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Summary

The three self-contained chapters of this dissertation evolves around different aspects

of a Farmer Field School intervention taking place in northern Tanzania, studying

the diffusion of agricultural technologies and how agriculture links to food security,

poverty and child health. The intervention is called RIPAT (Rural Initiatives for Par-

ticipatory Agricultural Transformation) and was funded by the Rockwool Foundation.

As a consultant for the Rockwool Foundation I administered a large scale data collec-

tion for an impact evaluation of RIPAT.

All three chapters of my dissertation build on these data. The first two chapters

are coauthored with Helene Bie Lilleør. A recurrent theme in this dissertation is the

identification of causal effects. Since participation in RIPAT is voluntary, the data does

not offer direct experimental variation which I can exploit for identification, and there

exists no baseline data collected before the implementation of RIPAT I to control for

selection. I pursue different identification strategies which are detailed in the three

chapters. In the following, I provide a preview of the findings.

Food security and poverty: The first chapter provides a broad impact evaluation of

RIPAT with a focus on food security and poverty which were the development ob-

jectives stated in the original project documentation. Despite the strong potential of

agricultural interventions to affect food security and the poverty status of small scale

farmers, existing studies of Farmer Field School interventions focus on short term out-

comes such as knowledge, take-up, and agricultural yields. We employ four different

estimators to identify the impact of RIPAT on food security and poverty, and they all

yield consistent results: The RIPAT households become more food secure in particu-

lar in the hungry season, but we do not detect any impacts on our poverty indicators.

These finding can be explained by a reallocation of labor resources toward own agri-

cultural production and improved production smoothing which may have improved

food security while leaving poverty unaffected.

Child health: The second chapter studies the impact of RIPAT on the health of chil-

dren below five years of age living in the RIPAT households. Agricultural production
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is an underlying determinant of child nutrition, and the improvement we found in

food security among the RIPAT households has the potential to materialize in better

child nutrition and thereby taller children. We find that young children conceived

after the phase-in of RIPAT have become 0.8 standard deviations taller and are 17.6

percentage points less likely to be stunted (i.e. severely reduced height-for-age). The

large impacts may be explained by the fact that the area was hit by a drought in 2009.

The RIPAT project is designed to make the agricultural production more resistant to

droughts, and the results show that the children in RIPAT households were indeed

better shielded against the adverse consequences of the drought than children from

comparison households regardless of whether we compare to comparison households

in nearby villages or to non-RIPAT households within RIPAT villages. We investigate if

the results could be driven by self-selection into RIPAT based on better drought coping

capabilities, but we find no evidence in support of this.

Adoption of technologies: The main component of the RIPAT intervention was the

introduction of improved banana cultivation. In the third chapter I assess how the

adoption of improved banana cultivation among non-RIPAT farmers in RIPAT villages

depends on their links to RIPAT participants who grow improved bananas. In the ex-

isting literature on networks and technology adoption, network effects are interpreted

as social learning. I show that a farmer’s network can affect the adoption of a new crop

not only through social learning, but also by providing necessary inputs for adoption. I

set up a simple model for adoption of a new crop where the farmer’s network can pro-

vide both information about the expected yield of the new crop and necessary inputs

for adoption. I derive the same model implications for how the network affects adop-

tion regardless of whether the network provides inputs or information. Empirically,

I find that a farmer is 39 percentage points more likely to adopt banana cultivation if

there is at least one farmer growing improved bananas in the farmer’s network. The

data suggests that the provision of inputs (banana seedlings) through networks plays

an important role for the strong network effects found. This is particularly important

for the diffusion of new agricultural technologies in areas that suffer from poor infras-
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tructure which impedes the distribution of agricultural inputs.

Resumé (Danish summary)

De tre selvstændige kapitler i denne afhandling behandler forskellige aspekter af en

Farmer Field School intervention i det nordlige Tanzania. Jeg studerer hvordan en

ny landbrugsteknologi spreder sig fra bonde til bonde, og hvordan landbrugsprojek-

tet påvirker fødevaresikkerhed, fattigdom og børns sundhed. Interventionen hedder

RIPAT (Rural Initiatives for Participatory Agricultural Transformation) og blev finan-

sieret af Rockwool Fonden. Som konsulent for Rockwool Fonden har jeg administreret

en stor dataindsamling, som havde det formål at evaluere RIPAT.

Alle tre kapitler i min afhandling bygger på disse data. De to første kapitler har jeg

skrevet sammen med Helene Bie Lilleør. Et gennemgående tema i denne afhandling

er identifikation af kausale effekter. Da deltagelsen i RIPAT er frivillig, indeholder

dataene ikke nogen direkte eksperimentel variation, som jeg kan udnytte til identi-

fikation, og der er ikke blevet indsamlet baseline data før gennemførelsen af RIPAT,

som ellers kunne bruges til at kontrollere for selektionen ind i projektet. Jeg udnytter

forskellige strategier til at identificere kausale effekter, som jeg beskriver i detaljer i de

tre kapitler. Her giver jeg et samlet overblik over resultaterne.

Fødevaresikkerhed og fattigdom: Det første kapitel indeholder en bred effektevaluer-

ing af RIPAT med fokus på fødevaresikkerhed og fattigdom, som var de udviklingsmål,

der var anført i de oprindelige projektdokumenter. På trods af det store potentiale

landbrugsinterventioner har til at påvirke sult og fattigdom blandt små landmænd,

fokuserer eksisterende studier af Farmer Field School interventioner på kortsigtede

resultater, såsom viden, anvendelse af nye teknologier, samt landbrugsudbytte. Vi an-

vender fire forskellige estimatorer for at identificere effekten af RIPAT på sult og fattig-

dom, og de giver alle ensartede resultater: RIPAT-husholdningerne sulter mindre især

i sulte-sæsonen umiddelbart før næste høst, men vi kan ikke påvise nogen effekter på

vores fattigdomsindikatorer. Disse umiddelbart overraskende resultater kan potentielt
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forklares ud fra en ændring i hvordan husholdningerne anvender deres arbejdskraft,

samt en udjævning af landbrugsproduktion hen over landbrugssæsonen.

Børns sundhed: I det andet kapitel undersøger vi effekten af RIPAT på ernæring for

de børn som er under fem år gamle og bor i en RIPAT-husholdning. Landbrugspro-

duktionen er en underliggende faktor som påvirker børneernæring, og den forbedring

vi fandt i fødevaresikkerhed blandt RIPAT-husholdningerne har potentiale til at ma-

terialisere sig i bedre børneernæring og dermed højere børn. Vi finder, at børn, der

er undfanget efter indfasningen af RIPAT er blevet 0,8 standardafvigelser højere og er

17,6 procentpoint mindre tilbøjelige til at blive for lave i forhold til deres alder. De store

effekter kan forklares ved, at området blev ramt af en tørke i 2009. RIPAT-projektet er

designet til at gøre landbrugsproduktionen mere modstandsdygtig over for tørke, og

resultaterne viser, at børnene fra RIPAT-husholdninger faktisk var bedre beskyttet mod

de negative konsekvenser af tørken end børn fra sammenlignings-husholdninger. Vi

undersøger, om resultaterne kunne være drevet af, at husholdninger, der i forvejen var

bedre rustet til at klare sig gennem en tørke, valgte at deltage i RIPAT, men vi finder

ikke noget tegn på, at det skulle være tilfældet.

Anvendelse af en ny teknologi: Det vigtigste element i RIPAT var introduktionen af

en ny og bedre måde at dyrke bananer på. I det tredje kapitel anvender jeg data fra

ikke-RIPAT bønder i RIPAT landsbyer for at undersøge, hvem der vælger at dyrke

bananer afhængigt af, om de kender RIPAT deltagere som dyrker bananer. I den eksis-

terende litteratur om netværk og teknologianvendelse fortolkes netværkseffekter som

tegn på, at der videregives information i netværket. Jeg viser, at en bondes netværk

kan påvirke beslutningen om at dyrke bananer ikke kun gennem videregivelse af in-

formation, men også ved at videregive et nødvendigt input til at dyrke bananer, nem-

lig forbedrede bananstiklinger. Jeg opstiller en simpel model for beslutningen om at

dyrke en ny afgrøde, hvor bondens netværk både kan videregive et nødvendigt in-

put for at dyrke den nye afgrøde og oplysninger om det forventede udbytte af den

nye afgrøde. Uanset om jeg antager at netværket videregiver input eller information,

kan jeg udlede de samme forudsigelser fra modellen om, hvordan netværket påvirker
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beslutningen om at dyrke den nye afgrøde. Min dataanalyse viser, at en bonde er

39 procentpoint mere tilbøjelig til at dyrke bananer, hvis vedkomne kender mindst én

bonde som dyrker bananer. Det fremgår desuden af data at videregivelse af bananstik-

linger gennem bøndernes netværk spiller en vigtig rolle for de stærke netværkseffekter

jeg finder. Dette er især vigtigt for udbredelsen af nye landbrugsteknologier i områder

med dårlig infrastruktur, hvor distribution af nye landbrugsinput enten er meget dyr

eller ikke-eksisterende.
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Beyond the field: The impact of Farmer Field

Schools on food security and poverty alleviation

Anna Folke Larsen and Helene Bie Lilleør∗

Abstract

We estimate the impact of a Farmer Field School intervention among small-

scale farmers in northern Tanzania on two main development objectives: food se-

curity and poverty. We employ a series of evaluation methodologies, including

a Quasi-Difference-in-Difference setup, to account for potential selection into the

project, despite lack of baseline data. We find strong positive effects on food se-

curity, but no effect on poverty. Investigating possible mechanisms for this result

shows that reallocation of labor resources toward own agricultural production and

improved production smoothing may have led to improved food security while

poverty remained unaffected.

1 Introduction

The majority of poor households in developing countries rely on subsistence agricul-

ture for their own food production and as a source of income. Over the past few

decades, various initiatives have been taken aimed at increasing food production by

∗Anna Folke Larsen: Department of Economics, University of Copenhagen, afl@econ.ku.dk. Helene
Bie Lilleør: Rockwool Foundation Research Unit, hbl@rff.dk. Published in 2014 in World Development,
64: 843-859. Final revision accepted: July 9, 2014. All the views expressed in this paper are those of the
authors and do not necessarily reflect the views of the Rockwool Foundation. The Rockwool Founda-
tion funded the RIPAT implementation and the data collection for the evaluation. We are grateful for
comments and advice from RECODA, Jens Vesterager, Mette Ejrnæs, Torben Tranæs, Cathrine Søgaard
Hansen, Maria Fibæk, as well as from participants in the CAM Christmas workshop 2011. All remaining
errors are of course our own.
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closing the technology gap faced by subsistence farmers. Such initiatives have worked

either directly, through the supply of new technologies such as fertilizer, seeds of im-

proved plant varieties or new animal breeds, or more indirectly, through agricultural

extension and advisory services, or both (Anderson & Feder 2007, Lunduka et al. 2013,

Rawlins et al. 2014) .

Agricultural extension has long been seen as a key element in improving agricul-

tural development. However, the effectiveness of two dominant approaches to agri-

cultural extension services in particular - Training and Visit(T&V)1 and Farmer Field

Schools (FFS)2 - has been widely debated. The T&V approach relies on the “top-down”

extension of technical information, with specialists and field staff transferring knowl-

edge to “contact farmers” in villages, who in turn are responsible for diffusing knowl-

edge into the local community. As a response to this top-down approach, FFS were

developed as a “bottom-up” approach to extension with a focus on participatory, ex-

periential, and reflective learning to improve the problem-solving capacity of farmers

through highly trained facilitators working with farmer groups (Anderson & Feder,

2007). In this paper, we assess the impact on food security and poverty of an interven-

tion which seeks to combine both the top-down and bottom-up approaches and which

has been implemented among smallholders in northern Tanzania. The intervention,

locally known as RIPAT (Rural Initiatives for Participatory Agricultural Transforma-

tion), is designed as a modified FFS approach taking its starting point in farmer groups

and experiential learning, but with a strong element of traditional technology transfer

through the introduction of a “basket” of new technology options. We find that RIPAT

has had a large impact on food security, but no detectable impact on poverty.

FFS have been implemented and adopted worldwide (Braun et al., 2006). Nonethe-

less, the ability of the approach to ensure both sustained technology adoption and

increased productivity is still subject to an ongoing debate about appropriate evalua-

1This was primarily promoted by the World Bank in the 1970s and 1980s and developed to tackle
some of the inefficiencies present at the time in traditional public extension services.

2The Farmer Field School concept was originally developed by the FAO to promote integrated pest
management among Indonesian rice farmers in the late 1980s, but since then has spread to many coun-
tries and over the years has been so widely adopted and locally adapted that there is no longer a single
model for either its technical content or the educational format(van den Berg & Jiggins, 2007).
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tion methodologies, when to evaluate, and choice of outcome measures (Feder et al.,

2008; van den Berg & Jiggins, 2008; Davis & Nkonya, 2008; Mancini & Jiggins, 2008;

Feder et al., 2010; Braun & Duveskog, 2011). More recently, a thorough survey of FFS

impact studies was provided by Davis et al. (2012: Table 1), highlighting the fact that

the outcomes selected for examination are very mixed, as are the findings. While some

papers find positive impacts on adoption, agricultural yields, productivity and agri-

cultural income, others do not. Most papers studying the impact on various aspects

of empowerment find that empowerment increases, which has led to an argument be-

ing advanced that FFS is more a model of adult learning than of agricultural extension

(Van den Berg & Jiggins 2007, Friis-Hansen & Duveskog 2012) .

The debate in the FFS evaluation literature was initially sparked by Feder et al.

(2004) criticizing earlier FFS evaluation methodologies for not taking the potential pos-

itive bias of non-random program placement and selection of participants into account

in their assessments of impact. This led to discussions of evaluation timing and prob-

lems of spillover effects. Measuring outcomes using a relatively long time horizon, as

Feder et al. (2004) do, allows for an assessment of impact sustainability - unless the

estimated impact is confounded by spillovers from FFS graduates to control farmers

living nearby, as suggested by Van den Berg & Jiggins (2007, 2008), but proven by Ya-

mazaki & Resosudarmo (2008) not to be the case using the same data as Feder et al

(2004).

The best way to obtain an unbiased estimate of impact would be to conduct a ran-

domized controlled trial, but to our knowledge, this has not been done for FFS yet.

Given non-random program placement, a few papers, including Godtland et al (2004),

Rejesus et al. (2012), Davis et al. (2012) and Todo & Takahashi (2013), do attempt to take

this selection factor into account in a careful manner. However, all four of these studies

suffer from having relatively small sample sizes (ranging from 142 to 486 within each

country), which may have resulted in no significant impact being found simply due

to lack of statistical power, and from operating with a very short time horizon (one to

two years since project start). They therefore have to assess the impact on outcomes

3



that are very closely related to project activities, such as knowledge transfer, technol-

ogy adoption, yields or agricultural income.3 Again findings are mixed, though with

some indications of improved technology knowledge transfer and adoption leading to

higher yields and thus to increased agricultural income.

