N − 1) < 0. Consequently, there is no equilibrium where the warden mixes between

N − 1 and N for N sufficiently large. A similar logic applies to all other equilibria in

which the warden mixes between γ1 ≥ 1 and γ1 + 1: The warden’s indifference condition

requires a revolt probability p that is – for sufficiently large N – incompatible with the

prisoner’s indifference condition.

The result that GN−1(0) is close to one if N is large states that every prisoner expects

all other prisoners to not revolt. This is in line with Bentham’s idea that prisoners would

not even think about a coordinated attack in a panopticon. Given GN−1(0) ≈ 1, the

equilibrium is in fact similar to a game where each prisoner faces the warden one to one

without any prospects of support by his fellow inmates. The panopticon exploits, in

this sense, the prisoners’ coordination problem maximally while the transparency model

exploits this coordination problem only to a certain degree.

In the unique equilibrium for large N, the prisoners correctly believe that there is at

most one guard on duty. Yet they still find it impossible to coordinate on attacking, even

though an attack by just two prisoners would be successful for sure. Early readers of this

paper have pointed out to us that this can seem“unrealistic”: Should the prisoners not be

able to implicitly coordinate on revolting, given that they know that the decision of the

warden not to have more than one guard has already been made? We would like to point

out that this argument amounts to a broad critique of the concept of equilibrium itself.

We know of no epistemological argument that would distinguish between the situation

where the warden and the prisoners reason simultaneously, and the one where they do

so sequentially without knowing about the other’s choice. Any argument that viewed
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the prisoners’ coordination problem as a subgame, however, would make precisely such

a distinction.

Besides this central result for large groups, we present two results for small N . In

this case, either the warden’s or the prisoners’ payoffs sometimes allow us to say which

information structure is optimal.

Proposition 1. Take q, b, N as given. If θ∗ = 1, then the warden is best off in the

transparency model. If θ∗ > 1, then there exists a B̄ such that for all B ≥ B̄ the

warden’s payoff in the unique equilibrium of the panopticon model is higher than in the

transparency model. The warden mixes over the guard levels zero and one in this unique

equilibrium.

Put differently, if the disutility of a breakout is relatively high compared to the

cost of the guards, the panopticon is warden optimal unless a guard level of 1 can

completely deter revolts in the transparency model. Given that revolting is dominant

for any guard level strictly below one, θ∗ = 1 has to be viewed a bit as a special case.

Indeed θ∗ = dbN/(q+ b)e equals 1 only if the disutility of an unsuccessful revolt is N − 1

times as high as the utility of a successful breakout which seems somewhat implausible

in the applications we have in mind. Hence, the panopticon is – with a small caveat –

warden optimal if warden incentives dominate. This might be somewhat surprising as the

breakout probability in the panopticon is strictly greater than zero while the breakout

probability in the transparency model is zero. There are two reasons explaining why

cost savings compared to the transparency model are sizable if θ∗ > 1. First, the warden

mixes between guard levels of zero and one in the panopticon if B is high. Consequently, a

substantial number of guards can be saved compared to the transparency model. Second,

the breakout probability in the panopticon – though not zero – is very small. The second

follows readily from the first: Given that the warden really dislikes breakouts (high B),

he will only be willing to mix between zero and one if the probability of revolt is very

small. The reason why no other equilibrium exists is the following. Given that B is very

high, the warden is only willing to use γ1 < N guards if the probability of a revolt is very

small. But this implies that for each prisoner it is unlikely that other prisoners revolt.

Consequently, each prisoner strictly prefers not to revolt unless γ1 = 0.

Next, consider the prisoners’ incentives.

Proposition 2. Take N and B as given. For b/q high enough, the warden payoff equals

−N in all models. Furthermore,

� Suppose B
N−1
N > N : Then, for b/q ∈ (N − 1, B

N−1
N − 1), the warden’s payoff in

every equilibrium of the panopticon model is higher than in the equilibrium of the

transparency model.
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� Suppose N > B
N−1
N : Then, for b/q ∈ (B

N−1
N −1, N−1), there exists an equilibrium

in the panopticon model in which the warden’s equilibrium payoff is lower than in

the transparency model.

If the prisoners have very strong incentives to break out, the payoff of all models

coincides: The warden chooses N guards in the benchmark 1a and transparency model,

mixes between N and N−1 guards in the panopticon and between N and 0 in benchmark

1b. Hence, the warden payoff is −N . For high (but not excessively high) incentives to

break out, the comparison between panopticon and transparency model is hampered

by the multiplicity of equilibria in the panopticon model. Depending on parameter

values, either all (!) equilibria in the panopticon yield a higher warden payoff than the

transparency model or the transparency model does better than some equilibria in the

panopticon.

4 Discussion

4.1 Central Bank Defending Against Speculators

Our results can be applied to many situations of conflict where a central player can use

the coordination problem of his opponents against them. An example that has received

much attention in economics is the problem of defending a currency peg against specu-

lators. The coordination aspect of this problem, which often leads to multiple equilibria,

was pointed out by Flood and Garber (1984) and Obstfeld (1986). The equilibrium

multiplicity resulting from the speculators’ coordination problem was contentious until

Morris and Shin (1998) established equilibrium uniqueness for each parameter value if

speculators lack common knowledge about the strength of the currency and their beliefs

get infected as in Carlsson and van Damme (1993). This insight has since been applied

to other coordination problems like bank runs (Goldstein and Pauzner, 2005) or civil war

(Chassang and Miquel, 2009). These models, however, concentrate on the coordination

problem of the opponents. In fact, they would be equivalent to our transparency model

if we did not allow the warden to choose the guard level but had this variable drawn

from an exogenous distribution. The first difference to our model is therefore that the

underlying“strength”(of the currency, the bank etc.) is exogenous in this literature while

it is endogenous in our setup. The second difference is that we introduce the panoptical

information structure and give the warden a choice between information structures. Our

model allows us therefore to ask how the central player should use these instruments –

strength level and information policy – to defend himself against the coordinated threat.

In the remainder of this section, we reinterpret our results in terms of the classical

example of defending a currency peg against speculators as modeled in Morris and Shin
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(1998). This should help to illustrate our results and to facillitate comparisons with the

literature.

Consider the situation of a central bank that has to defend a currency peg against

speculation. For this purpose, it can build up foreign exchange holdings that it can then

use to counteract speculation. Doing so is costly, since it requires holding liquid bonds

with low yields, so that the central bank would prefer to prevent a breaking of the peg

with a minimum of reserves.

The transfer from our prison model is relatively straightforward. Assume that there

are N speculators who can each decide to do nothing or to take a costly speculative

position against the currency. Before the speculators make their choice, the central bank

builds up foreign exchange reserves of size γ at cost γ. If there is a speculative attack

against the currency and the central bank cannot defend the peg, its payoff is −B − γ
with some B ≥ N + 1, otherwise it receives −γ.

In this context, the assumption that B ≥ N + 1 means that our model only applies

to cases where, if the central bank knew exactly the strength of the speculative attack

that was coming, it would always prefer to build a large enough reserve to fight it off.

We would argue that this is usually the case in the real world, and that in most cases

where a central bank was overwhelmed by speculators it was because of the unexpected

extent of the speculative attack.

A speculative attack is successful if more than γ out of the N speculators speculate

against the currency. In that case, those who attacked the currency get a payoff of

b > 0. If they speculate against the currency but the central bank can defend the peg,

the speculators lose q > 0 on their positions. This loss q denotes the transaction costs

of taking the speculating position and also includes the opportunity costs of forgoing

an alternative investment. This alternative payoff, which speculators get if they do not

speculate against the peg, is normalized to zero.

Should the central bank make its foreign exchange reserves public?14 If the reserves

are public, speculators are in the same situation as in Morris and Shin (1998) and – just

as in their paper – we use the global game approach to select an equilibrium. If the

reserves are kept secret, speculators and central bank find themselves in the panopticon

model.

From our results in the previous sections, we can make several observations about

which information policy the central bank should choose in revealing the size γ of the

foreign exchange reserve. The optimal choice depends on the interplay of all parameter

values, so that the following observations are ceteris paribus :

14We will interpret the publicity of information concerning the reserves as transparency. This term
has occasionally been used in the literature on speculative attacks in a different way, see Heinemann and
Illing (2002); Huang (2014). Huang analyzes a model where the central bank can have a behavioral type
who always defends the peg. Speculators can learn the central bank’s type over time and “transparency”
refers to the precision of speculators’ private signals about the central bank’s type.
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� If there are many speculators, the central bank should always choose to keep the

reserve level secret.

� If speculators have a lot more to gain from breaking the peg than they can lose

by speculating against the peg (in relation to the next-best investment), it may

be optimal to keep the reserve level secret. This is especially the case if the cost

(economic or reputational) of giving up the peg is high.15 If the proportion between

the speculators’ possible earnings and their potential losses grows without bounds,

however, the choice of information structure does not matter much since speculators

are likely to speculate in any case and the reserve level always has to be maximal.

Especially, the first point, which follows directly from theorem 1, adds a new perspective

to the literature on this topic. The uniqueness result of Morris and Shin (1998) has

usually been understood to mean that a currency peg can be defended even in cases

where coordination among all speculators could bring it down.

Our result shows that the central bank can make even better use of the speculators’

coordination problem by keeping its own strength secret. Especially if there are many

speculators (i.e. the coordination problem is worse), this will guarantee an extremely

low probability of losing the peg with a minimal exertion of resources.16 It should be

noted, however, that the massive savings in costly reserves come at the cost of a strictly

positive chance of the peg being broken. Observing a central bank that kept its reserves

secret being overwhelmed by speculators would, therefore, not necessarily be a sign of

a bad policy. While we know of no instance where a central bank actually maintained

complete secrecy about the size of its reserves, secrecy about the existence and size of

foreign exchange interventions is not uncommon. The reasons for this have been debated

in the literature; see Vitale (2007) for a discussion.

4.2 Extensions and Robustness

Our main result has two parts: Firstly, the warden can almost always deter attacks in

the panopticon by mixing between minimal guard levels if N is large. Secondly, this

means that the panopticon is the optimal information structure for the warden if N is

15While it may seem like speculators usually have little to lose by speculating against a peg (because
they can exchange their money back at the peg if they “lose”), this also includes the cost of transaction
and any interest rate differential. Also, re-converting might not be costless if all speculators want to
get out at the same time: When the pressure on the Danish krone/Euro peg let off in spring 2015, the
Danish central bank suddenly had to stabilize the market on the other side of the peg since so many
traders reversed or unwound their positions simultaneously.

16Theorem 1 might seem to imply that the currency reserves will be unrealistically low (“0” or “1”)
in equilibrium. However, “1” has to be interpreted as the highest budget of any speculator; see the
extension in the supplementary material where we derive the panopticon equilibrium in a model where
speculators can have varying budgets. This could be quite substantial – especially if some speculators are
big institutional investors. Also, central banks might in reality hold some amount of currency reserves
for other purposes than deterring speculators (providing liquidity etc.).
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large. In this section, we consider several extensions and generalizations of our model

and show that our main results are robust to such changes. In particular, we show how

the fundamental property of large populations upon which our proof relies is still present

in models with stochastic payoff functions, richer payoff functions, stochastic breakouts

or heterogenous attackers.

So far, we assumed that revolting leads to a payoff of −q for the prisoner if there

was no successful breakout. In particular, this payoff did not depend on the guard level.

This is in line with the interpretation of an effort cost in the prison or a transaction cost

in the speculation application. One could, however, imagine that revolting prisoners are

punished. In the application of a revolution, it is not unreasonable to assume that those

that participated in a failed coup d’état might face severe consequences. Punishment,

however, requires that the subversive activities are detected and the revolutionaries are

identified. One could argue that the probability of being detected and identified depends

on the guard level; e.g. the guards might not detect/identify all unsuccessful revolution-

aries if there are few guards monitoring a lot of “prisoners”. One way to capture this is

to say that the payoff of a revolting prisoner that does not break out is −q − ργ/N < 0

where ρ ≥ 0 denotes a punishment and the probability of a punishment is proportional

to the guard/prisoner ratio.

As we show in the supplementary material, our analysis covers this more general

case. While the specific threshold level θ∗ in the transparency model and the precise

equilibrium mixing probabilities in the panopticon are different, the analysis remains

qualitatively the same. In particular, the result that the panopticon is much better than

the transparency and benchmark model for large N remains true. Also the result that

the equilibrium probability of revolting in the panopticon is arbitrarily close to zero for

large N holds. This captures an idea which has been central in understanding the effect

of the panopticon: The prisoners behave as if they are watched because there is a slight

chance that they are watched.17 One could interpret γ/N as the fraction of prisoners

that are watched or the chance of being discovered. With q → 0 and ρ > 0, the only

reason not to riot is the possibility of being watched (and punished if caught). Since

prisoners almost always do not riot in equilibrium, they arguably behave as if they were

watched because they are afraid that they might be watched.

Another possible extension of our model allows the payoff of a non-revolting prisoner

to depend on whether a breakout occurs or not. Assume that the payoff of a non-

revolting prisoner is w 6= 0 if a breakout occurs and zero if no breakout occurs. In the

revolution example, w could be negative: If there is a successful coup, the new rulers

might punish those that did not participate in the revolt. While the equilibria change

17This dates back to Bentham (1787) who writes “You will please to observe, that though perhaps it
is the most important point, that the persons to be inspected should always feel themselves as if under
inspection, at least as standing a great chance of being so, yet it is not by any means the only one.”
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quantitatively, all our qualitative results still hold in this setting. The crucial part is

that w < 0 preserves the supermodular structure of the coordination game: A prisoner

is more willing to revolt if other prisoners are more likely to revolt. If, on the other hand,

w > 0, i.e. if there is a free riding problem, then our results only hold if w is not too big.

More precisely, our derivations go through unless the free riding possibility destroys the

supermodularity: A prisoner would then be less willing to revolt if others are more likely

to revolt because he is more likely to get a high free rider benefit w when not revolting.

In our model, the probability of a breakout is 1 if the number of guards is less than

the number of revolting prisoners and 0 otherwise. It is possible to generalize the model

by introducing some randomness in the probability of a breakout. In the supplementary

material, we show that all our results still hold if the the probability of a breakout is

β1m>γ + (1 − β)m/N where m is the number of revolting prisoners, 1 is the indicator

function and β ∈ (0, 1] is a parameter (note that the model in the main text corresponds

to β = 1). In terms of the revolution example, this setup could be interpreted as a

probability β that the current regime fights an uprising using force and a probability

1− β that it is forced by international pressure to respond peacefully – for example by

holding an election. The probability that protesters win the election increases in the

number of initial protesters.

Finally, we consider an extension where the attackers differ in their size. Think, for

example, of speculators who have different budgets. The central bank will then mix not

between 0 and 1 but between 0 and the highest speculator budget in the panopticon

model for large N . Intuitively, this is clear: If the central bank used (with probability 1)

currency reserves less than the budget of the biggest speculator, this speculator would

have a dominant strategy to speculate which would then always break the peg. We show

in the supplementary material that the central bank is in the mixed equilibrium of the

panopticon described above better off than in the transparency model if N is large.

5 Conclusion

This paper analyzes how a single player can defend against a group of opponents by

making use of their coordination problem. Our model formalizes and replicates earlier

results showing that “infection” in the absence of common knowledge can be used for

this purpose, but our results go further in arguing that absolute secrecy is often optimal.

While secrecy is optimal for all larger groups, the transparency model may be optimal

for smaller groups of opponents.

In the general debate between secrecy and transparency, this reminds us that we

have to think clearly about the purpose and effect of information revelation. Revealing

information to a single actor has the effect of informing and influencing that actor, but if
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that actor is part of a group it will also make him consider what kind of information the

others have received, how they reason about his information and so on. These higher-

order effects have to be considered and can be substantial.18

Our model suggests which is the optimal information structure in a conflict between

one central player and a group. However, other situations are conceivable for which our

model offers only limited guidance. For example, the idea of transparency and forward

guidance by central banks is not necessarily at odds with our result that secrecy is

optimal: While our result is based on a conflict between the central bank and speculators,

one could imagine other situations in which the interests of central bank and market

participants are not opposed. In such a situation with aligned interests, transparency

might indeed be an optimal policy. Our results show that the optimal information policy

depends crucially on the degree of (mis-)alignment of interests between central bank and

market participants.

We have seen that for a large number of prisoners, minimal enforcement with secrecy

is optimal. This is in line with Bentham’s original concept. But while prisons indeed

rely more on cameras and prisoner separation than on massive numbers of guards, one

might wonder why in many other situations massive presence of enforcement is publicly

observable. For example, large numbers of police officers are deployed to uphold the

public order during (potentially violent) demonstrations and sport events. This does

not contradict our theory. Demonstrators (or football hooligans) do not face a large

coordination problem. By being in the same place, being able to observe each other and

possibly even having some hierarchy among them, they can condition their choices upon

each other’s behavior and thereby achieve coordination without any problem of cheap

talk. And, as we have shown in our benchmark model: when coordination problems do

not matter, the warden chooses maximum enforcement in equilibrium.

18Practitioners of “fedspeak” have clearly understood this.
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Appendix

Proofs transparency model

Proof of lemma 1. The proof is in three steps.

Strategic complementarity: A player finds revolting more attractive if other

players are more likely to play revolt. A prisoner’s strategy maps from signals

into actions. If there are strategy profiles s and s′ such that for every signal for which

a player j 6= i plays revolt under s he will also play revolt in s′, then playing revolt is

relatively more attractive for player i given s′−i compared to s−i: Let GN−1(γ−1) be the

probability that γ−1 or less of the other N−1 prisoners revolt (given their strategies and

i’s signal). Define ∆(γ) = −qGN−1(γ−1)+ b(1−GN−1(γ−1)) as the utility of revolting

minus the utility of not revolting for a given guard level γ. GN−1(γ − 1) is weakly lower

under s′−i than under s−i and therefore ∆(γ) is higher. That is, for a given γ revolting

is more attractive. Since this is true for any given γ, it is also true in expectation.

Suppose everyone follows a cutoff strategy with cutoff θ. For a given δ > 0,

there exists an ε̄ > 0 such that the utility of revolting for a prisoner with

signal θ is higher (lower) than the utility from not revolting if θ ≤ θ∗ − δ

(θ ≥ θ∗+ δ). The probability that a player observing himself the cutoff signal θ assigns

to the event “exactly k other players receive a signal below θ” is

gN−1(k) =

∫ θ+ε

θ−ε

(
N − 1

k

)(
γ − θ + ε

2ε

)k (
1− γ − θ + ε

2ε

)N−1−k
φ(γ)

Φ(θ + ε)− Φ(θ − ε)
dγ.

We will now derive a convenient approximation for gN−1(k). Note that for ε small

the term φ(γ)/(Φ(θ + ε) − Φ(θ − ε)) is approximately constant (and equal to 1/(2ε))

as φ is continuous and has a bounded first derivative. More precisely, fix θ and define

φmax(ε) = maxγ∈[θ−ε,θ+ε] φ(γ) and φmin(ε) = minγ∈[θ−ε,θ+ε] φ(γ). Then gN−1(k) and its

approximation (where the average 1/(2ε) is used instead of φ(γ)/(Φ(θ + ε)−Φ(θ− ε)))
are necessarily between the two values

ḡ(ε) =

∫ θ+ε

θ−ε

(
N − 1

k

)(
γ − θ + ε

2ε

)k (
1− γ − θ + ε

2ε

)N−1−k
φmax(ε)

Φ(θ + ε)− Φ(θ − ε)
dγ,

g(ε) =

∫ θ+ε

θ−ε

(
N − 1

k

)(
γ − θ + ε

2ε

)k (
1− γ − θ + ε

2ε

)N−1−k
φmin(ε)

Φ(θ + ε)− Φ(θ − ε)
dγ

as the integrand is non-negative for all γ in the integration range. By showing that

limε→0 ḡ(ε) − g(ε) = 0, we show that the approximation of g becomes arbitrarily close
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to g for ε small enough:

ḡ(ε)− g(ε) =

∫ θ+ε

θ−ε

(
N − 1

k

)(
γ − θ + ε

2ε

)k (
1− γ − θ + ε

2ε

)N−1−k
φmax(ε)− φmin(ε)

Φ(θ + ε)− Φ(θ − ε)
dγ

≤
(
N − 1

k

)∫ θ+ε

θ−ε

φmax(ε)− φmin(ε)

Φ(θ + ε)− Φ(θ − ε)
dγ =

(
N − 1

k

)
2ε(φmax(ε)− φmin(ε))

Φ(θ + ε)− Φ(θ − ε)
.

From L’Hopital’s rule and the fact that limε→0 φ
max(ε) = limε→0 φ

min(ε) = φ(θ), it

follows that the last term converges to zero as ε → 0. Therefore, the approximation of

gN−1(k) converges to gN−1(k) as ε → 0. Hence, the approximation is arbitrarily exact

for ε sufficiently small (and is totally exact for ε = 0). We will use this result later.

Using the approximation we get

gN−1(k) ≈
(
N − 1

k

)∫ θ+ε

θ−ε

1

2ε

(
γ − θ + ε

2ε

)k (
1− γ − θ + ε

2ε

)N−1−k

dγ

=

(
N − 1

k

)∫ θ+ε

θ−ε

N − 1− k
k + 1

(
γ − θ + ε

2ε

)k+1
1

2ε

(
1− γ − θ + ε

2ε

)N−2−k

dγ

=

(
N − 1

k + 1

)∫ θ+ε

θ−ε

(
γ − θ + ε

2ε

)k+1
1

2ε

(
1− γ − θ + ε

2ε

)N−2−k

dγ

where the step from the first to the second line uses integration by parts (with [(γ − θ+

ε)/(2ε)]k/(2ε) as “first part” and [1 − (γ − θ + ε)/(2ε)]N−1−k) as “second part”). Using

integration by parts for N − 1− k times gives

gN−1(k) ≈
∫ θ+ε

θ−ε

(
γ − θ + ε

2ε

)N−1
1

2ε
dγ =

[
1

N

(
γ − θ + ε

2ε

)N]θ+ε
θ−ε

=
1

N
.

Hence, we have obtained that a player receiving the cutoff signal has (approximately)

uniform beliefs over the number of players that have received a signal lower than him.

Now we want to consider the expected utility difference between revolting and not

revolting of a player receiving cutoff signal θ. If there is no integer m ∈ N such that

θ−ε ≤ m ≤ θ+ε, then this utility difference equals b− (q+ b)bθc/N because a breakout

cannot succeed if less than bθc other prisoners play revolt.19 Given the uniform beliefs

derived above, the probability that less than bθc players play revolt is bθc/N .

If there is an integer m ∈ [θ − ε, θ + ε], then the expected utility difference is

b− (q + b)

[
(θ + ε−m)

2ε

(m+ 1)

N
+

(
1− θ + ε−m

2ε

)
m

N

]
.

Viewed as a function of θ, the expected utility difference is, therefore, flat on intervals

(θ1, θ2) such that bθ1 − εc = bθ2 + εc and strictly decreasing in an ε-ball around each

19Recall that bxc = max{n : n ∈ N and n ≤ x}, i.e. bxc is the highest integer below x.
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integer. As the utility difference is continuous in θ and as it is strictly positive (negative)

for θ < 1 − ε (for θ > N), there is a unique θ at which the expected utility difference

is zero unless the equation b − (q + b)x/N = 0 is solved by an integer x, i.e. unless

bN/(q + b) ∈ N, which we ruled out by assumption.20 As bN/(q + b) ∈ N is clearly not

true for generic parameter values (q, b,N), there exists a unique θ at which the expected

utility difference is zero for generic parameter values. In the limit as ε = 0, we then

have – for generic parameter values – that (i) the expected utility difference is strictly

positive for θ < θ∗ and (ii) the expected utility difference is strictly negative for θ > θ∗.

Note that (in the limit ε → 0) the expected utility difference viewed as a function of θ

is discontinuous at θ∗.

The results of the previous paragraph were derived using the approximation of gN−1(k).

Now we relax the use of the approximation to obtain the statement we want to show.

Take any θ < θ∗. As the approximation of gN−1(k) converges to gN−1(k), one can find an

ε̄(θ) > 0 such that the expected utility difference is strictly positive for θ for all ε ≤ ε̄(θ)

(let ε̄(θ) be the supremum of all such noise level). Similarly, for each θ > θ∗ an ε̄(θ)

can be found such that the expected utility difference at θ is strictly negative for each

ε ≤ ε̄(θ). Note that ε̄(θ) is continuous in θ on [0, θ∗ − δ] for any given δ > 0: Take

ε < ε̄(θ′) as given. Since beliefs – i.e. gN−1(k) – change continuously in θ, the expected

utility difference is positive not only for θ′ but for all θ in some open neighborhood

around θ′ (given ε). Consequently, ε < ε̄(θ) for every θ in this open neighborhood. A

similar argument shows that ε̄(θ) is continuous on [θ∗ + δ,N ].

For a given δ > 0, let ε̄ = min{1/2,minθ∈[0,θ∗−δ]∪[θ∗+δ,N ] ε̄(θ)}. Note that minθ∈[0,θ∗−δ]∪[θ∗+δ,N ] ε̄(θ)

exists and is strictly greater than zero as it is the minimum over a compact set of an

everywhere positive and continuous function. Since revolting is a dominant strategy for

signals below 1/2 (given that ε < 1/2) and not revolting is dominant for signals above

N − 1/2 (given that ε < 1/2), the expected utility difference is automatically positive

(negative) for signals below zero (above N). This concludes the proof of the second step.

For any given δ > 0, there is an ε̄ > 0 such that a player with signal below

θ∗ − δ (above θ∗ + δ) plays revolt (not revolt) for all ε ≤ ε̄ in any equilibrium.

Hence, each prisoner follows a cutoff strategy with cutoff θ∗ in the limit as

ε → 0. We use the ε̄ determined in step 2. Take an arbitrary equilibrium. Denote

by θ1 the infimum of all signals for which some prisoner does not play revolt for sure

in this equilibrium. Such a θ1 exists because of the dominance regions, i.e. revolting

(not revolting) is a dominant action for a signal below 1− ε̄ (above N − 1 + ε̄). Then a

prisoner receiving any signal below θ1 should prefer revolting (expected utility difference

weakly positive) while there are signals above θ1 but arbitrarily close to θ1 where the

prisoner prefers not revolting (expected utility difference weakly negative). We will now

20In this case, the expected utility would be zero on one of the flat parts.
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show that θ1 ≥ θ∗ − δ: Change all other players strategies such that every player does

not revolt if and only if he receives a signal above θ1. By the first step (supermodularity)

and the definition of θ1, this will make revolting less attractive (decrease the expected

utility difference). Hence, a player receiving signal θ1 will (given that all players use a

cutoff strategy with cutoff θ1) prefer not revolting to revolting. Therefore, by the second

step, θ1 ≥ θ∗ − δ.
Similarly, let θ2 be the supremum of all signals such that some player plays revolt

(with non-zero probability), i.e. for all signals above θ2 all players prefer not revolting

but for some signals below and arbitrary close to θ2 player i prefers revolting and change

the strategies of all other players to cutoff strategies with cutoff θ2. Player i will then

prefer revolting when receiving signal θ2 (first step). The second step then implies that

θ2 ≤ θ∗ + δ.

In the limit as δ, ε→ 0, we clearly get θ1 = θ2 = θ∗.

Proofs and limit results: Panopticon

After the proofs of the results in the main text, we derive another limit result (lemma

5) that we will use when comparing the different models.

Proof of lemma 2. We start with the first part of the lemma. As a first step, we

show a weaker result: The support of the warden can consist of at most three elements.

Denote the mode of G by γm (for a given p).21 The binomial distribution G has the

property that G is convex on {0, . . . , γm} and G is concave on {γm, . . . , N}. Therefore,

the maximization problem of the warden over the domain {0, . . . , γm} is convex and

consequently only the boundary values 0 and γm can be local maxima (on this restricted

domain). If we take {γm, . . . , N} as domain of the warden’s maximization problem, the

problem is concave and therefore (because γ takes integer values) this problem can have

at most two local maxima γ1 and γ2 such that γ2 = γ1 + 1 (clearly, it could have only

one local maximizer as well in which case we are already done). This implies that (2.1)

has (at most) three local maxima: one at γ0 = 0, γ1 weakly above γm and possibly

γ2 = γ1 + 1. Therefore, f ’s support will contain at most three elements.

Next we will show that the case where the warden is indifferent between γ0 = 0,

γ1 ≥ γm and γ2 = γ1 + 1 is impossible. To see this, note that the fact that the warden

is indifferent between γ1 and γ1 + 1 implies that g(γ1 + 1) = 1/B. The warden is

indifferent between γ1 and γ0 if and only if (G(γ1)−G(0))/γ = 1/B. This is equivalent

to saying that the average g(γ) for γ ∈ {1, . . . , γ1} equals 1/B. Since γ2 − 1 ≥ γm and

as g(γ2) = 1/B, we know that g(γ) < 1/B for all γ > γ2 (because g is strictly decreasing

above the mode). Since
∑N

γ=0 g(γ) = 1 ≥ (N + 1)/B by assumption 1 (i.e. the average

g(γ) is at least 1/B), this implies that g(0) ≥ 1/B. But then the single peakedness of

21In the non-generic case that G has two modes, let γm be the smaller one.
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g implies that g(γ) > 1/B for all γ ∈ {1, . . . , γ1} (recall that g(γ1 + 1) = 1/B) which

contradicts our earlier result that the average g(γ) for γ ∈ {1, . . . , γ1} is at most 1/B.22

Last we reuse the argument of the previous paragraph to show that there cannot be

an equilibrium in which the warden mixes between γ0 = 0 and γ1 > 1. Suppose there

was such an equilibrium. Since the warden prefers γ1 to γ1 +1, we must have g(γ1 +1) ≤
1/B.23 As γ1 has to be at least as high as the mode γm, we know that g(γ) ≤ g(γ1+1) for

all γ ≥ γ1 +1. The warden prefers γ1 to γ1−1 which implies g(γ1) ≥ 1/B. Furthermore,

the warden has to be indifferent between γ0 and γ1 which implies that the average g(γ) for

γ ∈ {1, . . . , γ1} equals 1/B. As
∑N

γ=0 g(γ) = 1 ≥ (N+1)/B, we obtain that g(0) ≥ 1/B.

But the single peakedness of g and the fact that g(γ1) ≥ 1/B would then imply that the

average g(γ) for γ ∈ {1, . . . , γ1} is strictly above 1/B contradicting that the warden is

indifferent between γ0 and γ1. Taking the last three paragraphs together, the warden’s

equilibrium support can consist of at most two elements and these two elements have to

be adjacent.

Finally, we turn to the second part of the lemma. Note that π(γ1) = π(γ1 + 1) holds

iff

g(γ1 + 1) = 1/B.

