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Summary
Most financial applications are, by nature, multivariate with estimates and forecasts
of conditional covariance matrices as important components as in, for example,
the rich asset pricing, portfolio choice, and value-at-risk literature. One way of
obtaining such estimates and forecasts is by estimation of multivariate generalized
autoregressive conditional heteroskedasticity (GARCH) models - a class of models
that, by now, is heavily used within the fields of financial econometrics and empirical
finance. This thesis contains three self-contained parts (chapters) on estimation of
and large-sample inference in multivariate GARCH models.

In the first chapter, “Multivariate variance targeting in the BEKK-GARCH
model”, we consider asymptotic inference in the multivariate BEKK-GARCH model
based on (co)variance targeting (VT). By definition the VT estimator is a two-step
estimator and the theory presented is based on expansions of the modified likeli-
hood function, or estimating function, corresponding to these two steps. Strong
consistency is established under weak moment conditions, while sixth-order mo-
ment restrictions are imposed to establish asymptotic normality. Included simula-
tions indicate that the multivariately induced higher-order moment constraints are
necessary.

Existing literature on VT estimation of multivariate GARCH models, includ-
ing the first chapter of this thesis, relies on at least finite fourth-order moments
of the data generating process in order to derive the large-sample distribution of
the variance targeting estimator. Such moment conditions may not be a realistic
assumption as financial return distributions are typically found to be heavy tailed.
In the second chapter, “Targeting estimation of CCC-GARCH models with infinite
fourth moments” , we consider the large-sample properties of the VT estimator for
the multivariate extended constant conditional correlation (ECCC-)GARCH model
when the distribution of the data generating process has infinite fourth moments.
Using non-standard limit theory we derive new results for the estimator stating that,
under suitable conditions, its limiting distribution is multivariate stable (different
from a Gaussian distribution). The rate of consistency of the estimator is slower
than

√
T and depends on the tail shape of the data generating process. A simulation

study illustrates the derived properties of the VT estimator.
Lastly, in the third chapter, “Inference and testing on the boundary in extended

constant conditional correlation GARCH models”, we consider testing for volatility
spillovers (or interactions) in ECCC-GARCH models. The proposed tests imply
that the parameter vector under the null hypothesis lies on the boundary of the
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maintained hypothesis, which leads to non-standard limiting distributions of the test
statistics. The large-sample properties of the quasi-maximum likelihood estimator
are derived together with limiting distributions of the related Lagrange multiplier,
Wald, and quasi-likelihood ratio statistics. A simulation study investigates the size
and power properties of the tests. As an empirical illustration, the proposed tests
are applied to test for volatility spillovers between returns on foreign exchange rates.
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Summary in Danish
De fleste anvendelser indenfor finansiering er af flerdimensionel natur med estimation
og forecasts af betingede kovariansmatricer som vigtige komponenter, jf. felter som
asset pricing, porteføljevalg, og visse områder indenfor risikoanalyse (såsom value-at-
risk). En metode hvorpå sådanne estimater og forecasts kan opnås er via estimation
af multivariate generalized autoregressive conditional heteroskedasticity (GARCH)
modeller - en modelklasse der er hyppigt anvendt indenfor finansiel økonometri og
empirisk finansiering. Denne afhandling indeholder tre selvstændige kapitler om
estimation af og asymptotisk inferens i multivariate GARCH modeller.

I det første kapitel “Multivariate variance targeting in the BEKK-GARCH model”,
betragter vi asymptotisk inferens i multivariate BEKK-GARCH modeller baseret
på såkaldt variance targeting (VT-)estimation. VT-estimatoren er pr. definition
en to-trins-estimator, og vores teoretiske analyse er baseret på udviklinger af en
modificeret estimationsfunktion, der svarer til disse to estimationstrin. Vi beviser,
at estimatoren er stærk konsistent under milde momentantagelser, mens endelige
6.-ordens momenter er antaget for at bevise asymptotisk normalitet. Et simula-
tionsstudie indikerer, at højere-ordens momentbetingelserne, der fremkommer via
modellens flerdimensionelle natur, er nødvendige.

I den eksisterende litteratur indenfor VT-estimation af multivariate GARCH
modeller, herunder det første kapitel i denne afhandling, antages det, at den data-
genererende proces har mindst endelige 4.-ordens momenter, for at den asymptotiske
fordeling af VT-estimatoren kan udledes. Sådanne momentbetingelser er ikke nød-
vendigvis en realistisk antagelse, eftersom afkastfordelinger typisk har tunge haler.
I det andet kapitel, “Targeting estimation of CCC-GARCH models with infinite
fourth moments”, udleder vi de asymptotiske egenskaber for VT-estimatoren for
den multivariate extended constant conditional correlation (ECCC-)GARCH model,
i tilfældet hvor den datagenererende proces har uendelige 4.-ordens momenter. Ved
brug af ikke-standard asymptotisk teori udleder vi nye resultater for estimatoren og
viser, at estimatoren, under passende betingelser, har en asymptotisk multivariat
stabil fordeling (forskellig fra en multivariat normalfordeling). Konsistensraten for
estimatoren er langsommere end

√
T og afhænger af halefordelingen for den data-

genererende proces. De asymptotiske egenskaber for estimatoren illustreres i et
simulationsstudie.

I det tredje kapitel, “Inference and testing on the boundary in extended constant
conditional correlation GARCH models”, betragter vi tests for volatilitets-spillovers
(eller interaktioner) i ECCC-GARCH modeller. Vi udleder de asymptotiske egensk-
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aber for quasi-maximum likelihood estimatoren samt for de tilhørende Lagrange mul-
tiplikator, Wald og quasi-likelihood ratio statistikker. De foreslåede tests medfører,
at parameterværdien under nulhypotesen ligger på randen af parameterområdet,
hvilket leder til ikke-konventionelle asymptotiske fordelinger af teststatistikkerne. I
et simulationsstudie undersøges testenes empiriske egenskaber nærmere. Som en em-
pirisk illustration anvender vi de foreslåede tests til at teste for volatilitets-spillovers
mellem afkast på valutakurser.
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Part I

Multivariate variance targeting in
the BEKK-GARCH model

This chapter is joint research with Anders Rahbek (University of Copen-
hagen) and has been published in The Econometrics Journal, vol. 17,
issue 1, February 2014.1

Abstract

In this paper we consider asymptotic inference in the multivariate BEKK
model based on (co)variance targeting (VT). By definition the VT estima-
tor is a two-step estimator and the theory presented is based on expansions
of the modified likelihood function, or estimating function, corresponding to
these two steps. Strong consistency is established under weak moment condi-
tions, while sixth-order moment restrictions are imposed to establish asymp-
totic normality. Included simulations indicate that the multivariately induced
higher-order moment constraints are necessary.

1 Introduction

As argued in Laurent et al. (2012) variance targeting (VT) estimation, or simply
VT, is highly applicable when forecasting conditional covariance matrices. This
paper derives large-sample properties of the variance targeting estimator (VTE)
for the multivariate BEKK-GARCH model, establishing that asymptotic inference
is feasible in the model when estimated by VT. To our knowledge, large-sample
properties of the VTE have not been considered before for multivariate GARCH
models, unlike for the univariate GARCH model where the properties have recently
been considered by Francq et al. (2011), see also Kristensen and Linton (2004). We
find that the VTE is strongly consistent if the observed process has finite second-
order moments, and asymptotic normality applies if the observed process has finite
sixth-order moments. These moment restrictions for large-sample inference in the

1We thank the editor Pierre Perron and three anonymous referees for valuable comments which
have implied a much improved paper. Also we thank Paolo Paruolo, Andreas N. Jensen and Dennis
Kristensen for comments. Finally, we thank for discussions at the 2013 Humboldt-Copenhagen
(HUKU) and the Brunel University (MMF) conferences, and at the European Meeting of the
Econometric Society 2013.
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BEKK-GARCH model, when estimated by VT estimation, are in line with existing
literature for large-sample inference based on quasi maximum likelihood (QML)
estimation, see Hafner and Preminger (2009b). Included simulations indicate that
our imposed sixth-order moment requirement (which are identical to Hafner and
Preminger (2009b)) may not be relaxed for VT estimation. Thus our results point
at that while VT estimation is simpler and even possible to implement for higher
order systems, it requires no further moments when comparing to existing results
for QML based estimation.

Most financial applications are by nature multivariate with forecasts of con-
ditional covariance matrices as important components as in for example the rich
portfolio choice and Value-at-Risk literature. Such forecasts may be based on esti-
mation of multivariate conditionally heteroscedastic (GARCH) models such as the
much applied BEKK model proposed by Engle and Kroner (1995), see e.g. Bauwens
et al. (2006) and Laurent et al. (2012). However, a drawback of the BEKK model,
despite the fact that it is a very simple extension of the popular univariate GARCH
model in Bollerslev (1987), is that it contains a large number of parameters even for
moderate dimensions. This implies that it is difficult, if not impossible, to estimate
the model through classical QML estimation even for moderately sized series. At
the same time, recent development in financial applications implies an increasing in-
terest in conditional covariances and correlations based on vast, or high-dimensional
models. To address this issue one may restrict, or simplify, further the BEKK model
to reduce the number of parameters as is the case in for example diagonal-BEKK
and scalar-BEKK models, see Bauwens et al. (2006). Alternatively – or additionally
– one may consider a simplified estimation method such as VT estimation considered
here.

VT estimation was originally proposed by Engle and Mezrich (1996) as a two-step
estimation procedure, where the unconditional covariance matrix of the observed
process is estimated by a moment estimator in a first step. Conditional on this,
the remaining parameters are estimated in a second step by QML estimation. This
two-step procedure reduces the number of parameters in the numerical optimization
step which leads to optimization over fewer parameters, regardless of the model has
a restricted or unrestricted BEKK representation. Recently, Noureldin et al. (2014)
have proposed the so-called multivariate rotated ARCH (RARCH) model which is
estimated in two steps closely related to VT estimation and thus saving the number
of varying parameters in the optimization step.

High-order moment restrictions for the multivariate BEKK-ARCH model are ex-
tensively discussed by Avarucci et al. (2013). They argue that fourth-order moment
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restrictions for QML estimation cannot be relaxed even in the simple ARCH form
of the BEKK model. Note also in this respect that the strong moment restrictions
for asymptotic QML inference in the multivariate BEKK model are in contrast to
the very mild conditions found for univariate GARCH models, see e.g. Jensen and
Rahbek (2004) and Francq and Zakoïan (2012b) who find that asymptotic inference
in the GARCH model is feasible even if the observed process is explosive.

Some notation throughout the paper: The absolute value of a ∈ R is denoted |a|.
For n ∈ N, In is the n×n identity matrix. If a matrix A is positive definite we write
A > 0, and if A is positive semi-definite we write A ≥ 0. The vector vec(A) stacks
the columns of a matrix A, and vech(A) stacks the columns of a square matrix A
from the principal diagonal downwards. The trace of a square matrix A is denoted
tr (A), and the determinant is denoted det(A). For a k× l matrix A = {aij} and an
m× n matrix B, the Kronecker product of A and B is the km× ln matrix defined
by A ⊗ B = {aijB}. Moreover, for a matrix A we define A⊗2 ..= (A⊗ A). With
ξ1, ..., ξn the n eigenvalues of a matrix A, ρ(A) = maxi∈{1,...,n} |ξi| is the spectral
radius of A. The matrix (Euclidean) norm of the matrix, or vector A, is defined
as ‖A‖ =

√
tr (A′A), and the spectral norm is defined as ‖A‖spec =

√
ρ (A′A).

For an m × n matrix A, the mn ×mn commutation matrix Cmn has the property
Cmnvec (A) = vec (A′). The zero matrix 0m×n is an m× n matrix with all elements
equal to zero. The letters K and φ denote strictly positive generic constants with
φ < 1.

2 The variance targeting (VT) BEKK model

As in Hafner and Preminger (2009b) we focus on the BEKK(1,1,1) model, the BEKK
model hereafter, which is the predominantly used version of the BEKK models in
applications, see Silvennoinen and Teräsvirta (2009). The BEKK model is given by

Xt = H
1/2
t Zt, (2.1)

where t = 1, ..., T, and Zt is an i.i.d.(0, Id) sequence of random variables. Moreover,
H

1/2
t is the symmetric square root of Ht given by

Ht = C + AXt−1X
′
t−1A

′ +BHt−1B
′, (2.2)

with parameters (C,A,B). The matrix C is (d × d)-dimensional, C > 0, and A

and B are (d× d)-dimensional real matrices such that Ht is positive definite. With
respect to initial values, we consider estimation conditional on the initial values X0
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and H0
..= h > 0.

We make the following assumptions throughout the text:

Assumption 1. The distribution of Zt is absolutely continuous with respect to the
Lebesgue measure on Rd, and zero is an interior point of the support of the distri-
bution.

Assumption 2. The matrices A and B satisfy ρ [A⊗2 +B⊗2] < 1.

By Theorem 2.4 of Boussama et al. (2011), Assumptions 1 and 2 imply the
existence of a unique stationary and ergodic solution to the model in (2.1) and (2.2).
Moreover, the stationary solution has finite second order moments, E ‖Xt‖2 < ∞,
and variance V [Xt] = E [Ht] = Γ with Γ > 0, which is the solution to

Γ = C + AΓA′ +BΓB′. (2.3)

Remark 2.1. Note that Boussama et al. (2011, Lemma 4.2 and Proposition 4.3) show
that (2.3) has a positive definite solution if and only if Assumption 2 applies.

VT can be presented by writing the model in terms of the parameters Γ, A and
B rather than as in the original BEKK formulation C, A and B,

Ht = Γ− AΓA′ −BΓB′ + AXt−1X
′
t−1A

′ +BHt−1B
′. (2.4)

With Γ > 0 and A,B (d× d)-dimensional real matrices we refer to (2.4) as the
VT BEKK model, or the VT BEKK representation of Ht. In other words, in the
VT BEKK model, the covariance (of the stationary solution) appears explicitly in
the formulation, thus generalizing the univariate VT GARCH formulation of Francq
et al. (2011).

In the next section we consider estimation of the VT BEKK model.

3 Variance targeting (VT) estimation

With Γ > 0 and A,B (d× d)-dimensional let θ, θ ∈ R3d2
, denote the parameter

vector of the VT BEKK model obtained as θ ..= (γ′, λ′)′ with

γ ..= vec(Γ) and λ ..= [vec(A)′, vec(B)′]′ . (3.1)

Likewise, define the parameter space Θ ..= Θγ × Θλ ⊂ Rd2 × R2d2 . To emphasize
dependence on the parameters γ and λ, we write Ht(γ, λ) such that the VT BEKK
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model can be restated as
Xt = H

1/2
t (γ, λ)Zt, (3.2)

where

Ht(γ, λ) = Γ− AΓA′ −BΓB′ + AXt−1X
′
t−1A

′ +BHt−1(γ, λ)B′. (3.3)

Whereas classical QML estimation of the BEKK model has been considered by
Comte and Lieberman (2003) and Hafner and Preminger (2009b) (as a special case
of the VEC GARCH model), we consider as emphasized here VT. VT estimation
studied here is a two-step estimation method where γ, see (3.1), is estimated by a
the sample unconditional covariance matrix of Xt, and next λ is estimated by QML
by optimizing the VT log-likelihood, given below, with respect to λ. This two-step
estimation yields the VT estimator (VTE) of θ, denoted θ̂V T and is detailed next.

For the VT BEKK model, the Gaussian log-likelihood function is given by

LT,h(γ, λ) ..= 1
T

T∑
t=1

lt,h(γ, λ) (3.4)

with likelihood contributions,

lt,h(γ, λ) ..= log {det [Ht,h (γ, λ)]}+ tr
{
XtX

′
tH
−1
t,h (γ, λ)

}
, (3.5)

where, as mentioned, the initial values X0 and H0,h (γ, λ) ..= h > 0 are conditioned
upon in the statistical analysis. Observe that the subscript h in the conditional
covariance Ht,h(γ, λ) is used to emphasize that Ht,h(γ, λ), defined recursively in
(3.3), is initiated for t = 0 at H0,h (γ, λ) = h.

As mentioned, in the first step of the VT estimation, γ is simply estimated by
the sample covariance matrix2,

γ̂V T = vec
(

1
T

T∑
t=1

XtX
′
t

)
. (3.6)

Next, inserting γ̂V T from (3.6), the VTE of λ is then defined as

λ̂V T ..= arg min
λ∈Θλ

LT,h (γ̂V T , λ) , (3.7)

2Note that one could sum from t = 0 and all results stated would still apply. However, for
presentational purposes we sum from t = 1.
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with Θλ ⊂ R2d2 . In total, the two estimation steps yield the VTE of γ and λ,

θ̂V T ..=
(
γ̂′V T , λ̂

′
V T

)′
.

For estimation of C in the original BEKK model in (2.2), observe that

ĈV T ..= Γ̂V T − ÂV T Γ̂′V T ÂV T − B̂V T Γ̂′V T B̂V T . (3.8)

Remark 3.1. Although Zt is not assumed to be necessarily Gaussian, we choose to
work with the Gaussian log-likelihood and hence, similar to the notion of QML, one
could denote the estimator QVTE.
Remark 3.2. The 3d2-dimensional parameter vector θ has 2d2 + d (d+ 1) /2 unique
elements as Γ is symmetric.
Remark 3.3. Compared to QML estimation, where all parameters are estimated in
one step by numerical optimization, the VT estimation implies that there are less
varying parameters in the optimization step. That is, in the first step d (d+ 1) /2
parameters are estimated by method of moments, and in the second step 2d2 pa-
rameters are estimated through optimization.
Remark 3.4. VT estimation may in particular be used to estimate simplified BEKK
models, such as the diagonal BEKK, where A and B are further simplified. This
combination of targeting the unconditional covariance matrix and reducing the struc-
ture of the matrices A and B decreases the proportion of varying parameters relative
to the total number of model parameters additionally.

4 Large-sample properties of VT estimation

In this section we derive the asymptotic properties of the VTE defined by (3.6) and
(3.7). Specifically, we establish that θ̂V T converges almost surely to its true value,
θ0, and that asymptotic normality applies under the assumption of finite sixth-order
moments ofXt. We discuss this, as well as additional assumptions for the asymptotic
analysis below. As mentioned in the introduction our results are new and extend
the univariate results of Francq et al. (2011). All proofs are stated in Appendix A.

We make the following classical assumptions for the asymptotic analysis.

Assumption 3. The process {Xt} is strictly stationary and ergodic.

Assumption 4. The true parameter θ0 ∈ Θ and Θ is compact.

Assumption 5. For λ ∈ Θλ, if λ 6= λ0 then Ht (γ0, λ) 6= Ht (γ0, λ0) almost surely,
for all t ≥ 1.
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Remark 4.1. Regarding Assumption 3, recall that Assumptions 1 and 2 imply the
existence of a strictly stationary ergodic solution {Xt} in the BEKK model. This
assumption is in line with the existing literature on QML estimation of multivariate
GARCH and VT estimation, see Comte and Lieberman (2003), Hafner and Pre-
minger (2009b), Hafner and Preminger (2009a), Francq and Zakoïan (2012a), and
Francq et al. (2011). It implies in particular that for the asymptotic analysis the
process {Xt}t=0,1,... is assumed to be initiated from the invariant distribution. To
relax this, and allow for an arbitrary initial value X0, one can use arguments similar
to Jensen and Rahbek (2004) and Kristensen and Rahbek (2005) where univariate
(G)ARCH models are considered.

Remark 4.2. Assumptions 4, and 5 are in line with Comte and Lieberman (2003)
and Hafner and Preminger (2009b). Assumption 5 concerns identification, which is
a high-level condition. However, note that Engle and Kroner (1995) state sufficient
conditions for parameter identification in the model with the original unrestricted
BEKK representation, (2.2). These conditions include that the first element in the
matrices A and B should be strictly positive.

We are now able to state the following result regarding consistency:

Theorem 4.1. Under Assumptions 1-5, as T →∞

θ̂V T
a.s.→ θ0.

The relatively weak sufficient conditions of Theorem 4.1 suggest that consistency
of the VTE applies for many practical purposes. Moreover, the finite second-order
moments of Xt as implied by Assumptions 1 and 2, are in line with the moment
restrictions for consistency of the VTE in the univariate case, see Francq et al. (2011).
However, the moment restrictions are stronger than the ones that are sufficient for
consistency of the QML estimator (QMLE) for the BEKK model of the form (2.2)
where finite second-order moments ofXt are not necessary, see Hafner and Preminger
(2009b).

Next, for asymptotic normality of the VTE, we make two further assumptions:

Assumption 6. E ‖Xt‖6 <∞.

Assumption 7. θ0 is in the interior of Θ.

Remark 4.3. Whereas only finite fourth-order moments are required in order to show
the existence of the joint asymptotic covariance matrix of γ̂V T and the score (in the
direction λ), see Lemmas B.8 and B.9, finite sixth-order moments are assumed in or-
der to show that the second-order derivatives of the log-likelihood function converge
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uniformly on the parameter space, see the proof of Lemma B.6. As in Francq et al.
(2011) this can be reduced to fourth-order moments in the univariate case. In the
multivariate case the model structure is more complex, and as a result the deriva-
tion of sufficient conditions for asymptotic normality more involved. The implied
requirement of finite further higher-order moments for multivariate GARCH mod-
els, when compared to univariate GARCH models, has, as mentioned, recently been
discussed in Avarucci et al. (2013) for QML estimation of BEKK-ARCH models.

Remark 4.4. The moment conditions in Assumption 6 are identical to the ones
found in existing literature on asymptotic normality of the QMLE, see Hafner and
Preminger (2009b).

Remark 4.5. As mentioned in Section 2, under Assumptions 1 and 2, Boussama
et al. (2011) have shown the existence of a strictly stationary solution of the BEKK
process with finite second-order moments ofXt. To our knowledge, conditions on the
matrices A and B and the innovation Zt such that the BEKK model has a strictly
stationary and ergodic solution with E ‖Xt‖6 < ∞, have not been derived. There
are different approaches to derive such conditions, and one is to establish that the
Markov chain {Wt} , Wt

..=
(
vech (Ht)′ , X ′t

)′
, as in Boussama et al. (2011), satisfies

a drift criterion with a drift function that bounds the sixth-order moments of Xt.
Choosing such a drift function is non-trivial for the BEKK-GARCH case. However,
in Appendix C we establish sufficient conditions for geometric ergodicity and finite
eighth, sixth, as well as lower order moments for the BEKK-ARCH model.

Theorem 4.2. Under Assumptions 1-7, as T →∞

√
T
(
θ̂V T − θ0

)
D→ N

0,
 Id2 0d2×2d2

−J−1
0 K0 −J−1

0

Ω0

 Id2 0d2×2d2

−J−1
0 K0 −J−1

0

′ ,
where the nonsingular matrix J0 and the matrix K0 are stated in (A.8), and Ω0 is
stated in (B.40) below.

Remark 4.6. Since θ̂V T is computed in two steps, with the moment-based estimator
inserted, it is expected that the VTE is not efficient as also shown by Francq et al.
(2011) for the univariate case. In particular Francq et al. (2011) show that the
asymptotic covariance matrix of the VTE minus the asymptotic covariance matrix
of the QMLE is positive semidefinite as would also be expected in the multivariate
case. This property of the VTE is also confirmed by simulations in Section 5.4.

Remark 4.7. From Theorem 4.1 one may also consider taking a Newton step from
the consistent estimate θ̂V T in order to improve on the efficiency, see e.g. Robinson
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(2005). That is θ is estimated in a first-step using VT, and from this estimate a
Newton step is taken in the direction of the entire parameter vector θ in order to
achieve a new estimate that might be more efficient than the one computed by VT.

Remark 4.8. As kindly raised by a referee, one may relax the assumption of com-
pact Θγ, where Θ = Θγ ×Θλ and γ ∈ Θγ, λ ∈ Θλ. Indeed, for non-compact Θγ the
consistency of θ̂V T still applies, as can be seen by using the strong consistency of the
method of moment estimator γ̂V T , and modifying the proof in the appendix of con-
sistency for λ̂V T accordingly. However, for the derivation of the (joint) asymptotic
distribution of γ̂V T and λ̂V T in Theorem 4.2 an expansion of the score is needed
in both parameter directions. We employ here a mean-value expansion, using com-
pactness of Θ and finite sixth-order moments of Xt. In the case of non-compact
parameter space, as in Francq et al. (2011) and Jensen and Rahbek (2004), an
alternative would be to employ an expansion in a (local and indeed compact) neigh-
bourhood of the true parameter value θ0. This approach may lead to requirements
of higher order finite moments due to the multivariate complexity, as in Comte and
Lieberman (2003, Theorem 3) where finite eighth-order moments are assumed for
the QMLE of the BEKK-GARCH model.

Given the asymptotic distribution of θ̂V T , we can state the asymptotic distribu-
tion of the VTE for (C,A,B) in the original BEKK parametrization in (2.2):

Corollary 4.1. Under the assumptions of Theorem 4.2, as T →∞

√
T


vec(ĈV T − C0)
vec(ÂV T − A0)
vec(B̂V T −B0)

 D→ N

0,Σ0

 Id2 0d2×2d2

−J−1
0 K0 −J−1

0

Ω0

 Id2 0d2×2d2

−J−1
0 K0 −J−1

0

′Σ′0
 ,

where

Σ0 =


Id2 − (A⊗2

0 +B⊗2
0 ) − (Id2 + Cdd) [(A0Γ0)⊗ Id] − (Id2 + Cdd) [(B0Γ0)⊗ Id]

0d2×d2 Id2 0d2×d2

0d2×d2 0d2×d2 Id2

 .

Remark 4.9. The asymptotic covariance matrix of θ̂V T , stated in Theorem 4.2, may
in practice, using numerical derivatives, be estimated by

 Id2 0d2×2d2

−Ĵ−1K̂ −Ĵ−1

 Ω̂
 Id2 0d2×2d2

−Ĵ−1K̂ −Ĵ−1

′ ,
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with
Ĵ ..= 1

T

T∑
t=1

Ĵt and K̂ ..= 1
T

T∑
t=1

K̂t,

where
Ĵt ..= ∂2lt,h (θ)

∂λ∂λ′

∣∣∣∣∣
θ=θ̂V T

and K̂t
..= ∂2lt,h (θ)

∂λ∂γ′

∣∣∣∣∣
θ=θ̂V T

,

and

Ω̂ ..= 1
T

T∑
t=1

ω̂tω̂
′
t with ω̂t ..=

vec (XtX
′
t)− γ̂V T

∂lt,h(θ)
∂λ

∣∣∣
θ=θ̂V T

 .
The asymptotic covariance matrix of

[
vec(ĈV T )′, vec(ÂV T )′, vec(B̂V T )′

]′
, stated in

Corollary 4.1, may be estimated in a similar way with the matrices entering Σ0

replaced with their estimated counterparts, Γ̂V T , ÂV T , and B̂V T . Note that we can
replace θ0 by θ̂V T due to the established consistency together with the uniform law
of large numbers as applied repeatedly in the appendix.

Remark 4.10. As an alternative to the method of moment estimator for γ one may
consider other estimators for γ, as for example a sample covariance estimator based
on shrinkage techniques, see Ledoit and Wolf (2004) and Hafner and Reznikova
(2012). The asymptotic analysis of the VTE, we expect, will have to be modified in
order to deal with other choices of estimators for γ.

5 Simulation study

In this section we illustrate the theoretical results of Section 4 through simulations.
Specifically, we simulate the large-sample distribution of the VTE for three different
cases. As data-generating process (DGP) we choose the bivariate diagonal-BEKK-
ARCH with Gaussian noise, that is the process in (2.2) with d = 2, A diagonal,
B = 0, and Zt i.i.d.N(0, I2). In Appendix C we derive sufficient conditions for
the matrix A in a BEKK-ARCH process such that {Xt} is geometrically ergodic
and such that certain moments of the stationary solution are finite. In the first
simulation the sufficient moment restrictions for asymptotic normality, see Theorem
4.2, are satisfied - in particular the DGP has finite sixth-order moments. In the
second case the sufficient conditions for finite fourth-order moments of the DGP are
satisfied, but the derived sufficient conditions for finite sixth-order moments are not
satisfied, which means that the conditions for asymptotic normality in Theorem 4.2
might be violated, and hence the VTE for the entire parameter vector may not be
asymptotically normal. However, the moment restrictions for asymptotic normality
of the VTE of γ are satisfied. In the last case the sufficient conditions for finite
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second-order moments of the DGP are satisfied, but the fourth-order moments are
not finite. In this case the VTE of γ (and of λ) might not be asymptotically normally
distributed. Moreover, we consider the relative efficiency between the VTE and the
QMLE in the case where the DGP has finite sixth-order moments.

5.1 Case 1: The DGP satisfies the sufficient conditions for
asymptotic normality

Consider the bivariate DGP for Xt given by (2.2) with B = 0. That is

Xt = H
1/2
t Zt, Zt i.i.d.N(0, I2), and Ht = C + AXt−1X

′
t−1A

′, (5.1)

with C = (Cij)i,j=1,2 =
0.8 0.5

0.5 0.7

 . (5.2)

First we choose A such that E ‖Xt‖6 <∞. Specifically, we set

A = (Aij)i,j=1,2 =
0.6 0

0 0.5

 , (5.3)

and observe that ρ (A⊗ A) = 0.36. By Theorem C.1 the stationary solution of the
process has E ‖Xt‖6 < ∞, and hence the moment restrictions of Theorem 4.2 are
satisfied.

For N = 1000 realizations of (5.1)-(5.3), t = 1, ..., 10000, H1 = C, we estimate
A and C by VT using the G@RCH Package version 6.1 for OxMetrics 6.1.

Figure 5.1 contains density and QQ plots of the estimates of A11 and C11 in
the process (5.1)-(5.3). The figure suggests that the estimates seem to fit a normal
distribution well, which is in line with Theorem 4.2. We now turn to the second
case where the DGP does not meet the conditions of Theorem 4.2.

5.2 Case 2: The DGP satisfies sufficient conditions for E ‖Xt‖4 <

∞.

Next we consider the DGP (5.1)-(5.2) and choose A such that E ‖Xt‖4 <∞, while
the sufficient conditions for E ‖Xt‖6 <∞ are not met. Specifically, we set

A = (Aij)i,j=1,2 =
0.75 0

0 0.5

 , (5.4)
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Figure 5.1: Density and QQ plots of N = 1000 VT estimates of A11 and C11 of the process
(5.1)-(5.3). In the density plots the solid line is the plot of the estimated density of the
VT estimates, and the dashed line is the plot for the normal distribution. The QQ plots
compare the quantiles of the estimate with the ones of a normal distribution (crosses).
The solid lines are the asymptotic 95% standard error bands of a normal distribution.

so that ρ (A⊗ A) = 0.752 = 0.5625 < 1√
3 and the DGP is geometrically ergodic with

E ‖Xt‖4 <∞ for the stationary solution by Theorem C.1. As in Case 1 we consider
N = 1000 realizations of the DGP and estimate A and C by VT.

Figure 5.2 contains density and QQ plots of the estimates of A11 and C11 in
the process (5.1),(5.2),(5.4). The estimates of A11 do not seem to be well approxi-
mated by the Gaussian distribution: The density is skewed compared to a normal
distribution, which can also be deduced by the s-shape of the points in the QQ plot.
Contrary to this, the estimates of C11 do seem to fit a normal distribution, except for
a few outliers (see QQ plot), which may be explained as follows. Recall from (3.8)
that vec(ĈV T ) = [Id2 − (ÂV T ⊗ ÂV T )]γ̂V T , so the distribution of vec(ĈV T ) (or more
correctly

√
T [vec(ĈV T )− vec (C)]) depends on the distribution of (ÂV T ⊗ ÂV T ) and

γ̂V T = vec(Γ̂V T ). By Lemma B.8, the proof of Lemma B.9, and the Central Limit
Theorem for martingale difference sequences, applied in the proof of Lemma B.10,
it follows that vec(Γ̂V T ) is asymptotically Gaussian with asymptotic covariance ma-
trix E [At] defined in (B.36), if E ‖Xt‖4 <∞. This moment restriction holds for our
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Figure 5.2: Density and QQ plots of N = 1000 VT estimates of A11 and C11 of the process
(5.1),(5.2),(5.4). In the density plots the solid line is the plot of the estimated density of
the VT estimates, and the dashed line is the plot for the normal distribution. The QQ
plots compare the quantiles of the estimate with the ones of a normal distribution (crosses).
The solid lines are the asymptotic 95% standard error bands of a normal distribution.

choice of DGP, so
√
T [vec(Γ̂V T )−vec (Γ0)] is indeed asymptotically Gaussian. Next

√
Tvec

(
ĈV T − C

)
=

[
Id2 −

(
ÂV T ⊗ ÂV T

)]√
Tvec

(
Γ̂V T − Γ

)
(5.5)

−
√
T
[(
ÂV T ⊗ ÂV T

)
− (A⊗ A)

]
vec (Γ) .

If E ‖Xt‖4 <∞ the first term of the right hand side of (5.5) converges to a Gaussian
distribution, and determines the distribution of

√
Tvec(ĈV T −C), provided the last

term tends to zero in probability. This would indeed be the case if [(ÂV T ⊗ ÂV T )−
(A⊗ A)] converges to some (unknown) distribution with a rate higher than

√
T , say

T 1/2+δ for some δ > 0 which will be explored elsewhere.
Next, we turn to the case where sufficient conditions for E ‖Xt‖2 < ∞ are

satisfied.
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5.3 Case 3: The DGP has E ‖Xt‖2 < ∞, but E ‖Xt‖4 is not
finite

We consider the DGP (5.1)-(5.2) and choose A such that E ‖Xt‖2 <∞, but E ‖Xt‖4

is not finite as discussed below. We set

A = (Aij)i,j=1,2 =
0.95 0

0 0.8

 , (5.6)

such that ρ (A⊗ A) = 0.952 = 0.9025 < 1 and the DGP is geometrically ergodic
with E ‖Xt‖2 < ∞ by Theorem C.1. Note that the conditions in Theorem C.1 are
sufficient, so based on that theorem we cannot say whether E ‖Xt‖4 is finite or not.
However, Theorem 3 in Hafner (2003) provides necessary and sufficient conditions
for E ‖Xt‖4 < ∞. The necessary and sufficient condition for our choice of DGP is
that ρ[(Ã⊗ Ã)G2] < 1, where Ã ..= D+

2 (A⊗ A)D2 , with D2 a (4× 3)-dimensional
duplication matrix, D+

2 = (D′2D2)−1D′2, and G2 is a (9× 9)-dimensional matrix
stated in Hafner (2003, equation (12)). For our choice of matrix A, ρ[(Ã⊗ Ã)G2] ≈
2.44, so E ‖Xt‖4 is not finite. As in Case 1 and 2 we consider N = 1000 realizations
of the DGP and estimate A and C by VT.

Figure 5.3 contains density and QQ plots of the estimates of A11 and C11 in the
process (5.1),(5.2),(5.6). None of the estimates seem to be well approximated by
the normal distribution. In light of Case 2 this might be explained by the fact that√
Tvec(Γ̂V T − Γ) is not asymptotically normal as E ‖Xt‖4 is not finite.

5.4 Relative efficiency between VT and QML estimation

Similar to the simulation study of Francq et al. (2011), we now consider the rel-
ative efficiency between the VTE and the QMLE by a small simulation investi-
gation. Specifically, we simulate the asymptotic covariance matrix of the two es-
timators for the parameter vector θ = (A11, A22, C11, C12, C22)′ when the DGP is
chosen as in Section 5.1. Based on 1000 realizations of the DGP with a sample
size of 10000 observations, we estimate Avar(θ̂V T ) ..= limT→∞Var{

√
T (θ̂V T −θ)} and

Avar(θ̂QML) ..= limT→∞Var{
√
T (θ̂QML − θ)}. In order to evaluate the relative effi-

ciency of the two estimators, we consider the difference between the two asymptotic
covariance matrices, Avar(θ̂V T )−Avar(θ̂QML). As the asymptotic distributions of θ̂V T
and θ̂QML are unknown when E ‖Xt‖6 is not finite, we cannot compare estimated
covariances in this case. Hence we consider the choice of DGP with E ‖Xt‖6 <∞ in
line with Theorem 4.2. Estimated values of Avar(θ̂V T )−Avar(θ̂QML) are presented
in Table 5.1. Trying with different parameter combinations in the region where
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Figure 5.3: Density and QQ plots of N = 1000 VT estimates of A11 and C11 of the process
(5.1),(5.2),(5.6). In the density plots the solid line is the plot of the estimated density of
the VT estimates, and the dashed line is the plot for the normal distribution. The QQ
plots compare the quantiles of the estimate with the ones of a normal distribution (crosses).
The solid lines are the asymptotic 95% standard error bands of a normal distribution.

E ‖Xt‖6 < ∞, we found little differences, and hence we report a representative
result here.