While it is of value to assess the impact of FFS on farmers’ knowledge, technology

transfer, take-up and agricultural production, it should be kept in mind that house-

holds may simply divert resources away from other activities towards the new project-

related activities. It is therefore also important to analyze the impact on broader wel-

fare indicators for the participating households. Although it has become popular to

assess empowerment, it is not in itself a welfare measure; rather, it can be a channel

through which people may obtain improved welfare. We have not found any stud-

ies within the conventional peer-reviewed literature that analyze the impact of FFS on

broader welfare factors such as food security or poverty.

This paper is intended to contribute to filling this gap in the literature by presenting

a rigorous impact evaluation of RIPAT FFS to examine whether the program improved

food security and reduced poverty among participating households. In our evalua-

tion, we have sought to address the main points raised in the FFS evaluation debate

summarized above.

We let the original project documentation guide us in the choice of outcome mea-

sures. It was explicitly stated that the overall development objectives of the interven-

tion were to increase food security and alleviate poverty among participating house-

holds. Any effect on these outcome measures can only be expected to be observable

in the medium or long term, as participating households have to first adopt and then

implement the new technologies throughout a full agricultural cycle before impacts

on food security and poverty can occur. By developing our evaluation strategy and

the associated survey instrument accordingly, we have effectively tied the analysis -

and our hands - to these outcome measures, and thereby reduced the possibilities of

3Although Davis et al. (2012) state in the title of their paper that they analyze the impact of FFS
on agricultural productivity and poverty, they in fact analyze the impact on crop income and livestock
income, which they sum as agricultural income.
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“cherry-picking” convenient results. However, we did not have a full pre-analysis plan

laid out, as suggested by Casey et al. (2012).

In explaining our choice of impact assessment methodologies, we discuss the extent

to which we can overcome the potential endogeneity issues noted by Feder et al. (2004)

and Godtland et al. (2004) that stem from non-random program placement and self-

selection of participants. To address these issues we collected household data from two

different areas: Arumeru district, where RIPAT I was implemented, and Karatu dis-

trict, where RIPAT II was started two years later. In both areas we collected data from

virtually all RIPAT households and from a sample of control households in nearby

villages. In addition, we also collected data from non-RIPAT households in RIPAT I

villages. We employ four different methodologies to assess the impact of RIPAT I: a

simple cross-sectional comparison of RIPAT I and control households in a multivari-

ate setting to control for observable characteristics; an intention to treat estimation,

in which we include non-RIPAT households within RIPAT I villages, to circumvent the

problem of self-selection at the household level; a matching estimation to increase com-

parability of observable characteristics between RIPAT I and control households and

villages;4 and finally a Quasi Difference-in-Difference estimation exploiting data from

the later RIPAT II households and their controls to account for selection. Under the

assumption that the household- and village-level selection mechanisms in the two dis-

tricts were the same, the Quasi Difference-in-Difference takes selection for both observ-

able and unobservable characteristics into account, i.e. we circumvent the endogeneity

problems of non-random program placement and self-selection of participants. To the

extent that there was already some initial impact among RIPAT II farmers on food se-

curity and poverty indicators at the time of the data collection in 2011, which was more

than one year after RIPAT I completion and half way through the RIPAT II project pe-

riod, our impact assessment will be a conservative estimate of the true impact. We

thereby avoid the problem of positive selection bias. Throughout the paper, the impact

assesment is an assesment of RIPAT I only, unless explicitly stated otherwise.

4We thank an anonymous referee for suggesting intention to treat and matching estimation.
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To address the potential problem of timing and spillover to control farmers diluting

the impact of the intervention, as described by Van den Berg & Jiggins (2008), we use

control farmers living at a sufficient distance from the RIPAT intervention villages.

Although there had been spillover within RIPAT I villages at the time of data collection,

qualitative findings confirm that we do not have to worry about any potential spillover

in food security and poverty from RIPAT I at the distances used.5 In addition, by

assessing the impact of RIPAT I almost five years after project start and more than one

year after completion, we are also able to address issues of sustainability, at least in the

medium term.

Our analyses are based on interviews with 2,041 farming households using a highly-

structured closed-form questionnaire administered in 36 villages, of which 16 were in-

tervention villages. We thus have a large sample size compared to previous FFS impact

evaluations.6

The vast majority of participants in RIPAT Farmer Field Schools were involved in

the project throughout the full project period. We see that half-way through the project

period in RIPAT II and one year after project completion in RIPAT I the participat-

ing households were more likely to have adopted virtually all the key technologies

promoted through the basket of options than farmers in the control villages. This in-

dicates both immediate and sustained adoption of the new technologies. We find that

the participating households were more likely to be cultivating improved varieties of

banana, to have a larger degree of crop diversification, to be keeping improved breeds

of livestock and to be members of savings groups.

Most importantly, we find that these high levels of engagement and technology

take-up resulted in considerable improvements in food security levels, suggesting an

increase in overall household welfare. In this medium term, i.e. five years after project

start, we find that RIPAT I households were up to 24 percentage points less likely to ex-

perience hunger, that their diet contained more animal proteins, and that their children

5In RIPAT II there were no reports of spillover within intervention villages in 2011, let alone to the
control villages.

6We only know of one study, by Davis et al. (op.cit.), with a similar sample size (1,126 households).
However, this is spread across 8-10 districts and three countries.
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were more likely to have at least three meals per day. These are substantial impacts,

which we believe will be sustainable in the longer term, given the timing of the evalu-

ation.

We do not find any significant impact of RIPAT I on any of our poverty indicators

occurring by 2011. This suggests that RIPAT I households might have had a more

urgent need to overcome food insecurity than to invest in the more material goods

that are typically used as poverty indicators, e.g. good floors or mobile phones. We

analyze two possible mechanisms that might have led to our results: reallocation of

labor resources towards own agricultural production and production smoothing over

the agricultural cycle. We find indications of both.

We have organized the paper as follows. Section 2 describes the RIPAT intervention,

and Section 3 presents the data: summary statistics for household and village charac-

teristics, participants, adoption of technologies, and choice of outcome measures. In

Section 4 we explain our evaluation strategy, while we turn to the results in Section 5.

We analyze the role of labor reallocation and production smoothing in the findings in

Section 6. Section 7 concludes.

2 The intervention

In this paper we evaluate the agricultural project RIPAT I, but for some elements of the

evaluation strategy we also exploit data from a later project, RIPAT II. Both projects

were implemented by a local Tanzanian NGO, RECODA. They targeted small and

medium-sized farmers in rural villages with at least one acre and in principle no more

than five acres of land. Village leaders were asked to form two groups of 30-35 farmers

in each village and to assist the groups in getting access to a joint group field. Member-

ship was voluntary. RECODA explained to village leaders that members should not

be rich in terms of the wealth ranking of the village, had to be committed to active par-

ticipation (attendance records were kept and strict rules enforced), had to be willing

to share their knowledge with and demonstrate agricultural techniques to their fellow
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villagers and should therefore be of good standing in the community, and had to live

within the village administrative area. Furthermore, the leaders were told that each

group should have an equal number of men and women and only one member per

household (Maguzu et al., 2013). The two RIPAT projects were each implemented in

eight villages; these were selected by district officials as being the poorest villages in

the given district.

There were thus two sources of endogenous selection into the project. One was

endogenous village selection: since program placement was not random and if district

officials followed the guidelines given to them, RIPAT villages were less wealthy than

the other villages in the district at the outset of the project, i.e. there was a negative

selection effect. Secondly, since participation was voluntary, households self-selected

into the project (provided they met the targeting criteria) and hence we would expect

participating RIPAT households to have been more motivated than other households,

resulting in a positive selection effect. The sign of the net selection effect thus cannot

be assumed a priori.

The RIPAT Farmer Field Schools draw on a bottom-up experiential and reflective

approach to learning and practical demonstrations of farming techniques, as do most

FFS. However, they are described as less participatory and more top-down than other

FFS approaches (Aben et al., 2013). A key difference is a strong element of traditional

technology transfer through training in a predetermined but locally adapted “basket of

technology options”, rather than in just one technology. These agricultural technology

options are chosen by the implementing NGO on the basis of their strong agricultural

expertise and in prior consultation with the villages in question. By equipping the

farmers with the necessary information, knowledge and hands-on experience in the

use of different relevant and efficient technologies, the program provides each farmer

with the means to choose which technologies to adopt in his or her own agricultural

production. Each group meets weekly at its demonstration plot or group field. At

these meetings, progress is followed and discussed throughout the agricultural cycles.

The crops and technologies introduced in the “basket of options” are very diverse and
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cannot all be fully introduced in a single agricultural cycle as in typical FFS programs;

the implementing NGO therefore works with the RIPAT FFS for a three-year period, af-

ter which the farmers “graduate”. The standard “basket” includes improved varieties

of banana with new cultivation techniques, conservation agriculture and crop diver-

sification, improved animal husbandry, fruit and multipurpose trees, soil and water

conservation, post-harvesting technologies, and encouragement to participate in sav-

ings groups. However, the basket is always adapted to suit local conditions, taking

into account, for example, soil, water and climate.7

The two RIPAT FFS projects commenced two years and four months apart in two

districts in the Arusha Region. The implementation of RIPAT I in Arumeru District

was from May 2006 until the end of 2009, while RIPAT II was implemented in Karatu

District from September 2008 until August 2012 (see Figure 1). The implementation

strategies for the two projects were the same except for minor adjustments to the con-

tent of the basket of options.8 We exploit this gradual roll-out in one of our empirical

strategies below to address the potential problems caused by self-selection of partici-

pating farmers and non-random program placement at village level due to unobserv-

able factors.

3 Data and summary statistics

In January 2011 we conducted a large-scale quantitative household survey in both RI-

PAT and control villages in the two intervention districts. This was one year after

completion of RIPAT I and around halfway through implementation of RIPAT II. We

used a highly structured closed-form pilot-tested questionnaire to capture the extent

to which participating farmers had adopted the technologies introduced through the

RIPAT farmer groups and to discover whether this in turn had had an impact on their

7For more detailed descriptions, see (Maguzu et al., 2013) and (Vesterager et al., 2013) for shorter and
longer accounts, respectively.

8Savings group participation was encouraged but not facilitated during the RIPAT I project. Further-
more, during RIPAT I it became clear that a more efficient distribution system for the improved breeds
of goats would be needed in future projects. Finally, in Karatu there was an additional demand for an
improved breed of pigs, which was then also included in the basket of options.
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food security and poverty levels relative to farmers in control villages. A selection of

non-RIPAT households were also surveyed in the RIPAT I villages in order to gather

data for separate diffusion analyses of the more popular technologies.9 We interviewed

a total of 2,374 households in 36 villages; of these, 2,041 households are included in the

analyses in this paper.10 The bottom row of Table 1 shows how these households are

distributed across RIPAT I & II and their respective control households, as well as the

stratified random sample of non-RIPAT households surveyed in RIPAT I villages. We

aimed at interviewing all the farmers who originally signed up for the RIPAT Farmer

Field Schools, including those who later dropped out - provided they had remained in

the village. In Arumeru district, 90 percent of the original RIPAT I farmers were inter-

viewed, and 96 percent of the RIPAT II farmers were interviewed in Karatu district.

In each household, an interview was conducted with the person mainly respon-

sible for agricultural decisions, often the head of the household. However, in RIPAT

households, the person interviewed was always the RIPAT group member, who typ-

ically was the head or spouse of the head. The project aimed at achieving gender

balance in the RIPAT farmer groups, which resulted in a larger share of female-headed

households among the RIPAT farmers than otherwise in the village. The same de-

gree of overrepresentation of female-headed households was sought among the con-

trol households. A village-level questionnaire was administered to representatives of

each village government as a supplement to the household interviews. We thus have

household- and village-level information in the data.

Table 1 lists means (and standard deviations) for the household- and village-level

variables. Column (1) presents the averages for all households in the data, while the

9The data collection and data entry were closely supervised by us in cooperation with a survey man-
agement team from the Economic Development Initiative (a Tanzanian survey company). RECODA
assisted in the hiring of a team of local interviewers and data entry clerks.

10We excluded from the dataset all farmers with more than eight acres of land and less than one acre
of land in 2006 (for RIPAT, non-RIPAT and control farmers), as these did not comply with the original
target criteria for RIPAT participation (174 households). We capped the acres at eight rather than five,
as the data show that 17 percent of the RIPAT farmers did in fact have more than five acres of land, but
only six percent had more than eight acres in 2006. Excluding households with more than five acres
from the analysis below does not change the overall conclusions. We also excluded all newcomers to
the villages (48 households). Finally, we excluded households with missing observations for any of our
variables (111 households).
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remaining columns represent subsets of the data used for different analyses. Columns

(2) through (4) provide data for Arumeru district and Columns (5) and (6) for Karatu

district. Column (2) shows data for households in RIPAT I, Column (3) has non-RIPAT

households in RIPAT I villages, and Column (3) shows the averages for the households

used as control households for RIPAT I. Columns (5) and (6) present data for RIPAT II

households and their control households respectively.

It can be seen from Column (1) that the households included in the analysis gener-

ally had around 3 acres of land, that the majority of household heads had completed

seven years of primary school, and that heads were typically middle-aged males with

between one and two children living at home. We tested the farmers’ math skills with

two simple math problems;11 36 percent answered correctly. 16 percent of the house-

holds had participated in other development projects in the past. We also included the

average historical rainfall level at 1:1 km resolution based on the household’s GPS co-

ordinates from secondary data,12 since these households mainly rely on rain-fed agri-

culture. There is a large difference between the two districts, with Karatu receiving

almost 200 mm more rainfall than Arumeru.

At the village level, we see that the average distance from each village to its most

important market for agricultural output was eight kilometres, that two-thirds of the

villages had secondary schools, and that half of the villages had hosted a development

project in the past.

In the main part of the analyses below, we will be comparing RIPAT I households

to control households from Arumeru district. It is therefore important that these are

indeed comparable in terms of observable characteristics. We find that the two groups

are well balanced; the only characteristic in Table 1 that differs significantly between

RIPAT I and control households is whether the household had participated in another

development project in the past, tested at the five percent level with cluster standard

errors.
11The farmer was considered “Good at math” if s/he correctly answered both questions, 29-13=? and

50/10=?
12We used interpolated data for yearly precipitation measured in mm from the period 1950-2000 avail-

able from http://www.worldclim.org/.
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In general, we cluster standard errors at the village level, as this is the most con-

servative approach when testing against the null hypothesis of no impact. However,

this implies that we do not have enough degrees of freedom to include all the house-

hold and village characteristics shown. For consistency, we control for the log of acres,

education, age, age squared and gender, and for all village characteristics, in all speci-

fications.13 In Appendix B, we present regression results corresponding to the analyses

below, where all characteristics are included and standard errors are clustered at the

sub-village level instead.14 The inclusion of all household characteristics does not alter

the results markedly.