This equation (viewed as an equation in p which indirectly determines g) has a solution

p < (γ1 + 1)/N : To see this note that g(γ1 + 1) =
(

N
γ1+1

)
pγ1+1(1 − p)N−γ1−1 viewed

as a function of p is 0 for p = 0 and single peaked with its maximum at p = (γ1 +

1)/N . Furthermore, g(γ1 + 1) is continuous in p. Hence, it is sufficient to show that

g(γ1 + 1)|p=(γ1+1)/N > 1/(N + 1) as 1/(N + 1) ≥ 1/B by assumption 1. Note that for

p = (γ1 + 1)/N , γ1 + 1 is the mode and therefore the maximum of g (viewed as function

over γ). If g(γ1 + 1)|p=(γ1+1)/N ≤ 1/(N + 1), then g(γ) ≤ 1/(N + 1) for all γ (with

strict inequality for some) which contradicts that g is a probability mass function (it

cannot sum to 1!). Hence, g(γ1 + 1)|p=(γ1+1)/N > 1/(N + 1) which proves that there is a

p < (γ1 + 1)/N such that g(γ1 + 1) = 1/B.

The fact that p < (γ1 + 1)/N implies that γ1 + 1 will be above the mode. As π is

concave on {γm, . . . , N}, g(γ1 +1) = 1/B implies that γ1 and γ1 +1 yield a higher warden

payoff than any other γ weakly above the mode. Since π is convex on {0, . . . , γm}, it

follows that γ1 and γ1 + 1 are global maximizer of π iff π(0) ≤ π(γ1 + 1). This last

inequality can be written as

G(γ1 + 1)−G(0)

γ1 + 1
≥ 1

B
(2.6)

22This last argument can be easily extended using inequalities to show that whenever there are γ1

and γ2 = γ1 + 1 forming a local maximum of the warden’s profit this local maximum must be the global
maximum; i.e. is preferred to γ0 = 0.

23For γ1 = N , this step can be skipped and the rest of the argument works analogously.
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(where G is the cumulated binomial distribution for the p < (γ1+1)/N solving g(γ1+1) =

1/B). The same argument as above shows that (2.6) holds: Suppose it did not. Then

the average g(γ) for γ ∈ {1, . . . , γ1 + 1} would be strictly less than 1/B and as γ1 + 1

is above the mode and g(γ1 + 1) = 1/B, the same holds for γ > γ1 + 1. Using the

assumption B ≥ N + 1 and the fact that g(γ) has to sum to 1 over all γ ∈ {0, . . . , N},
it follows that g(0) ≥ 1/B. But then the single peakedness of g and g(γ1 + 1) = 1/B

contradict that the average g(γ) over {1, . . . , γ1 + 1} is less than 1/B.

Proof of lemma 3. Let γ1 < γ2. We first show that the equilibrium revolting

probability p is lower in equilibrium 1. Suppose otherwise, i.e. suppose p1 > p2. As

the warden prefers γ2 + 1 over γ1 + 1 given p2, we have Gp2(γ2 + 1) − Gp2(γ1 + 1) ≥
(γ2− γ1)/B where Gp2 is the binomial cdf under p2. This last inequality is equivalent to∑γ2+1

γ=γ1+2 g
p2(γ)− (γ2−γ1)/B ≥ 0. Note that γ1 +1 is strictly above the mode of gp2 : We

know that γ1 + 1 is above the mode of gp1 and as p1 > p2 the mode of gp2 is lower than

the mode of gp1 . Similarly, any γ ≥ γ1 + 1 is strictly above the mode of any binomial

distribution gp with p ∈ [p2, p1]. This implies that
∑γ2+1

γ=γ1+2 g
p(γ)− (γ2−γ1)/B is strictly

increasing in p for p ∈ [p2, p1] and therefore p1 > p2 and
∑γ2+1

γ=γ1+2 g
p2(γ)−(γ2−γ1)/B ≥ 0

imply that
∑γ2+1

γ=γ1+2 g
p1(γ)− (γ2 − γ1)/B > 0. But this is equivalent to saying that the

warden strictly prefers γ2 +1 over γ1 +1 under p1 contradicting that γ1 +1 is the warden’s

equilibrium choice. Hence, p1 > p2 cannot hold and we have p2 ≥ p1 whenever γ2 > γ1.

In fact, p2 > p1 as otherwise the warden would have to be indifferent between at least

three guard (γ1, γ1 + 1, γ2 and γ2 + 1) levels above the mode which is impossible by the

concavity of G on {γm, . . . , N}.
Given that p2 > p1, G2 first order stochastically dominates G1. Therefore, the war-

den’s payoff −(1−G(γ))B − γ in equilibrium 1 is higher than his payoff in equilibrium

2 (i.e. if he played γ2 under p1, he would have a higher payoff than in equilibrium 2 and

he can do even better by playing γ1).

Proof of lemma 4. Denote by p(γ) for γ ∈ {0, . . . , N − 1} the value of p for which

the warden’s payoff is maximized by γ and γ + 1. The proof of the previous lemma

showed that p(γ) is strictly increasing in γ. Denote by p̃(γ) the value of p such that

∆(γ) = 0. Clearly, p̃ is strictly increasing as well.

Now let there be a semi-mixed equilibrium at γ′. This implies that the p̃(γ′) is

between p(γ′ − 1) and p(γ′). If p̃(γ′ − 1) is below p(γ′ − 1), then there is a completely

mixed equilibrium where the warden mixes between γ′−1 and γ′ which leads to a higher

payoff for the warden than the γ′ equilibrium as the probability of revolting is p(γ′ − 1)

in the mixed equilibrium which is lower than in the semi-mixed equilibrium. Therefore,

let’s proceed by supposing that p̃(γ′ − 1) is above p(γ′ − 1). This implies that p̃(γ′ − 1)

is also above p(γ′− 2).24 If p̃(γ′− 2) is below p(γ′− 2), then there is a completely mixed

24If p̃(γ′ − 2) does not exist, then the prisoner prefers not revolting to revolting for all values of p
where γ′−2 is weakly above the mode (in particular for p(γ′−2) and p(γ′−3)) and the same argument
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equilibrium where the warden mixes between γ′− 1 and γ′− 2 which gives him a clearly

higher payoff than the γ′ semi-mixed equilibrium. Therefore, let us proceed by assuming

that p̃(γ′ − 2) is above p(γ′ − 2) which implies that p̃(γ′ − 2) is also above p(γ′ − 3).

Iterating further in this way, we finally reach the case where p̃(1) is above p(0). But this

implies that there is an equilibrium where the warden mixes over 0 and 1 and p = p(0):

Since p̃(1) > p(0), ∆(1) < 0 while obviously ∆(0) > 0.

Lemma 5. For sufficiently high b or low q, only the equilibrium in which the warden

mixes over N and N − 1 exists. For sufficiently high B, the equilibrium in which the

warden mixes between 0 and 1 is the only mixed equilibrium.

Proof. As pointed out in the main text, equilibrium p and γ1 are determined si-

multaneously by (2.2) and (2.1) as the warden’s own mixing probability does not play a

role in these conditions. Given these two values, (2.3) will determine the optimal mixing

probability of the warden. This insight shows that b and q will not affect the optimal

γ1 or the equilibrium revolt probability p because these parameters do not play a role in

(2.2) and (2.1). Note that ∆ is linearly increasing in b and linearly decreasing in q. Both

variables are not part of the warden’s maximization problem. Hence, changes in b and q

do not affect the equilibrium mixing probability p for a given support of the warden. This

implies that for b high enough (q low enough) ∆(γ) is positive for all γ ∈ {0, . . . , N −1}.
Hence, only the equilibrium where the warden mixes between N − 1 and N exists if b is

sufficiently high (or q sufficiently low).

The payoff of the warden when using N guards is −N while his payoff when using

γ < N guards is −B(1 − G(γ)) − γ. In any mixed equilibrium, the warden has to

play an action γ < N with positive probability and therefore he must prefer this action

(weakly) to the action γ = N . For B →∞, this can only be true if limB→∞p = 0. Put

differently, the equilibrium mixing probability of the prisoner p in a mixed equilibrium

becomes arbitrarily small as B increases. Note that very small p imply high GN−1(γ−1)

for γ ≥ 1. Consequently, ∆(γ) is negative for sufficiently low p for all γ ≥ 1. As

a mixed equilibrium in which the warden mixes over γ1 and γ1 + 1 can only exist if

∆(γ1) > 0 > ∆(γ1 + 1), it follows that for sufficiently high B the mixed equilibrium in

which the warden mixes over 0 and 1 is the only mixed equilibrium that exists.

Proofs model comparison

Proof of theorem 1. We will first show that an equilibrium in which the warden

mixes over 0 and 1 exists in the panopticon for N sufficiently high. Second, we will derive

a lower bound on the warden payoff in the panopticon (for this 0-1 mixed equilibrium)

and show that it is above the warden payoff in the transparency model. Last we will

as follows still applies.
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show uniqueness of the equilibrium in the panopticon for N sufficiently high. The other

results in the theorem appear as intermediate results of the uniqueness proof.

It will be convenient to denote B = α(N + 1) for some α ≥ 1 which can be done by

assumption 1. In a mixed equilibrium where the warden mixes over 0 and 1, the riot

probability p is determined by the warden’s indifference condition 1 = BNp(1− p)N−1.

As pointed out in the proof of lemma 2, this p is below 1/N . The first and main step

in establishing existence of the mixed equilibrium with γ1 = 0 (for large N) is to show

that p < 1/N2. By B = α(N + 1) with α ≥ 1, the indifference condition can be written

as p(1 − p)N−1 − 1/(α(N2 + N) = 0. Note that the left hand side of this equation is

increasing in p by p < 1/N . To show p < 1/N2, it is therefore sufficient to show that the

left hand side is greater than 0 for p = 1/N2. This is (after multiplying through by N2)

equivalent to showing that (
1− 1

N2

)N−1

>
1

α
(
1 + 1

N

)
which can be rewritten as(

1− 1

N2

)N
>

1− 1/N2

α
(
1 + 1

N

) =
N2 − 1

αN(N + 1)
=

1− 1/N

α
.

This inequality holds true as (1− 1/N2)
N

= 1−1/N+
∑N

i=2

(
N
i

)
(−1/N2)i and

∑N
i=2

(
N
i

)
(−1/N2)i >

0 because each positive term in the sum is higher than the immediately following nega-

tive term (recall that
(
N
i+1

)
≤
(
N
i

)
N). Given α ≥ 1, the inequality above therefore holds

for all N which implies p < 1/N2 (where p is the revolt probability making the warden

indifferent between the optimal guard levels 0 and 1).

To show that the mixed equilibrium with mixing over 0 and 1 exists, we have to

establish that ∆(1) < 0. Given p < 1/N2, GN−1(0) = (1− p)N−1 > (1− 1/N2)N−1. As

limN→∞(1− 1/N2)N−1 = 1, this implies that GN−1(0)→ 1 as N →∞.25 Consequently,

∆(1) < 0 for N sufficiently high; i.e. the 0-1 mixed equilibrium exists. Lemma 3

establishes that this is the warden optimal equilibrium in the panopticon.

The warden’s payoff in the 0-1 mixed equilibrium is −B(1−(1−p)N) = −α(N+1)(1−
(1−p)N) > −α(N+1)(1−(1−1/N2)N). We now show that the latter term converges to

−α as N gets large: This is equivalent to showing that lim
N→∞

N − (N + 1)
(
N2−1
N2

)N
= 0.

The term in the limit can be written as

N2N+1 − (N + 1)(N2 − 1)N

N2N
.

25Just to be precise, the limit is 1 as (1 − 1/N2)N−1 = 1 − N/N2 +
(
N
2

)
1/N4 − . . . where all terms

but the first approach 0 as N grows large.
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Using the binomial expansion and making use of the fact that
(
N
1

)
= N , we can see that

this is
N2N+1 −N2N+1 −N2N +N2N +N2N−1 − . . .

N2N

where the first four terms cancel each other out and the remaining expression only

contains powers of N smaller than 2N in the numerator, so that the expression goes to

zero as N gets large. Therefore, limN→∞(N + 1)(1− (1− 1/N2)N) = 1 and the warden’s

payoff is bounded below by −α in the warden 0-1 mixed equilibrium for N sufficiently

large. As the warden’s payoff is −θ∗ = −dNb/(q + b)e in the transparency model, the

warden has a higher payoff in the panopticon for N high enough.26

Finally, we show uniqueness of the mixed equilibrium with γ1 = 0 in the panopticon

(for large N). To do so, we need two intermediate results that are stated as lemmas below

(lemma 6 and 7). To start with, define an equilibrium candidate as a (p, γ) such that

the warden’s indifference condition holds, that is g(γ + 1) = 1
α(N+1)

, and p < (γ + 1)/N .

An equilibrium candidate leads to an equilibrium if ∆(γ) ≥ 0 and ∆(γ + 1) < 0, that

is if GN−1(γ − 1) ≤ b/(q + b) ≤ GN−1(γ). We will show that for large N , there are no

equilibrium candidates with γ ≥ 1 that satisfy the equilibrium condition GN−1(γ − 1) ≤
b/(q + b).

In the following, we make use of known results on the shape and the tail bounds of

the binomial distribution. Recall that gN(γ) =
(
N
γ

)
pγ(1 − p)N−γ, i.e. the probability

mass of the binomial distribution B(N, p) at γ. GN is the corresponding cumulative

distribution function; the definitions of gN−1 and GN−1 are analogous.

Lemma 6. The probability 1 − GN(γ) that γ + 1 or more prisoners revolt in any equi-

librium candidate (and therefore the probability of a breakout) converges to zero as N

grows large.

Proof. Using the Chernoff bound (Chernoff, 1952), we get

1−GN(γ) ≤
(

N

γ + 1

)γ+1(
N

N − γ − 1

)N−γ−1

pγ+1(1− p)N−γ−1. (2.7)

For any equilibrium candidate in which the warden mixes over γ and γ+1, it is therefore

1−GN(γ) ≤
(

N

γ + 1

)γ+1(
N

N − γ − 1

)N−γ−1
1

α(N + 1)
(
N
γ+1

)
where we plug the warden’s indifference condition into (2.7). It is convenient to define

26Note that the result does not depend on using a fixed α. More precisely, take a sequence of N and
BN = αN (N + 1) with αN ≥ 1 for all N . The previous steps above still apply (for each given N) and
the warden will prefer the no information 0-1 mixed equilibrium to −θ∗ for N high enough as long as
the sequence of αN is bounded by some ᾱ.

83



Chapter 2. How Jeremy Bentham would defend against coordinated attacks

m = γ + 1 as this allows to write the previous expression as

1−GN(γ) ≤ NN(
N
m

)
mm(N −m)N−mα(N + 1)

. (2.8)

We are going to show that the RHS term converges to zero as N grows large. We have

to show this for any m ∈ {1, . . . , N} and in particular m might depend on N . That

is, we want to show that the expression above converges to zero for any m(N). To do

so, let m∗(N) be the m maximizing the expression above. We show that the expression

converges to zero even if we plug in m = m∗(N).

Note that the term in (2.8) is maximal (for a given N) if m minimizes
(
N
m

)
(m/N)m(1−

m/N)N−m. Note that
(
N
m

)
(m/N)m(1−m/N)N−m is the probability mass of a binomial

distribution with probability p = m/N evaluated at its mode m. Hence, to minimize(
N
m

)
(m/N)m(1 − m/N)N−m we have to find the probability p = m/N for which the

modal density of a binomial distribution is minimized. This is the case for p = 1/2,

i.e. m = N/2.27 Consequently, ∀m(N) :
(
N
m

)
mm(N − m)N−m ≤

(
N
N
2

) (
N
2

)N
and (2.8)

becomes

1−GN(γ) ≤ NN(
N
N/2

)
(N/2)Nα(N + 1)

=
2N(

N
N/2

)
α(N + 1)

. (2.9)

Since the central binomial coefficient
(
N
N/2

)
is bounded from below by 2N/

√
2N (see

the supplementary material for an elementary proof of this), we obtain that 1 − G(γ)

converges to zero in any equilibrium candidate.

We will now use this result to show that not only the probability of successful revolts

converges to zero, but also the probability for each prisoner that a revolt will be successful

if he decides to revolt. This is given by 1−GN−1(γ−1), i.e. the probability that at least

γ other prisoners revolt (so that the remaining prisoner can push the number to γ + 1

or higher by revolting himself).

Lemma 7. In any equilibrium candidate with γ ≥ 1, 1−GN−1(γ − 1) converges to zero

as N grows large.

Proof. Note that 1−GN−1(γ − 1) = 1−GN−1(γ) + gN−1(γ) ≤ 1−G(γ) + gN−1(γ).

From lemma 6 we know that 1 − G(γ) converges to zero in any equilibrium candidate.

If gN−1(γ) converges to zero as N grows large, we are therefore already done. For the

remainder of the proof let us therefore assume that gN−1(γ) does not converge to zero.

27If N is odd, both m = bN/2c and m = dN/2e will lead to minimal modal density. We concentrate
on the case where N is even for notational convenience. Obviously, our results also hold for odd N .
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We will show directly that 1−GN−1(γ − 1) converges to zero for large enough N in this

case.

By the warden’s indifference condition, gN(γ + 1) = 1
α(N+1)

, and we can write

gN−1(γ) = gN(γ + 1)
γ + 1

pN
=

γ + 1

αp(N2 +N)
≤ γ + 1

αpN2
.

If gN−1(γ) does not converge to zero, neither does (γ + 1)/(αpN2) and therefore there

is a sequence of tuples (N, p(N), γ(N)) which are strictly increasing in N such that

(i) (p(N), γ(N)) is an equilibrium candidate (with the respective N) for each tuple

(N, p(N), γ(N)) and (ii) γ(N) + 1 ≥ µp(N)N2 for each tuple in the sequence and some

µ > 0.

Rearranging the latter condition gives

γ(N)−p(N)N+p(N) ≥ µp(N)N2−p(N)N+p(N)−1 = p(N)N5/4∗
(
µN3/4 − 1

N1/4

)
+p(N)−1.

(2.10)

We will look at two cases. First, p(N)N5/4 does not converge to zero. Then the

right hand side of (2.10) is weakly larger than µ̃N3/4 for some µ̃ > 0 and N sufficiently

large. Therefore, (γ(N)−p(N)N+p(N))2

N−1
≥ (µ̃N3/4)2

N−1
> µ̃2

√
N for large N which implies that

(γ(N)−p(N)N+p(N))2

N−1
will grow without bound as N gets large. Hoeffding’s inequality (Ho-

effding, 1963, Thm. 1) gives the following upper bound for 1−GN−1(γ − 1):

1−GN−1(γ − 1) ≤ e−
2(γ−p(N−1))2

N−1 .

As we have just shown, this upper bound tends to zero as N grows large. Consequently,

we have shown directly that 1 − GN−1(γ − 1) converges to zero. It remains to check

the second case in which p(N)N5/4 converges to zero. If p(N)N5/4 converges to zero,

then p(N) ≤ 1/N5/4 for sufficiently high N . Consequently, GN−1(0) = (1 − p(N))N ≥
(1− 1/N5/4)N and the latter converges to 1. As GN−1(0) ≤ GN−1(γ − 1) for γ ≥ 1, this

implies that 1−GN−1(γ − 1) converges to zero.

Lemma 7 implies that GN−1(γ − 1) converges to one for any equilibrium candidate

with γ ≥ 1 as N gets large. Put differently, for any ε > 0, we can find an N̄(ε) such

that GN−1(γ1) > 1 − ε for all N ≥ N̄(ε) and all equilibrium candidates with γ ≥ 1. In

particular, we can find such an N̄(ε∗) for ε∗ = 1 − b/(q + b). For N ≥ N̄(ε∗), we have

GN−1(γ−1) > b/(q+b) for all equilibrium candidates with γ ≥ 1. Hence, no equilibrium

candidate with γ ≥ 1 satisfies the equilibrium condition GN−1(γ − 1) ≤ b/(q + b) for N

sufficiently high. This means that the equilibrium in which the warden mixes over zero

and one is the unique equilibrium for N sufficiently high.

Proof of proposition 1. Lemma 5 establishes that for B high enough the only

mixed equilibrium is the one where the warden mixes over 0 and 1. The proof of the
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lemma also establishes that ∆(γ) < 0 for γ ≥ 1 if B is sufficiently high. Consequently,

also no semi-mixed equilibrium exists for B high enough. Let B̂ be such that only the

mixed equilibrium in which the warden mixes over 0 and 1 exists for any B ≥ B̂. For

the rest of the proof, consider only B ≥ B̂.

In this mixed equilibrium the warden is indifferent between 0 and 1 which means

Bg(1) = 1 or equivalently N(1−p)N−1p = 1/B. Therefore, limB→∞ p(B) = 0 where p(B)

is the prisoners’ equilibrium probability of playing r when the warden’s utility is B. Since

the warden is indifferent between playing 0 and 1 in equilibrium, his equilibrium payoff

equals π(0) = −(1− (1− p)N)B. Plugging in the indifference condition N(1− p)N−1p =

1/B derived above yields the warden’s equilibrium payoff

π∗ =
(1− p)N − 1

N(1− p)N−1p
.

Applying L’Hôpital’s rule, gives limp→0 π
∗ = −1. As we established above, p approaches

0 when B →∞. Consequently, the warden’s payoff in the mixed equilibrium approaches

−1 as B →∞. Furthermore,

∂π∗

∂p
=
−N2(1− p)2N−2p− ((1− p)N − 1)(−N(N − 1)(1− p)N−2p+N(1− p)N−1)

N2(1− p)2N−2p2

=
1−Np− (1− p)N

N(1− p)Np2
.

Using L’Hôpital’s rule, gives ∂π∗/∂p|p=0 = −(N − 1)/2 < 0. Hence, the warden’s payoff

approaches −1 from below as B →∞ and the warden’s payoff in the equilibrium where

he mixes over 0 and 1 is bounded from above by −1. This proves the proposition because

in the transparency model the warden’s equilibrium payoff is −θ∗ for any value of B.

Proof of proposition 2. It was shown in lemma 5 that for b/q high enough, the

unique equilibrium in the panopticon model is a mixed equilibrium in which the warden

mixes over N−1 and N and his payoff is −N . A similar result holds for the transparency

model: θ∗ = N if and only if b/(q + b) > (N − 1)/N or equivalently if (b/q) > N − 1.

Clearly, θ∗ = N implies that the warden’s equilibrium payoff is −N . This establishes

the result that for b/q high enough all models lead to a warden payoff of −N .

Now consider the panopticon. In an equilibrium in which the warden mixes over

N −1 and N , he has to be indifferent between these two options which implies 1 = BpN ,

i.e. the mixing probability of the prisoner has to be p = (1/B)1/N in such an equilibrium.

To have such an equilibrium, the condition ∆(N − 1) > 0 has to be satisfied. Given

p = (1/B)1/N , this condition becomes −q
(
1− (1/B)(N−1)/N

)
+ b(1/B)(N−1)/N > 0. This

can be rewritten as b/q > B(N−1)/N − 1.

If B(N−1)/N − 1 > b/q > N − 1, then the warden’s payoff in the transparency model

is −N . In the panopticon, however, the equilibrium in which the warden mixes between
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N and N − 1 does not exist which means the warden plays N with zero probability in

any equilibrium of this game. As the equilibrium guard levels are then strictly preferred

to a guard level of N (which would guarantee payoff −N), it follows that the warden’s

payoff in the no information game is strictly larger than −N .

If B(N−1)/N − 1 < b/q < N − 1, the no information game has an equilibrium in

which the warden mixes between N − 1 and N and therefore his expected payoff in

this equilibrium is −N . In the transparency model, θ∗ < N and therefore the warden’s

equilibrium payoff is strictly above −N .
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6 Appendix: No asymmetric equilibria in the panop-

ticon

When analyzing the panopticon model, we restricted attention to symmetric equilibria,

i.e. equilibria in which all prisoners revolt with the same probability p. We will now

show that this is without loss of generality, i.e. there are no equilibria in which prisoners

revolt with prisoner dependent probabilities pi and pi 6= pj for some prisoners i and j.

In the main text, we already argued that equilibria cannot be pure, i.e. there has to

be at least one prisoner who uses a mixed strategy pi with 0 < pi < 1. The argument is

simple: If all prisoners used a pure strategy in equilibrium, the warden would be certain

of the number of revolting prisoners, say k. In this case, the warden best responds by

setting γ = k which prevents a breakout for sure while any lower guard level would lead

to a breakout with probability 1. If k > 0, the revolting prisoners could profitably deviate

to not revolting. If, however, γ = k = 0, then each prisoner could profitably deviate

by revolting. Since at least one prisoner has a profitable deviation, we can conclude

that there is no equilibrium in which all prisoners use pure strategies. Without loss of

generality, let us therefore assume that prisoner 1 uses a completely mixed strategy, i.e.

0 < p1 < 1.

First, we will show the following: Take any equilibrium in the panopticon model. If

0 < pi ≤ pj < 1 holds for two prisoners i and j, then pi = pj. To see this, note that

both i and j have to be indifferent between revolting and not revolting because both use

a completely mixed strategy. If pj > pi and j is indifferent between revolting and not

revolting, then i would strictly prefer to revolt: For any γ > 0, the probability that at

least bγc other prisoners revolt is higher for i than for j if pj > pi. Since j was indifferent,

i will then strictly prefer to revolt. This contradicts that i is indifferent (because he plays

a completely mixed strategy) and we must therefore have pi = pj.

Note that the previous argument actually says that if two players are indifferent

between revolting and not revolting, then they must play revolt with the same probability.

This is a bit stronger than what we said before because it rules out the possibility that

some prisoner plays revolt with probability 0 or 1 while being indifferent between the

two actions. (Recall that prisoner 1 uses a completely mixed strategy.)

What remains to be shown is that no prisoner strictly prefers one of the two actions

in equilibrium. Suppose to the contrary that prisoner j strictly preferred to revolt and

therefore plays revolt with probability 1 in equilibrium. Now consider prisoner 1: Since

p1 < pj = 1, the probability that at least bγc other prisoners revolt is higher from

prisoner 1’s perspective than from prisoner j’s perspective. Therefore, prisoner 1 strictly

prefers to revolt given that prisoner j strictly prefers to revolt. This contradicts that

prisoner 1 plays a completely mixed strategy in equilibrium. Consequently, there cannot
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be a prisoner j who strictly prefers to revolt.

An analogous argument yields that there is no prisoner who strictly prefers not revolt.

This completes the proof.

7 Appendix: Uncertain punishment

Here we consider a variation of the model in which a prisoner’s payoff when revolting

unsuccessfully is −q− ργ/N < 0 where q ≥ 0 is an effort cost and ρ ≥ 0 is a punishment

that happens with probability γ/N . It will become apparent that the the specific linear

form chosen here is irrelevant for the analysis, i.e. we could just as well use −q−h(γ,N)

where h ≥ 0 increases in its first and decreases in its second argument. Apart from this

change in payoff, the model is the same as in the main text.

Note that the arguments in the benchmark model go through without change.

In the transparency model, lemma 1 holds with a slightly redefined threshold θ∗.

Let θ∗ be the unique θ such that

� either θ 6∈ N and

b−
(
q + b+

θ

N
ρ

)
bθc
N

� or θ ∈ N and

0 ≥ b−
(
q + b+

θ

N
ρ

)
θ

N

0 ≤ b−
(
q + b+

θ

N
ρ

)
θ − 1

N
.

The proof of lemma 1 has to be adjusted only at very few instances: In the first step,

∆(γ) = b−
(
q + b+

θ

N
ρ

)
GN−1(γ − 1)

and everything goes through accordingly.

In the second step, the derivation of the approximation and the resulting Laplacian

beliefs remains unaffected. The expected utility difference between rioting and not rioting

if there does not exist an m ∈ N such that θ − ε ≤ m ≤ θ + ε will now be

b−
(
q + b+

θ

N
ρ

)
bθc
N
.

If such an m exists, the expected utility difference is

b−
(
q + b+

(
m

2
+
θ + ε

2

)
ρ

N

)
θ + ε−m

2ε

m+ 1

N
−
(
q + b+

(
m

2
+
θ − ε

2

)
ρ

N

)(
1− θ + ε−m

2ε

)
m

N
.
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Note that this expected utility difference is strictly decreasing in θ if ρ > 0. As rioting

is dominant for θ < 1 − ε and not rioting is dominant for θ > N + ε, there is a unique

θ at which the expected utility difference is zero. In the limit ε→ 0, we obtain that the

expected utility difference is strictly positive for every θ < θ∗ and strictly negative for

every θ > θ∗. Given this, the remaining parts of the proof of lemma 1 apply without

change.

In the panopticon model, the indifference condition of the prisoner (2.3) has to be

rewritten as

E
[
b−GN−1(γ − 1)

(
b+ q + ρ

γ

N

)]
= 0.

Lemmas 2 and 3 remain valid because they use only the warden’s problem which was not

changed. The proofs of lemmas 5 and 4 use the prisoners’ indifference condition without

using the specific form of the prisoner payoff. Consequently, the proofs go through

without change and the lemmas remain valid.

The most interesting comparison of the models is the result for large N (theorem 1).

The proof of this result does again not use the specific form of the prisoners’ indifference

condition and consequently goes through without change. Hence, all the results for large

N mentioned in the main text remain valid.

8 Appendix: Stochastic breakout

The probability of a breakout was 1 in the main text whenever the number of revolting

prisoners exceeded γ and zero otherwise. It is straightforward to extend the model to a

framework in which the probability of a breakout is stochastic. In this section, we change

the setup in the following way: If m of the N prisoners revolt and the guard level is γ,

then the probability of a breakout is

β1m>γ + (1− β)
m

N

where β ∈ (0, 1) and 1 is the indicator function.28 The model of the main text emerges

for β = 1. In this setup, it is necessary to adjust assumption 1 which implies that the

warden would prevent a breakout if he knew that all prisoners revolt with probability

one. In the setup with stochastic breakouts, the assumption is βB ≥ N + 1. We will

need additional parameter assumptions in order to ensure that prisoners have dominant

28In our prison example, one could think of this story: Fleeing prisoners run into the guards with
probability β. In this case, they succeed only if they outnumber the guards. If prisoners find a way out
where there are no guards (probability 1 − β), they have to overcome obstacles like walls/locks/fences
etc. and the more prisoners participate, the more likely it is that they will manage.
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strategies if the warden chose zero or N guards. That is, we make the assumption

β >
b

q + b
> (1− β)

N − 1

N

which (after rearrangement) states that it is dominant to revolt for a given prisoner if

γ = 0 and it is dominant not to revolt if γ = N .

In the transparency model, θ∗ changes to

θ∗ =

⌈
N

β

(
b

q + b
− 1− β

2

)⌉
.

With this θ∗, lemma 1 applies to the new setup. To see this, note that the first

part of the proof (strategic complementarity) still goes through. In the second part, the

utility difference between revolting and not revolting if there is no integer k ∈ N such

that θε ≤ k ≤ θ + ε is now b − (q + b)(βbθc/N + (1 − β)(N − 1)/(2N)). If there is an

integer k ∈ N such that θε ≤ k ≤ θ + ε, then the expected utility difference becomes

b− (q + b)β

[
(θ + ε− k)

2ε

(k + 1)

N
+

(
1− θ + ε− k

2ε

)
k

N

]
− (q + b)(1− β)

N − 1

2N
.

Everything else in the proof of lemma 1 goes through without change. Note that by the

parameter assumption made above θ∗ is still linearly increasing in N .

In the panopticon, the warden’s payoff maximization (2.1) becomes

max
γ∈{0,1,...,N}

−(1−G(γ))βB − γ − β
∑N−1

k=0 kg(k)

N
B.