Based on the eigenvalues of ̂Avar(θ̂V T ) − ̂Avar(θ̂QML) the matrix is positive
semidefinite, and hence indicating (as clearly expected) that the VTE cannot be
more efficient than the QMLE. We see that although the elements of the covariance
matrix for the VTE, in general, are larger than the ones of the QMLE, the method
of VT does not seem to imply a substantial loss of efficiency. Our conclusion is di-
rectly comparable with the simulation study in Francq et al. (2011) for the univariate
ARCH model, where Francq et al. (2011) find that the asymptotic covariance ma-
trices of the two estimators likewise are similar. In fact, their conclusion holds even
when the true parameter vector is moderately away from the region where E ‖Xt‖4

is close to not being finite. This region, as mentioned, we do not consider for the
BEKK-ARCH model since in the multivariate case the asymptotic distributions of
the VT and the QML estimators are unknown at present when E ‖Xt‖6 is not finite
.
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̂Avar(θ̂V T )− ̂Avar(θ̂QML) Eigenvalues
0.17 0.06 0.09 0.00 −0.06
0.06 0.05 0.03 0.02 0.02
0.09 0.03 0.45 0.45 0.15
0.00 0.02 0.45 0.52 0.23
−0.06 0.02 0.15 0.23 0.16

 1.03 0.25 0.07 0.00 0.00

Table 5.1: Difference between estimated covariance matrices of the VTE and the
QML estimator for θ = (A11, A22, C11, C12, C22)′ for the DGP (5.1)-(5.3)

5.5 Brief summary of simulation-based conclusions

The simulation study suggests that asymptotic normality of the VTE applies when
Xt has finite sixth-order moments, which is in line with the theory derived in Section
4. Case 2 indicated that when relaxing the moment restrictions, ÂV T did no longer
seem to be asymptotically normally distributed. This indicates that E ‖Xt‖6 < ∞
may be a necessary moment restriction for doing standard large-sample inference in
the VT BEKK model. Case 2 also indicated that ĈV T might be asymptotically nor-
mal even in the case where the sufficient condition for E ‖Xt‖6 <∞ is not satisfied,
but E ‖Xt‖4 <∞. Case 3 indicated that when E ‖Xt‖2 <∞ but E ‖Xt‖4 not finite,
neither ÂV T nor ĈV T seemed to be asymptotically normal. Moreover, simulations
showed that the VT does not imply a substantial loss in efficiency compared to QML
in the case where the DGP has finite sixth-order moments and both the VTE and
the QMLE are known to be asymptotically normal.

6 Extensions and concluding remarks

We derive the asymptotic properties of the variance targeting estimator (VTE) for
the multivariate BEKK-GARCH model. Variance targeting estimation relies on
reparametrizing the BEKK model in (2.1)-(2.2) such that the unconditional covari-
ance matrix of the observed process appears explicitly in the model equation. This
yields a reparametrized (variance targeting) model given by (3.2)-(3.3). The param-
eters of the model are estimated in two steps yielding the VTE: The unconditional
covariance matrix of the observed process is estimated by method of moments, and
conditional on this, the rest of the parameters are estimated by QMLE. We estab-
lish that the VTE is consistent when the observed process has finite second-order
moments, and is asymptotically Gaussian when the process has finite sixth-order
moments. Our simulations indicate that these moment restrictions cannot be re-
laxed, and that the VTE does not seem to be substantially less efficient compared
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to the QMLE in the region of the parameter space where both estimators are known
to be asymptotically normal.

With regards to extensions it seems interesting to apply our results for the anal-
ysis of the multivariate Rotated GARCH (RARCH) model recently proposed in
Noureldin et al. (2014). The model and the proposed two-step estimation procedure
has some similarities to VTE, and it may indeed be possible to exploit some of
our theoretical results when investigating the asymptotic properties of the two-step
estimator for the RARCH. Furthermore, with respect to the possibility of weaken-
ing the finite moment restrictions imposed for asymptotic normality, it would be
interesting to consider the results on tail-trimming in Hill and Renault (2012) and
maybe combine these with the idea of modified likelihood considered in Lange et al.
(2011).

Appendix A Proofs of Theorems 4.1 and 4.2 and
Corollary 4.1

In the asymptotic analysis we assume that the observed process {Xt} is strictly
stationary and ergodic, see Assumption 3. Recall from (3.4) that the log-likelihood
is given by

LT,h(γ, λ) = 1
T

T∑
t=1

lt,h(γ, λ) (A.1)

with
lt,h(γ, λ) = log {det [Ht,h (γ, λ)]}+ tr

{
XtX

′
tH
−1
t,h (γ, λ)

}
, (A.2)

where Ht,h (γ, λ) is given by the recursions

Ht,h(γ, λ) = Γ− AΓA′ −BΓB′ + AXt−1X
′
t−1A

′ +BHt−1,h(γ, λ)B′,

with fixed initial value H0,h (γ, λ) = h > 0. For technical reasons, it is convenient
to introduce the strictly stationary and ergodic solution to (3.3), {Ht(γ, λ)}. To
distinguish between Ht,h(γ, λ) and Ht(γ, λ) we introduce correspondingly

LT (γ, λ) = 1
T

T∑
t=1

lt(γ, λ), (A.3)

with
lt(γ, λ) = log {det [Ht (γ, λ)]}+ tr

{
XtX

′
tH
−1
t (γ, λ)

}
. (A.4)
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Observe that as both Ht,h(γ, λ) and Ht(γ, λ) are defined for the same strictly sta-
tionary and ergodic {Xt},

vec [Ht(γ, λ)−Ht,h(γ, λ)] = (B ⊗B) vec [Ht−1(γ, λ)−Ht−1,h(γ, λ)] , t ≥ 1. (A.5)

A.1 Proof of Theorem 4.1

For presentational purposes most steps of the proof rely on lemmas from Section
B.1 below.

Observe initially that by Assumption 3 and as E ‖Xt‖2 < ∞, it follows by the
ergodic theorem that as T →∞,

γ̂V T
a.s.→ γ0. (A.6)

It now remains to verify that λ̂V T is consistent. The proof follows the technique
from the proof of Theorem 2.1 in Newey and McFadden (1994). We have that for
any ε > 0 almost surely for large enough T

E
[
lt
(
γ0, λ̂V T

)]
< LT

(
γ0, λ̂V T

)
+ ε/5 by Lemma B.2

LT
(
γ0, λ̂V T

)
< LT,h

(
γ̂V T , λ̂V T

)
+ ε/5 by Lemma B.1

LT,h
(
γ̂V T , λ̂V T

)
< LT,h (γ̂V T , λ0) + ε/5 by the definition of λ̂V T , see (3.7)

LT,h (γ̂V T , λ0) < LT (γ0, λ0) + ε/5 by Lemma B.1

LT (γ0, λ0) < E [lt (γ0, λ0)] + ε/5 by Lemma B.2.

Hence for any ε > 0,

E
[
lt
(
γ0, λ̂V T

)]
< E [lt (γ0, λ0)] + ε.

By Lemma B.3 and standard arguments as in Newey and McFadden (1994), it follows
that as T → ∞, λ̂V T a.s.→ λ0. Combined with (A.6), we conclude that as T → ∞,
θ̂V T

a.s.→ θ0.
We now turn to the proof of asymptotic normality of the VTE.

A.2 Proof of Theorem 4.2

Again, for presentational purposes most steps of the proof rely on lemmas stated in
Section B.2. By Assumption 7, the definition of λ̂V T in (3.7), and the mean-value
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theorem

0 = ∂LT,h (γ0, λ0)
∂λ

+KT,h (θ∗) (γ̂V T − γ0) + JT,h (θ∗)
(
λ̂V T − λ0

)
(A.7)

where

∂LT,h (γ0, λ0)
∂λ

..= ∂LT,h (γ, λ)
∂λ

∣∣∣∣∣
θ=θ0

, KT,h (θ∗) ..= ∂2LT,x (γ, λ)
∂λ∂γ′

∣∣∣∣∣
θ=θ∗

and JT,h (θ∗) ..= ∂2LT,h (γ, λ)
∂λ∂λ′

∣∣∣∣∣
θ=θ∗

,

with θ∗ between θ0 and θ̂V T , as in Lemma 1 of Jensen and Rahbek (2004). Let

∂LT (γ0, λ0)
∂λ

..= ∂LT (γ, λ)
∂λ

∣∣∣∣∣
θ=θ0

, KT (θ∗) ..= ∂2LT (γ, λ)
∂λ∂γ′

∣∣∣∣∣
θ=θ∗

, JT (θ∗) ..= ∂2LT (γ, λ)
∂λ∂λ′

∣∣∣∣∣
θ=θ∗

.

Moreover, define

J0
..= E

[
∂2lt (γ, λ)
∂λ∂λ′

∣∣∣∣∣
θ=θ0

]
and K0

..= E

[
∂2lt (γ, λ)
∂λ∂γ′

∣∣∣∣∣
θ=θ0

]
. (A.8)

Observe that by Lemma B.6, Lemma B.7, and the consistency of θ̂V T , JT (θ∗) is
invertible with probability approaching one. Hence, by Lemma B.11

√
Tvec

(
λ̂V T − λ0

)
= −JT (θ∗)−1√T ∂LT (γ0, λ0)

∂λ
−JT (θ∗)−1KT (θ∗)

√
T (γ̂V T − γ0)+oP (1) .

Collecting terms we get

√
T
(
θ̂V T − θ0

)
=
 Id2 0d2×2d2

−JT (θ∗)−1KT (θ∗) −JT (θ∗)−1

√T
(γ̂V T − γ0)

∂LT (γ0,λ0)
∂λ

+ oP (1) .

By Lemma B.6 and Theorem 4.1, Id2 0d2×2d2

−JT (θ∗)−1KT (θ∗) −JT (θ∗)−1

 P→

 Id2 0d2×2d2

−J−1
0 K0 −J−1

0

 .
The asymptotic normality of the VTE now follows from Lemmas B.8 and B.10 and
Slutzky’s theorem.
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A.3 Proof of Corollary 4.1

Note that vec [C (θ)] = [Id2 − (A⊗ A)− (B ⊗B)] γ. Since θ =
[
γ′ λ′

]′
,

∂vec [C (θ)]
∂θ′

=
[
∂vec[C(θ)]

∂γ′
∂vec[C(θ)]
∂vec(A)′

∂vec[C(θ)]
∂vec(B)′

]′
.

We have that
∂vec [C (θ)]

∂γ′
= [Id2 − (A⊗ A)− (B ⊗B)] ,

and
∂vec [C (θ)]
∂vec (A)′

= −∂vec (AΓA′)
∂vec (A)′

.

Since Γ is symmetric

∂vec (AΓA′)
∂vec (A)′

= [Id2 + Cdd] [(AΓ)⊗ Id] ,

which follows by Result 7 in Section 10.5.1 of Lütkepohl (1996). Likewise,

∂vec (BΓB′)
∂vec (B)′

= [Id2 + Cdd] [(BΓ)⊗ Id] .

Moreover, observe that

∂vec (A)
∂θ′

= (0d2×d2 , Id2 , 0d2×d2) and ∂vec (B)
∂θ′

= (0d2×d2 , 0d2×d2 , Id2) .

The asymptotic distribution of
[
vec(ĈV T )′, vec(ÂV T )′, vec(B̂V T )′

]′
now follows by

the delta method using Theorems 4.1 and 4.2.

Appendix B Lemmas

The following section contains the lemmas that were used for establishing consistency
and asymptotic normality of the VTE in Section 4. Before we turn to the lemmas
we introduce some definitions and useful matrix analysis results for the proofs.

For matrices A, B, C, and D, suppose ABCD is defined and square. Then

tr {ABCD} = (vec (D′))′ (C ′ ⊗ A) vec (B) = (vec (D))′ (A⊗ C ′) vec (B′) . (B.1)

For matrices A and B, if AB is well-defined,

|tr (AB)| ≤ ‖A‖ ‖B‖ , (B.2)
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‖AB‖ ≤ ‖A‖spec ‖B‖ , ‖AB‖ ≤ ‖A‖ ‖B‖spec , ‖A+B‖spec ≤ ‖A‖spec + ‖B‖spec .
(B.3)

If A is n× n, then
‖A‖spec ≤ ‖A‖ ≤

√
n ‖A‖spec . (B.4)

For an n× n matrix A > 0 with eigenvalues ξ1 (A) , ..., ξn (A), it holds that

log det(A) =
n∑
i=1

log ξi (A) ≤
n∑
i=1

ξi (A) = tr (A) . (B.5)

Moreover,

log det(A) = log (det(A′A))1/2 ≤ n log (ρ(A′A))1/2 = n log ‖A‖spec , (B.6)

where the inequality follows from the fact that det (A) ≤ ρ (A)n. For two square
matrices A and B it holds that

tr (A⊗B) = tr (A) tr (B) , (B.7)

by Result 11(b) in Lütkepohl (1996) Section 2.4. Consider an n × n matrix A ≥ 0
and an n×n matrix B > 0 with eigenvalues ξ1 (B) ≤ · · · ≤ ξn (B). Let ξ1 (A+B) ≤
· · · ≤ ξn (A+B) denote the eigenvalues of (A+B), Then

ξi (A+B) ≥ ξi (B) , i = 1, ..., n

by Result 4 in Section 5.3.2 of Lütkepohl (1996). Moreover, by Result 4(g) in
Section 3.5.1 in Lütkepohl (1996), if ξi (B) is an eigenvalue of B, then 1/ξi (B) is
an eigenvalue of B−1. This implies that 0 < ξi

(
(A+B)−1

)
≤ ξi (B−1), i = 1, ..., n,

and hence
0 < tr

[
(A+B)−1

]
≤ tr

(
B−1

)
. (B.8)

For an n× n matrix A and an n× n matrix B ≥ 0, it holds that

det (A+B) ≥ det (A) , (B.9)

by Result 11 in Section 4.2.6 of Lütkepohl (1996).
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B.1 Lemmas for the proof of consistency

Lemma B.1. Under Assumptions 1-5, as T →∞

sup
λ∈Θλ

|LT (γ0, λ)− LT,h (γ̂V T , λ)| a.s.→ 0 (B.10)

where LT (γ, λ) is stated in (A.3) and LT,h (γ̂V T , λ) is stated in (A.1).

Proof. We have that

sup
λ∈Θλ

|LT (γ0, λ)− LT,h (γ̂V T , λ)|

= sup
λ∈Θλ

∣∣∣∣∣ 1T
T∑
t=1

(
log

{
det [Ht (γ0, λ)]

det [Ht,h (γ̂V T , λ)]

}
+ tr

{
XtX

′
t

[
H−1
t (γ0, λ)−H−1

t,h (γ̂V T , λ)
]})∣∣∣∣∣

≤ 1
T

T∑
t=1

sup
λ∈Θλ

∣∣∣∣∣log
{

det [Ht (γ0, λ)]
det [Ht,h (γ̂V T , λ)]

}∣∣∣∣∣
+ 1
T

T∑
t=1

sup
λ∈Θλ

∣∣∣tr{XtX
′
t

[
H−1
t (γ0, λ)−H−1

t,h (γ̂V T , λ)
]}∣∣∣ , (B.11)

and we want to show that each of the averages in (B.11) converges to zero almost
surely.
By definition of Ht (γ, λ) in (3.3), Γ−AΓA′ −BΓB′ > 0 on Θ and AXt−1X

′
t−1A

′ +
BHt−1B

′ ≥ 0 for all t and for all θ ∈ Θ, so applying (B.9) yields

det [Ht (γ, λ)] ≥ det (Γ− AΓA′ −BΓB′) > 0.

In particular, Ht (γ, λ), and similarly for Ht,h (γ, λ), is invertible for all t and all
θ ∈ Θ. Moreover,
∥∥∥H−1

t (γ, λ)
∥∥∥ ≤ ∥∥∥H−1/2

t (γ, λ)
∥∥∥2

= tr
[
H−1
t (γ, λ)

]
≤ tr

[
(Γ− AΓA′ −BΓB′)−1]

,

where the second inequality follows by (B.8). By Assumption 4, supλ∈Θλ

∥∥∥H−1
t (γ0, λ)

∥∥∥ ≤
supθ∈Θ

∥∥∥H−1
t (γ, λ)

∥∥∥ , and by (A.6), for T sufficiently large almost surely,

sup
λ∈Θλ

∥∥∥H−1
t,h (γ̂V T , λ)

∥∥∥ ≤ sup
θ∈Θ

∥∥∥H−1
t,h (γ, λ)

∥∥∥ .
By Assumption 4

sup
θ∈Θ

∥∥∥H−1
t (γ, λ)

∥∥∥ ≤ sup
θ∈Θ

∣∣∣tr [(Γ− AΓA′ −BΓB′)−1]∣∣∣ ≤ K, (B.12)
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and, hence,

sup
λ∈Θλ

∥∥∥H−1
t,h (γ̂V T , λ)

∥∥∥ ≤ sup
θ∈Θ

∥∥∥H−1
t,h (γ, λ)

∥∥∥ ≤ K, sup
λ∈Θλ

∥∥∥H−1
t (γ0, λ)

∥∥∥ ≤ sup
θ∈Θ

∥∥∥H−1
t (γ, λ)

∥∥∥ ≤ K.

(B.13)
Next, by simple recursions

vec [Ht (γ0, λ)]− vec [Ht,h (γ̂V T , λ)] (B.14)

=
t−1∑
i=0

(
B⊗2

)i (
Id2 − A⊗2 −B⊗2

)
(γ0 − γ̂V T ) +

(
B⊗2

)t
vec [H0 (γ0, λ)− h] .

As ρ(A⊗2 +B⊗2) < 1 on Θ, it follows from Boussama et al. (2011, Proposition 4.5)
that ρ(B⊗2) < 1 on Θ. Hence for any i and for some 0 < φ < 1,

sup
λ∈Θλ

∥∥∥∥(B⊗2
)i∥∥∥∥ ≤ Kφi. (B.15)

As in Francq et al. (2011, p.644), (B.14), the compactness of Θ, (A.6), and (B.15)
imply that as T →∞

sup
λ∈Θλ

‖vec [Ht (γ0, λ)]− vec [Ht,h (γ̂V T , λ)]‖ ≤ Kφt + o (1) a.s. (B.16)

Considering the terms in (B.11), we have that for T sufficiently large

1
T

T∑
t=1

sup
λ∈Θλ

∣∣∣∣∣log
{

det [Ht (γ0, λ)]
det [Ht,h (γ̂V T , λ)]

}∣∣∣∣∣
= 1

T

T∑
t=1

sup
λ∈Θλ

∣∣∣log det
[
Ht (γ0, λ)H−1

t,h (γ̂V T , λ)
]∣∣∣

= 1
T

T∑
t=1

sup
λ∈Θλ

∣∣∣log det
{
Id + [Ht(γ0, λ)−Ht,h (γ̂V T , λ)]H−1

t,h (γ̂V T , λ)
}∣∣∣

≤ d
1
T

T∑
t=1

sup
λ∈Θλ

∣∣∣∣log
∥∥∥Id + [Ht(γ0, λ)−Ht,h (γ̂V T , λ)]H−1

t,h (γ̂V T , λ)
∥∥∥
spec

∣∣∣∣
≤ d

1
T

T∑
t=1

sup
λ∈Θλ

∣∣∣log
(
‖Id‖spec +

∥∥∥[Ht(γ0, λ)−Ht,h (γ̂V T , λ)]H−1
t,h (γ̂V T , λ)

∥∥∥)∣∣∣
= d

1
T

T∑
t=1

sup
λ∈Θλ

∣∣∣log
(
1 +

∥∥∥[Ht(γ0, λ)−Ht,h (γ̂V T , λ)]H−1
t,h (γ̂V T , λ)

∥∥∥)∣∣∣
≤ d

1
T

T∑
t=1

sup
λ∈Θλ

∥∥∥[Ht(γ0, λ)−Ht,h (γ̂V T , λ)]H−1
t,h (γ̂V T , λ)

∥∥∥
≤ dK

1
T

T∑
t=1

sup
λ∈Θλ

‖Ht(γ0, λ)−Ht,h (γ̂V T , λ)‖ ,
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where the first inequality follows from (B.6), the second from (B.3) and (B.4), and
the third follows from the fact that log (x) ≤ x− 1 for x ≥ 1. Likewise,

1
T

T∑
t=1

sup
λ∈Θλ

∣∣∣tr{XtX
′
t

[
H−1
t (γ0, λ)−H−1

t,h (γ̂V T , λ)
]}∣∣∣

= 1
T

T∑
t=1

sup
λ∈Θλ

∣∣∣tr{H−1
t,h (γ̂V T , λ) [Ht,h (γ̂V T , λ)−Ht (γ0, λ)]H−1

t (γ0, λ)XtX
′
t

}∣∣∣
≤ 1

T

T∑
t=1

sup
λ∈Θλ

∥∥∥H−1
t,h (γ̂V T , λ)

∥∥∥ ‖Ht,h (γ̂V T , λ)−Ht (γ0, λ)‖
∥∥∥H−1

t (γ0, λ)
∥∥∥ ‖XtX

′
t‖

≤ K
1
T

T∑
t=1

sup
λ∈Θλ

‖Ht,h (γ̂V T , λ)−Ht (γ0, λ)‖ ‖Xt‖2 ,

where the inequalities follow by (B.2) and (B.13) respectively. By (B.16) we conclude
that

sup
λ∈Θλ

|LT (γ0, λ)− LT,h (γ̂V T , λ)| ≤ K
1
T

T∑
t=1

φt +K
1
T

T∑
t=1

φt ‖Xt‖2 + o (1) a.s.

For any ε > 0,
∞∑
t=1

P
(
φt ‖Xt‖2 > ε

)
≤
∞∑
t=1

φtE ‖Xt‖2

ε
<∞,

which follows by Markov’s inequality and since E ‖Xt‖2 <∞. By the Borel-Cantelli
lemma φt ‖Xt‖2 a.s.→ 0 as t→∞. It now follows by Cesàro’s mean theorem that

1
T

T∑
t=1

φt ‖Xt‖2 a.s.→ 0,

and we conclude that (B.10) holds.

Lemma B.2. Under Assumptions 1-5, as T →∞

sup
θ∈Θ
|LT (γ, λ)− E [lt (γ, λ)]| a.s.→ 0

where LT (θ) is the log-likelihood and lt (θ) is the log-likelihood contribution (at time
t) stated in (A.3) and (A.4), respectively.

Proof. The result follows by Lemma B.4 and the Uniform Law of Large Numbers
for stationary ergodic processes, see White (1994, Theorem A.2.2).

Lemma B.3. Under Assumptions 1-5, for lt (γ, λ) defined in (A.4),

E |lt (γ0, λ0)| <∞,
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and if λ 6= λ0 then
E [lt (γ0, λ)] > E [lt (γ0, λ0)] .

Proof. Observe that E |lt (γ0, λ0)| <∞ follows from Lemma B.4.
Following the steps from Francq and Zakoïan (2010, pp.298-299), suppose λ 6= λ0

and let {ξit : i = 1, .., d} be the (positive) eigenvalues of Ht (γ0, λ0)H−1
t (γ0, λ) for a

fixed t. Note that

tr
{
XtX

′
t

[
H−1
t (γ0, λ)−H−1

t (γ0, λ0)
]}

= tr
{[
H

1/2
t (γ0, λ0)H−1

t (γ0, λ)H1/2
t (γ0, λ0)− Id

]
ZtZ

′
t

}
.

Let Ft ..= σ (Xt, Xt−1,...), the σ-field generated by Xt. By the law of iterated expec-
tations and since Zt is independent of Ft,

E
(
tr
{
XtX

′
t

[
H−1
t (γ0, λ)−H−1

t (γ0, λ0)
]})

= E
(
tr
{[
H

1/2
t (γ0, λ0)H−1

t (γ0, λ)H1/2
t (γ0, λ0)− Id

]})
= E

(
tr
{[
Ht (γ0, λ0)H−1

t (γ0, λ)− Id
]})

= E

[
d∑
i=1

(ξit − 1)
]
.

Moreover,

log det
[
Ht (γ0, λ)H−1

t (γ0, λ0)
]

= − log det
[
Ht (γ0, λ0)H−1

t (γ0, λ)
]

= − log
d∏
i=1

ξit

= −
d∑
i=1

log ξit.

Hence

E [lt (γ0, λ)]− E [lt (γ0, λ0)] = E
{

log det
[
Ht (γ0, λ)H−1

t (γ0, λ0)
]}

+E
(
tr
{
XtX

′
t

[
H−1
t (γ0, λ)−H−1

t (γ0, λ0)
]})

= E

[
d∑
i=1

(ξit − 1− log ξit)
]
≥ 0

as log(x) ≤ x − 1 for all x > 0. Since log(x) = x − 1 if and only if x = 1, the
inequality is strict unless ξit = 1 for all i̇ almost surely. eit = 1 for all i almost surely
is equivalent to Ht (γ0, λ) = Ht (γ0, λ0) almost surely, but this cannot be the case in
light of Assumption 5. Hence the inequality must be strict, and we conclude that if
λ 6= λ0 then E [lt (γ0, λ)] > E [lt (γ0, λ0)].
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Lemma B.4. Under Assumptions 1-5,

E sup
θ∈Θ
|lt (γ, λ)| <∞,

where lt (γ, λ) is defined in (A.4).

Proof. We note that

vec [Ht (γ, λ)] =
(
Id2 − A⊗2 −B⊗2

)
γ + A⊗2vec

(
Xt−1X

′
t−1

)
+B⊗2vec [Ht−1 (γ, λ)]

=
∞∑
i=0

(
B⊗2

)i [(
Id2 − A⊗2 −B⊗2

)
γ + A⊗2vec

(
Xt−1−iX

′
t−1−i

)]
,(B.17)

so by the triangle inequality

sup
θ∈Θ
‖vec [Ht (γ, λ)]‖ ≤

∞∑
i=0

sup
θ∈Θ

∥∥∥∥(B⊗2
)i [(

Id2 − A⊗2 −B⊗2
)
γ + A⊗2vec

(
Xt−1−iX

′
t−1−i

)]∥∥∥∥ .
By (B.15),

E

(
sup
θ∈Θ

∥∥∥∥(B⊗2
)i [(

Id2 − A⊗2 −B⊗2
)
γ + A⊗2vec

(
Xt−1−iX

′
t−1−i

)]∥∥∥∥
)

≤ Kφi
(
K +KE ‖Xt‖2

)
,

and we conclude that
E

[
sup
θ∈Θ
‖Ht (γ, λ)‖

]
<∞. (B.18)

Now

E

[
sup
θ∈Θ
|lt (γ, λ)|

]
= E

[
sup
θ∈Θ

∣∣∣log det [Ht (γ, λ)] + tr
[
XtX

′
tH
−1
t (γ, λ)

]∣∣∣]

≤ E

[
sup
θ∈Θ

∣∣∣tr [Ht (γ, λ)] + tr
[
XtX

′
tH
−1
t (γ, λ)

]∣∣∣]

≤ E

{
sup
θ∈Θ

∣∣∣K [
‖Ht (γ, λ)‖+

∥∥∥XtX
′
tH
−1
t (γ, λ)

∥∥∥]∣∣∣}

≤ K

[
E sup

θ∈Θ
‖Ht (γ, λ)‖

]
+KE

[
sup
θ∈Θ
‖Xt‖2

∥∥∥H−1
t (γ, λ)

∥∥∥] <∞,
where the first inequality follows from (B.5), the second from (B.2), and the fourth
from (B.18), (B.12), and E ‖Xt‖2 <∞.
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B.2 Lemmas for the proof of asymptotic normality

Let θi, i = 1, ..., 3d2, denote the ith element of θ. Let H0t
..= Ht (γ0, λ0).

Lemma B.5. Under Assumptions 1-7, E
[
supθ∈Θ

∣∣∣∂2lt(γ,λ)
∂θi∂θj

∣∣∣] < ∞ for all i, j =
1, ..., 3d2, where lt (γ, λ) is defined in (A.4).

Proof. Note that

∂2lt (γ, λ)
∂θi∂θj

= tr
(
H−1
t (γ, λ) ∂

2Ht (γ, λ)
∂θi∂θj

)

−tr
(
H−1
t (γ, λ) ∂Ht (γ, λ)

∂θj
H−1
t (γ, λ) ∂Ht (γ, λ)

∂θi

)

+2tr
(
H−1
t (γ, λ)XtX

′
tH
−1
t (γ, λ) ∂Ht (γ, λ)

∂θj
H−1
t (γ, λ) ∂Ht (γ, λ)

∂θi

)

−tr
(
H−1
t (γ, λ)XtX

′
tH
−1
t (γ, λ) ∂

2Ht (γ, λ)
∂θi∂θj

)
. (B.19)

By (B.17), Minkowski’s inequality, and Assumption 6,

E

(
sup
θ∈Θ
‖Ht (γ, λ)‖

)3

<∞. (B.20)

Moreover, using Minkowski’s inequality repeatedly (see also Hafner and Preminger,
2009b, Proof of Lemma 3), and Assumption 6 one can show that

E

(
sup
θ∈Θ

∥∥∥∥∥∂Ht (γ, λ)
∂θi

∥∥∥∥∥
)3

<∞ and E
(

sup
θ∈Θ

∥∥∥∥∥∂2Ht (γ, λ)
∂θi∂θj

∥∥∥∥∥
)3

<∞. (B.21)

By (B.2), (B.12), Hölder’s inequality, and (B.21),

E

[
sup
θ∈Θ

∣∣∣∣∣tr
(
H−1
t XtX

′
tH
−1
t

∂Ht

∂θj
H−1
t

∂Ht

∂θi

)∣∣∣∣∣
]

≤ K

E (sup
θ∈Θ

∥∥∥∥∥∂Ht

∂θj

∥∥∥∥∥
)3
1/3 E (sup

θ∈Θ

∥∥∥∥∥∂Ht

∂θi

∥∥∥∥∥
)3
1/3 [

E ‖Xt‖6
]1/3

<∞.

By similar arguments we conclude that E
[
supθ∈Θ

∣∣∣∂2lt(γ,λ)
∂θi∂θj

∣∣∣] < ∞ for all i, j =
1, ..., 3d2.

Lemma B.6. Under Assumptions 1-7 supθ∈Θ

∣∣∣∂2LT (γ,λ)
∂θi∂θj

− E
(
∂2lt(γ,λ)
∂θi∂θj

)∣∣∣ a.s.→ 0 for
all i, j = 1, ..., 3d2, where LT (γ, λ) and lt (γ, λ) are defined in (A.3) and (A.4),
respectively.
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Proof. Note that ∂2lt(γ,λ)
∂θi∂θj

is a function of (Xt, Xt−1,...) and thereby strictly stationary
and ergodic. Hence the result follows by Lemma B.5 and the Uniform Law of Large
Numbers for stationary ergodic processes, see Theorem A.2.2 of White (1994).

Lemma B.7. Under Assumptions 1-7, J0 defined in (A.8) is non-singular.

Proof. We prove this lemma arguing in line with Francq and Zakoïan (2010, pp.303-
305), see also Comte and Lieberman (2003, pp.77-78). By definition

J0 = E

[
∂2lt (γ0, λ0)
∂λ∂λ′

]
,

with ∂2lt(γ,λ)
∂λi∂λj

given by (B.19). Hence,

E

[
∂2lt (γ0, λ0)
∂λi∂λj

∣∣∣∣∣Ft−1

]
= tr

(
H−1

0t
∂H0t

∂λj
H−1

0t
∂H0t

∂λi

)
(B.22)

= h′tjhti,

where
hti ..=

(
H
−1/2
0t

)⊗2
kti, and kti ..= vec

(
∂H0t

∂λi

)
,

noting that ∂H0t
∂λi

is symmetric. We now define the d2 × 2d2 matrices

ht ..= (ht1, · · · , ht2d2) and kt ..= (kt1, · · · , kt2d2) .

Let Ht
..=

(
H
−1/2
0t

)⊗2
, and note that ht = Htkt and J0 = E [h′tht]. Suppose J0 is

singular. Then there exists a non-zero c ∈ R2d2 such that c′J0c = E [c′h′thtc] = 0.
As c′h′thtc ≥ 0, then almost surely

c′h′thtc = c′k′tH2
tktc = 0.

Since H2
t is positive definite a.s.,

ktc =
d2∑
i=1

ci
∂

∂λi
vec (H0t) = 0 a.s. for all t. (B.23)

Let ω = (Id2 − A⊗2 −B⊗2) γ, then (B.23) gives

ω̃ + Ãvec
(
Xt−1X

′
t−1

)
+ B̃vec (H0t−1) +B⊗2

2d2∑
i=1

ci
∂

∂λi
vec (H0t−1) = 0 a.s. (B.24)
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where

ω̃ ..=
2d2∑
i=1

ci
∂

∂λi
ω

∣∣∣∣∣
θ=θ0

, Ã ..=
d2∑
i=1

ci
∂

∂λi
A⊗2

∣∣∣∣∣
θ=θ0

, B̃ ..=
2d2∑
i=d2

ci
∂

∂λi
B⊗2

∣∣∣∣∣
θ=θ0

.

By (B.23), (B.24) reduces to

ω̃ + Ãvec
(
Xt−1X

′
t−1

)
+ B̃vec (H0t−1) = 0 a.s. (B.25)

Subtracting (B.25) from vec (H0t) yields

vec (H0t) = (ω0 − ω̃) +
(
A⊗2

0 − Ã
)

vec
(
Xt−1X

′
t−1

)
+
(
B⊗2

0 − B̃
)

vec (H0t−1) .

Since c 6= 0, we have found another representation of vec (H0t), which contradicts
Assumption 5 that ensures that vec (H0t) has a unique representation. Hence J0

must be non-singular.

Lemma B.8. Under Assumptions 1-7, as T →∞,

√
T

γ̂V T − γ0
∂LT (γ0,λ0)

∂λ

 = 1√
T

T∑
t=1

Yt (γ0, λ0) vec (ZtZ ′t − Id) + oP (1) (B.26)

where LT (γ, λ) is defined in (A.3),

Yt (γ0, λ0) ..=



(
Id2 − A⊗2

0 −B⊗2
0

)−1 (
Id2 −B⊗2

0

) (
H

1/2
0t

)⊗2[
−
∞∑
i=0

(
B⊗2

0

)i
Mt−1−i (γ0, λ0)

]′ (
H
−1/2
0t

)⊗2

[
−
∞∑
i=0

(
B⊗2

0

)i
M̃t−1−i (γ0, λ0)

]′ (
H
−1/2
0t

)⊗2

 , (B.27)

with

Mt (γ, λ) ..= ({[A (XtX
′
t − Γ)]⊗ Id}+ {Id ⊗ [A (XtX

′
t − Γ)]}Cdd) , (B.28)

and

M̃t (γ, λ) ..= [({B [Ht (γ, λ)− Γ]} ⊗ Id) + (Id ⊗ {B [Ht (γ, λ)− Γ]})Cdd] . (B.29)

Proof. In the next we make use of matrix differentials and apply the following
notation. Let ft be a function of the non-stochastic matrices A and B. Then
d {ft (A0, B0) , dA} denotes the first-order differential of ft in the direction dA and
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evaluated at (A0, B0). One can identify the Jacobian from the first-order dif-
ferential, see e.g. Magnus and Neudecker (2007, p.199), from the fact that if,
d {ft (A0, B0) , dA} = vec (Dt)′ vec (dA) for some matrix Dt, then the first-derivative
of ft with respect to vec (A) and evaluated at (A0, B0) is ∂ft (A0, B0) /∂vec (A) =
vec (Dt) .
The first-order differential of the log-likelihood contribution at time t with respect
to A and evaluated in (γ0, λ0) is given by

d {lt (γ0, λ0) , dA} = tr
{
H
−1/2
0t [d {Ht (γ0, λ0) , dA}]H−1/2

0t

}
− tr

{
H
−1/2
0t XtX

′
tH
−1/2
0t H

−1/2
0t [d {Ht (γ0, λ0) , dA}]H−1/2

0t

}
= tr

{
H
−1/2
0t [d {Ht (γ0, λ0) , dA}]H−1/2

0t

}
− tr

{
ZtZ

′
tH
−1/2
0t [d {Ht (γ0, λ0) , dA}]H−1/2

0t

}
= vec(Id − ZtZ ′t)′

(
H
−1/2
0t

)⊗2
vec [d {Ht (γ0, λ0) , dA}] ,

where the last equality follows by (B.1). Likewise,

d {lt (γ0, λ0) , dB} = vec(Id − ZtZ ′t)′
(
H
−1/2
0t

)⊗2
vec [d {Ht (γ0, λ0) , dB}] .

Note that

Ht (γ, λ) = Γ + A
(
Xt−1X

′
t−1 − Γ

)
A′ −B [Ht−1 (γ, λ)− Γ]B′.

The first-order differential of Ht (γ, λ) with respect to A is

d {Ht (γ, λ) , dA} = (dA)
(
Xt−1X

′
t−1 − Γ

)
A′

+A
(
Xt−1X

′
t−1 − Γ

)
(dA)′ +B [d {Ht−1 (γ, λ) , dA}]B′,

implying directly

vec [d {Ht (γ, λ) , dA}] = B⊗2vec [d {Ht−1 (γ, λ) , dA}] (B.30)

+vec
[
(dA)

(
Xt−1X

′
t−1 − Γ

)
A′ + A

(
Xt−1X

′
t−1 − Γ

)
(dA)′

]
.
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We note that

vec
[
(dA)

(
Xt−1X

′
t−1 − Γ

)
A′ + A

(
Xt−1X

′
t−1 − Γ

)
(dA)′

]
= vec

[
(dA) (Xt−1X

′
t−1 − Γ)A′

]
+ vec

[
A(Xt−1X

′
t−1 − Γ)(dA)′

]
=
{[
A
(
Xt−1X

′
t−1 − Γ

)]
⊗ Id

}
vec(dA) +

{
Id ⊗

[
A
(
Xt−1X

′
t−1 − Γ

)]}
vec(dA′)

=
{[
A
(
Xt−1X

′
t−1 − Γ

)]
⊗ Id

}
vec(dA) +

{
Id ⊗

[
A
(
Xt−1X

′
t−1 − Γ

)]}
Cddvec(dA)

=
({[

A
(
Xt−1X

′
t−1 − Γ

)]
⊗ Id

}
+
{
Id ⊗

[
A
(
Xt−1X

′
t−1 − Γ

)]}
Cdd

)
vec(dA).

With Mt (γ, λ) defined in (B.28), recursions yield

vec [d {Ht (γ, λ) , dA}] =
∞∑
i=0

(
B⊗2

)i
Mt−1−i (γ, λ) vec(dA), (B.31)

and we conclude that

d {lt (γ0, λ0) , dA} = vec(ZtZ ′t−Id)′
(
H
−1/2
0t

)⊗2
[
−
∞∑
i=0

(
B⊗2

0

)i
Mt−1−i (γ0, λ0)

]
vec(dA).

We now have that the first derivative of the log-likelihood function with respect to
vec(A) and evaluated at θ = θ0 is given by

∂LT (γ0, λ0)
∂vec(A) = 1

T

T∑
t=1

[
−
∞∑
i=0

(
B⊗2

0

)i
Mt−1−i (γ0, λ0)

]′ (
H
−1/2
0t

)⊗2
vec(ZtZ ′t − Id).