3.1 Who Participated?

We know that the RIPAT project was not randomly allocated and it is interesting to take

a closer look at the sources of selection: self-selection of households within villages,

and non-random program placement across villages. Table 2 presents estimates from

a logit regression of whether or not a household participated in RIPAT I on household

and village characteristics. In Column (1) we compare RIPAT I households with non-

RIPAT households in RIPAT I villages, which isolates self-selection of households. We

can see that RIPAT I households were typically older, better at math and more likely

to have participated in other projects in the past. The last two points suggest that

RIPAT I households were more entrepreneurial than non-RIPAT households, as we

expected, which could lead to a positive bias in the impact assessment. In Column (2),

we compare the household characteristics of RIPAT I and control households and find

that the same differences persist. In addition, RIPAT I households were more likely

to be female-headed and received more precipitation than the control households. We

include all households ever enrolled in RIPAT I, even if they later dropped out. This

is done to ameliorate the issue of household selection, and we consider this to be the

most conservative approach.

13When including observations from Karatu, we allow village characteristics to have district-specific
coefficients.

14Clustering at the sub-village level leads to 52 clusters in regressions with Arumeru data only, and
130 clusters when all villages are included.
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In the last column of Table 2, we add village characteristics to the regression. We

see that RIPAT I villages were further away from their main markets, less likely to

have a secondary school and more likely to have hosted a development project in the

past. These differences all point to RIPAT I villages being less wealthy than the control

villages, confirming the accounts from the original project documentation. This sug-

gests that we might underestimate an impact when comparing the two. With respect

to household characteristics, the difference in the likelihood of having participated in

a development project is absorbed by the corresponding village-level difference. In

addition, when we control for village-level characteristics, we find that heads of RIPAT

I households were better educated than heads of control households, supporting the

suggestion of positive self-selection of households into RIPAT I.

In Section 4 we present the four evaluation methodologies we employ to address

household and village selection on the basis of observable and unobservable charac-

teristics.

Finally, we note that among the RIPAT I participants who initially enrolled in the

RIPAT FFS, there was a high level of engagement: the vast majority stayed with the

project throughout the three year project period. In RIPAT I, more than 80 percent of the

participants graduated, and the picture is similar for RIPAT II. It should be noted that

participating in RIPAT FFS is rather time-consuming. Attendance rules were strictly

enforced, and the need to attend is given as the main reason for dropping out by those

who left the RIPAT farmer groups (Lilleør & Pedersen, 2013).15

3.2 Technology Adoption

The next obvious question is to examine whether or not RIPAT farmers also adopted on

their own farms the technologies introduced through the RIPAT farmer groups. Farm-

ers’ engagement in project activities and the decision to allocate household resources

(labor and land) towards adopting the proposed crops, livestock and new agricultural

15In RIPAT I, 77 households dropped out of their farmer groups before the end of implementation,
while in RIPAT II, 96 households dropped out. All these drop-outs are included in the analyses through-
out the paper and still considered to be RIPAT farmers or RIPAT participants regardless of when they
dropped out.
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practices are in themselves indicators of project implementation success, but they also

represent a prior and necessary condition for finding any impact on broader welfare

indicators as an outcome of the intervention.

We examine technology adoption among participating farmers in both RIPAT I and

RIPAT II, since participants in the latter project had also been exposed to the full set

of technologies examined here by the time of the survey in 2011. Because the basket

of options entails a myriad of technologies and other elements (Maguzu et al., 2013),

we have focused the analysis on six of the main components. We use simple means to

indicate whether, relative to their control households, RIPAT I & II households were

more likely to have adopted improved banana cultivation, to use more crop diversi-

fication, to grow fruit trees, to keep improved breeds of small livestock, to practice

zero-grazing in their livestock husbandry, and to participate in savings groups (which

was encouraged by RECODA).

In Table 3, we list the means (and standard deviations) for these key adoption mea-

sures for RIPAT I and II households and for their respective control households in

the two districts, Arumeru and Karatu. Around two-thirds of the RIPAT households

were found to be growing an improved banana variety. On average, they were grow-

ing around six different types of crop. About half had fruit trees, a quarter of them

kept improved poultry breeds, 20-40 percent kept improved breeds of milking goats,

and non-negligible fractions practiced zero grazing and were members of local savings

groups.

To see whether there were significant differences between RIPAT and control house-

holds in the two districts, we carried out a series of cluster-robust t-tests for the differ-

ence being zero. A quick glance at the associated p-values shows that both the RIPAT I

graduate households and the RIPAT II households had adopted all the analyzed com-

ponents of the basket of options to a significantly greater extent than the households

surveyed in the control villages. Only zero-grazing restrictions and the use of fruit

trees seem not to have caught on in any significant way in RIPAT I compared to the
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control villages in this simple bivariate setting.16 It should be noted that improved pig

breeds were introduced only in RIPAT II.

This suggests that there was a considerable degree of take-up of the proposed tech-

nology options among the RIPAT farmers. It is unlikely that all of these significant

differences in take-up could be driven by selection into the project, especially because

the improved varieties of crops and breeds of livestock did not exist in the area prior

to RIPAT.

Furthermore, these take-up rates indicate both that there was a high level of imme-

diate take-up among RIPAT II farmers, who were only half-way through the project

cycle, and high rates of sustained take-up among RIPAT I farmers, who at the point of

data collection were more than one year beyond graduation and project closure.

When we analyze the overall degree of take-up, we find that all of the compo-

nents in the basket of options were adopted by some farmers. No single element was

adopted by all farmers, although all farmers were growing or keeping at least one of

the promoted crops or animals breeds. This suggests that the element of choice built

into the basket of options was indeed used by farmers to pick and choose according to

their specific needs and resources.

3.3 Choice of Outcome Measures

We evaluate the impact of RIPAT on the basis of the development objectives that it was

intended to improve, as stated in the original project documentation: namely, better

food security and reduced poverty among the participating households.

3.3.1 Food security measures

To assess the food security situation among the respondent households, we employed

a household level measure capturing access to food: the “Household Hunger Scale”

16When we control for household and village-level characteristics in the comparison of technology
adoption between RIPAT I households and their control households, we find that all the listed adoption
measures were in fact used to a greater extent among RIPAT I households, with significance levels of p
< 0.01 or p < 0.05.
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(HHS).17 It is based on three questions asking whether, due to lack of resources, anyone

in the household 1) went to sleep at night hungry; 2) had no food to eat of any kind

in the household; and 3) went a whole day and night without eating. The response

codes are 0: never; 1: rarely or sometimes; 2: often. The HHS is simply the sum of

the responses to the three questions resulting in an index from zero to six where zero

corresponds to “no hunger” and six corresponds to “severe hunger”.

Due to considerable seasonal variations in the food security status of households,

we take three different reference periods into account - the self-assessed best and worst

months in terms of food security during the previous year, and the last four weeks

prior to the survey.18 Since this area of Tanzania is not subject to severe and prolonged

periods of starvation, we would expect to find most variation in the measure when the

period of reference is the self-assessed worst month in terms of food security within the

previous year. As it is difficult to interpret the magnitude of an impact on HHS because

it is an ordinal measure, we also consider the simple binary variable “No hunger”,

which is one if the household did not suffer from hunger at any point during the past

year according to HHS and zero otherwise. To see whether children benefitted from

RIPAT I, we measured their food consumption by looking at the prevalence of house-

holds where children had at least three meals per day during each of the three periods.

Finally, we aim to capture the nutritional quality of the overall household diet by

analyzing whether household members had meat, eggs or dairy products to eat during

the previous week.

From the raw averages in Table 4 we see that households in this region did not

suffer from food insecurity throughout the year, but that food insecurity was rather

pronounced during the worst periods of the year, typically the lean season immedi-

ately before harvest. Only 30-40 percent of households did not experience any hunger

during the worst period of the year. Similarly, virtually all children had at least three

17The HHS is a modern food security instrument developed by US Aid to ensure cross-cultural com-
parability. It has been validated in five sub-Saharan African countries (Ballard et al., 2011).

18Households were interviewed in January, which is neither immediately after harvest nor in the
worst hungry period, so we expected the hunger situation in the previous four weeks to have been
somewhere in between the best and the worst months.
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meals per day during the best part of the year, while on average about a quarter of the

households with children served two meals or fewer per day during the lean season.

Households in Arumeru seemed to report higher levels of food insecurity than house-

holds in Karatu, but in terms of reported nutritional quality, the weekly consumption

of meat, eggs and dairy products was generally lower in the latter district.

A glance at the p-values for the cluster-robust t-tests of whether there were signif-

icant differences between RIPAT and control households in the two districts reveals

that the raw means of the food security outcome variables are rather similar when we

do not control for selection, household or village characteristics.

3.3.2 Poverty measures

Poverty is a complex outcome to measure. It is a relative measure, and it depends

on local circumstances. Tanzania operates with a national poverty line of TZS 492 per

adult equivalent per day (or roughly USD 1 per day using Purchasing Power Parity),

representing the monetary cost of fulfilling basic needs (Schreiner, 2012).

Household income and consumption levels are notoriously difficult and time-consuming

measures to capture, especially if this is to be done using a reasonably short survey in-

strument (Beegle et al. 2012a, 2012b). We therefore use an assest-based indicator of

poverty as a short-cut. The “Progress out of Poverty Index” (PPI), as developed by

Schreiner (2012), captures the probability that a household falls below the national

poverty line. The PPI is country-specific and is based on ten simple questions that

together provide a statistically strong and simple predictor of whether a household’s

consumption level is likely to be below the national poverty line as established in the

2007 Household Budget Survey of 10,466 representative households from all over Tan-

zania.19 The PPI score ranges from 0 (most likely to be below a poverty line) to 100

(least likely to be below a poverty line).

We have taken the Progress out of Poverty Index as our key poverty indicator be-

cause it is a widely-used measure for identifying poverty levels and the only one avail-

19See Figure A.1 in Appendix A for the list of questions used in the latest PPI measure for Tanzania.
Summing the points gives the overall PPI score.
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able for Tanzania at the time of data collection. Schreiner (2012) notes that the PPI

scorecard also aims to measure changes in poverty through time, and therefore in select-

ing indicators and holding other considerations constant, preference should be given

to more sensitive indicators, e.g. ownership of a lantern. However, it places a lot of

weight on more static measures, here fertility and female literacy.20 We have therefore

also considered the two best single predictors of poverty, according to Schreiner (2012),

in isolation; namely the quality of the floor in the main dwelling and whether or not

the household owns a (mobile) phone. In table 4, the raw averages for the poverty

measures show clearly that households in Karatu are on average poorer than house-

holds in Arumeru.21 There are no significant poverty level differences between RIPAT

households and their respective control households.

Finally, we also examine the supply of casual labor, as this is often an important

source of income for poor households, but also something that is associated with stigma.

It is a possible channel for RIPAT households to adjust their allocation of resources, if

they can afford to do so; we return to this below. We see that among the control house-

holds, 15-20 percent relied on casual labor as one of the most important sources of

income; but also that RIPAT households in both districts relied significantly less on

supplying casual labor than the control households, and were also more likely to hire

labor to work on their farms.

4 Evaluation strategy

In order to estimate the impact of RIPAT on participating households, we need a good

estimate of the counterfactual situation - of what would have happened to the RIPAT

households had they not participated in the project. We approach the counterfactual

from four different angles, which in different ways and to different degrees take into

account the participant self-selection and the non-random project placement at village

20Such measures are often not helpful in analyses of poverty change; for example, we would not
expect RIPAT to affect literacy adult females.

21District means for PPI, good quality floor and mobile phone are all significantly different at the one
percent level.
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level.

First, we undertake a simple cross-sectional impact assessment comparing outcomes

of RIPAT I households to outcomes of households in control villages in a multivariate

regression analysis using Ordinary Least Squares (OLS). To the extent that the house-

hold and village-level characteristics included in this multivariate setting do not fully

account for the endogenous selection at household- and village-level, this simple cross-

sectional estimation of the impact may be biased. It will be upward biased if the farm-

ers that chose to participate and thus self-selected into the project were more motivated

and entrepreneurial than the average farming household in a control village, ceteris

paribus. It will be downward biased if the RIPAT I villages were indeed less wealthy

than the control villages prior to project implementation, as suggested by the project

documentation, and if this difference is not captured by the village characteristics in-

cluded in the regressions.

Second, to take household self-selection into account, we estimate the impact at vil-

lage rather than household level. That is, we explore the fact that we have surveyed

non-RIPAT households in RIPAT I villages and estimate the intention to treat (ITT) ef-

fect, which pools both RIPAT and non-RIPAT households in RIPAT villages, since they

were all intended for treatment. This does not give us an estimate of the average treat-

ment effect among those who initially signed up for the project, but rather an average

village-level effect among all those who could have signed up. The ITT estimator is

free from self-selection bias and is only biased to the extent that the village level char-

acteristics included do not fully account for the non-random project placement.

Third, to increase the comparability between RIPAT I households and their control

households, we employ a matching estimator. This allows us to match more closely each

RIPAT I household with a control household that has similar household and village-

level characteristics. More specifically, we employ Mahalanobis matching with one

nearest neighbor, which implies that a higher weight is given to control observations

that are similar to RIPAT observations compared to OLS.22 In this way, we address the

22We have also employed a propensity score matching estimation and get very similar results. How-
ever, we choose to present Mahalanobis matching estimates to obtain valid confidence intervals (Abadie
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potential bias in the simple cross-sectional comparison due to unbalanced observables,

but we still rely on the assumption of no selection on unobservable characteristics.

Finally, we propose a Quasi-Difference-in-Difference (QDiD) approach exploiting the

gradual roll-out of the project. RIPAT II started more than two years after RIPAT I.

RIPAT II participants were at the time of data collection still one and a half years away

from graduation. Assuming that the selection mechanisms into RIPAT were the same

in the two districts at both household and village levels, we can adjust for this selec-

tion in the simple cross-sectional impact assessment of RIPAT I in Arumeru District by

subtracting the differences found between RIPAT II and control households in Karatu

District. Doing this in a multivariate regression framework results in the QDiD estima-

tor, which does not suffer from selection bias. The central assumption here is that the

differences in outcomes due to household and village selection between treated and

control households should be the same in the two districts in absence of treatment.

Examining the observable characteristics in Table 1 above, we find indications that the

RIPAT - control differences in the two districts are very similar. Out of the 12 character-

istics listed, only two are significantly different at the five percent level (age and gender

of head). This QDiD approach is similar to the evaluation strategy initially employed

by Coleman (1999; 2006).

Ideally, for the perfect QDiD estimation, our data collection should have taken place

exactly at project start-up of RIPAT II. The fact that the data collection took place two

and a half years after project start of RIPAT II may result in QDiD underestimating the

average treatment effect, since the high level of take-up of the different components in

the basket of options could already have resulted in a beginning impact on the broader

development outcomes at the time of the survey. There are three reasons why we

are not very worried about this. First, it is always better to under-estimate than to

overestimate, making any significant effect found more credible. Second, during the

first year of RIPAT II, a severe drought hit the entire area (both Karatu and Arumeru

districts) and caused the virtually complete failure of all agricultural activities in the

& Imbens, 2006). All observations are within the common support of the propensity score.
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area. The project was therefore in effect postponed by one year, and project activities

were resumed in the following agricultural season. Third, there is a natural time lag

in both agricultural production and livestock breeding from the adoption of a new

technology until its yields can be harvested, and in any case most households adopt

additional new technologies gradually.23

5 Results

To assess the food security impact of RIPAT, we consider whether households expe-

rienced any hunger, their HHS, whether the children in the households had at least

three meals per day, and whether the households had eaten meat, eggs or dairy prod-

ucts during the previous week.