Note that this maximization problem differs from the one in the main text only by a

term which is constant in γ. Hence, the warden’s maximization problem does essentially

not change. The prisoners’ indifference condition (2.3) has to be rewritten as

Eγ

[
b−

(
βGN−1(γ − 1) + (1− β) ∗

(
1− 1 +

∑N−1
k=0 kgN−1(k)

N

))
(b+ q)

]
= 0.

Note that the term in brackets is still decreasing in γ and increasing in p. Lemmas

2 and 3 remain valid because they use only the warden’s problem which is essentially

unchanged (adding a constant does not affect the proofs). The proofs of lemmas 5 and

4 use the prisoners’ indifference condition without using the specific form of the prisoner

payoff. Consequently, the proofs go through without change and the lemmas remain

valid. It is still true that the mixed equilibrium in which the warden mixes between zero

and one is the unique Nash equilibrium if N is large. The proof of this result was only

based on the warden’s indifference condition which implies that the probability that at
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least one other prisoner revolts converges to zero as N gets large. By the dominance

assumptions (if all other prisoners do not revolt and the warden uses one or more guards,

then not revolting is a best response), this implied that only the equilibrium with mixing

over zero and one guard can exist. As the warden’s indifference condition is unchanged,

the whole proof still goes through.

The payoff comparison between transparency model and panopticon is also unaf-

fected: The payoff of the transparency model is linearly decreasing in N while the

panopticon payoff is still bounded from below. Hence, the panopticon leads to a higher

payoff than the transparency model for large N .

9 Appendix: Heterogenous attackers

In the model of the paper, all “prisoners” are alike in the sense that they share the

same payoff function. A generalization to arbitrarily heterogenous prisoners leads to

an intractable model for two reasons: First, the global game refinement used in the

transparency model is no longer able to deliver a clear cut (and noise independent)

prediction, see Carlsson (1989), Frankel et al. (2003) or Corsetti et al. (2004). Second, the

support of the warden strategy in the panopticon might contain more than two elements

(and his payoff function might have several local optima). While a full generalization is

impossible for these reasons the simple extension below proves to be tractable.

Think of the model’s interpretation in terms of speculators who can attack a currency

peg. Suppose there are K types of attackers who differ in the size of their budget. In

particular, type k ∈ 1, . . . , K has k units of money to speculate with. For simplicity,

assume that a speculator will always either use his complete budget to attack or he

will not attack at all. The benefit of a successful attack is then b ∗ k. The payoff of

not attacking is normalized to zero as in the paper. The payoff from an unsuccessful

attack is interpreted as a transaction cost. We assume that there are scale economies in

speculating. That is, the transaction cost per unit is strictly decreasing in the budget

size. More technically, qk ∈ [qk−1,
k
k−1

qk−1) for k > 1. The proportion of each type

in the population is common knowledge. When we check our result in theorem 1 we

will interpret large N as multiplying the number of type k attackers by a large natural

number. That is, we increase the number of attackers but keep the proportion of each

type in the population fixed.

The main purpose of the extension is to show that the defender prefers the panopticon

to the transparency model ifN is large. For this, it is unnecessary to derive an equilibrium

in the transparency model. It is sufficient to provide an upper bound on the warden’s

expected payoff in any equilibrium of the transparency model and show that – for large

N – this upper bound is below the panopticon payoff. This is exactly what we will do.
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For the transparency model we can derive a weaker version of lemma 1 where NK is the

number of attackers of type K:

Lemma 8. Let ε′ > 0 and NK > 1. Assume that bNK/(q + b) 6∈ N and define

θ∗K =

⌈
bNK

q + b

⌉
.

Then for any δ > 0, there exists an ε̄ > 0 such that for all ε ≤ ε̄, a player of type K

receiving a signal below θ∗K − δ will play r.

The lemma states that type K attackers will attack whenever receiving a signal below

θ∗ − δ where δ can be chosen arbitrarily small. That is, in the limit as ε → 0 type K

players will attack whenever receiving a signal below θ∗K .

The proof of the lemma is equivalent to the proof of lemma 1 with some small

modifications sketched below: Suppose that all types but type K will play n for any

signal they get. If we can show that even under this absurd supposition a type K

attacker will play attack whenever he receives a signal below θ∗K − δ, then – by strategic

complementarity – he will also attack if the other types play any other strategy (and he

receives a signal below θ∗K − δ). If, however, we focus on the case where all types apart

from type K play n for sure, then we basically have the model of the paper where all

relevant attackers are homogenous of type K. The second step of the proof of lemma 1

gives us the following result: Suppose all type Ks follow a cutoff strategy with cutoff θ

while all other types play n for sure for any signal. For a given δ > 0, there exists an ε̄

such that the utility of revolting for an attacker of type K with signal θ is higher than the

utility from not attacking if θ ≤ θ∗K − δ. The proof of this statement is equivalent to the

proof in the main paper. The third part of the proof is analogous and shows that a type

K will attack whenver his signal is below θ∗K − δ. By strategic complementarity this is

also true if the other types choose to attack as well after some signals. But this implies

that the defender has to use currency reserves of at least θ∗K to prevent an attack. As the

defender wants to prevent an attack by assumption 1, the currency reserves will be above

θ∗K in every equilibrium. Note that θ∗K is linearly increasing in NK which implies that

the defenders equilibrium payoff is arbitrarily low for N (and therefore NK) sufficiently

high.

Now turn to the panopticon. Consider first the game where there are only NK

attackers of type K and no attackers of other types. In this case, the analysis of the

paper applies but has to be rescaled by K. For example, the defender will mix only over

multiples of K instead of mixing over integers. If NK is sufficiently large, there will be a

unique equilibrium in which the defender mixes over 0 and K; see theorem 1. Following

the proof of theorem 1, the expected payoff of the defender is bounded from below in

this equilibrium (by −αK). Now add one attacker of type k < K. We claim that for NK
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high enough the best response for this type k is to not attack. To see this note that type

K attackers are indifferent between attacking and not attacking in the equilibrium with

only type Ks. All we have to show is that a type k < K has a lower expected payoff of

attacking than a type K (given the strategies of the type K attackers). This expected

payoff equals (1 − GNK (0))kb − qkGNK (0) while the indifference condition for the type

K attackers is (1 − GNK−1(0))Kb − qKGNK−1(0) = 0. As qK < qkK/k by assumption,

the indifference conditions implies (1 − GNK−1(0))kb − qkGNK−1(0) < 0. The proof of

theorem 1 shows that both GNK (0) and GNK−1(0) converge to 1 as NK grows large.

Therefore, (1 − GNK (0))kb − qkGNK (0) < 0 for NK sufficiently large which means that

indeed type k finds it optimal to not attack. But this implies that in the game with

NK type K and one type k < K there is an equilibrium in which the defender and the

type K attackers behave as in the unique equilibrium in which only type K attackers are

present and the type k attacker does not attack with probability 1 (for NK large enough).

Adding more type k < K attackers (also with different k′ < K) does not change this

result and we therefore get that the panopticon game has the following equilibrium for

N large: defender and type K attackers use the same strategies as in the game in which

only type K attackers were present; all other attackers do not attack with probability 1.

The defender’s expected payoff is the same as in the equilibrium with only NK type K

attackers and is therefore bounded from below. This establishes that defender payoff is

higher in the panopticon than in the transparency model for N sufficiently large.

Note that the central bank will use currency reserves of size K with positive probabil-

ity in the equilibrium of the panopticon model. If some investors have a lot of money, i.e.

K is big, then this implies that the central bank might have substantial reserves in equi-

librium (with positive probability). While this differs somewhat from the model in the

paper the main point that the panopticon leads to a higher payoff than the transparency

model remains valid.

10 Appendix: Example N = 2

To illustrate the results of the paper, we give the solved model for the simple case where

N = 2.

Denoting the expected warden payoff by π(γ), we get for the N = 2 case

π(0) = −(2p+ p2)B

π(1) = −p2B − 1

π(2) = −2.

This implies that π(0) = π(1) iff p = 1/(2B). Given the assumption B ≥ N + 1 = 3,
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π(0) = π(1) > π(2) holds if p = 1/(2B).

Furthermore, π(1) = π(2) iff p =
√

1
B

and B ≥ 3 implies in this case that π(1) =

π(2) > π(0). To determine the equilibrium we will have to check the prisoners’ indiffer-

ence condition. Denoting the utility difference from revolting and not revolting given γ

guards by ∆(γ) we get

∆(0) = b

∆(1) = −q(1− p) + bp

∆(2) = −q.

If ∆(1) < 0 with p = 1/(2B), then there is an equilibrium in which the warden mixes

over 0 and 1 with probability z0,1 = −∆(1)
−∆(1)+∆(0)

= q−b/(2B−1)
q+b

. The inequality ∆(1) < 0 is,

given p = 1/(2B), equivalent to b/q < 2B − 1.

If ∆(1) > 0 with p =
√

1
B

, then there exists an equilibrium in which the warden mixes

over 1 and 2 with probability z1,2 = q
p(b+q)

=
√
B q
q+b

. Then the inequality ∆(1) > 0,

given p =
√

1/B, is b/q >
√
B − 1.

Note that
√

1
B
> 1/(2B) and 2B − 1 >

√
B − 1 by B ≥ N + 1 = 3. This implies the

structure in figure 2.5 for existence of the different equilibria.

b
q√

B − 1 2B − 1

mixed eq mixing over (0,1)

mixed eq mixing over (1,2)

semi mixed eq

Figure 2.5: Equilibria for N=2 case

The warden payoff in the 0,1 mixing equilibrium equals π(1) = −p2B− 1 = − 1
4B
− 1.

The warden payoff in the 1,2 mixing equilibrium equals π(2) = −2.

Last, we look at semi-mixed equilibria, i.e. the warden plays a pure strategy while the

prisoners play completely mixed strategies. Note that the warden cannot play the pure

strategies 0 or 2 in such an equilibrium because the prisoners would then have a dominant

action contradicting that they mix. Hence, we can focus on the equilibrium where the

warden plays γ = 1. Playing γ = 1 is optimal for the warden if p ∈
[
1/(2B),

√
1/B

]
.

The prisoner is willing to mix only if ∆(1) = 0, i.e. if b/q = (1 − p)/p = 1/p− 1. Note

that 1/p − 1 equals 2B − 1 for p = 1/(2B) and 1/p − 1 equals
√
B − 1 for p =

√
1/B.

Consequently, the semi-mixed equilibrium exists if b
q
∈
[√

B − 1, 2B − 1
]
.

The warden payoff in the panopticon were already established above. In particular,

the mixed equilibrium with mixing over zero and one existed if b/q < 2B − 1 and
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the warden payoff in this game was −1/(4B) − 1. For b/q > 2B − 1, only the mixed

equilibrium with mixing over 1 and 2 existed where the warden payoff is -2. In the

transparency model, θ∗ = 1 if b/q < 1 and θ∗ = 2 if b/q > 1. This implies that the

warden payoff is higher in the transparency model than in the panopticon if b/q < 1.

For 1 < b/q < 2B − 1, the warden optimal equilibrium of the panopticon gives the

warden a higher payoff than the transparency model. The worst equilibrium in the

panopticon model gives the warden the same payoff as the transparency model in this

case. If b/q > 2B − 1, all models give payoff −2 to the warden.

Lower bound of the central binomial coefficient – Proof

We will show the equivalent
(

2n
n

)
≥ 22n/(2

√
n) as it is notationally more convenient. The

first step is to see that(
2n

n

)
1

22n
=

1

22n

(2n)!

n!n!

=
1

2n
(2n)!

n! 2nn!

=
1

2n
(2n− 1)(2n− 3)(2n− 5) . . . 1

n!

=
1

2n−1

1

2n

(2n− 1)(2n− 3)(2n− 5) ∗ · · · ∗ 3

(n− 1)(n− 2) ∗ · · · ∗ 1

=
1

2n−1

1

2n

n−1∏
j=1

2j + 1

j

=
1

2n

n−1∏
j=1

(
1 +

1

2j

)
.

The second step is to get a lower bound on the square of the product:

n−1∏
j=1

(
1 +

1

2j

)2

=
n−1∏
j=1

(
1 +

1

j
+

1

4j2

)

≥
n−1∏
j=1

(
1 +

1

j

)
= n.
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Where the last equality can be easily shown by induction.29 Taking the first two steps

together shows that

((
2n

n

)
1

22n

)2

=
1

(2n)2

n−1∏
j=1

(
1 +

1

2j

)2

≥ 1

4n2
n =

1

4n
.

Taking square roots on both sides gives(
2n

n

)
1

22n
≥ 1

2
√
n

which is the desired result.

29Clearly, it holds for n = 2. For higher n, we get
∏n−1
j=1

(
1 + 1

j

)
=
(

1 + 1
n−1

)∏n−2
j=1

(
1 + 1

j

)
=(

1 + 1
n−1

)
(n− 1) = n where the second equality uses the induction hypothesis.
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Chapter 3

Risk Capacity and the Chicken

Game1

Ole Jann

Information asymmetries between firms and lenders mean that a firm would often rather

turn for financing to another firm in the same industry or region, who can more easily

appraise the value of the firm’s assets. This leads to strategic substitutes in risk-taking:

the more risk other firms take, the more attractive it becomes to hoard cash and then

acquire assets in the event of a crisis. I examine the consequences of these strategic sub-

stitutes: There can be an inefficient race to risk between firms, and even if coordination

does not fail fire sales happen in equilibrium. Regulations on the interest rate or asset

prices can make equilibrium unattainable.

1Part of this paper is based on a note that I wrote in Martin Gonzalez Eiras’ course ”Financial
Frictions, Liquidity and the Business Cycle.” I am grateful for comments by Martin Gonzalez Eiras,
Christoph Schottmüller and Peter Norman Sørensen.
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1 Introduction

Economic projects often rely on acquiring outside funding, and outside funding coupled

with limited liability comes with problems of asymmetric information. Financiers have

limited control over what their money is used on, and it could be wasted by the borrowing

firm on projects that benefit the firm’s owners but increase the chance of default.

A possible solution to this principal-agent-problem is to channel financing through

informational insiders who have equity to lose in the process – i.e., instead of lending

to a firm with unknown quality, lending to an insider who then uses his knowledge to

lend to a firm at his own risk, thus making sure that the money eventually goes to a

productive use. This channeling can either occur through indirect lending or through

allowing insiders to actually acquire the assets of failing firms.

But this method comes with a problem at the linkage between insiders and outsiders,

too: The advent of a crisis which requires firms to seek outside funding might also impose

borrowing constraints on those insiders through which funds are channeled. Consider the

following story, in the style of Shleifer and Vishny (1992): Two farmers are in identical

economic positions. Each of them can decide to modernize the farm by using his money

to buy new machinery (with or without taking a loan for the expense), which promises

superior returns in the future. If a crisis hits, however, a modernizing farmer cannot

meet his expenses and needs to sell his land. If the other farmer has also invested in

modernization, they both fail and have to sell at a low price to outside investors. If, on

the other hand, only one of the farmers invested in modernization, the other can use his

own money (and possibly leverage his equity by borrowing more) to buy the liquidated

assets at a high price.

The risk-taking decisions of the farmers are strategic substitutes, as each farmer

prefers to do the opposite of the other. The economy (which consists of the two farms)

has a risk capacity: If both farmers engage in risky modernization, their whole sector

stands to fail painfully in the event of a crisis. But it is also optimal for the economy

to operate at the risk capacity limit: If none of the farmers modernizes, their combined

output will continue to stay low.

There are three theoretical contributions of this paper: First, to establish how the

adverse selection problems of outside financing leads to a risk capacity limit. It is both

individually rational and pareto-optimal for the firms to keep the economy below the risk

capacity limit, but it is worse than the informational first-best. Second, I examine how

the multiple equilibria at the risk capacity limit give rise to a socially inefficient “race

to risk” among firms. Finally, in an economy with many firms, fire sales of assets occur

randomly and despite all firms behaving optimally.

Consider an economy where two firms can each decide to engage in a risky, but

promising project or just to store their money. With some probability, the economy is
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hit by a crisis in which case the project turns either good or bad. Good projects are still

profitable, while bad projects only produce non-transferable returns for their owners. At

the same time, a crisis means that all projects need extra cash to continue.

In a crisis, outside financiers are reluctant to lend such extra cash, since they do not

know whether the firm they are lending to has a good or a bad project. Other firms

in the same economy, however, can verify the quality of a project, so that a firm that

has stored money can buy good projects. Since this possibility exists, firms with good

projects will take it and firms who turn directly to outside investors will automatically

be assumed to have bad projects and will receive no funding. The only funding channel

available is therefore through firms that hoarded cash.

Depending on the liquidation price of good projects, it can be much more attractive

to be the firm taking the risk (and being rewarded if there is no crisis) than being the

firm that hoards cash for the remote possibility of a crisis, even though both firms find

it optimal to stick to their choice. The firms will therefore both want to convince the

other that they will take the risk, and that the other should hoard cash – leading to a

“race to risk” in which the firms dispose of cash and which can leave all firms worse off.

Outside investors, who may lend to inside firms so that the firms can buy projects,

are worried that the firm might acquire lots of bad projects and reap short-term, non-

transferable benefits from those, and subsequently default. They therefore require that

a firm uses some amount of its own cash for every acquisition that it makes – that it has

“skin in the game”. That means that a firm that has hoarded cash can, even when it

goes to the limit of its borrowing capability, only buy a limited number of good projects.

Since the overall number of projects that turn out bad or good in a crisis is not ex ante

predictable, this can produce a mismatch between good projects that are for sale and

firms that have the ability to buy them. If few good projects are for sale, they are sold

at high prices. If the number of good projects for sale is high, a fire sale ensues and

prices collapse. Such a collapse is unpredictable and occurs with positive probability if

all participants behave optimally.

This paper takes up ideas from several strands of literature. Strategic substitutes

in the decisions of firms also appear in the theory of Shleifer and Vishny (1992), who

describe a “debt capacity” that also arises from a multiple-equilibrium structure, albeit

under the assumption that firms need to take up debt to undertake their projects. The

firms in their model are ex ante different, so that it is clear who will be buyer and seller

in a crisis and they abstract from the resulting coordination problem. The effects in this

paper, which arise because of the identical positions of the firms, are therefore absent.

Perotti and Suarez (2002) discuss failed banks being taken over by their competitors,

which allows the surviving bank to acquire cheap capital and profit from higher market

concentration. They also note that this “last bank standing effect” creates a desirable

strategic substitutability as “temporary consolidation in the aftermath of a crisis has the
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ex ante desirable effect of promoting stability by rewarding those banks that remained

solvent during the crisis.”

Shleifer and Vishny (1997) also describe a“hold back effect”where arbitrageurs hoard

cash in the hope that mispricings could deepen, for example through fire sales. A more

general discussion and an overview of the empirical evidence on banks “keeping their

powder dry” in the anticipation of fire sales can be found in Shleifer and Vishny (2011).

In analyzing the multiple-equilibria structure of this model and the effects of incom-

plete information, I make use of the results of Carlsson and van Damme (1993) on global

games, where incomplete information leads to the selection of the risk-dominant equilib-

rium. A related application of these methods on “endogenous leadership” is by Hurkens

and van Damme (2004).

2 The Model with Two Firms

Consider a three-period economy. There are two firms who each have 1 unit of cash. At

t = 0, they make an investment choice. At t = 1, they might have financing needs, for

which they can apply for funding from banks.

The firms can either store their money, or they can engage in a risky project. The

risk-free storage makes all their money available in periods 1 and 2 with certainty, while

the risky project requires an initial investment of 1 but can provide an attractive return

of R > 1 after two periods. The firms aim to maximize their cash holdings at t = 2.

In t = 1, a crisis occurs with probability θ. The crisis has two effects: Firstly, every

risky project will turn “bad” with some probability λ and will stay “good” otherwise. At

t = 2, both projects provide a benefit. But a bad project only provides a non-transferable

(i.e. non-monetary) private benefit of b to the firm that owns the project, while a good

project returns R money units to whoever owns the project at t = 2. Only firms can

observe which projects have turned bad – banks cannot observe this and it can not

be credibly communicated to them. Secondly, the crisis also means that each project

(regardless of being good or bad) requires an additional cash payment of c to be made at

t = 1. If this payment is made, the project continues and returns R or b at t = 2. If the

payment is not made, the project is closed down immediately and without any return.

At t = 1, it is possible to lend from banks at some per-period interest rate r (so that

when borrowing 1 unit in t = 1, 1 + r units would have to be repaid in t = 2). We

assume that r is determined by (international) capital markets and is therefore taken as

given. Furthermore, r is relatively small and the banks have the alternative to just store

their money, so that they are not willing to accept large risks by lending out (otherwise

there would beo no problem with asymmetric information). In particular, we assume

that r < λ
1−λ , i.e. the interest rate is small compared to the proportion of projects that
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turn bad.2 This means that if a firm that has a risky project comes to a bank in t = 1

and asks to borrow c, and the bank has the prior belief that the project is bad with

probability λ, the bank will not lend. This introduces the adverse-selection problem:

Even firms who have good projects will find themselves in a situation where they have a

project that provides a good return, but they cannot raise the money they would have

to spend to keep the project going.

However, we assume that other firms can costlessly observe whether projects have

turned bad or good, since they are informational insiders – as opposed to the financiers

or banks, who are outsiders. A firm that has chosen to store its cash, and therefore has

it available in t = 1, can now use its money to buy a project from another firm – and

it can avoid buying bad projects, since it can observe project quality. Moreover, it can

even raise money from outside banks for this undertaking, thus potentially leveraging

its own capital of 1 for the purpose of buying several projects if there were several other

firms.

There are two possible ways financing of c could be arranged: Either the firm that

previously engaged in storage can use its own cash to lend c to firms with good projects.

Or the firm with a good project, which cannot meet its financing need of c, can liquidate

and sell all their assets to the firm that previously engaged in storage, who also borrows

from a bank to finance the purchase. Either way, the financing problem that is created

by the combination of illiquidity and asymmetric information is solved. Actual loss only

occurs through the exogenous event of a project turning bad, not through the financing

problem.

This solution, however, requires ex ante coordination between the firms. If both

firms engage in storage, they will both only have 1 unit of cash in t = 2, as much as

they started with. If both firms start a risky project, they have no way of selling their

assets to another firm in period 1 in case of a crisis, and they both have to shut down

their project and get 0 regardless of whether their projects turned out good or bad.

The socially optimal case (and also the case preferred by both firms to any symmetrical

outcome) is the one where exactly one firm engages in the risky project, while the other

engages in storage and stands ready to acquire the failing firms’ assets if a crisis occurs.

The payoffs are shown in of figure 3.1. A(p) and B(p) are simple placeholders for

how the two firms distribute the surplus generated by their trade by deciding on a price

p for the assets. The individual rationality restrictions are A(p) ≥ 0 and B(p) ≥ 1, and

A(p) + B(p) ≤ R −max {p+ c− 1, 0} − c. Depending on the parameters of the model,

this game has several possible equilibrium structures.

1. The project could be so unpromising (R low) or crises so likely (θ high) or severe

2Yet not terribly small – if half of all projects turn bad in a crisis, it simply means that the per-period
interest rate is less than 100%.
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Firm 1

Firm 2
Storage Project

Storage 1,1 1− θ + θλ+ θ(1− λ)B(p), (1− θ)R+ θ(1− λ)A(p)
Project (1− θ)R+ θ(1− λ)A(p), 1− θ + θλ+ θ(1− λ)B(p) (1− θ)R, (1− θ)R

Figure 3.1: The game played by two firms.

(λ or c high) that both firms always prefer Storage and (Storage, Storage) is the

unique Nash equilibrium.

2. The project could be so promising (R high) or crises so unlikely (θ low) that both

firms always prefer Project, despite the certainty of going bankrupt in a crisis, and

(Project, Project) is the unique Nash equilibrium.

3. There is an intermediate parameter space where the firms prefer to anti-coordinate

so that one firm chooses Project and the other chooses Storage. Then one firm

takes the risk, while the other stands ready to buy the assets in the case of a crises.

This gives the game a chicken-like structure, and there are three Nash equilibria:

(i) (Project, Storage), (ii) (Storage, Project) and (iii) a mixed-strategy equilibrium

where both firms place positive probability on both strategies. This mixed strategy

equilibrium (iii), however, is strictly pareto-inferior to any of the two pure-strategy

equilibria, since the firms land in (Project, Project) and (Storage, Storage) with

positive probability.

4. (There is also a fourth possible equilibrium structure, in which crises are so likely

and the terms of liquidation are so bad that it is only attractive to undertake a

project if the other firm is also doing so.)

The first and the second case are not very interesting: Each firm has an optimal choice

regardless of what the other firm does, and the risky project is either so unattractive or

attractive that either no firm or both firms engage in it. In the fourth case, the firms’

actions are strategic complements – we will ignore this case here as we want to focus on

the interplay of symmetry and strategic substitutes.

In the third case the firms’ optimal choices are interdependent and it is socially

optimal for only one firm to engage in the project. This gives rise to the risk capacity

constraint in its simplest form. Figure 3.2 shows the R-θ-parameter space, and where the

different equilibrium structures lie. We are interested in the shaded area, where firms’

choices are strategic substitutes; note that there is a dominance region for each action.

103



Chapter 3. Risk Capacity and the Chicken Game

R

θ

Project dominates

Project dominates

Storage
dominates

Strategic
complements

Figure 3.2: Storage is best reponse to Storage to the left of the solid curve, and best
response to Project inside the dashed lines. The shaded area indicates the parameter
space in which the game has a chicken structure.

3 Symmetry and the Race to Risk

3.1 Symmetric equilibria but opposed preferences

The risk capacity constraint is symmetric; it doesn’t tell us which of the asymmetric

equilibria the firms will choose. However, the firms have strictly opposing preferences

over the two pareto-optimal (pure-strategy) equilibria. Given the choice of the other

firm, they prefer to do the opposite – but if they could choose first, they have a preferred

choice. In this way, their situation is comparable to that of a Stackelberg competition,

where the leader can make a larger profit by forcing the follower to optimally make a

more defensive choice.

Let us assume in the following that the parameters and the price-setting are such that

it is more attractive to be the firm undertaking the risky project than the one storing

money. Intuitively, the project has a large upside, while the inherent risk is mitigated

by the fact that the assets from a good project can still be sold to an insider. Especially

if crises are sufficiently unlikely, this should make the (Project, Storage) pairing more

attractive to firm 1 than (Storage, Project).

Under this assumption, each firm wants to convince the other that it is going to choose

Project, so that the other chooses Storage. We have so far assumed that decisions are

made simultaneously. If one firm were able to go first, the implication would be clear:

That firm would choose Project, leaving the other to settle for Storage. Since each firm

would want to go first, this would lead to a race to be the first to decide.
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3.2 Equilibrium selection through incomplete information?

A large literature (starting with Carlsson and van Damme, 1993) has shown that in

games with several strict equilibria, lack of common knowledge among the players can

select one of the equilibria.

Consider the following incomplete-information game: Both firms believe that the pa-

rameter tuple x = (R, θ, λ, c) is distributed on the space (0,∞)× (0, 1)× (0, 1)× (0,∞)

with strictly positive density everywhere that is continuously differentiable. Before mak-

ing their (simultaneous) choices, firm i observes a signal xεi . These signals are indepen-

dently uniformly drawn from the interval [x− εη, x+ εη], where η ∈ R4 lies in a ball

with radius 1 around 0 and ε is a scale parameter; we are interested in the cases where

ε is very small.

These assumptions map to the assumptions of Carlsson and van Damme (1993), we

would expect their main result to apply. We can see, however, that in the limit of this

incomplete-information game for ε small, the space of rationalizable strategies is the same

as in the complete-information game. (Recall that in the classical uses of equilibrium

selection by global games, the set of rationalizable strategy profiles is shrunk down to a

single point, which is the unique equilibrium.)

To understand why global games has no bite here, consider the concept of risk-

dominance, with which the global games criterion is inseparably intertwined. There are

several (equivalent) definitions of risk-dominance, but given the symmetry of the game

it is easy to see that there will neither be a difference in the product of deviation losses

(the definition used by Harsanyi and Selten 1988) or the sum of probabilities that players

would put on pure strategies in the mixed equilibrium (the definition used by Carlsson

and van Damme 1993). The two pure equilibria weakly risk-dominate each other, and

risk-dominance therefore doesn’t allow us to select an equilibrium here.3

We can see directly how this makes the main proof of Carlsson and van Damme

(1993) unapplicable: Since the belief about j playing Storage that makes i indifferent

between his two options is exactly the same as the belief about i playing Storage that

would make j indifferent, we get (in the notation of their proof) s̄2(x∗) + s̄1(x∗) = 1,

which means that the proof no longer leads to a contradiction on p. 1003.

Intuitively, we can think of every parametrized 2 × 2 game as having a “knife-edge”

parameter configuration where no pure equilibrium is risk-dominant. (In Carlsson and

van Damme’s leading example, this is the case at x = 2.) The “infection” of beliefs

that occur without common knowledge (where each player worries about what the other

player will do, given that he worries about what the other player will do and so on)

makes one action unrationalizable for each point in the parameter space that is not on

3We disregard the axiomatic postulate by Harsanyi and Selten, p. 88, who say that in this case the
mixed equilibrium should be considered risk-dominant.
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Firm 1

Firm 2
Storage Project

Storage 1− δ, 1 1− θ + θλ+ θ(1− λ)B(p)− δ, (1− θ)R+ θ(1− λ)A(p)
Project (1− θ)R+ θ(1− λ)A(p), 1− θ + θλ+ θ(1− λ)B(p) (1− θ)R, (1− θ)R

Figure 3.3: The payoffs with a small asymmetry δ > 0.

the knife-edge, so that the knife-edge becomes the threshold at which players change

their behavior. In any stag-hunt game, for example, the knife-edge is non-generic.

In the symmetric game that we face here, however, the whole parameter space is on

the knife-edge, so to speak, since the pure equilibria weakly risk-dominate each other for

any parameter value for which they exist.

3.3 Small asymmetries allow for equilibrium selection

Even though lack of common knowledge does not allow us to select a unique equilib-

rium, it can magnify small asymmetries which otherwise do not change the equilibrium

structure of the complete-information game.

Consider the same game as above, but now assume that storage is slightly less at-

tractive for firm 1 (see figure 3.3). If the parameters are common knowledge, there are

still two pure and one mixed equilibria. But everything has changed in the incomplete-

information game. Since the symmetry is broken, (Project, Storage) now has a slightly

higher product of deviation losses. This makes it the risk-dominant equilibrium of the

complete-information and therefore the unique equilibrium of the incomplete-information

game.

Note that, given our assumption that firm 1 prefers to (Project, Storage) to (Storage,

Project), this equilibrium selection insures that the firms will play firm 1’s preferred

equilibrium. Firm 1 is hence better off by giving up some potential payoff – and, what

is more, it can actually use this fact to influence equilibrium selection by pre-emptively

disposing of some of the utility it can receive from storage. This could take the form

of imparing its own storage technology, contractually signing away some of the stored

money or staking their reputation on choosing project, or any number of other things.4 It

is does not even matter how large δ is, since it is payoff-irrelevant in the (Project,Storage)

equilibrium.

Of course, our analysis would not be complete if we did not consider the possibility

that both firms can choose to make such a disposal before actually having to decide

between Storage and Project. Consider a dynamic game where in period 1, the firms

simultaneously choose to lower their own payoff from Storage by δi, and in the second

period they observe the payoff matrix given in panel A of figure 3.4 and choose simultane-

4See Chassang (2008) for an analysis of the global games approach in settings where the structure of
the game itself is endogenous.