By similar arguments

vec [d {Ht (γ, λ) , dB}] =
∞∑
i=0

(
B⊗2

)i
M̃t−1−i (γ, λ) vec(dB), (B.32)

and

∂LT (γ0, λ0)
∂vec(B) = 1

T

T∑
t=1

[
−
∞∑
i=0

(
B⊗2

0

)i
M̃t−1−i (γ0, λ0)

]′ (
H
−1/2
0t

)⊗2
vec(ZtZ ′t − Id),

with M̃t (γ, λ) defined in (B.29).
Consider the sample covariance matrix on vec form:

γ̂V T = 1
T

T∑
t=1

(
H

1/2
0t

)⊗2
vec (ZtZ ′t − Id) + vec

(
1
T

T∑
t=1

H0t

)
. (B.33)
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Moreover,

vec
(

1
T

T∑
t=1

H0t

)
=

(
Id2 − A⊗2

0 −B⊗2
0

)
γ0

+A⊗2
0 vec

(
1
T

T∑
t=1

Xt−1X
′
t−1

)
+B⊗2

0 vec
(

1
T

T∑
t=1

H0t−1

)

=
(
Id2 − A⊗2

0 −B⊗2
0

)
γ0 + A⊗2

0 vec
(

1
T

T∑
t=1

XtX
′
t

)
+B⊗2

0 vec
(

1
T

T∑
t=1

H0t

)

+A⊗2
0

1
T

vec (X0X
′
0 −XTX

′
T ) +B⊗2

0
1
T

vec (H00 −H0T ) ,

and collecting terms

vec
(

1
T

T∑
t=1

H0t

)
=

(
Id2 −B⊗2

0

)−1 (
Id2 − A⊗2

0 −B⊗2
0

)
γ0 +

[
Id2 −B⊗2

0

]−1
A⊗2

0 γ̂V T (B.34)

+
(
Id2 −B⊗2

0

)−1
[
A⊗2

0
1
T

vec (X0X
′
0 −XTX

′
T ) +B⊗2

0
1
T

vec (H00 −H0T )
]
.

Note that since ρ(B⊗2
0 ) < 1, (Id2 − B⊗2

0 ) is invertible. Next, inserting (B.33) in
(B.34) and isolating γ̂V T yields

(
Id2 − A⊗2

0 −B⊗2
0

)
γ̂V T =

(
Id2 −B⊗2

0

) 1
T

T∑
t=1

(
H

1/2
0t

)⊗2
vec (ZtZ ′t − Id) +

(
Id2 − A⊗2

0 −B⊗2
0

)
γ0

+
[
A⊗2

0
1
T

vec (X0X
′
0 −XTX

′
T ) +B⊗2

0
1
T

vec (H00 −H0T )
]
.

Hence

γ̂V T − γ0 =
(
Id2 − A⊗2

0 −B⊗2
0

)−1 (
Id2 −B⊗2

0

) 1
T

T∑
t=1

(
H

1/2
0t

)⊗2
vec (ZtZ ′t − Id)

+
(
Id2 − A⊗2

0 −B⊗2
0

)−1
[
A⊗2

0
1
T

vec (X0X
′
0 −XTX

′
T ) +B⊗2

0
1
T

vec (H00 −H0T )
]
.

For any ε > 0, by Markov’s inequality,

P

(∥∥∥∥∥A⊗2
0

1√
T

vec (X0X
′
0 −XTX

′
T ) +B⊗2

0
1√
T

vec (H00 −H0T )
∥∥∥∥∥ > ε

)
≤ KE ‖Xt‖2

√
Tε

→ 0

as T →∞, which yields

γ̂V T−γ0 =
[
Id2 − A⊗2

0 −B⊗2
0

]−1 (
Id2 −B⊗2

0

) 1
T

T∑
t=1

(
H

1/2
0t

)⊗2
vec (ZtZ ′t − Id)+oP

(
T−1/2

)
.

(B.35)
We conclude that (B.26) holds.
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Lemma B.9. Under Assumptions 1-7

E ‖Yt (γ0, λ0) vec (ZtZ ′t − Id)‖
2
<∞,

where Yt (γ0, λ0)is given by (B.27).

Proof. By definition

Yt (γ0, λ0) =



(
Id2 − A⊗2

0 −B⊗2
0

)−1 (
Id2 −B⊗2

0

) (
H

1/2
0t

)⊗2[
−
∞∑
i=0

(
B⊗2

0

)i
Mt−1−i (γ0, λ0)

]′ (
H
−1/2
0t

)⊗2

[
−
∞∑
i=0

(
B⊗2

0

)i
M̃t−1−i (γ0, λ0)

]′ (
H
−1/2
0t

)⊗2

 ,

where Mt and M̃t are defined in (B.28) and (B.29), respectively. Define

εt ..= vec (ZtZ ′t − Id) , ηMt ..=
[
−
∞∑
i=0

(
B⊗2

0

)i
Mt−1−i (γ0, λ0)

]
,

ηM̃t
..=
[
−
∞∑
i=0

(
B⊗2

0

)i
M̃t−1−i (γ0, λ0)

]
, and Φ ..=

(
Id2 − A⊗2

0 −B⊗2
0

)−1 (
Id2 −B⊗2

0

)
,

and observe that

Yt (γ0, λ0) vec (ZtZ ′t − Id) [vec (ZtZ ′t − Id)]
′
Yt (γ0, λ0)′ =


At Bt Ct
B′t Dt Et
C ′t E ′t Gt


where

At ..= Φ(H1/2
0t )⊗2εtε

′
t(H

1/2
0t )⊗2Φ′, (B.36)

Bt ..= Φ(H1/2
0t )⊗2εtε

′
t(H

−1/2
0t )⊗2ηMt ,

Ct ..= Φ(H1/2
0t )⊗2εtε

′
t(H

−1/2
0t )⊗2ηM̃t ,

Dt ..= ηM ′t (H−1/2
0t )⊗2εtε

′
t(H

−1/2
0t )⊗2ηMt ,

Et ..= ηM ′t (H−1/2
0t )⊗2εtε

′
t(H

−1/2
0t )⊗2ηM̃t ,

Gt ..= ηM̃ ′t (H−1/2
0t )⊗2εtε

′
t(H

−1/2
0t )⊗2ηM̃t .

Hence Yt (γ0, λ0) vec (ZtZ ′t − Id) is square-integrable ifE ‖At‖ , E ‖Bt‖, E ‖Ct‖, E ‖Dt‖,
E ‖Et‖, and E ‖Gt‖ are finite.
Using Minkowski’s inequality,

E
∥∥∥ηMt ∥∥∥3

≤
{ ∞∑
i=1

φi
(
K +KE ‖Xt‖6

)1/3
}3

<∞. (B.37)
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Likewise, by Minkowski’s inequality and (B.20)

E

∥∥∥∥ηM̃t ∥∥∥∥3
≤
{ ∞∑
i=1

φi
(
K +KE ‖H0t‖3

)1/3
}3

<∞. (B.38)

We note that
E ‖At‖ ≤ KE

∥∥∥∥(H1/2
0t

)⊗2
∥∥∥∥2
E ‖εt‖2

by the independence between Zt and H0t. Moreover,

E
∥∥∥∥(H1/2

0t

)⊗2
∥∥∥∥2

= E
∣∣∣∣tr [(H1/2

0t

)⊗2 (
H

1/2
0t

)⊗2
]∣∣∣∣ = Etr2 (H0t) ≤ KE ‖H0t‖2 <∞,

by (B.7) and (B.20). Moreover,

E ‖εt‖2 ≤ E ‖Zt‖4 +K <∞,

as E ‖Zt‖4 ≤ KE ‖Xt‖4. Hence E ‖At‖ <∞. Next,

E ‖Bt‖ ≤ KE
(∥∥∥∥(H1/2

0t

)⊗2
∥∥∥∥ ∥∥∥∥(H−1/2

0t

)⊗2
∥∥∥∥ ∥∥∥ηMt ∥∥∥ ‖εt‖2

)
≤ KE

(∥∥∥∥(H1/2
0t

)⊗2
∥∥∥∥ ∥∥∥∥(H−1/2

0t

)⊗2
∥∥∥∥ ∥∥∥ηMt ∥∥∥)E ‖εt‖2 ,

where the second inequality follows by the fact that εt and Ft−1 are independent.
Note that∥∥∥∥(H−1/2

0t

)⊗2
∥∥∥∥ =

√
tr
(
H−1

0t ⊗H−1
0t

)
= tr

(
H−1

0t

)
≤ K

∥∥∥H−1
0t

∥∥∥ ≤ K,

by (B.7) and (B.12). Hence by Hölder’s inequality and (B.37)

E ‖Bt‖ ≤ KE
[∥∥∥∥(H1/2

0t

)⊗2
∥∥∥∥ ∥∥∥ηMt ∥∥∥]E [‖εt‖2

]
≤ K

{
E

∥∥∥∥(H1/2
0t

)⊗2
∥∥∥∥2
}1/2 {

E
∥∥∥ηMt ∥∥∥2

}1/2
E
[
‖εt‖2

]
<∞.

By similar arguments E ‖Ct‖, E ‖Dt‖, E ‖Et‖, and E ‖Gt‖ are finite.

Lemma B.10. Under Assumptions 1-7, as T →∞

1√
T

T∑
t=1

Yt (γ0, λ0) vec (ZtZ ′t − Id)
D→ N (0,Ω0) , (B.39)
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where

Ω0
..= E

{
Yt (γ0, λ0) vec (ZtZ ′t − Id) [vec (ZtZ ′t − Id)]

′
Yt (γ0, λ0)′

}
, (B.40)

and Yt (γ0, λ0) is given by (B.27).

Proof. Since Yt (γ0, λ0) is Ft−1-measurable and vec (ZtZ ′t − Id) and Ft−1 are indepen-
dent, {Yt (γ0, λ0) vec (ZtZ ′t − Id) ,Ft} is an ergodic martingale difference sequence.
Moreover, from Lemma B.9 the sequence is square-integrable, and the regularity
conditions of Brown (1971) are satisfied by the ergodic theorem. This implies that
(B.39) holds.

Lemma B.11. Under Assumptions 1-7, as T →∞,∣∣∣∣∣√T
[
∂LT (γ0, λ0)

∂λi
− ∂LT,h (γ0, λ0)

∂λi

]∣∣∣∣∣ P→ 0, (B.41)

for i = 1, ..., 2d2, and

sup
θ∈Θ

∣∣∣∣∣∂2LT (γ, λ)
∂θi∂θj

− ∂2LT,h (γ, λ)
∂θi∂θj

∣∣∣∣∣ a.s.→ 0 (B.42)

for i, j = 1, ..., 3d2, where LT (γ, λ) and LT,h (γ, λ) are defined in (A.3) and (A.1),
respectively.

Proof. We proceed as in the proof of Lemma 4 in Hafner and Preminger (2009a).
First, we establish that for some r > 0,

E

∣∣∣∣∣∂lt (γ0, λ0)
∂λi

− ∂lt,h (γ0, λ0)
∂λi

∣∣∣∣∣
r

= O
(
tρt
)
. (B.43)

By Hafner and Preminger (2009a, (B.32)), for 0 < r < 1,

E

∣∣∣∣∣∂lt (γ0, λ0)
∂λi

− ∂lt,h (γ0, λ0)
∂λi

∣∣∣∣∣
r

≤ KE

[(
K +K ‖Xt‖2r

) ∥∥∥∥∥∂Ht (γ0, λ0)
∂λi

− ∂Ht,h (γ0, λ0)
∂λi

∥∥∥∥∥
r]

+KE
[(
K +K ‖Xt‖2r

) ∥∥∥∥∥∂Ht,h (γ0, λ0)
∂λi

Ht,h (γ0, λ0)−1
∥∥∥∥∥ ‖Ht,h (γ0, λ0)−Ht (γ0, λ0)‖r

]

+KE
[
‖Xt‖2r ‖Ht (γ0, λ0)−Ht,h (γ0, λ0)‖r

∥∥∥∥∥∂Ht,h (γ0, λ0)
∂λi

Ht,h (γ0, λ0)−1
∥∥∥∥∥
r]
.

With r = 1/4, it follows by Assumption 6, (B.13), and Hölder’s inequality, that it
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is sufficient to establish that

E ‖vec [Ht,h (γ0, λ0)−Ht (γ0, λ0)]‖ = O
(
ρt
)
, (B.44)

E

∥∥∥∥∥vec
[
∂Ht,h (γ0, λ0)

∂λi
− ∂Ht (γ0, λ0)

∂λi

]∥∥∥∥∥ = O
(
tρt
)
, (B.45)

and
E

∥∥∥∥∥∂Ht,h (γ0, λ0)
∂λi

∥∥∥∥∥ <∞. (B.46)

By iterating (A.5), (B.20), and since h is constant, it follows that

E sup
θ∈Θ
‖vec [Ht,h (γ, λ)−Ht (γ, λ)]‖ = O

(
ρt
)
, (B.47)

and thereby that (B.44) holds. Likewise, iterating (A.5) yields

E sup
θ∈Θ

∥∥∥∥∥vec
[
∂Ht,h (γ, λ)

∂θi
− ∂Ht (γ, λ)

∂θi

]∥∥∥∥∥ = E sup
θ∈Θ

∥∥∥∥∥ ∂∂θi
{

(B ⊗B)t vec [h−H0 (γ, λ)]
}∥∥∥∥∥ ,

for i = 1, ..., 3d2. It now follows by (B.20) and (B.21) that

E sup
θ∈Θ

∥∥∥∥∥vec
[
∂Ht,h (γ, λ)

∂θi
− ∂Ht (γ, λ)

∂θi

]∥∥∥∥∥ = O
(
tρt
)
, i = 1, ..., 3d2, (B.48)

which implies (B.45). Observe that

vec [Ht,h (γ, λ)] =
t−1∑
i=0

{(
B⊗2

)i (
Id2 − A⊗2 −B⊗2

)
γ
}

+
t−1∑
i=0

(
B⊗2

)i
A⊗2vec

(
Xt−1−iX

′
t−1−i

)
+
(
B⊗2

)t
vec (h) .(B.49)

By simple differentiation of (B.49) and using that h is constant, we conclude that

E sup
θ∈Θ

∥∥∥∥∥∂Ht,h (γ, λ)
∂θi

∥∥∥∥∥ <∞, i = 1, ..., 3d2, (B.50)

and hence that (B.46) holds. Thereby (B.43) holds with r = 1/4. By the generalized
Chebyshev inequality, the triangle inequality, and (B.43) for any ε > 0,

P

(∣∣∣∣∣√T
[
∂LT (γ0, λ0)

∂λi
− ∂LT,h (γ0, λ0)

∂λi

]∣∣∣∣∣ ≥ ε

)

≤ T−1/8ε−1/4
T∑
t=1

E

∣∣∣∣∣∂lt (γ0, λ0)
∂λi

− ∂lt,h (γ0, λ0)
∂λi

∣∣∣∣∣
1/4

→ 0
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as T →∞, and we conclude that (B.41) holds.
Next, we turn to (B.42). As before, from Hafner and Preminger (2009a, Proof of
Lemma 4(ii)), we need to establish that for some r > 0,

E sup
θ∈Θ

∣∣∣∣∣∂2lt (γ, λ)
∂θi∂θj

− ∂2lt,h (γ, λ)
∂θi∂θj

∣∣∣∣∣
r

= O
(
t2ρt

)
. (B.51)

Again we can choose r = 1/4. From Hafner and Preminger (2009a, (B.36)), it
follows, using Assumption 6, (B.47), (B.48), (B.50), (B.13), and Hölder’s inequality,
that it is sufficient to verify that

E sup
θ∈Θ

∥∥∥∥∥vec
[
∂2Ht (γ, λ)
∂θi∂θj

− ∂2Ht,h (γ, λ)
∂θi∂θj

]∥∥∥∥∥ = O
(
t2ρt

)
, (B.52)

and
E sup

θ∈Θ

∥∥∥∥∥∂2Ht,h (γ, λ)
∂θi∂θj

∥∥∥∥∥ <∞. (B.53)

Equation (B.52) follows by iterating (A.5), and using that h is constant together
with (B.20) and (B.21). By differentiating (B.49) twice and using that h is constant,
we have that (B.53) holds. We conclude that (B.51) holds for r = 1/4. By (B.51)
and the generalized Chebyshev inequality for any ε > 0,

∞∑
t=0

P

(
sup
θ∈Θ

∣∣∣∣∣∂2lt (γ, λ)
∂θi∂θj

− ∂2lt,h (γ, λ)
∂θi∂θj

∣∣∣∣∣ > ε

)

≤
∞∑
t=0

1
ε1/4E

sup
θ∈Θ

∣∣∣∣∣∂2lt (γ, λ)
∂θi∂θj

− ∂2lt,h (γ, λ)
∂θi∂θj

∣∣∣∣∣
1/4
 <∞,

so by the Borel-Cantelli lemma as t→∞,

sup
θ∈Θ

∣∣∣∣∣∂2lt (γ, λ)
∂θi∂θj

− ∂2lt,h (γ, λ)
∂θi∂θj

∣∣∣∣∣ a.s.→ 0. (B.54)

Now Cesàro’s mean theorem and (B.54) imply that (B.42) holds.

Appendix C Drift criteria for the BEKK-ARCH
model

In order to find conditions for which the BEKK-ARCH model with Gaussian noise
is geometrically ergodic with high-order moments we will make use of the following
lemma.
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Lemma C.1 ((Ghazal, 1996, Corollary 1.i-iii)). Let Q = x′Ωx be a quadratic form
where Ω is a d × d symmetric non-stochastic matrix and x is N(0, Id) distributed.
Then

E
[
(x′Ωx)2] = tr2 {Ω}+ 2tr

{
Ω2
}

E
[
(x′Ωx)3] = tr3 {Ω}+ 6tr {Ω} tr

{
Ω2
}

+ 8tr
{

Ω3
}

E
[
(x′Ωx)4] = tr4 {Ω}+ 12tr2 {Ω} tr

{
Ω2
}

+ 12tr2
{

Ω2
}

+ 32tr {Ω} tr
{

Ω3
}

+ 48tr
{

Ω4
}
.

We are now able to prove the following theorem.

Theorem C.1. Consider {Xt} following the BEKK-GARCH process in (2.2) with
B = 0 and Zt i.i.d.N(0, Id). Then Xt is geometrically ergodic and the strictly
stationary solution has (i) E ‖Xt‖2 < ∞ if ρ (A⊗ A) < 1, (ii) E ‖Xt‖4 < ∞ if
ρ (A⊗ A) < 1√

3 ≈ 0.5774, (iii) E ‖Xt‖6 < ∞ if ρ (A⊗ A) < 1
151/3 ≈ 0.4055, and

(iv) E ‖Xt‖8 <∞ if ρ (A⊗ A) < 1
1051/4 ≈ 0.3124.

Proof. Results (i) and (ii) are established in Rahbek (2004), see also Rahbek et al.
(2002), where it is shown that the time-homogeneous Markov chain Xt is aperiodic,
irreducible with respect to the Lebesgue measure, and compact sets in Rd are “small”.
This implies that we can use a k-step drift criterion, see also Tjøstheim (1990).
Define the drift function

v (x) ..= 1 + (x′x)3 = 1 + ‖x‖6 = 1 + tr3 (xx′) .

Define Ωx
..= C + Axx′A′, then

E (v (Xt) |Xt−1 = x) = 1 + E
(
(X ′tXt)3 |Xt−1 = x

)
= 1 + E

(
(Z ′tHtZt)3 |Xt−1 = x

)
= 1 + E

[
(Z ′tΩxZt)3] = 1 + tr3 {Ωx}+ 6tr {Ωx} tr

{
Ω2
x

}
+ 8tr

{
Ω3
x

}
,

where the fourth equality follows by Lemma C.1. Ignoring terms of lower order than
‖x‖6, the right-hand side equals 15 (x′A′Ax)3 .

Let L
(
Rd
)
denote the space of linear mappings from Rd → Rd. For linear mappings

φ : L
(
Rd
)
→L

(
Rd
)
we use the operator norm defined by ‖φ‖op ..= sup‖x‖6=0

‖φ(x)‖
‖x‖ ,

for which we observe that
lim
k→∞

∥∥∥φk∥∥∥1/k

op
= ρ(φ). (C.1)

Let X be a d × d matrix in L
(
Rd
)
, and define the mapping φ = (A⊗ A) from

L
(
Rd
)
→ L

(
Rd
)
by φ (X) ..= (A⊗ A) (X) = AXA′. Note that φk (X) = AkXAk′

and Ωx = C0+ φ (xx′).
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Recursions give that E (v (Xt+k) |Xt = x), apart from the lower-order terms, equals

15k
(
x′Ak′Akx

)3
=
(
15k/3x′Ak′Akx

)3
=
∥∥∥∥(151/3

)k
φk (xx′)

∥∥∥∥3
≤
∥∥∥∥(151/3φ

)k∥∥∥∥3

op
‖x‖6 .

In light of (C.1), by choosing k large enough, we have that the drift condition is
satisfied, if ρ

(
151/3φ

)
< 1,which means that ρ (φ) = ρ (A⊗ A) < 1/151/3 ≈ 0.4055.

Result (iv) follows by similar arguments.

Remark C.1. Theorem C.1 can be extended in order to establish conditions on
ρ (A⊗ A) for bounding other higher-order moments of Xt. If one seeks to verify
that Xt is geometrically ergodic and E ‖Xt‖n < ∞, n = 2k, k ∈ N, one can define
the drift function v (x) = 1 + (x′x)n/2 and use general results for nth-order moments
of quadratic forms, see e.g. Corollary 2 of Bao and Ullah (2010).
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Part II

Targeting estimation of
CCC-GARCH models with
infinite fourth moments

This chapter has been accepted for publication in Econometric Theory.
It will appear in a revised form subsequent to editorial input by Cam-
bridge University Press.1

Abstract

As an alternative to quasi-maximum likelihood, targeting estimation is
a much applied estimation method for univariate and multivariate GARCH
models. In terms of variance targeting estimation, recent research has pointed
out that at least finite fourth moments of the data generating process is re-
quired, if one wants to perform inference in GARCH models by relying on
asymptotic normality of the estimator. Such moment conditions may not be
satisfied in practice for financial returns, highlighting a potential drawback
of variance targeting estimation. In this paper we consider the large-sample
properties of the variance targeting estimator for the multivariate extended
constant conditional correlation GARCH model when the distribution of the
data generating process has infinite fourth moments. Using non-standard
limit theory we derive new results for the estimator stating that, under suit-
able conditions, its limiting distribution is multivariate stable. The rate of
consistency of the estimator is slower than

√
T and depends on the tail shape

of the data generating process. A simulation study illustrates the derived
properties of the targeting estimator.

1http://journals.cambridge.org/action/displayJournal?jid=ECT
I am grateful to Dennis Kristensen (co-editor) and the referees for their helpful comments

and suggestions which have improved the paper substantially. I thank Brendan Beare, Iliyan
Georgiev, Søren Johansen, Thomas Mikosch, Heino B. Nielsen, Anders Rahbek, participants at
the INET/SoFiE Workshop on Skewness, Heavy Tails, Market Crashes, and Dynamics (Cam-
bridge University, 2014), participants at the 10th BMRC-DEMS Conference (Brunel University,
2014), and participants at the Econometric Society World Congress (Montréal, 2015) for helpful
comments. I also thank Farid Boussama for providing his Ph.D. thesis.
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1 Introduction

In order to reduce the number of parameters in the numerical optimization when
estimating multivariate GARCH models, targeting estimation has, by now, become
a much applied tool among practitioners. The idea behind the method is to es-
timate the model in two steps. Initially, the model is reparametrized such that
the unconditional (co)variances enter explicitly in the equation for the conditional
(co)variances. In the first step, the unconditional variances are then estimated by
a moment estimator and, conditional on this, the remaining parameters are esti-
mated in a second step by quasi-maximum likelihood (QML). Recently, Pedersen
and Rahbek (2014) have considered the asymptotic properties of the (covariance)
targeting estimator for multivariate BEKK-GARCH models, whereas Francq et al.
(2014) have considered similar properties for the (variance) targeting estimator for
extended constant conditional correlation (CCC-) GARCH models. As established
in both papers, and similar to the studies of the univariate GARCH models in Kris-
tensen and Linton (2004) and Francq et al. (2011), at least finite fourth moments of
the observed process is required in order to obtain asymptotic normality of the esti-
mator. In practice, such moment restrictions may not be satisfied for asset returns,
casting doubt on the validity of the inference performed in GARCH models based
on targeting estimation. In this paper we derive the limiting distribution of the tar-
geting estimator for CCC-GARCH models when the data generating process does
not have finite fourth moments. By exploiting that, under certain conditions, the
observed vector process has a multivariate regularly varying distribution, we show
that the targeting estimator has a singular multivariate stable limiting distribution.
The rate of consistency is slower than

√
T , as obtained in the presence of finite fourth

moments, and is determined by the tail index (the index of regular variation) of the
distribution of the observed process. Our conclusions are in line with the ones in a
recent paper by Vaynman and Beare (2014) who consider the limiting distribution
of the variance targeting estimator for univariate GARCH models.

Forecasts of conditional covariance matrices play an important role in a vast
amount of financial applications as in for example the fields of dynamic portfolio
allocation and conditional Value-at-Risk. Such forecasts can be based on multivari-
ate GARCH models, as the classical CCC-GARCH model proposed by Bollerslev
(1990) and its extended version by Jeantheau (1998). The asymptotic properties
of the QML estimator for this model have been considered by Jeantheau (1998),
Ling and McAleer (2003), and recently by Francq and Zakoïan (2012a). A draw-
back of the model, and especially of its extended version, is the large number of
model parameters, which makes classical QML estimation difficult, if not infeasi-
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ble, when the dimension of the time series is large. One can address this curse of
dimensionality by applying simplified versions of the model, and/or by considering
an alternative estimation method, such as targeting estimation originally proposed
by Engle and Mezrich (1996). For the CCC-GARCH model, targeting estimation
relies on estimating the vector of long-run variances in the first step. Regardless of
the model has a simplified representation or not, the two-step estimation leads to
optimization over fewer parameters in the numerical optimization step. Specifically,
Francq et al. (2014) find that targeting estimation provides a decrease in compu-
tation time relative to QML estimation. Moreover, the targeting estimator yields
consistent estimates of the unconditional variances (given that such exist) under
model misspecification which is an advantage of the estimation method, if e.g. the
focus is to perform long-horizon forecasts. We refer to Francq et al. (2011) for a
comprehensive treatment of that aspect for univariate GARCH models.

Existing literature on targeting estimation of multivariate GARCH models relies
on at least finite fourth moments of the observed process in order to establish asymp-
totic normality. Such moment restrictions for the observed process may not be a
realistic assumption, as for instance investigated by Loretan and Phillips (1994).
We consider the case where the second moments are finite, implying consistency of
the estimator, but the fourth moments are infinite. For this case, a central limit
theorem does not apply to the vector of sample variances. The tail behavior of the
CCC-GARCH process has investigated by Stărică (1999), whereas Fernández and
Muriel (2009) derived the limiting distribution of the sample (auto-co)variances for
the process. In line with their results, we exploit that a CCC-GARCH process can
be represented by a stochastic recurrence equation (SRE). Under suitable conditions
the SRE can be shown to have a multivariate regularly varying distribution, which
allows us to characterize the tails of the distribution. Moreover, this property en-
ables us to characterize the limiting distribution of the vector of sample variances
by relying on theory for convergence of point processes. In particular, we show that
this limiting distribution is multivariate stable, and since the score (in the direction
of all other parameters) tends to zero in probability when multiplied by the rate of
consistency for the vector of sample variances, the (joint) targeting estimator has a
singular multivariate stable limiting distribution.

The rest of the paper is organized as follows. In Section 2 we introduce the
targeting CCC-GARCH model, and Section 3 considers the two-step targeting esti-
mation of the model. The large-sample theory for the targeting estimator is devoted
to Section 4. Specifically, we introduce the notion of multivariate regular variation
(Subsection 4.1) and convergence of point processes generated by multivariate reg-
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ularly varying stochastic recurrence equations (Subsection 4.2). This provides a
road map to the derivation of the limiting distribution of the targeting estimator in
Subsection 4.3. Section 5 contains a simulation study that illustrates the derived
properties of the estimator. Section 6 concludes the paper. All technical proofs can
be found in the appendix.

Some notation and definitions throughout the paper: For m,n ∈ N, In is the
(n× n) identity matrix, and Om×n is the (m× n) zero-matrix. Let ‖A‖ denote the
Euclidean norm of any scalar, vector, or matrix, A. For any positive definite matrix
A, A1/2 denotes the square-root of A in the Choleski sense. All limits are taken as the
sample size T →∞, unless stated otherwise. Moreover, p→, a.s.→, and w→ denote con-
vergence in probability, almost sure convergence, and weak convergence, respectively.
For two real-valued functions f and g, f(x) ∼ g(x) means limx→∞ f(x)/g(x) = 1.
A measurable function f : (0,∞) → (0,∞) is said to be regularly varying (at ∞)
with index κ ∈ R, if for any t > 0, f (tx) /f (x) → tκ as x → ∞, see e.g. Bingham
et al. (1987, Chapter 1). The parameter κ is called the exponent of variation, and f
is said to be slowly varying in the case where κ = 0. By definition, if f is regularly
varying with exponent κ one can always write f(x) = xκL(x) where L(x) is slowly
varying. Moreover, for any slowly varying function L(x),

L(x)xα →
x→∞

0 ∀α < 0, and (L(x))α̃ is slowly varying ∀α̃ ∈ R . (1.1)

2 The targeting CCC-GARCH model

Consider the (extended) CCC-GARCH model of Jeantheau (1998) for t ∈ N given
by

Xt(θC) = Σ1/2
t (θC)Zt, (2.1)

where {Zt : t ∈ N} is an i.i.d.(0, Id) sequence of random variables and the (d× d)
matrix Σ1/2

t (θC) is the square root of Σt(θC) given by the equations

Σt(θC) = D̃t(θC)RD̃t(θC), (2.2)

D̃2
t (θC) = diag

(
σ2
t (θC)

)
, (2.3)

σ2
t (θC) = ω + AX�2

t−1(θC) +Bσ2
t−1(θC). (2.4)

Here diag(σ2
t (θC)) is a diagonal matrix with the (d×1) vector σ2

t (θC) on the diagonal,
ω is a (d × 1) vector with strictly positive entries, and A, B, and R are (d × d)
matrices satisfying that A and B have nonnegative entries and R is a positive definite
conditional correlation matrix. Moreover, X�2

t−1(θC) ..= Xt−1(θC)�Xt−1(θC), where



45

� denotes the Hadamard product. The vector θC is the model parameters defined
as θC ..= [ω′, vec(A)′, vec(B)′, vech0 (R)′]′, where vech0 (R) stacks the columns below
the principal diagonal downwards of R. The subscript C indicates that the model
has the classical CCC-GARCH representation. We consider estimation conditional
on the initial values X0 and σ2

0.
Necessary and sufficient conditions for the existence of a strictly stationary solu-

tion to the CCC-GARCH model are given in e.g. Boussama (1998, Section 5.4) and
Francq and Zakoïan (2010, Theorem 11.6). In order to ensure that the second-order
moments are finite, we assume throughout the paper that ρ (A+B) < 1 (stated
formally in Assumption 2 in Section 4). By Jeantheau (1998, Proposition 3.1) this
condition implies that the solution is also second-order stationary. In particular, the
vector of unconditional variances of Xt is finite and given by

γ ..= E[X�2
t ] = E[σ2

t ] = (Id − A−B)−1 ω ∈ (0,∞)d. (2.5)

Targeting can be represented as rewriting the model so that the vector of uncondi-
tional variances (of the second-order stationary solution) appears explicitly in the
equation for σ2

t , which gives σ2
t = (Id −A−B)γ +AX�2

t−1 +Bσ2
t−1, and we say that

σ2
t has the targeting CCC-GARCH representation. In the next section we discuss

estimation of the model.

3 Targeting estimation

With R a positive definite correlation matrix, γ (d× 1)-dimensional with strictly
positive elements, and A and B (d× d)-dimensional with non-negative elements, let
θ ..= (γ′, λ′)′ denote the vector of parameters, where λ ..= [vec(A)′, vec(B)′, vech0 (R)′]′.
In terms of these parameters, the targeting CCC-GARCH model is given by the
equations

Xt(γ, λ) = Σ1/2
t (γ, λ)Zt, (3.1)

Σt(γ, λ) = D̃t(γ, λ)RD̃t(γ, λ), (3.2)

D̃2
t (γ, λ) = diag

(
σ2
t (γ, λ)

)
, (3.3)

σ2
t (γ, λ) = (Id − A−B)γ + AX�2

t−1(γ, λ) +Bσ2
t−1(γ, λ), (3.4)

such that (Id −A−B)γ ∈ (0,∞)d in order to ensure that σ2
t (γ, λ) ∈ (0,∞)d for all

t. Notice that θ ∈ Θ ..= Θγ × Θλ ⊂ (0,∞)d × [0,∞)2d2 × (−1, 1)d(d−1)/2, and that
the model contains d + 2d2 + d (d− 1) /2 =.. s2 parameters. We now consider the
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targeting estimation method where first γ is estimated by method of moments, and
λ is estimated by QML in a second step.

For a realization {Xt : t = 0, 1, ..., T} of the model, the Gaussian log-likelihood
function is given by

L̂T (γ, λ) ..= 1
T

T∑
t=1

l̂t(γ, λ), with (3.5)

l̂t(γ, λ) ..= log
{

det[Ĥt(γ, λ)]
}

+X ′tĤ
−1
t (γ, λ)Xt,

where the matrix Ĥt(γ, λ) is given by the equations

Ĥt(γ, λ) = D̂t(γ, λ)R (λ) D̂t(γ, λ), (3.6)

D̂2
t (γ, λ) = diag

(
ĥt (γ, λ)

)
, (3.7)

ĥt (γ, λ) = (Id − A−B) γ + AX�2
t−1 +Bĥt−1 (γ, λ) . (3.8)

In the statistical analysis, the initial value X0 is, as mentioned, conditioned upon
and ĥ0 (γ, λ) ..= ĥ ∈ (0,∞)d is fixed.

Targeting estimation relies on estimating the vector of unconditional variances,
γ, given in (2.5), by method of moments, γ̂T ..= T−1∑T

t=1X
�2
t . Substituting this es-

timator into the log-likelihood function and minimizing yield the targeting estimator
for λ,

λ̂T ..= arg min
λ∈Θλ

L̂T (γ̂T , λ). (3.9)

The two steps yield the targeting estimator of θ, θ̂T ..= (γ̂′T , λ̂′T )′.

Remark 3.1. In contrast to the work of Pedersen and Rahbek (2014) on the BEKK-
GARCH model, we only target the vector of unconditional variances and not the
entire unconditional covariance matrix of Xt. The reason is, as pointed out by
Bauwens et al. (2006, p.89), that for the CCC-GARCH model, Σt depends non-
linearly on the past values of XtX

′
t, i.e. there is no direct relation between model

parameters and the off-diagonal elements of the unconditional covariance matrix
of Xt. In particular, it does not seem possible to estimate the elements in the
conditional correlation matrix, R, in a first step.

4 Large-sample theory for the targeting estimator

In this section we consider the asymptotic properties of the targeting estimator.
Before turning to the results for the estimator, we introduce some important defi-
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nitions and properties for stochastic recurrence equations (SREs). These properties
are important for understanding the derivation for our main result in Theorem 4.2
below, stating the limiting distribution of the estimator.

By definition, a d-dimensional process {Wt : t ∈ Z} is given by an SRE if

Wt = ÃtWt−1 + B̃t, (4.1)

where {(Ãt, B̃t) : t ∈ Z} is an i.i.d. sequence containing (d×d) matrices Ãt and (d×1)
vectors B̃t. Importantly, in terms of the CCC-GARCH process, let θ0 = (γ′0, λ′0)′

denote the vector of true parameters such that Xt
..= Xt(θ0) and σ2

t
..= σ2

t (θ0). Then
notice that Yt ..= (X�2

t
′, σ2

t
′)′, satisfies the SRE given by Yt = KtYt−1 +Mt with

Kt
..=
diag(ε�2

t )A0 diag(ε�2
t )B0

A0 B0

 and Mt
..=
diag(ε�2

t )(Id − A0 −B0)γ0

(Id − A0 −B0)γ0

 ,
(4.2)

where εt ..= R
1/2
0 Zt.

Subsection 4.1 defines multivariate regular variation, which is a way of charac-
terizing the tails of a random vector. Subsection 4.2 is devoted to introducing the
notion of point processes and to considering properties of such processes generated
by multivariate regularly varying SREs. In the following, we assume that the ele-
ments of (Ãt, B̃t) in (4.1) are almost surely nonnegative for all t and that the SRE
has a strictly stationary solution. Similar conditions hold for Yt for the derivation
of the limiting distribution of the targeting estimator in Subsection 4.3.

4.1 Multivariate regular variation

Multivariate regular variation is most commonly defined in terms of convergence
of measures, and in particular we will make use of the notion of vague convergence
defined next. Define R ..= R∪{−∞,∞}, let F be a subset of Rd, and let B (F) be the
Borel σ-field generated by the open sets of F.2 A measure µ on B (F) is called Radon
if µ (F ) < ∞ for all F ∈ B(F) that are relatively compact, i.e. the closure of F is
compact. Let C+

K (F) ..= {f : F → [0,∞) : f is continuous with compact support},
and letM+ (F) denote the space of Radon measures on B (F). A topology onM+ (F)
can be obtained by letting its subbasis consist of sets of the form {µ ∈ M+ (F) :
s < µ(f) < t} for f ∈ C+

K (F) and 0 ≤ s ≤ t, where µ (f) ..=
´
F f (x)µ (dx).