Table 5 is a compilation of the estimated effects. Each column represents an es-

timation method, while the rows refer to different outcome measures. Columns (1)

and (2) present estimated coefficients for the RIPAT indicator variable from cross-

sectional comparison regressions and for the RIPAT village indicator variable from ITT

regressions respectively. Column (3) shows the differences between RIPAT and control

households from Mahalanobis matching, while Column (4) gives the estimated impact

from the QDiD specification.24 All regressions include village characteristics and the

restricted set of household characteristics, and standard errors are clustered at the vil-

lage level. The same variables are used for the matching procedure. In Appendix C,

we show the full set of regressors for the simple cross-sectional comparison and the

QDiD regression with the HHS in worst month as the outcome variable.

In the first row of Panel A of Table 5, we show the estimated impact on the No hunger

indicator. Reading across the columns, we see that RIPAT I increased the probability

of being free from hunger by 17-24 percentage points, depending on the evaluation

23Most RIPAT participants spend the first agricultural season learning about the new agricultural
practices at a demonstration plot before they then in a later agricultural season choose which ones to
adopt on their own farms.

24This corresponds to the regression coefficient for the interaction term between the RIPAT indicator
variable and the Arumeru indicator variable in a regression where both indicators are also included
separately.
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methodology, with the village level ITT impact being the lowest, as expected, but still

large and statistically significant.

Having taken self-selection into account in the ITT estimation, the remaining worry

is whether the impact is driven by pre-existing village differences, as the project was

not randomly placed. In Column (3) we match on village and household characteris-

tics, and thereby aim at a better balance of observables between RIPAT and the control

villages and households. The impact on hunger persists in magnitude but is not statis-

tically significant.

However, there might still be remaining unobserved differences between villages

that we have not fully accounted for, and we therefore employ the QDiD approach

using differences between RIPAT II and control households in Karatu to account for

potential selection in Arumeru. Assuming that the selection mechanisms were the

same in the two districts, this regression provides unbiased estimates of the impact.

The result is reconfirmed: RIPAT I households are 24 percentage points less likely than

their controls to have suffered from hunger when selection is accounted for. The fact

that the QDiD estimate is so close to the estimated impacts from the other specifications

suggests that selection on the basis of unobservables did not play a major role.25

We also analyze the impact on the HHS for three different reference periods, recall-

ing that higher values on the HHS correspond to more severe hunger. Consistently

across all four specifications, we find that RIPAT I significantly reduced hunger in the

worst period of the year. We do not see any impact in the best period or the four weeks

immediately prior to the time of the interview. From Table 4 we note that there was

only a little room for improvement, especially in the best month, as control households

in Arumeru had an average HHS value of 0.04.

The reduction in hunger is associated with an increase in the number of meals for

the children.26 We see a consistent impact on the likelihood of having at least three

meals in the best period of the year. This is a significant and substantive impact of

25To the extent that RIPAT II had already had a (positive) impact on food security or poverty, we
underestimate the impact of RIPAT I.

26Because some households did not have any resident children, we lose 91 observations in Columns
(1) and (3), 129 observations in Column (2) and 191 observations in Column (4).
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seven to ten percentage points of improvement, depending on the specification. For

the worst period we estimate an impact almost double that in magnitude for most

specifications, but statistically less significant. With respect to the previous four weeks,

the picture is more blurred. Taken together, however, these figures suggest that par-

ticipating in RIPAT not only affected the food security status of households in the lean

period as measured by the HHS, but it also improved children’s intake of food at other

times of the year.

Regarding the nutritional quality of the diet, we find that in general RIPAT I house-

holds were significantly more likely than controls to have eaten meat or eggs in the

week before the interview, although the ITT results are weak for meat. We do not find

a consistent increase in the intake of dairy products.

Based on these findings, we conclude that overall RIPAT I had a clear impact on

food security in terms of reducing hunger, increasing the number of meals provided to

children and improving the intake of animal protein.

The next question is then whether RIPAT also succeeded in improving the situa-

tion with regard to the other development objective of poverty alleviation. Turning to

Panel B of Table 5, the first row shows that we do not find any significant impact of RI-

PAT on poverty as measured by the PPI. Estimates for the two additional time-variant

indicators which have proven to be strong individual predictors of poverty status in

Tanzania, quality of the floor and ownership of a mobile phone, are also insignificant.

We have also checked for various degrees of heterogeneity in these results, but the con-

clusion remains the same: RIPAT has not had any significant impact on any of these

poverty indicators and thus we believe the overall level of wealth of the participating

households to have remained virtually unchanged.

In order to address potential gender differences, we split the results by gender of

household head, and a few interesting findings emerge.27 The female-headed RIPAT I

households were more food secure than the female-headed control households during

the best period of the year (suggesting that there was room for improvement among

27The results are not shown, but are available upon request.
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this subset of households), and they were more likely to have eggs as part of their

daily diet. However, they were less likely to consume dairy products, which could be

linked to the fact that they were also less likely to have adopted the improved breeds

of milking goats.28

6 Possible mechanisms

The fact that we find significant improvements in food security among RIPAT house-

holds, but no improvement in their poverty status, has led us to wonder why this

should be so.

One explanation could be that resources were scarce for RIPAT households at the

outset; when they experienced an improvement in their level of resources, they simply

prioritized more secure and improved food consumption over higher non-food con-

sumption. We cannot empirically test this any further, but it would explain the above

finding.

A second explanation could be that households reallocated their use of labor re-

sources within the household, e.g. shifted from cash income activities towards own

agricultural production. This would have meant that the households produced more

food, but earned less cash income, which again could have resulted in better food secu-

rity (from own production) at the expense of lost income. This would make it unlikely

that there would be a positive impact on poverty indicators.

Finally, a third explanation could be that the agricultural technologies introduced

did not increase the total annual agricultural production, but only smoothed produc-

tion over the agricultural cycle, thereby increasing food security in what typically

would have been the lean period. We analyze the two last explanations empirically

below.
28This is consistent with the qualitative gender research among these women, which highlights the

fact that the improved milking goat breeds introduced in the RIPAT groups were zero-grazing goats,
which had to be fed. Whereas grazing goats is typically a male task in the local context, collecting
fodder and firewood is a female task. Some female RIPAT farmers were therefore against keeping the
milking goats, as this would increase the burden of collecting fodder. Later, specific fodder plants, e.g.
elephant grass, were introduced to reduce this burden for the women (Mogensen & Pedersen, 2013)
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6.1 Casual Labor

During qualitative interviews, it became clear that in this local setting casual labor

is considered a “last resort”, an income source turned to when all other options are

exhausted and hence, is greatly stigmatized. However, a reduction in the supply of

casual labor could result in a substantial decrease in income, since casual labor can

be a remunerative income source for Tanzanian smallholders.29 We see from Table

4 that casual labor was indeed relatively widespread among the control households

in Arumeru and Karatu districts; 15 and 20 percent respectively of these households

supplied casual labor as a primary source of income. However, it was significantly less

prevalent among RIPAT I and II farmers; only 5 and 11 percent respectively in these

districts relied primarily on casual labor.30 This suggests that RIPAT households might

have chosen to cut back on casual labor because they had experienced an increase in

their agricultural income. Such a cut-back would offset partially or completely any

increase in income from agriculture, but still result in a welfare increase, because the

household would avoid the stigma of supplying casual labor and at the same time

become more food secure.

As to whether households hired labor on their own farms during 2010, we see from

Table 4 that RIPAT households were 13 and 12 percentage points more likely than the

control households to have hired labor on their own farms in Arumeru and Karatu

districts respectively.

These impacts may not be causal and could be fully driven by selection, though

controlling for household and village characteristics in a simple cross-sectional com-

parison only increases the differences found and the statistical significance. The ITT

estimates are not significantly different from zero.31 This is not surprising, however, as

we would expect labor markets to be local; if RIPAT farmers increased their demand for

casual labor, non-RIPAT farmers in RIPAT villages might start to rely more on income

29For example, weeding one acre of land pays TZS 2,000, which is four times the daily national poverty
line.

30Controlling for household and village characteristics only increases the estimated differences and
the statistical significance.

31Results available upon request.
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from casual labor, which would then even out the village average.

Nevertheless, taken together, the two results are suggestive in providing a possi-

ble explanation for why we find a profound impact on food security but no impact

from RIPAT on the poverty measures used. The RIPAT households seem to have re-

optimized the allocation of labor within their households and begun to invest in their

own agricultural production.

6.2 Production Smoothing

The agricultural technologies introduced in RIPAT Farmer Field Schools were selected

to enhance production smoothing over the agricultural cycle. Households generally

experience large seasonal variation in food security, and they do not seem able to

smooth consumption. In the lean period, 70 percent of the households in Arumeru

control villages experienced some kind of hunger, while only two percent experienced

any hunger just after harvest. Limited access to proper storage facilities and financial

markets inhibit the ability of households to smooth consumption.32 Several elements

in the basket of options introduced by RIPAT are production-smoothing technologies

that provide the households with food even in the lean period. Banana plants fruit out-

side of the main harvest season as long as they receive some water, improved breeds of

poultry lay more eggs, and improved breeds of goat produce more milk all year round

than their traditional counterparts. It is therefore important to consider whether the

impact of RIPAT on food security was mainly driven by the adoption of these three

production-smoothing technologies that ease the smoothing of food consumption over

the year and thus increase food security in the typical lean period.

The first two columns of Table 6 show that participation in RIPAT I and RIPAT II

increased the probability of adopting at least one of the three production-smoothing

technologies by 60-65 percentage points, controlling for household and village char-

acteristics. As discussed in Section 3(b) above, participation in RIPAT is significantly

correlated with adopting either banana cultivation or the keeping of improved breeds

32Our results are not driven by access to savings, as they are robust to controlling for membership of
a savings group.
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of poultry or goats. The next two columns of Table 6 present regressions of the HHS in

the worst month on a smoothing technology dummy that equals one if the household

adopted any of the production-smoothing technologies and zero otherwise, for RIPAT

and control households respectively. In both groups, households using production-

smoothing technologies also experienced significantly less hunger than households

that did not use any of the three technologies. This is not necessarily a causal relation-

ship, as the decision to adopt the smoothing technologies was endogenous.

In Column (5) we limit the sample to those households that adopted any of the

production-smoothing technologies and run the QDiD regression on this sub-sample

in order to analyze whether RIPAT FFS participation brought about any additional

degree of food security. The estimates suggest that RIPAT households adopting the

production-smoothing technologies achieved the same level of food security as the se-

lected sample of control households that adopted the smoothing technologies. How-

ever, 82 and 74 percent respectively of RIPAT I and RIPAT II households employed

such technologies, whereas this was the case for only 25 and 8 percent of the control

households in Arumeru and Karatu respectively. In Column (6) we see the QDiD re-

gression results for the sub-sample of households not adopting any of the smoothing

technologies. Among these, RIPAT I households experienced less hunger than controls

at the five percent significance level after taking the selection into account, suggesting

that the impact of RIPAT on food security was not purely driven by the production-

smoothing technologies; other elements of the basket of options also improved the

food security of households in the lean period.33

We can thus conclude that although the use of smoothing technologies is associ-

ated with greater food security, the overall impact of RIPAT I on food security was not

driven solely by these, as the basket of technology options seems to contain other ele-

ments that are also relevant for the food security of households not applying the main

smoothing technologies.

33We reach the same conclusions from a QDiD regression on the full sample where the RIPAT dummy,
the district dummy and their interaction term are all interacted with the smoothing dummy.
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7 Conclusion

This is, to the best of our knowledge, the first paper which rigorously analyzes the

impact of a locally adapted Farmer Field School project on broader welfare indicators

and development objectives, namely food security and poverty alleviation, and not just

on intermediate and very project-related agricultural outcomes, such as technology

knowledge transfer, technology adoption, or agricultural yields from the technologies

promoted.

We find that there were strong and sustained positive effects on food security among

the participating households more than one year after end of project, in terms of access

to food, food consumption and quality of diet. Participating households experienced

less hunger in the lean period, were more likely to have animal protein in their weekly

diet, and were more likely to give the children in the household at least three meals per

day. We find no impact of the RIPAT project on poverty indicators. There is sugges-

tive evidence that the positive impacts on food security measures, but lack of impact on

poverty indicators, could be caused by RIPAT households having prioritized food over

non-food consumption, reallocated their labor resources towards improving their own

agricultural production, and reduced seasonal peaks and troughs in food production.

Taken together - and when compared with earlier FFS evaluations - these results

point to the importance of allowing the passage of time for assessing outcomes. Al-

though the RIPAT II farmers, who had completed the project more recently than the

RIPAT I farmers at the time of the survey, were also more likely than their control

farmers to have adopted the full range of technologies examined, the impacts on food

security can only be expected where the technology adoption has had sufficient time

to raise food security levels, which in this case was among RIPAT I farmers. Timing

is thus an important factor both when considering the length of the project (a typical

RIPAT Farmer Field School runs for at least three years, as opposed to the one agri-

cultural cycle of standard FFS projects) and when considering the timing of the impact

evaluation and the outcomes selected for examination, allowing impacts from a change

in agricultural systems to materialize. For instance, although we do not find any im-
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pact on poverty indicators, it could be that such an impact will materialize in an even

longer time horizon, when food security is no longer a concern for RIPAT households.

Only time can tell.

A final question which may spring to mind concerns the costs of producing the food

security impacts found. The total cost per participating RIPAT household per year was

USD 200,34 which is from three to 20 times as high as the various FFS cost estimates

listed in Van den Berg & Jiggings (2007). However, it should be borne in mind that

RIPAT projects differ from the typical FFS in that they offer a full basket of technol-

ogy options, combine top-down teaching with participatory learning methods, have

very close follow-up during the phasing-in period for the new technologies and are

implemented over a substantially longer time horizon. Although these key differences

clearly increase the cost per farmer, we also believe that they are vital to the impacts

found above. None of the existing FFS evaluations have documented improved food

security, so potentially the extra money was well spent.

Furthermore, apart from the objectives of improved food security and poverty al-

leviation among participating households, RIPAT also has the aim of ensuring that the

participants are willing to share their knowledge with and demonstrate agricultural

techniques to their fellow villagers, thus increasing the probability of diffusion of the

improved techniques within RIPAT villages. A study by Gausset (2013) highlights the

fact that a reasonably high degree of diffusion of the various RIPAT technologies has

taken place. In particular, the improved banana variety has been popular, and by 2011

it had been adopted by one in eight non-RIPAT farmers in RIPAT I villages (Larsen,

2012). With this focus of RIPAT FFS on diffusion as in conventional agricultural exten-

sion programs, one can argue that the relevant cost-benefit analysis should be carried

out at village rather than household level. The average cost per household is then only

USD 30, and this expenditure led to an overall outcome of a 17-percentage-point in-

crease in the probability of households being free from hunger in RIPAT I villages.35 In

34It should be noted that since the RIPAT interventions described here were the first out of a series of
such projects, some piloting costs are also included.