106



Chapter 3. Risk Capacity and the Chicken Game

Firm 1

Firm 2
Storage Project

Storage 1− δ1, 1− δ2 1− θ + θλ+ θ(1− λ)B(p)− δ1, (1− θ)R+ θ(1− λ)A(p)
Project (1− θ)R+ θ(1− λ)A(p), 1− θ + θλ+ θ(1− λ)B(p)− δ2 (1− θ)R, (1− θ)R

(A)

Firm 1

Firm 2
Storage Project

Storage 0,0 −θ + θλ+ θ(1− λ)B(p), (1− θ)R+ θ(1− λ)A(p)
Project (1− θ)R+ θ(1− λ)A(p),−θ + θλ+ θ(1− λ)B(p) (1− θ)R, (1− θ)R

(B)

Figure 3.4: If both firms can decide to dispose of δi in case they choose Storage.

ously between Storage and Project. This throws the firms into a game that is somewhat

like a “loser pays” auction (or an all-pay auction), where the “winner” (the one with

higher δi) gets to pick his preferred option (Project). This is a “race to risk”: Each wants

to be the one that gets to take the risk in the second-period subgame, and both are

willing to dispose of ressources to do so.

The precise equilibrium of such a dynamic game depends on several factors. One of

them is the difference between the payoffs from (Storage,Project) and (Project,Project)

for player 1 (and the symmetric difference for player 2). This determines whether the

firms can dispose of so much that Project becomes a dominant strategy for them, or

whether the equilibrium structure of the second-period subgame persists independently

of δ1 and δ2. In the latter case we would have to specify which subgame equilibrium

is played if δ1 = δ2. If we assume that firms play the mixed equilibrium if the period

2 subgame is symmetric and that Project does not become dominant for δi = 1, for

example, firms will mix between all δi ∈ [0, 1] and put positive probability on δi = 1.

Regardless of the precise equilibrium of the dynamic game, we can easily see that there

are no equilibria in which both firms always choose δi = 0. Given our assumptions, any

δj > 0 would be a costless best-response to this that guarantees the preferred equilibrium

in period 2. Regardless of the exact parameter values, the race to risk among firms

therefore makes the economy worse off, as firms dispose of possible profits in order to

put themselves in a better position by jumping along the risk capacity constraint line.

No firm is better off, and both firms might very well be worse off (for example in the case

where they both choose play δi = δj = 1 and Project becomes dominant, or they both

play Project with positive probability in the second period – both cases are followed by

fire sales with positive probability). The “small” disposal that would give firms an edge

in the chicken-like risk capacity game has therefore had a similar effect as any other way

to get an advantage in the classical chicken game: If both drivers disable their steering

wheels, for example, they will simply crash.
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4 Many Firms and Endogenous Price Setting

4.1 The Model with n Firms

Now assume that there are not two firms, but n firms which simultaneously have to decide

on which project to choose. The parameters of the model are the same, and again we

allow a firm engaged in storage to use their cash to buy the assets of a firm that engaged

in the project. Extrapolating from the case of two firms, one could expect that the

information asymmetry problems that the firms face can be solved by one firm choosing

Storage, and everybody else choosing Project. The single firm could then potentially use

its own stored money, and money it has borrowed, to buy assets of several failed firms.

If insider firms only buy good projects, outside banks should be willing to lend to

insider firms without restrictions. But because of the non-monetary utility b of owning

a bad project, an insider company could simply borrow a lot of money, buy an amount

m of bad projects, and afterwards default and get a payoff of mb which is larger than

1 if m is large enough. Banks therefore need to make sure that for every project that

is bought with borrowed money, the firm has enough “skin in the game” to induce it to

buy only good projects. In this model, that means that for every project acquired, the

firm has to use at least b of its own money to convince banks that it is not buying bad

projects.

This restriction limits the number of good projects any single firm can buy to
⌊

1
b

⌋
.

In equilibrium, bad projects will never be traded since it doesn’t pay off for a firm to use

at least b of its own money to buy a project worth b. The equilibrium price p of good

projects in a crisis is determined by demand and supply, since now the number of buyers

and sellers can be mismatched in several ways. Let B and S be the number of buyers

and sellers, i.e. the number of firms who chose storage and the number of fims who chose

Project and ended up with a good project. If we simply assume that all projects are

traded at one price, Bertrand competition gives the following pricing structure:

� If S
B
<
⌊

1
b

⌋
, sellers can capture the whole surplus since some buyers would be able

to borrow and buy more, and p = R+(1+r)(1−c)
2+r

.

� If S
B
>
⌊

1
b

⌋
, buyers can capture the whole surplus since some firms with good

projects are not able to find a buyer, and p = 0.

� If S
B

=
⌊

1
b

⌋
, any price between R+(1+r)(1−c)

2+r
and 0 that the buyers and sellers can

agree on is stable.

Since B is simply the number of firms that chose Storage and E[S] = (1−λ)(n−B), E[p]

is decreasing in the number of firms who choose Project. Let ∆(B, n) be the difference in

expected utility between choosing Project and Storage if B out of n fims choose Storage.
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From the assumptions of the model it follows that ∆(n, n) > 0, since a single firm could

choose Project and be sure to sell its asset at a maximum price if there is a crisis and the

project is good. But ∆(0, n) < 0, since the firms choosing Project would lose everything

in a crisis. Thus there exists some B∗ such that ∆(B∗, n) < 0 and ∆(B∗ + 1, n) > 0.5

There can be no equilibrium with B 6= B∗, B∗ + 1, since some firms could profitably

change their choice. In equilibrium, it is therefore B∗ or B∗ + 1 firms that store their

money while the remaining firms engage in the project. As in the two-firm game, this

means that there is a set of
(
B∗

n

)
or
(
B∗+1
n

)
equilibria in pure strategies.

Now, however, it matters that the true realization of S in a crisis is stochastic. When

there were only two firms, there would either be a firm with a good project or a firm

with a bad project. Now the number of firms with good projects can be smaller or larger

than the number of firms that can be bought, so that Bertrand competition pushes the

price up and down.6 Intermediate prices can only exist in the case where S = B, which

is exceedingly unlikely as n grows lagers.

If the risk capacity constraint is at work, we will therefore see that some firms take

risks while others hoard cash, so that the economy as a whole nears the risk capacity

limit in expectation. When a crisis hits and the true states of the projects are realized,

there are either so many good projects that they need to be sold off at fire-sale prices,

or the firms have been hoarding so much cash that failing firms can comfortably sell of

their projects at high prices. It is not possible to tell in advance which will occur, and

in equilibrium there can either be consolidations and fire sales, where both occur with

positive probability. Fire sales will therefore occur in equilbrium.

4.2 An Exogenous Price and a Continuum of Firms

Given that the coordination problem between firms stems from the fact that there is a

finite number of firms, and the number of failed projects is therefore stochastic, we could

assume that in the limit as n grows larger, the coordination problem disappears.7 In

this section, I show that while this is the case, an infinite number of firms can lead to

a different problems, as there does not necessarily exist an equilibrium if the liquidation

price of assets cannot be chosen freely.

The considerations of the preceding section were under the assumption that the single

firm considers its influence on the proportion between B and S (and therefore the price

of the project in t = 1) when making a its choice. The equilibria were stable because in

every equilibrium, those firms that chose storage knew that choosing the project instead

would raise the number of projects to a point where the expected price of the project

would be sufficiently low to make the payoff from project worse than from storage.

5There could be equality on only one of these expressions.
6To be precise, note that S is binomially distributed according to B(B − n, 1− λ).
7Cf Bolton and Farrell (1990), where all coordination problems appear in the limit.
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Similarly, firms undertaking the project in any equilibrium received a superior or equal

payoff to those engaging in storage and were hence also not interested in changing their

strategy.

This is not the case in very a large economy with small firms, where every firm has no

influence on the overall proportions and hence takes the price of the project in t = 1 as

given. Assume that the model is as before, except that there is now a continuum of firms

with measure 1. If a proportion β of firms chooses storage, a proportion of (1−λ)(1−β)

of firms will end up with good projects. Every firm that has stored money can still buy⌊
1
b

⌋
in a crisis, so that in equilibrium it should be β

⌊
1
b

⌋
= (1− λ)(1− β) or

β∗ =
1− λ⌊

1
b

⌋
+ 1− λ

.

At this proportion, there are β∗ buying firms and (1 − λ)(1 − β∗) selling firms, so

that each buyer goes to the maximum amount that he can borrow and each firm with

a good project is able to sell it. Since buyers and sellers are so exactly matched, they

can negotiate any price, and the equilibrium price at which no firm wants to change its

strategy is

p∗ =
R− 1 + θ − λθ − θr + λθr − θR +

⌊
1
b

⌋
(θc− θλc+ θcr − λθcr − θR + λθR)

(λ− 1)θ(1 + (1 + r)
⌊

1
b

⌋
)

.

Unlike in the model with n firms, the price now matters very much. If some exogenous

factor means that good projects have to be traded at any price that is different from p∗,

there is no equilibrium.

Proposition 1. If p 6= p∗, there is no Nash equilibrium.

Proof. Assume that there was a Nash equilibrium in which a proportion β of firms chose

storage and the remaining firms started a project. Then the expected profit of choosing

storage or project must be the same. This cannot be the case if β 6= β∗, since then all

the surplus from trading the project goes either to the firms engaged in storage or in the

project, and all firms in the other group would optimally like to switch strategies. But

for β∗, where buyers and sellers are matched, the price p 6= p∗ also means that one group

makes a higher expected profit and that all firms in the other group could therefore gain

by changing their strategy.

If we consider an economy where, for example, the regulatory framework is such that

in selling (or liquidating) a company, buyers and seller cannot freely choose the price at

which they trade, this economy will not find a stable equilibrium. There will always be

firms that choose to take a risk, or firms that choose not take a risk and “stay behind”
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to organize the financing and the consolidation in case the risky firms fail, who would

prefer if they had chosen differently.

To be sure, the economy is always driven towards what would be the equilibrium: If

β < β∗, i.e. there are too few storage firms, firms that engage in the project will expect

to do badly and therefore have an incentive to change their strategy. The converse occurs

when β > β∗. But there is no consistent alignment of beliefs at which all firms will be

happy with their choice.

This non-existence of equilibrium is a direct result of the fact that, in a continuum

of players, no single player has to consider the influence of his choice on the system as

a whole, or on the probability distribution of prices. The argument is thus in a way

similar to that of Lorenzoni (2008), where ex-ante inefficient credit booms can occur in

equilibrium because continuum agents do not consider the consequences of their actions.

5 Discussion and Conclusion

A central assumption of this paper is that firms in the “economy” can observe the quality

of projects, while those outside cannot. What is the “economy” that the model applies

to? Its most important characteristic is that while insiders can observe the value of each

other’s assets, this is difficult to do for outside financiers, who can only rely on some

prior distribution. Outsiders who want to lend or otherwise get engaged can only do so

through an inside partner, who can help them pick worthy projects and assets. Crucially,

this also leads to an adverse selection: An outsider who is approached by an insider with

a business proposition will not apply his prior belief, but must assume that the offer

is worthless or disingenuous, since the insider would have turned to another insider for

indirect financing if his offer was any good.

We could therefore think of the economy of this model being a region, such as Eastern

Europe or Sub-Saharan Africa, that can be hard for outside investors to understand. Or

we could think of an industry in which it can be hard for outsiders to tell profitable

assets from non-profitable ones, such as farming or internet companies. Both a region

or an industry can be in dire need of outside financing, and investment can be ex ante

worthwhile (R large enough), but the risk capacity constraint inefficiently limits outside

investments and leads to a race to risk and random fire sales.
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6 Appendix: If Every Project Requires Debt

In this extension of the model, I consider the implication of risk capacity if all risky

investments require external financing to get started. It turns out that this leads to a

debt capacity very similar to the model by Shleifer and Vishny (1992), and that this

debt capacity is enforced by the banks.

Consider the case of two firms who each have 1 unit of capital. They can decide to

store the capital with perfect liquidity and no return, or invest in a risky project that

requires an investment of 2 at t = 0 but returns R > 2 at t = 2. That is, a risky project

requires outside financing already at t = 0, which can be provided by banks at per-period

interest rate r.

A risky investment will turn bad (i.e. providing idiosyncratic and non-transferable

payoff b) at t = 1 with probability λ and remain good otherwise. Only insiders (i.e.

firms) can observe whether a project is good or bad.

At t = 1, a crisis hits and every risky project needs a further cash injection of c.

This can either be provided by another firm (if it has engaged in storage) or by outside

banks (who can’t tell whether a project is good or bad and therefore don’t know whether

they’ll get their money back). Assume that the banks make the decision about lending

c independently of credit given at t = 0 – so that the loans given at t = 0 are either seen

as “sunk” or that firms are each dealing with a different bank.

Consider the simple case with 2 firms. We have the same situation as in the main

part: If both firms engage in the project, none of them is able to get additional financing

in period 2 under the assumption of relatively low interest rates, r < λ
1−λ . Now, however,

it is no longer the binding constraint that not both firms want to engage in the project,

but that in equilibrium the banks do not want to lend to both firms so they can engage

in a project (since the banks know that if both firms engage in the project, they will

both fail in period 1 and no money will ever be recovered). Thus, instead of a precarious

equilibrium keeping firms below the risk capacity, the threat of the risk capacity forces

the banks to impose a debt capacity on the economy.
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Chapter 4

Correlated equilibria in homogenous

good Bertrand competition1

Ole Jann and Christoph Schottmüller

We show that there is a unique correlated equilibrium, identical to the unique Nash

equilibrium, in the classic Bertrand oligopoly model with homogenous goods and identi-

cal marginal costs. This provides a theoretical underpinning for the so-called “Bertrand

paradox” as well as its most general formulation to date. Our proof generalizes to asym-

metric marginal costs and arbitrarily many players in the following way: The market

price cannot be higher than the second lowest marginal cost in any correlated equilib-

rium.

1This paper has been published in the Journal of Mathematical Economics (57), March 2015, 31-37.
We would like to thank one anonymous referee and the editor (Atsushi Kajii) for helpful suggestions.
We have also benefitted from comments by Jan Boone, Gregory Pavlov and Peter Norman Sørensen.
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1 Introduction

A substantial body of theory in industrial organization and other fields of economics is

built on the idea that there are no equilibria with positive expected profits in a simple

Bertrand competition model with homogenous goods and symmetric firms—in other

words, that there are no profitable cartels and that price competition between n > 1

firms will drive prices down to marginal cost in one-shot price competition. The fact

that price competition between two firms is equivalent to perfect competition is often

referred to as the “Bertrand paradox”.

Yet the theoretical foundation for this idea is not fully clear, especially where cor-

related equilibria are concerned. In a correlated equilibrium, players can construct a

correlation device which gives each player a private recommendation before the players

choose their actions. In correlated equilibrium, the device is such that it is an equilibrium

for the players to follow the recommendation. Every (mixed strategy) Nash equilibrium

is a correlated equilibrium where the recommendations are independent. Players can

in many games achieve higher payoffs in correlated equilibrium than in Nash equilib-

rium because the device is able to correlate recommendations; see Aumann (1974). In

Bertrand competition, it is conceivable that players could correlate their prices in such

a way as to achieve high prices while still (through the shape of the joint price distribu-

tion) making sure that none of them wants to deviate. We show that this is not possible,

although the argument is somewhat subtle.

More precisely, we show that no correlated equilibrium (and hence also no mixed

Nash equilibrium) with positive expected profits can exist in a symmetric Bertrand game

with homogenous products and bounded monopoly profits.2 This is the most general

formulation of the Bertrand paradox yet. Our result is certainly desirable because a

statement like the Bertrand paradox – implying that zero profits are inevitable in a price

competition setting – should naturally be shown using an equilibrium concept that is

“permissive”, i.e. a solution concept that allows the players to coordinate as much as

possible within the paradigm of a one-shot, non-cooperative game. This is exactly what

correlated equilibrium does.3 Our result is not obvious given that the set of rationalizable

actions is large: In symmetric, homogenous good Bertrand competition all non-negative

prices are rationalizable.4 This is, for example, in stark contrast to Bertrand games

2Wu (2008) claims to prove a similar theorem for symmetric linear costs and linear demand. Note,
however, that he does not provide a proof for the central second case in his case distinction and implicitly
limits his analysis to a finite action space which is incompatible with the standard version of the Bertrand
game.

3Correlated equilibrium has been shown to have many other attractive properties as well: For ex-
ample, several simple learning procedures converge to correlated equilibria, see for example Foster and
Vohra (1997), Fudenberg and Levine (1999), Hart and Mas-Colell (2000), and unique correlated equilib-
ria are robust to introducing incomplete information, see Kajii and Morris (1997). It should, however,
be noted that these papers limit themselves to finite games for technical reasons.

4Every pi ∈ <+ is in our model rationalizable because pi is – assuming zero marginal costs – a best
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with differentiated products: Milgrom and Roberts (1990) show for a large class of

demand functions that there is a unique rationalizable action in a differentiated goods

Bertrand game. This clearly implies that there is a unique Nash equilibrium and also

a unique correlated equilibrium in these games. Their reasoning, however, applies only

to supermodular games. A Bertrand game with homogenous goods is not supermodular

since the profit functions (i) do not have increasing differences and (ii) are not order

upper semi-continuous in the firm’s price.

Our proof is by contradiction: We show that if there was a correlated equilibrium in

which prices higher than marginal cost were played with positive probability, then there

would be an interval of recommendations in which each player prefers to deviate down-

wardly from his recommendation. This interval consists of the highest recommendations

that a player might get (with positive probability) in the assumed equilibrium.

The contribution of this paper lies in the proof that in Bertrand games with arbitrary

demand functions (in which the set of rationalizable actions is infinite), the Bertrand

Nash equilibrium is the unique correlated equilibrium.

Apart from that, it is also a generalization (by different methods) of results of Baye

and Morgan (1999) and Kaplan and Wettstein (2000) on mixed-strategy equilibria in

Bertrand games. Baye and Morgan (1999) show that if monopoly profits are unbounded,

any positive finite payoff vector can be achieved in a symmetric mixed-strategy Nash

equilibrium, and Kaplan and Wettstein (2000) prove that unboundedness of monopoly

profits is both necessary and sufficient for the existence of such mixed-strategy Nash

equilibria. These insights have led Klemperer (2003, section 5.1) to conclude that “there

are other equilibria with large profits, for some standard demand curves.” We show that

expected profits in any correlated equilibrium (and therefore in any mixed Nash equi-

librium) are zero if demand is such that monopoly profits are bounded. Finally, unlike

the cited results, our proof is generalizable to games with asymmetric costs and arbitrar-

ily many players: We show that the highest market price in any correlated equilibrium

equals the second lowest marginal cost. This establishes an (outcome) equivalence of

Nash and correlated equilibria also in this more general setup.

A related result is derived in Liu (1996). Liu shows that the unique Nash equilibrium

in Cournot competition with linear demand and constant marginal costs is also the

unique correlated equilibrium.

This paper is organized as follows. The next section introduces the Bertrand model

with two symmetric firms as well as the concept of correlated equilibrium. Section 3

derives our result. This result is generalized for the case of n non-symmetric firms in

section 4. Section 5 concludes.

response to pj = 0 which is the Bertrand equilibrium price and therefore itself rationalizable.
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2 Model

There are two firms with constant marginal costs which are normalized to zero. Firms

set prices simultaneously. The price of firm i is denoted by pi. If pi < pj, consumers buy

quantity D(pi) of the good from firm i (and 0 units from firm j). If both firms quote

the same price p′, consumers buy D(p′)/2 from each firm. D(p) denotes market demand

where D : <+ → <+ is a (weakly) decreasing, measurable function and <+ denotes

the non-negative real numbers. We assume that the demand function is such that a

strictly positive monopoly price argmaxp pD(p) exists. We define pmon as the supremum

of all prices maximizing pD(p) and assume that pmon is finite. Firms maximize expected

profits.

A correlated equilibrium in this game is a probability distribution F on <+ × <+.

This probability distribution is interpreted as a correlation device. The correlation device

sends recommended prices (r1, r2) to the two firms. Each firm i observes ri but does not

observe the other firm’s recommendation rj. F (p1, p2) is the probability that (r1, r2) ≤
(p1, p2). Roughly speaking, a distribution F is called a correlated equilibrium if both

firms find it optimal to follow the recommendation.

To be more precise denote the profits of firm i given prices pi and pj with i, j ∈ {1, 2}
and i 6= j as

πi(pi, pj) =


piD(pi) if pi < pj

piD(pi)/2 if pi = pj

0 else.

(4.1)

Note that we define the profit function such that the own price is the first argument, i.e.

the first argument of π2 is p2.

A strategy for firm i is a mapping from“recommendations”to prices. Both recommen-

dations and prices are in <+. Hence, a strategy is a measurable function ζi : <+ → <+.

The identity function represents the strategy of following the recommendation. F is

a correlated equilibrium if no firm can gain by unilaterally deviating from a situation

where both firms use ζi = identity function. More formally, we follow the definition of

correlated equilibrium for infinite games given in Hart and Schmeidler (1989) and also

used in Liu (1996): A correlated equilibrium is a distribution F on <+ × <+ such that

for all measurable functions ζi : <+ → <+ and all i ∈ {1, 2} and i 6= j ∈ {1, 2} the

following inequality holds:∫
<+×<+

πi(pi, pj)− πi(ζi(pi), pj) dF (p1, p2) ≥ 0. (4.2)

In words, a distribution F is a correlated equilibrium if no player can achieve a higher

expected payoff by unilaterally deviating to a strategy ζi instead of simply following the
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recommendation. Last, we define a symmetric correlated equilibrium as a correlated

equilibrium F in which F (p1, p2) = F (p2, p1) for all (p1, p2) ∈ <+ ×<+.

It is well known that both firms set prices equal to zero in the unique Nash equilibrium

of this game (usually this is called “Bertrand equilibrium”); see, for example, Kaplan and

Wettstein (2000).

3 Analysis and Result

We start the analysis by noting that whenever there is a correlated equilibrium F then

there is a symmetric correlated equilibrium G in which the aggregated expected profits

are the same as in F . This result is, of course, due to the symmetry of our setup. It will

allow us later on to focus on symmetric correlated equilibria.5

Lemma 1. Let F be a correlated equilibrium. Then there exists a symmetric correlated

equilibrium G such that∫
<+×<+

π1(p1, p2) + π2(p2, p1) dF (p1, p2) =

∫
<+×<+

π1(p1, p2) + π2(p2, p1) dG(p1, p2).

Proof. Let F be a correlated equilibrium. Define F̃ (p1, p2) = F (p2, p1). Then, F̃ is

also a correlated equilibrium as for any measurable function ζ : <+ → <+∫
<+×<+

πi(pi, pj)− πi(ζ(pi), pj) dF̃ (p1, p2)

=

∫
<+×<+

πi(pj, pi)− πi(ζ(pj), pi) dF (p1, p2)

=

∫
<+×<+

πj(pj, pi)− πj(ζ(pj), pi) dF (p1, p2) ≥ 0

where the first equality holds by the definition of F̃ , the second holds by the symmetry

of the setup, i.e. π1(x, y) = π2(x, y), and the inequality holds as F is a correlated

equilibrium.

Define G(p1, p2) = 1
2
F (p1, p2) + 1

2
F̃ (p1, p2). Then G is a correlated equilibrium as for

5Intuitively, we make use of the fact that the set of correlated equilibria in this game is convex—as
could be shown by generalizing the following lemma with arbitrary weights instead of 1

2 and 1
2 .
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any measurable function ζ : <+ → <+∫
<+×<+

πi(pi, pj)− πi(ζ(pi), pj) dG(p1, p2)

=
1

2

∫
<+×<+

πi(pi, pj)− πi(ζ(pi), pj) dF (p1, p2)

+
1

2

∫
<+×<+

πi(pi, pj)− πi(ζ(pi), pj) dF̃ (p1, p2) ≥ 1

2
0 +

1

2
0 = 0

where the equality follows from the definition of G and the inequality follows from the

fact that F and F̃ are correlated equilibria. Clearly, G is symmetric as G(p1, p2) =
1
2
F (p1, p2) + 1

2
F̃ (p1, p2) = 1

2
F (p1, p2) + 1

2
F (p2, p1) = 1

2
F̃ (p2, p1) + 1

2
F (p2, p1) = G(p2, p1)

by the definition of G and F̃ . Finally, expected profits under F and G are the same as∫
<+×<+

π1(p1, p2) + π2(p2, p1) dG(p1, p2)

=
1

2

∫
<+×<+

π1(p1, p2) + π2(p2, p1) dF (p1, p2) +
1

2

∫
<+×<+

π1(p2, p1) + π2(p1, p2) dF (p1, p2)

=
1

2

∫
<+×<+

π1(p1, p2) + π2(p2, p1) dF (p1, p2) +
1

2

∫
<+×<+

π2(p2, p1) + π1(p1, p2) dF (p1, p2)

=

∫
<+×<+

π1(p1, p2) + π2(p2, p1) dF (p1, p2)

where the first equality follows from the definition of G and F̃ and the second equality

follows from the symmetry of setup, i.e. π1(x, y) = π2(x, y).

Let F be a symmetric correlated equilibrium. Define p̄ := inf{p′ :
∫

(p′,∞)2 dF (p1, p2) =

0}. Intuitively, p̄ is the price such that (i) the probability that the market price is greater

than p̂ is strictly positive for any p̂ < p̄ and (ii) the probability that the market price is

greater than p̂ is zero for any p̂ > p̄. That is, if we consider the distribution of prices

that consumers pay in the correlated equilibrium F , p̄ is the essential supremum of this

“market price distribution”. The following lemma establishes that p̄ exists by showing

that
∫

(pmon,∞)2 dF (p1, p2) = 0 in any correlated equilibrium F . This implies p̄ ≤ pmon

and consequently a finite p̄ exists. The intuitive reason for lemma 2 is that setting prices

above pmon is a weakly dominated strategy.

Lemma 2. In a correlated equilibrium F ,
∫

(pmon,∞)2 dF (p1, p2) = 0.

Proof. Consider the strategy

ζ1(r1) =

r1 if r1 ≤ pmon

p∗ if r1 > pmon,

where p∗ ∈ arg maxp∈<+ pD(p), i.e. p∗ ≤ pmon is an arbitrary monopoly price. Firm 1’s
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payoff difference between following the recommendation and using the deviation strategy

ζ1 is∫
(pmon,∞)×(p∗,∞)

[π1(p1, p2)− p∗D(p∗)] dF (p1, p2) +

∫
(pmon,∞)×{p∗}

−p∗D(p∗)/2 dF (p1, p2).

The integrand of the first integral is strictly negative as p∗D(p∗) = maxp∈<+ pD(p) and

larger than the profit at any price above pmon. The second integral is non-positive. Conse-

quently, F can only be a correlated equilibrium, i.e. satisfy (4.2), if
∫

(pmon,∞)×(p∗,∞)
dF (p1, p2) =

0 which implies
∫

(pmon,∞)2 dF (p1, p2) = 0 by p∗ ≤ pmon.

Before we proceed, it is useful to define the following sets which will serve as the

domain of integration multiple times in the following proofs. For some p̂ ∈ (0, p̄) and

ε ∈ (0, 1), define the sets

A(p̂) = {(p1, p2) : p1 ∈ (p̂, p̄] and p2 ∈ [p1, p̄]}

B(p̂) = {(p′, p′) : p̂ < p′ ≤ p̄}

C(p̂, ε) = {(p1, p2) : p1 ∈ (p̂, p̄] and p2 ∈ [εp1, p̄]}

E(p̂) = {(p1, p2) : p1 ∈ (p̂, p̄] and p2 ∈ [p̂, p̄]}

E ′(p̂) = {(p1, p2) : p1 ∈ (p̂, p̄] and p2 ∈ (p̂, p̄]}.

Figure 4.1 depicts the sets.

p1

p2

p̄

p̄

p̂

p̂

A(p̂)

p1

p2

p̄

p̄

p̂

p̂
C(p̂, 3

10
)

p1

p2

p̄

p̄

p̂

p̂

E(p̂)

Figure 4.1: A(p̂) is shown in panel 1, while B(p̂) is simply the diagonal between (p̂, p̂)
and (p̄, p̄), including the latter but not the former point. Panel 2 shows C(p̂, 0.3). Panel
3 shows E(p̂); E

′
(p̂) is identical to E(p̂) except that the border where p2 = p̂ is not part

of the set.

It follows immediately from the definition of p̄ and the symmetry of the setup that∫
A(p̂)

dF (p1, p2) > 0 for any p̂ ∈ (0, p̄).6 That is, a firm deviating by charging p̂ < p̄

6To be precise, note that
∫
p1∈(p̂,p̄), p2>p̄

dF (p1, p2) = 0 in any correlated equilibrium F : Otherwise,

firm 2 could profitably deviate by setting p2 = p̂ whenever receiving a recommendation above p̄ (while
following recommendations below p̄).
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given any recommendation will sell with positive probability. This observation will be

important later on.

The following lemma shows that there is no probability mass on the diagonal of the

distribution F above (p̂, p̂) if F is a symmetric correlated equilibrium. This is quite

intuitive: The diagonal represents situations in which both firms get the same recom-

mendation. Hence, each firm could discontinuously increase its profits by lowering the

price only slightly (thereby capturing all instead of half of the demand) in this situa-

tion. If the event that both firms get the same recommendation above p̂ had positive

probability mass, each firm could therefore gain by deviating to a price slightly below its

recommendation whenever it receives a recommendation above p̂.

Lemma 3. Let F be a symmetric correlated equilibrium. Then,
∫
B(p̂)

dF (p1, p2) = 0 for

any p̂ ∈ (0, p̄).

Proof. The proof is by contradiction. Suppose to the contrary that
∫
B(p̂)

dF (p1, p2) >

0. Recall that π1 is discontinuous at points on the diagonal of the (p1, p2) plane. There-

fore, (4.2) is violated for

ζε(r1) =

r1 if r1 6∈ (p̂, p̄]

εr1 if r1 ∈ (p̂, p̄]

for ε ∈ (0, 1) sufficiently close to 1: Firm 1’s payoff difference between following the

recommendation and playing ζε can be written as

∆ =

∫
A(p̂)

π1(p1, p2) dF (p1, p2)−
∫
C(p̂,ε)

π1(εp1, p2) dF (p1, p2)

=

∫
A(p̂)\B(p̂)

π1(p1, p2)− π1(εp1, p2) dF (p1, p2) +

∫
C(p̂,ε)\A(p̂)

−π1(εp1, p2) dF (p1, p2)

+

∫
B(p̂)

p1D(p1)

2
− εp1D(εp1) dF (p1, p2).

The first term continuously approaches 0 as ε↗ 1. To see this, note that the first term

is (weakly) less than (1− ε)
∫
A(p̂)\B(p̂)

π1(p1, p2)dF (p1, p2) because p1 < p2 in A(p̂)\B(p̂).

The second term is non-positive and the third term is strictly negative and bounded away

from 0 as ε ↗ 1 because
∫
B(p̂)

dF (p1, p2) > 0. Consequently, ∆ < 0 for sufficiently high

ε < 1. This contradicts that F is a correlated equilibrium and therefore
∫
B(p̂)

dF (p1, p2) =

0 has to hold.