2Following Resnick (1987, p.123) we may only need that F is a locally compact second countable
Hausdorff space, i.e. that every x ∈ F has a compact neighborhood, there exists open (Gn)n≥1
such that any open G can be written as G = ∪α∈JGα for a finite and countable index set J , and
that distinct points in F may be separated by disjoint neighborhoods.
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This topology is called the vague topology and is metrizable as a complete metric
space, see Resnick (1987, Proposition 3.17). If µn, µ ∈M+ (F) for all n ≥ 1, then µn
converges vaguely (converges in the vague topology) to µ, written µn v→ µ, if and only
if for all f ∈ C+

K (F), µn (f) → µ (f) as n → ∞. This defining condition of vague
convergence is equivalent to µn(F ) → µ(F ) for all relatively compact F ∈ B(F)
satisfying µ(∂F ) = 0, with ∂F the boundary of F . For a detailed introduction to
vague convergence we refer to Resnick (1987, pp.139-149).

In order to define multivariate regular variation through vague convergence of
measures, it is natural to consider the space Rd \ {0} instead of Rd. The reason
is that sets that are bounded away from zero in Rd become relatively compact in
Rd \ {0} with respect to the relative topology, as described in e.g. Resnick (2007,
pp.172-175). We are now ready to define multivariate regular variation.3

Definition 4.1 (Mikosch, 2004, p.218). A random vector V ∈ Rd and its distribu-
tion are said to be regularly varying if for a non-null Radon measure µ on B(Rd\{0}),

µx (·) ..= P (x−1V ∈ ·)
P (‖V ‖ > x)

v→ µ (·) as x→∞. (4.3)

The measure µ satisfies the homogeneity property µ(tA) = t−κµ (A) , κ ≥ 0, for all
t > 0, for any A ∈ B(Rd \ {0}) bounded away from the origin with µ(∂A) = 0. If V
satisfies (4.3), we say that V is multivariate regularly varying with index κ.

Remark 4.1. An important property of a multivariate regularly varying vector V
with index κ is that for any t > 0, P(‖V ‖ > tx)/P(‖V ‖ > x) → t−κ as x → ∞,
i.e. P(‖V ‖ > x) is regularly varying with exponent −κ. This property determines
which moments of ‖V ‖ that are finite. In particular, E[‖V ‖α] <∞ for all α ∈ [0, κ)
and E[‖V ‖α] = ∞ for all α > κ. Whether or not E[‖V ‖κ] is finite depends on the
slowly varying function L from the representation P(‖V ‖ > x) = x−κL(x).

Basrak et al. (2002b) used Kesten’s theorem, see Kesten (1973), to show that the
SRE of the type (4.1) is multivariate regularly varying, and, likewise, we establish
in Subsection 4.3 that the CCC-GARCH process has a similar tail property.

4.2 Convergence of point processes

In this subsection we consider the weak convergence of point processes generated by
the stationary solution {Wt} to the SRE in (4.1). We start out with some important
definitions.

3The following definition holds for any choice of norm, ‖·‖.
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With 1() the indicator function, for any x ∈ F and any A ∈ B (F), let δx(A) =
1(x ∈ A). Let {wi : i ≥ 1} be a countable collection of points of F. A point
measure µ on F is an element of M+(F) such that µ : B (F) → N ∪ {0,∞} and
µ(·) = ∑∞

i=1 δwi(·). Next, let Mp (F) ..= {µ ∈ M+(F) : µ is a point measure}
and let Mp (F) denote the Borel σ-field of Mp (F) induced by the vague topol-
ogy. For a probability space (Ω,A,P), a point process on F is a measurable map
N : (Ω,A,P)→ (Mp (F) ,Mp (F)), i.e. a random element of Mp (F).

A special type of point process of particular interest in this paper is the Poisson
random measure defined as follows. Let µ be a Radon measure on B(F). A point
process N is a Poisson random measure with mean (or intensity) measure µ if N
satisfies that

1. for any F ∈ B(F) and any k ∈ N0, N0
..= N ∪ {0},

P[N(F ) = k] =

exp{−µ(F )}{µ(F )}k/k! if µ(F ) <∞

0 if µ(F ) =∞,

and

2. for any k ≥ 1, if F1, ..., Fk are mutually disjoint sets in B(F), then {N(Fi) :
i = 1, ..., k} are independent random variables.

Suppose that any finite dimensional distribution of {Wt} is multivariate regularly
varying with index κ > 0. The multivariate regular variation ofWt implies that there
exists a deterministic sequence {aT : T ∈ N}, 0 < aT → ∞, such that TP(‖Wt‖ >
aT )→ 1. Basrak et al. (2002b) then showed that under suitable conditions,

NT (·) ..=
T∑
t=1

δa−1
T Wt

(·) w→ N(·) =
∞∑
i=1

∞∑
j=1

δPiQij(·) in Mp (F) , (4.4)

where (Pi : i ∈ N) are the points of a Poisson process on (0,∞) with intensity
measure ν (dy) = ϕκy−κ−1

1 {y ∈ [0,∞)} dy, ϕ ∈ (0, 1]. The process (Pi : i ∈ N)
is independent of the i.i.d. sequence of point processes, {∑∞j=1 δQij(·) : i ∈ N}, on
[0,∞)d\{0}, see Davis and Mikosch (1998, p.2054) for additional details. The re-
sult in (4.4) will show up to be important as it allows us, due to the continuous
mapping theorem, to characterize the limiting distribution of the suitably normal-
ized sum ∑T

t=1Wt, and thereby, in terms of the CCC-GARCH process, the limiting
distribution of the sample variances of Xt.
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4.3 Properties of the targeting estimator

We now consider the large-sample properties of the targeting estimator. For the
asymptotic theory, it is assumed that the sample {Xt : t = 0, 1, ..., T}, Xt

..= Xt(θ0),
is generated by the strictly and second-order stationary, ergodic solution to the tar-
geting CCC-GARCH process. Such a solution is ensured to exist under Assumptions
1-3 below, as stated in Jeantheau (1998, Proposition 3.1). It is assumed that Xt

has infinite fourth-moments, which implies that the targeting estimator is consis-
tent but not asymptotically normally distributed. Our results are new and extend
the existing literature on targeting estimation of multivariate GARCH models. The
derivation of the limiting distribution of the estimator, stated in Theorem 4.2, is to
some extent based on the recent results of Vaynman and Beare (2014) together with
arguments used i Davis and Hsing (1995) and Davis and Mikosch (1998). However,
due to the multivariate nature of the CCC-GARCH model and, especially, the mul-
tidimensional method of moments estimator for γ, additional arguments are needed
here compared to these papers, see in particular the technical Lemmas B.5-B.7 in
the appendix for details.

We start out by stating sufficient conditions for strong consistency of the target-
ing estimator.

Assumption 1. The distribution of Zt admits a probability density strictly positive
on Rd. Moreover, with Zt,j the j-th element of Zt, j = 1, ..., d, there exists a β0,j ∈
(1,∞] such that E[|Zt,j|2β0,j ] =∞ and E[|Zt,j|2β] <∞ for all β < β0,j.

Assumption 2. For all λ ∈ Θλ, ρ (A+B) < 1 and R is a positive definite cor-
relation matrix. Moreover, each element of (Id − A− B)γ0 is positive and bounded
away from zero on Θλ.

Assumption 3. The true parameters λ0 ∈ Θλ and Θλ is compact.

In light of the strict stationarity and ergodicity of {Xt}, it is convenient to intro-
duce the strictly stationary and ergodic process {ht (γ, λ) : t ∈ Z} given recursively
by

ht (γ, λ) = (Id − A−B) γ + AX�2
t−1 +Bht−1 (γ, λ) (4.5)

for ρ(A + B) < 1 and (Id − A − B)γ ∈ (0,∞)d. For later purpose, we introduce
correspondingly D2

t (γ, λ) = diag(ht(γ, λ)), Ht(γ, λ) = Dt(γ, λ)R(λ)Dt(γ, λ), and

LT (γ, λ) ..= 1
T

T∑
t=1

lt(γ, λ), (4.6)
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where

lt(γ, λ) ..= log {det [Ht(γ, λ)]}+X ′tH
−1
t (γ, λ)Xt. (4.7)

Notice that, by definition,

Σt(γ0, λ0) = Ht(γ0, λ0), D̃t(γ0, λ0) = Dt(γ0, λ0), σ2
t (γ0, λ0) = ht(γ0, λ0) ∀t.

(4.8)

Assumption 4. There exists a t ∈ Z such that if for λ ∈ Θλ, ht(γ0, λ) = ht(γ0, λ0)
a.s. and R (λ) = R(λ0), then λ = λ0.

Remark 4.2. Assumption 2 ensures that ĥt(γ0, λ) ∈ (0,∞)d and ht(γ0, λ) ∈ (0,∞)d

for all t and all λ ∈ Θλ, and hence, since R is positive definite, that L̂T (γ0, λ) and
LT (γ0, λ) are well-defined on Θλ. This, together with the fact that γ̂T is strongly
consistent for γ0 ∈ (0,∞)d (as explained below) is, of course, necessary for deriving
the asymptotic properties of the targeting estimator. Notice that for the univariate
case, ρ(A+B) < 1 means that A+B < 1, which implies that (1−A−B)γ0 ∈ (0,∞)
is automatically satisfied, since γ0 ∈ (0,∞). Hence the condition (Id − A− B)γ0 ∈
(0,∞)d arise due to the multivariate nature of the model.

Remark 4.3. Assumption 4 is a high-level identification condition. Primitive identi-
fication conditions are discussed in Jeantheau (1998) and Francq and Zakoïan (2010,
Section 11.4.1).

As stated in the following theorem, the assumptions above are sufficient for
strong consistency of the estimator. We emphasize that strong consistency does ap-
ply under milder conditions, and, in particular, Zt does not need to have a strictly
positive density on Rd (Assumption 1), see e.g. Francq et al. (2014). Likewise, it
might be possible to derive consistency in the case where {Zt} is not i.i.d. but only
a martingale difference sequence, see e.g. Escanciano (2009). However, the assump-
tion that {Zt} is i.i.d. is needed later when we consider the limiting distribution
of the targeting estimator, where the i.i.d. assumption is used to show that the
CCC-GARCH process is multivariate regularly varying. The proof of the following
theorem can be found in Appendix A.

Theorem 4.1. Suppose that Assumptions 1-4 hold. Then θ̂T a.s.→ θ0.

Remark 4.4. The moment restrictions imposed are stronger than the ones required
for consistency of the QMLE of the classical CCC representation in (2.4), where
only a fractional moment of Xt is required to be finite, see e.g. Francq and Zakoïan
(2010, Theorem 11.7). In particular, we need that E[‖Xt‖2] < ∞ in order to have
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that γ̂T is strongly consistent, by a law of large numbers for ergodic processes, for
γ0 ∈ (0,∞)d.

Next, we turn to the limiting distribution of the targeting estimator and make
the following assumption about the parameter space Θλ.

Assumption 5. The true parameter vector, λ0, belongs to the interior of Θλ.

Assumption 5 is important for two reasons. First, it allows us to make a mean-
value expansion of the first derivative of the log-likelihood function around θ0. Sec-
ond, it is crucial for showing that the CCC-GARCH process is multivariate regularly
varying, as explained next. Under Assumptions 1-5, we show in Lemma B.3 that
Yt ..= [X�2

t
′, σ2′

t ]′ is multivariate regularly varying with index κ > 1. This is done by
first establishing that σ2

t
..= σ2

t (θ0)′ is multivariate regularly varying (with the same
κ). The proof relies on observing that σ2

t satisfies the SRE given by σ2
t = K̃tσ

2
t−1+M̃t,

where K̃t
..= [A0 diag(ε�2

t−1) +B0], εt ..= R
1/2
0 Zt, and M̃t

..= (Id − A0 −B0)γ0. By us-
ing Kesten’s theorem it is shown that σ2

t is multivariate regularly varying. However,
in order to make use of Kesten’s theorem it is, among other things, required that∏n
i=1 K̃i has strictly positive elements almost surely for some n ∈ N. This condition

is satisfied when λ0 is in the interior of Θλ, implying that all elements of A0 and B0

are strictly positive.
Having established that Yt is multivariate regularly varying with κ > 1, the idea

is now to assume that κ ∈ (1, 2). We limit ourselves to that specific case, since
the case where κ = 2 leads to very complicated derivations, see e.g. Basrak et al.
(2002b). If κ > 2 we have that Xt has finite fourth moments and the limiting
distribution of the targeting estimator is Gaussian as stated in Remark 4.8 below.

We emphasize that a sufficient condition for Xt to have infinite fourth moments
is that Zt has infinite fourth moments. Indeed such condition is not necessary. In
contrast to e.g. Berkes and Horváth (2003), Hall and Yao (2003) and Mikosch and
Straumann (2006) who (for univariate GARCH processes) introduce heavy tails to
Xt through heavy tails of the innovation Zt, we do, according to Assumption 1, only
assume that the noise process has at least finite second moments, but may not be
heavy-tailed, i.e. we can have that Xt has infinite fourth moments even if the noise
process is Gaussian. A necessary and sufficient condition for finite fourth moments
of Xt is given in Appendix C.

The following theorem states the limiting distribution of the, suitably normalized,
targeting estimator when Xt has infinite fourth moments.

Theorem 4.2. Under Assumptions 1-5, suppose that Yt ..= [X�2
t
′, σ2

t (θ0)′]′ is mul-
tivariate regularly varying with index κ ∈ (1, 2). Then for a deterministic sequence
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{aT : T ∈ N}, satisfying 0 < aT → ∞, T P(‖Yt‖ > aT ) → 1, and aT = T 1/κL(T )
with L(T ) slowly varying,

Ta−1
T

γ̂T − γ0

λ̂T − λ0

 w→

 Id

−(Jλ0 )−1Jγ0

S,
where the constant matrices Jλ0 and Jγ0 are stated in (4.18) below, and S has a
d-dimensional multivariate κ-stable distribution.

We refer to Samorodnitsky and Taqqu (1994, Chapter 2) for a definition of and
results for multivariate stable distributions.

Remark 4.5. Theorem 4.2 states that in the case whereXt has finite second moments
but infinite fourth moments, the targeting estimator is consistent with rate Ta−1

T .
Since aT = T 1/κL(T ) with L(T ) slowly varying, it follows from (1.1) that the rate of
consistency is slower than

√
T , which is the rate of consistency in the case of finite

fourth moments, as stated in Remark 4.8. The limit of the (suitably scaled) targeting
estimator, (Id, [(Jλ0 )−1Jγ0 ]′)′S, has a multivariate stable distribution with index κ ∈
(1, 2) due to Samorodnitsky and Taqqu (1994, Theorems 2.1.2 and 2.5.1(c)). The
limiting distribution is concentrated on a d-dimensional subspace of Rs2 (with s2

the dimension of θ) and is hence singular. Moreover, the parameters of the κ-stable
distribution of S depend on the distribution of the point process N(·) introduced
in the proof of Theorem 4.2 below. This fact makes it complicated to identify the
parameters of the distribution of S, as recently pointed out by Bartkiewicz et al.
(2011). Relying on blocking techniques instead of convergence of point processes,
Bartkiewicz et al. (2011) derive the limiting distribution of Ta−1

T (γ̂T − γ0) for the
univariate case and show that, under suitable conditions, the parameters of the
limiting κ-stable distribution depend entirely on λ0 and the distribution of Zt.

Remark 4.6. In order to investigate the distribution of the targeting estimator fur-
ther, we have included a simulation experiment in the next section. As investigated
by Vaynman and Beare (2014), one can make use of subsampling techniques to con-
struct confidence intervals for the targeting estimator. For the univariate GARCH
model, in order to deal with the fact that aT is unknown, Vaynman and Beare
(2014) perform numerical simulations based on subsampling techniques for the self-
normalized quantity

√
T (γ̂T − γ0)/τT where τ 2

T
..= 1

T

∑T
t=1X

4
t . Although the validity

of subsampling is shown to hold, Vaynman and Beare (2014) find that the technique
does not perform well in practice for a reasonable sample size. We expect the same
conclusion to hold for the CCC-GARCH model. As kindly pointed out by a referee,
one should in general be careful using resampling techniques to construct confidence



54

sets for the mean of a distribution that is in the domain of attraction of a κ-stable
distribution κ ∈ (0, 2), see e.g. Berkes et al. (2010) and the references therein for a
discussion.

Proof of Theorem 4.2. Define s1
..= s2 − d, where s2 is the dimension of θ. Using

Assumption 5 and the strong consistency of θ̂T (Theorem 4.1), consider a mean-value
expansion of the first derivative of the log-likelihood function around θ0,

Os1×1 = ∂L̂T (θ0)
∂λ

+ ĴλT
(
λ̂T − λ0

)
+ ĴγT (γ̂T − γ0) a.s., (4.9)

where
ĴλT

..= ∂2L̂T (θ?)
∂λ∂λ′

, and ĴγT
..= ∂2L̂T (θ?)

∂λ∂γ′
,

for some θ? between θ̂T and θ0. Observe that {aT : T ∈ N} exists due to the Lemma
B.3.2. By Lemma B.1, we have that ĴλT is invertible with probability approaching
one for T sufficiently large, so reorganizing (4.9) yields that

Ta−1
T

γ̂T − γ0

λ̂T − λ0

 =
 Id Od×s1

−(ĴλT )−1ĴγT −(ĴλT )−1

Ta−1
T

γ̂T − γ0
∂L̂T (θ0)
∂λ

 . (4.10)

The idea is to consider the limiting behavior of Ta−1
T

∂L̂T (θ0)
∂λ

and Ta−1
T (γ̂T − γ0).

From Lemma B.4 we have that

Ta−1
T

∂L̂T (θ0)
∂λ

p→ 0. (4.11)

With β0,j, j = 1, ..., d, introduced in Assumption 1, notice that in the case where
min{β0,j : j = 1, ..., d} > 2, it holds that E[‖Zt‖4] < ∞, so similar to the usual
QMLE case, see Francq and Zakoïan (2012a, Proof of Theorem 3.2), we have that√
T [∂L̂T (θ0)/∂λ] = Op(1). Using that aT = T 1/κL(T ) and (1.1), it follows that

Ta−1
T [∂L̂T (θ0)/∂λ] = op(1). In the case where min{β0,j : j = 1, ..., d} ∈ (1, 2], a

more sophisticated argument is needed, and we refer to the proof of Lemma B.4 for
details.
We now consider the limit of Ta−1

T (γ̂T − γ0). Since the elements of A0 and B0 are
non-negative and ρ(A0 + B0) < 1, it follows from Ling and McAleer (2003, Lemma
4.1) that ρ(B0) < 1. Using arguments similar to the ones in Pedersen and Rahbek
(2014, Proof of Lemma B.8), it holds that for any δ ∈ (0, 1)

γ̂T − γ0 = 1
T

T∑
t=1

C0
{

diag(ε�2
t )− Id

}
σ2
t + op(T−δ),
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where C0
..= (Id−A0−B0)−1(Id−B0) and εt ..= R

1/2
0 Zt. Choosing δ ∈ (1− 1/κ, 1),

and using that aT = T 1/κL(T ) together with (1.1),

Ta−1
T (γ̂T − γ0) = C0a

−1
T

T∑
t=1

{
diag(ε�2

t )− Id
}
σ2
t + op (1) . (4.12)

Consider ST ..= a−1
T

∑T
t=1{diag(ε�2

t ) − Id}σ2
t = a−1

T

∑T
t=1{X�2

t − σ2
t }. Let MP (F)

denote the collection of point processes on F ..= [0,∞]2d\{0}. Essentially due to the
multivariate regular variation of Yt and the fact that Yt can be written as an SRE,
it holds (Lemma B.3.3) that for the point process generated by {Yt : t = 1, ..., T},
NT (·) ..= ∑T

t=1 δa−1
T Yt

(·),
NT (·) w→ N (·) in MP (F) , (4.13)

where N is specified in detail in Lemma B.3. The idea is to realize that ST is essen-
tially a mapping of NT (·) and then exploit the convergence in (4.13). Specifically,
it will be useful to define the mapping Vη : MP (F)→ Rd, with the property

Vη

( ∞∑
t=1

δyt(·)
)

=


∑∞
t=1 (yt,1 − yt,d+1)1 {yt,d+1 > η}

...∑∞
t=1 (yt,d − yt,2d)1 {yt,2d > η}

 ,

where yt,i denotes the i-th element of yt. When evaluated at NT (·), Vη yields an
element-wise censoring of ST . The censoring allows us to establish (see Lemma B.5)
that Vη is continuous on a subset of MP (F) containing N(·) with probability one.
The continuous mapping theorem and (4.13) then imply that

Vη(NT ) w→ Vη(N). (4.14)

Moreover, Lemma B.6 yields that

Vη(N) w→ S̃ as η → 0, (4.15)

where S̃ is a d-dimensional random vector with a multivariate κ-stable distribution.
From Lemma B.7 we have that

lim
η→0

lim sup
T→∞

P (‖ST − Vη(NT )‖ ≥ δ) = 0. (4.16)

Combining (4.14)-(4.16) with a variant of Slutsky’s lemma (Billingsley, 1999, The-
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orem 3.2), we have that ST w→ S̃. In light of (4.12) we then conclude that

Ta−1
T (γ̂T − γ0) w→ C0S̃ =.. S. (4.17)

Since κ ∈ (1, 2), we have from Samorodnitsky and Taqqu (1994, Theorems 2.1.2 and
2.5.1(c)) that S has a multivariate κ-stable distribution. Combining (4.10), (4.11),
(4.17), and Lemma B.1 with Slutsky’s lemma yields

Ta−1
T

γ̂T − γ0

λ̂T − λ0

 w→

 Id

−(Jλ0 )−1Jγ0

S,
where Jλ0 and Jγ0 are given by

Jλ0
..= E

[
∂2lt (θ0)
∂λ∂λ′

]
, and Jγ0

..= E
[
∂2lt (θ0)
∂λ∂γ′

]
. (4.18)

Remark 4.7. As mentioned in the introduction, the limiting distribution of the (suit-
ably normalized) sample auto-covariances of Xt has been studied by Fernández and
Muriel (2009). Specifically, in the case where each element of εt ..= R

1/2
0 Zt has a

symmetric marginal distribution, the limit of Ta−1
T (γ̂T − γ0) is essentially stated in

Fernández and Muriel (2009, Theorem 18.(2)), since γ̂T is the diagonal of the sample
auto-covariance of order h = 0. However, the result in Fernández and Muriel (2009)
is only shown for the case h ≥ 1, whereas the more complicated case where h = 0
is omitted from the proof. Hence the derivation of the limit of Ta−1

T (γ̂T − γ0) in
the proof of Theorem 4.2 (partly) fills a gap in the existing literature on sample
auto-covariances of CCC-GARCH processes.
Remark 4.8. As recently shown by Francq et al. (2014), if we in addition to As-
sumptions 1-5 have that E[‖Xt‖4] < ∞, then

√
T (θ̂T − θ0) w→ N (0,Σ0) for some

matrix Σ0. Notice that this moment condition is milder than what is assumed for
establishing asymptotic normality of the QML estimator or targeting estimator for
certain other multivariate GARCH models, see e.g. Hafner and Preminger (2009b)
and Pedersen and Rahbek (2014) who require finite sixth moments.
Remark 4.9. For a given sample, it is difficult to know whether the fourth moments
of the data-generating process are infinite. One way of testing for this moment condi-
tion would be to make inference about the maximal moment exponent of the process.
Berkes et al. (2003) propose, and establish consistency and asymptotic normality of,
an estimator for the maximal moment exponent for univariate GARCH(1, 1) pro-
cesses. We conjecture that a similar estimator may be derived for CCC-GARCH
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processes, enabling one to test (under suitable conditions) for infinite fourth mo-
ments of Xt. Another way of testing for infinite fourth moments is the technique
recently developed by Trapani (2014).

Remark 4.10. Assumption 1 only requires that the innovation, Zt, has at least finite
second moments (in addition to a strictly positive density). In particular, we allow
for infinite fourth moments of the innovations. In such case, Berkes and Horváth
(2004) showed that (for univariate GARCH models) one can obtain more efficient
QML estimates by applying other likelihood functions than the Gaussian. A similar
property would be interesting to investigate for the targeting estimator.

5 Simulation experiments

In this section we investigate the finite-sample properties of the targeting estimator
via simulations. In particular, we illustrate that the distribution of the targeting
estimator is poorly approximated by a Gaussian distribution (see Remark 4.8) when
Xt has infinite fourth moments. Notice that for a given CCC-GARCH process (with
dimension greater than one) it is not straightforward to estimate the index of regular
variation κ. Instead we check the moment condition as follows. Obviously, Xt has
infinite fourth moments if Zt has. Next, provided that Zt has finite fourth moments,
it follows from Theorem C.1 in Appendix C that Xt has finite fourth moments if
and only if

η4
..= ρ

(
E
{[
A0 diag(ε�2

t ) +B0
]
⊗
[
A0 diag(ε�2

t ) +B0
]})

< 1,

where εt ..= R
1/2
0 Zt, and ⊗ denotes the Kronecker product. The condition is easy to

check, by Monte Carlo integration, for a given distribution of Zt and given parameter
values θ0.

In order to reduce the computational burden of the simulations, we consider a
simplified version of the targeting CCC-GARCH model (3.1)-(3.4) with B a diagonal
matrix. In that case, the vector of parameters, θ†, coincide with θ except that θ† does
not contain the off-diagonal elements of B. We define accordingly λ†, such that θ† =
(γ′, λ′†), Θλ† (the parameter space of λ†), the true parameter vector θ†,0 = (γ′0, λ′†,0)′,
and the targeting estimator of θ†,0, θ̂†,T = (γ̂′T , λ̂′†,T )′. The following corollary states
that θ̂†,T has the same characteristics as θ̂T . The proof can be found in Appendix
A.

Corollary 5.1. Suppose that the conditions of Theorem 4.2 hold with θ, λ, Θλ, and
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θ0 replaced with θ†, λ†, Θλ†, and θ†,0, respectively. Then θ̂†,T
a.s.→ θ†,0, and

Ta−1
T

 γ̂T − γ0

λ̂†,T − λ†,0

 w→

 Id

−(Jλ†,0)−1Jγ†,0

S,
where S has a d-dimensional multivariate κ-stable distribution, and

Jλ†,0
..= E

[
∂2lt (θ†,0)
∂λ†∂λ′†

]
, and Jγ†,0

..= E
[
∂2lt (θ†,0)
∂λ†∂γ′

]
.

The bivariate version of the simplified model has parameter vector

θ† = (γ1, γ2, A11, A12, A21, A22, B11, B22, r)′,

such that

γ =
γ1

γ2

 , A =
A11 A12

A21 A22

 , B =
B11 0

0 B22

 , R =
1 r

r 1

 .
For the simulations we consider the data-generating process (DGP) with true pa-
rameters

γ0 =
18

7

 , A0 =
A11,0 0.05

0.05 0.07

 , B0 =
0.85 0

0 0.80

 , r0 = 0.4,

and A11,0 ∈ {0.06, 0.10, 0.115, 0.13}. Moreover, the distribution of Zt can take four
different forms: N(0, I2), t3, t5, and t10, where ti is a bivariate t-distribution with
i > 2 degrees of freedom and suitably normalized such that E[Zt] = O2×1 and
E[ZtZ ′t] = I2. For each simulation of the DGP we use a burn-in period of 1,000
observations, and all simulations are based on 1,000 replications. The simulations
are carried out in OxMetrics 7.0.

First, we consider the case where Zt is Gaussian and whereA11,0 ∈ {0.06, 0.10, 0.115, 0.13}.
We find that η4 < 1 in the case A11,0 ∈ {0.06, 0.10, 0.115} and η4 > 1 when
A11,0 = 0.13, i.e. we expect the distribution of the targeting estimator not to
be well-approximated by a Gaussian distribution when A11,0 = 0.13, since Xt has
infinite fourth moments for this choice of parameter values. Figure 5.1 contains
kernel density estimates of the targeting estimates of A11, where the estimates are
based on T = 1,000 observations. For all four possible values of A11,0 the associated
estimates seem to be well-approximated by a Gaussian distribution. Even when
A11,0 = 0.13, the Gaussian distribution seems to be a decent approximation, which
may appear unexpected from the established theory. Figure 5.2 contains density
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Figure 5.1: Kernel density estimates (full line) of the distribution of the targeting
estimator of A11 and Gaussian density (dashed line) with same mean and variance.
A11,0 ∈ {0.06, 0.10, 0.115, 0.13}, Zt ∼ N(0, I2), and T = 1,000.

plots similar to the ones in Figure 5.1, but for estimates based on T = 50,000 obser-
vations. Clearly, the targeting estimates for the case A11,0 = 0.13 do no longer seem
to be well-approximated by a Gaussian distribution. The kernel density estimates
for the targeting estimates of all other parameters (not reported here) show similar
patterns, i.e. well-approximated by a Gaussian distribution for all choices of A11,0

when T = 1,000 and not well-approximated when A11,0 = 0.13 and T = 50,000.
The only exceptions are the estimates of γ that do not seem Gaussian distributed
in the case A11,0 = 0.13 and T = 1,000, as can be seen from Figure 5.3 containing
density plots of the estimates of the first element of γ, γ1. Specifically, the distri-
bution of the estimates for γ1 seems to have a heavy right tail. The behavior of
the estimates may be explained as follows. We have from Theorem 4.2 that the
targeting estimator for all parameters, except for γ, has a singular limiting distri-
bution. However, recall from the proof of Theorem 4.2, specifically (4.10), that for
any finite T that λ̂T depends on the first derivative of the log-likelihood function
in the direction of λ, ∂L̂T (θ0)/∂λ. Since Zt has finite fourth moments, we know
that

√
T [∂L̂T (θ0)/∂λ] has a Gaussian limit, so the reason why the estimates of A11

seem to be well-approximated by a Gaussian distribution for T = 1,000 might be
that Ta−1

T [∂L̂T (θ0)/∂λ] dominates Ta−1
T (γ̂T − γ0) for “small” T . In contrast, the

estimates of γ are not well-approximated by a Gaussian distribution due to the fact
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Figure 5.2: Kernel density estimates (full line) of the distribution of the targeting
estimates of A11 and Gaussian density (dashed line) with same mean and variance.
A11,0 ∈ {0.06, 0.10, 0.115, 0.13}, Zt ∼ N(0, I2), and T = 50,000.

that γ̂T does not depend on any first derivatives of the log-likelihood function.
Next, we consider DGPs where A11,0 = 0.06 and Zt has different distributions.

Figure 5.4 contains density estimates for the targeting estimates for A11. We see that
the estimates are well-approximated by a Gaussian density for the cases where Zt is
N(0, I2)-, t10-, or t5-distributed, which is in line with our theory, since η4 is less than
one in those situations. In the case where Zt is t3-distributed, Xt has infinite fourth
moments, and we see that the targeting estimates do not fit a Gaussian density well.
Similar observations hold for the estimates of all the other parameters (not reported
here) and also for smaller sample sizes such as T = 1,000.

6 Concluding remarks and extensions

We have considered the targeting estimator for the extended CCC-GARCH model.
In particular, we investigated the limiting distribution of the estimator in the case
where the fourth moments of the observed process are infinite. By exploiting that
under certain conditions the CCC-GARCH process is multivariate regularly varying,
we have, by relying on results for convergence of point processes, shown that the rate
of consistency is slower than

√
T and that the limiting distribution of the estimator

is singular multivariate stable. A simulation study illustrated the theoretical results.
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Figure 5.3: Kernel density estimates (full line) of the distribution of the targeting
estimates of γ1 and Gaussian density (dashed line) with same mean and variance.
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In particular, the simulations suggest that the distribution of the targeting estimator
is potentially poorly approximated by a Gaussian distribution in the case where the
CCC-GARCH process has infinite fourth moments. Interestingly, we find that for
small sample sizes (T ) the parameters estimated by QML in the second step of
the estimation method seem to be well-approximated by a Gaussian distribution
in the case where the CCC-GARCH process has infinite fourth moments, but the
fourth moments of the noise process are finite. This might be explained by the
fact for any finite T , the second step parameter estimates are determined by the
method of moments estimates (the first step) together with the first derivative of
the likelihood function, that has a Gaussian limiting distribution (when scaled with√
T ). For small T , the latter seems to dominate the distribution of the estimates

from the second step, whereas the method of moments estimates seem to dominate
for large T , as expected from our theoretical derivations.

An important area of future research is the development of techniques suitable
for constructing precise confidence sets for the model parameters. Moreover, as
recently proposed by Hill and Renault (2012) for univariate GARCH models, one
could consider a so-called tail-trimmed version of the targeting estimator. The idea
of tail-trimming is to robustify the targeting estimator against extreme observations,
and Hill and Renault (2012) even find that the tail-trimmed estimator may have an
asymptotic Gaussian distribution in the presence of heavy tails.

Appendix A Proofs of Theorem 4.1 and Corol-
lary 5.1

Throughout the appendices, c and φ denote generic constants with c ∈ [0,∞) and
φ ∈ [0, 1).

Proof of Theorem 4.1. Since {Xt : t ∈ Z} is ergodic with E[‖Xt‖2] < ∞, the
ergodic theorem implies that γ̂T is strongly consistent for γ0. It remains to show
that λ̂T is strongly consistent for λ0. Following Francq et al. (2011, Appendix A.1),
and due to the compactness of Θλ, it suffices to verify the following three conditions:

(i)supλ∈Θλ

∣∣∣LT (γ0, λ)− L̂T (γ̂T , λ)
∣∣∣ a.s.→ 0.

(ii) E[|lt(γ0, λ0)|] <∞ and for λ ∈ Θλ, if λ 6= λ0 then E[lt(γ0, λ)] > E[lt(γ0, λ0)].
(iii) For any λ ∈ Θλ, λ 6= λ0, there exists an open ball with center λ, Bλ, such

that almost surely,

lim inf
T→∞

inf
λ?∈Bλ∩Θ

L̂T (γ̂T , λ?) > E [lt(γ0, λ0)] .



63

First, by the triangle inequality,

sup
λ∈Θλ

∣∣∣LT (γ0, λ)− L̂T (γ̂T , λ)
∣∣∣ ≤ sup

λ∈Θλ
|LT (γ0, λ)− LT (γ̂T , λ)| ,

+ sup
λ∈Θλ

∣∣∣LT (γ̂T , λ)− L̂T (γ̂T , λ)
∣∣∣ . (A.1)

Next, for T sufficiently large, the mean-value theorem yields that, almost surely,

sup
λ∈Θλ

|LT (γ0, λ)− LT (γ̂T , λ)| ≤ 1
T

T∑
t=1

d∑
i=1
|γ̂T,i − γ0,i| sup

θ∈Θ̃γ×Θλ

∣∣∣∣∣∂lt(γ, λ)
∂γi

∣∣∣∣∣ .
where Θ̃γ is chosen to be a compact subset of (0,∞)d such that (Id − A − B)γ ∈
(0,∞)d and bounded away from zero on Θ̃γ × Θλ, and such that γ0 lies in the
interior of Θ̃γ. Here γ̂T,i and γ0,i denote the i-th elements of γ̂T and γ0 respec-
tively, and ∂lt(γ, λ)/∂γi denotes the derivative of lt(γ, λ) with respect to the i-th
element of γ. An expression for ∂lt(γ, λ)/∂γi can be found in Francq and Za-
koïan (2010, equation (11.67)). Assumption 2 together with Ling and McAleer
(2003, Lemma 4.1) imply that ρ(B) < 1 on Θλ, which ensures (since Θ̃γ × Θλ

is compact) that supθ∈Θ̃γ×Θλ ‖∂ht(θ)/∂γi‖ < ∞. Combining this with the mo-
ment condition, E[‖Xt‖2] < ∞ and the fact that supθ∈Θ̃γ×Θλ ‖D

−1
t (γ, λ)‖ ≤ c and

supθ∈Θ̃γ×Θλ ‖H
−1
t (γ, λ)‖ ≤ c give that E[supθ∈Θ̃γ×Θλ |∂lt(γ, λ)/∂γi|] <∞, i = 1, ..., d.

By the ergodic theorem and the consistency of γ̂T , we have that supλ∈Θλ |LT (γ0, λ)−
LT (γ̂T , λ)| a.s.→ 0. Francq and Zakoïan (2010, p.298) showed that supθ∈Θ̃γ×Θλ |LT (γ, λ)−
L̂T (γ, λ)| a.s→ 0, so in light of (A.1) we conclude that (i) holds.

(ii) follows by arguments similar to the ones stated in Francq and Zakoïan (2010,
pp.298-299).

Turning to (iii), as in Francq et al. (2011, Appendix A.1), for all λ ∈ Θλ,λ 6= λ0,
lim infT→∞ infλ?∈Bλ∩Θ L̂T (γ̂T , λ?) ≥ E[infλ?∈Bλ∩Θ lt(γ0, λ

?)] a.s., where we have used
(i), that for all λ ∈ Θλ, E[max{−lt(γ0, λ), 0}] < ∞, and the ergodic theorem. In
light of (ii), we conclude that (iii) holds.

Proof of Corollary 5.1. It is straightforward to show that the proof of Theorem
4.1 holds when B is diagonal, and hence that θ̂†,T is strongly consistent. Turn-
ing to the limiting distribution of θ̂†,T , observe that it is possible to show that
Lemma B.3 holds for the new strictly stationary process {σ2

t (θ†,0)}. Similar to
the proof of Lemma B.3.2, this can be done by relying on the derivations from
Fernández and Muriel (2009, Proof of Theorem 5) where in particular the matrix∏n
i=1(A0 diag(ε�2

i ) +B0) has almost surely strictly positive elements for some n ∈ N
even if B0 is diagonal, which then enables us to make use of Kesten’s theorem. The
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remaining parts in the proof of Theorem 4.2 are straightforward to verify for the
new model.

Appendix B Lemmas

Lemma B.1. Suppose that the assumptions of Theorem 4.2 hold. With s2 the
dimension of θ and {aT : T ∈ N} the deterministic sequence introduced in Theorem
4.2, it holds that

1. E[‖∂l2t (θ0)/∂θ∂θ′‖] <∞ and Jλ0 ..= E[∂2lt(θ0)/∂λ∂λ′] is non-singular.

2. With θ? between θ̂T and θ0 as in the proof of Theorem 4.2,

∂2LT (θ?)/∂θi∂θj
p→ E[∂l2t (θ0)/∂θi∂θ′j], i, j = 1, . . . , s2.