35The potential impact on non-RIPAT households need not only come through increased technology
adoption. The analysis above of the demand for hired labor suggests that RIPAT also brought about in-
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comparison, a large nation-wide community-based child nutrition program in Ethiopia

resulted in an improvement of only seven percentage points measured on the same

household hunger scale (White & Mason, 2012).
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Figures

Figure 1: Time line of RIPAT projects and data collection
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Tables

Table 1: Summary statistics for background characteristics
All Arumeru Karatu

RIPAT I Non-RIPAT Control RIPAT II Control
(1) (2) (3) (4) (5) (6)

Acres 2006 3.04 3.29 2.95 3.02 3.03 2.90
(1.69) (1.78) (1.74) (1.72) (1.61) (1.61)

Head less than 7 yrs educ. 0.32 0.30 0.30 0.32 0.28 0.41
(0.47) (0.46) (0.46) (0.47) (0.45) (0.49)

Head more than 7 yrs educ. 0.05 0.07 0.06 0.06 0.04 0.04
(0.22) (0.26) (0.24) (0.24) (0.20) (0.19)

Age of head 46.82 48.19 44.97 46.32 45.72 48.58
(14.45) (13.57) (16.10) (16.06) (11.53) (15.21)

Head is female 0.15 0.19 0.15 0.19 0.07 0.16
(0.35) (0.40) (0.35) (0.39) (0.26) (0.37)

Number of children of head 1.73 1.49 1.32 1.35 2.37 1.86
(1.55) (1.31) (1.34) (1.33) (1.68) (1.70)

Good at math 0.36 0.41 0.36 0.38 0.36 0.31
(0.48) (0.49) (0.48) (0.49) (0.48) (0.46)

Participation in other projects 0.16 0.27 0.13 0.16 0.15 0.09
(0.37) (0.45) (0.33) (0.37) (0.35) (0.29)

Household rainfall, mm/year 818.59 751.26 749.53 703.84 930.23 905.28
(106.97) (53.99) (54.38) (41.29) (50.83) (61.30)

Village distance to market, km 8.53 9.59 10.09 5.43 8.42 8.98
(4.83) (3.68) (3.71) (4.86) (5.96) (3.93)

Village has secondary school 0.68 0.60 0.65 0.88 0.63 0.67
(0.47) (0.49) (0.48) (0.33) (0.48) (0.47)

Village hosted devel. project 0.51 0.63 0.70 0.39 0.36 0.49
(0.50) (0.48) (0.46) (0.49) (0.48) (0.50)

Observations 2,041 420 335 359 491 436

Notes: Means (and standard deviations) of household and village characteristics for all households in the
sample are shown in Column (1) and for subsets of the sample in Columns (2)-(6). The means are unweighted.
Since non-RIPAT households are overrepresented in some villages, the village level means differ slightly
between Column (2) and (3).
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Table 2: Who participated in RIPAT I?
Comparison households: Non-RIPAT Control Control

(1) (2) (3)

Log acres 2006 0.218 0.091 -0.091
(0.17) (0.22) (0.30)

Head less than 7 yrs educ. -0.238 -0.219 -0.663**
(0.25) (0.29) (0.34)

Head more than 7 yrs educ. 0.216 0.038 0.322
(0.33) (0.36) (0.36)

Age of head 0.163*** 0.112*** 0.177***
(0.05) (0.04) (0.05)

Age of head, squared /100 -0.138*** -0.100** -0.162***
(0.04) (0.04) (0.04)

Head is female 0.335 0.335* 0.257
(0.24) (0.20) (0.22)

Number of children of head 0.030 0.107 -0.035
(0.07) (0.08) (0.11)

Good at math 0.267* 0.066 0.135
(0.15) (0.21) (0.27)

Participation in other projects 0.830*** 0.494** 0.236
(0.21) (0.24) (0.37)

Household rainfall, mm/year -0.000 0.024** 0.021***
(0.00) (0.01) (0.01)

Village distance to market 0.335***
(0.12)

Village has secondary school -3.191**
(1.32)

Village hosted devel. project 2.359*
(1.33)

Constant -4.450** -20.185*** -20.706***
(2.09) (7.53) (5.47)

N 755 779 779

Notes: Logit estimates with a RIPAT I household indicator as the outcome
variable. The samples consist of households within RIPAT I villages in Col-
umn (1), and of RIPAT I and their control households in Columns (2) and (3).
Standard errors in parentheses are clustered at the sub-village level. Signifi-
cance levels are denoted by * 0.1, ** 0.5 and *** 0.01.
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Table 3: Summary statistics for adoption measures
Arumeru Karatu

RIPAT I Control (p-value) RIPAT II Control (p-value)

Improved banana 0.69 0.12 0.00 0.64 0.01 0.00
(0.46) (0.33) (0.48) (0.08)

Number of crops in 2010 5.62 4.76 0.02 6.65 4.69 0.00
(2.30) (2.22) (2.71) (2.12)

Fruit tree(s) 0.66 0.56 0.46 0.49 0.28 0.02
(0.48) (0.50) (0.50) (0.45)

Improved poultry breeds 0.27 0.02 0.00 0.25 0.01 0.00
(0.44) (0.14) (0.44) (0.10)

Improved goat breeds 0.40 0.15 0.00 0.19 0.05 0.00
(0.49) (0.36) (0.40) (0.22)

Improved pig breeds 0.00 0.00 0.18 0.00 0.00
(0.00) (0.00) (0.38) (0.05)

Zero grazing 0.30 0.29 0.93 0.21 0.09 0.02
(0.46) (0.45) (0.41) (0.29)

Savings 0.23 0.03 0.00 0.30 0.11 0.01
(0.42) (0.18) (0.46) (0.31)

Observations 420 359 491 436

Notes: The table shows the means (standard deviations) as well as the p-values of a cluster-robust
t-test of the differences in means being equal to zero, clustering at the village level.
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Table 4: Summary statistics for development outcomes
Arumeru Karatu

RIPAT I Control (p-value) RIPAT II Control (p-value)

No hunger 0.40 0.29 0.19 0.39 0.39 0.90
(0.49) (0.46) (0.49) (0.49)

HHS worst month 1.43 1.65 0.43 1.23 1.23 0.98
(1.47) (1.46) (1.25) (1.26)

HHS best month 0.07 0.04 0.38 0.03 0.03 0.97
(0.35) (0.27) (0.24) (0.26)

HHS previous four weeks 0.25 0.32 0.57 0.19 0.32 0.01
(0.66) (0.73) (0.53) (0.74)

At least 3 meals, worst month 0.63 0.62 0.89 0.82 0.82 0.92
(0.48) (0.49) (0.38) (0.39)

At least 3 meals, best month 0.94 0.91 0.39 0.99 0.98 0.42
(0.24) (0.29) (0.11) (0.13)

At least 3 meals, previous 4 weeks 0.87 0.84 0.43 0.96 0.95 0.62
(0.34) (0.37) (0.19) (0.21)

Meat 0.74 0.69 0.48 0.40 0.39 0.70
(0.44) (0.46) (0.49) (0.49)

Eggs 0.56 0.36 0.00 0.45 0.38 0.29
(0.50) (0.48) (0.50) (0.49)

Dairy products 0.87 0.83 0.44 0.63 0.60 0.62
(0.34) (0.38) (0.48) (0.49)

PPI 44.29 44.68 0.89 32.00 33.49 0.56
(14.81) (14.04) (16.41) (14.84)

Good quality floor (not earth) 0.26 0.31 0.55 0.13 0.11 0.81
(0.44) (0.46) (0.33) (0.32)

Mobile phone 0.68 0.67 0.83 0.61 0.56 0.27
(0.47) (0.47) (0.49) (0.50)

Rely on casual labour 0.05 0.15 0.02 0.11 0.20 0.02
(0.22) (0.36) (0.31) (0.40)

Hired labour 0.62 0.49 0.03 0.45 0.33 0.05
(0.49) (0.50) (0.50) (0.47)

Observations 420 359 491 436

Notes: The table shows the means (standard deviations) as well as the p-values of a cluster robust t-test of the
differences in means being equal to zero, clustering at the village level.
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Table 5: Impact of RIPAT on development outcomes
(1) (2) (3) (4)

Simple CS ITT Matching QDiD

PANEL A: Food security outcomes

No hunger 0.208 *** 0.172 ** 0.189 0.238 ***
(0.052) (0.062) (0.204) (0.063)

HHS, worst month -0.714 *** -0.699 ** -0.723 *** -0.809 ***
(0.193) (0.277) (0.204) (0.226)

HHS, best month -0.004 0.004 -0.043 -0.023
(0.031) (0.037) (0.052) (0.034)

HHS, previous 4 weeks -0.146 -0.153 -0.146 -0.046
(0.127) (0.106) (0.126) (0.133)

At least 3 meals, worst month 0.158 * 0.156 * 0.083 0.170 *
(0.085) (0.089) (0.062) (0.098)

At least 3 meals, best month 0.069 * 0.100 ** 0.076 ** 0.065 *
(0.038) (0.045) (0.038) (0.037)

At least 3 meals, previous 4 weeks 0.106 ** 0.080 0.070 0.101 **
(0.037) (0.057) (0.049) (0.040)

Had meat previous week 0.132 * 0.044 0.143 *** 0.148 *
(0.064) (0.069) (0.042) (0.076)

Had eggs previous week 0.223 *** 0.145 ** 0.189 *** 0.163 **
(0.044) (0.057) (0.061) (0.065)

Had dairy products prev. week 0.068 0.005 0.120 ** 0.050
(0.072) (0.083) (0.047) (0.092)

PANEL B: Poverty outcomes

PPI 3.472 0.829 0.077 4.047
(2.086) (3.075) (0.050) (3.105)

Has good quality floor (not earth) -0.002 -0.062 1.351 -0.006
(0.076) (0.087) (1.481) (0.081)

Has (mobile) phone 0.055 -0.063 -0.031 0.064
(0.033) (0.037) (0.060) (0.047)

Observations 779 1,114 779 1,706

Notes: Each row represents a dependent variable. Columns (1), (2) and (4) show OLS regression
coefficients: Column (1) gives the coefficient to the RIPAT I indicator in a simple cross-sectional (CS)
comparison using data from Arumeru district only; Column (2) gives the coefficient for the RIPAT I
village indicator in ITT regressions including non-RIPAT households from RIPAT I villages, applying
inverse sampling probability weights, and using data from Arumeru district only; Column (3) gives
the Mahalanobis matching estimates yielded when RIPAT I households are matched to controls in
Arumeru district; and Column (4) gives the coefficients for the interaction term between the RIPAT
dummy and the Arumeru district dummy in the QDiD specification, i.e. these estimations include both
RIPAT I and RIPAT II households and their respective control households in the two districts. Village
characteristics and household characteristics as described in text are controlled for in all specifications.
Standard errors in parentheses are clustered at the village level. Significance levels are denoted by *
0.1, ** 0.5 and *** 0.01. The numbers of observations are reduced for the "Less than 3 meals" outcomes
to 688, 985, 688 and 1515 respectively for the four columns.
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Table 6: Smoothing mechanisms
Outcome variable Adoption HHS, worst month

(1) (2) (3) (4) (5) (6)
Sample RIPAT I RIPAT II RIPAT Control Smooth Nonsmooth

RIPAT 0.601*** 0.648*** 0.167 0.344***
(0.07) (0.04) (0.20) (0.12)

Smooth -0.357* -0.369***
(0.18) (0.12)

District 0.654 0.893*** 1.199** 0.745**
(0.56) (0.29) (0.55) (0.27)

RIPAT*District -0.397 -0.826**
(0.32) (0.33)

N 779 927 911 795 828 878

Notes: OLS estimates. The dependent variable in Columns (1) and (2) is an adoption indicator
equal to one if the household had adopted any of the smoothing technologies; in Columns (3)-
(6) it is HHS in worst month. Village characteristics and household characteristics as described
in text are controlled for in all specifications. Standard errors in parentheses are clustered at the
village level. Significance levels are denoted by * 0.1, ** 0.5 and *** 0.01.
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Appendix

A Progress out of Poverty Indicator (PPI)

The PPI is constructed by Schreiner (2012) based on ten simple questions listed in what

he refers to as a scorecard; see the example from Tanzania below.

Figure A.1: A simple poverty scorecard for Tanzania
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B Robustness results

Table A.1: Impact of RIPAT on development outcomes
(1) (2) (3) (4)

Simple CS ITT Matching QDiD

PANEL A: Food security outcomes

No hunger 0.203 *** 0.155 *** 0.224 0.225 ***
(0.056) (0.055) (0.164) (0.075)

HHS, worst month -0.590 *** -0.524 ** -0.935 *** -0.649 ***
(0.195) (0.211) (0.164) (0.231)

HHS, best month 0.012 -0.024 -0.013 -0.008
(0.050) (0.045) (0.036) (0.050)

HHS, previous 4 weeks -0.062 -0.082 -0.172 ** 0.035
(0.147) (0.118) (0.080) (0.152)

At least 3 meals, worst month 0.137 ** 0.143 ** 0.225 *** 0.143 *
(0.066) (0.068) (0.071) (0.081)

At least 3 meals, best month 0.088 ** 0.133 *** 0.050 0.085 **
(0.035) (0.036) (0.044) (0.034)

At least 3 meals, previous 4 weeks 0.124 *** 0.093 * 0.103 * 0.123 ***
(0.041) (0.049) (0.056) (0.042)

Had meat previous week 0.173 ** 0.099 0.156 *** 0.174 **
(0.066) (0.082) (0.059) (0.077)

Had eggs previous week 0.212 *** 0.179 *** 0.221 *** 0.146 **
(0.057) (0.063) (0.051) (0.071)

Had dairy products prev. week 0.066 0.019 0.084 ** 0.033
(0.067) (0.072) (0.042) (0.082)

PANEL B: Poverty outcomes

PPI 0.197 -1.087 0.097 0.562
(2.473) (2.767) (0.064) (2.918)

Has good quality floor (not earth) -0.098 -0.131 * 2.968 * -0.105
(0.062) (0.068) (1.592) (0.068)

Has (mobile) phone 0.027 -0.057 -0.036 0.039
(0.043) (0.048) (0.048) (0.052)