After this auxiliary result, we come to the main result: In any correlated equilib-

rium, both firms set prices equal to zero with probability 1 and therefore make zero

profits. That is, every correlated equilibrium is essentially equivalent to the Bertrand

Nash equilibrium.7

7The qualifier “essentially” stems from the definition of correlated equilibrium in infinite games: A
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The intuition behind this result is the following: Take a symmetric correlated equi-

librium and suppose that p̄ > 0. Take some p̂ ∈ (0, p̄). If a firm, say firm 1, deviates by

charging p̂ instead of its recommendation whenever firm 1 receives a recommendation

above p̂, there are two effects of the deviation: If r1 > r2 > p̂, firm 1 gains p̂ because it

sells while it would not have sold by following the recommendation. If r2 > r1 > p̂, firm

1 loses r1− p̂ by deviating because it would have sold at the higher price r1 if it followed

the recommendation. In a symmetric equilibrium both events are equally likely.8 If one

chooses p̂ sufficiently high, the deviation is therefore profitable as then p̂ > p̄− p̂ > r1− p̂.

Theorem 1. In every correlated equilibrium F , p̄ = 0. That is, p1 = p2 = 0 with

probability 1 in every correlated equilibrium.

Proof. By lemma 1, it is sufficient to show that in any symmetric correlated equi-

librium F , we have p̄ = 0. Therefore, we concentrate on symmetric F in the remainder

of the proof.

The proof is by contradiction. Suppose to the contrary that p̄ > 0. Define p̂ = 3
4
p̄. As

F is a correlated equilibrium, player 1 must get a higher expected payoff from following

the recommendation r1 than from following the deviation strategy

ζ(r1) =

r1 if r1 6∈ (p̂, p̄]

p̂ if r1 ∈ (p̂, p̄].

Making use of the sets E(p̂) and E ′(p̂) as defined above, the difference between the

expected payoff when following the recommendation and the expected payoff under ζ is

∆ =

∫
A(p̂)

π1(p1, p2) dF (p1, p2)−
∫
E(p̂)

π1(p̂, p2) dF (p1, p2)

≤
∫
A(p̂)

D(p̂)p1 dF (p1, p2)−
∫
E′(p̂)

π1(p̂, p2) dF (p1, p2)

= D(p̂)

∫
A(p̂)

(p1 − p̂) dF (p1, p2)−D(p̂)p̂

∫
E′(p̂)\A(p̂)

dF (p1, p2)

= D(p̂)p̂

(∫
A(p̂)

p1 − p̂
p̂

dF (p1, p2)−
∫
A(p̂)

dF (p1, p2)

)
where the last equality follows from the symmetry of F and lemma 3 (which states that∫
B(p̂)

dF (p1, p2) = 0). By the definition of p̂ = 3
4
p̄, p1−p̂

p̂
< 1 for all p1 ∈ (p̂, p̄]. Therefore,∫

A(p̂)

p1 − p̂
p̂

dF (p1, p2) <

∫
A(p̂)

dF (p1, p2) (4.3)

strategy ζi that differs from the identity function on a set of points that has zero probability under F
is also an equilibrium strategy.

8Note that we do not have to consider the case r1 = r2 because of the previous lemma.
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as
∫
A(p̂)

dF (p1, p2) 6= 0 by the definition of p̄ and p̂ < p̄. Note that (4.3) implies ∆ < 0

which contradicts that F is a correlated equilibrium.

4 The General Case

Consider the general case of asymmetric marginal costs ci and n firms. The main idea

of our proof also applies in this case, and we can show that the market price paid by

consumers is less or equal to the second lowest marginal costs with probability one in

every correlated equilibrium. Hence, correlated equilibrium is essentially equivalent to

the Bertrand Nash equilibrium also in this more general framework.

The setup of this more general model is as follows: Market demand is, as before,

D(p) where D : <+ → <+ is a weakly decreasing, measurable function. There are n

firms. All firms have constant marginal costs ci, i ∈ {1, . . . , n}, where – without loss of

generality – we assume c1 ≤ c2 ≤ . . . . ≤ cn. Firms set prices simultaneously. If pi < pj

for all j 6= i, consumers buy quantity D(pi) units of the good from firm i (and 0 units

from the other firms).

If k ≥ 2 firms post the same lowest price p′ = min{p1, . . . , pn}, we assume that

consumers do the following: The firms with the lowest marginal costs among those

k firms quoting p′ share the demand D(p′) equally. More formally, denote the k firms

quoting p′ as {m1, . . . ,mk} and let – without loss of generality – the ordering be such that

cm1 ≤ cm2 ≤ · · · ≤ cmk . Define k̃ as maxj∈{1,...,k}{j : cm1 = cmj}. Then firms m1 to mk̃

sell D(p′)/k̃ units and all other firms sell zero units. We assume that the demand is such

that pmon = max{pmon1 , . . . , pmonn }, where pmoni is the supremum of arg maxp(p− ci)D(p),

is finite and strictly positive.

The assumption that all consumers buy from the low cost firms in case several firms

charge the same price deserves some comment. We make this assumption to ensure the

existence of the standard Bertrand Nash equilibrium. If c2 is lower than the (lowest)

monopoly price of firm 1, this well known equilibrium postulates that p1 = p2 = c2 (and

arbitrary pi ≥ ci for i ∈ {3, . . . , n}). This is indeed a Nash equilibrium with our tie-

breaking rule above but can fail to be an equilibrium with other tie-breaking rules. If, for

example, c1 < c2 and a mass of consumers does not buy from firm 1 whenever p1 = p2,

then p1 = p2 = c2 is not an equilibrium as firm 1 could increase its profits by decreasing

its price by a sufficiently small amount. Assuming a tie-breaking rule such that a Nash

equilibrium exists has two advantages: First, it gives us a benchmark to which we can

compare correlated equilibria. Second, as every Nash equilibrium can be interpreted as

a correlated equilibrium, we know that a correlated equilibrium exists.9 Note also that

the behavior of the consumers that corresponds to this assumption is optimal, and that

9It should be noted that the equal sharing assumption (in case k̃ > 1) is not important for our
analysis and any other rule would work as well.
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the Nash equilibrium would therefore also be a Nash equilibrium of the wider game in

which a group of consumers acts as players.

An alternative to our “buy from the low cost firm” assumption would be to assume

that all k firms that charge the same lowest price p′ sell the same quantity D(p′)/k (“equal

splitting”). Blume (2003) shows that a Nash equilibrium in mixed strategies exists with

equal splitting if D is continuously differentiable. Since we did not assume differentiabil-

ity of D (and as it is unclear whether Blume’s result holds without differentiability), we

do not go this path. However, it should be noted that – with some minor modifications

– all proofs would go through with the alternative assumptions of equal splitting and

continuously differentiable demand.

Our setup gives therefore the following profits for firm i at a price vector p =

(p1, . . . , pn):

πi(p) =



(pi − ci)D(pi) if pi < pj for all j 6= i

(pi − ci)D(pi) if pi = pm1 = · · · = pmk < pj for all j 6∈ {i,m1, . . . ,mk}

and ci < cl for all l ∈ {m1, . . . ,mk}

(pi − ci)D(pi)/k̃ if pi = pm1 = · · · = pmk < pj for all j 6∈ {i,m1, . . . ,mk}

and ci = cm1 = · · · = cmk̃ < cmk̃+1
≤ · · · ≤ cmk

0 else.

As before, a strategy for firm i is a measurable function pi : <+ → <+ and a

distribution F on <n+ is a correlated equilibrium if it satisfies (4.2) for all firms and all

deviation strategies. We obtain our main theorem:

Theorem 2. Let F be a correlated equilibrium. Then, p̄ = inf{p′ :
∫

(p′,∞)n
dF (p) = 0} ≤

c2.

The proof, which is similar to the proof of theorem 1 though without using the

shortcut of symmetry, is relegated to the appendix.

5 Conclusion

We have shown that marginal cost pricing is the unique correlated equilibrium in a

symmetric Bertrand game with homogenous products and constant marginal costs. This

establishes the well-known Bertrand paradox in its most general form. The idea of the

Bertrand paradox is that the perfectly competitive outcome is unavoidable if two firms

compete in prices (in a market for homogenous products). The set of correlated equilibria

establishes – in an equilibrium sense – the set of payoffs that players can achieve non-

cooperatively. It might allow for forms of (self-enforcing) coordination and cooperation
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that are unattainable in other equilibrium concepts, e.g. Nash equilibrium. Therefore

it is the natural solution concept to state an unavoidability-result like the Bertrand

paradox.

We have also shown that the result generalizes to Bertrand settings with n firms

and non-identical marginal costs. In this case, the market price paid by consumers is

less or equal to the second lowest marginal costs with probability one in every correlated

equilibrium, making correlated equilibrium equivalent to Bertrand Nash equilibrium also

in this more general framework.

The key ingredients in our proof are (i) the discontinuities in the payoff functions that

are typical for the Bertrand model and (ii) boundedness of possible equilibrium prices

(induced by a bounded monopoly price). Loosely speaking, firm 1 sets prices above its

costs only if firm 2 is sufficiently likely to set even higher prices. In a symmetric correlated

equilibrium, ingredient (ii) gives us an essential supremum on the price distribution p̄.

Whenever firm 2 receives a recommendation very close to p̄, it must therefore be sure

that — when following the recommendation — there is a sufficiently high chance of firm 1

getting a recommendation that is even closer to p̄. Both firms, however, know that there

is a significant chance that the other firm will just undercut them — otherwise the other

firm would not follow such high recommendations! Since the marginal loss in lowering

the price to some p̄− ε when getting a recommendation in (p̄− ε, p̄) is minimal while the

upside of possibly undercutting the other firm is immense (the all-or-nothing nature of

Bertrand competition, ingredient i), such deviations increase profits and contradict the

existence of correlated equilibria with prices above costs.

The discontinuities of the profit functions explain also why our proof is unrelated to

proofs of (essential) uniqueness of correlated equilibrium in other industrial organization

models, e.g. Cournot competition (Liu, 1996) or price competition with differentiated

goods (Milgrom and Roberts, 1990). Our proof does not work in these models because

they have no payoff discontinuity. Vice versa, their proofs will not work for homogenous

good Bertrand competition since it is not a supermodular game.10 We conjecture that

similar arguments as in our paper would also hold in other games that share the two

ingredients mentioned above: (i) a threshold (depending on the other players’ actions)

such that player i’s payoff discontinuously decreases from a positive value to zero when

passing the threshold and (ii) an upper bound on actions possible in equilibrium.

10Liu (1996) considers an n-firm game that is not supermodular. However, the first step of his proof
shows that the non profitability of not deviating to the Nash equilibrium output already implies that
the market quantity equals the Nash equilibrium quantity in any correlated equilibrium. No such result
obtains in our model as deviating to marginal cost pricing is never strictly profitable and therefore
cannot restrict potential correlated equilibria (in a symmetric Bertrand model).
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6 Appendix: Proof of Theorem 2

Given a correlated equilibrium F , we define p̄ ∈ <+ in the following way: p̄ = inf{p′ :∫
(p′,∞)n

dF (p) = 0} where p = (p1, . . . , pn). Intuitively, p̄ is the price such that (i) the

probability that the market price is greater than p̂ is strictly positive for any p̂ < p̄ and

(ii) the probability that the market price is greater than p̂ is zero for any p̂ > p̄. That is,

if we consider the distribution of prices that consumers pay in the correlated equilibrium

F , p̄ is the essential supremum of this “market price distribution”.

p̄ is weakly below pmon where pmon = max{pmon1 , . . . , pmonn } and pmoni is the supremum

of arg maxp(p − ci)D(p): If p̄ > pmon, the event that all firms charge a price above

pmon would have positive probability. Hence, at least one firm i would – with positive

probability – sell goods at a price higher than pmoni . For this firm, it would be a profitable

deviation to charge p∗ ∈ arg maxp(p− ci)D(p) whenever receiving a recommendation ri

above pmoni . This can be shown more formally as in lemma 2 in the main text. The main

point is that p̄ ≤ pmon exists because
∫

(pmon,∞)n
dF (p) = 0.

Define the following sets analogously to the main text (again p denotes a vector

of prices): A(p̂) = {p : p1 ∈ (p̂, p̄] and p1 ≤ pi for all i = 1, 2, . . . , n} is the set of

price vectors for which firm 1 sells with a price between p̂ and p̄; K(p̂) = {p : p2 ∈
(p̂, p̄] and p2 ≤ pi for all i = 2, . . . , n and p2 < p1} is the set of price vectors where

firm 2 sells at a price between p̂ and p̄ (and firm 1 does not sell). Furthermore, define

B(p̂) = {p : p1 ∈ (p̂, p̄] and p1 = p2 ≤ pi for all i = 1, . . . , n}, i.e. B is the set of price

vectors where firm 1 and 2 charge both the same price above p̂ and all other firms set

weakly higher prices.

Lemma 4. Let F be a correlated equilibrium and suppose p̄ = inf{p′ :
∫

(p′,∞)n
dF (p) =

0} > c2. Then,
∫
B(p̂)

dF (p) = 0 for any p̂ ∈ (c2, p̄).

Proof. Suppose to the contrary that there exists a p̂ < p̄ such that
∫
B(p̂)

dF (p) > 0.

We will show that it is then profitable for firm 2 to use the following deviation strategy

for ε > 0 sufficiently small

ζε2(r2) =

r2 if r2 6∈ (p̂, p̄]

(1− ε)r2 if r2 ∈ (p̂, p̄].
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The profit difference of firm 2 between sticking to the recommendation and using ζε2 is

∆ε
2 =

∫
K(p̂)∪B(p̂)

π2(p) dF (p)−
∫

[(1−ε)p̂,∞)×(p̂,p̄]×[(1−ε)p̂,∞)n−2

π2(p1, (1− ε)p2, p3, . . . , pn) dF (p)

≤
∫
K(p̂)

π2(p)− π2(p1, (1− ε)p2, p3, . . . , pn) dF (p)

+

∫
B(p̂)

π2(p)− π2(p1, (1− ε)p2, p3, . . . , pn) dF (p)

≤
∫
K(p̂)

D((1− ε)p2)εp2 dF (p) +

∫
B(p̂)

π2(p)− π2(p1, (1− ε)p2, p3, . . . , pn) dF (p)

≤ ε

∫
K(p̂)

D((1− ε)p2)p2 dF (p)

+

∫
B(p̂)

D(p2)(p2 − c2)

2
−D((1− ε)p2)((1− ε)p2 − c2) dF (p).

Note that the first integral in the last line continuously converges to 0 as ε → 0. The

second integral in the last line is, however, negative and bounded away from 0: First, we

show that the integrand is strictly negative and bounded away from zero. D(p2)(p2−c2)
2

−
D((1− ε)p2)((1− ε)p2 − c2) < D((1− ε)p2)

(
−(p2−c2)

2
+ εp2

)
which for ε < p2−c2

4p̄
is less

than D((1 − ε)p2)−(p2−c2)
4

< D(p̄)−(p̂−c2)
4

. Hence, the integrand is bounded from above

by −D(p̄) p̂−c2
4

< 0 if ε ∈ (0, p̂−c2
4p̄

) because p̂−c2
4p̄

< p2−c2
4p̄

for all elements of B(p̂). By

assumption,
∫
B(p̂)

dF (p) > 0 which implies that the second integral is bounded from

above by −D(p̄) p̂−c2
4

∫
B(p̂)

dF (p) < 0 for ε ∈ (0, p̂−c2
4p̄

). Consequently, ∆ε
2 < 0 for ε > 0

small enough which contradicts that F is a correlated equilibrium.

We need one further auxiliary result. Roughly speaking, the result says that in a

correlated equilibrium firm 1 will sell at a price in (p̂, p̄] with positive probability for any

p̂ < p̄. Given the definition of p̄, this should be hardly surprising.

Lemma 5. Let F be a correlated equilibrium such that p̄ = inf{p′ :
∫

(p′,∞)n
dF (p) =

0} > c2. Then,
∫
A(p̂)

dF (p) > 0 for any p̂ ∈ (c2, p̄).

Proof. Take an arbitrary p̂ ∈ (c2, p̄). First, we show that
∫
p1∈(p̂,p̄], pi>p̄ ∀i 6=1

dF (p) = 0.

Suppose otherwise. Then firm 2 receiving recommendation r2 can profitably deviate by

playing

ζ2(r2, p̂) =

r2 if r2 ≤ p̄

p̂ if r2 > p̄.

This is a profitable deviation as it increases firm 2’s profits by at least
∫
p1∈(p̂,p̄], pi>p̄ ∀i 6=1

(p̂−
c2)D(p̂)dF (p) > 0. Hence,

∫
p1∈(p̂,p̄], pi>p̄ ∀i 6=1

dF (p) = 0. This means that firm 1 would

never sell at a price in (p̂, p̄] if
∫
A(p̂)

dF (p) was zero.
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Second, consider the following deviation strategy for firm 1:

ζ1(r1, p̂) =

r1 if r1 6∈ (p̂, p̄]

p̂ if r1 ∈ (p̂, p̄].

The payoff difference between sticking to the recommendation and using ζ1 is11

∆ =

∫
A(p̂)

π1(p)− p̂D(p̂) dF (p) +

∫
(p̂,p̄]×[p̂,∞)n−1\A(p̂)

−π1(p̂, p−1) dF (p).

By the definition of p̄,
∫

(p̂,p̄]×[p̂,∞)n−1 dF (p) > 0 (recall that firm 1 never wants to set a

price above p̄ as the probability of selling at such a price is zero). If
∫
A(p̂)

dF (p) = 0, this

would imply that the second integral in ∆ is strictly negative while the first integral in

∆ would be zero. Hence, ζ1 is a profitable deviation if
∫
A(p̂)

dF (p) = 0 contradicting that

F is a correlated equilibrium.

The following observation is related to lemma 5: For any p̂ < p̄, a firm i using the

strategy

ζi(ri, p̂) =

ri if ri 6∈ (p̂, p̄]

p̂ if ri ∈ (p̂, p̄]

will sell D(p̂) units at price p̂ with positive probability: By the definition of p̄, the event

that all firms get a recommendation above p̂ has positive probability. Hence, firm i sells

with positive probability at price p̂ when using the strategy ζi.

Using lemma 4, we can now show the main result: In any correlated equilibrium,

p̄ ≤ c2. This means that the price that consumers pay will be weakly less than c2 with

probability 1. Consequently, the expected profits for firms 2, . . . , n are zero and the

expected profits of firm 1 are bounded from above by D(c2)(c2 − c1) in any correlated

equilibrium (assuming that c2 is lower than the lowest monopoly price of firm 1; other-

wise, firm 1’s monopoly profits are, of course, the upper bound of firm 1’s equilibrium

profits).

Suppose to the contrary p̄ > c2 in a correlated equilibrium F . Let p̂ = 1
4
c2 + 3

4
p̄ and

distinguish the two cases

1.
∫
K(p̂)

dF (p) ≥
∫
A(p̂)

dF (p)

2.
∫
K(p̂)

dF (p) <
∫
A(p̂)

dF (p).

In the first case, the profit difference of firm 1 from using ζ1(r1, p̂) (see above) and from

11We use p−1 = p2, . . . , pn to denote the prices of all firms but firm 1.
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following the recommendation is

∆1 =

∫
A(p̂)

π1(p1, p−1) dF (p)−
∫

(p̂,p̄]×[p̂,∞)n−1

π1(p̂, p−1) dF (p)

≤
∫
A(p̂)

D(p̂)(p1 − c1) dF (p)−
∫

(p̂,p̄]n
D(p̂)(p̂− c1) dF (p)

= D(p̂)(p̂− c1)

(∫
A(p̂)

p1 − p̂
p̂− c1

dF (p)−
∫

(p̂,p̄]n\A(p̂)

dF (p)

)
≤ D(p̂)(p̂− c1)

(∫
A(p̂)

p1 − p̂
p̂− c1

dF (p)−
∫
K(p̂)

dF (p)

)
.

By p̂ = 1
4
c2 + 3

4
p̄, p1−p̂

p̂−c1 ∈ (0, 1) for all p1 ∈ (p̂, p̄]. Therefore,∫
A(p̂)

p1 − p̂
p̂− c1

dF (p) <

∫
K(p̂)

dF (p) (4.4)

because 0 <
∫
A(p̂)

dF (p) ≤
∫
K(p̂)

dF (p) by the definition of case 1 and lemma 5. Note

that (4.4) implies ∆1 < 0 which contradicts that F is a correlated equilibrium.

In the second case, the profit difference of firm 2 from using ζ2(r2, p̂) and from fol-

lowing the recommendation is

∆2 =

∫
K(p̂)∪B(p̂)

π2(p2, p−2) dF (p)−
∫

[p̂,∞)×(p̂,p̄]×[p̂,∞)n−2

π2(p̂, p−2) dF (p)

≤
∫
K(p̂)

π2(p2, p−2) dF (p)−
∫

[p̂,p̄]×(p̂,p̄]×[p̂,p̄]n−2

π2(p̂, p−2) dF (p)

≤
∫
K(p̂)

D(p̂)(p2 − c2) dF (p)−
∫
A(p̂)∪K(p̂)

π2(p̂, p−2) dF (p)

=

∫
K(p̂)

D(p̂)(p2 − p̂) dF (p)−
∫
A(p̂)

D(p̂)(p̂− c2) dF (p)

= D(p̂)(p̂− c2)

(∫
K(p̂)

p2 − p̂
p̂− c2

dF (p)−
∫
A(p̂)

dF (p)

)
.

Note that the step from the first to the second line uses lemma 4. The step from the

second to the third line uses the fact that the intersection of A(p̂) and the set of price

vectors with p2 > p̄ has zero probability in a correlated equilibrium F : Otherwise, firm

2 could profitably deviate to p̂ whenever receiving a recommendation above p̄.

Now, p̂ = 1
4
c2 + 3

4
p̄ implies that p2−p̂

p̂−c2 ∈ (0, 1) for all p2 ∈ (p̂, p̄]. The definition of case

2 therefore implies 0 ≤
∫
K(p̂)

p2−p̂
p̂−c2 dF (p) ≤

∫
K(p̂)

dF (p) <
∫
A(p̂)

dF (p). Hence, ∆2 < 0

which contradicts that F is a correlated equilibrium.
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Chapter 5

An Informational Theory of Privacy1

Ole Jann and Christoph Schottmüller

We develop a theory that explains how and when privacy can increase welfare. Without

privacy, some individuals misrepresent their preferences, because they will otherwise be

statistically discriminated against. This ”chilling effect” hurts them individually, and

impairs information aggregation. The information gain from infringing privacy (e.g. by

electronic surveillance) can be much smaller than expected ceteris paribus. Overall,

privacy is essential for any mechanism of information aggregation, such as markets or a

democratic society. It is also redistributive: Like free spech, privacy benefits some and

hurts others.

1We are grateful for helpful comments by Sebastian Barfort and Peter Norman Sørensen, as well as
a seminar audience at the University of Copenhagen.
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1 Introduction

Privacy is one of the most pressing issues of the information age. It is at the center of de-

bates about government response to extremism and terrorism, especially after revelations

that many western governments systematically infringe the privacy of their own citizens

by engaging in indiscriminate electronic surveillance (cf. Schneier (2015), Greenwald

(2014) or Economist (2013)). The fact that people are willing to give up some privacy

in exchange for lower prices or better services is part of the business model of many

companies. Some of the most successful and fastest-growing businesses are even built on

the fact that people are willing to trade their data in exchange for a free service, thus

turning their data into a product which can then be profitably sold.

As these examples show, issues of privacy often involve trade-offs: Between privacy

and security, privacy and thriftiness, or even privacy and participation in public life.

Understanding the value and the effects of privacy is crucial for how voters, consumers

and regulators approach these trade-offs. Classical economic theory suggests that privacy

is usually welfare-reducing because it creates asymmetric information – an idea that is

echoed by probably the best-known economic treatise on privacy, Posner (1981).

In this paper, we develop an informational theory of privacy.2 By considering the

role of privacy in allowing individuals to express their preferences and in information

aggregation, we show that privacy can enhance, not lessen, welfare. One part of this

insight is that as privacy allows people to express their preferences and opinions more

freely, it can actually improve overall information aggregation of a society. Moreover,

the welfare gains from infringing privacy, such as better information about individuals,

are often not as large as the losses of the individuals, because individuals will react to a

loss of privacy by changing their behavior and thus providing less information. Privacy

can also protect minorities: Those with opinions or preferences which are different from

the median of the population.

To illustrate our results, consider the following example. Alice would prefer if mari-

juana was legalized. She considers publishing an overview of her arguments on a social

network to try to convince her friends. However, we assume that in Alice’s world there

is very little privacy: If she does something online, everyone can see it – not just her

friends, but also future employers, her parents, the police, and so on.

There is some correlation between preferences on legalization and actual drug use,

in that people who actually use drugs are more likely to support legalization. The

correlation is of course far from perfect – many people might support legalization for

philosophical or practical reasons without being users, and some drug users might even

2By “privacy”, we mean the ability to take actions without being observed, and having interactions
with others confined to the intended recipients. This is only one of many possible definitions and
understandings of the term “privacy”; see for example Solove (2010) for an overview.
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oppose it.

Employers do not want to hire drug users, but drug use is not observable. An employer

will therefore use the observable characteristic (whether Alice did or did not publicly

support legalization) to make a hiring decision: People who have supported legalization

will not be hired. We can show that this happens in any equilibrium where the correlation

between types (i.e. drug use and preference for legalization) is high enough. Being unable

to observe the attribute that he is really interested in, the employer will statistically

discriminate (as in Arrow (1973) and Phelps (1972)) based on observed preference.

Then, however, Alice has to make a choice: Voice her preference, and risk not being

hired for a job – or stay quiet, and face no such consequence. If she doesn’t feel strongly

about the subject (i.e. if she only has a weak preference for legalization), she will

choose not to express her opinion. That is our first result: Lack of privacy causes a

“chilling effect”. Despite Alice’s preference being not only legal and legitimate, but also

insubstantial for the job (recall that even the employer does not take issue with her

preference itself), she decides not to express it for fear of the consequence.3

If Alice had been an opponent of legalization, there would have been no chilling

effect. The spectrum of expressed preferences that are present in the public debate

will therefore be skewed: Those who oppose legislation speak out freely, while those who

support it tend to stay quiet. Since the optimal policy should be an unbiased aggregation

of individual preferences, the policy that is implemented will systematically deviate from

this optimum.

If her views on the matter are strong, however, she decides to post her arguments

anyway since the expected gain from doing so outweighs the disadvantage of not being

hired. In this case the lack of privacy hurts Alice in two ways. She suffers from not being

hired and – due to the chilling of others with more moderate opinions – her preferred

policy of legalization is less likely to be implemented. This is our second result: Lack

of privacy hurts those with non-mainstream preferences the most – those that care too

strongly to protect themselves by adapting their behavior (i.e. giving in to the chilling

effect). Again, note that this effect is asymmetric, too, and affects only those who

strongly support legalization.

The change in behavior that results from the chilling effect also has another con-

sequence: It makes the statistical discrimination that the employer uses less effective.

Since many people (both drug users and non-users) misrepresent their preferences now,

observing what someone posts about drug legalization becomes less informative. This is

in particular true if actual drug users are more afraid of not being hired, say because of

worse outside options, than non-users as in this case actual drug users are chilled more

than non-users. This is our third result, which is especially important in debates about

3The term “chilling effect” has been used by legal scholars since at least 1952, when U.S. Supreme
Court Justice Felix Frankfurter used it in a concurring opinion in Wieman v. Updegraff, 344 U.S. 183.

131



Chapter 5. An Informational Theory of Privacy

government surveillance. Instead of “employer”, think for a moment that it was the po-

lice who decides to watch those closer who voice a certain opinion, or use certain means

of communication, or visit certain places. Surveillance programs and other privacy in-

trusions should therefore never be naively evaluated ex ante – they will always be made

less effective by the resulting shift in behavior. Herein lies the crux of our analysis of the

trade-offs involved in privacy – that we don’t just need to weigh the loss of those who

lose privacy with the gain of those who gain information, but also consider how large

that gain actually is, given that people rationally change their behavior if they know

they are being observed. Such changes in behavior happen: Martews and Tucker (2015)

show a significant shift in search engine search terms after the Snowden revelations in

2013; a survey of American writers has found that 1 in 6 has avoided writing or speaking

on a particular topic for fear of surveillance (PEN America, 2013).

Consider, for comparison, a world in which Alice has more privacy, so that only her

friends (i.e. the intended recipients) can see her message. Now the employer cannot

discriminate, since there is no position on drug legalization for him to observe. Alice

will therefore be uninhibited in expressing herself, and there is no systematic bias in who

speaks up about their opinion. Neither do people with strong opinions get statistically

discriminated against. One could argue that the employer loses out, since he has less

information on which to base his decision. We can show, however, that the privacy

case provides higher welfare compared to the no-privacy case in large populations (and

the employer will not even lose from privacy) – this is our fourth result. Note that in

this particular case, some people (those who support legalization) would prefer privacy,

while opponents of legalization are more likely to get their preferred policy if there is

no privacy and the chilling effect silences people with different opinions. Some people

therefore rationally oppose privacy. If there were a large number of issues at stake,

however, where every individual can sometimes find themselves on either side of the

debate, the whole population gains from privacy.

In an extension, we ask: What if Alice herself can choose to keep her message private?

Then the employer has to treat all applicants about whom he can find no information

equally. Would he hire someone about whom he can find no information? That depends

on how people who oppose legalization behave: Would they also choose to keep their

messages private? Intuitively, they have nothing to fear from not doing so. We argue

that a possible equilibrium where everybody, supporters and opponents of legalization,

individually choose privacy for themselves is not stable. Another equilibrium, in which

only supporters of legalization choose privacy and in which privacy therefore is mean-

ingless, is more stable. To work well, privacy can therefore not always be left to the

individual – sometimes it needs to be mandated.4

4There are parallels to the obligatory secret ballot, made for example by Schelling (1960): If ballot
secrecy was optional, voters could be intimidated into making their ballot public. Forbidding them from
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Finally, in our second extension, we look more closely at Alice’s rational response to

having no privacy. We have established above that Alice might misrepresent her opinion

if she prefers legalization (the“chilling effect”), but that she will otherwise express herself

truthfully if she strongly supports legalization. If she does so, however, she is aware that

this will come with negative consequences, such as worse employment prospects. Now,

assume that Alice can take a costly action to mitigate the damage to herself – however,

this is costly to the employer. In our example, imagine that Alice could bring a lawyer

to every job interview – which slightly decreases, ceteris paribus, the probability of not

being hired because of her expressed opinions (thus making it her rational response

to the employer’s statistical discrimination), while making the interaction much more

cumbersome for the employer. In this way, the statistical discrimination that results

from lack of privacy can erode trust among the players, and can mean that by a chain of

rational responses to each other’s behavior, they end up in a Pareto-inferior equilibrium.

Our general model, which we introduce in section 2, considers a problem of infor-

mation aggregation, in which a group of individuals have cardinal preferences over two

options and express their preference by supporting one of the two options. We do not

restrict our arguments to any specific information aggregation problem – in fact, our

only assumptions about the information aggregation mechanism are that the probability

of an option being implemented increases in the number of supporters that it has, and

that the process is not systematically biased towards one option. Our model is therefore

applicable to a large variety of situations. The example above already points to politi-

cal information aggregation through public debate or voting. However, the mechanism

might just as well be a market in which two providers of goods or services compete for

customers. Efficiency demands that the provider who is preferred by most customers

also does more business. But if using one of the providers is in some way disreputable, or

can bring adverse consequences, lack of privacy and the chilling effect will systematically

bias the result. We discuss examples of the mechanism in section 7.