3. There exists a neighborhood V(θ0) of θ0 such that

sup
θ∈V(θ0)

|∂2LT (θ)/∂θi∂θj − ∂2L̂T (θ)/∂θi∂θj|
p→ 0, i, j = 1, . . . , s2

4. |Ta−1
T [∂LT (θ0)/∂θi − ∂L̂T (θ0)/∂θi]|

p→ 0, i = d+ 1, ..., s2.

Proof. We choose V(θ0) sufficiently small such that all parameters in A, B, and γ
are bounded away from zero and such that (Id−A−B)γ ∈ (0,∞)d is bounded away
from zero on V(θ0). The points (1)-(4) can be verified by arguments similar to the
ones in Francq and Zakoïan (2012a, Section A.4.2) and Francq and Zakoïan (2010,
Section 11.4.3). In particular, (1) follows from Lemma B.2 and Assumption 4, and
(2) follows from Lemma B.2 and Theorem 4.1. Points (3)-(4) do not depend on
the parametrization and are verified along the lines of Francq and Zakoïan (2012a,
pp.204-206), with the latter point following by using that aT = L(T )T 1/κ and (1.1).

Lemma B.2. Under Assumptions 1-5, there exists a neighborhood of θ0, V(θ0), such
that for all i1 = 1, ..., d, all i, j, k = 1, ..., s2 − d(d− 1)/2 and any r0 ≥ 1,

E
[

sup
θ∈V(θ0)

∣∣∣∣∣ 1
ht,i1

∂ht,i1
∂θi

(θ)
∣∣∣∣∣
r0]

<∞, (B.1)

E
[

sup
θ∈V(θ0)

∣∣∣∣∣ 1
ht,i1

∂2ht,i1
∂θi∂θj

(θ)
∣∣∣∣∣
r0]

<∞, (B.2)
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E
[

sup
θ∈V(θ0)

∣∣∣∣∣ 1
ht,i1

∂3ht,i1
∂θi∂θj∂θk

(θ)
∣∣∣∣∣
r0]

<∞, (B.3)

and
E
[

sup
θ∈V(θ0)

∣∣∣∣∣h0t,i1
ht,i1

∣∣∣∣∣
r0]

<∞ (B.4)

where ht,i1 and h0t,i1 denote element i1 of ht(θ) and ht(θ0), respectively.

Proof. We choose V(θ0) ⊂ Θ such that all elements of γ,A, and B are bounded away
from zero and such that (Id−A−B)γ ∈ (0,∞)d is bounded away from zero on V(θ0).
Let ht ..= ht(θ). Considering (B.1), recursions give that ht = ∑∞

i=0B
i[(Id−A−B)γ+

AX�2
t−1−i], where we have used that ρ(B) < 1. For i = 1, ..., d and any i1 and r0 > 0

we have that E{supθ∈V(θ0) |[∂ht,i1(θ)/∂θi]|r0} < ∞. For i = d + 1, ..., d2 and any i1,
θi(∂ht,i1/∂θi) ≤ ht,i1 ,so indeed (B.1) holds for i = d + 1, ..., d + d2. Moreover, for
i = d+ d2 + 1, ..., d+ 2d2

∂ht
∂θi

=
∞∑
k=0

(
∂

∂θi
Bk

) [
(Id − A−B) γ + AX�2

t−1−k

]

+
∞∑
k=0

Bk

[
−∂B
∂θi

γ

]
=.. W

(1)
t +W

(2)
t . (B.5)

First define ft ..= (Id−A−B)γ+AX�2
t−1 and observe thatW (1)

t,i1 = ∑∞
k=1

∑d
j1=1 kB

k(i1, j1)ft−k,j1 ,
where Bk(i1, j1) denotes element (i1, j1) of Bk, and W (1)

t,i1 is element i1 of W (1)
t . Also

for any k ≥ 1 and any j1,

ht,i1 = ∑∞
k=0

∑d
j1=1B

k(i1, j1)ft−k,j1 ≥ ζ +Bk(i1, j1)ft−k,j1 , (B.6)

with ζ ..= minj1{[(Id − A − B)γ]j1} > 0, where [(Id − A − B)γ]j1 is element j1 of
[(Id − A−B)γ]. Hence for any r0 ≥ 1

1
ht,i1

W
(1)
t,i1 =

∞∑
k=1

d∑
j1=1

k
Bk(i1, j1)ft−k,j1

ht,i1
≤
∞∑
k=1

d∑
j1=1

k
Bk(i1, j1)ft−k,j1

ζ +Bk(i1, j1)ft−k,j1

≤
∞∑
k=1

d∑
j1=1

k

(
Bk(i1, j1)ft−k,j1

ζ

)1/r0

≤ c
∞∑
k=1

d∑
j1=1

kφkj1f
1/r0
t−k,j1 , (B.7)

where the first inequality follows from (B.6), the second follows from the fact that
x/ (1 + x) ≤ xs for all x ≥ 0 and s ∈ [0, 1]. Using that ρ(B) < 1 which follows
by Assumption 2 and Ling and McAleer (2003, Lemma 4.1), φj1 ∈ [0, 1) is a con-
stant depending on j1, i1, and r0. Considering (B.7), we have that for j1 = 1, ..., d,
E[supθ∈V(θ0) |ft,j1|] < ∞ since Xt has finite second-order moments. Hence for any
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i1 = 1, ..., d and any r0 ≥ 1, by Minkowski’s inequality,

E
[

sup
θ∈V(θ0)

∣∣∣∣∣ 1
ht,i1

W
(1)
t,i1

∣∣∣∣∣
r0]

<∞. (B.8)

Next, each element of W (2)
t is bounded because ρ(B) < 1, so we conclude, us-

ing (B.5) and (B.8), that (B.1) is true for any i1 = 1, ..., d and r0 ≥ 1. Sim-
ilar arguments yield (B.2) and (B.3). Turning to (B.4), observe that h0t,i1 ≤
c + ∑∞

k=0
∑d
j1=1B

k
0 (i1, j1)f0t−k,j1 where f0t−k

..= A0X
�2
t−1−k, and for any k ≥ 1 and

j1 = 1, ..., d ht,i1 ≥ ζ+Bk(i1, j1)ft−k,j1 as above. The result now follows by arguments
similar to the ones in Francq and Zakoïan (2012a, p.202).

For establishing the multivariate regular variation of the CCC-GARCH process
in the next lemma, it will be useful to introduce the notion of regular variation in the
Kesten sense, which is a way of characterizing the tails of a random vector through
linear combinations, see Kesten (1973).

Definition B.1 (Basrak et al., 2002b, p.98). A d-dimensional random vector V is
said to be regularly varying in the Kesten sense if there exists a κ > 0 and a slowly
varying function L such that for all u ∈ Rd \ {0},

lim
x→∞

P (u′V > x)
x−κL (x) = w (u) exists. (B.9)

The function w takes finite values and there exists a u0 6= 0 with w(u0) > 0.

The relationship between regular variation in the Kesten sense and multivariate
regular variation, as in Definition 4.1, is investigated in Basrak et al. (2002a) and
Boman and Lindskog (2009).

Lemma B.3. Let σ2
t

..= σ2
t (θ0) and Yt ..= (X�2′

t , σ2′
t )′, and let Mp(F) denote the

collection of point measures on F ..= [0,∞]2d\{0}. Suppose that Assumptions 1-5
hold. Then

1. σ2
t is multivariate regularly varying with some κ > 1.

2. any finite dimensional distribution of {Yt : t ∈ Z} is multivariate regularly
varying with index κ. Moreover, there exists a deterministic sequence {aT :
T ∈ N} satisfying 0 < aT →∞, T P(‖Yt‖ > aT )→ 1, and aT = T 1/κL(T ) for
a slowly varying function L(T ).

3. it holds that
NT (·) ..=

T∑
t=1

δa−1
T Yt

(·) w→ N (·) in Mp(F), (B.10)
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where N is a point process on F with the representation

N(·) D=
∞∑
i=1

∞∑
j=1

δPiQij(·),

consisting of

(a) a Poisson random measure ∑∞i=1 δPi(·) on (0,∞) with intensity measure
ν (dy) = ϕκy−κ−1

1 {y ∈ [0,∞)} dy, ϕ ∈ (0, 1],

(b) an i.i.d. sequence {∑∞j=1 δQij(·) : i ∈ N} of point processes in M̃p(F) ..=
{µ ∈ Mp(F) : µ ({y : ‖y‖ > 1}) = 0 and µ({y : y ∈ S2d−1}) > 0}, inde-
pendent of ∑∞i=1 δPi(·).

Proof. Notice that σ2
t satisfies the SRE σ2

t = K̃tσ
2
t−1+M̃t, where K̃t

..= [A0 diag(ε�2
t−1)+

B0], εt ..= R
1/2
0 Zt, and M̃t

..= (Id − A0 − B0)γ0. From Fernández and Muriel (2009,
Proof of Theorem 5 and Remark 7) it holds that σ2

t is regularly varying in the
Kesten sense with some κ > 0. That result is established by Kesten’s theorem,
see e.g. Basrak et al. (2002b, Theorem 2.4). It is here used that λ0 is an interior
point such that A0, B0 ∈ (0,∞)d×d implying that ∏n

i=1 K̃i > 0 almost surely for
some n ∈ N, and that the strict stationarity of {σ2

t } implies that the top Lyapunov
exponent of {K̃t} is strictly negative (Bougerol and Picard, 1992, Theorem 2.5). In
particular, it holds that σ2

t satisfies Definition B.1 with L constant and w (u) > 0
for all u ∈ [0,∞)d \ {0} and w(u) = 0 for all u ∈ (−∞, 0]d\{0}. It then follows
from Boman and Lindskog (2009, Corollary 2) that σ2

t is also multivariate regularly
varying with index κ. With σ2

t,i the i-th element of σ2
t , Kesten’s theorem implies

that P(σ2
t,i > k) ∼ ck−κ as k →∞, where c potentially depends on i. This property

implies that E[‖σ2
t ‖κ] =∞. Using Jeantheau (1998, Proposition 3.1), we have that

E[‖σ2
t ‖] <∞, and hence that κ > 1. We conclude that point (1) holds.

Next, since Yt = [diag(ε�2
t ), Id]′ and using that E[‖εt‖2u] < ∞ for some u > κ, as

in Basrak et al. (2002b, Proof of Corollary 3.5), Yt is multivariate regularly varying
with index κ by Basrak et al. (2002b, Proposition A.1). The multivariate regular
variation of any finite dimensional distribution of {Yt} follows using arguments sim-
ilar to the ones given in Basrak et al. (2002b, Proof of Corollary 3.5). The sequence
{aT : T ∈ N} exists due to the fact that P(‖Yt‖ > k) is regularly varying with index
−κ (see Remark 4.1) and Resnick (2007, Theorem 3.6)
Point (3) is established by relying on Davis and Mikosch (1998, Theorem 2.8). The
mixing condition A(an), see Davis and Mikosch (1998, p.2052), holds for {Yt} since
the process is strongly mixing due to Lemma B.8. For verifying the anti-clustering
condition, Davis and Mikosch (1998, (2.10)), we notice that Yt satisfies the SRE in
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(4.2). The condition can then be shown to hold for Yt using arguments similar to the
ones given in Basrak et al. (2002b, Proof of Theorems 2.10 and 3.6). In particular,
it is used that the strict stationarity of {Yt} implies that the top Lyapunov exponent
of {Kt} is strictly negative. The limit in Davis and Mikosch (1998, (2.11)) can be
shown to be strictly positive by using a multivariate version of Davis and Hsing
(1995, Lemma 2.9) together with Basrak and Segers (2009, Proposition 4.2). The
characterization of N(·) follows from Davis and Mikosch (1998, Corollary 2.4).

Lemma B.4. Under the assumptions of Theorem 4.2, a−1
T T [∂L̂T (θ0)/∂θi]

p→ 0.

Proof. From Lemma B.1.4 we have that a−1
T T [∂L̂T (θ0)/∂θi] = a−1

T T [∂LT (θ0)/∂θi] +
op(1), so it suffices to consider the limit of a−1

T T [∂LT (θ0)/∂θi]. Let s0
..= (d + 2d2).

From Francq and Zakoïan (2012a, p.198) we have that for i = d+ 1, ..., s0,

∂lt(θ0)
∂θi

= tr
{(
Id − εtε′tR−1

0

)(
D−1

0t
∂D0t

∂θi

)}
+ tr

{(
Id −R−1

0 εtε
′
t

)(∂D0t

∂θi
D−1

0t

)}
,

(B.11)
and for i = s0 + 1, ..., s2,

∂lt(θ0)
∂θi

= tr
{(
Id −R−1

0 εtε
′
t

)(
R−1

0
∂R0

∂θi

)}
. (B.12)

Observe that

tr
{(
Id − εtε′tR−1

0

)(
D−1

0t
∂D0t

∂θi

)}
=

d2∑
j=1

vec
(
Id − εtε′tR−1

0

)
j
vec

(
D−1

0t
∂D0t

∂θi

)
j

,

(B.13)
where vec(Id − εtε′tR−1

0 )j is the j-th element of vec(Id − εtε′tR−1
0 ). With β0,j, j =

1, .., d, introduced in Assumption 1, let β0
..= min{β0,j : j = 1, ..., d} and choose

α ∈ (κ,min {β0, 2}). As in Vaynman and Beare (2014, Proof of Theorem 3.3), then
for any δ > 0

P
(∣∣∣∣∣a−1

T

T∑
t=1

tr
{(
Id − εtε′tR−1

0

)(
D−1

0t
∂D0t

∂θi

)}∣∣∣∣∣ > δ

)

≤
d2∑
j=1

P

∣∣∣∣∣∣a−1
T

T∑
t=1

vec
(
Id − εtε′tR−1

0

)
j
vec

(
D−1

0t
∂D0t

∂θi

)
j

∣∣∣∣∣∣ > δ/d2


≤

d2∑
j=1

(
δ/d2

)−α
E

∣∣∣∣∣∣a−1
T

T∑
t=1

vec
(
Id − εtε′tR−1

0

)
j
vec

(
D−1

0t
∂D0t

∂θi

)
j

∣∣∣∣∣∣
α , (B.14)

where the first inequality follows by (B.13) and the triangle inequality, and the sec-
ond inequality follows by the generalized Chebyshev inequality. With Ft the filtra-
tion generated by {Xi : i ≤ t}, observe that {vec(Id−εtε′tR−1

0 )jvec[D−1
0t (∂D0t/∂θi)]j,Ft}
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is a martingale difference sequence. Then by von Bahr and Esseen (1965, Theorem
2) we have that

d2∑
j=1

(
δ/d2

)−α
E

∣∣∣∣∣∣a−1
T

T∑
t=1

vec
(
Id − εtε′tR−1

0

)
j
vec

(
D−1

0t
∂D0t

∂θi

)
j

∣∣∣∣∣∣
α

≤ cTa−αT

d2∑
j=1

E

∣∣∣∣∣∣vec
(
Id − εtε′tR−1

0

)
j
vec

(
D−1

0t
∂D0t

∂θi

)
j

∣∣∣∣∣∣
α .

This combined with Lemma B.2 and (B.14) gives that

P
(∣∣∣∣∣a−1

T

T∑
t=1

tr
{(
Id − εtε′tR−1

0

)(
D−1

0t
∂D0t

∂θi

)}∣∣∣∣∣ > δ

)
≤ cTa−αT → 0, (B.15)

where the limit follows from the fact that aT = T 1/κL(T ) and (1.1). By similar
arguments, we have that for any δ > 0,

P
(∣∣∣∣∣a−1

T

T∑
t=1

tr
{(
Id −R−1

0 εtε
′
t

)(∂D0t

∂θi
D−1

0t

)}∣∣∣∣∣ > δ

)
→ 0 (B.16)

and
P
(∣∣∣∣∣a−1

T

T∑
t=1

tr
{(
Id −R−1

0 εtε
′
t

)(
R−1

0
∂R0

∂θi

)}∣∣∣∣∣ > δ

)
→ 0. (B.17)

Considering (B.11) and (B.12), in light of (B.15)-(B.17) we have that for any i =
d+ 1, ...., s2, a−1

T T [∂LT (θ0)/∂θi]
p→ 0.

Lemma B.5. Let Mp(F) denote the collection of point measures on F ..= [0,∞]2d \
{0}. For any η > 0 define the mapping Vη : Mp(F)→ Rd,

Vη

( ∞∑
t=1

δyt(·)
)

=


∑∞
t=1(yt,1 − yt,d+1)1{yt,d+1 > η}

...∑∞
t=1(yt,d − yt,2d)1{yt,2d > η}

 ,

where yt,i denotes the i-th element of yt. Under the assumptions of Theorem 4.2,
Vη is continuous on a subset of Mp(F) containing the point process N(·), defined in
Lemma B.3, with probability one.

Proof. The proof follows by arguments similar to the ones in Vaynman and Beare
(2014, Proof of Lemma A.2), see also (Resnick, 1986, pp.84-85) for considerations
about continuity of functionals on Mp(F). Define the sets Bη = {x ∈ [0,∞]2d :
maxi=d+1,...,2d(xi) > η} and Aη = {µ ∈ Mp(F) : µ(∂Bη) = 0}. Moreover, consider
a sequence {µT : T ∈ N}, µT ∈ Mp(F), such that µT v→ µ ∈ Aη. Since Bη
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does not contain the origin it is relatively compact, so it follows by Resnick (1987,
Proposition 3.13) that for T sufficiently large, we can label the points of µT and µ
in Bη by (xT,1, ..., xT,k) and (x1, ..., xk), respectively, for some finite k. Moreover, for
each i = 1, ..., k

xT,i → xi. (B.18)

Hence for T sufficiently large Vη(µT ) and Vη(µ) do only depend on (xT,1, ..., xT,k) and
(x1, ..., xk), respectively. By (B.18), Vη(µT )→ Vη(µ), so Vη is continuous on Aη. The
point process N from Lemma B.3 has the representation N(·) D= ∑∞

i=1
∑∞
j=1 δPiQij(·).

Observe that the event (N(·) /∈ Aη) can only occur if (PiQij ∈ ∂Bη for some i, j).
Hence P(N(·) /∈ Aη) = P(PiQij ∈ ∂Bη for some i, j) ≤ ∑∞

i=1
∑∞
j=1 P(PiQij ∈ ∂Bη).

The Poisson randommeasure∑∞i=1 δPi(·) has intensity measure ν (dy) = ψκy−κ−1
1{y ∈

R+}dy, ψ ∈ (0, 1], which is absolutely continuous, so Pi must be a continuous ran-
dom variable. Moreover, Pi is independent of Qij, so P(PiQij ∈ ∂Bη) = 0, and we
conclude that P(N(·) /∈ Aη) = 0.

Lemma B.6. With Vη the mapping defined in Lemma B.5 and N(·) the point process
defined in Lemma B.3, suppose that the assumptions of Theorem 4.2 are satisfied.
Then

Vη(N(·)) w→ S̃ as η → 0, (B.19)

where S̃ is a d-dimensional random vector with a multivariate κ-stable distribution,
κ ∈ (1, 2).

Proof. Similar to Davis and Hsing (1995, pp.897-898), see also Vaynman and Beare
(2014, Proof of Lemma A.3), consider the characteristic function of Vη(N(·)), Ψη :
Rd → C. We derive the weak convergence by showing that Ψη(t) converges point-
wise to a function Ψ(t) as η → 0, and that this function is continuous at t = 0. The
weak convergence then follows by Lévy’s Continuity Theorem. First, we establish
the point-wise convergence by showing that Ψη(t) is Cauchy as η → 0, i.e. for
any ε > 0 there exists an η > 0 such that sup0<a<b≤η |Ψa(t)− Ψb(t)| < ε. With
S(η) ..= Vη(N(·)) and S(η)

j its j-th element, observe that for any δ > 0

|Ψb(t)− Ψa(t)| = |E{exp(ıt′S(b))− E[exp(ıt′S(a))]}| ≤ E[| exp(ıt′S(b))− exp(ıt′S(a))|]

= E[| exp(ıt′S(b))− exp(ıt′S(a))|1{ max
j∈{1,...,d}

|S(b)
j − S

(a)
j | ≤ δ}]

+E[| exp(ıt′S(b))− exp(ıt′S(a))|1{ max
j∈{1,...,d}

|S(b)
j − S

(a)
j | > δ}],

where we have used Jensen’s inequality. Moreover,

| exp(ıt′S(b))− exp(ıt′S(a))| =
√

2− 2 cos(t′(S(b) − S(a))),
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so we have that

|Ψb(t)− Ψa(t)| ≤ E[
√

2− 2 cos(t′(S(b) − S(a)))1{ max
j∈{1,...,d}

|S(b)
j − S

(a)
j | ≤ δ}](B.20)

+E[
√

2− 2 cos(t′(S(b) − S(a)))1{ max
j∈{1,...,d}

|S(b)
j − S

(a)
j | > δ}].

Since t is fixed, maxj∈{1,...,d} |S(b)
j − S

(a)
j | ≤ δ, t′(S(b) − S(a)) → 0 as δ → 0. More-

over, since
√

2− 2 cos(x) → 0 as x → 0, we conclude that for any ε > 0, choos-
ing δ > 0 small enough, we have that that

√
2− 2 cos(t′(S(b) − S(a))) < ε/2 when

maxj∈{1,...,d} |S(b)
j −S

(a)
j | ≤ δ. Thereby the first term of the right-hand side of (B.20)

is less than ε/2 for small enough δ. Next, we fix such δ, and we show that the second
term of the right-hand side of (B.20) is less than ε/2 for small enough η > 0 with
η ≥ b > a > 0. Since

√
2− 2 cos(t′(S(b) − S(a))) ∈ [0, 2], we have that

E[
√

2− 2 cos(t′(S(b) − S(a)))1{ max
j∈{1,...,d}

|S(b)
j −S

(a)
j | > δ}] ≤ 2P( max

j∈{1,...,d}
|S(b)
j −S

(a)
j | > δ),

so we just have to find an η > 0 such that P(maxj∈{1,...,d} |S(b)
j − S

(a)
j | > δ) < ε/4.

We define Ṽa,b ..= maxj∈{1,...,d} |Vb,j − Va,j|, where Vη,j denotes the the j-th element
of Vη. According to Lemma B.5, Vη is continuous on a subset of Mp([0,∞]2d \ {0})
containing the point process N(·), defined in Lemma B.3, with probability one. The
same must then hold for Ṽa,b. Hence Ṽa,b(NT ) w→ Ṽa,b(N) , and we have that

P( max
j∈{1,...,d}

|S(b)
j − S

(a)
j | > δ) = P[Ṽa,b(N) > δ] = lim

T→∞
P[Ṽa,b(NT ) > δ]. (B.21)

Let S(η)
T,j denote the j-th element of Vη(NT (·)) and let ST,j denote the j-th element

of ST defined in Lemma B.7. Then

Ṽa,b(NT (·)) = max
j∈{1,...,d}

|S(b)
T,j − S

(a)
T,j| ≤

d∑
j=1

(|ST,j − S(b)
T,j|+ |ST,j − S

(a)
T,j|).(B.22)

In light of (B.21), (B.22), and Lemma B.7, choosing η > 0 small enough, we have
that

sup
0<a<b≤η

P( max
j∈{1,...,d}

|Sb,j − Sa,j| > δ)

= sup
0<a<b≤η

lim
T→∞

P[Ṽa,b(NT (·)) > δ]

≤ sup
0<a<b≤η

lim
T→∞

P[
d∑
j=1

(|Sj,T − Sb,j,T |+ |Sj,T − Sa,j,T |) > δ] < ε/4.
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Next, by arguments similar to the ones above, one can show that Ψη(t) is uniformly
Cauchy on a set, A, containing the origin, i.e. for any ε > 0 there exists an η > 0 such
that sup0<a<b≤η supt∈A |Ψa(t)− Ψb(t)| < ε. This implies that supt∈A |Ψη(t)−Ψ(t)| →
0 as η → 0, i.e. Ψη(t) converges uniformly to Ψ(t) on A. This, combined with
the fact that Ψη(t) is continuous on A, yields that Ψ(t) is continuous on A, and in
particular at t = 0. We conclude that as η → 0, (B.19) holds for some d-dimensional
random vector S̃ with characteristic function Ψ . As in Davis and Mikosch (1998,
Proof of Proposition 3.3), one can show that the variable S̃ has a multivariate
stable distribution with index κ ∈ (1, 2) by showing that every linear combination
has a stable distribution (see Samorodnitsky and Taqqu (1994, Theorem 2.1.5)) and
arguing in line with Davis and Hsing (1995, p.898).

Lemma B.7. Define ST ..= a−1
T

∑T
t=1{diag(ε�2

t )− Id}σ2
t , where σ2

t
..= σ2

t (γ0, λ0) and
εt ..= R

1/2
0 Zt. Under the Assumptions of Theorem 4.2, with Vη the mapping defined

in Lemma B.5 and NT (·) the point process defined in Lemma B.3, for any δ > 0

lim
η→0

lim sup
T→∞

P(‖ST − Vη(NT )‖ ≥ δ) = 0. (B.23)

Proof. First observe that

Vη (NT (·)) =


a−1
T

∑T
t=1(ε2

t,1 − 1)σ2
t,11{σ2

t,1 > ηaT}
...

a−1
T

∑T
t=1(ε2

t,d − 1)σ2
t,d1{σ2

t,d > ηaT}

 ,

where ε2
t,i and σ2

t,i are the i-th elements of ε�2
t and σ2

t , respectively. For i ∈ {1, .., d}
consider the i-th element of ST ,

a−1
T

T∑
t=1

(ε2
t,i − 1)σ2

t,i = a−1
T

T∑
t=1

(
1{σ2

t,i ≤ ηaT}+ 1{σ2
t,i > ηaT}

)
(ε2
t,i − 1)σ2

t,i,

with η > 0. With β0,j, j = 1, .., d, introduced in Assumption 1, let β0
..= min{β0,j :

j = 1, ..., d} and choose α ∈ (κ,min {β0, 2}). As in Vaynman and Beare (2014,
Proof of Lemma A.1), with Ft the filtration generated by {Xi : i ≤ t} it holds that
{(ε2

t,i − 1)σ2
t,i,Ft} is a martingale difference sequence. This together with von Bahr

and Esseen (1965, Theorem 2) gives

E[|a−1
T

T∑
t=1

(ε2
t,i − 1)σ2

t,i1{σ2
t,i ≤ ηaT}|α] ≤ ca−αT T E[|ε2

t,i − 1|α]E[(σ2
t,i)α1{σ2

t,i ≤ ηaT}]

= ca−αT T

ˆ ηaT

0
xα P(σ2

t,i ≤ dx). (B.24)
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By a variant of Karamata’s theorem (Resnick, 2007, p.36) we have that

ca−αT T

ˆ ηaT

0
xα P(σ2

t,i ≤ dx) ∼ ca−αT T (ηaT )α P(σ2
t,i > ηaT )

(
κ

α− κ

)
.

This combined with Resnick (2007, Theorem 3.6) and (B.24) yields

E[|a−1
T

T∑
t=1

(ε2
t,i − 1)σ2

t,i1{σ2
t,i ≤ ηaT}|α] →

T→∞
cηα−κ.

Hence limη→0 lim supT→∞ E[|a−1
T

∑T
t=1(ε2

t,i−1)σ2
t,i1{σ2

t,i ≤ ηaT}|α] = 0. We conclude,
using Chebyshev’s inequality, that for any δ̃ > 0 and any i ∈ {1, ..., d},

lim
η→0

lim sup
T→∞

P
[
|a−1
T

T∑
t=1

(ε2
t,i − 1)σ2

t,i1{σ2
t,i ≤ ηaT}| ≥ δ̃

]
= 0,

and thus, for any δ̃ > 0, and any i ∈ {1, ..., d}

lim
η→0

lim sup
T→∞

P
[
|a−1
T

T∑
t=1

(ε2
t,i − 1)σ2

t,i − a−1
T

T∑
t=1

(ε2
t,i − 1)σ2

t,i1{σ2
t,i > ηaT}| ≥ δ̃

]
= 0.

(B.25)
Using the triangle and Boole’s inequalities, we have that P(‖ST − Vη(NT )‖ ≥ δ̃) is
bounded by∑d

i=1 P[|a−1
T

∑T
t=1(ε2

t,i−1)σ2
t,i−a−1

T

∑T
t=1(ε2

t,i−1)σ2
t,i1{σ2

t,i > ηaT}| ≥ δ̃/d],
so in light of (B.25) we conclude that (B.23) holds.

Lemma B.8. Let {Yt : t ∈ N0}, Yt = (X�2′
t , σ2′

t )′, be a process generated by the
CCC-GARCH model, (2.1)-(2.4), with fixed initial values X0

..= x ∈ Rd and σ2
0

..=
h ∈ (0,∞)d, and with θC = [ω′0, vec(A0)′, vec(B0)′, vech0(R0)′]′ satisfying ρ(A0 +
B0) < 1 and that the diagonal elements of A0 are strictly positive. Suppose that the
distribution, Γ, of εt ..= R

1/2
0 Zt admits a probability density strictly positive on Rd.

Then {Yt : t ∈ N0} is geometrically ergodic on [0,∞)d × (0,∞)d, and the associated
strictly stationary process {Yt : t ∈ Z} is geometrically β-mixing.

Proof. Consider the Markov chain {σ2
t : t ∈ N0} given by σ2

t = ω0 + [A0 diag(ε�2
t−1) +

B0]σ2
t−1, with σ2

0 = h. The proof is structured as follows. First, we use the theory
of Boussama et al. (2011) to show that {σ2

t : t ∈ N0} is aperiodic and ψ-irreducible.
We then use a k-step (k ≥ 1) drift criterion, due to Tjøstheim (1990), to establish
that the chain is Vσ-geometrically ergodic for some suitable Lyapunov function Vσ.
Lastly, we use a result by Meitz and Saikkonen (2008) to conclude that the process
{Yt : t ∈ N0} is VY -geometrically ergodic for some other suitable Lyapunov function
VY , and that the stationary process {Yt : t ∈ Z} is geometrically β-mixing.
We start out by showing that {σ2

t : t ∈ N0} belongs to the class of semi-polynomial
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Markov chains as defined in Boussama et al. (2011, p.2339). Using the notation of
Boussama et al. (2011), let V ..= Rd and U ..= (0,∞)d, and define F : U × Rd → U ,
F (z, x) = ω0 + (A0 diag(x�2) + B0)z. Observe that σ2

t = F (σ2
t−1, εt−1), t ≥ 1. The

function f can, in our case, be chosen as the identity, which in turn means that
the functions F and ϕ coincide. Therefrom it is straightforward to conclude that
{σ2

t : t ∈ N0} is a semi-polynomial Markov chain.
Next, we seek to show that {σ2

t : t ∈ N0} is aperiodic and ψ-irreducible by ver-
ifying that Boussama et al. (2011, Proposition 3.10) applies to the chain. Let
supp(Γ) denote the support of Γ. Boussama et al. (2011, Condition (A1)) is sat-
isfied due to the assumptions on Γ. Moreover, for k ∈ N let F k(z, x1, ..., xk) ..=
F (F k−1(z, x1, ..., xk−1), xk), where z ∈ U , (x1, ..., xk) ∈ (Rd)k, and F 1 ..= F . Recur-
sions give that σ2

t = {∑t−1
i=0

∏i
j=1[A0 diag(ε�2

t−j) + B0]}ω0 + {∏t−1
i=0[A0 diag(ε�2

t−1−i) +
B0]}h. Define the sequence {σ2

t,z,a : t ∈ N0} with σ2
0,z,a

..= z ∈ U and σ2
t,z,a =

F (σ2
t−1,z,a, a) where a is some interior point of supp(Γ). Notice that ρ(B0) < 1 since

ρ(A0 + B0) < 1 (Ling and McAleer, 2003, Lemma 4.1). Since zero is an interior
point of supp(Γ), it holds that for any z ∈ (0,∞)d,

σ2
t,z,0 = F t (z, 0, ..., 0) =

t−1∑
i=0

Bi
0ω0 +Bt

0z →t→∞ (Id −B0)−1 ω0 =.. ξ ∈ U ∩ V .

Hence we have established that Boussama et al. (2011, Condition (A2)) is satisfied.
For any z ∈ V ∩ U we define the orbit SF (z) ..= ⋃

k∈N
{F k(z, x1, ..., xk) : x1, ..., xk ∈

supp(Γ)}. Due to the non-negativity constraints of the elements in A0 and B0, it
holds that for any k ∈ N that F k(ξ, x1, ..., xk), with x1, ..., xk ∈ supp(Γ), cannot
take a value less than ξ element-wise. Let ξi denote the i-th element of ξ. Since the
diagonal elements of A0 are strictly positive, and due to the assumptions on Γ, it
holds that SF (ξ) = ×di=1[ξi,∞). Let W denote the Zariski closure of SF (ξ), i.e. the
smallest algebraic set that contains SF (ξ), see Boussama et al. (2011, Appendix A)
for details. The only polynomial that vanishes on ×di=1[ξi,∞) is the zero polynomial,
so we have thatW = Rd. From Boussama et al. (2011, Proposition 3.10) we conclude
that {σ2

t : t ∈ N0} is aperiodic and ψ-irreducible on W ∩ U = (0,∞)d. Those
properties of the Markov chain allow us, due to Tjøstheim (1990), to consider a
k-step drift criterion for the Markov chain for some k ∈ N. Specifically, we want
to show that there exists a small set C ∈ B((0,∞)d), positive constants a < 1 and
b < ∞, and a Lyapunov function Vσ : (0,∞)d → [1,∞) such that for some fixed
k ∈ N,

E
[
Vσ(σ2

k)|σ2
0 = h

]
≤ aVσ (h) + b · 1(h ∈ C) ∀h ∈ (0,∞)d.
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With ιd a (d × 1) vector of ones, consider the function Vσ (h) ..= 1 + ι′dh, and, for
some constant m sufficiently large, the set C ..= {h ∈ (0,∞)d : ι′dh ≤ m}. Observe
that

E
[
Vσ(σ2

k)|σ2
0 = h

]
= 1 + ι′d[

∑k−1
i=0 (A0 +B0)i]ω0 + ι′d(A0 +B0)kh

1 + ι′dh
Vσ (h) ,

where we have used that {εt} is i.i.d. with E[diag(ε�2
t )] = Id. Since ρ(A0 +B0) < 1

and choosing k sufficiently large, there exists anm large enough such that for h ∈ C{,
Vσ (h) ≥ 1 + ι′d[

∑k−1
i=0 (A0 + B0)i]ω0 + ι′d(A0 + B0)kh. We conclude that suitable

constants a and b exist. In line with Boussama et al. (2011, Section 4.6) it can be
shown that C is small. It then holds that {σ2

t : t ∈ N0} is Vσ-geometrically ergodic.
From Meitz and Saikkonen (2008, Proposition 1 and the comments immediately
after) we conclude that {Yt : t ∈ N0} is VY -geometrically ergodic, for some suitable
function VY : [0,∞)d× (0,∞)d → [1,∞), and that the associated strictly stationary
process {Yt : t ∈ Z} is geometrically β-mixing.

Appendix C A necessary and sufficient condition
for finite 4TH moments of a CCC-
GARCH process

Theorem C.1. Let {Xt} be the strictly stationary solution to the CCC-GARCH
model in (2.1)-(2.4) with θC = θ0 satisfying ρ(A0 + B0) < 1. Define εt ..= R

1/2
0 Zt

and suppose that E[diag(ε�2
t )⊗diag(ε�2

t )] exists and is finite. Then the fourth-order
moment matrix of Xt, E[X�2

t (X�2
t )′], exists and is finite if and only if

η4
..= ρ(E{[A0 diag(ε�2

t ) +B0]⊗ [A0 diag(ε�2
t ) +B0]}) < 1, (C.1)

where ⊗ denotes the Kronecker product.

Proof. The sufficiency follows from He and Teräsvirta (2004, Corollary 2), so it
remains to verify the necessity. In the following, for (n × m) matrices A and B,
“A > B” means that each element of A exceeds the corresponding element of B.
Similarly, we define A ≥ B, and, moreover, A > (≥)0 means that each element of A
is strictly positive (nonnegative), and A <∞ means that each element of A is finite.
Notice that E[X�2

t (X�2
t )′] <∞ implies that E[σ2

t ⊗σ2
t ] <∞, where σ2

t
..= σ2

t (γ0, λ0).
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Since X�2
t = diag(ε�2

t )σ2
t ,

E[σ2
t ⊗ σ2

t ] = (ω0 ⊗ ω0) + E[ω0 ⊗ {(A0 diag(ε�2
t−1) +B0)σ2

t−1}]

+E[(A0 diag(ε�2
t−1) +B0)σ2

t−1} ⊗ ω0]

+E[{(A0 diag(ε�2
t−1) +B0)σ2

t−1} ⊗ (A0 diag(ε�2
t−1) +B0)σ2

t−1].

Let Cσ ..= (ω0 ⊗ ω0) + E[ω0 ⊗ {(A0 diag(ε�2
t−1) + B0)σ2

t−1}] + E[{(A0 diag(ε�2
t−1) +

B0)σ2
t−1} ⊗ ω0]. Using that εt−1 and σ2

t−1 are independent,

E[σ2
t ⊗ σ2

t ] = Cσ + E[{(A0 diag(ε�2
t−1) +B0)} ⊗ (A0 diag(ε�2

t−1) +B0)]E[σ2
t−1 ⊗ σ2

t−1].