Observations 779 1,114 779 1,706

Notes: Each row represents a dependent variable. Columns (1), (2) and (4) show OLS regression
coefficients: Column (1) gives the coefficient for the RIPAT I indicator in a simple cross-sectional
(CS) comparison using data from Arumeru district only; Column (2) gives the coefficient for
the RIPAT I village indicator in ITT regressions, including non-RIPAT households from RIPAT
I villages, applying inverse sampling probability weights, and using data from Arumeru dis-
trict only; Column (3) gives the Mahalanobis matching estimates yielded when RIPAT I house-
holds are matched to controls in Arumeru district; and Column (4) gives the coefficient for the
interaction term between the RIPAT dummy and the Arumeru district dummy in the QDiD
specification, i.e. this estimation includes both RIPAT I and RIPAT II households and their re-
spective control households in the two districts. Village characteristics (Distance to market, Has
secondary school, Hosted development project in 2006-2010, and in Column (4) all three inter-
acted with Arumeru district dummy) and household characteristics (Log acres in 2006; House-
hold head’s gender, education, math skills, age and age squared; Number of children of head;
Whether household has participated in other project in the past; Historical rainfall (interacted
with the Arumeru district dummy in Column (4))) are controlled for in all specifications. Stan-
dard errors in parentheses are clustered at the sub-village level. Significance levels are denoted
by * 0.1, ** 0.5 and *** 0.01. The numbers of observations are reduced for the "Less than 3 meals"
outcomes to 688, 985, 688 and 1,515 respectively for the four columns.
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Table A.2: Smoothing mechanisms
Outcome variable Adoption HHS, worst month

(1) (2) (3) (4) (5) (6)
Sample RIPAT I RIPAT II RIPAT Control Smooth Nonsmooth

RIPAT 0.567*** 0.650*** 0.051 0.320***
(0.09) (0.04) (0.27) (0.10)

Smooth -0.348* -0.313**
(0.18) (0.12)

District 6.403** 9.356* 3.244 5.194*
(2.45) (5.09) (3.35) (2.90)

RIPAT*District -0.108 -0.851**
(0.40) (0.35)

N 779 927 911 795 828 878

Notes: OLS estimates. The dependent variable in Columns (1) and (2) is an adoption indica-
tor equal to one if the household has adopted any of the smoothing technologies; in Columns
(3)-(6) the dependent variable is HHS in worst month. Village characteristics (Distance to mar-
ket, Has secondary school, Hosted development project in 2006-2010, and all three interacted
with the Arumeru district dummy) and household characteristics (Log acres in 2006; House-
hold head’s gender, education, math skills, age and age squared; Number of children of head;
Whether household has participated in other project in the past; Historical rainfall, and the last
interacted with the Arumeru district dummy) are controlled for in all specifications. Standard
errors in parentheses are clustered at the sub-village level. Significance levels are denoted by *
0.1, ** 0.5 and *** 0.01.
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C HHS in worst month, all regression coefficients

Table A.3: Impact of RIPAT on HHS in worst month; all regression coefficients shown
Simple CS QDiD

(1) (2) (3) (4) (5) (6)

RIPAT dummy -0.226 -0.737*** -0.714*** 0.003 0.044 0.096
(0.28) (0.19) (0.19) (0.15) (0.13) (0.13)

Arumeru district dummy 0.422* 0.991*** 1.054***
(0.22) (0.34) (0.34)

RIPAT*District -0.228 -0.782*** -0.809***
(0.31) (0.23) (0.23)

Village distance to market 0.044** 0.043** 0.023* 0.023**
(0.02) (0.02) (0.01) (0.01)

Village has secondary school -0.741*** -0.726*** 0.075 0.059
(0.23) (0.23) (0.12) (0.11)

Village had devel. project 0.506** 0.521** 0.197* 0.244**
(0.22) (0.23) (0.11) (0.11)

Village distance to market*District 0.021 0.019
(0.02) (0.02)

Village has secondary school*District -0.816*** -0.784***
(0.25) (0.25)

Village had devel. project*District 0.309 0.280
(0.24) (0.25)

Log acres 2006 -0.349*** -0.365***
(0.10) (0.07)

Head less than 7 yrs educ. 0.123 0.130
(0.13) (0.09)

Head more than 7 yrs educ. -0.529*** -0.594***
(0.17) (0.12)

Age of head 0.019 0.022
(0.03) (0.01)

Age of head, squared -0.009 -0.014
(0.02) (0.01)

Head is female -0.115 -0.038
(0.12) (0.11)

Constant 1.652*** 1.871*** 1.543** 1.229*** 0.880*** 0.472
(0.20) (0.31) (0.70) (0.10) (0.15) (0.39)

N 779 779 779 1706 1706 1706

Notes: OLS estimates; Dependent variable is Household Hunger Scale in worst month. Standard errors
in parentheses are clustered at the village level. Significance levels are denoted by * 0.1, ** 0.5 and ***
0.01. Columns (1)-(3) are based on data from RIPAT I and control households in Arumeru district, while
Columns (4)-(6) also include data from Karatu district. ’*District’ refers to an interaction term with the
Arumeru district dummy.
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Can agricultural interventions improve child

health? Evidence from Tanzania

Anna Folke Larsen∗and Helene Bie Lilleør†

Abstract

Severely reduced height-for-age due to undernutrition is widespread in young

African children, with serious implications for their health and later economic pro-

ductivity. It is primarily caused by growth faltering due to hunger spells in critical

periods of early child development. We assess the impact on child health, mea-

sured as height-for-age, of an agricultural intervention that improved food security

among smallholder farmers by providing them with a “basket” of new technology

options. We find that height-for-age measures among children from participating

households increased by about 0.8 standard deviations and the incidence of stunt-

ing among them decreased by about 17 percentage points.
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1 Introduction

Undernutrition is a key reason for poor child health in many developing countries. In

Sub-Saharan Africa, around 40 per cent of children under the age of five suffer from

stunted growth, i.e. severely reduced height-for-age relative to their growth potential

(de Onis, Blössner and Borghi, 2011). Stunting is a result of periods of undernutrition

in early childhood, and it has been found to have a series of adverse long-term effects

in those who survive childhood. It is negatively associated with mental development

(Martorell, 1999), with human capital accumulation (Jamison, 1986; Glewwe, Jacoby

and King, 2001; Maluccio et al., 2009), with adult health (Victora et al., 2008; Adair et al.,

2013), and with economic productivity and income levels in adulthood (Hoddinott

et al., 2008, 2013).1

It is by now well established that height-for-age can be seen as a “summary indica-

tor” of the health and development of children during the first 1,000 days of their lives,

from conception to two years of age (Hoddinott et al., 2013). During this period, chil-

dren have very high growth rates; and consequently, when subject to spells of growth

faltering, children quickly fall behind the height-for-age growth curves of their peers,

with limited chances of catching up subsequently (Victora et al., 2010).2

In this paper, we assess the impact on early childhood health, measured as height-

for-age, of an agricultural intervention that improved food security in the lean season

among smallholder farmers by providing them with a “basket” of new technology

options. The intervention targeted smallholder farmers in Northern Tanzania by or-

ganizing farmer groups similar to those used in the widespread Farmer Field Schools

approach. On a common group plot, each group was trained in and given the oppor-

tunity to experiment with a basket of agricultural and animal husbandry technology

options based on locally available resources over a time horizon of three and a half

years. Each farmer then adopted his or her preferred technologies in accordance with

1Although Vogl (2014) shows that a sizeable fraction of higher adult wages may be mediated by
occupational choice and better education.

2Although an opportunity window for catch-up may exist in the later puberty period, as recently
shown by Hirvonen (2013).
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his or her own needs and resources.

Roughly half of the participating households had children under the age of five

years. To identify the impact of the agricultural intervention on early childhood health

in terms of height-for-age, we employ a difference-in-differences comparison of co-

horts conceived before and after the phase-in of the project, where only the the latter

cohort lived all of their first 1,000 days under full project implementation. The height-

for-age data for the older cohort allow us to control for systematic differences in nu-

tritional levels between children in treatment and comparison households prior to the

onset of intervention activities.3

Because stunting is widespread in developing countries and has serious long-term

implications, its causes and potential prevention strategies have been subject to careful

scrutiny. The prevention strategies focus on the nutrition of pregnant women, infants

and young children. They include disease prevention strategies, breastfeeding prac-

tices, micronutrient supplements, food fortification, and food security strategies (Allen

and Gillespie, 2001; Bhutta et al., 2008; Schroeder, 2008). The various authors all note

that the evidence of the effectiveness of these strategies in preventing undernutrition is

as mixed as the range of strategies itself. Although breastfeeding promotion and pro-

viding micronutrient supplements are effective strategies for reducing stunting, they

cannot fully prevent stunting in food-insecure environments where the mother is un-

dernourished or there are numerous deficiencies in micronutrients (Schroeder, 2008).

There is a general agreement in the nutritional literature that there is no magic bullet

for solving the undernutrition problem. Rather, it is believed that “to eliminate stunt-

ing in the longer term, these [nutritional] interventions should be supplemented by

improvements in the underlying determinants of undernutrition” (Bhutta et al., 2008).

It is argued that it is necessary to combine nutrition programs with income growth

(Alderman, Hoogeveen and Rossi, 2006) and with broader food systems (Miller and

Welch, 2013), and to focus more on overall dietary quality, bringing local needs, cul-

tural conditions and resource constraints into play (Schroeder, 2008) to achieve sustain-

3This follows closely the identification strategy of Duflo (2003).
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able solutions to undernutrition. Recently, this has been stressed even more strongly

by Ruel and Alderman (2013). They argue that nutrition-sensitive interventions or pro-

grams have enormous potential to improve nutrition without being nutrition-specific.4

They review the nutritional potential of interventions and programs in four different

sectors, including agriculture. They conclude that within agriculture in particular, the

potential for positive nutritional impacts is great, because agricultural interventions

can support livelihoods, increase food production and enhance access to diverse diets.

They note, however that the empirical evidence is very scanty, largely due to the poor

quality of evaluations.

A recent systematic review by Masset et al. (2012) focuses specifically on whether

agricultural interventions, such as home gardens, animal husbandry, and the produc-

tion of bio-fortified crops, all aimed at improving the nutritional status of children,

actually succeeded in doing so. They find that although there is a positive effect on the

production and consumption of the agricultural goods promoted, the impact on the

overall diet is unclear, and very little positive evidence was found of an effect on the

nutritional status of young children. However, Masset et al. stress that weak evalu-

ation methodologies and lack of sufficient statistical power cast serious doubt on the

validity of an overall and somewhat counterintuitive conclusion that there was a lim-

ited impact of the agricultural interventions on nutrition. They therefore call for more

rigorous research on the subject in order to be able to answer the question of whether

agricultural interventions can reduce undernutrition and therefore should play a more

prominent role in the prevention of growth faltering among young children.

We contribute to this literature by providing a careful and rigorous impact asses-

ment on height-for-age and stunting among young children of one agricultural inter-

vention. To use the terminology of Ruel and Alderman (2013) above, the interven-

tion was nutrition-sensitive in that it targeted food security broadly, but it was not

4Ruel and Alderman (2013) define nutrition sensitive interventions to be interventions or programs
that address the underlying determinants of fetal and child nutrition and development, such as food
security, whereas nutrition-specific interventions are interventions or programs that address the imme-
diate determinants of fetal and child nutrition and development, such as adequate food and nutrient
intake by children, feeding, caregiving and parenting practices, and low burden of infectious diseases.
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nutrition-specific. It promoted a more constant level of food security throughout the

year by introducing perennial crops and improved breeds of livestock to help increase

food availability during the lean season.

Using post-treatment data, we analyze whether the three-and-a-half-year-long in-

tervention led to an improvement in the height-for-age measures among children young

enough to have lived all their lives under the intervention. We measure this one year

after the completion of the intervention. To identify the impact, we follow the identi-

fication strategy in Duflo (2003) and exploit the fact that the height-for-age measure is

a strong biological marker of undernutrition in a well-defined age window, from con-

ception to 24 months of life. The intuitive reasoning is as follows. If the intervention

indeed reduced spells of undernutrition or hunger among participating households,

children conceived after the phase-in of the project should be taller for their age than

their older peers who lived (part of) their first two years of life before the project could

have had any impact on food security. However, there may have been a general change

in the food security status of children during the project period. To control for this, we

employ a cohort difference-in-differences strategy and compare the relative height dif-

ferential between young children in participating and comparison households to the

height differential between their older peers.

We find that young children from participating households on average experienced

a health improvement, in that their standardized height-for-age measures increased by

about 0.8 standard deviations. In addition, we not only find improvements on average,

but also in the lower tail of the height-for-age distribution. Looking at the prevalence

rates of stunting, which is defined as having a height more than two standard de-

viations below the mean of a global reference distribution,5 we find indications that

prevalence rates dropped by 17.6 percentage points. Compard to the literature, these

are sizable impacts and larger than most from nutrition interventions, but comparable

to nutritional impacts of cash-transfer programs. We show that improved food security

in (severe) hunger periods is a probable mechanism behind this result. Furthermore,

5We use the international WHO growth standards(WHO, 2006).
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we examine our identifying common trend assumption and test our results against

various alternative specifications and explanations, and find that they are highly ro-

bust.

Overall, our findings suggest that agricultural interventions can in fact influence

the underlying determinants of undernutrition to such an extent that they translate di-

rectly into children coming closer to their full growth potential. Although this is only

one impact assessment of one agricultural intervention, and more rigorous impact as-

sessments are needed to shape policy recommendations, our findings show that in the

context studied it is possible to reduce early childhood stunting considerably through

a broad nutrition-sensitive agricultural intervention.

The remainder of the paper is organized as follows. In section 2, we describe the

characteristics of the agricultural intervention in more detail, while the data and sum-

mary statistics are described in section 3. In section 4, we present our identification

strategy, and in section 5, our main results and their robustness. In section 6, we exam-

ine our identifying assumption further, and in section 7 we conclude with a discussion

of the relative magnitude of the impact and the project costs.

2 The agricultural intervention

The agricultural intervention is called “Rural Initiatives for Participatory Agricultural

Transformation”, or RIPAT.6 The specific instance of this intervention that we evaluate

was the first RIPAT program (RIPAT I), implemented by a local NGO, RECODA, in

eight villages in Arumeru District in the Arusha Region of Northern Tanzania between

2006 and 2009 (see figure 2.1). Subsequently, another three similar RIPAT interventions

have been implemented in nearby districts. The stated overall development goal of

RIPAT is to reduce poverty and improve food security among smallholder farmers by

facilitating high and sustainable levels of adoption of improved agricultural and live-

6See www.ripat.org or Lilleør and Lund-Sørensen (2013) for a thorough description and discussion
of the intervention.
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stock technologies disseminated through local farmer groups. The intervention has

strong similarities with the Farmer Field Schools (FFS) approach as outlined in Van den

Berg and Jiggins (2007), the main differences being that RIPAT offers a variety of tech-

nology options as opposed to one technology in FFS, combines both top-down teaching

and participatory learning methods, and runs for three years with close follow-up as

opposed to one agricultural season in FFS (Aben, Duveskog and Friis-Hansen, 2013).

Participation in RIPAT is not randomly allocated, which makes perfect sense from

an implementation perspective, but which poses a challenge for the evaluation of the

project. Poor villages with suitable agricultural conditions are selected at the district

level. In the chosen villages, interested farmers (typically up to 70 in a village) are orga-

nized in farmer groups of 30-35 voluntary participants selected by the village council.

In finding target participants, the village council is asked to select individuals who

will be committed to the project (strict attendance records are kept), who are willing to

share their new knowledge with fellow villagers, and who are not rich in terms of the

internal village wealth ranking. However, to facilitate individual technology adoption,

participants must own at least one acre (and no more than five acres) of farm land.