What kind of privacy problem do we have in mind when we assume, as in our example,

that some observable behavior is predictive of an unobservable type? Here, too, we keep

our assumptions quite general, as we only assume that the two unobservable types (in

our example: policy preference and drug use) are positively correlated. It is crucial to

note that this does not require any sort of causal relationship – only correlation. We

think that in the real world, almost any variable can be “predictive”, in the sense of

our model, of almost any other variable. Meehl (1990) calls this the “crud factor” and

notes that “in social science, everything is somewhat correlated with everything.” Even

minor choices are correlated with political preferences – a fact which is being used by

many political parties and candidates to identify their potential voters. Hamburger and

doing so protects them from any such intimidation.
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Wallsten (2005), for example, report about microtargeting efforts by the Republican

party in the United States that “... bourbon drinkers were more likely to be Republican,

while gin was a Democrat’s drink. ... Democrats preferred Volvos; Ford and Chevy

owners were most likely Republicans. People with call-waiting service on their telephones

were predominantly Republican.” As the availability of data and of cheap processing

power has grown substantially in recent years, this has become much more acute. The

consulting firm Deloitte advertises that it can reliably predict people’s life expectancy

from observing their buying decisions (Robinson et al., 2014, p. 6), and the “big data

underwriting firm” Zest Finance simply claims: “All Data is Credit Data.”

In understanding privacy as the creation and maintenance of asymmetric information,

our study takes a similar point of departure as the “Chicago school”, exemplified by

Stigler (1980) and Posner (1981). However, they go on to argue that since asymmetric

information creates economic inefficiencies and reduces welfare, privacy must be welfare-

reducing. This line of thought echoes the ubiquitous “nothing to hide”-argument, which

Schneier (2006) has called “the most common retort against privacy advocates.” As

Solove (2010) points out, this argument usually takes the form: “If you aren’t doing

anything wrong, what do you have to hide? ... If you have nothing to hide, what do you

have to fear?”

Our model allows us to argue that this argument, and hence the claim that privacy

necessarily reduces welfare, is based on two faulty assumptions. Firstly, it assumes

that all information is precise and unambiguous. But decisions that are made under

uncertainty are routinely based on statistical discrimination. Not everybody who travels

to Yemen is doing so to attend a terrorist training camp; yet it might be rational for

Western governments to watch people who undertake such travels more closely – to the

detriment of someone who is planning to visit his family in Yemen.

The Chicago argument therefore offers only limited guidance when it comes to actual

problems of privacy. It is plausible that the first-best could be achieved in the total

absence of asymmetric information. But in the real world, asymmetric information

is a fact of life, and questions of privacy are therefore about how much asymmetric

information there should be, and how it should be structured. The Chicago argument

addresses an imaginary ideal case and has little to say about intermediate cases (and

whether, for example, welfare is monotone in the amount of asymmetric information),

which limits its use substantially.5

Secondly, it takes a naive ex-ante view of rational behavior. People who know that

their actions are being observed often optimally change their behavior. Since traveling

to Yemen can make one the target of extensive surveillance, both terrorists and non-

terrorists might choose to abstain from such travels. This is clearly welfare-reducing for

5A similar argument against the Chicago school is made by Hermalin and Katz (2006).
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the non-terrorist whose plans are disrupted, and not necessarily counterbalanced by a

welfare gain from deterring the terrorists’ travels.

Accepting our argument that privacy can be welfare-enhancing, and that sometimes

privacy even needs to be mandated to work, also means refuting the Chicago argument

that any regulation of privacy can at best be ineffective and at worst damaging.

Two recent papers have proposed rationales for privacy in public good settings where

agents have an intrinsic motivation to contribute and also care about their image. That is,

each agent would like others to believe that he has a high intrinsic motivation. Daughety

and Reinganum (2010) show that privacy can be optimal in this setting if a lack of privacy

would lead to excessive contributions due to image concerns. Ali and Bénabou (2016)

add a principal who has to decide on his own contribution in a setting where agents

and principal have only noisy information about the usefulness of the public good. More

privacy implies that the aggregate contribution by the agents is – as a signal of the

usefulness of the public good – more informative and therefore allows the principal to

better choose his contribution. The mechanism in our model differs in two important

ways: First, we do not rely on image concerns but micro model the downside of taking

a certain action (e.g. supporting drug legalization) through an interaction with another

player (e.g. a future employer). Note that image concerns are not a reduced form for this

because the utility of the interacting player will be an integral and indispensable part

of our welfare analysis. Second, the inference is somewhat more subtle in our model as

the interacting player is not interested in the preference for action (e.g. the preference

for drug legalization) but only in unobservables that are correlated with this preference

(e.g. drug use). In this sense, we link the literature on statistical discrimination (Arrow,

1973; Phelps, 1972) and the literature on privacy.

Apart from such general economic studies of privacy, there is a large literature in

industrial organization and related fields that deals with demand for privacy and the

meaning of privacy for issues like pricing. Acquisti (2010) and Acquisti et al. (2015)

provide excellent overviews; here we want to point to some studies that are loosely

related to ours.

Hirshleifer (1971) argues that information revelation before trading can impair risk-

sharing and therefore reduce welfare. This “Hirshleifer effect” means, for example, that

providing health data about buyers of life insurance transfers risk from the seller to the

more risk-averse buyers. This can be understood as an argument for privacy. Hermalin

and Katz (2006) follow in a similar vein and show that privacy can be efficient in a model

of price discrimination by a monopolist and a model of a competitive labor market.

They also show that allocating property rights to control information does not affect

equilibrium outcomes (and therefore their results) in their setup.

Similar to the second extension of our model, Acquisti and Varian (2005) consider

rational reactions by people who lack privacy – for example, that internet users em-
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ploy anonymization tools. They argue that this can make it unprofitable (and hence

inefficient) for the seller of goods to collect information.

2 Model

The model has two stages. First an information aggregation stage in which each of n

citizens has to decide whether he supports a given policy or not. Second an interaction

stage in which each citizen interacts with an (outside) player.

In the information aggregation stage, each of n citizens has to voice his opinion

on whether a given policy p should be implemented (p = 1) or not (p = 0). Citizen

i’s voiced opinion is denoted by pi ∈ {0, 1}. If m citizens support implementation of

p, the probability that p is carried out is q(m/n). We assume that q is continuously

differentiable and strictly increasing in m/n, that is, the policy is more likely to be

implemented the higher the proportion of citizens who support it.6 We also assume that

q is not systematically biased towards one of the two policies, i.e. we assume that it is

point-symmetric around 0.5. The payoff of the policy p ∈ {0, 1} for citizen i is then θip.

Citizen i’s valuation θi is privately known by i. We assume that the θis are iid draws

from a standard normal distribution Φ.

Before describing the interaction stage let us give an example for the information

aggregation stage.

Example 1. There is a petition to liberalize drug laws to a certain degree. The more

citizens sign the petition, the more likely it is that its demands will be implemented.

Every citizen has to decide whether to sign the petition (pi = 1) or not (pi = 0). Every

citizen has an expected payoff consequence of liberalization of θi.

We now turn to the interaction stage. Each citizen interacts in this stage with one

opposing player (OP). We will describe this player as one central outside player with

which each citizen interacts although nothing in the model rules out the alternative case

where each citizen interacts with a different player (possibly even another citizen). OP

has to choose how he interacts with citizen i and he can choose from the actions A

(aggressive) or M (mild). We normalize OP’s payoff from playing M to 0 and assume

that the payoff of playing A against a type τi is simply τi which is a private characteristic

of citizen i. The characteristics τi are drawn independently from a distribution Γθi with

support in [τ , τ̄ ]. We assume that Γθ′i first order stochastically dominates Γθ′′i if and only

if θ′i ≥ θ′′i . This implies that θi and τi are positively correlated as higher θi make higher

τi more likely.

6Differentiability will allow us to later analyze the effect of large n in proposition 3 – it has no effect
on our other results.
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To make the problem interesting, we assume that A is OP’s best response if τi = τ̄

and M is the best response if τi = τ . That is, τ̄ > 0 and τ < 0. However, OP does not

observe τi when choosing his action and will only be able to form expectations about

the citizen’s τi. We will distinguish two cases: In the privacy case, we consider OP’s

problem when he has no information on τi apart from the priors Γθi and Φ; in particular

OP does not know pi in this case. The more complicated part of the analysis, however,

will deal with the case without privacy in which OP observes which opinion i voiced in the

information aggregation stage, i.e. OP can observe pi and can condition his expectation

of τi on this information. The citizen’s payoff is normalized to 0 when OP plays M . If

OP plays A against citizen i, then i will have a payoff of −δ(τi) where δ > 0 and δ is

strictly increasing in τi. We assume that citizen payoffs from the two stages are additive.

All players are assumed to maximize their expected payoff.

Figure 5.1 shows a graph of the model which we will use and modify in the following

sections to illustrate our main points.

τi

θi

Figure 5.1: An illustration of our model. Each dot represents a citizen. Citizen i’s type
τi and θi are correlated (in this example: rτθ = 0.6). The OP wants to treat those
with τi > 0 aggressively and all others mildly, but he cannot observe τi. Citizens’ policy
preferences are given by θi; observing the choices of citizens will therefore provide the
OP with information about τi. ”Privacy” is the question whether the OP can or cannot
observe an individual’s policy choice before deciding how to treat her.

Example 1 (Continued). Continuing our example, OP might be a potential employer

who has to decide whether to hire citizen i (action M) or not to hire i (action A). The

employer would prefer to hire i if i is not a drug user and would prefer not to hire i if i is a

drug user. The type τi would then be binary, i.e. τi ∈ {τ , τ̄}, and would indicate whether
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i is a drug user or not. The first order stochastic dominance assumption on Γθi then

simply means that the probability of being a drug user is increasing in θi. Hence, τi and

θi are positively correlated which also means that citizens who support drug legalization

are relatively more likely to be drug users than citizens opposing legalization. Citizen i

prefers to be hired and the disutility of not being hired might be bigger for drug users

because their outside options are generally worse.

3 Preliminary Analysis – The Chilling Effect

3.1 OP’s Beliefs

We start the analysis with some preliminary results on the citizens’ and OP’s beliefs and

strategies. This will then allow us to establish the chilling effect and analyze its welfare

implications.

The payoff of citizen i from the information aggregation stage is p∗ θi. The higher θi,

the higher is i’s benefit from having the policy implemented. Given this structure, it is

not surprising that i will use a cutoff strategy: If θi is higher than some cutoff/threshold

t(τi), i supports the policy and otherwise he does not. In the privacy case, payoffs of the

interaction stage do not depend on actions chosen in the information aggregation stage

and therefore i will support the policy whenever θi is positive.

Lemma 1. Only cutoff strategies are rationalizable for citizens, i.e. each citizen will

choose a cutoff t(τi) and play pi = 0 if θi < t(τi) and pi = 1 if θi > t(τi). In the privacy

case, the optimal cutoff tp(τi) = 0.

Given a cutoff strategy t(τi), we can determine the beliefs of OP in the case without

privacy using Bayes’ rule as

β1(τ) ≡ prob(τi ≤ τ |pi = 1) =

∫
<

∫ τ
τ
1t(τi)≤θi dΓθi(τi) dΦ(θi)∫

<

∫ τ̄
τ
1t(τi)≤θi dΓθi(τi) dΦ(θi)

(5.1)

β0(τ) ≡ prob(τi ≤ τ |pi = 0) =

∫
<

∫ τ
τ
1t(τi)≥θi dΓθi(τi) dΦ(θi)∫

<

∫ τ̄
τ
1t(τi)≥θi dΓθi(τi) dΦ(θi)

. (5.2)

That is, β1(τ) is the probability that τi is below τ given that i chose pi = 1. These beliefs

allow us to define the expected utility of playing A conditional on observing decision pi

and given cutoff strategy t(τi):

v1 =

∫
<
τ dβ1(τ) (5.3)

v0 =

∫
<
τ dβ0(τ). (5.4)
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The best response of OP to a given cutoff strategy is to choose A against a citizen

who chose pi = j if vj > 0 for j ∈ {0, 1}. Otherwise, it is a best response to choose M.7

3.2 The Chilling Effect

For the case without privacy, the following lemma states that OP is more likely to play

A against citizens who have chosen pi = 1 in the information aggregation stage than

against citizens who have chosen pi = 0. Intuitively, citizens with a high θi have more

to gain from implementing the policy in the information aggregation stage. As θi and τi

are positively correlated, OP is relatively more likely to play A against them.

Lemma 2. In every perfect Bayesian equilibrium, v1 ≥ v0.

The previous lemma is the basis of the chilling effect. In equilibrium, OP is more

likely to play A against citizen i if this citizen supported the policy, that is, voiced the

opinion pi = 1 in the information aggregation stage. For this reason, i is to some degree

afraid of supporting the policy. More technically, there are types (θi, τi) for which a

citizen would support the policy in the privacy case but will not support the policy if

OP learns pi before taking his action. The policy decision in the information aggregation

stage is therefore biased against the policy in the case without privacy.

There is one minor caveat to this result: If OP’s preferences are so strong that he

always uses the same action, e.g. OP prefers to play M against both citizens who have

played pi = 0 and citizens who have played pi = 1, then no chilling occurs because

information on pi is not relevant for OP’s decision and therefore equilibria with and

without privacy are identical. Put differently, chilling occurs whenever information about

pi matters for OP’s behavior but cannot occur if this information does not affect OP’s

behavior.

Proposition 1 (Chilling effect). The equilibrium cutoff for every type τi is weakly higher

without privacy than in the privacy case. The inequality is strict whenever the absence

of privacy changes the equilibrium behavior of OP. The difference of equilibrium cutoff

without and with privacy is increasing in τi.

Figure 5.2 illustrates the chilling effect. The effect changes the behavior of citizens

with moderate preferences – that is, citizens who are almost indifferent between imple-

menting and not implementing the policy – as it simply shifts the cutoff upwards by

a bit. Citizens with a very high preference for the policy will choose pi = 1 with and

without privacy and citizens with a very low (that is, negative) preference will choose

pi = 0 in both cases. Those that are almost indifferent but support the policy in the

7Note that OP’s best response does not depend on the number of citizens choosing pi = 1 in the first
stage. Intuitively, this information does not contain any information about τi (given that pi is known)
because all θi and τi are independently drawn by assumption.
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privacy case are the ones who stop supporting the policy when OP uses information

about pi. In this sense, the citizens who change their behavior do not lose a lot by

their behavior change. However, citizens with strong preferences for the policy should

be most worried about chilling: They do not change their own behavior but – because

chilling changes the behavior of those with more moderate preferences – the policy will

with some probability not be implemented without privacy though it would have been

implemented with privacy. Those citizens with a strong preference for the policy value

the policy most and therefore have all reasons to be worried about other citizens being

chilled. In short, privacy changes the behavior of moderate people and protects people

with extreme preferences.

τi

θi

t(τi)

Chilling
effect

Figure 5.2: An illustration of proposition 1. If decisions are private, all individuals with
positive θi will support p = 1 and all others support p = 0. If decisions are public, the OP
can use the individuals’ decisions to predict their type τi. Therefore, some people with
relatively low θi will misrepresent their preferences to avoid the statistical discrimination.
Since the disutility from being treated aggressively rises in τi, we get the curve above.
Individuals in the grey area are subject to the chilling effect and support p = 0 without
privacy.

The result that the cutoff is shifting more for citizens with a high type τi implies

that the cutoffs of higher τi are higher. As a consequence, abolishing privacy becomes

somewhat less profitable for OP compared to the case where citizens use the same cutoff:

The fact that higher τi have higher cutoffs reduces the correlation between θi and τi. This

correlation is exactly the reason why discriminating between those citizens who support

and those who do not support the policy is beneficial for OP in the first place. Hence,

OP’s benefits from statistical discrimination are reduced by the chilling effect. This

means that an evaluation of whether privacy should be given up will be biased against
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privacy if it does not take the behavior change of citizens caused by the removal of privacy

into account. The following proposition makes this statement more formally. To do so,

we have to add the technical condition that the distribution Γ0 is symmetric around 0.

This ensures that OP does not gain from the fact that all cutoffs increase (while the

argument above shows that it is detrimental to OP that cutoffs of higher τ increase by

a larger amount). Note that the following proposition does not compare OP’s payoffs

under privacy and no privacy. In line with the argument above, it compares OP’s payoffs

without privacy with his payoffs in a hypothetical situation where there is no privacy

but citizens use their equilibrium strategies of the privacy case.

Proposition 2. Assume that the distribution Γ0(τ) is symmetric around τ = 0.8 OP’s

payoff without privacy is lower if citizens use the cutoffs tnp(τ) than if they used the

cutoffs tp(τ) = 0.

4 Welfare Analysis

What are the welfare consequences of the chilling effect? It is not hard to see that

the chilling effect causes a welfare loss in the information aggregation stage. The bias

against the policy means that information is no longer efficiently aggregated and decision

0 is more likely to be taken than optimal. The following lemma states formally that

the privacy equilibrium yields a higher expected consumer surplus in the information

aggregation stage than the equilibrium without privacy. (We define consumer surplus in

the information aggregation stage as p
∑n

i=1 θi.)

Lemma 3. The cutoff strategy tp(τ) = 0, i.e. the equilibrium strategy in the privacy

case, gives a higher expected consumer surplus in the information aggregation stage than

any tnp(τ) > 0.

While this shows that individuals are always better off under privacy, this does not

allow us to say anything about overall welfare. Without privacy, the OP can adjust his

behavior according to people’s policy choices pi and thereby make use of the correlation

between θi and τi to identify individuals with a relatively high τi. To avoid case distinc-

tions, we will concentrate in the remainder of this section on the case where OP plays M

in the privacy equilibrium, i.e. the unconditional expectation of τ is negative: E[τ ] ≤ 0.

(This also seems to be the more relevant case in most applications mentioned before.)

Concerning overall welfare, we will derive three strong results that establish sufficient

conditions for when privacy is welfare-optimal both for the citizens and the OP. Firstly,

if the OP plays a mixed strategy in equilibrium (i.e. he mixes between treating people

who choose pi = 1 mildly or aggresively), privacy always provides higher welfare than

8An alternative technical condition that is also sufficient for the result to hold is E[τi|θi = 0] ≥ 0.
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no privacy. This simply follows from the fact that while individuals always lose from

lack of privacy, the OP is indifferent between privacy and no privacy if he plays a mixed

strategy in the no privacy case.

Secondly, we show that for large n, i.e. if there are many individuals, there exist no

equilibria in which the OP plays a pure strategy, and privacy is therefore optimal.

Thirdly, we show the same for large δ(τ) – in other words, if the cost of being treated

aggressively is very high, then privacy is also welfare optimal.

Proposition 3. Assume OP plays M in the privacy equilibrium.

1.) If OP uses a mixed strategy in the equilibrium without privacy, then privacy maxi-

mizes welfare.

Assume that (i) δ is differentiable and strictly increasing in τ , i.e. δ′(τ) > 0 for all

τ ∈ [τ , τ̄ ] and (ii) Γ∞ = limθi→∞ Γθi is a non-degenerate distribution in the sense that

Γ∞(τi) > 0 for all τi > τ .

2.) Privacy welfare dominates no privacy for large n in the following sense: Compared

to the no privacy case, privacy leads to a higher expected consumer surplus and the same

expected payoff for OP.

3.) Let the disutility of a citizen facing action A by OP be rδ(τ) (instead of δ(τ)). For

r sufficiently large, privacy welfare dominates no privacy.

The intuition behind the second result is that the chilling effect is getting very large

if the number of citizens grows. If n is large, each individual citizen only has a small

influence on the outcome of the information aggregation stage. This implies that pure

strategy separating equilibria no longer exist. Put differently, if OP played A against

citizens who chose pi = 1 and played M against citizens who played pi = 0, then citizens

would find it optimal to play pi = 0 in order to avoid the aggressive reaction by OP.

With a low number of citizens this incentive is countervailed by the downside of playing

pi = 0 (when θi is positive) which is a worse policy result in the information aggregation

stage. As n grows large the own impact on this policy decision is, however, negligible

and this negative effect cannot deter citizens from biasing their stated opinion. OP will,

therefore, use a mixed strategy in equilibrium. Hence, OP will be indifferent between his

two actions and therefore also between privacy and no privacy (otherwise using a mixed

strategy would not be optimal). As citizens are clearly worse off without privacy because

of the biased information aggregation and the possibly increased probability of A in the

interaction stage, the privacy case welfare dominates.

The intuition for the third result is similar: If δ is high, then the benefit from the

information aggregation stage is relatively small compared to the potential losses in the

interaction stage. Citizens will therefore be chilled a lot if OP plays A against citizens

who chose pi = 1. Playing A for sure against those who chose pi = 1 is then no longer a

best response. Consequently, OP uses a mixed strategy for r sufficiently high and privacy
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welfare dominates.

Note that all the welfare results in proposition 3 are Pareto results from an ex ante

point of view. That is, privacy makes citizens strictly better off in expectation (i.e. before

knowing their type) while the OP is indifferent.

5 Alternative Utility Specifications

In this section, we consider two alternatives to the information aggregation in the first

stage modeled so far. First, we consider a setup where citizen i’s utility does not depend

on choices of other citizens. That is, the first stage decision pi has nothing to do with

information aggregation but is simply a private decision without externalities. Second,

we consider a setting in which there is again information aggregation but citizen i’s payoff

of implementing the policy is given by a common state θ (instead of a personal payoff

parameter θi). This state, however, is unknown as citizens obtain only noisy private

signals of the true state θ. As we will see, similar results to the ones above hold in these

setups and some additional insights can be obtained.

5.1 First Stage With Private Decisions Instead of Information

Aggregation

We want to consider a setup where individual i’s choice (pi) directly influence his welfare.

Our model covers this latter case if we set n = 1. This could be the case for people

listening to music, attending certain events or meeting certain people, which also is

informative about some hidden type. Then pi has a private consequence, and all of

our results (about the existence of the chilling effect) continue to hold. But we can no

longer argue that as each individual becomes less and less privotal with larger n, the

chilling effect increases and ultimately makes the statistical discrimination ineffective

(proposition 3). In our example, this welfare question could be: If a preference for

Reggae music is correlated with drug use, should the employer be able to observe, and

base his decision on, the music that Alice listens to?

Instead of concentrating on n = 1, we will simply assume that every individual’s

choice directly influences her payoff, so that her payoff from choosing pi is simply piθi.

That is, we model n citizens but their welfare is independent from one another.9 In the

privacy case, preferences are the same as before. Without privacy, individuals experience

a chilling effect that now only depends on the behavior of the OP and the function δ(τ),

and no longer on their beliefs about the behavior of others.

9As this is equivalent to having n of our original models with one citizen each, it is clear that out
earlier intermediate results, i.e. lemmas 1–3, still hold.
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If the OP plays a mixed strategy in the equilibrium without privacy, we can show

just as in proposition 3 above that privacy is pareto optimal, since people are better off

with privacy and the OP is indifferent. The interesting case is the one in which OP uses

a pure strategy, i.e. plays A against everybody who chooses pi = 1 and M otherwise.

In this case, the OP is better off without privacy (otherwise he would always play

M), while individuals are on average worse off. To be able to say anything about welfare,

we need to aggregate their respective payoffs.

We can do so on an individual-by-individual basis, that is, we ask: For a given

individual, what does this individual lose by losing privacy, and what does the OP gain?

This is in line with viewing the OP as a representative of society (for example, the police

trying to catch criminals or terrorists), or thinking of the OP as being a group of other

players, or even of every individual acting as OP to another individual.

In the case where the OP uses a pure strategy, we can therefore write welfare as10

∑
i

pi(θi + τi − δ(τi)).

When is welfare higher without privacy than with privacy? Intuitively, if the correla-

tion between θi and τi is quite small, then the OP’s gain from being able to distinguish

individuals according to type is also small, while the individual’s loss from not being

able to choose their preferred pi (or being treated aggressively if they do) only depends

on δ(τi). For a given δ, the correlation between θi and τi would therefore have to be

sufficiently high to make no privacy welfare-optimal. Figure 5.3 illustrates this intuition.

If we want to analyze the connection between correlation and δ, we need to restrict

the problem by imposing partial orderings of joint distributions, since the set of possible

joint distributions is extensive and otherwise intractable. We will therefore make our

argument in two different ways. Firstly, we will consider the special case of δ(τ) = δ

being a constant. In this case, we can show quite generally that welfare is decreasing in

δ and increasing in the correlation between θi and τi, and that for higher δ, no privacy

is only optimal if the correlation is very high.11 Secondly, we will consider the more

general case of δ(τ) being an increasing function while restricting the joint distribution

of θi and τi to a family of distributions which are convex combinations of a correlated and

an uncorrelated distribution. In both of these cases, we will show that for a given cost

function for the individuals (i.e. a given δ), privacy is optimal both for the indidviuals

and the OP unless the correlation between θi and τi is sufficiently high.

Consider first the case in which we only consider constant δ. In this case, we can

show quite generally that for a higher δ, the correlation between θi and τi needs to be

10We could use weights to sum up payoffs, but since we have made no assumptions about the magni-
tude of δ, a scaled δ function would just be another δ function and nothing qualitative would change.

11Of course, our result from above still applies: For very large δ, privacy is always welfare optimal.
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τi

θi

t(τi)

Figure 5.3: Gains (blue) and losses (red) from lack of privacy (compared to privacy).
Losses of the individuals are vertical, losses of the OP are horizontal. The sum of the
lengths of all blue lines is the overall gain, the sum of all (solid) red lines is the overall
loss. Every individual with θi > 0 loses either θi (if she chooses pi = 0) or δ(τi) (if
she chooses pi = 1 and therefore gets treated aggressively). The OP gets τi for every
individual who still chooses pi = 1. Intuitively, if we increase correlation between θi and
τi, individuals with θi > 0 move to the left (as their expected τi increases, which increases
the gain of the OP.

higher to make no privacy welfare-optimal. To be able to make this statement, we need

a (partial) ordering on the possible joint distributions of θi and τi. Recall that Γθi is

the distribution of τi given θi; and that we have already assumed that Γθ′i
first-order

stochastically dominates Γθ′′i
if and only if θ

′
i ≥ θ

′′
i . Furthermore, we now assume that

E [τi|θi = 0] ≥ 0 so that expected τi is positive for θi > 0 – this guarantees that the OP

wants to treat individuals aggressively if their θi is positive. We will now say that the

correlation is higher in distribution Γ
′

than in distribution Γ
′′

if for every θi > 0, Γ
′

θi

first-order stochastically dominates Γ
′′

θi
. The following proposition shows that welfare is

decreasing in δ and increasing in the correlation between θi and τi.

Proposition 4. The welfare difference between no privacy and privacy is decreasing in

δ and increasing in Γ.

We move now to the second case of expressing “weak” correlation (and we allow again

for increasing, i.e. non-constant, δ(τ)). We continue to focus on the interesting case in

which – given distributions Γθi(τi) – there is an equilibrium in which OP plays A (M)

against those who support (do not support) the policy. We also assume that OP’s best

response in the privacy case is M. Now consider the marginal distribution of τi which we
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denote by Γ̄, that is

Γ̄(τi) =

∫
<

Γθi(τi) dΦ(θi).

If for every given θi the distribution of τi was Γ̄, then there would be no correlation

between θi and τi and even knowing θi directly (instead of pi) would not yield any benefit

for the OP. We will now consider convex combinations of the original distributions Γθi
and the distribution Γ̄. Denote these convex combinations by

Γλθi(τi) = λΓθi(τi) + (1− λ)Γ̄(τi) λ ∈ [0, 1].

For λ = 1 we are in the original problem. Decreasing λ, however, continuously decreases

the correlation between θi and τi. For λ = 0, there is no correlation between these two

variables left. If there is no correlation, then the equilibrium is the same as in the privacy

case because OP does not get any information about τi from the policy choice of the

individuals. Hence, the equilibrium is that OP plays M against everyone and citizens

use the cutoff 0 if λ = 0. This is true regardless of whether there is privacy or not. By

continuity, the same is true for low but positive λ. More interestingly, we establish in the

following proposition that there is an intermediate range of λ where privacy is strictly

welfare superior to no privacy. That is, if correlation is weak privacy welfare dominates

(and if the correlation is very weak privacy and no privacy are welfare equivalent).

Proposition 5. There exist 0 < λ < λ̄ < 1 such that

1. for λ ≤ λ privacy and no privacy are welfare equivalent and

2. for λ ∈ (λ, λ̄] privacy leads to strictly higher welfare than no privacy. The equilib-

rium for λ = λ̄ is in pure strategies.

5.2 Citizens with Aligned Preferences Under Uncertainty

This subsection considers an alternative model where the private information of citizens

in the information aggregation stage is not directly their personal payoff of policy p = 1.

Instead, citizens all have the same payoff of policy p = 1 but each citizen only receives a

noisy signal of this payoff. That is, there is an unknown state of the world θ; each citizen

has a noisy signal about the state of the world and citizens try to “match the state”, i.e.

they prefer policy p = 1 if the state is positive and p = 0 if the state is negative.

This has a striking implication: Lack of privacy makes every citizen worse off, since

the chilling effect inhibits information aggregation. In our main model, citizens have

private preferences over outcomes and therefore some citizens (those with negative θi)

gain from chilling. Since all citizens now have the same interest – implementing the

policy that matches the state – everyone loses from chilling. Hence, our welfare result
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for large n in proposition 3 is somewhat stronger in this setting as privacy is now a

Pareto improvement not only at the ex ante but even at the interim stage, i.e. after each

citizen has observed his signal.

The details of the setting are as follows: The state of the world θ is distributed

standard normally and this θ is the payoff consequence of policy p = 1 for each citizen.

However, the realization of θ is unknown. Each citizen obtains a private signal θi which

is normally distributed around the true state θ, i.e. θi ∼ N(θ, σ2) where we denote the

cdf by Φ̃θ and the pdf by φ̃θ. All θi are assumed to be independent draws from this

distribution. The interaction type τi of citizen i is drawn from Γθi where again Γθ′i is

assumed to first order stochastically dominate Γθ′′i if and only if θ′i > θ′′i . This creates

a positive correlation between θi and τi. The interaction stage is exactly the same as

in our main model. That is, without privacy a strategy for OP states which of the two

actions (A and M) OP plays against a citizen who chose pi = 0 or pi = 1. With privacy,

OP only decides which of the two actions he chooses against all citizens. This means

that – to keep the setting comparable to the main model – we do not consider strategies

(or beliefs) that are contingent upon the number of citizens choosing pi = 1. This is

a simplification. However, one can easily imagine settings where OP has to commit to

a strategy before he gets to know the citizens’ pis. This is, for example, the case if

the interaction is between i and an agent representing OP and pi is only learned in the

interaction. OP then has to instruct the agent in advance how to act.