Recursions give that for any τ ≥ 1,

E[σ2
t ⊗ σ2

t ] =
τ−1∑
i=0

(E[{(A0 diag(ε�2
t ) +B0)} ⊗ (A0 diag(ε�2

t ) +B0)])iCσ

+(E[{(A0 diag(ε�2
t ) +B0)} ⊗ (A0 diag(ε�2

t ) +B0)])τ E[σ2
t−τ ⊗ σ2

t−τ ],

≥
τ−1∑
i=0

(E[{(A0 diag(ε�2
t ) +B0)} ⊗ (A0 diag(ε�2

t ) +B0)])iCσ,

using that (E[{(A0 diag(ε�2
t ) + B0)} ⊗ (A0 diag(ε�2

t ) + B0)])τ E[σ2
t−τ ⊗ σ2

t−τ ] > 0.
Hence,

∞ > E[σ2
t ⊗ σ2

t ] ≥
∞∑
i=0

(E[{(A0 diag(ε�2
t ) +B0)} ⊗ (A0 diag(ε�2

t ) +B0)])iCσ. (C.2)

Since ∞∑
i=0

(E[{(A0 diag(ε�2
t ) +B0)} ⊗ (A0 diag(ε�2

t ) +B0)])i ≥ 0 (C.3)

and Cσ ≥ (ω0 ⊗ ω0) > 0, we have, in light of (B.33), that (C.3) converges, which is
necessary and sufficient for (C.1).
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Part III

Inference and testing on the
boundary in extended constant
conditional correlation GARCH
models

Abstract

We consider inference and testing in extended constant conditional cor-
relation GARCH models in the case where the true parameter vector is a
boundary point of the parameter space. This is of particular importance
when testing for no volatility spillovers in the model. The large-sample prop-
erties of the QMLE are derived together with the limiting distributions of the
related LR, Wald, and LM statistics. Due to the boundary problem, these
large-sample properties become non-standard. The size and power properties
of the tests are investigated in a simulation study. As an empirical illustration
we test for no volatility spillovers between foreign exchange rates.

1 Introduction1

Testing for volatility spillovers between time series has become an important tool in
empirical finance. Following the simple arguments of Ross (1989) that the (condi-
tional) variance of asset price changes is directly related to the rate of information
flow, volatility spillovers may be viewed as a way of measuring information transmis-
sions in and between markets and thereby their connectedness (Conrad and Weber,
2013). Typically, volatility spillovers are defined in relation to multivariate con-
ditional volatility models, such as multivariate GARCH, for price changes. As an
example, Conrad et al. (1991) applied bivariate GARCH models to conclude that
volatility surprises to large market value firms are important to the future dynamics
of the returns of smaller firms (but not conversely). Another example is Bali and

1I am grateful to Pasquale Della Corte, Heino B. Nielsen, Thor P. Nielsen, and Anders Rahbek
for helpful comments and suggestions. I thank DonaldW. K. Andrews for providing his unpublished
manuscript “Estimation When a Parameter is on a Boundary: Part II” and Tomoaki Nakatani for
providing the data from the paper Nakatani and Teräsvirta (2009). Parts of this research were
carried out while I was visiting the Imperial College Business School in Spring 2014. I thank Paolo
Zaffaroni for his hospitality and the Niels Bohr Foundation for financial support.
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Hovakimian (2009) who applied a similar technique to individual stock and option
returns. Their findings indicate that there exist spillovers from options to equity
markets, suggesting that options markets are subject to trading by investors with
private information. For other applications of multivariate GARCH models for as-
sessing spillovers we refer to Conrad and Weber (2013) and the references therein.
A multivariate GARCH model well suited for quantifying spillovers is the extended
constant conditional correlation (ECCC-) GARCH model of Jeantheau (1998), con-
sidered in this paper. In the ECCC-GARCH model the matrices governing the
ARCH and GARCH dynamics - respectively, the matrices A and B introduced in
the following section - are allowed to be non-diagonal, and with the off-diagonal ele-
ments directly related to the volatility spillovers. Specifically, testing for no volatility
spillovers relies on testing for whether the off-diagonal elements of the matrices are
equal to zero.

In this paper we consider the properties of the quasi-maximum likelihood esti-
mator (QMLE) for the parameters in the ECCC-GARCH model in the case where
some of the elements of the A and B matrices are allowed to be zero under the null.
For the ECCC-GARCH model, the parameter space is typically restricted such that
all elements of A and B are nonnegative, which is assumed in the existing litera-
ture on the large-sample properties of the QMLE, as in Jeantheau (1998, Definition
3.1), Ling and McAleer (2003, Assumption 3), and Francq and Zakoïan (2012a,
p.183). The constraints are convenient as they (partly) ensure that the conditional
covariance matrix is positive definite, and hence that the log-likelihood function is
well-defined. However, as will be the main message from this present paper, the con-
straints lead to complications if one wants to test for no spillovers, and in particular
one cannot rely on standard large-sample theory for QML estimation. Technically,
the parameter is on the boundary of the parameter space under the null hypothesis
of no spillovers. This implies that the limiting distribution of the QMLE cannot be
obtained by relying on arguments based on a Taylor expansion around a zero-valued
score.

We make the following contributions. First, we consider the asymptotic proper-
ties of the QMLE in the case where the true parameter value is on the boundary of
the parameter space. In contrast to the standard case where the parameter value is
an interior point, the (suitably normalized) QMLE does not have a Gaussian limit,
but instead its limiting distribution is the given by the projection of a Gaussian
vector (that occurs in the interior case) onto a set that depends on the true param-
eter. Second, in order to avoid boundary issues when testing for spillovers in the
ECCC-GARCH model, Nakatani and Teräsvirta (2009) proposed a Lagrange mul-
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tiplier (LM) statistic. We consider a modified version of this statistic, that is based
on left/right partial derivatives of the log-likelihood function with respect to the pa-
rameters on the boundary, and moreover the test is a QML-type that allows for an
unknown distribution of the (independent) innovations, see White (1996, Chapter
8). We also consider QLR and Wald tests both taking into account that the true
parameter is a boundary point. Whereas the limiting distribution of the QMLE
for univariate GARCH models when the true parameter is on the boundary has
been considered by Andrews (1998, 2001) and Francq and Zakoïan (2007, 2009), we
are not aware of any other papers considering this for the QMLE for multivariate
GARCH models. Some early considerations on testing when the null vector is a
boundary point of the maintained hypothesis can be found in Chernoff (1954) and
Perlman (1969), whereas Andrews (1999, 2001) provides a very general theory for
extremum estimators when the null parameter vector is a boundary point of the
parameter space.

The rest of the paper is structured as follows. In Section 2 we introduce the
ECCC-GARCH model and state some important properties of ECCC-GARCH pro-
cesses. Moreover, we introduce the notion of spillovers and their relation to Granger
causality. Section 3 introduces the QMLE and states the large-sample properties
of the estimator, whereas the associated likelihood ratio, Wald, and Lagrange mul-
tiplier tests (for no-spillovers) are presented in Section 4, which also contains an
algorithm for determining critical values for the proposed tests. Section 5 contains
simulation studies that investigate the empirical size and power properties of the
proposed tests, whereas Section 6 is devoted to an empirical illustration where we
test for no volatility spillovers between assets in foreign exchange markets. Section
7 concludes the paper. All technical derivations can be found in the appendix.

Some notation and definitions: Unless stated otherwise all limits are taken as
T →∞. Let w→ denote convergence in distribution. For a random vector X, L(X)
denotes the distribution of X. For n ∈ N, In is the (n× n) identity matrix, and
the zero matrix 0m×n is an (m× n) matrix with all elements equal to zero. With
⊗ denoting the Kronecker product and � the Hadamard product, we introduce for
a matrix A the notation A⊗p ..= A ⊗ A ⊗ · · · ⊗ A and A�p ..= A � A � · · · � A (p
factors). The Euclidean norm of a vector or matrix is denoted ‖·‖. Let R+ denote the
nonnegative real numbers, and let Sd++ denote the space of (d× d) positive definite
matrices. For any C ∈ Sd++ and any (d× 1) vectors x and y let 〈x, y〉C ..= x′Cy and
‖x‖C ..= 〈x, x〉1/2C . Moreover, for Θ ⊂ Rd and θ ∈ Θ, Θ− θ ..= {x− θ : x ∈ Θ}.
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2 The ECCC-GARCH model and its properties

In this section we introduce the ECCC-GARCH model, state some important prop-
erties of the ECCC-GARCH process, and introduce the notion of volatility spillovers
and its relation to Granger (non)causality.

2.1 The model

We consider the ECCC-GARCH(1, 1) model of Jeantheau (1998) for t ∈ Z given by

Xt(θ) = Σ1/2
t (θ)ηt, (2.1)

Σt(θ) = D̃t(θ)R(θ)D̃t(θ), (2.2)

D̃2
t (θ) = diag[σ2

t (θ)], (2.3)

σ2
t (θ) = κ+ AX�2

t−1(θ) +Bσ2
t−1(θ), (2.4)

with (ηt : t ∈ Z) an i.i.d. sequence of d-dimensional random variables with E[ηt] = 0d×1

and E[ηtη′t] = Id. Moreover, diag[σ2
t (θ)] is a diagonal matrix with the (d× 1) vector

σ2
t (θ) on the diagonal and R(θ) is a positive definite correlation matrix. The model

is parametrized according to θ = (κ′, vec(A)′, vec (B)′ , vech0(R)′)′, where vech0(R)
stacks the columns below the principal diagonal downwards of R. The parameter
space, Θ, is given by a subset of (0,∞)d × [0,∞)2d2 × (−1, 1)d(d−1)/2 ⊂ Rs0 with
s0

..= d+ 2d2 + (d(d− 1)/2. Observe that the parameter space is defined such that
the elements of A and B are nonnegative. This condition, together with the restric-
tion κ ∈ (0,∞)d, ensures that σ2

t (θc) ∈ (0,∞)d almost surely, which, combined with
the fact that R(θ) ∈ Sd++, implies that Σt(θ) ∈ Sd++ almost surely for all θ ∈ Θ.

Remark 2.1. The ECCC-GARCHmodel is a generalized version of the CCC-GARCH
model proposed by Bollerslev (1990) where the matrices A and B are restricted to
be diagonal.

2.2 Properties of the ECCC-GARCH process

For a fixed θ ∈ Θ, equations (2.1)-(2.4) yield an ECCC-GARCH process (Xt : t ∈ Z).
The properties of such a process have been studied several places in the litera-
ture, including Jeantheau (1998), Boussama (1998, Chapter 5), Ling and McAleer
(2003), He and Teräsvirta (2004), and Francq and Zakoïan (2010, Chapter 11).
Importantly, by Francq and Zakoïan (2010, Theorem 11.6), under suitable condi-
tions, it holds that the process has a unique strictly stationary and ergodic solution
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if and only if γ ..= inf{E[(n + 1)−1 log(‖Ξ0Ξ−1 · · ·Ξ−n‖)] : n ∈ N} < 0, where
Ξt

..= {A diag[(R1/2ηt)�2] + B}. Here γ is the so-called top Lyapunov exponent of
the sequence (Ξt : t ∈ Z). Notice that an ECCC-GARCH process satisfying this
strict stationarity condition may not have any finite (high-order) moments. In Sec-
tion 3 it will be assumed thatXt has finite sixth-order moments when the asymptotic
distribution of the QMLE is derived, and hence it is useful to have conditions on
the distribution of ηt and θ ensuring these moment restrictions. Such conditions can
be found in Lemmas B.7 and B.8 in Appendix B containing novel results for the
ECCC-GARCH process. Specifically, from Lemma B.7 if for some p ∈ N it holds
that ηt has a strictly positive density on Rd with E[‖(η�2

t )⊗p‖] <∞, if the diagonal
elements of A0 are strictly positive, and if ρ(E[(Ξt)⊗p]) < 1, with ρ(·) denoting the
spectral radius, then (Xt : t ∈ Z) is geometrically β-mixing with E[‖(X�2

t )⊗p‖] <∞.
Moreover, from Lemma B.8, E[‖(X�2

t )⊗p‖] <∞ implies that ρ(E[(Ξt)⊗p]) < 1.

2.3 Volatility spillovers and Granger noncausality

The main objective of this paper is to consider tests concerning spillovers in ECCC-
GARCH processes. As clarified below, volatility spillovers (or interactions) are quan-
tified by the off-diagonal elements of the matrices A and B, and thereby testing for
spillovers relies on testing if certain of the off-diagonal elements of A and B are
equal to zero.

Consider, as an example, the bivariate process with Xt
..= (Xt,1, Xt,2)′ and

ht =
ht,1
ht,2

 =
κ1 + A11X

2
t−1,1 + A12X

2
t−1,2 +B11ht−1,1 +B12ht−1,2

κ2 + A21X
2
t−1,1 + A22X

2
t−1,2 +B21ht−1,1 +B22ht−1,2

 .
Here the coefficients A12 and A21 quantify the effects of the past squared shocks
X2
t−1,2 and X2

t−1,1 on the conditional variances ht,1 and ht,2, respectively. These
effects are often referred to as the ARCH spillovers, see e.g. Conrad and Weber
(2013). Likewise, the coefficients B12 and B21 measure the GARCH spillovers from
the conditional variances ht−1,2 and ht−1,1 to ht,1 and ht,2, respectively.

Remark 2.2. As discussed in Conrad and Karanasos (2010) and Nakatani and Teräsvirta
(2008), when considering the ECCC-GARCH model one may allow some of the off-
diagonal elements of A and B to be negative, and thereby introduce the notion of
negative volatility spillovers, see also Section 2.3. To our knowledge the large-sample
behavior of the QMLE is unknown when allowing for such negative parameter values,
and we do not allow for such (milder) parameter restrictions in this paper.

Intuitively, the spillovers characterize some of the dependence between Xt,1 and
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Xt,2, and, as explained next, the spillovers are closely related to Granger causality.
With FXt ..= σ(Xs : s ≤ t) and FX1

t
..= σ(Xs,1 : s ≤ t), we consider the following

notion of second-order Granger noncausality, introduced by Granger et al. (1986):
Xt,2 is said not to second-order Granger cause Xt,1 (with respect to FXt−1) if

E{(Xt,1 − E[Xt,1|FXt−1])2|FXt−1} − E{(Xt,1 − E[Xt,1|FXt−1])2|FX1
t−1} = 0 a.s. ∀t ∈ Z.

If the quantity on the left-hand side is nonzero (with strictly positive probability)
then Xt,2 is said to second-order Granger cause Xt,1.

Suppose that (Xt : t ∈ Z) is strictly stationary, which implies that ρ(B) < 1
(Francq and Zakoïan, 2010, pp.290-291). Then

ht = (I2 −B)−1κ+
∞∑
i=0

(BiA)X�2
t−1−i.

It holds that E[Xt,1|FXt−1] = 0 a.s., so that E{(Xt,1−E[Xt,1|FXt−1])2|FXt−1} = ht,1 a.s.
Hence, in light of the above definition, Xt,2 does not second-order Granger cause
Xt,1 if ht,1 = E[ht,1|FX1

t−1] a.s. which is the case if B12 = A12 = 0. These restrictions
on the matrices A and B thereby yield a sufficient condition for Xt,2 not to second-
order Granger cause Xt,1. Likewise, Xt,1 does not second-order Granger cause Xt,2

if B21 = A21 = 0, and we have that there is no second-order causation in the process
if A and B are diagonal. Notice that the above definition of Granger causality
differs from, and is simpler than, the original notion of Granger causality stated
in terms of the conditional distribution of Xt,1, see e.g. Granger (1969) and Engle
et al. (1983). However, for practical purposes the above definition is much more
operational, as discussed in e.g. Granger (1980, Section 3). We refer to Comte and
Lieberman (2000), Hafner and Herwartz (2008), and Woźniak (2015) for additional
considerations about Granger causality in multivariate GARCH processes.

3 Estimation and large-sample properties of the
QMLE

In the following we consider inference in the ECCC-GARCH model where we allow
elements of A and B to be equal to zero. Throughout the remainder of the paper, let
∂f(θ)/∂θ denote the vector of left/right partial derivatives of the function f : Θ→ R
with respect to the vector θ, and let ∂2f(θ)/∂θ∂θ′ denote the matrix of left/right
second-order partial derivatives as defined in Andrews (1999, pp.1350-1351).

Given a realization (Xt : t = 0, 1, ..., T ) of the ECCC-GARCH model, the QMLE,
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θ̂T , of θ is defined as
θ̂T = arg inf

θ∈Θ
L̂T (θ) ,

with the feasible log-likelihood function, L̂T (θ), given by

L̂T (θ) ..= 1
T

T∑
t=1

l̂t (θ) , (3.1)

l̂t (θ) ..= log
[
det

(
Ĥt (θ)

)]
+X ′tĤ

−1
t (θ)Xt, (3.2)

Ĥt (θ) ..= D̂t(θ)R(θ)D̂t(θ),

D̂2
t (θ) ..= diag

(
ĥt(θ)

)
, (3.3)

ĥt(θ) ..= κ+ AX�2
t−1 +Bĥt−1(θ), (3.4)

with ĥ0(θ) = ĥ0 ∈ (0,∞)d fixed. Next, we consider the asymptotic properties of the
QMLE.

For the probability analysis of the QMLE we let θ0 denote the true parameter
vector such that Xt

..= Xt(θ0). The derivation of the limiting distribution of the
QMLE relies on the following assumptions.

Assumption 1. θ0 ∈ Θ and Θ is compact.

Assumption 2. The sequence (Xt : t ∈ Z) is strictly stationary and ergodic.

Assumption 3. For all θ ∈ Θ, ρ (B) < 1 and R is a positive definite correlation
matrix.

In light of Assumption 2, consider the (infeasible) ergodic version of the log-
likelihood function, i.e. for the strictly stationary and ergodic sequence (Xt : t ∈ Z)
we define for t ∈ Z and θ ∈ Θ,

LT (θ) ..= 1
T

T∑
t=1

lt (θ)

lt (θ) ..= log [det (Ht (θ))] +X ′tH
−1
t (θ)Xt (3.5)

Ht (θ) ..= Dt(θ)R(θ)Dt(θ)

D2
t (θ) ..= diag (ht(θ)) (3.6)

ht(θ) ..= κ+ AX�2
t−1 +Bht−1(θ). (3.7)

Assumption 4. For θ ∈ Θ, {ht (θ) = ht(θ0) a.s. and R = R0} implies that θ = θ0.

Remark 3.1. Assumption 4 is a high-level identification condition. Primitive condi-
tions are discussed in e.g. Jeantheau (1998), Ling and McAleer (2003), and Francq
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and Zakoïan (2010, 2012a). In particular, for the simulation study in Section 5, all
data generating processes can be shown to be minimal in the sense of Jeantheau
(1998, Definition 3.3) which (under some additional mild regularity conditions) en-
sures identification.

Remark 3.2. The above assumptions are standard and imply that θ̂T = θ0 + o(1)
almost surely. If one additionally assumes that θ0 ∈

◦
Θ, i.e. θ0 is an interior point

of Θ, and that ηt has finite fourth moments, then
√
T (θ̂T − θ0) has a Gaussian limit

with zero mean and covariance J−1ΣJ−1 with J and Σ given in (3.13) below. Both
results are established in Francq and Zakoïan (2012a).

As mentioned, we are interested in the case where θ0 is not an interior point
of Θ, and our main interest is to allow for the case where some of the elements
of A0 and B0 are equal to zero. Let β denote the (s1 × 1) vector containing the
s1 ≥ 0 elements of A and B that take value zero under the null, i.e. with true
parameter value equal to zero, and let δ denote the (s2× 1) vector of the remaining
s2

..= (s0 − s1) parameters of θ. Without loss of generality we consider throughout
the remainder of the paper a reparametrized version of the ECCC-GARCH model
such that

θ
(s0×1)

=

 β
(s1×1)

δ
(s2×1)

 , (3.8)

and with Θ defined accordingly. Notice that for the case where s1 = 0, we have
that θ = δ. We also consider accordingly a partition of the true parameter value
θ0 = (β′0, δ′0)′, and by definition β0 = 0s1×1. For the case s1 > 0, with the QMLE
θ̂T = (β̂′T , δ̂′T )′, it holds that

√
T (β̂T − β0) =

√
T β̂T ∈ [0,∞)s1 which cannot have

a Gaussian limit. Hence the theory for the QMLE for the case where θ0 is an
interior point, as described in Remark 3.2, is no longer applicable. We deal with the
boundary problem by making two additional Assumptions 5 and 6.

First, we make the following assumption about θ0 and Θ.

Assumption 5. The set Θ − θ0 is locally equal to Λ ..= Λβ × Λδ = Rs1
+ × Rs2, i.e.

there exists an ε > 0 such that Λ∩C(0, ε) = Θ∩C(0, ε), where C(x, ε) ⊂ Rd denotes
an open cube centered at x ∈ Rd and with side length 2ε.

Remark 3.3. Assumption 5 is essentially a special case of Assumption 22∗ in An-
drews (1999, 2001) and has several purposes. First, it prevents the true parameter
value δ0 from reaching the bounds of Θ, which keeps things as simple as possi-
ble, as our main interest is to consider hypotheses where elements of β are equal
to zero (i.e. take value at the lower bound of Θ). Second, this assumption al-
lows us to make a Taylor-type expansion based on left/right partial derivatives of
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the log-likelihood function around θ0, see Andrews (1999, Appendix A) for details.
Moreover, the assumption is important for approximating the quantity

√
T (θ̂T −θ0),

see specifically the proof of Theorem 3.1 in the appendix. Although the assump-
tion imposes additional structure on the parameter space it is compatible with the
parameter restrictions given in Assumption 3. As in Francq and Zakoïan (2007),
let θ0(ε) be defined as the vector obtained by replacing all zero elements of θ0 by
ε > 0. For some sufficiently small ε, θ0(ε) belongs to the interior of Θ. Consider
the case where B0 is diagonal. Provided that Assumptions 1 and 3 hold, ρ(B0) < 1.
For a real m × m matrix with non-negative entries, it holds that C = [Cij] ≥ 0,
ρ(C) ≤ min

{
maxi=1,...,m

∑m
j=1Cij,maxj=1,...,m

∑m
i=1Cij

}
. Hence for a sufficiently

small ε > 0, ρ(B0ε) < 1, where B0ε is B evaluated at θ0(ε).
Another example is the bivariate case where

B0 =
B11,0 0
B21,0 B22,0

 ,
and B11,0 and B22,0 are strictly positive. Here the eigenvalues of B0ε are

1
2(B11,0 +B22,0)± 1

2
√

(B11,0 −B22,0)2 + 4B21,0ε.

Since ρ(B0) < 1 we know that B11,0 and B22,0 are strictly less than one, so for a
sufficiently small ε > 0, ρ(B0ε) < 1.

Second, deriving the asymptotic distribution of
√
T (θ̂T − θ0) typically relies on,

among other things, verifying a condition such as

E
[
sup
θ∈Θ

∣∣∣∣∣∂2lt (θ)
∂θi∂θj

∣∣∣∣∣
]
<∞ (3.9)

or, given that θ0 is an interior point, i.e. θ0 ∈
◦
Θ,

E
[

sup
θ∈V(θ0)

∣∣∣∣∣ ∂3lt (θ)
∂θi∂θj∂θk

∣∣∣∣∣
]
<∞

for all i, j, k = 1, ..., s0 and for some neighborhood V(θ0) around θ0. With ht,i1 (θ)
denoting element i1 of ht(θ), the latter condition it usually verified by showing that

E

 sup
θ∈V(θ0)

∣∣∣∣∣ 1
ht,i1 (θ)

∂ht,i1 (θ)
∂θi

∣∣∣∣∣
3
 <∞ (3.10)

for all i1 = 1, .., d and all i = 1, ..., s0, and a similar property with ∂ht,i1 (θ) /∂θi
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replaced with ∂2ht,i1 (θ) /∂θi∂θj and ∂3ht,i1 (θ) /∂θi∂θj∂θk. Consider, for simplicity,
the case with B = 02×2, i.e. with no GARCH effects. Then

ht(θ) =
ht,1(θ)
ht,2(θ)

 =
κ1 + A11X

2
t−1,1 + A12X

2
t−1,2

κ2 + A21X
2
t−1,1 + A22X

2
t−1,2

 ,
and hence

1
ht,1 (θ)

∂ht,1 (θ)
∂A12

=
X2
t−1,2

κ1 + A11X2
t−1,1 + A12X2

t−1,2
. (3.11)

For the case where θ0 ∈
◦
Θ, one can choose V(θ0) such that the elements of A are

bounded away from zero on V(θ0), see Francq and Zakoïan (2012a, pp.199-202). This
implies that the fraction in (3.11) is bounded by supθ∈V(θ0) A

−1
12 on V(θ0) and hence

that all moments are finite. However, such argument cannot be applied to bound
the moments of the derivatives of the log-likelihood function in the case where some
of the elements of A0 can take zero value. Suppose additionally that A0 is diagonal,
then

1
ht,1(θ0)

∂ht,1(θ0)
∂A12

=
X2
t−1,2

κ1,0 + A11,0X2
t−1,1

,

which is not bounded by a constant. The asymptotic properties derived in this
paper rely on establishing condition (3.9), which is done by imposing the condition
that E[‖Xt‖6] <∞, similar to Francq and Zakoïan (2007, Assumption A7).

Assumption 6. E[‖Xt‖6] <∞.

Remark 3.4. As mentioned in Subsection 2.2, Lemmas B.7-B.8 provide necessary
and sufficient conditions for Assumption 6 to hold.

We are now able to state the limiting distribution of the QMLE.

Theorem 3.1. Under Assumptions 1-6,

√
T (θ̂T − θ0) w→ λΛ (3.12)

where λΛ = arg infλ∈Λ ‖Z − λ‖2
J , with ‖Z − λ‖2

J
..= (Z − λ)′J(Z − λ), and where

Λ is defined in Assumption 5, Z is a random vector with distribution L(Z) =
N(0, J−1ΣJ−1), and

J ..= E[∂2lt(θ0)/∂θ∂θ′] ∈ Ss0
++, Σ ..= E[(∂lt(θ0)/∂θ)(∂lt(θ0)/∂θ′)]. (3.13)

The theorem states that the limiting distribution of the normalized QMLE is
given by λΛ which by definition is the projection of the N(0, J−1ΣJ−1)-distributed



88

Z onto the set Λ with respect to the metric induced by the inner product 〈·, ·〉J ,
where we recall that for x, y ∈ Rs0 , 〈x, y〉J = x′Jy. Since Λ is convex, it holds
that λΛ is unique. In the case where θ0 is not a boundary point, s1 = 0, such that
Λ = Rs0 and the limiting distribution of

√
T (θ̂T − θ0) is Z, as mentioned in Remark

3.2. Notice that the matrices J and Σ are stated in terms of left/right-derivatives, as
discussed in Andrews (1999, Appendix A). Moreover, Andrews (1999, pp.1367-1370)
provides closed-form expressions for λΛ, and gives an outline of how to make draws
of the distribution of λΛ based on numerical methods. The next section is devoted
to testing hypotheses about the parameters in A and B.

4 Testing

In this section we introduce Lagrange multiplier, Wald, and likelihood ratio statis-
tics suitable for testing hypotheses about the matrices A and B. In particular, we
are interested in testing for no volatility spillovers, as discussed in Subsection 2.3.
Subsection 4.1 states the test statistics and their limiting distributions. In Subsec-
tion 4.2 we provide an algorithm for determining critical values for the proposed
tests.

4.1 Test statistics

We consider testing hypotheses where some of the parameters in the matrices A and
B take zero value. With β defined according to the partition in (3.8), we consider
the partition of β given by

β
(s1×1)

=


β1

(s̃1×1)

β2
(s̃2×1)

 (4.1)

for some s̃1 ≤ s1 and s̃2
..= s1 − s̃1. Note that, by convention, β = β1 when s̃1 = s1.

We are interested in testing whether β1 takes value zero, i.e. in terms of the true
parameter value θ0 = (β′0, δ′0)′ = (β′1,0, β′2,0, δ′0)′, we want to test the hypothesis

H0 : β1,0 = 0s̃1×1.

We test H0 against the alternative β1,0 6= 0s̃1×1 and with the maintained hypothesis
that θ0 ∈ Θ. Notice that underH0 it might be that some of the remaining parameters
of A and B are equal to zero, which is the case when s̃2 = s1 − s̃1 > 0, and we may
consider β2 as nuisance parameters attaining the zero bound of Θ under H0.

With L̂T (θ) the feasible log-likelihood function defined in (3.1), let θ̃T be the
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constrained estimator given by

θ̃T = arg inf
θ∈Θ0

L̂T (θ) , with Θ0
..= {θ = (β′1, β′2, δ′)′ ∈ Θ : β1 = 0s̃1×1}. (4.2)

We propose three statistics for testing H0. The first statistic is a likelihood ratio
statistic,

QLRT
..= 2T [L̂T (θ̃T )− L̂T (θ̂T )].

Next, let

ĴT (θ) ..= 1
T

T∑
t=1

∂2l̂t (θ)
∂θ∂θ′

, Σ̂T (θ) ..= 1
T

T∑
t=1

∂l̂t (θ)
∂θ

∂l̂t (θ)
∂θ′

, ŜT (θ) ..= 1
T

T∑
t=1

∂l̂t (θ)
∂θ

.

(4.3)
Moreover, with s0 the dimension of the parameter vector θ, s1 the dimension β given
in (3.8), and s̃1 the dimension of the vector β1 defined in (4.1), let

K ..= (Is1 , 0s1×(s0−s1)) and K1
..= (Is̃1 , 0s̃1×(s0+s̃1)). (4.4)

The second statistic is the Wald statistic,

WT
..= T θ̂′TK

′
1[K1ĴT (θ̂T )−1K ′1]−1K1θ̂T ,

and the last statistic is a Lagrange multiplier (LM) statistic,

LMT
..= T ŜT (θ̃T )′ĴT (θ̃T )−1K ′1[K1ĴT (θ̃T )−1Σ̂T (θ̃T )ĴT (θ̃T )−1K ′1]−1K1ĴT (θ̃T )−1ŜT (θ̃T ).

Remark 4.1. In addition to the QLRT and WT statistics, one could also consider a
directed Lagrange multiplier statistic, that exploits that the true parameter is on
the boundary under the null, similar to Andrews (2001, Section 7). We focus here
on the first two statistics together with the “classical” Lagrange multiplier statistic,
LMT , that, although it is based on partial left/right derivatives, does not take any
boundary issues into account.

In order to derive the limiting distribution of these statistics, we assume, similar
to Assumption 3, that θ0 and Θ0 satisfy the following conditions.

Assumption 7. θ0 ∈ Θ0 and Θ0 − θ0 is locally equal to Λ0
..= Λ0,β1 × Λβ2 × Λδ =

{0s̃1×1} × Rs̃2
+ × Rs2.

Similar to λΛ defined in Theorem 3.1, we consider λΛ0 as the projection of random



90

vector Z with distribution N(0, J−1ΣJ−1) onto Λ0, i.e.

λΛ0 = (λΛ0′
β , λΛ0′

δ )′ ∈ Λ0 satisfies λΛ0 = arg inf
λ∈Λ0
‖Z − λ‖2

J . (4.5)

The following theorem states the limiting distributions of the proposed test statistics.

Theorem 4.1. Let the matrices K and K1 be given by (4.4), and let J be given by
(3.13). Under Assumptions 1-7 and H0,

QLRT
w→ ‖λΛ

β‖2
(KJ−1K′)−1 − ‖λΛ0

β ‖2
(KJ−1K′)−1 , (4.6)

where λΛ = (λΛ′
β , λ

Λ′
δ )′ = (λΛ′

β1 , λ
Λ′
β2 , λ

Λ′
δ )′ is defined in Theorem 3.1, and λΛ0

β is defined
in (4.5).
Moreover,

WT
w→ ‖λΛ

β1‖
2
(K1J−1K′1)−1 . (4.7)

Suppose in addition that Σ, defined in (3.13), is positive definite. Then

LMT
w→ χ2

s̃1 , (4.8)

where χ2
s̃1 is a chi-squared random variable with s̃1 degrees of freedom, with s̃1 the

dimension of β1.

Remark 4.2. Theorem 4.1 states that the limiting distribution of the QLRT depends
on the minimizer of the quadratic form ‖Z − λ‖2

J over Λ and Λ0, respectively. From
Lemma B.6 it holds that infλ∈Λ ‖Z − λ‖2

J = infλβ∈Λβ1×Λβ2
‖Zβ − λβ‖2

(KJ−1K′)−1 , and
by similar arguments infλ∈Λ0 ‖Z−λ‖2

J = infλβ∈{0s̃1×1}×Λβ2
‖Zβ−λβ‖2

(KJ−1K′)−1 , where
Zβ is defined from the partition Z = (Z ′β, Z ′δ)′. Thereby the limiting distribution
of QLRT depends in general on the cone Λβ2 , i.e. whether there are nuisance pa-
rameters (in A0 and B0) taking zero value. A similar observation applies to WT ,
as λΛ

β1 is a part of λΛ and hence requires knowledge about the shape of Λ. This
issue appears to be an important topic within the field of testing at the boundary.
We refer to Ketz (2014) for some recent considerations regarding hypothesis tests
regarding a single parameter at the boundary with nuisance parameters potentially
taking values on the boundary of the parameter space.

Remark 4.3. Unlike the QLRT and WT statistics, the limiting distribution of the
LMT statistic is pivotal and does not depend on nuisance parameters.

Remark 4.4. In the case where (KJ−1K ′)−1 is block diagonal, i.e. K2(KJ−1K ′)−1K̄ ′2 =
0s̃1×s̃2 where K2

..= (Is̃1 , 0s̃1×s̃2) and K̄2
..= (0s̃2×s̃1 , Is̃2), it can be shown (by ap-
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plying the arguments from Remark 4.2 and the proof of Lemma B.6) that, with
Zβ = (Z ′β1 , Z

′
β2)′,

inf
λβ∈Λβ1×Λβ2

‖Zβ − λβ‖2
(KJ−1K′)−1 = inf

λβ1∈Λβ1

‖Zβ1 − λβ1‖2
K2(KJ−1K′)−1K′2

+ inf
λβ2∈Λβ2

‖Zβ2 − λβ2‖2
K̄2(KJ−1K′)−1K̄′2

.

This implies that the limiting distributions of WT and QLRT do not depend on Λ2

and thereby not on whether the nuisance parameters take zero value. In particular
we have that

QLRT
w→ ‖λΛβ1‖2

K2(KJ−1K′)−1K′2
,

with λΛβ1 = arg infλβ1∈Λβ1
‖Zβ1 − λβ1‖2

K2(KJ−1K′)−1K′2
. Moreover, for this case the

limiting distribution of WT is given by ‖λΛβ1‖2
(K1J−1K′1)−1 . Notice that the block

diagonality property of (KJ−1K ′)−1 does not appear to hold in general.

The following corollary is immediate from Theorem 4.1 and states that the lim-
iting distributions of QLRT and WT are the same in the case where there are no
nuisance parameters (in A and B) taking zero value.

Corollary 4.1. Under the same assumptions as in Theorem 4.1, suppose that s̃1 =
s1 such that β1,0 = β0 = 0s1×1, i.e there are no nuisance parameters on the lower
bound of Θ. Then the limiting distributions of QLRT and WT are both given by
‖λΛ

β‖2
(KJ−1K′)−1.

Remark 4.5. In the context of testing for diagonality of A0 and B0, and under the
assumption that the innovations are Gaussian, i.e. L(ηt) = N(0, Id), Nakatani and
Teräsvirta (2009) propose the LM statistic,

LMECCC = 1
2T ŜT (θ̃T )′K ′1[K1ĴT (θ̃T )−1K ′1]K1ŜT (θ̃T ).

Nakatani and Teräsvirta (2009) derive the limiting distribution of this statistic un-
der the assumptions that the elements of A and B are nonnegative (Nakatani and
Teräsvirta, 2009, footnote on p.149), similar to our assumption about the parameter
space Θ, and that the true parameter vector is an interior point of the parameter
space (Nakatani and Teräsvirta, 2009, Assumption 3.1). In Proposition C.1 in the
appendix we state the limiting distribution of the LMECCC statistic under the same
assumptions as in Theorem 4.1. Specifically, provided that L(ηt) = N(0, Id), and
that s̃1 = s1, the LMECCC statistic has an asymptotic χ2

s̃1 distribution. In the more
general cases where s1 − s̃1 > 0, i.e. with nuisance parameters attaining the zero
bound of Θ, and where ηt may not be Gaussian, the limiting distribution will not
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be χ2
s̃1 , as also stated in Proposition C.1.

In the next section we provide an algorithm for calculating critical values for the
proposed tests for the case with no nuisance parameters in A and B taking zero
value.

4.2 Calculating critical values

Following Andrews (1999, pp.1367-1370), we can obtain draws from the limiting
distribution of the WT and QLRT statistics according to the following algorithm.2

Algorithm 1. Let J̄T and Σ̄T be consistent estimators for, respectively, the matrices
J and Σ stated in (3.13). Suppose that s̃1 = s1, i.e. there are no nuisance parameters
(in A and B) taking zero value, such that Corollary 4.1 applies. A critical value c
for WT and QLRT yielding a test with asymptotic size α can be obtained as follows:

1. Draw ε? randomly from N(0, Is1) and compute Z?
β = [KJ̄−1

T Σ̄T J̄
−1
T K ′]1/2ε?.

2. Find λ̃?β that minimizes ‖Z?
β−λβ‖2

(KJ̄−1
T K′)−1 = (Z?

β−λβ)′(KJ̄−1
T K ′)−1(Z?

β−λβ)
over λβ ∈ Λβ = Rs1

+ , and compute ‖λ̃?β‖2
(KJ̄−1

T K′)−1.

3. Repeat steps 1.-2. N times (with N very large), and let {xi : i = 1, ..., N}
denote the sequence of the N independent draws of ‖λ̃?β‖2

(KJ̄−1
T K′)−1. Then c is

given by the (1− α) percentile of {xi : i = 1, ..., N}.