Once the groups have been organized, the facilitators from the implementing NGO

meet with the group on a weekly basis during the phase-in period. The first tasks of

the group are to agree on a group constitution and elect group leaders. Each farmer

group then has to rent an appropriate group field of around one acre of land which can

function as a demonstration plot, typically renting land belonging to a fellow farmer

or the village community. All group meetings are subsequently held at the group field.

The group is offered training in a full basket of technology options, which cov-

ers a broad range of local needs. The technology options include new banana culti-

vation techniques; new improved banana and other perennial and annual crop vari-

eties; conservation agriculture for improved land utilization (such as minimum soil

disturbance, cover crops, intercropping, rotation and diversification of crops); post-

harvesting technologies; improved animal husbandry; multipurpose trees for fodder,

fruit, or firewood; soil and water conservation, including rain water harvesting; and
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savings groups. During the phase-in period of one year, the facilitators from the im-

plementing NGO (typically agronomists) train the group members gradually in each

of the technology options according to the agricultural seasons. After this period, the

main role of the facilitators is to monitor and provide guidance on a bi-monthly or

monthly basis.

The farmer groups are exposed to the full basket of options at the group demonstra-

tion plot, where the new techniques are implemented and compared with traditional

methods under the guidance of the skilled facilitator. This reduces the individual risks

involved in trying out or learning new technologies. Each farmer is free to choose

which technologies to adopt on his/her own farm according to his/her own needs,

constraints and resources. Groups are given an initial set of inputs for free for the

training in, demonstration of and testing of technologies on the group field, includ-

ing roosters of improved breeds to cross-breed with local hens. However, individual

farmers wanting to adopt the new technologies must purchase inputs from the imple-

menting NGO at cost prices. In the case of improved varieties of banana seedlings

and goats, solidarity chains are implemented to promote local diffusion.7 While some

techologies may be generally more popular than others, adoption varies considerably

from farmer to farmer, and often takes place after a time lag.

In the area of the implentation of RIPAT in the present study, food insecurity is most

pronounced during the lean season of the year, i.e. during the months leading up to

the annual harvest of the main staple crop, maize. The project implementation started

in the beginning of the growing season in 2006, and hence we would expect the earliest

impact on food insecurity to have taken place in the lean season of 2007. Children who

were fully exposed to the potential benefits of RIPAT are therefore defined to be those

conceived in January 2007 or thereafter (see below).

Although the intervention was not nutrition-specific, it was nutrition-sensitive in

7After the phase-in period and once banana seedlings are available from the group plot, the farmers
can obtain free seedlings in exchange for agreeing to pass on three times the number of the seedlings
received to other farmers within or outside the farmer group. The farmer tending a she-goat of an
improved breed can keep the goat after passing on the first female offspring to another farmer on the
same condition.
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2006 2007 2008 2009 2010 2011 

Project start Project end 

: Lean period 

Phase-in 

Figure 2.1: Timeline

its strong focus on achieving food security by promoting agricultural and livestock

technologies which were more drought resistant, more varied, and led to a smoother

rate of food production throughout the year. In Larsen and Lilleør (2014) we show

that the intervention did in fact lead to improved food security levels among the full

sample of participating households8 in terms of reduced hunger during the lean sea-

son, higher intake of animal protein in terms of meat and eggs, and more meals per

day.9 Based on the nutrition literature, we expect children who were exposed to RI-

PAT in utero and during the first two years of their lives to have benefited from this,

as children’s physical growth is particularly sensitive to insufficient nutrition. In this

paper, we therefore contribute to the nutrition literature, when we investigate whether

households in the subset with young children were in fact able to shield those children

from nutrition-related setbacks in their growth.

3 Data and summary statistics

Our main outcome variable in this paper is the height-for-age z-score for children,

which is a very powerful indicator of severe early childhood or in-utero undernutri-

tion, as described above. We construct height-for-age z-scores (HAZ) by subtracting

the means and dividing by the standard deviations of the age- and gender-specific

lengths or heights from the reference distribution established in the WHO Multicentre

8That sample also included households without young children, as opposed to the sample of this
paper.

9We also examined whether the intervention succeeded in alleviating poverty. Based on a broad
range of single indicators and one composite poverty indicator, we did not detect any impact of RIPAT
on poverty levels.
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Growth Reference Study, which was based on healthy children from Brazil, Ghana, In-

dia, Norway, Oman and USA (de Onis et al., 2004). Though children below 24 months

of age were measured recumbent, and hence we measured length rather than height,

we henceforth refer to both length and height measurements as height.

We also look at the prevalence of stunting, using an indicator variable which equals

one for those children whose height is less than two standard deviations below the age-

and gender-specific mean.

3.1 Data

As indicated in the timeline in figure 2.1, we collected household-level data more than

one year after the project was completed.10 We interviewed 506 of the 561 original

RIPAT households from the eight intervention villages and 395 households from eight

comparable non-intervention control villages in the same district.11 The comparison

households were sampled at random among farming households with one to eight

acres of land.12 Out of these 901 households, 469 of them had children aged five years

or less, in total 645 children. We are able to construct height-for-age z-scores for 482

children from 382 households. The main reason for attrition is that enumerators were

not obliged to measure all children if some children were not present at the time of

the interview.13 The second most important reason for attrition is that not all parents

knew the month of birth of their child, which is a requisite for finding the relevant

height from the reference distribution to construct the HAZ. We disregard 14 child

10In January 2011, we conducted a large scale quantitative household survey using a closed-form
highly structured pilot-tested questionnaire to capture the impact of RIPAT on technology adoption,
food security and poverty. The data collection and data entry were closely supervized by us in cooper-
ation with a survey management team from the Economic Development Initiative (a Tanzanian survey
company). RECODA assisted in the hiring of a team of local interviewers and data entry clerks. Both
the project implementation and the data collection were financed by the Rockwool Foundation.

11The initial target was 12 comparison villages, but only eight villages in the district were comparable
to RIPAT with respect to relevant characteristics, e.g. agriculture being the most important economic
activity for them.

12During pilot testing of the survey, we became aware that some RIPAT participant did in fact hold
more than five acres of land in 2011. To increase comparability, we therefore allowed households in
control villages to to have up to eight acres of land. We control for land area in all the conditional
estimations below and impose a restriction on the number of acres in the robustness section.

13They were required to measure at least one child per household where there were children below
six years of age.
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observations with missing values in the household characteristics and 11 child obser-

vations with an absolute HAZ larger than five standard deviations in order to avoid

extreme outliers. Furthermore, following the convention in the literature (e.g. Bhutta

et al., 2008; de Onis, Blössner and Borghi, 2011; Masset et al., 2012), we focus the anal-

ysis on children up to 60 months old, in order to avoid the influence of environmental

factors on the heights of the children. This results in a final sample of 335 households

with 396 children.

In addition, we interviewed 427 non-participating households in RIPAT villages for

a study of diffusion of improved banana cultivation using a stratified random sample

(Larsen, 2012).14 From the households with young children we have HAZ measure-

ments of 195 children, which we use in section 6.1 as an alternative comparison group.

We apply sampling weights to account for stratification. See table 11 in the appendix

for an overview of the sample composition and the different reasons for attrition. In

section 5.1 below, we address the attrition in various different ways. We show that

results are robust to the use of a Heckman selection correction model to account for the

fact that the probability of being measured may not have been random. Furthermore,

we show that results are also robust to the inclusion of outliers in HAZ and of children

aged 61-71 months.

3.2 Summary statistics

In table 1 we list the mean values of key child, parent, household and village char-

acteristics for the RIPAT households in column (1), and the corresponding values for

the comparison households in column (2). In column (3) we present wild cluster boot-

strap p-values from two-sided t-tests of whether the means differ between RIPAT and

comparison households, clustered at the village level.15

Looking at the characteristics of children in the sample, we see that the overall HAZ

14Non-participating households were therefore oversampled in villages with a larger degree of diffu-
sion, and households growing improved bananas were sampled with a slightly higher probability than
other households (see Larsen (2012) for details of the sampling scheme).

15We use wild cluster bootstrap-t p-values for all inferences in the paper because we only have 16
clusters (villages), and with few clusters the usual asymptotic theory does not apply (Cameron, Gelbach
and Miller, 2008).
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is about one standard deviation below the WHO reference population mean, indicating

that they suffer from undernutrition in general. One in four children are stunted, and

although this might appear to be a high level of prevalence, it is well below the regional

stunting prevalence rate of 44 percent as found in the 2010 Demographic and Health

Survey (DHS, 2010). This indicates that the children in our sample are somewhat better

off than the regional average, possibly reflecting better socio-economic conditions, as

the area is reasonably fertile and in close proximity to Arusha town.

Slightly more than half of our sample were girls, and most were children of the

household head. Their fathers were typically in their late 30s, while their mothers

were around 30 years old. Both parents had between six and seven years of schooling,

corresponding to having almost completed primary education. However, there is a

tendency for the parents in RIPAT households, especially the mothers, to be older and

slightly more educated than the parents in comparison households.16

The children lived in households with, on average, five other household members,

these being fairly evenly distributed across the four age groups shown. In 2006, prior

to the commencement of the RIPAT project, the households owned on average three

to four acres of land. The math skills of the farmers interviewed were tested through

two simple math questions; less than half answered both of them correctly. We have

also included the average historical rainfall level at the household level,17 since the

households mainly rely on rain-fed agriculture. In accordance with the village selec-

tion criteria of suitable agricultural conditions, RIPAT villages received more rain than

the comparison villages. Both RIPAT households and RIPAT villages were more likely

to have participated in a development project in the past than their comparison equiv-

alents. However, these differences are not statiscally significant. The RIPAT villages

were situated further away from the main local market and they were less likely to

have a secondary school, and although these differences are insignificant they suggest

16When we have not been able to identify the parents, we have imputed the sample mean following
Duflo (2003).

17We used interpolated data on yearly precipitation on a one-by-one kilometer grid measured in mm
from the period 1950-2000 and available from http://www.worldclim.org/. The rainfall data were
matched to households using GPS coordinates.
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that the program allocation procedure targeted wetter and more remote villages.

From table 1 it is thus clear that there are some differences in observables between

participating and comparison households, although only few of these are significant at

a conventional level. We return to these below. It is, however, still important to account

for these characteristics in the analyses below in order to increase comparability.

4 The identification strategy

The participation selection process at both village and individual levels suggests that

more motivated farmers from poorer villages were likely to become project partici-

pants. Furthermore, no baseline data were collected prior to the intervention, and

therefore we cannot rely on standard difference-in-differences estimates to establish

counterfactual outcomes. We want to identify the impact of household participation in

RIPAT on the nutritional status of children measured by their height-for-age z-scores

(HAZ). To find an unbiased estimate of the average treatment effect, we therefore need

to account for project placement and self-selection. We do so by employing the identi-

fication strategy of Duflo (2003), which exploits the fact that height is a stock variable

reflecting accumulated nutrition and infections since conception.

This identification strategy relies on the findings in the medical literature that the

in-utero period and the first two years of life are critical periods for childhood develop-

ment. The length of new-born infants and the height of young children is considered to

be more sensitive to the nutritional intake than the height of older children (Martorell

and Habicht, 1986; Ruel, 2001), and stunting at birth or in early childhood is found to be

a strong predictor of later childhood stunting (Adair, 1999; Saleemi et al., 2001). Thus,

because stunting is persistent, the HAZ of older children represents reliable recall data,

as it is a biological marker of their past nutrition in early childhood (Hoddinott et al.,

2013; Victora et al., 2010). We exploit this fact to identify the impact of RIPAT with

a difference-in-differences estimator: the HAZ difference between young RIPAT and

comparison children conceived after the phase-in of the project, net of the difference
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for the older children. The difference in height-for-age of the older children captures

any systematic differences in nutritional status between RIPAT and comparison chil-

dren before a potential impact of the project. That is, it captures nutritional-level dif-

ferences due to the non-random selection and thereby accounts for the selection into

the project.

In other words, the idea of the identification strategy is to estimate whether chil-

dren who were conceived after project phase-in were taller for their age than their

older peers who were conceived earlier, relative to a similar cohort difference between

younger and older children from comparison households. The young RIPAT children

would have been fully exposed to potential benefits of the project during the first crit-

ical 1,000 days of their lives, while the older RIPAT children would only have been

partly exposed, or not at all. The difference in their HAZ can be assigned to RIPAT

after accounting for general time variation in nutrition and infections by deducting the

HAZ difference between young and older comparison children. The identifying as-

sumption is that—in absence of treatment—the height-for-age of treated and compar-

ison children would follow a common growth profile.18 We capture a growth profile

curvature by controlling for age in months quadratically. Our results could be mislead-

ing if the growth profiles differ between treated and comparison children in absence

of treatment. Below we therefore investigate whether there were any confounding

time-varying differences between participating and comparison households, such as

changes in fertility patterns or different coping abilities in times of drought (see sec-

tion 6).

We estimate the average treatment effect of RIPAT with ordinary least squares (OLS)

using the specification in equation (1).

Yi = β1RIPATh+β2youngi + β3RIPATh · youngi + Ciδ + Piφ + Xhη + Wvγ + εi (1)

Yi is the outcome for child i in household h in village v. The variable RIPATh in-

dicates whether household h had ever participated (i.e. including those that dropped

18This corresponds to the common trends assumption in a classical difference-in-differences set-up.
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out) in a RIPAT farmers’ group; youngi indicates whether child i was younger than a

certain threshold described below; and RIPATh · youngi gives the interaction between

the two last variables. Thus, β3 will give the estimate of the average treatment effect of

RIPAT on the nutritional status of young children, net of selection. We control for child

characteristics, denoted as Ci, parent characteristics, Pi, household characteristics, Xh,

and village characteristics, Wv, all of which are listed in table 1. Age in months is in-

cluded quadratically. We take the logarithm of acres of land owned in 2006. Finally,

we allow for errors to be correlated within villages, εi,v.

We have a small subsample of households with measurements of both young and

older siblings. This allows us to also provide estimates with household fixed effects

instead of parent, household and village characteristics as a simple robustness check.19

There is some flexibility in how we define the relevant threshold for the young

dummy, as it depends on when we can expect an impact of RIPAT on food security

to have taken place in the households. Food insecurity in this area is highly seasonal,

and is only pronounced in the lean seasons (January to May).20 This implies that the

earliest time we can expect an impact on nutrition of pregnant women and young chil-

dren is in the first lean season after project start, January-May in 2007. Hence, we define

the young dummy such that it is equal to one for children conceived in January 2007 or

later (henceforth referred to as “young” children). Regardless of the choice of thresh-

old, some children classified as old may also be affected by the improved nutrition. If

there is any such catch-up growth, it will lead to an underestimation of the impact. We

return to the choice of threshold in section 5.1.

5 Results

Before turning to the estimation results we compare the distributions of HAZ pre-

sented in figure 5.1 for the old and young children separately. We have conditioned
19We do not include parent characteristics in the fixed effects regressions, as there is naturally very

little variation within households.
20We define the span of the lean season according to self-assessment by the households in the sample.