In the supplementary material to this paper, we provide proofs that are mostly anal-

ogous to those of our main model. In particular, the absence of privacy causes a chilling

effect and this chilling effect inhibits efficient information aggregation. For large n, there

are still only equilibria where the OP mixes, and in any equilibrium where the OP mixes,

the OP is indifferent between privacy and no privacy. Now, however, we have Pareto

dominance in the sense that every citizen of every type is better off under privacy.

6 Extensions

This section contains two extensions to the main model. First, we show that privacy

might have to be mandated, i.e. privacy as an opt in possiblility will lead to the no

privacy outcome. Second, we consider the possibility of a defensive action against the

OP and use this setup to show that in some scenarios privacy can even make the OP

strictly better off.

6.1 Privacy as Opt In

Suppose that citizens have an additional decision in the information aggregation stage:

They do not only have to choose pi but also have to decide whether their choice should
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be private or public. OP can observe all public choices but not the private ones – in

this case he can only observe that the citizen chose privacy. To isolate the effect of the

privacy choice, we will also assume that OP cannot make his behavior contingent on the

policy outcome p (which might be realized only at a later point of time). Furthermore,

let us assume that M is optimal for OP in the privacy case, i.e. that E[τ ] < 0.

The possibility of hiding one’s choice gives rise to multiple equilibria. To see this,

consider first an equilibrium in which every citizen always chooses “public” (no matter

what θi or τi). Then the equilibrium of the no privacy case results.12 Second, consider

an equilibrium in which every citizen always chooses “private”. This means that we are

effectively in the case with privacy. OP’s best response is to play M and consequently

no citizen has an incentive to deviate.

Naturally, the question arises which of the two equilibria is more robust. We will

argue in two different ways that the “always private” equilibrium is not very robust.

The reason is an unraveling logic. Citizens who choose pi = 0 are not afraid of making

this public as it indicates that their θi is low which means that their expected τi is

also relatively low because of the positive correlation between the two. Given that the

expected τi is low, OP would therefore still play M against citizens who make a choice

pi = 0 public. If, however, everyone who chooses pi = 0 makes this public, then making

one’s choice private is not different from publically choosing pi = 1.

The simplest way to formalize this intuition is to assume that making one’s choice

pi private comes at a small cost ε > 0. In this case, the “all private” equilibrium would

only be supported by off equilibrium beliefs such that both E[τ |”public”, pi = 0] ≥ 0

and E[τ |”public”, pi = 1] ≥ 0 as OP could then threaten to play A against any citizen

making his decision public (thereby saving the ε > 0 costs). Given that E[τ ] < 0,

these are straightforwardly unreasonable beliefs. In terms of equilibrium refinements,

the equilibrium does not satisfy the well known D1 criterion of Banks and Sobel (1987).

Roughly speaking, this refinement states the following for our game: Denote by D(θi, τi)

the set of OP mixed strategies that are (i) best responses for some OP belief and (ii)

would make a deviation by a citizen of type (θi, τi) profitable. D1 requires that OP’s off

path beliefs must be zero for type (θ′i, τ
′
i) if there is a type (θ′′i , τ

′′
i ) such that D(θ′i, τ

′
i) is a

strict subset of D(θ′′i , τ
′′
i ). It is straightforward to show that the “all private” equilibrium

does not satisfy D1. The reason is that the off path beliefs supporting the “all private”

equilibrium require that deviations to public stem from citizens with relatively high τi

no matter whether pi is zero or one. As δ is increasing in τi, there are mixed strategies

by OP which would make the deviation profitable for citizens with low τi (who are less

afraid of action A) but not for citizens with high τi. The “all public” equilibrium, on the

other hand, satisfies D1.

12This equilibrium is supported by the following off equilibrium path belief: if a player chooses
“private”, OP believes that τi is sufficiently high so that A is a best response.
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The second way in which the “all private” equilibrium is not robust is the following.

Assume that with probability ε > 0 OP has alternative preferences τi + ε′ for playing A.

Assume that ε′ is such that E[τ ] + ε′ > 0. That is, under the alternative preferences OP

plays A given his prior beliefs. Suppose further that these alternative preferences are

such that E[τ |θi ≤ 0] + ε′ < 0, i.e. knowing that θi is negative OP still best responds by

playing M. Again the “always private” equilibrium could then only be sustained by off

path beliefs leading to E[τ |”public”, pi = 0] + ε′ ≥ 0 and E[τ |”public”, pi = 1] + ε′ ≥ 0.

As pointed out above, such beliefs are unreasonable and violate the D1 refinement.

6.2 Defensive Actions

Suppose that citizens have the opportunity to take a defending action against being

treated aggressively. More precisely, a citizen can take an action D which increases his

payoff if OP plays A but decreases his payoff if OP plays M. The defensive action reduces

OP’s payoff. In our example, Alice could hire a lawyer. Hiring the lawyer is costly but

the lawyer will make it harder for the employer to discriminate against Alice. For the

employer, dealing with a lawyer is a hassle (whether he discriminates or not) and reduces

his payoffs.

What we want to show in this section is that the model can easily be extended in this

way and that privacy could lead to (i) OP being strictly better off with privacy while

(ii) citizens being in expectation strictly better off with privacy. Hence, privacy can be

strictly Pareto superior from an ex ante point of view. To this end, it is sufficient to

present an example and this is what we are going to do. Suppose τi ∈ {τ , τ̄}, that is, τi

can have only one of two values. Furthermore, assume that the probability that τi = τ̄

equals

γθi =

0.7− 0.3
θi+1

if θi ≥ 0

0.1− 0.3
θi−1

if θi < 0.

That is, the probability of a high τ̄ is increasing in θi and is point symmetric around

(0, 0.4). We take τ = −2, τ̄ = 3 and δ(τi) as given as in table 5.1.

action/type τ τ̄
not D -0.1 -0.125
D 0.0 -0.025

Table 5.1: −δ(τi) depending on whether the defensive action is taken.

If a citizen takes action D and OP plays M, his payoff is −0.1, that is, the costs of the

action D are 0.1. Note that the citizen wants to play D if the chance of A is higher than

1/2. OP payoffs are reduced by 1 if a citizen plays D (for simplicity the payoff reduction

is assumed to be independent of OP’s action).
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Under privacy, it is an equilibrium that every citizen chooses pi = 1 if and only if

θi ≥ 0 while in the second stage OP plays M and no citizen takes the action D. Without

privacy, this is no longer an equilibrium as OP prefers to deviate by playing A against

all citizens choosing pi = 1: The probability that a citizen is of type τi = τ̄ given θi ≥ 0

(and therefore pi = 1) is ∫∞
0
γθi dΦ(θi)

2
≈ 0.51

which implies that OP’s best response is A.

Let the probability that alternative 1 is chosen in stage 1 given m citizens supporting

it be q(m/n) = m/n. Then we get the following equilibrium in the case without privacy:

Citizens use cutoff strategies characterized by cutoffs t(τ) = 0 and t(τ̄) = N∗0.025. In the

second stage, those citizens that chose pi = 1 will play D. OP plays A against all citizens

that chose pi = 1 and M otherwise. To see that this is an equilibrium, note that a citizen

of type (θi, τi) = (0, τ) is indeed indifferent between choosing pi = 0 and not playing D,

which gives a payoff of 0 as OP will play M, and pi = 1 and playing D which also gives

a payoff of 0 as OP will then play A. Similarly, a citizen of type (θi, τi) = (0.025N, τ̄) is

indifferent between choosing pi = 0 and not playing D and choosing pi = 1 and playing

D. The reason is that choosing pi = 1 increases the probability of policy 1 being chosen by

1/N and therefore the expected payoff of a citizen with θi = 0.025N by 0.025. However,

the down side of choosing pi = 1 is that the payoff in the interaction stage is 0.025 lower

as −δ(τ̄) = −0.025 (when playing D). For OP, the probabilities

prob(τi = τ̄ |pi = 0) =

∫ 0.025N

−∞ γθi dΦ(θi)∫ 0.025N

−∞ γθi dΦ(θi) +
∫ 0

−∞ 1− γθi dΦ(θi)

prob(τi = τ̄ |pi = 1) =

∫∞
0.025N

γθi dΦ(θi)∫∞
0.025N

γθi dΦ(θi) +
∫∞

0
1− γθi dΦ(θi)

are such that playing A (M) against those that chose pi = 1 (pi = 0) is optimal, i.e.

prob(τi = τ̄ |pi = 0) ≤ 0.4 ≤ prob(τi = τ̄ |pi = 1), if N ≤ 22.13

OP’s expected payoffs in the equilibrium without privacy are −0.043 ∗ N while OP

profits with privacy are zero. Citizens are strictly worse off if they have θi > 0: The

reasons are (i) that some are chilled and therefore expect a lower payoff from the infor-

mation aggregation in stage 1, (ii) those that are not chilled have to endure action A by

OP (and have to bear the costs of the defensive action). Citizens with θi < 0 benefit

from the chilling of other citizens as this chilling implies that their personally preferred

alternative is more likely to be implemented. Note, however, that – by the symmetry of

the setup – this only offsets the first negative effect on those with θi > 0 (in expectation,

e.g. behind the veil of ignorance). The second negative effect on those with θi > 0 lowers

13For N > 22, no pure strategy equilibria exist without privacy and OP will therefore be indifferent
between privacy and no privacy – cf. proposition 3.
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the expected payoff of a citizen.

7 Discussion

7.1 Which Discrimination Should be Permitted: Credit Scores

A bank has to decide to whom to lend. Ideally, it would like to base its decision on the

probability that a debtor will repay the loan, but this variable is not directly observable.

Instead, the bank can rely on measures that indirectly predict default probability. There

are several socioeconomic variables that are easily observed and correlated with default

risk, such as national origin, race, gender, age, or place of residence. Using such variables

to make credit decisions, and hence treat native-borns, whites or women differently solely

because of their identity, is illegal in many countries. In the United States, for example,

such “redlining” practices are explicitly outlawed by the Equal Credit Opportunity Act

(ECOA) of 1974.

Imagine, however, that the bank starts looking for other pieces of data that can

inform its decision and allow it to statistically discriminate among loan applicants. Two

such pieces of information are the education level (which can easily be documented by

the applicant) and the taste in music (which many millions of people reveal on websites

like Facebook, last.fm and similar services). While the former is common practice, the

latter is (on purpose) more speculative but not implausible: Facebook owns a patent on

aggregating credit scores from the data it collects about its users, and there are many

firms that claim to make use of big data to develop more accurate credit scores.14 We

would expect that a preference for some genres of hip hop, since it is correlated with

socioeconomic status, can be highly predictive of default risk. The expressed music

preference would then be the variable pi that the bank uses to discriminate between

people who do and those who don’t get loans, and our model would consequentially

predict a chilling effect in which some hip hop fans are held back in their freedom of

expression, since they want to improve their credit rating. The individual loss (by not

being able to express your own personality) is probably more substantial than the loss in

information aggregation here, but it is a welfare loss nonetheless (cf. the results in section

5.1). Note also that those who care too much to be stifled in their music appreciation

will find it harder to get a loan, regardless of whether that is justified by their actual

creditworthiness or not.

But what is most important is that fans of gangsta rap tend to be similar to each

other in many ways, so that the use of inocuous (and predictive) music preference data

allows the bank to discriminate based on ethnicity, age and geography without explicitly

14One of them, Zest Finance, advertises with the slogan: “All Data is Credit Data.”
(https://www.zestfinance.com/how-we-do-it.html, retrieved May 2, 2016.)
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saying so. This points to a larger question to which our research contributes, but to

which we have no definitive answer: What should banks, employers, governments be

allowed to discriminate upon? Most people would probably agree that to treat someone

better or worse purely because of race or gender is not acceptable (and that contrary

to the arguments made by Friedman (1962), such discrimination will not automatically

disappear as it can be rational, as pointed out by Arrow (1973) and Phelps (1972)). But

demanding that job applicants have a diploma, or giving loans based on past income, is

also statistical discrimination: these factors are predictive of whether the employee will

be up to the task or the loan will be repaid, but the correlation is less than 1.

Our first extension suggests that an equilibrium where everyone keeps their music

preferences secret is not stable (especially if there is some payoff to sharing them). Reg-

ulation which prohibits the use of some data for credit decisions, beyond existing laws

like the ECOA, could therefore be welfare-enhancing. In particular, recall that our model

only requires that some variables are correlated without being causally related. Beside

music taste, many other variables are probably correlated with both creditworthiness

and race or gender without having any causal relationship with either of these. Clever

bankers, or even mindless machine learning algorithms, could pick up on those relation-

ships and use them to improve their credit algorithms, with all the consequences that

we have described in our analysis. Our results would therefore strongly support the

regulatory use of positive lists, which specify which data can be legally used in credit

decisions (as opposed to negative lists, which only specify which data cannot be used).

7.2 “The Tape Has Had Some Chilling Effect”: Decision-Making

and Transparency

The last decades have seen a move towards transparency in many public bodies – govern-

ments, authorities, central banks. But to the extent that the quality of decisions in these

institutions depends on aggregating the information of their employees and members,

our results suggest that transparency does not necessarily improve welfare.

Consider, for example, the board of a central bank that has to decide on an interest

rate change. If the deliberations are private and no minutes are made public, board

members express their opinion quite freely.15 If minutes are later published, however,

members will worry about the effect of what they say on their reputation. Assume

that board members have different degrees of competence, and that the probability of

being wrong about something decreases in one’s competence. Board members want to

be thought of as competent by the public, their academic colleagues or future employers.

Now, a board member considers whether to make an unconventional suggestion. This

15This is under our standard assumption that arguing one’s viewpoint increases the probability that
one’s preferred policy will be implemented.
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suggestion has some probability of being wrong, and in that case outside observers would

adjust their belief of the board member’s competence downwards. Publicity can therefore

induce him to stay quiet.

This is in line with the results by Meade and Stasavage (2008) and others who examine

the effects of a reform introduced in 1993, which mandated that minutes from meetings

of the Federal Open Markets Committee (FOMC) of the U.S. Federal Reserve should

be published. The reform has significantly increased conformity in the discussion and

decreased the number of people who criticized the chairman’s proposed interest rate

adjustment. There was a strong shift away from free discussion and towards the reading

of prepared statements. Thomas Hoenig, president of the Federal Reserve Bank of Kansas

City, remarked in a meeting in 1995 that “the tape has had some chilling effect on our

discussions. I see a lot more people reading their statements.” (Meade and Stasavage, p.

13). Alan Greenspan also warned of this development before the reform was implemented:

The FOMC “could not function effectively if participants had to be concerned that their

half-thought-through, but nonetheless potentially valuable, notions would soon be made

public.”(Meade and Stasavage, 2008, p. 12)

Our model therefore suggests that if board members, government ministers or civil

servants are worried about how they are being perceived by the outside world, secret

meetings can substantially increase the quality of decision making.16 But this is not

universally true, of course. If the correlated types of our model reflect “private interests”

(for example, stock holdings by family members) and “policy preferences”, privacy would

allow the board members to follow their private interests without having anything to

fear – which would not improve decision making in the public interest. Privacy is not a

panacea, but neither is transparency.

8 Conclusion

Why should an individual care about his or her privacy, why should a society care about

the privacy of its members? We have argued that since asymmetric information is a fact

of life, questions of privacy are never about whether there should be private information

or not, but only how much there should be and how it should be structured. That allows

us to answer: Indviduals can worry that information about them could be used “against

them”, i.e. expose them to discriminative treatment. This result does not require ill will

among the discriminator – the discrimination can be perfectly rational, as in the case of

the employer trying to distinguish applicants. But it will make it harder for people to

choose according to their preferences, and the rational reaction of individuals to having

16Consider also the literature on reputation concern and advice, such as Ottaviani and Sørensen
(2006), which would also suggest that advisors are more helpful if they are unconcerned about their
reputation.
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no privacy can impair the ability of a society to efficiently aggregate information. Privacy

is not only individually optimal, but also welfare-enhancing.

Our examples show, however, that privacy is not a silver bullet. The solution to

problems of “redlining” and new forms of discrimination in lending is not to prohibit

borrowers from revealing any information about themselves; and not all goverments

would be improved by being able to work in total secrecy. Our analysis allows us to

say, however, when privacy is likely to improve welfare. When people’s preferred actions

under privacy guarantee an outcome that is optimal or close to optimal, the chilling

effect decreases welfare. This is the case, for example, when actions have no significant

externalities, or when the gains from correctly aggregating information are large.

Apart from the welfare effects, privacy often has a distributive effect: In our main

model, there are always people whose preferred policy becomes less likely to be imple-

mented under privacy. (In section 5.2, however, we argue that there can be situations

where privacy improves everybody’s ouctome.) Others gain: Those who would be sub-

ject to the chilling effect without privacy are more likely to get their preferred option

with privacy. Moreover, those with strong preferences gain twice from privacy: They

are no longer statistically discriminated against, and their preferred option is more likely

to be implemented. How should such distributive effects influence whether privacy is

implemented? We have no definitive answer, but would like to point out that similar

distributive effects arise with free speech: On any single issue, everybody would prefer if

those with opposing viewpoints were prohibited from expressing it. Yet in the abstract,

most of us would agree that freedom of expression should be universal.

We started this paper by criticizing the “Chicago view” of privacy as inefficient and

economically undesirable. But as we have argued that privacy can be fundamental to

allowing individuals to freely express themselves, we are returning to an argument by

perhaps the most well-known Chicago theorist. Friedman (1962, p. 52), in his discussion

of “rules instead of authorities”, discusses the question of whether free speech issues

should be decided from case to case, or in the abstract. He concludes that:

When a vote is taken on whether Mr. Jones can speak on the corner, it

cannot allow [...] for the fact that a society in which people are not free to

speak on the corner without special legislation will be a society in which the

development of new ideas, experimentation, change, and the like will all be

hampered in a great variety of ways that are obvious to all.

Our analysis suggests that a similar argument can be made about privacy.17

17It has been pointed out to us that the whistleblower Edward Snowden drew a sim-
ilar comparison between privacy and free speech in an online debate: “Arguing that
you don’t care about the right to privacy because you have nothing to hide is no dif-
ferent than saying you don’t care about free speech because you have nothing to say.”
(https://www.reddit.com/r/IAmA/comments/36ru89/just days left to kill mass surveillance under/crglgh2,
retrieved on July 1, 2016.)
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9 Appendix: Proofs

Technical Results

Lemma 4. Let Φ be the standard normal distribution. Then
∫ ka
ka−b dΦ/

∫∞
ka
dΦ diverges

to infinity as k →∞ for a, b > 0.

Proof of lemma 4: We concentrate on the right tail of the standard normal distri-

bution. If for all x ∈ [ka− b, ka] and some constant c we have that φ(x)
φ(x+b)

≥ c, then is is

also true that ∫ ka
ka−b dΦ∫ ka+b

ka
dΦ
≥ c.

(This can be seen by noting that the first inequality holds for the range of the integrals

of the second inequality.) The pdf of the standard normal distribution is

φ(x) =
1√
2π
e−

1
2
x2

,

and the quotient of φ(x) and φ(x + b) is therefore e−
1
2

(x2−(x+b)2) = exb+
1
2
b2 . For x →

∞, this quotient diverges, and hence
∫ ka
ka−b dΦ∫ ka+b
ka dΦ

diverges for k → ∞. Now note that∫∞
ka
dΦ =

∫ ka+b

ka
dΦ +

∫ ka+2b

ka+b
dΦ + . . . and that for large k, the quotient between any

summand on the RHS and the following summand diverges. This means that the overall

sum is smaller than 2
∫ ka+b

ka
dΦ as – for k sufficiently high –

∫ ka+b

ka
dΦ +

∫ ka+2b

ka+b
dΦ + . . . ≤∫ ka+b

ka
dΦ
∑∞

i=0(1/2)i = 2
∫ ka+b

ka
dΦ. Since we have established above that

∫ ka
ka−b dΦ∫ ka+b
ka dΦ

diverges

for large k, that means that
∫ ka
ka−b dΦ∫∞
ka dΦ

diverges as well.

Proofs

Proof of lemma 1: For θi > (maxτi δ(τi)) / (mink{q(k)− q(k − 1) : k ∈ {1, . . . , n}}),
it is a dominant action to choose pi = 1. Similarly, for θi < − (maxτi δ(τi)) / (mink{q(k)− q(k − 1) :

k ∈ {1, . . . , n}}), it is a dominant action to choose pi = 0. Write the expected utility
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difference of playing pi = 1 and playing pi = 0 as18

−δ(τi)∆ + θi ∗
n∑
k=1

((q(k)− q(k − 1)) ∗ prob(k − 1)) (5.5)

where prob(k − 1) is i’s belief that exactly k − 1 other citizens will choose pj = 1 and

∆ ∈ [−1, 1] is the difference between the (believed) probability that OP plays A when

facing a citizen who has played pi = 1 and a citizen who has played pi = 0. Clearly, (5.5)

is strictly increasing and continuous in θi. As it is optimal to play pi = 1 (pi = 0) if (5.5)

is positive (negative), the best response to any given belief is a cutoff strategy where

the cutoff is given by the θi for which the utility difference above is 0. (Note that the

dominance regions above establish that an interior cutoff exists.) Since all best responses

are cutoff strategies, all rationalizable actions are cutoff strategies.

In the privacy case, ∆ = 0 by definition and therefore (5.5) is zero if and only if

θi = 0 as the sum is clearly positive (recall that the cumulative distribution function q

was strictly increasing by assumption). Consequently, tp(τi) = 0.

Proof of lemma 2: Suppose v1 < v0 in equilibrium. In this case, (5.5) is strictly

increasing in τi as ∆ < 0 and therefore t(τi) is strictly decreasing in τi.

This implies that we can partition < in three intervals (−∞, t(τ̄)], (t(τ̄), t(τ)], (t(τ),∞).

Denoting the inverse of the equilibrium cutoff t by s, we get

v1 =

∫ t(τ)

t(τ̄)

∫ τ̄
s(θi)

τ dΓθi(τ) dΦ(θi) +
∫∞
t(τ)

∫ τ̄
τ
τ dΓθi(τ) dΦ(θi)∫ t(τ)

t(τ̄)

∫ τ̄
s(θi)

dΓθi(τ) dΦ(θi) +
∫∞
t(τ)

∫ τ̄
τ
dΓθi(τ) dΦ(θi)

≥

∫∞
t(τ̄)

∫ τ̄
τ
τ dΓθi(τ) dΦ(θi)∫∞

t(τ̄)

∫ τ̄
τ
dΓθi(τ) dΦ(θi)

>

∫ t(τ)

−∞

∫ τ̄
τ
τ dΓθi(τ) dΦ(θi)∫ t(τ)

−∞

∫ τ̄
τ
dΓθi(τ) dΦ(θi)

≥

∫ t(τ̄)

−∞

∫ τ̄
τ
τ dΓθi(τ) dΦ(θi) +

∫ t(τ)

t(τ̄)

∫ s(θi)
τ

τ dΓθi(τ) dΦ(θi)∫ t(τ̄)

−∞

∫ τ̄
τ
τ dΓθi(τ) dΦ(θi) +

∫ t(τ)

t(τ̄)

∫ s(θi)
τ

τ dΓθi(τ) dΦ(θi)

= v0

18In principle ∆ could depend on the number of citizens choosing pi = 1 in the information aggregation
stage. In this case, the expected utility difference is

n∑
k=1

{[−δ(τi)∆(k, k − 1) + θi] ((q(k)− q(k − 1)) ∗ prob(k − 1))}

where ∆(k, k − 1) is the difference between the believed probability that OP plays A when facing a
citizen who played pi = 1 and k citizens chose 1 and the probability that OP plays A when facing a
citizen who played pi = 0 and k−1 citizens chose 1. The same argument as below holds: this expression
is strictly increasing in θi. As will become apparent from (5.1)– (5.4), OP’s best response strategy will
not depend on the number of citizens choosing 1; see the comment in footnote 7.
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where the inequalities use the assumption that Γθ′i first order stochastically dominates

Γθ′′i if θ′i > θ′′i and therefore θi and τi are positively correlated.19 The result that v0 < v1

contradicts our initial supposition and therefore v1 ≥ v0 in all equilibria.

Proof of proposition 1: Consider (5.5) which has to be zero if θi equals the

equilibrium cutoff level. By lemma 2, ∆ ≥ 0. In an equilibrium of the privacy case ∆ = 0

by assumption and tp(τi) = 0, see lemma 1. In the case without privacy, tnp(τi) < 0 is

impossible as then both terms in (5.5) are negative (recall ∆ ≥ 0) at θi = tnp(τi) with the

second term being strictly negative. Consequently, the two terms could not sum to zero.

We can therefore conclude that tnp(τi) ≥ 0 which establishes tnp(τi) ≥ tp(τi). Note that

this inequality is strict if ∆np > 0 as (5.5) would not equal zero for θi = 0 and ∆ > 0.

Next we have to show that ∆ > 0 whenever the equilbirum strategy of OP is influ-

enced by the presence of privacy. By lemma 2, ∆ ≥ 0. If OP behavior is influenced

by the presence of privacy and ∆ = 0 then the probability of A has to change in both

groups (citizens choosing pi = 0 and citizens choosing pi = 1) by the same amount com-

pared to the privacy case. For concreteness, suppose the probability of A is increased.

This implies that in the privacy case the probability of A is less than 1. Consider

first the case that OP has strict preferences in the privacy equilibrium which then im-

plies that OP played A with probability 0 in the privacy equilibrium. Consequently,

vp =
∫
<

∫ τ̄
τ
τ dΓθi dΦ(θi) < 0. As β0(τ) and β1(τ) are obtained by means of Bayesian

updating, it is impossible that both v0 ≥ 0 and v1 ≥ 0. But then it is impossible that

playing A against both groups with (the same) positive probability is optimal in the

equilibrium without privacy. Second, consider the case where OP is indifferent in the

privacy equilibrium and plays A with some probability α < 1. Indifference means that

vp = 0. If ∆ = 0 in the case without privacy, then it is easy to see that v1 > v0 because of

the positive correlation of τi and θi. But this would imply v1 > 0 and v0 < 0 and there-

fore ∆ = 0 would not be a best response which contradicts that ∆ = 0 in equilibrium in

the second case. If ∆ > 0, however, we already established above that tnp(τi) > tp(τi).

The proof for a decrease of the probability of playing A is analogous.

Last we show that the difference tnp(τi) − tp(τi) is increasing in τi. As mentioned

19To be clear, take the first of the inequalities:

E[τ |θi > t(τ̄)] =

∫∞
t(τ̄)

E[τ |θi] dΦ(θi)∫∞
t(τ̄)

∫ τ̄
τ
dΓθi(τ) dΦ(θi)

≤

∫ t(τ)

t(τ̄)
E[τ |θi]

∫ τ̄
z(θi)

dΓθi(τ) dθi +
∫∞
t(τ)

E[τ |θi] dΦ(θi)∫ t(τ)

t(τ̄)

∫ τ̄
z(θi)

dΓθi(τ) dΦ(θi) +
∫∞
t(τ)

dΦ(θi)

≤

∫ t(τ)

t(τ̄)
E[τ |θi, τ ≥ z(θi)]

∫ τ̄
z(θi)

dΓθi(τ) dθi +
∫∞
t(τ)

E[τ |θi] dΦ(θi)∫ t(τ)

t(τ̄)

∫ τ̄
z(θi)

dΓθi(τ) dΦ(θi) +
∫∞
t(τ)

dΦ(θi)
= v1

where the first inequality holds as E[τ |θi] is strictly increasing in θi (by the first order stochastic domi-
nance assumption on Γθi) and therefore putting less weight on lower θi increases the expectation. The
third inequality follows a similar logic and the second one uses that E[τ |θi] is strictly increasing in θi
directly.
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above tp(τi) = 0. Using the fact that (5.5) has to be zero at the cutoff, we obtain

tnp(τi) =
∆∑n

k=1(q(k)− q(k − 1)) ∗ prob(k − 1)
δ(τi). (5.6)

Note that prob(k − 1) is independent of citizen i’s type τi as these types are drawn

independent from one another. Therefore, the only term in tnp(τi)−tp(τi) which depends

on τi is δ(τi) which is increasing by assumption. As the fraction on the righthand side

of (5.6) is positive, it follows that tnp(τi)− tp(τi) is increasing in τi.

Proof of proposition 2: We start with the case where OP finds it optimal to play

A against all citzens choosing pi = 1 and M against all citizens choosing pi = 0 under

both citizen strategies tnp and tp. Recall that OP’s payoff is the expected value of τ of

all those citizens against which OP plays A. Hence, the payoff difference of OP’s payoff

between the two scenarios is the expected value of τ in the area between the horizontal

axis and tnp in figure 5.4 below.

τ

θ

τ̄τ

tnp(τ)

tnp(0)

Figure 5.4: Integration range for difference in OP payoff

Denote the inverse function of tnp(τ) as z(θ). The difference of OP’s payoffs between

citizens using tnp and tp is

∫ tnp(τ)

0

∫ τ̄

τ

τ dΓθ(τ)dΦ(θ) +

∫ tnp(τ̄)

tnp(τ)

∫ τ̄

z(θ)

τ dΓθ(τ)dΦ(θ)

=

∫ tnp(0)

0

∫ τ̄

τ

τ dΓθ(τ)dΦ(θ)−
∫ tnp(0)

tnp(τ)

∫ z(θ)

τ

τ dΓθ(τ)dΦ(θ)+

∫ tnp(τ̄)

tnp(0)

∫ τ̄

z(θ)

τ dΓθ(τ)dΦ(θ)

where the equality simply splits up the integration range which can be easily visualized in

figure 5.4. The first of the three double integrals is positive by the following argument:

As – by assumption – Γ0 is symmetric around 0,
∫ τ̄
τ
τ dΓ0(τ) = 0. It follows that∫ τ̄

τ
τ dΓθ(τ) > 0 for all θ > 0 because Γθ first order stochastically dominates Γ0 for all

θ > 0. This implies that the first double integral is positive as tnp(0) ≥ 0 by proposition

1. The second double integral is negative as it integrates only over τ ≤ 0 and with
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the minus sign this second term becomes positive as well. The third double integral

is positive as it integrates only over positive τ . Consequently, OP would like to play

A against citizens with (τi, θi) in the area between the horizontal axis and tnp which

means that OP is better off (given the strategy of playing A if and only if pi = 1) under

tp(τ) = 0 than under tnp.

We established that playing A against citizens who play pi = 1 is relatively more

attractive if citizens use strategy tp(τ) = 0 than if they use strategy tnp. This implies

that whenever OP prefers to play A against citizens who play pi = 1 under tnp the same

is true under tp. Hence, we do not have to consider a case where OP plays M against

citzens choosing pi = 1 if they use tp but A if they use tnp. In all other cases, OP uses

the same action against citizens choosing pi = 0 and against citizens choosing pi = 1.

Hence, tp = tnp and OP’s payoffs are the same under both strategies (tp and tnp).

Proof of lemma 3: As the type draws are independent across citizens and as τ is

not payoff relevant in the information aggregation stage, it is clear that the consumer

surplus optimal cutoff will be independent of τ . Suppose cutoff t∗ ≥ 0 is consumer

surplus optimal. A necessary condition for optimality is the following: Say a citizen

has type θi = t∗, then his vote must be consumer surplus neutral. That is, whether he

chooses pi = 0 or pi = 1 must lead to the same expected consumer surplus (conditional

on his own type being θi = t∗). If this condition was not satisfied, either in- or decreasing

t∗ will increase expected consumer surplus thereby contradicting the optimality of t∗. We

will show that the only t∗ satisfying this necessary condition is t∗ = 0.