Remark 4.6. The minimization problem in point 2. of Algorithm 1 is a quadratic
programming problem. Most programming languages have a build-in function that
can deal with such problems, and for a fairly small amount of restrictions, i.e. for
small s1, the minimization is solved quickly. For the simulations and the empirical
illustration in the following sections, the minimization problem is carried out by
the solveQP function in OxMetrics 7.0. An alternative way of making draws of λΛ

β ,
and hence drawing from the distribution of ‖λΛ

β‖2
(KJ−1K′)−1 , is given by Andrews

(1999, Section 6.3) where a closed-form expression for λΛ
β is provided. Moreover,

throughout the simulations and the empirical illustration, we use ĴT (θ̂T ) and Σ̂T (θ̂T )
as estimators for J and Σ, respectively, where θ̂T is the QMLE and ĴT (θ) and Σ̂T (θ)
are defined in (4.3). These estimators are consistent according to Lemma B.1.

2We here use Lemma B.6 stating that λΛ
β is equal to λΛβ , λΛβ = arg infλβ∈Λβ

‖Zβ −
λβ‖2(KJ−1K′)−1 , where Λβ = Rs1

+ .
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5 Simulations

In this section we investigate the empirical size and power properties of the proposed
test statistics.

5.1 Size simulations

We consider the size properties of the proposed test statistics, including the LMECCC

mentioned in Remark 4.5, for the bivariate ECCC-GARCH model. Specifically, we
consider tests where the matrices A and B are diagonal under the null. In order
to keep things simple we consider cases where no nuisance parameters attain the
lower bound of Θ, i.e. none of the diagonal elements of A and B take zero value.
We consider the data-generating processes (DGPs) stated in Table 5.1, where DGP
1-3 correspond to DGP 1,2, and 4 in Nakatani and Teräsvirta (2009), respectively.
Recall from Theorem 3.1 that we imposed finite sixth-order moments of Xt (As-
sumption 6) in order to derive the limiting distribution of the QMLE. For all the
DGPs we impose, for simplicity, that the innovation ηt is Gaussian. This condition
implies that ηt has a strictly positive density on Rd with E[‖ηt‖6] < ∞, and hence
from Lemmas B.7 and B.8, E[‖Xt‖6] <∞ if and only if

Ψ6
..= ρ(E{[A0 diag((R1/2

0 ηt)�2) +B0]⊗3}) < 1. (5.1)

Using Monte Carlo integration we have computed the value of Ψ6 for each DGP,
as also stated in Table 5.1. Whereas DGP 3-5 satisfy condition (5.1), DGP 1-2 do
not. Although our theoretical results are not expected to hold for DGP 1 and 2, we
have included the simulations results in order to compare with the results for the
DGPs that do satisfy the moment condition. Moreover, for all the DGPs for the
empirical size and power simulations it holds that the conditions in Jeantheau (1998,
Definition 3.1.3 and Assumptions B1-B2) are satisfied, which by Jeantheau (1998,
Proposition 3.4) implies that the identification condition in Assumption 4 holds.
These above restrictions on the DGPs imply together that Corollary 4.1 holds for
the processes (up to the sixth-order moment condition of Xt in the case of DGP
1-2).

Table 5.2 contains the actual rejection frequencies of our proposed tests based
on the 5% nominal level and on empirically relevant sample sizes of 1,000, 5,000,
and 10,000 observations. All simulations are based on 2,000 replications with a
burn-in period of 1,000 observations. The critical value of the QLRT and WT tests
are carried out according to Algorithm 1 and Remark 4.6. For each replication the



94

Table 5.1: DGPs for size simulations
DGP 1 DGP 2 DGP 3 DGP 4 DGP 5

A0

[
0.1 0
0 0.2

] [
0.04 0

0 0.05

] [
0.1 0
0 0.2

] [
0.1 0
0 0.2

] [
0.07 0

0 0.08

]

B0

[
0.8 0
0 0.7

] [
0.95 0

0 0.9

] [
0.45 0

0 0.6

] [
0.70 0

0 0.75

] [
0.80 0

0 0.85

]
r0 0.3 0.9 0.9 0.9 0.9

Ψ6 1.223 1.337 0.387 0.944 0.953
For all DGPs κ0 = (0.1, 0.2)′ and L(ηt) = N(0, I2).

critical value is based on 100,000 draws from ‖λΛ
β‖2

(KJ−1K′)−1 . The critical values for
the LMT and LMECCC are based on a χ2

4-distribution, in line with Theorem 4.1 and
Proposition C.1. We refer to Appendix D for additional technical details about the
simulations.

Table 5.2: Size simulations
T LMT WT QLRT LMECCC

DGP 1 1,000 0.0277 0.0080 0.0375 0.1886
5,000 0.0552 0.0325 0.0575 0.1068
10,000 0.0436 0.0275 0.0460 0.0657

DGP 2 1,000 0.0194 0.0145 0.0315 0.2710
5,000 0.0460 0.0490 0.0550 0.1090
10,000 0.0505 0.0545 0.0610 0.0790

DGP 3 1,000 0.0277 0.0125 0.0385 0.1638
5,000 0.0477 0.0270 0.0430 0.0974
10,000 0.0455 0.0345 0.0460 0.0760

DGP 4 1,000 0.0353 0.0215 0.0430 0.1764
5,000 0.0551 0.0405 0.0550 0.0966
10,000 0.0455 0.0360 0.0465 0.0680

DGP 5 1,000 0.0137 0.0130 0.0300 0.2270
5,000 0.0445 0.0310 0.0505 0.1036
10,000 0.0390 0.0365 0.0445 0.0685

Actual rejection frequencies based on the 5% nominal level.

From Table 5.2 we notice that LMT seems to be slightly under-sized for a sample
size of 1,000 observations, whereas the test seems to have very reasonable size prop-
erties for larger sample sizes. The LMECCC test seems to be over-sized for sample
sizes of 1,000 and 5,000 observations, but only slightly over-sized for 10,000 observa-
tions.3 Moreover, the Wald test appears to be slightly conservative for most of the
DGPs and in particular for sample sizes of 1,000 observations. The quasi-likelihood
ratio test has very reasonable size properties, in particular for the cases with sample

3The rejection frequencies for the LMECCC test reported in Nakatani and Teräsvirta (2009,
Table 2) seem more favorable than the ones reported in Table 5.2. A correspondence with Tomoaki
Nakatani and a careful inspection of the R code used to generate the results in Nakatani and
Teräsvirta (2009) have, unfortunately, not enabled us to detect the source of the difference.
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sizes of 5,000 and 10,000 observations. Notice that even though the DGPs 1 and 2
do not satisfy the moment condition in (5.1), and hence that our derived theory is
not expected to apply for these processes, the violation of the condition does not
seem to have any severe effect on the performance of the tests. Lastly, in similar
studies (not reported here) we investigated the size properties of the tests for the
case of 50,000 observations, and when testing for the single restriction B12 = 0.
These studies yielded qualitatively the same conclusions as the simulations reported
above.

5.2 Power simulations

Next, we consider the power properties of the proposed tests. The power simula-
tions are based on DGP 5 from the previous subsection, and we consider the data
generating processes, deviating from the null of diagonality of the matrices A0 and
B0, stated in Table 5.3. The DGPs are inspired by the ones used in Nakatani and
Teräsvirta (2009, Table 3).

Table 5.3: DGPs for power simulations
DGP 5.1 DGP 5.2 DGP 5.3 DGP 5.4

A0

[
0.07 0.001
0.004 0.08

] [
0.07 0.001
0.004 0.08

] [
0.07 0.01
0.02 0.08

] [
0.07 0.01
0.02 0.08

]

B0

[
0.80 0.004
0.002 0.85

] [
0.80 0.04
0.03 0.85

] [
0.80 0.004
0.002 0.85

] [
0.80 0.04
0.03 0.85

]
DGP 5.5 DGP 5.6 DGP 5.7 DGP 5.8

A0

[
0.07 0.001
0.004 0.08

] [
0.07 0.01
0.02 0.08

] [
0.07 0

0 0.08

] [
0.07 0

0 0.08

]

B0

[
0.80 0

0 0.85

] [
0.80 0

0 0.85

] [
0.80 0.004
0.002 0.85

] [
0.80 0.04
0.03 0.85

]
For all DGPs κ0 = (0.1, 0.2)′, r0 = 0.9 and L(ηt) = N(0, I2).

Table 5.4 states the rejection frequencies of the tests when the null is incorrect
according to the DGPs given in Table 5.4. The simulations are based on 2,000
replications, a burn-in period of 1,000 observations, and the same seed values as
the size simulations. The reported powers are size corrected in the sense that the
critical value for the tests (at the 5% nominal level) is chosen as the 95 percentile
of the simulated test values from the size simulations.

From Table 5.4 we see that the power of the tests is low whenever the off-diagonal
elements of A and B are all close to zero. In particular, even for a sample size of
10,000 observations the power is not impressive for any of the test statistics for the
DGPs 5.1, 5.5 and 5.7. For all other DGPs the test statistics seem to have great
power as T increases. Moreover, the proposed Wald and likelihood ratio tests have
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Table 5.4: Empirical power
DGP 5.1 DGP 5.2

T LMT WT QLRT LMECCC LMT WT QLRT LMECCC

1,000 .0493 .0898 .134 .0286 .254 .397 .619 .0654
5,000 .107 .278 .320 .0590 .983 .999 1.00 .954
10,000 .256 .514 .533 .173 1.00 1.00 1.00 1.00

DGP 5.3 DGP 5.4
T LMT WT QLRT LMECCC LMT WT QLRT LMECCC

1,000 .301 .484 .570 .0675 .639 .749 .895 .133
5,000 .971 .998 .997 .929 1.00 1.00 1.00 1.00
10,000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

DGP 5.5 DGP 5.6
T LMT WT QLRT LMECCC LMT WT QLRT LMECCC

1,000 .0404 .0742 .0829 .0410 .288 .477 .522 .0675
5,000 .0605 .122 .130 .0520 .956 .995 .996 .891
10,000 .0875 .202 .198 .0730 1.00 1.00 1.00 .999

DGP 5.7 DGP 5.8
T LMT WT QLRT LMECCC LMT WT QLRT LMECCC

1,000 .0383 .0618 .0938 .0284 .206 .341 .542 .0704
5,000 .0665 .134 .174 .0465 .966 .996 .997 .911
10,000 .118 .266 .291 .0845 1.00 1.00 1.00 1.00

Actual rejection frequencies based on the size-corrected critical values at the 5% nominal level.

better power properties than the other tests for all choices of DGP and for all sample
lengths.

6 Empirical illustration

In this section we provide an empirical application of the proposed tests for volatility
spillovers. We apply the same data set as in Nakatani and Teräsvirta (2009) and
investigate the volatility spillovers between a pair of foreign exchange rates. The
exchange rates are daily noon buying rates of the Japanese yen (JPY) and the Swiss
franc (CHF) against the U.S. dollar (USD). The series go from 2 January 1975 to
2 December 2005, with a total of 7,766 observations in each series. Descriptive
statistics of the data series are contained in Nakatani and Teräsvirta (2009, Tables
7 and 8).4

We fit a bivariate ECCC-GARCH model to the return series and test whether
the matrices A and B are diagonal. The tests are based on the assumption that
the diagonal elements of A and B are strictly positive under the null, such that no
nuisance parameters take zero value. This enables us to determine the critical values
of the tests according to Algorithm 1 and Remark 4.6. For each individual series

4We have left out any empirical illustration containing the equity pairs investigated in Nakatani
and Teräsvirta (2009), as standard Box-Pierce tests revealed significant auto-correlation of order 5
for these series, suggesting that a raw ECCC-GARCH model, i.e. with no VAR(MA) component,
may not be suitable for capturing the dynamics of these return series.
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of the standardized residuals, based on a Jarque-Bera test, we rejected the null of
normality, suggesting that the LMECCC test based on a χ2

4 limiting distribution, as
performed in Nakatani and Teräsvirta (2009), may not be appropriate for testing
for no spillovers in the return series, as mentioned in Remark 4.5. Table 6.1 contains
the estimation results. First, we notice that the point estimates of the off-diagonal
elements of A and B are fairly small. Second, based on the LMT statistic we fail to
reject the null of no spillovers, whereas the null is rejected based on the LMECCC

test with the p-value based on a χ2
4-distribution. The latter is in line with the

findings in Nakatani and Teräsvirta (2009), but, as the standardized residuals, as
mentioned, did not appear to be normally distributed, the validity of the LMECCC

test is dubious. Based on the QLRT andWT tests, we reject the null of no spillovers.
In light of the very reasonable size properties and superior power properties of
these tests compared to LMT , we find evidence for volatility spillovers between the
JPY/USD and CHF/USD rates, in line with the findings in Nakatani and Teräsvirta
(2009).

Table 6.1: Estimation results
Model κ A B r LMT WT QLRT LMECCC

CCC JPY 2.1 0.0513 0.9460 0.5416 8.87 52.57 76.21 40.23
CHF 7.8 0.0574 0.9285 (0.0645) (0.0285) (0.0097) (0.000)

ECCC JPY 1.2 0.0449 0.0037 0.9493 0.0000 0.5417
CHF 6.7 0.0000 0.0588 0.0080 0.9229

Point estimates of parameters in the restricted ECCC-GARCH model (CCC) and in the unre-
stricted ECCC-GARCH model (ECCC). The estimates of the elements of κ are multiplied by
1,000. The p-values of the LMT , WT , QLRT , and LMECCC test for diagonality of A and B are
reported in parentheses. The p-values for WT and QLRT are obtained according to Algorithm 1
and Remark 4.6 based on 1,000,000 draws. The p-values for LMT and LMECCC are based on a
χ2

4-distribution.

7 Concluding remarks and future research direc-
tions

We have considered the large-sample properties of the quasi-maximum likelihood es-
timator (QMLE) for the extended constant conditional correlation GARCH model
in the case where the true parameter is on the boundary of the parameter space.
This case is of great importance in empirical finance where one is typically inter-
ested in testing for volatility spillovers between assets and markets. In contrast
to the “standard” case, where the true parameter is an interior point, the limiting
distribution is given by a projection of a Gaussian vector onto a set determined
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by the true parameter vector. Moreover, we proposed Lagrange multiplier (LM),
Wald, and quasi-likelihood ratio statistics (QLR) suitable for testing for volatility
spillovers. Similar to the QMLE, the Wald and QLR statistics do also have non-
standard limiting distributions, however, as we demonstrate, these distributions are
(under suitable conditions) straightforward to make draws from.

A simulation study showed that the three proposed tests have reasonable em-
pirical size properties, in particular for samples with more than 5,000 observations.
Moreover, simulations showed that the Wald and QLR tests have superior empirical
power properties compared to the LM test.

Lastly, in an empirical illustration the proposed tests were applied to returns on
foreign exchange rates. For the sample period from 2 January 1975 to 2 December
2005, based on the Wald and QLR tests we rejected the null of no volatility spillovers
between the Japanese Yen/U.S. dollar and the Swiss Franc/U.S. dollar rates, in line
with the findings of Nakatani and Teräsvirta (2009).

An important topic for future research is to investigate the limiting distributions
of the proposed Wald and QLR statistics in more detail. Specifically, the limiting
distributions appear, in general, to depend on nuisance parameters taking zero value,
hence it is of particular interest to consider other tests, or corrections, that are
pivotal to such boundary properties, as e.g. considered in recent work by Ketz
(2014).

Appendix A Proofs of theorems

Throughout the proofs let C and φ denote positive, finite generic constants always
with φ < 1. Moreover, all Taylor-type expansions are based on partial left/right
derivatives according to Andrews (1999, Appendix A), where all derivatives with
respect to parameters at the boundary of Θ are right derivatives. Furthermore, for
the proofs of the theorems as well as the lemmas stated in the next section, it will be
convenient to consider the following partitions. With J and Σ the matrices defined
in (3.13) and G and Z the random vectors given by L(G) = N(0,Σ) and Z = J−1G,
define according to the partition θ = (β′, δ′)′

J =
Jββ Jβδ

Jδβ Jδδ

 , G =
Gβ

Gδ

 , and Z =
Zβ
Zδ

 , (A.1)

where Jββ is (s1 × s1) and Gβ is (s1 × 1) and so forth.

Proof of Theorem 3.1. The asymptotic distribution of
√
T (θ̂T − θ0) is derived

along the lines of Andrews (1999, Proof of Theorem 3) and Francq and Zakoïan
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(2007, Proof of Theorem 2). Initially, notice that θ̂T is strongly consistent for θ0, as
mentioned in Section 3. Moreover, Θ − θ0 is locally equal to a union of orthants,
Λ, (Assumption 3) and L̂T (θ) has continuous left/right partial derivative of order
2 on Θ. Due to Andrews (1999, Theorem 6) we are able to make a second-order
Taylor-type expansion of L̂T (θ) around θ0 such that for any point θ ∈ Θ there exists
a point θ? between θ and θ0

L̂T (θ) = L̂T (θ0) + ∂LT (θ0)
∂θ′

(θ− θ0) + 1
2(θ− θ0)′∂

2LT (θ0)
∂θ∂θ′

(θ− θ0) +RT (θ) +R?
T (θ) ,

where

RT (θ) =
(
∂L̂T (θ0)
∂θ′

− ∂LT (θ0)
∂θ′

)
(θ−θ0)+ 1

2(θ−θ0)′
[
∂2L̂T (θ0)
∂θ∂θ′

− ∂2LT (θ0)
∂θ∂θ′

]
(θ−θ0),

(A.2)
and

R?
T (θ) = 1

2(θ − θ0)′
[
∂2L̂T (θ?)
∂θ∂θ′

− ∂2L̂T (θ0)
∂θ∂θ′

]
(θ − θ0). (A.3)

Moreover, with
JT ..= ∂2LT (θ0)

∂θ∂θ′

and
ZT ..= −J−1

T

√
T
∂LT (θ0)
∂θ

, (A.4)

we have, by definition, that

L̂T (θ) = L̂T (θ0)− 1
2T ‖ZT‖

2
JT

+ 1
2T ‖ZT −

√
T (θ− θ0)‖2

JT
+RT (θ) +R?

T (θ) . (A.5)

Notice that in the definition of ZT in (A.4) we have used that JT = J + o(1) almost
surely with J non-singular, as proved below. So, technically, ZT might only exist
almost surely for T sufficiently large. It suffices to establish the following points:

1.
√
T∂LT (θ0)/∂θ w→ G with L (G) = N (0,Σ) and JT = J + op(1), where the

matrices J ∈ Ss0
++ and Σ are given by (3.13).

2.
√
T (θ̂T − θ0) = Op (1).

3. For any θ̄T ∈ Θ such that
√
T (θ̄T − θ0) = Op (1), R?

T (θ̄T ) = op(T−1) and
RT (θ̄T ) = op(T−1).

4.
√
T (θ̂T − θ0) = λ̂T + op (1), where λ̂T ∈ cl (Λ) satisfies ‖ZT − λ̂T‖2

JT
=

infλ∈Λ‖ZT − λ‖2
JT

with Λ defined in Assumption 5
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5. λ̂T w→ λΛ, where λΛ ∈ cl (Λ) satisfies ‖Z − λΛ‖2
J = infλ∈Λ ‖Z − λ‖2

J , Z ..=
−J−1G.

First, it follows from Lemma B.3 that Σ is finite. Expressions for ∂lt(θ)/∂θi, i =
1, ..., s, are given in the proof of Lemma B.4 below. As in Francq and Zakoïan (2012a,
p 200), by a central limit theorem for strictly stationary and ergodic martingale
difference sequences, see e.g. Brown (1971),

√
T∂LT (θ0)/∂θ w→ G. Moreover, the

ergodic theorem implies that JT = J + o (1) almost surely. The positive definiteness
of J is established in Francq and Zakoïan (2012a, pp.203-204), and we conclude that
1. holds.
From the derivation of 1. we have that ‖·‖JT is almost surely a norm for T sufficiently
large due to the fact that J is positive definite. With RT (θ) defined in (A.2), it
follows by Lemma B.5 that

RT (θ̂T ) = op(T−1/2‖θ̂T−θ0‖)+op(‖θ̂T−θ0‖2) = op(T−1/2‖θ̂T−θ0‖JT )+op(‖θ̂T−θ0‖2
JT

).
(A.6)

For sufficiently large T , by Lemma B.5, [∂2L̂T (θ?) /∂θ∂θ′ − ∂2L̂T (θ0)/∂θ∂θ′] =
[∂2LT (θ?) /∂θ∂θ′−∂2LT (θ0)/∂θ∂θ′]+op (1). Also by Lemma B.5, [∂2LT (θ?) /∂θ∂θ′−
∂2LT (θ0)/∂θ∂θ′] = E[∂2lt (θ?) /∂θ∂θ′] − E[∂2lt(θ0)/∂θ∂θ′] + op (1), so by the conti-
nuity of E[∂2lt (θ) /∂θ∂θ′] on Θ and the consistency of θ̂T ,

R?
T (θ̂T ) = op(‖θ̂T − θ0‖2

JT
), (A.7)

with R?
T (θ) defined in (A.3). Now from (A.5), (A.6)-(A.7), and the fact that θ̂T

minimizes L̂T (θ),

L̂T (θ̂T )− L̂T (θ0) = 1
2T [‖ZT −

√
T (θ̂T − θ0)‖2

JT
− ‖ZT‖2

JT
] +RT (θ̂T ) +R?

T (θ̂T )

= 1
2T [‖ZT −

√
T (θ̂T − θ0)‖2

JT
− ‖ZT‖2

JT
]

+op(‖θ̂T − θ0‖2
JT

) + op(T−1/2‖θ̂T − θ0‖JT ) ≤ 0. (A.8)

Since ‖ · ‖JT is a norm for T sufficiently large almost surely, it follows from 1. that
‖ZT‖JT = Op (1). This fact together with (A.8) yields

‖ZT −
√
T (θ̂T − θ0)‖2

JT
≤ ‖ZT‖2

JT
+ op(‖

√
T (θ̂T − θ0)‖2

JT
) + op(

√
T‖θ̂T − θ0‖JT )

≤ (‖ZT‖JT + op(
√
T‖θ̂T − θ0‖JT ))2. (A.9)
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The triangle inequality and (A.9) imply that

√
T‖θ̂T − θ0‖JT ≤ ‖ZT −

√
T (θ̂T − θ0)‖JT + ‖ZT‖JT

≤ 2‖ZT‖JT + op(
√
T‖θ̂T − θ0‖JT ).

We conclude that
√
T‖θ̂T − θ0‖JT [1 + op (1)] ≤ Op (1) , and hence that 2. holds.

Result 3. is verified by arguments similar to the ones used to verify 2. together with
Lemma B.5.
Turning to 4., notice that when s1 = 0, i.e. when θ0 ∈ Θ, it holds that λ̂T = ZT ,
and the result follows immediately by the consistency of θ̂T and Lemma B.5. Let θ̂q
satisfy ‖ZT −

√
T (θ̂q − θ0)‖2

JT
= infθ∈Θ ‖ZT −

√
T (θ − θ0)‖2

JT
. It holds that

‖
√
T (θ̂q − θ0)‖JT ≤ ‖ZT −

√
T (θ̂q − θ0)‖JT + ‖ZT‖JT

= inf
θ∈Θ
‖ZT −

√
T (θ − θ0)‖JT + ‖ZT‖JT

≤ 2‖ZT‖JT = Op (1) ,

where the first inequality is due to the triangle inequality, the second inequality
follows from the fact that θ0 ∈ Θ, and the last equality follows from 1. Similar to
the derivations above, we conclude that

√
T (θ̂q − θ0) = Op (1). From (A.5), using

that θ̂T minimizes L̂T (θ) , and that θ̂q minimizes ‖ZT −
√
T (θ − θ0)‖2

JT
, together

with results 2. and 3., we have that

0 ≥ T [L̂T (θ̂T )− L̂T (θ̂q)]

= 1
2‖ZT −

√
T (θ̂T − θ0)‖2

JT
− 1

2‖ZT −
√
T (θ̂q − θ0)‖2

JT

+T [R?
T (θ̂T ) +RT (θ̂T )−R?

T (θ̂q)−RT (θ̂q)]

≥ T [R?
T (θ̂T ) +RT (θ̂T )−R?

T (θ̂q)−RT (θ̂q)] = op (1) . (A.10)

Hence, using (A.5) and (A.10),

‖ZT −
√
T (θ̂T − θ0)‖2

JT
= ‖ZT −

√
T (θ̂q − θ0)‖2

JT
+ op (1) . (A.11)

Note that infθ∈Θ ‖ZT −
√
T (θ − θ0)‖2

JT
= infλ∈√T (Θ−θ0) ‖ZT − λ‖2

JT
, where

√
T (Θ−

θ0) ..= {λ ∈ Rs0 : λ =
√
T (θ− θ0), θ ∈ Θ}. Moreover 1. and the fact that Λ is a cone

(Remark 3.3) imply, due to Andrews (1999, Lemma 2), that

inf
λ∈
√
T (Θ−θ0)

‖ZT − λ‖2
JT

= inf
λ∈Λ
‖ZT − λ‖2

JT
+ op (1) . (A.12)
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Let λ̂T ∈ Λ satisfy ‖ZT − λ̂T‖2
JT

= infλ∈Λ‖ZT − λ‖2
JT
. Then combining (A.11) and

(A.12) yields
‖ZT −

√
T (θ̂T − θ0)‖2

JT
= ‖ZT − λ̂T‖2

JT
+ op (1) . (A.13)

Observe that

‖ZT −
√
T (θ̂T − θ0)‖2

JT
= ‖

√
T (θ̂T − θ0)− λ̂T‖2

JT
+ ‖ZT − λ̂T‖2

JT

+2
〈
ZT − λ̂T , λ̂T −

√
T (θ̂T − θ0)

〉
JT
. (A.14)

Using that
√
T (θ̂T − θ0) ∈ Λ and that Λ is closed for s1 > 0, it follows from

Zarantonello (1971, Lemma 1.1),

〈
ZT − λ̂T , λ̂T −

√
T (θ̂T − θ0)

〉
JT
≥ 0. (A.15)

Combining (A.14) and (A.15) yields

‖ZT −
√
T (θ̂T − θ0)‖2

JT
≥ ‖
√
T (θ̂T − θ0)− λ̂T‖2

JT
+ ‖ZT − λ̂T‖2

JT
. (A.16)

In light of (A.13) and (A.16), we conclude that 4. holds.
In line with Andrews (1999, p.1379), since Λ is convex, λ̂T is unique. Moreover, since
λ̂T satisfies ‖ZT − λ̂T‖2

JT
= infλ∈Λ‖ZT − λ‖2

JT
, λ̂T = f(ZT , JT ) with some implicitly

given function f . The function f is continuous at all points (ZT , JT ) where JT is
nonsingular. Since J is nonsingular, the continuous mapping theorem implies that
λ̂T = f(ZT , JT ) w→ f(Z, J) = λΛ, and we conclude that 5. holds.

Proof of Theorem 4.1. From the proof of Theorem 3.1,

T [L̂T (θ̂T )− L̂T (θ0)] = −1
2‖ZT‖

2
JT

+ 1
2‖ZT − λ̂T‖

2
JT

+ op (1) ,

so the continuous mapping theorem together with points 1. and 5. from the proof
of Theorem 3.1 imply that

2T
[
L̂T

(
θ̂T
)
− L̂T (θ0)

]
w→ −‖Z‖2

J + inf
λ∈Λ
‖Z − λ‖2

J . (A.17)

Next, with λΛ
β defined in Theorem 4.1, with Zβ, Gδ, and Jδδ defined according to the

partitions in (A.1), and with λΛβ satisfying ‖Zβ − λΛβ‖2
(KJ−1K′)−1 = infλβ∈Λβ ‖Zβ −
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λβ‖2
(KJ−1K′)−1 , it holds that

−‖Z‖2
J + inf

λ∈Λ
‖Z − λ‖2

J = −‖Zβ‖2
(KJ−1K′)−1 − ‖Gδ‖2

J−1
δδ

+ inf
λ∈Λ
‖Z − λ‖2

J

= −‖Zβ‖2
(KJ−1K′)−1 − ‖Gδ‖2

J−1
δδ

+ ‖Zβ‖2
(KJ−1K′)−1 − ‖λΛβ‖2

(KJ−1K′)−1

= −‖Gδ‖2
J−1
δδ
− ‖λΛ

β‖2
(KJ−1K′)−1 , (A.18)

where the first equality follows from Lemma B.6.1. The second equality follows from
Lemma B.6.2 and Perlman (1969, Lemma 4.1), and the third equality follows from
Lemma B.6.3. Combining (A.17) and (A.18) yields

2T [L̂T (θ̂T )− L̂T (θ0)] w→ −‖λΛ
β‖2

(KJ−1K′)−1 − ‖Gδ‖2
J−1
δδ
. (A.19)

Notice that since θ0 ∈ Θ0 ⊂ Θ and Λ0 = Λ0,β1 × Λβ2 × Λδ = {0s̃1×1} × Rs̃2
+ × Rs2 , it

is possible, due to Assumption 7, to derive points 1.-6. in the proof of Theorem 3.1
with θ̂T , λ̂T , λΛ, and Λ replaced by θ̃T , λ̃T , λΛ0 , and Λ0, respectively. In particular,
and similar to the derivations above,

2T [L̂T (θ̃T )− L̂T (θ0)] w→ −‖λΛ0
β ‖2

(KJ−1K′)−1 − ‖Gδ‖2
J−1
δδ
. (A.20)

The convergence of (A.19) and (A.20) holds jointly, since the convergence of the two
terms are due to point 1. in the proof of Theorem 3.1. This joint convergence and
the Cramér-Wold theorem yield the limiting distribution of QLRT .
Next, (4.7) follows by (3.12), Theorem B.1, and the continuous mapping theorem.
Lastly, we turn to the limiting distribution of LMT . It holds, due to the consistency
of θ̃T , Lemma B.1, and the invertibility of J (Theorem 3.1), ĴT (θ̃T )−1 = J−1 +op(1).
By a Taylor-type expansion and Lemma B.5.1

√
T ŜT (θ̃T ) =

√
TST (θ0) + ĴT (θ?)

√
T (θ̃T − θ0) + op(1),

where θ? is between θ̃T and θ0 as in Jensen and Rahbek (2004, Proof of Lemma 1).
By Lemma B.1 and by using that θ? = θ0 + op(1), it holds that ĴT (θ?) = J + op (1).
Hence, using that

√
TST (θ0) and

√
T (θ̃T − θ0) are both Op (1),

√
TK1ĴT (θ̃T )−1ŜT (θ̃T ) = K1J

−1
[√
TST (θ0) + J

√
T (θ̃T − θ0)

]
+ op (1)

= K1J
−1
√
TST (θ0) +K1

√
T (θ̃T − θ0) + op (1) .

SinceK1(θ̃T−θ0) = β1,0 = 0s̃1×1, by Slutsky’s lemma and the fact that
√
T∂LT (θ0)/∂θ w→
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G,

√
TK1ĴT (θ̃T )−1ŜT (θ̃T ) = K1J

−1
√
TST (θ0) + op (1)

w→ N
(
0, K1J

−1ΣJ−1K ′1
)
. (A.21)

By Lemma B.1 and the fact that
√
T (θ̃T − θ0) = Op (1),

K1ĴT (θ̃T )−1Σ̂T (θ̃T )ĴT (θ̃T )−1K ′1 = K1J
−1ΣJ−1K ′1 + op (1) . (A.22)

Hence (4.8) follows by combining (A.21) and (A.22) and applying Slutzky’s lemma
and the continuous mapping theorem.

Appendix B Lemmas

Lemma B.1. With J and Σ given in (3.13) and ĴT (θ) and Σ̂T (θ) given in (4.3),
let θ̄T ∈ Θ satisfy θ̄T = θ0 + op(1). Under the assumptions of Theorem 3.1,

ĴT (θ̄T ) = J + op (1) . (B.1)

Additionally, suppose that
√
T (θ̄T − θ0) = Op (1). Then

Σ̂T (θ̄T ) = Σ + op (1) . (B.2)

Proof. The proof is quite similar to the arguments given in Ling and McAleer (2010,
p.100). Define, JT (θ) ..= T−1∑T

t=1 ∂
2lt (θ) /∂θ∂θ′, where lt(θ) is given by (3.5).

Lemma B.5 implies that ĴT (θ̄T ) = JT (θ̄T ) + op(1), so in order to establish (B.1)
it remains to show that JT (θ̄T ) = J + op(1). This property follows directly from
Lemma B.5, the consistency of θ̄T , and the fact that E[∂2lt (θ) /∂θ∂θ′] is continuous
as θ0.
Next, we seek to prove (B.2). Notice that with l̂t(θ) given by (3.2),

Σ̂T (θ̄T ) = 1
T

T∑
t=1

∂lt(θ0)
∂θ

∂lt(θ0)
∂θ′

+ 1
T

T∑
t=1

∂lt(θ0)
∂θ

∂l̂t(θ̄T )
∂θ′

− ∂lt(θ0)
∂θ′


+ 1
T

T∑
t=1

∂l̂t(θ̄T )
∂θ

− ∂lt(θ0)
∂θ

 ∂lt(θ0)
∂θ′

+ 1
T

T∑
t=1

∂l̂t(θ̄T )
∂θ

− ∂lt(θ0)
∂θ

∂l̂t(θ̄T )
∂θ′

− ∂lt(θ0)
∂θ′

 . (B.3)
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The ergodic theorem implies that T−1∑T
t=1[∂lt(θ0)/∂θ][∂lt(θ0)/∂θ′] = Σ + op(1), so

it remains to show that the other terms in (B.3) vanish with probability approaching
one. It suffices to establish that

1
T

T∑
t=1

∂l̂t(θ̄T )
∂θ

− ∂lt(θ0)
∂θ

 ∂l̂t(θ̄T )
∂θ′

= op(1) (B.4)

and
1
T

T∑
t=1

∂l̂t(θ̄T )
∂θ

− ∂lt(θ0)
∂θ

 ∂lt(θ0)
∂θ′

= op(1). (B.5)

A Taylor-type expansion yields

T−1/2
T∑
t=1

[∂l̂t(θ̄T )/∂θ] = T−1/2
T∑
t=1

[∂l̂t(θ0)/∂θ] + ĴT (θ?T )
√
T (θ̄T − θ0),

where θ?T is between θ̄T and θ0. By Lemma B.5.1 and point 1. in the proof of Theorem
3.1, T−1/2∑T

t=1 ∂l̂t(θ0)/∂θ = Op(1), and using arguments similar to the ones used to
show (B.1), ĴT (θ?T ) = J + op(1). Hence, using that

√
T (θ̄T − θ0) = Op (1),

1√
T

T∑
t=1

∂l̂t(θ̄T )
∂θ

= Op(1). (B.6)

Moreover, also by a Taylor-type expansion,

∂l̂t(θ̄T )
∂θ

−∂lt(θ0)
∂θ

=
∂l̂t(θ0)

∂θ
− ∂lt(θ0)

∂θ

+


∂2l̂t(θ?T )
∂θ∂θ′

− ∂2lt(θ?T )
∂θ∂θ′

+ ∂2lt(θ?T )
∂θ∂θ′

 (θ̄T−θ0).

(B.7)
For any ε > 0 and some r > 0, by Boole’s and the generalized Chebyshev inequalities,

P

max
t∈N

∥∥∥∥∥∥∂lt(θ0)
∂θ

− ∂l̂t(θ0)
∂θ

∥∥∥∥∥∥ > ε
√
T

 ≤ 1
εrT (r/2)

∞∑
t=1

E

sup
θ∈Θ

∥∥∥∥∥∥∂lt(θ)∂θ
− ∂l̂t(θ)

∂θ

∥∥∥∥∥∥
r = o(1),

(B.8)
where we have used Lemma B.4.1. Likewise, using Lemma B.4.3, we have that

1√
T

max
t∈N

∥∥∥∥∥∥∂
2l̂t(θ?T )
∂θ∂θ′

− ∂2lt(θ?T )
∂θ∂θ′

∥∥∥∥∥∥ = op(1), (B.9)

and using Lemma B.4.4,
1√
T

∥∥∥∥∥∂2lt(θ?T )
∂θ∂θ′

∥∥∥∥∥ = op(1). (B.10)

Combining (B.6), (B.7), (B.8), (B.9), (B.10), and that (θ̄T−θ0) = op (1) yields (B.4).
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Similar arguments yield (B.5).

Lemma B.2. Let ĥt (θ) and ht (θ) be given by (3.4) and (3.7), respectively, and
let D̂t(θ) and Dt(θ) be given by (3.3) and (3.6), respectively. Suppose that the
assumptions of Theorem 3.1 are satisfied. It holds that for all t ∈ N0, i, j = 1, ..., d+
2d2, and some k ≥ 0,

E[sup
θ∈Θ
‖ht (θ)‖3] <∞, E

sup
θ∈Θ

∥∥∥∥∥∂ht (θ)
∂θi

∥∥∥∥∥
3
 <∞, E

sup
θ∈Θ

∥∥∥∥∥∂2ht (θ)
∂θi∂θj

∥∥∥∥∥
3
 <∞,

E[sup
θ∈Θ

∥∥∥ĥt (θ)
∥∥∥3

] <∞, E

sup
θ∈Θ

∥∥∥∥∥∥∂ĥt (θ)
∂θi

∥∥∥∥∥∥
3
 <∞, E

sup
θ∈Θ

∥∥∥∥∥∥∂
2ĥt (θ)
∂θi∂θj

∥∥∥∥∥∥
3
 <∞,

sup
θ∈Θ
‖R−1(θ)‖ ≤ C, sup

θ∈Θ
‖D−1

t (θ)‖ ≤ C, sup
θ∈Θ
‖D̂−1

t (θ)‖ ≤ C,

E[sup
θ∈Θ
‖ht (θ)− ĥt (θ) ‖] = O(tkφt),

E

sup
θ∈Θ

∥∥∥∥∥∥∂ht (θ)
∂θi

− ∂ĥt (θ)
∂θi

∥∥∥∥∥∥
 = O(tkφt), E

sup
θ∈Θ

∥∥∥∥∥∥∂
2ht (θ)
∂θi∂θj

− ∂2ĥt (θ)
∂θi∂θj

∥∥∥∥∥∥
 = O(tkφt).