The expected difference of consumer surplus when choosing pi = 1 and pi = 0 is

(where we write t instead of t∗ to shorten notation)

t+
n−1∑
l=0

(
n− 1

l

)
Φ(t)l(1− Φ(t))n−1−l(q(l + 1)− q(l)) (lE[θ|θ < t] + (n− 1− l)E[θ|θ > t])

(5.7)

where l is the number of other citizens choosing pi = 0 (according to the cutoff strategy

t). First, consider the term l = (n− 1)/2 (in case n is odd). For this term l = (n− 1− l)
and as E[θ|θ < t]+E[θ|θ < t] ≥ 0 by t ≥ 0, pi = 1 will lead to a higher expected consumer

surplus in this case. For l < (n− 1)/2, we clearly have lE[θ|θ < t] + (n− 1− l)E[θ|θ <
t] > 0 by t > 0 and again pi = 1 increases expected consumer surplus. However, for

l > (n − 1)/2 the opposite might be the case. Hence, we have to weigh terms with

different l against each other. In particular, we will consider the terms l > (n−1)/2 and

n− 1− l < (n− 1)/2 jointly. By the assumption that q is point symmetric around 1/2,

q(l+ 1)− q(l) = q(n− 1− l+ 1)− q(n− 1− l). Furthermore, the binomial coefficient is

symmetric around the mean which means that also
(
n−1
l

)
=
(
n−1
n−1−l

)
. Consequently, we

can write the sum of the two terms corresponding to l and n − 1 − l as follows (using
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z = 2l − n+ 1 and dropping the argument of Φ(t) to save space)(
n− 1

l

)
Φn−1−l(1− Φ)n−1−l(q(l + 1)− q(l))

{E[θ|θ < t] (lΦz + (n− 1− l)(1− Φ)z) + E[θ|θ > t] ((n− 1− l)Φz + l(1− Φ)z)} .

We will now argue that the expression in curly brackets (and therefore the whole expres-

sion) is positive (for any l > (n − 1)/2). Note that the only negative term in the curly

brackets is E[θ|θ < t]. Also recall that t ≥ 0 and therefore Φ ≥ 1−Φ. This implies that

the term in curly brackets is (weakly) greater than

E[θ|θ < t] ((n− 1)Φz) + E[θ|θ > t] ((n− 1)(1− Φ)z)

where we increased the weight on the negative term as much as possible (recall that

n− 1 ≥ l > (n− 1)/2). This means that the term in curly brackets is definitely positive

if E[θ|θ < t]Φz +E[θ|θ > t](1−Φ)z ≥ 0. Given that z is an integer between 1 and n− 1,

this inequality is hardest to satisfy for z = 1 but there it holds as E[θ|θ < t]Φ(t)+E[θ|θ >
t](1− Φ(t)) = 0 by the definition of conditional expectations.

Now that we know that the expression in curly brackets is positive for all l > (n−1)/2

we can conclude that pi = 1 leads to a higher expected consumer surplus than choosing

pi = 0 and this is true in a strict sense if t > 0: The analysis of the case l = (n − 1)/2

and the consideration of twin pairs l > (n− 1)/2 and n− 1− l have shown that the sum

in (5.7) is positive and adding t ≥ 0 keeps (5.7) positive (strictly if t > 0). It is easy to

verify that the sum in (5.7) equals zero if t = 0 (in this case Φ = 1 − Φ = 1/2). This

implies that t = 0 satisfies the necessary condition for optimality and all other t > 0 do

not.20

Hence, t = 0 is optimal if we can verify that an optimal t exists. Note that expected

consumer surplus is continuous in t. As it is straightforward that t→∞ is not optimal,

the problem of finding the optimal t can be reduced to maximizing a continuous function

over a compact set and a solution exists by the Weierstrass theorem.

Proof of proposition 3: Let M be optimal for OP in the privacy equilibrium.

1.) Suppose there is a mixed strategy equilibrium in the case without privacy. Then,

OP has to play M against both groups with positive probability. If he played A against

those who chose pi = 1 for sure and mixed for those who chose pi = 0, then M could

not be optimal in the privacy case. Hence, OP can in the case without privacy achieve a

payoff equal to his equilibrium payoff by playing M against both groups. Consequently,

OP’s payoff with and without privacy is the same. Citizens are strictly better off with

privacy as (a) there is no chilling effect which means by lemma 3 that expected welfare in

20As the setup is symmetric, a similar argument could be made to rule out the optimality of any
t < 0.
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the information aggregation stage is maximized and (b) M will be played with probability

1 against them in the interaction stage.

2.) Now assume that δ′(τ) > 0. We will show that for n sufficiently high the privacy

equilibrium welfare dominates the equilibrium in the case without privacy (or the two

are identical).

We are going to make use of the fact that for any µ > 0, we can find an n̂ so that

for all n > n̂, q((m + 1)/n)− q(m/n) < µ. This follows from the assumptions that q is

strictly increasing and continuously differentiable. Intuitively, q would have to have an

infinite slope somewhere for this not to be true.

Now consider (5.5) and suppose ∆ = 1. Note that
∑n

j=1((q(j/n) − q((j − 1)/n)) ∗
prob(j − 1)) <

∑n
j=1 µ ∗ prob(j − 1)) ≤ µ, which gets arbitrarily small as n gets large.

Consequently, the threshold values become arbitrarily large as n gets large. Note also that

using (5.5) we can then write t(τi) = δ(τi)/(
∑n

j=1((q(j/n)−q((j−1)/n))∗prob(j−1))) ≥
δ(τi)/µ. Similarly, t′(τi) = δ′(τi)/(

∑n
j=1((q(j/n)−q((j−1)/n))∗prob(j−1))) ≥ δ′(τi)/µ.

Hence, t is increasing in τ and the slope also becomes arbitrarily large as n increases (as

µ can be chosen arbitrarily small for n sufficiently large).

Denoting the inverse of the threshold t by z, we can write

v1 =

∫ t(τ̄)

t(τ)

∫ z(θi)
τ

τ dΓθi(τ) dΦ(θi)

1− Φ(t(τ̄)) +
∫ t(τ̄)

t(τ)

∫ z(θi)
τ

dΓθi(τ) dΦ(θi)
+

E[τ |θi > t(τ̄)]

1 +
∫ t(τ̄)
t(τ)

∫ z(θi)
τ dΓθi (τ) dΦ(θi)

1−Φ(t(τ̄))

.

As z becomes arbitrarily flat for n sufficiently high, we can choose – for n high enough – an

ε > 0 such that
∫ t(τ̄)

t(τ̄)−ε

∫ z(θi)
τ

dΓθi(τ) dΦ(θi)/(1−Φ(t(τ̄))) > 0.5
∫ t(τ̄)

t(τ̄)−ε

∫ τ̄
τ
dΓθi(τ) dΦ(θi)/(1−

Φ(t(τ̄))). It follows that the second term in v1 goes to zero as n→∞ because∫ t(τ̄)

t(τ̄)−ε

∫ τ̄
τ
dΓθi(τ) dΦ(θi)/(1−Φ(t(τ̄))) and therefore its denominator diverges to infinity

by lemma 4.

The first term in v1 converges to something below the unconditional mean of τ which

we denote by τE = E[τ ]: For n large, the previous step implies that,

v1 ≈

∫ t(τE)
t(τ)

∫ z(θi)
τ τ dΓθi (τ) dΦ(θi)∫ t(τE)

t(τ)

∫ z(θi)
τ dΓθi (τ) dΦ(θi)

+

∫ t(τ̄)

t(τE)

∫ z(θi)
τ τ dΓθi (τ) dΦ(θi)∫ t(τE)

t(τ)

∫ z(θi)
τ dΓθi (τ) dΦ(θi)

1 +

∫ t(τ̄)

t(τE)

∫ z(θi)
τ dΓθi (τ) dΦ(θi)+1−Φ(t(τ̄))∫ t(τE)
t(τ)

∫ z(θi)
τ dΓθi (τ) dΦ(θi)

≤

∫ t(τE)

t(τ)

∫ z(θi)
τ

τ dΓθi(τ) dΦ(θi)∫ t(τE)

t(τ)

∫ z(θi)
τ

dΓθi(τ) dΦ(θi)
+

∫ t(τ̄)

t(τE)

∫ z(θi)
τ

τ dΓθi(τ) dΦ(θi)∫ t(τE)

t(τ)

∫ z(θi)
τ

dΓθi(τ) dΦ(θi)

Note that the first term equals E[τi|t(τ) ≤ θi ≤ t(τE) ∧ τi ≤ z(θi)]. Clearly, this is

below the unconditional mean τE. It follows that for a sufficiently small ε′ > 0 (and
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large n).

v1 ≤ τE +

∫ t(τ̄)

t(τE)

∫ z(θi)
τ

τ dΓθi(τ) dΦ(θi)∫ t(τE)

t(τE)−ε′
∫ τ̄
τ
dΓθi(τ) dΦ(θi)

Note that the same ε′ appropriately chosen for some n will also work for higher n (as

the density of φ thins out for higher θi and t(τE)− t(τ) is increasing in n). This implies

that we can conclude for the limit n→∞ that

v1 ≤ τE +

∫ t(τ̄)

t(τE)

∫ z(θi)
τ

τ dΓθi(τ) dΦ(θi)∫ t(τE)

t(τE)−ε′
∫ τ̄
τ
dΓ∞(τ) dΦ(θi)

≤ τE +
τ̄
∫ t(τ̄)

t(τE)
dΦ(θi)∫ t(τE)

t(τE)−ε′ dΦ(θi)

n→∞−−−→ τE

where the limit follows from lemma 4 and the above established fact that t goes to

infinity as n → ∞. By assumption, OP’s best response when facing the unconditional

mean τE (or a lower τi) is M which contradicts the supposition ∆ = 1. Hence, ∆ < 1

which implies that OP uses a mixed strategy. By the first part of the proposition, privacy

then welfare dominates no privacy.

3.) We will show that OP either plays M (independent of pi) or uses a mixed strategy

in the no privacy equilibrium if r is sufficiently high. (1) will then imply (3).

Suppose OP plays a pure strategy in equilibrium. If OP plays M against pi = 1, then

– by the assumption that OP plays M in the privacy case – privacy and no privacy case

lead to the same equilibrium and the result holds trivially. OP cannot play A against

pi = 0: By lemma 2, OP would then also play A against pi = 1. But this is incompatible

with Bayesian updating and the assumption that OP plays M in the privacy case. Hence,

we only need to consider the case where OP plays M against pi = 0 and A against pi = 1.

Consider (5.5) which can be rearranged to get (under the assumption that ∆ = 1, i.e.

OP plays A against pi = 1 and M against pi = 0)

tnp(τ) =
rδ(τ)∑n

k=1(q(k/n)− q((k − 1)/n)) prob(k − 1)
≥ rδ(τ).

Hence, tnp diverges to ∞ as r →∞. Furthermore, the slope of tnp is linearly growing in

r. Hence, the derivative of tnp(τ) also diverges to∞ as r grows. But then the same steps

as in the proof of result (2) above imply that v1 ≤ τE, i.e. playing A against pi = 1 is

not a best response which contradicts that OP uses the pure strategy corresponding to

∆ = 1 in the equilibrium without privacy for r sufficiently large. As – for r sufficiently

large – OP uses either mixed strategy in the no privacy equilibrium or plays M regardless

of pi, (1) implies that privacy dominates no privacy.

Proof of proposition 4: The welfare-difference between no privacy and privacy is

given by ∫ ∞
δ

∫ τ

τ

τidΓθidΦ(θi)−
∫ ∞
δ

δdΦ(θi)−
∫ δ

0

θiΦ(θi). (5.8)
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If we increase δ, it is clear that the first term weakly decreases, as the area of the integral

gets smaller. To see what happens to the second and third term, we can disaggregate

them further, assuming that we increase δ by ε. Then we get a net effect of

−
∫ ∞
δ+ε

δdΦ−
∫ ∞
δ+ε

εdΦ−
∫ δ+ε

0

θiΦ +

∫ ∞
δ

δdΦ +

∫ δ

0

θiΦ

= −
∫ ∞
δ+ε

εdΦ−
∫ δ+ε

δ

(θi − δ)dΦ,

which is negative. Therefore, the overall welfare decreases in δ.

Now consider what happens if we increase Γ. This only has influence on the payoff

of the OP; the second and third term in (5.8) above remain unchanged. It follows from

our definition that if we replace Γ
′

with Γ
′′

and Γ
′
< Γ

′′
, then

∫ τ
τ
τidΓ

′′

θi
>
∫ τ
τ
τidΓ

′

θi
. This

means that if we increase Γ, the inner integral in the first term in (5.8) increases, and

hence the whole term increases.

Proof of proposition 5: First consider λ = 0. Note that the distribution of τi

under τ̄ is the same as the distribution of τi that the OP faces in the privacy case of the

original model (with distribution Γθi). As we assumed that OP plays M in the privacy

equilibrium, it is clear that the privacy equilibrium is also an equilibrium for λ = 0. In

fact, it is the unique equilibrium: Since M is the best response against the distribution Γ̄

by assumption, OP has to play M for sure against at least one group of citizens (either

those choosing pi = 0 or those choosing pi = 1) by Bayesian updating. Suppose OP

played A with positive probability against those who chose pi = 1. Then some citizens

with low θi would be chilled and play pi = 0. As δ is increasing in τi, the best response

cutoff would be increasing in τi, see (5.6). But then the average τi among those choosing

pi = 1 is lower than the average τi under Γ̄. Consequently, M is a strict best response

by OP because M is a best response against Γ̄. This contradicts that OP plays A with

positive probability.

Note that E[τi|θi ≥ 0] is continuous in λ. Since M is a best response against Γ̄, that

is E[τi|θi ≥ 0] < 0 for λ = 0, the same is true for sufficiently small λ > 0. Hence, a λ > 0

exists such that for all λ ≤ λ the unique equilibrium without privacy is that OP plays

M and all citizens use a cutoff of zero. This is equivalent to the privacy equilibrium and

therefore privacy and no privacy are welfare equivalent for all λ ≤ λ. For the result in

the proposition, let λ be the highest λ such that the equilibrium in the no privacy is that

OP plays M against citizens choosing pi = 1. Note that λ < 1 as by assumption OP

plays A gainst citizens choosing pi = 1 for λ = 1.

For λ = 1, the equilibrium of the no privacy case was assumed to be that OP plays

A (M) against pi = 0 (pi = 1) in the no privacy case. Denote by λ∗ the infimum of all

λ for which such an equilibrium exists. Clearly, λ∗ ∈ (λ, 1). Since such an equilibrium
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no longer exists for λ < λ∗, it has to hold true that at λ = λ∗ OP is indifferent between

playing A and playing M against those playing pi = 1 (for lower λ OP will then prefer

to play M as the correlation is too weak and that is why the equilibrium breaks down).

Note that the best response cutoffs of the citizens do not depend on λ but only on the

OP’s strategy. It follows that E[τi|θi ≥ tnp(τi)] is continuous in λ for λ ≥ λ∗. As the

OP is indifferent at λ∗, we have E[τi|θi ≥ tnp(τi)] = 0 at λ∗. Continuity, implies that

E[τi|θi ≥ tnp(τi)] is arbitrarily small for λ close but strictly above λ∗. That is, for any

ε > 0 there is a ε′ > 0 such that imposing privacy leads only to less than ε losses

for the OP if λ < λ∗ + ε′. Imposing privacy leads (for λ ∈ [λ∗, λ∗ + ε′]) to a discrete

increase in citizen welfare for several reasons: First, those choosing pi = 1 no longer

face the aggressive response which increases their payoff by δ(τi). Second, in the privacy

case citizens use the cutoff zero instead of tnp > 0 which leads to a higher surplus in the

information aggregation stage. This implies that for ε′ > 0 small enough, privacy welfare

dominates no privacy for λ ∈ (λ∗, λ∗ + ε′]. Let λ̄ = λ∗ + ε′. Note that for λ ∈ (λ, λ̄) the

equilibrium in the no privacy case is necessarily mixed which means implies that privacy

is Pareto dominant for these λ, see proposition 3. This establishes the claim.

164



Chapter 5. An Informational Theory of Privacy

9 Appendix: State matching

In this section, we consider a model where the private information of citizens in the

information aggregation stage is not directly their personal payoff of policy p = 1. Instead

citizens have all the same payoff of policy p = 1 but each citizen only receives a noisy

signal of this payoff. This has a striking implication: Chilling makes every citizen worse

off. The reason is that chilling inhibits information aggregation. In the main paper

citizens have private preferences over outcomes and therefore some citizens (those with

negative θi) gain from chilling. Since all citizens have the same interest – implementing

the policy if and only if the common payoff consquence is positive, – everyone looses in

this setup from chilling.

More precisely, the setting is as follows: The state of the world θ is distributed

standard normally and this θ is the payoff consequence of policy p = 1 for each citizen.

However, the realization of θ is unknown. Each citizen obtains a private signal θi which

is normally distributed around the true state θ, i.e. θi ∼ N(θ, σ2) where we denote the

cdf by Φ̃θ and the pdf by φ̃θ. All θi are assumed to be independent draws from this

distribution. The interaction type of citizen i, τi, is drawn from Γθi where again Γθ′i is

assumed to first order stochastically dominate Γθ′′i if and only if θ′i > θ′′i . This creates a

positive correlation between θi and τi. The interaction stage is exactly the same as in

the model of the main paper. That is, without privacy a strategy for OP states which

of the two actions A and M OP plays against a citizen who chose pi = 0 and which

against a citizen who chose pi = 1. With privacy, OP only decides which of the two

actions he chooses against all citizens. This means that – to keep the setting comparable

to the main paper – we do not consider strategies (or beliefs) that are contingent upon

the number of citizens choosing pi = 1. This is a simplification. However, one can

easily imagine settings where OP has to commit to a strategy before he gets to know the

citizens’ pis. This is, for example, the case if the interaction is between i and an agent

representing OP and pi is only learned in the interaction. OP then has to instruct the

agent in advance how to act.

The main change is, therefore, that citizen i’s payoff is θp − 1s(pi)=Aδ(τi); that is, θ

instead of θi enters the utility function. To keep the model tractable, we will assume

that q(m/n) = m/n.

We first replicate some intermediary results from the main text in this modified

setting.

Lemma 5. For citizens, only cutoff strategies t(τi) are rationalizable. In the privacy

case, the optimal cutoff is tp(τi) = 0 for all τi.

Proof. If citizen i receives signal θi, he updates his belief α about θ according to
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Bayes’ rule yielding

α(θ′|θi) = prob(θ ≤ θ′|θi) =

∫ θ′
−∞ φ̃θ(θi) dΦ(θ)∫
< φ̃θ(θi) dΦ(θ)

.

From the normality assumptions, it follows that the pdf of the belief is single peaked with

its peak between 0 (the mean of the prior) and θi. Furthermore, E[θ|θi] =
∫
< θ dα(θ|θi)

is strictly increasing in θi with limits limθi→∞ = ∞ and limθi→−∞ = −∞. To see this,

note that

E[θ|θi] =

∫
<
θ

φ̃θ(θi)φ(θ)∫
< φ̃θ̂(θi) dΦ(θ̂)

dθ

=

∫
< θe

−(θi−θ)2/(2σ2)e−θ
2/2dθ∫

< e
−(θi−θ)2/(2σ2)e−θ2/2dθ

=
θe−(−2θiθ+θ

2(1+σ2))/(2σ2)dθ∫
< e
−(−2θiθ+θ2(1+σ2))/(2σ2)dθ

=

1√
2πσ/(

√
1+σ2)

∫
< θe

− θ
2
i /(1+σ2)2−2θiθ/(1+σ2)+θ2

2σ2/(1+σ2) dθ

1√
2πσ/(

√
1+σ2)

∫
< e
−
θ2
i
/(1+σ2)2−2θiθ/(1+σ2)+θ2

2σ2/(1+σ2) dθ

=
θi

1 + σ2

where the last equality holds as the numerator of the second but last line is the expected

value of a randome variable distributed N(θi/(1+σ2), σ2/(1+σ2)2) and the denominator

of the second but last line is simply 1 (as it integrates over the density of this random

variable).

Citizen i’s expected payoff difference between choosing pi = 1 and pi = 0 is21

−δ(τi)∆ + E[θ|θi]/n = −δ(τi)∆ +
θi

(1 + σ2)n
(5.9)

where ∆ is again the difference between the probabilities that OP plays A against citizens

with pi = 1 and citizens with pi = 0. Clearly, it is optimal to play pi = 0 (pi = 1)

for sufficiently low (high) θi. (Note that maxτi∈[τ ,τ̄ ]δ(τi) is bounded.) Furthermore,

E[θ|θi] is strictly increasing in θi which implies that i’s best response is a cutoff strategy.

Consequently, only cutoff strategies are best responses. The optimal cutoff is given by

t(τi) = (1 + σ2)nδ(τi)∆.

In the privacy case, ∆ = 0 and therefore the optimal cutoff is tp(τi) = 0.

21Recall that q(m/n) = m/n which means that i’s “influence” on the policy decision is 1/n.
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OP’s belief over τi given pi is given by

β0(τ ′) = prob(τ ≤ τ ′|pi = 0) =

∫
<

∫
<

∫ τ ′
τ
1t(τi)≥θi dΓθi(τi) dΦ̃θ(θi) dΦ(θ)∫

<

∫
<

∫ τ̄
τ
1t(τi)≥θi dΓθi(τi) dΦ̃θ(θi) dΦ(θ)

β1(τ ′) = prob(τ ≤ τ ′|pi = 1) =

∫
<

∫
<

∫ τ ′
τ
1t(τi)≤θi dΓθi(τi) dΦ̃θ(θi) dΦ(θ)∫

<

∫
<

∫ τ̄
τ
1t(τi)≤θi dΓθi(τi) dΦ̃θ(θi) dΦ(θ)

.

OP’s expected utility of playing A against a citizen choosing policy pi = 0 or pi = 1 are

then

v0 =

∫
<
τ dβ0(τ)

v1 =

∫
<
τ dβ1(τ).

Lemma 6. In every perfect Bayesian equilibrium (without privacy), v1 ≥ v0.

Proof. Suppose otherwise. Then ∆ < 0 which implies that t(τi) is decreasing.

Denote the inverse of t by z. From OP’s point of view θi is distributed according to the

cdf

Φ̂(θi) =

∫
<

Φ̃θ(θi) dΦ(θ).

Using this distribution Φ̂ we can replicate the proof from the main paper one-to-one:

v1 =

∫ t(τ)

t(τ̄)

∫ τ̄
z(θi)

τ dΓθi(τ) dΦ̂(θi) +
∫∞
t(τ)

∫ τ̄
τ
τ dΓθi(τ) dΦ̂(θi)∫ t(τ)

t(τ̄)

∫ τ̄
z(θi)

dΓθi(τ) dΦ̂(θi) +
∫∞
t(τ)

∫ τ̄
τ
dΓθi(τ) dΦ̂(θi)

≥

∫∞
t(τ̄)

∫ τ̄
τ
τ dΓθi(τ) dΦ̂(θi)∫∞

t(τ̄)

∫ τ̄
τ
dΓθi(τ) dΦ̂(θi)

>

∫ t(τ)

−∞

∫ τ̄
τ
τ dΓθi(τ) dΦ̂(θi)∫ t(τ)

−∞

∫ τ̄
τ
dΓθi(τ) dΦ̂(θi)

≥

∫ t(τ̄)

−∞

∫ τ̄
τ
τ dΓθi(τ) dΦ̂(θi) +

∫ t(τ)

t(τ̄)

∫ z(θi)
τ

τ dΓθi(τ) dΦ̂(θi)∫ t(τ̄)

−∞

∫ τ̄
τ
τ dΓθi(τ) dΦ̂(θi) +

∫ t(τ)

t(τ̄)

∫ z(θi)
τ

τ dΓθi(τ) dΦ̂(θi)

= v0

which contradicts our starting point v1 < v0.

The previous result implies that ∆ ≥ 0 and therefore tnp(τi) = (1 + σ2)nδ(τi)∆ ≥
0 = tp(τi). We therefore get chilling.

Proposition 6. The equilibrium cutoff of a type τi is higher without privacy than with

privacy. If the absence of privacy affects OP’s behavior, this relation is strict. The

difference of equilibrium cutoffs with and without privacy is increasing in τi.
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To establish that this chilling indeed hurts every citizen – as we claimed above – we

have to show that the privacy cutoff zero leads to a higher expected consumer surplus

than tnp(τ) > 0.

Lemma 7. The cutoff strategy tp(τ) = 0, i.e. the equilibrium strategy of the privacy

case, gives a higher expected consumer surplus in the information aggregation stage than

any other tnp(τ) > 0.

Proof. Let t(τ) be the strategy maximizing expected consumer welfare. Consider

citizen i with type (θi, τi) = (t(τ ′), τ ′) for some τ ′ ∈ [τ , τ̄ ].

Optimality of t requires that expected welfare conditional on i being of type (t(τ ′), τ ′)

is the same no matter whether i chooses pi = 0 or pi = 1: If this was not the case, say

for concreteness pi = 1 lead to a higher expected consumer welfare, then t could not be

optimal: As the setup is continuous, it would then also be better for expected consumer

surplus if i chose pi = 1 if he was any type in an ε > 0 neighborhood of (t(τ ′), τ ′). But

as expected welfare is just the expectation of expected welfare conditional on i’s type

over i’s type we get that an alternative strategy t′ which is slightly lower than t around

τ ′ leads to higher expected consumer welfare than t. This contradicts the definition of

t. Consequently, expected welfare conditional on i being of type (t(τ ′), τ ′) has to be the

same no matter whether i chooses pi = 0 or pi = 1.

We are now going to show that the just stated (necessary) optimality condition cannot

be satisfied for any t > 0. However, it is trivially satisfied for tp by the symmetry of

the setup. We focus on citizen i with type θi = t(τi) > 0. If citizen i chooses pi = 1

instead of pi = 0, he will increase the probability that p = 1 by 1/n. This can be

interpreted as follows: choosing pi = 1 instead of pi = 0 leads with probability 1/n to a

payoff of θ instead of a payoff of zero (for each citizen). Hence, choosing pi = 1 is best

for expected consumer welfare (conditional on i’s type) if E[θ|θi] > 0.22 As we showed

above, E[θ|θi] = θi/(1 +σ2) which is strictly positive for all θi > 0. It follows that pi = 1

leads to strictly higher expected consumer welfare than pi = 0 as θi > 0. This contradicts

that t > 0 maximizes expected consumer surplus.

The previous results can now be used to obtain a stronger version of our welfare

result in the paper. While the paper argued that expected aggregated consumer surplus

is higher under privacy if n is large (while OP’s payoff is the same with and without

privacy), we can now say that the expected utility of each citizen – regardless of his

type (θi, τi) – is higher under privacy for n large. That is, privacy is an interim Pareto

improvement here while it was only an ex ante Pareto improvement in the model of the

paper.

Proposition 7. Assume OP plays M in the privacy equilibrium.

1.) If OP uses a mixed – that is not pure – strategy in the equilibrium without privacy,

22Note that conditioning on τi is immaterial as τi is – given θi – not correlated with θ.
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then changing to the privacy case increases expected welfare at the interim stage.

2.) Assume that (i) δ is differentiable and strictly increasing in τ , i.e. δ′(τ) > 0 for all

τ ∈ [τ , τ̄ ] and (ii) Γ∞ = limθi→∞ Γθi is a non-degenerate distribution in the sense that

Γ∞(τi) > 0 for all τi > τ . Then, privacy welfare dominates no privacy for large n in

the following sense: Compared to the no privacy case, privacy leads to a higher expected

consumer surplus for each consumer of every type and the same expected payoff for OP

if n is sufficiently large.

In order to prove the proposition, we have to first restate the technical result on the

limit of tails of Φ that we show in the appendix for Φ̂(θi).

Lemma 8. Let Φ̂(θi) =
∫
< Φ̃θ(θi) dΦ(θ) be the distribution of θi from OP’s perspective.

Then,
∫ ka
ka−b dΦ̂/

∫∞
ka
dΦ̂ diverges to infinity as k →∞ for a, b > 0.

Proof. If we can show that φ̂(x)/φ̂(x+ b) diverges to infinity as x→∞ (where φ̂ is

the density of Φ̂), then the same proof as in the paper applies. Note that

φ̂(x) =

∫
<

1√
2πσ

e−
(x−θ)2

2σ2 dΦ(θ) =

∫
<

1√
2πσ

e−
(x−θ)2

2σ2 e−θ
2/2 dθ

φ̂(x)

φ̂(x+ b)
=

∫
< e
−(x−θ)2/(2σ2) dΦ(θ)∫

< e
−(x+b−θ)2/(2σ2) dΦ(θ)

=

∫
< e
−(x−θ)2/(2σ2)−θ2/2 dθ∫

< e
−(x+b−θ)2/(2σ2)−θ2/2 dθ

=

∫
< e

[−(1+σ2)θ2+2xθ]/(2σ2) dθ∫
< e

[−2b(x−θ)−b2−(1+σ2)θ2+2xθ]/(2σ2) dθ

=

∫
< e
− (θ−x/(1+σ2))2

2σ2/(1+σ2) dθ∫
< e

(−2b(x−θ)−b2)/(2σ2)e
− (θ−x/(1+σ2))2

2σ2/(1+σ2) dθ

=

∫
< dΦ̄(θ)∫

< e
(−2b(x−θ)−b2)/(2σ2) dΦ̄(θ)

where Φ̄ is the cdf of a normal distribution with mean x/(1+σ2) and variance σ2/(1+σ2).

As the numerator is 1, the previous expression can be written as

φ̂(x)

φ̂(x+ b)
=

1∫
< e
− 2b(x−θ)+b2

2σ2 dΦ̄(θ)

which diverges to infinity as x→∞ (because the denominator converges to zero). Given

this, the rest of the proof from the main paper goes through one-to-one which implies

the lemma.

Proof of proposition 7: Let M be optimal for OP in the privacy equilibrium.
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1.) Suppose there is a mixed strategy equilibrium in the case without privacy. Then,

OP has to play M against both groups with positive probability. If he played A against

those who chose pi = 1 for sure and mixed for those who chose pi = 0, then M could not be

optimal in the privacy case. Hence, OP can in the case without privacy achieve a payoff

equal to his equilibrium payoff by playing M against both groups. Consequently, OP’s

payoff with and without privacy is the same. Citizens are strictly better off with privacy

as (a) there is no chilling effect which means by lemma 7 that expected welfare of every

consumer (no matter which type) in the information aggregation stage is maximized and

(b) M will be played with probability 1 against them in the interaction stage.

2.) Now assume that δ′(τ) > 0. We will show that for n sufficiently high the privacy

equilibrium welfare dominates the equilibrium in the case without privacy (or the two

are identical).

We are going to make use of the fact that for any µ > 0, we can find an n̂ so that for

all n > n̂, q((m+ 1)/n)− q(m/n) = 1/n < µ. Now recall that tnp(τi) = (1 + σ2)nδ(τi)∆.

Consequently, the threshold values become arbitrarily large as n gets large (assuming

∆ = 1). Note also that t is increasing in τ and the slope also becomes arbitrarily large

as n increases. From here, the proof of the main paper applies with Φ̂ in place of Φ.
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