Proof. Notice that since ρ (B) < 1 on Θ, and Θ is compact

sup
θ∈θ
‖Bt‖ ≤ Cφt. (B.11)

Since ρ (B) < 1, recursions give that ht (θ) = ∑∞
i=0B

i(κ+AX�2
t−1−i), so by repeated

use of Minkowski’s inequality, the compactness of Θ, (B.11), and the fact that
E[‖Xt‖6] <∞ yield that

E[sup
θ∈Θ
‖ht (θ) ‖3] <∞. (B.12)

Moreover, ĥt (θ) = ∑t−1
i=0 B

i(κ+AX�2
t−1−i) +Btĥ0, so similar arguments and the fact

that ĥ0 is fixed yield that for all t ∈ N0, E[supθ∈Θ ‖ĥt (θ) ‖3] <∞. Next, we consider
the partial derivatives (potentially of the left/right type) of ht(θ). For convenience,
we differentiate with respect to the standard parametrization as introduced in sub-
section 2.1, i.e. without loss of generality we let θ = (κ′, vec(A)′, vec (B)′ , vech0(R)′)′.
Let r̃2

..= d+ d2 and r̃1
..= d+ 2d2. Using that ρ (B) < 1,

∂ht (θ)
∂θi

=
∞∑
j=0

Bi ∂κ

∂θi
for i = 1, ..., d,
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∂ht (θ)
∂θi

=
∞∑
j=0

Bi∂A

∂θi
X�2
t−1−i for i = d+ 1, ..., r̃2,

∂ht (θ)
∂θi

=
∞∑
j=0

Bi∂B

∂θi
ht−1−i for i = r̃2 + 1, ..., r̃1.

So repeated use of Minkowski’s inequality, E[‖Xt‖6] < ∞, (B.12), (B.11), and the
compactness of Θ yield that

E

sup
θ∈Θ

∥∥∥∥∥∂ht (θ)
∂θi

∥∥∥∥∥
3
 <∞ (B.13)

for i = 1, ..., r̃1. By similar arguments,

E

sup
θ∈Θ

∥∥∥∥∥∂2ht (θ)
∂θi∂θj

∥∥∥∥∥
3
 <∞, E

sup
θ∈Θ

∥∥∥∥∥∥∂ĥt (θ)
∂θi

∥∥∥∥∥∥
3
 <∞, E

sup
θ∈Θ

∥∥∥∥∥∥∂
2ĥt (θ)
∂θi∂θj

∥∥∥∥∥∥
3
 <∞,
(B.14)

for all i, j = 1, ..., r̃1. Moreover, supθ∈Θ ‖R−1(θ)‖ ≤ C, supθ∈Θ ‖D−1
t (θ)‖ ≤ C, and

supθ∈Θ ‖D̂−1
t (θ)‖ ≤ C follow by arguments given in Francq and Zakoïan (2012a,

p.195). We have that ht (θ)− ĥt (θ) = Bt[h0 (θ)− ĥ0], so (B.11), (B.12) and the fact
that ĥ0 is fixed give that E[supθ∈Θ ‖ht (θ)− ĥt (θ) ‖] = O(φt). Similarly,

∂ht (θ)
∂θi

− ∂ĥt (θ)
∂θi

= Bt

∂h0 (θ)
∂θi

− ∂ĥ0 (θ)
∂θi

 for i = 1, ..., r̃2,

∂ht (θ)
∂θi

−∂ĥt (θ)
∂θi

= ∂Bt

∂θi

[
h0 (θ)− ĥ0

]
+Bt

∂h0 (θ)
∂θi

− ∂ĥ0 (θ)
∂θi

 for i = r̃2 + 1, ..., r̃1,

and we conclude, using (B.13), that

E

sup
θ∈Θ

∥∥∥∥∥∥∂ht (θ)
∂θi

− ∂ĥt (θ)
∂θi

∥∥∥∥∥∥
 = O(tφt) for i = 1, ..., r̃1. (B.15)

Likewise, using (B.14),

E

sup
θ∈Θ

∥∥∥∥∥∥∂
2ht (θ)
∂θi∂θj

− ∂2ĥt (θ)
∂θi∂θj

∥∥∥∥∥∥
 = O(t2φt) for i, j = 1, ..., r̃1. (B.16)

Lemma B.3. Under the assumptions of Theorem 3.1, the matrix Σ defined in (3.13)
is finite.
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Proof. Due to Hölder’s inequality, it suffices to show that E{[∂lt(θ0)/∂θi)]2} <∞ for
all i = 1, ..., s0, where s0 is the dimension of θ. Similar to the proof of Lemma B.2,
we consider (without loss of generality) differentiation with respect to the standard
parametrization where θ = (κ′, vec(A)′, vec (B)′ , vech0(R)′)′. We define r̃2

..= d+ d2

and r̃1
..= d+ 2d2. From Francq and Zakoïan (2012a, p.198), it holds that

∂lt(θ0)
∂θi

= tr
{

(Id −R−1
0 εtε

′
t)
∂D0t

∂θi
D−1

0t + (Id − εtε′tR−1
0 )D−1

0t
∂D0t

∂θi

}

for i = 1, ..., r̃1, where the “0” indicates that the functions are evaluated at θ0, and
εt ..= R

1/2
0 Zt. It holds that for i = 1, ..., r̃1,

∂Dt

∂θi
= 1

2D
−1
t diag

(
∂ht(θ)
∂θi

)
, (B.17)

so by Lemma B.2, it holds that E[‖∂D0t/∂θi‖3] < ∞. Since ∂D0t/∂θi and εtε
′
t

are independent, and E[‖εt‖6] < ∞, we conclude using Hölder’s inequality that
E{[∂lt(θ0)/∂θi]2} <∞ for i = 1, ..., r̃1. Moreover, from Francq and Zakoïan (2012a,
p.198), it holds that

∂lt(θ0)
∂θi

= tr
{

(Id −R−1
0 εtε

′
t)
(
R−1

0
∂R0

∂θi

)}

for i = r̃1+1, ..., s0. Using similar arguments as above, we conclude that E{[∂lt(θ0)/∂θi]2} <
∞ for i = r̃1 + 1, ..., s0.

Lemma B.4. Suppose that the assumptions of Theorem 3.1 hold. Then with l̂t(θ)
and lt(θ) given by (3.2) and (3.5), respectively, the following statements are true.

1. For some k ≥ 0 and some u > 0,

E

sup
θ∈Θ

∥∥∥∥∥∥∂lt(θ)∂θ
− ∂l̂t(θ)

∂θ

∥∥∥∥∥∥
u = O(tkφt) ∀t ∈ N.

2. For some k ≥ 0 and some u > 0,

E
[
sup
θ∈Θ

∣∣∣lt(θ)− l̂t(θ)∣∣∣r
]

= O(tkφt) ∀t ∈ N.

3. For some k ≥ 0 and some u > 0,

E

sup
θ∈Θ

∥∥∥∥∥∥∂
2lt(θ)
∂θ∂θ′

− ∂l̂2t (θ)
∂θ∂θ′

∥∥∥∥∥∥
u = O(tkφt) ∀t ∈ N.
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4. E[supθ∈Θ ‖∂2lt(θ)/∂θ∂θ′‖] <∞.

Proof. Similar to the proof of Lemma B.2, we consider differentiation with respect
to the standard parametrization where θ = (κ′, vec(A)′, vec (B)′ , vech0(R)′)′, and
define r̃2

..= d + d2 and r̃1
..= d + 2d2. From Francq and Zakoïan (2012a, p.198) it

holds that for i = 1, ..., r̃1,

∂lt(θ)
∂θi

= tr
{
D−1
t

[
2Id −

(
XtX

′
tD
−1
t R−1D−1

t +D−1
t XtX

′
tD
−1
t R−1

)] ∂Dt

∂θi

}

= ξ′t
[
D−1
t ⊗ Id

]
vec

(
∂Dt

∂θi

)

with
ξt ..= vec

[
2Id −

(
XtX

′
tD
−1
t R−1D−1

t +D−1
t XtX

′
tD
−1
t R−1

)]
. (B.18)

Similarly,
∂l̂t(θ)
∂θi

= ξ̂′t[D̂−1
t ⊗ Id] vec

(
∂D̂t

∂θi

)
,

with ξ̂t ..= vec[2Id − (XtX
′
tD̂
−1
t R−1D̂−1

t + D̂−1
t XtX

′
tD̂
−1
t R−1)]. Hence,

∂lt(θ)
∂θi

− ∂l̂t(θ)
∂θi

= ξ′t
[
D−1
t ⊗ Id

]
vec

(
∂Dt

∂θi

)
− ξ̂′t[D̂−1

t ⊗ Id] vec
(
∂D̂t

∂θi

)

= (ξ′t − ξ̂′t)
[
D−1
t ⊗ Id

]
vec

(
∂Dt

∂θi

)

+ξ̂′t[(D−1
t − D̂−1

t )⊗ Id] vec
(
∂Dt

∂θi

)

+ξ̂′t[D̂−1
t ⊗ Id]

[
vec

(
∂Dt

∂θi

)
− vec

(
∂D̂t

∂θi

)]
.

It holds that

ξt − ξ̂t = vec
[
XtX

′
t(D̂−1

t −D−1
t )R−1D̂−1

t

]
− vec

[
XtX

′
tD
−1
t R−1(D−1

t − D̂−1
t )

]
+ vec

[
D̂−1
t XtX

′
t(D̂−1

t −D−1
t )R−1

]
− vec

[
(D−1

t − D̂−1
t )XtX

′
tD
−1
t R−1

]
,

and
‖D̂−1

t −D−1
t ‖ = ‖D̂−1

t (D̂t −Dt)D−1
t ‖ ≤ C‖D̂ −Dt‖,

where we have used Lemma B.2. By the same lemma for some k ≥ 0,

E[sup
θ∈Θ
‖ht (θ)− ĥt (θ) ‖] = O(tkφt),
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so we have that for some for some ũ > 0 and some k ≥ 0,

E[sup
θ∈Θ
‖D̂−1

t −D−1
t ‖ũ] = O(tkφt). (B.19)

Consequently, by Hölder’s inequality for some u? > 0,

E[sup
θ∈Θ
‖ξt − ξ̂t‖u

? ] = O(tkφt)

For i = 1, ..., r̃1,
∂Dt

∂θi
= 1

2D
−1
t diag

(
∂ht
∂θi

)
,

and due to (B.19) and

E

sup
θ∈Θ

∥∥∥∥∥∥∂ht (θ)
∂θi

− ∂ĥt (θ)
∂θi

∥∥∥∥∥∥
 = O(tkφt),

by Lemma B.2, it holds that for some u? > 0,

E

sup
θ∈Θ

∥∥∥∥∥vec
(
∂Dt

∂θi

)
− vec

(
∂D̂t

∂θi

)∥∥∥∥∥
u?
 = O(tkφt).

Consequently, by Hölder’s inequality we have that for i = 1, ..., r̃1 and some u > 0

E

sup
θ∈Θ

∣∣∣∣∣∣∂lt(θ)∂θi
− ∂l̂t(θ)

∂θi

∣∣∣∣∣∣
u = O(tkφt)

For i = r̃1 + 1, ..., s0,

∂lt(θ)
∂θi

= tr
(
R−1∂R

∂θi

)
− vec(D−1

t )′
[
(XtX

′
t)⊗

(
R−1∂R

∂θi
R−1

)]
vec(D−1

t )

and

∂l̂t(θ)
∂θi

= tr
(
R−1∂R

∂θi

)
− vec(D̂−1

t )′
[
(XtX

′
t)⊗

(
R−1∂R

∂θi
R−1

)]
vec(D̂−1

t ),

so by similar arguments as above, using (B.19) and Lemma B.2,

E

sup
θ∈Θ

∣∣∣∣∣∣∂lt(θ)∂θi
− ∂l̂t(θ)

∂θi

∣∣∣∣∣∣
u = O(tkφt)

i = r̃1 + 1, ..., s0. Using the cr-inequality, we conclude that 1. holds.



111

Turning to 2., from Francq and Zakoïan (2012a, pp.195-196),

sup
θ∈Θ

∣∣∣lt(θ)− l̂t(θ)∣∣∣ ≤ sup
θ∈Θ

∣∣∣tr{XtX
′
t(H−1

t − Ĥ−1
t )

}∣∣∣ (B.20)

+ sup
θ∈Θ

∣∣∣log {det(Ht)} − log
{

det(Ĥt)
}∣∣∣ .

It holds that

sup
θ∈Θ

∣∣∣tr{XtX
′
t(H−1

t − Ĥ−1
t )

}∣∣∣ ≤ ‖XtX
′
t‖ sup

θ∈Θ

∥∥∥H−1
t − Ĥ−1

t

∥∥∥ ,
Since

H−1
t − Ĥ−1

t = H−1
t (Ĥt −Ht)Ĥ−1

t

= D−1
t R−1D−1

t [(D̂t −Dt)RD̂t +DtR(D̂t −Dt)]D̂−1
t R−1D̂−1

t ,

it follows from Lemma B.2 and Hölder’s inequality that for some u? > 0,

E[sup
θ∈Θ
|tr{XtX

′
t(H−1

t − Ĥ−1
t )}|u? ] = O(tkφt). (B.21)

Next let hit and ĥit denote the ith element (i = 1, .., d) of ht (θ) and ĥt (θ) respec-
tively. Consider the second term in (B.20). From Ling and McAleer (2003, p.302),

| log{det(Ht)} − log{det(Ĥt)}| = | log{det(D2
t D̂
−2
t )}|

= | log(
d∏
i=1

hit/ĥit)| = |
d∑
i=1

log(hit/ĥit)|,

where we have used that hit and ĥit have a positive lower bound for each i uniformly
on Θ. Since log (1 + x) ≤ x for x > −1, we have that

| log{det(Ht)} − log{det(Ĥt)}| ≤
d∑
i=1
| log{1 + (hit − ĥit)ĥ−1

it }| ≤
d∑
i=1
|(hit − ĥit)ĥ−1

it |,

so, using Lemma B.2, for some u? > 0,

E[sup
θ∈Θ

∣∣∣log{det(Ht)} − log{det(Ĥt)}
∣∣∣u? ] = O(tkφt). (B.22)

By combining (B.20), (B.21), (B.22), and Hölder’s inequality, we conclude that point
2. holds.
Turning to point 3., expressions for ∂2lt(θ)/∂θi∂θj for different choices of i and j

are stated in Francq and Zakoïan (2012a, pp.200-201) (note that in Francq and
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Zakoïan (2012a) εt corresponds to Xt here). By similar arguments as above, relying
on Lemma B.2, we conclude that 3. holds.
In order to establish 4. it suffices to show that E[supθ∈Θ |∂2lt(θ)/∂θi∂θj|] < ∞ for
all i, j = 1, ..., s0. Again, by relying on expressions for ∂2lt(θ)/∂θi∂θi for different
choices of i and j are stated in Francq and Zakoïan (2012a, pp.200-201), it is seen
that this moment restriction holds due to Lemma B.2 and Hölder’s inequality.

Lemma B.5. Under the assumptions of Theorem 3.1, with l̂t(θ) and lt(θ) given by
(3.2) and (3.5), respectively,

1. supθ∈Θ ‖ 1
T

∑T
t=1 ∂lt(θ)/∂θ − 1

T

∑T
t=1 ∂l̂t(θ)/∂θ‖ = op(T−1/2).

2. supθ∈Θ | 1T
∑T
t=1 lt(θ)− 1

T

∑T
t=1 l̂t(θ)| = op(T−1).

3. supθ∈Θ ‖ 1
T

∑T
t=1 ∂

2lt(θ)/∂θ∂θ′ − 1
T

∑T
t=1 ∂

2l̂t(θ)/∂θ∂θ′‖ = o (1) a.s.

4. supθ∈Θ ‖ 1
T

∑T
t=1 ∂

2lt(θ)/∂θ∂θ′ − E[∂2lt(θ)/∂θ∂θ′]‖ = o (1) a.s.

Proof. In order to show 1., we use arguments similar to the ones given in Pedersen
and Rahbek (2014, Proof of Lemma B.11), see also Hafner and Preminger (2009a,
Proof of Lemma 4). For any ε > 0 and some u > 0, by the generalized Chebyshev
inequality,

P

√T sup
θ∈Θ

∥∥∥∥∥∥ 1
T

T∑
t=1

∂lt(θ)
∂θ

− ∂l̂t(θ)
∂θ

∥∥∥∥∥∥ > ε

 ≤ T (u−2)/2

εr

T∑
t=1

E

sup
θ∈Θ

∥∥∥∥∥∥∂lt(θ)∂θ
− ∂l̂t(θ)

∂θ

∥∥∥∥∥∥
u = o(1),

choosing u < 2, where we have used Lemma B.4.1.
Using similar arguments and Lemma B.4.2, we conclude that point 2. holds.
Turning to point 3., for any ε > 0 and some ũ > 0, by the generalized Chebyshev
inequality,

∞∑
t=0

P

sup
θ∈Θ

∥∥∥∥∥∥∂
2lt(θ)
∂θ∂θ′

− ∂2l̂t(θ)
∂θ∂θ′

∥∥∥∥∥∥ > ε

 ≤ ε−ũ
∞∑
t=0

E

sup
θ∈Θ

∥∥∥∥∥∥∂
2lt(θ)
∂θ∂θ′

− ∂2l̂t(θ)
∂θ∂θ′

∥∥∥∥∥∥
ũ
 <∞,

where we have used Lemma B.4.3. The Borel-Cantelli lemma then implies that
almost surely

sup
θ∈Θ

∥∥∥∥∥∥∂
2lt(θ)
∂θ∂θ′

− ∂2l̂t(θ)
∂θ∂θ′

∥∥∥∥∥∥→ 0 as t→∞,

and point 3. then follows by Cesàro’s mean theorem.
The proof of 4. follows by Lemma B.4.4 and a uniform law of large numbers for
ergodic processes, see e.g. Ranga Rao (1962).



113

Lemma B.6. Let Zβ, Gδ, and Jδδ be defined according to (A.1). Moreover, with
Λ = Λβ × Λδ defined in Assumption 5, let λΛ = (λΛ′

β , λ
Λ′
δ )′satisfy ‖Z − λΛ‖2

J =
infλ∈Λ ‖Z − λ‖2

J and let λΛβ satisfy ‖Zβ−λΛβ‖2
(KJ−1K′)−1 = infλβ∈Λβ ‖Zβ−λβ‖2

(KJ−1K′)−1.
Under Assumptions 1-6,

1. Z ′JZ = Z ′β(KJ−1K ′)−1Zβ +G′δJ
−1
δδ Gδ,

2. ‖Z − λΛ‖2
J = ‖Zβ − λΛβ‖2

(KJ−1K′)−1 = ‖Zβ − λΛ
β‖2

(KJ−1K′)−1,

3. λΛ
β = λΛβ .

Proof. The proof follows the lines of Andrews (1999, Proof of Theorem 4). First,
recall that for matrices A ∈ Rm×m, B ∈ Rm×n, C ∈ Rn×m, and D ∈ Rn×n satisfying

that E ..=
A B

C D

, D, and (A−BD−1C) are nonsingular, then

E−1 =
 (A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 D−1 +D−1C(A−BD−1C)−1BD−1

 .(B.23)
Define the matrices

M ..=
 Is1

−J−1
δδ Jδβ

 , P⊥ ..= MK, P ..= Is0 − P⊥.

Observe that by orthogonality

(Px1)′J(P⊥x2) = 0 ∀x1, x2 ∈ Rs0 . (B.24)

By (B.23),
KJ−1K ′ = (Jββ − JβδJ−1

δδ Jδβ)−1, (B.25)

and, moreover,
M ′JM = Jββ − JβδJ−1

δδ Jδβ,

so
M ′JM = (KJ−1K ′)−1. (B.26)

Let K̄ ..= (0s2×s1 , Is2). By definition Is0 = (K ′, K̄ ′)′, so

PJ−1G =
KPJ−1G

K̄PJ−1G

 . (B.27)
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It holds that

KP = K(Is0 −MK)

= K −KMK

= K − [Is1 , 0s1×s2 ]
 Is1

−J−1
δδ Jδβ

K
= 0s1×s0 , (B.28)

so
KPJ−1G = 0s1×1.

Furthermore, make the following partition J−1 =
J (1) J (2)

J (3) J (4)

 according to (B.23)

such that J (1) ..= (Jββ − JβδJ
−1
δδ Jδβ)−1, J (2) ..= −J (1)JβδJ

−1
δδ , J (3) ..= −J−1

δδ JδβJ
(1),

and J (4) ..= J−1
δδ + J−1

δδ JδβJ
(1)JβδJ

−1
δδ , with Jββ, Jβδ, Jδβ, and Jδδ defined according

to (A.1). Then

JδδKPJ
−1G = JδδK̄(Is1+s2 −MK)J−1G

= Jδδ([0s2×s1 , Is2 ]− K̄M [Is1 , 0s1×s2 ])
J (1) J (2)

J (3) J (4)

G
= Jδδ([J (3), J (4)]− K̄M [J (1), J (2)])G

= Jδδ

[J (3), J (4)]− K̄
 Is1

−J−1
δδ Jδβ

 [J (1), J (2)]
G

= Jδδ

[J (3), J (4)]− [0s2×s1 , Is2 ]
 [J (1), J (2)]
−J−1

δδ Jδβ[J (1), J (2)]

G
= Jδδ([J (3), J (4)] + J−1

δδ Jδβ[J (1), J (2)])G

= ([JδδJ (3), JδδJ
(4)] + Jδβ[J (1), J (2)])G

Hence,

JδδK̄PJ
−1G = ([−JδβJ (1), Ir + JδβJ

(1)JβδJ
−1
δδ ] + [JδβJ (1),−JδβJ (1)JβδJ

−1
δδ ])G

= [0s2×s1 , Is2 ]G (B.29)

= Gδ.

Combining (B.27), (B.32), and (B.29) yields

PJ−1G =
 0s1×1

J−1
δδ Gδ

 . (B.30)
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Now (B.24) implies that

Z ′JZ = (PZ)′ J (PZ) + (P⊥Z)′J(P⊥Z).

This combined with (B.26), (B.30), and that Z = −J−1G (by definition) proves 1.
For λ = (λ′β, λ′δ) ∈ Λβ × Λδ it holds that

Pλ =
 0s1×1

λδ + J−1
δδ Jδβλβ

 . (B.31)

Using (B.24), (B.31), (B.30), and (B.26) gives

‖Z − λ‖2
J = ‖P (Z − λ)‖2

J + ‖P⊥ (Z − λ) ‖2
J

=

∥∥∥∥∥∥
 0s1×1

J−1
δδ Gδ

−
 0s1×1

λδ + J−1
δδ Jδβλβ

∥∥∥∥∥∥
2

J

+ ‖K (Z − λ)‖2
M ′JM

= ‖J−1
δδ Gδ − λδ − J−1

δδ Jδβλβ‖2
Jδδ

+ ‖Zβ − λβ‖2
(KJ−1K′)−1 . (B.32)

Since Λ = Λβ × Λδ and Λδ = Rs2 , for any λβ ∈ Λβ

inf
λδ∈Λδ

‖J−1
δδ Gδ − λδ − J−1

δδ Jδβλβ‖2
Jδδ

= inf
λδ∈Rr

‖J−1
δδ Gδ − λδ − J−1

δδ Jδβλβ‖2
Jδδ

= 0,

so
inf
λ∈Λ
‖Z − λ‖2

J = inf
λβ∈Λβ

‖Zβ − λβ‖2
(KJ−1K′)−1 ,

which proves the first equality of 2. holds. Turning to the second equality of 2.,
notice that

0 ≤ ‖Zβ − λΛ
β‖2

(KJ−1K′)−1 − ‖Zβ − λΛβ‖2
(KJ−1K′)−1

≤ ‖Zβ − λΛ
β‖2

(KJ−1K′)−1 + ‖J−1
δδ Gδ − λΛ

δ − J−1
δδ Jδβλ

Λ
β‖2

Jδδ
− ‖Zβ − λΛβ‖2

(KJ−1K′)−1

= ‖Z − λΛ‖2
J − ‖Zβ − λΛβ‖2

(KJ−1K′)−1 = 0,

where we have used (B.32) and the first equality of 2.
Point 3. follows from 2, and the fact that λΛβ is unique due to the convexity of
Λβ.

Lemma B.7. Let {Yt : t ∈ N0}, Yt = (X�2′
t , σ2′

t )′, be the Markov chain generated by
the ECCC-GARCH model (2.1)-(2.4) for t ≥ 1, with fixed initial values X0

..= x ∈
Rd and σ2

0
..= h ∈ (0,∞)d, and with fixed θ = [κ′0, vec(A0)′, vec(B0)′, vech0(R0)′]′.

Suppose that ρ(B0) < 1 and that the diagonal elements of A0 are strictly positive. Let
p ∈ N, and suppose that the distribution, Γ, of εt ..= R

1/2
0 ηt admits a probability den-
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sity strictly positive on Rd with E[(ε�2
t )⊗p] <∞, and ρ(E{[A0diag(ε�2

t ) +B0]⊗p}) <
1. Then {Yt : t ∈ N0} is geometrically ergodic on [0,∞)d × (0,∞)d, and the
associated strictly stationary process {Yt : t ∈ Z} is geometrically β-mixing with
E[(X�2

t )⊗p] <∞.

Proof. The proof is similar to Pedersen (2015, Proof of Lemma B.8). Consider the
process {σ2

t : t ∈ N0} given by σ2
t = κ0 + [A0 diag(ε�2

t−1) + B0]σ2
t−1, with σ2

0 = h.
Relying on the theory of Boussama et al. (2011), it follows from Pedersen (2015,
Proof of Lemma B.8) that {σ2

t : t ∈ N0} is a Markov chain which is aperiodic and ψ-
irreducible on (0,∞)d, see Meyn and Tweedie (2009, Section 4.2). These properties
of the Markov chain allow us, due to Tjøstheim (1990), to consider a k-step drift cri-
terion for the Markov chain for some k ∈ N. Specifically, with B((0,∞)d) the Borel
σ-field of (0,∞)d, we want to show that there exists a small set K ∈ B((0,∞)d),
positive constants a < 1 and b <∞, and a Lyapunov function Vσ : (0,∞)d → [1,∞)
such that for some fixed k ∈ N,

E
[
Vσ(σ2

k)|σ2
0 = h

]
≤ aVσ (h) + b · 1(h ∈ K) ∀h ∈ (0,∞)d.

With ιdp a (dp × 1) vector of ones, consider the function Vσ (h) ..= 1 + ι′dph
⊗p, and,

for some constant m sufficiently large, the set K ..= {h ∈ (0,∞)d : ι′dph⊗p ≤ m}.
For t ∈ N, it holds that (σ2

t+1)⊗p = Ct,p + [A0 diag(ε�2
t ) + B0]⊗p(σ2

t )⊗p, where for
p ≥ 2 Ct,p ..= {Ct,p−1⊗σ2

t + [A0 diag(ε�2
t ) +B0]⊗p−1⊗κ0} and Ct,1 ..= κ0. Recursions

give that

(σ2
t+k)⊗p =

k−1∑
i=0

i∏
j=1

[A0 diag(ε�2
t+k−j)+B0]⊗pCt+k−1−i,p+

k∏
i=1

[A0 diag(ε�2
t+k−i)+B0]⊗p(σ2

t )⊗p.

Observe that

E
[
Vσ(σ2

k)|σ2
0 = h

]
= 1 + ι′dpC̃ + ι′dp(E{[A0 diag(ε�2

t ) +B0]⊗p})kh⊗p
1 + ι′dph

⊗p Vσ (h) ,

where we have used that {εt} is i.i.d. and where C̃ contains terms of h of lower
order than p. Since ρ(E{[A0 diag(ε�2

t ) + B0]⊗p}) < 1 and choosing k sufficiently
large, there exists an m large enough such that for h ∈ K{, Vσ (h) ≥ 1 + ι′dpC̃ +
ι′dp(E{[A0 diag(ε�2

t ) + B0]⊗p})kh⊗p. We conclude that suitable constants a and b

exist. In line with Boussama et al. (2011, Section 4.6) it can be shown that K is
small. It then holds that {σ2

t : t ∈ N0} is Vσ-geometrically ergodic. From Meitz and
Saikkonen (2008, Proposition 1 and the comments immediately after) we conclude
that {Yt : t ∈ N0} is VY -geometrically ergodic, for some suitable function VY :
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[0,∞)d× (0,∞)d → [1,∞), and that the associated strictly stationary process {Yt :
t ∈ Z} is geometrically β-mixing. Moreover, E[‖(σ2

t )⊗p‖] ≤ CE[Vσ(σ2
t )] < ∞, and

by using that E[(ε�2
t )⊗p] <∞, we have that E[(X�2

t )⊗p] <∞.

Lemma B.8. Let {Xt : t ∈ Z}, be a strictly stationary process generated by the
ECCC-GARCH model (2.1)-(2.4) with fixed θ = [κ′0, vec(A0)′, vec(B0)′, vech0(R0)′]′ ∈
Θ. For p ∈ N suppose that E[(X�2

t )⊗p] <∞. Then ρ(E{[A0 diag(ε�2
t )+B0]⊗p}) < 1,

where εt ..= R
1/2
0 ηt.

Proof. The proof is similar to that of Ling and McAleer (2002, Proof of Theorem
2.1). Notice that E[(ε�2

t )⊗p] < ∞ is necessary for E[(X�2
t )⊗p] < ∞, and that

E[(σ2
t )⊗p] <∞. Similar to the proof of Lemma B.7, we obtain for k ∈ N

(σ2
t )⊗p =

k−1∑
i=0

i∏
j=1

[A0 diag(ε�2
t−j) +B0]⊗pCt−1−i,⊗p +

k∏
i=1

[A0 diag(ε�2
t−i) +B0]⊗p(σ2

t−k)⊗p.

Since ∏k
i=1[A0 diag(ε�2

t−i) +B0]⊗p(σ2
t−k)⊗p ≥ 0 ∀k and Ct−1−i,⊗p ≥ κ⊗p0 , we obtain

∞ > E[(σ2
t )⊗p] ≥

∞∑
i=0

(
E
{

[A0 diag(ε�2
t ) +B0]⊗p

})i
κ⊗p0 . (B.33)

Since (E{[A0 diag(ε�2
t )+B0]⊗p}) ≥ 0 and κ⊗p0 ∈ (0,∞)dp , we have, in light of (B.33),

that ∑∞i=0(E{[A0 diag(ε�2
t )+B0]⊗p})i converges, which is necessary and sufficient for

ρ(E{[A0 diag(ε�2
t ) +B0]⊗p}) < 1.

Appendix C The LMECCC statistic of Nakatani and
Teräsvirta (2009)

Proposition C.1. Let ĴT (θ) and ŜT (θ) be defined by (4.3), let K1 be defined by
(4.4), and let θ̃T be the constrained estimator given in (4.2). Consider the test
statistic given by

LMECCC = 1
2T ŜT (θ̃T )′K ′1[K1ĴT (θ̃T )−1K ′1]K1ŜT (θ̃T ).

With the matrices J and Σ defined in (3.13) and λΛ0 defined in (4.5), let L(G) =
N(0,Σ) and consider the partitions of J , G, and λΛ0, according to θ = (β′1, β′2, δ′)′,
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given by

J =


Jβ1β1 Jβ1β2 Jβ1δ

Jβ2β1 Jβ2β2 Jβ2δ

Jδβ1 Jδβ2 Jδδ

 , G =


Gβ1

Gβ2

Gδ

 , and λΛ0 =


λΛ0
β1

λΛ0
β2

λΛ0
δ

 .

Under Assumptions 1-7 and H0,

LMECCC
w→ 1

2‖ζ‖
2
(K1J−1K′1), (C.1)

where ζ ..= Gβ1 − Jβ1δJ
−1
δδ Gδ + (Jβ1β2 − Jβ1δJ

−1
δδ Jδβ2)λΛ0

β2 .
Suppose in addition that s̃1 = s1 and that Σ is positive definite. Then

LMECCC
w→

m∑
i=1

ξiχ
2
mi
, (C.2)

where ξi, i = 1, ...,m, are the m distinct eigenvalues of (1/2)Ω1/2(K1J
−1K ′1)Ω1/2,

with Ω1/2 the positive definite matrix square root of the (s1× s1) matrix Ω, given by

Ω = Σββ − JβδJ−1
δδ Σδβ − ΣβδJ

−1
δδ Jδβ + JδβJ

−1
δδ ΣββJ

−1
δδ Jδβ,

and χ2
mi
, i = 1, ...,m are mutually independent, and mi is the multiplicity of ξi.

Finally, suppose furthermore that L(ηt) = N(0, Id), then

LMECCC
w→ χ2

s1 . (C.3)

Proof. Similar to the derivations in proof of Theorem 4.1 we obtain from a Taylor-
type expansion,

√
TK1ŜT (θ̃T ) =

√
T
L̂T (θ0)
∂β1

+ ∂2L̂T (θ?)
∂β1∂θ′

√
T (θ̃T − θ0)

=
√
T
L̂T (θ0)
∂β1

+ ∂2L̂T (θ?)
∂β1∂β′2

√
T (β̃2,T − β2,0) + ∂2L̂T (θ?)

∂β1∂δ′

√
T (δ̃T − δ0)

where θ? is between θ̃T and θ0, and where the second equality follows from the fact
that β̃1,T − β1,0 = 0s̃1×1. Since δ0 does not attain the bounds of Θ, we have by a
Taylor-type expansion that

0s2×1 = L̂T (θ0)
∂δ

+ ∂2L̂T (θ??)
∂δ∂θ′

(θ̃T − θ0)
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= L̂T (θ0)
∂δ

+ ∂2L̂T (θ??)
∂δ∂β′2

(β̃2,T − β2,0) + ∂2L̂T (θ??)
∂δ∂δ′

(δ̃T − δ0), (C.4)

where θ?? is between θ̃T and θ0. Hence

(δ̃T − δ0) = −
(
∂2L̂T (θ??)
∂δ∂δ′

)−1 [
L̂T (θ0)
∂δ

+ ∂2L̂T (θ??)
∂δ∂β′2

(β̃2,T − β2,0)
]
, (C.5)

and substituting (C.5) into (C.4) and rearranging yield

√
TK1ŜT (θ̃T ) =

√
T
L̂T (θ0)
∂β1

− ∂2L̂T (θ?)
∂β1∂δ′

(
∂2L̂T (θ??)
∂δ∂δ′

)−1√
T
L̂T (θ0)
∂δ

+
∂2L̂T (θ?)
∂β1∂β′2

− ∂2L̂T (θ?)
∂β1∂δ′

(
∂2L̂T (θ??)
∂δ∂δ′

)−1
∂2L̂T (θ??)
∂δ∂β′2

√T (β̃2,T − β2,0).

From Lemma B.5, using that
√
T (θ̃T − θ0) and

√
TST (θ0) are Op(1),

√
TK1ŜT (θ̃T ) =

√
T
LT (θ0)
∂β1

− Jβ1δJ
−1
δδ

√
T
LT (θ0)
∂δ

+
[
Jβ1β2 − Jβ1δJ

−1
δδ Jδβ2

]√
T (β̃2,T − β2,0) + op(1)

w→ Gβ1 − Jβ1δJ
−1
δδ Gδ + (Jβ1β2 − Jβ1δJ

−1
δδ Jδβ2)λΛ0

β2 , (C.6)

where we have used that the terms converge jointly due to point 1. of the proof
of Theorem 3.1, and that

√
T (θ̃T − θ0) w→ λΛ0 . Moreover, Lemma B.5 and the

consistency of θ̃T imply that

K1ĴT (θ̃T )−1K ′1 = K1J
−1K ′1 + op(1). (C.7)

Hence by combining (C.6) and (C.7) and by applying the continuous mapping the-
orem, we have shown that (C.1) holds.
Next, for the case s̃1 = s1, we have that β2 vanishes such that

√
TK1ŜT (θ̃T ) =

√
T
LT (θ0)
∂β1

− Jβ1δJ
−1
δδ

√
T
LT (θ0)
∂δ

+ op(1)

= (Is1 ,−Jβ1δJ
−1
δδ )
√
T
LT (θ0)
∂θ

+ op(1)
w→ (Is1 ,−Jβ1δJ

−1
δδ )G, (C.8)

where we have used arguments similar to the ones given above. It holds that

L[(Is1 ,−Jβ1δJ
−1
δδ )G] = N(0,Ω). (C.9)
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Combining (C.7)-(C.9) and using White (1996, Theorem 8.6), we conclude that (C.2)
holds. In the case where s̃1 = s1 and L(ηt) = N(0, Id), the information equality
implies that 2Σ = J and it is straightforward, using (B.23) and the continuous
mapping theorem, to establish that (C.3) holds.

Appendix D Additional details about the simula-
tions

This section contains some additional details about the simulations reported in Sec-
tion 5.

• The simulations are carried out in OxMetrics 7.0.

• All replications are based on a burn-in period of 1,000 observations, and all
simulations are based on the same seed value.

• The computation of the QMLE θ̂T and the constrained QMLE θ̃T is based on
maximization of the log-likelihood function according to the MaxSQP function.
For the computation of θ̂T we use the starting values:

κ =
1.0

1.0

 , A =
0.10 0.05

0.05 0.11

 , B =
0.85 0.05

0.05 0.80

 , ρ = 0.5.

For the computation of θ̃T we use the starting values:

κ =
1.0

1.0

 , A =
0.10

0.11

 , B =
0.85

0.80

 , ρ = 0.5.

• For the computation of the log-likelihood function, we use as initial value
ĥ0 = T−1∑T

t=1X
�2
t .

• The following constraints are imposed on the parameters for the optimiza-
tion: With κ = (κ1, κ2)′, κ1, κ2 ≥ 0.000001, ρ ∈ [−0.99999, 0.99999], and all
elements of the matrices A and B are nonnegative.

• All derivatives of the log-likelihood function are obtained by numerical tech-
niques.

• If a replication yields an estimate ĴT (θ̂T ) or ĴT (θ̃T ) that is found to be (numer-
ically) singular, this replication is discarded from the calculations. The singu-
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larity of the matrices was mainly an issue for the replications with T = 1,000
observations.
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