The majority of households mentioned the months January-May as part of the “worst period in terms
of having enough food for everyone in your household [during 2010]”.
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Figure 5.1: Distributions of the HAZ

on child, parent, household and village characteristics to reduce noise. We see that the

conditional distribution of HAZ for the old RIPAT children is closely aligned to that

of old comparison children, suggesting that these children are indeed highly compa-

rable. For the young children the RIPAT distribution is clearly shifted to the right of

the comparison distribution. Obviously, this graphical inspection does not consitute a

formal test; however, it does suggest that not only were the young RIPAT children taller

for their age than the comparison children on average, but it appears that the interven-

tion has affected the entire HAZ distribution of young RIPAT children, in particular the

lower tail.

Table 2 shows OLS estimation results for the average treatment effect of RIPAT us-

ing the econometric specification given in equation 1. Columns (1) to (3) present esti-

mated impacts on the height-for-age z-score (HAZ) of young children in participating

households, hence the impact on the mean value of the HAZ distribution. To analyze

whether RIPAT affects the lower part of the distribution and decreases the prevalence

of severe undernutrition, we also provide estimates for the impact on the likelihood

of children being stunted in column (4) using the linear probability model. The co-

efficient to the RIPAT and young interaction term gives an estimate of the average

treatment effect of RIPAT on the HAZ or the probability of being stunted among the

younger children who grew up under the influence of RIPAT. In column (1) we show

the unconditional estimates, in column (2) we control for child, parent, household, and

village characteristics, and in column (3) we allow for household fixed effects.
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The unconditional estimate of the impact of RIPAT on HAZ is an average improve-

ment of 0.57 standard deviations (SD) of the WHO reference distribution. When we

control for child, parent, household, and village characteristics, the estimate of the

impact increases to 0.88 SD. This means that young children in RIPAT households

were 0.88 SD taller than their peers in comparison households, controlling for any

pre-project differences among the older children. When we include household fixed

effects to account for unobserved household characteristics, the point estimate further

increases to 1.38 SD. The fact that we still find a positive impact after the introduc-

tion of household fixed effects suggest that the results are not driven by unobserved

differences in the selection into the project between households with young and older

children. However, fixed effect estimation relies on variation in a relatively small sub-

set of the sample, as only 21 RIPAT households and 19 comparison households had

both young and older children in the sample, and we therefore only include it as a

robustness check of the conditional estimates.

Because RIPAT is a village intervention, we cluster standard errors at the village

level, and the corresponding significance levels are reported with the customary use of

asterisks. However, since we only have 16 villages and thus 16 clusters, the standard

asymptotic theory cannot be applied for inference. We therefore also report p-values

in square brackets based on wild cluster bootstrapped t-statistics for the impact coeffi-

cients, as suggested by Cameron, Gelbach and Miller (2008).

Turning to the impact on stunting in column (4), we see that the average impact

on height-for-age also translates into an impact in the lower part of the HAZ distri-

bution, as suggested by figure 5.1. Compared to children in control villages, we find

that young RIPAT children experienced a reduction in the prevalence of stunting of 17.6

percentage points, significant at the ten percent level. We have less statistical power

compared to our results for HAZ, since we discard information by reducing the con-

tinuous HAZ to a binary variable. However, this does suggest that the nutritional

improvements also reach children in the lower parts of the height-for-age distribution

who suffer from severe undernutrition.
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When we measure the impact of RIPAT on HAZ, we measure the impact on a nu-

tritional stock (height). We expect RIPAT to affect the stock through improvements in

the nutritional flows generated from the ongoing agricultural production.21 This sug-

gests that the effect of RIPAT on height-for-age should increase with the duration of

exposure to RIPAT. The longer children were exposed to improved nutrition, the more

the impact accumulates in their stock, i.e. their height. On the other hand, we are

analyzing the impact of an agricultural project that was gradually phased in, and for

which there was a lag from the onset of new project activities to a tangible nutritional

outcome from the fields or the livestock. Children born early in the project period

therefore received a weaker nutritional improvement during their first 1,000 days than

children born later, when new agricultural technologies could potentially have been

adopted, and this factor works in the opposite direction.

In table 3 we present estimates from a model that allow for cohort-specific impacts:

instead of a young indicator we include age indicators for the years zero to three, along

with the RIPAT indicator and their interaction terms. Four-year-old comparison chil-

dren then form the reference group. Overall, the impact is driven by the one- and two-

year-olds. Both groups have estimated impacts on the HAZ of 1 SD (see column 2),

which suggests that the accumulation of impact we expected to see in the two-year-old

children is offset by the gradual impact of the project. We see no significant impact on

the youngest children, possibly because the differences in nutritional intakes between

RIPAT and control children (and their mothers while they were in utero) are not yet de-

tectable in the height measurement. The three-year-old children belong to the group of

old children and, as expected, there is no significant difference between the three- and

four-year-old RIPAT cohorts relative to the comparison cohorts.22 The latter result thus

supports our common growth profile assumption for treated and comparison groups

21Instead of measuring the impact of RIPAT on the height-for-age of the children, it would be more
direct to measure the impact on the nutritional intake of the children in every period. However, it is
difficult to collect diary data with precise measurements of calorie and micronutrient intakes, so it is
convenient to use the height-for-age as a simple summary measurement of the nutritional status of the
child.

22Actually, the young threshold is 39 months, i.e. three years and three months, so 22 of the 90 three-
year-old children are considered young in the main analysis.
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prior to any impact.

Mechanisms

Although we cannot pin down the exact channel through which RIPAT has influ-

enced the nutritional status of young children, we can examine the most likely chain

of events, namely whether our sub-sample of RIPAT households are more likely to

have adopted the variety of technologies provided through the basket of options and

whether they are also more likely to be food secure.

Elsewhere we have examined the impact of RIPAT on food security and poverty

for the full sample of RIPAT households using a gradual roll-out of the project into a

nearby district to account for selection, (Larsen and Lilleør, 2014). We found robust

impacts on a variety of food security measures, but no impact on poverty. In this

paper, we focus on the sub-sample of households with young children, and assess the

impact on their height-for-age with an identification strategy that is only valid for this

particular outcome. To confirm that high levels of adoption and food security are also

more pronounced for the sub-sample of RIPAT households with young children, we

therefore resort to a simple cross-sectional comparison.23

In table 4, columns (1) and (2), we show the average adoption rates (and stan-

dard deviations) for RIPAT and comparison households for six of the central technol-

ogy options and the number of different crops cultivated in 2010, in order to capture

crop diversification. To test the difference in adoption between RIPAT and compari-

son households we regress the technologies on a RIPAT indicator and household and

village characteristics.24 Column (3) presents estimates for the RIPAT indicator with

cluster standard errors in parentheses and wild cluster bootstrap-t p-values in square

brackets. We see that there are high rates of technology adoption. Our RIPAT house-

23In Larsen and Lilleør (2014), we estimate the average treatment effect using simple cross-
sectional comparisons between treatment and control groups, matching estimators, and a difference-
in-differences estimator exploiting the gradual roll-out. The findings are reasonably robust across es-
timation methods, suggesting that selection into the project is not a major driver of results. We are
therefore confident that when we employ simple cross-sectional comparisons to this subsample, it will
give a good indication of whether there was also increased adoption and improved food security levels
in the sub-sample of RIPAT households with young children.

24We include age and education of the household head instead of that of the parents.
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holds are significantly more likely to have been growing improved banana varieties,

to have been keeping improved breeds of chickens and goats, to have been practicing

zero-grazing with their livestock by keeping their animals in smaller enclosures and

feeding them, to have been participating in savings groups,25 and to have had a larger

degree of crop diversification. We find no significant difference in the adoption of fruit

trees. It is worth noting that both perennial crops (like banana) and improved livestock

technologies (poultry providing eggs and meat, and milking-goats providing milk) en-

hanced production smoothing over the agricultural cycle and thereby also helped to

facilitate the smoothing of food consumption over the year.

The fact that the RIPAT farmers practiced zero-grazing among their livestock by

keeping the animals in smaller enclosures may have reduced the exposure of young

children to disease, since they would have been less exposed to animal excrement.

Similarly, in our data we can see that RIPAT households were more likely to have

a roof over their pit-latrine as recommended by RIPAT facilitators (along with village

and government officials), and this would have reduced the spread of bacteria through

flies. A reduced exposure to disease could therefore be another channel through which

children’s growth and thus height-for-age is positively affected (Bhutta et al., 2008;

Adair et al., 2013).

Increased adoption of new agricultural and animal husbandry technologies should

lead in turn to higher levels of food security. In table 5, columns (1) and (2), we list

RIPAT and comparison household means (and standard deviations) for eleven differ-

ent outcome measures of food security, and in column (3) we show RIPAT regression

coefficients from regressions of the food security measurements on a RIPAT indicator

and household and village characteristics, as in table 4.

We find that RIPAT households experienced a significantly shorter hunger season

than comparison households. When asked about the worst period in terms of having

enough food during the previous 12 months, RIPAT households reported an 11 per-

25Although later RIPAT projects (RIPAT 2-4) actively used Village Savings and Loans Associations as
one of the basket options, membership in external savings groups was simply encouraged in RIPAT 1,
the project which we study here.
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cent shorter period than comparison households, ceteris paribus. Similarly, we see that

RIPAT households are 16 percentage points less likely to have experienced any hunger

during the 12 months before the interview. We measure hunger using the Household

Hunger Scale (HHS)26 using three different reference periods: the previous four weeks,

and the worst and the best months during the previous 12 months. We see that hunger

is reduced by 0.6 on the HHS (corresponding to 32 percent) during the lean season

(worst month), while there is no significant impact on the level of food security in the

best period of the year or the four weeks preceeding the interview, where the preva-

lence of hunger was relatively low. Next, we look at whether the children in the house-

hold had at least three meals per day in the best and worst periods of the year as well

as in the previous four months. The coefficients are all positive, and in particular the

estimated difference for the worst month is large, this being where we also see the

greatest room for improvement. However, once the small number of clusters are taken

into account, there is not enough power to yield statistically significant results. This is

also the case for the analysis of whether the households consume meat, eggs or dairy

products, all sources of animal protein.27

All in all, this suggests that the postive impact on the height-for-age of young RI-

PAT children is likely to come about through higher levels of technology adoption

promoting higher levels of food security in the lean season of the year. Not being ex-

posed to hunger spells seems to have long-lasting consequences for the growth curves

of these young children. The effect may be reinforced by less exposure to animal- and

excrement-related bacteria. We also examined whether RIPAT households had lower

poverty levels than the comparison households, but find no clear evidence of such dif-

ferences (see appendix table 12). This suggests that RIPAT did not bring a large income

26The HHS is a modern food security instrument developed by US Aid to ensure cross-cultural com-
parability. It has been validated in five sub-Saharan African countries. It is based on three questions
asking whether, due to lack of resources, anyone in the household 1) went to sleep at night hungry; 2)
had no food to eat of any kind in the household; and 3) went a whole day and night without eating.
The response codes are 0: never; 1: rarely or sometimes; 2: often. The HHS is simply the sum of the
responses to the three questions resulting in an index from zero to six where zero corresponds to "no
hunger" and six corresponds to "severe hunger". See Ballard et al. (2011).

27In the full sample we find statistically significant impacts on almost all of these measures (Larsen
and Lilleør, 2014).
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effect with it, but rather that the main impact came about through better smoothing

mechanisms shielding households and more specifically children against hunger in

the lean season.

5.1 Robustness of the results

In analyses like the one in this paper, one worries whether the results might be driven

by systematic errors or decisions concerning data. In this section we therefore analyze

whether our results are robust to accounting for attrition, to different thresholds of the

young indicator, and to changing the sample selection with respect to children’s age,

number of acres owned, outliers and data quality considerations.

5.1.1 Attrition

Not all children living in the surveyed households were measured. If there are system-

atic differences in which children were measured across RIPAT and comparison house-

holds, this could potentially affect our results. We address this issue with a Heckman

selection model (Heckman, 1979) where we exploit the variation in enumerator metic-

ulousness as an instrument for the probability of a child being in the sample. The 25

enumerators were instructed to measure at least one child in each household of zero to

five years of age, and preferably all available children. The instrument is constructed

as the average share of children that the enumerator measured in other households,

not including the household in question.28 In this way, the instrument is unaffected by

household-specific characteristics that determine whether a child is measured or not,

and as we can see from panel B in Table 6 it is highly correlated with the probability of

being measured. Estimation results are presented in table 6.29

The estimates for the impact of RIPAT on HAZ when correction is made for selec-

tion in measurement are shown in panel A. We see that the results are robust and not

28This share varied between 0.40 and 0.95.
29Alternatively, we can also just include enumerator dummy variables as instruments. In that case,

we cannot obtain convergence of the maximum likelihood estimator, but we obtain similar results to the
ones presented in table 6 if we apply a two-step estimator instead with these alternative instruments.
Results available upon request.
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driven by selection in who was measured, as we find a large and significant impact of

RIPAT just 0.1 standard deviations lower than the corresponding results presented in

table 2.

Panel B shows the estimates from the selection equation, and here we see no signifi-

cant differences between RIPAT and comparison households in the likelihood of being

measured, either for young or for older children. Young children are more likely to

have been measured than older children, probably because they were more likely to be

around at the time of the interview.

5.1.2 Threshold for the young indicator

Next, we turn to the choice of threshold for the young indicator. We expect some lag

from the introduction of new agricultural methods on the common demonstration plot

to a change in the agricultural practices of the households and a subsequent improve-

ment in the food security of the household. Following this reasoning, the threshold of

the young indicator should be later in time than January 2007. On the other hand, with

a conception threshold in January 2007, all children born before October 2007 are clas-

sified as old even though they lived the main part of their first two critical years of life

after the implementation of RIPAT. This would speak in favor of an earlier threshold.

In table 7 we show results where we move the threshold between May 2006, the start of

RIPAT, and January 2008, the second lean season after the start of RIPAT. All estimated

impacts are within the confidence bounds of their counterparts in table 2, and apart

from column (5) they are all statistically significant at the ten percent level. The latest

threshold (January 2008) results in the lowest and least significant impact. This esti-

mate will be downward biased if children born before October 2008 were affected by

the project, which may very well have been the case. It is reassuring that the positive

impact found is not specific to a certain choice of threshold for the young indicator.
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5.1.3 Alternative sample selections

In the main analysis we consider children up to 60 months of age, which is common

practice in the nutrition literature. As we have height measures for children up to 71

months of age, we investigate whether the results are robust to the inclusion of these

older children. The results are shown in table 8 column (1), and we see in panel A

that the estimated impact on HAZ is reduced to 0.6 standard deviations and is sig-

nificantly different from zero at the ten percent level. Similarly, the estimated impact

on the stunting indicator (shown in panel B) is reduced but the reduction is statisti-

cally insignificant; however, it is still economically significant, with an estimated 11

percentage points reduction in the prevalence of stunting.

Though RIPAT participants are required to have between one and five acres of farm

land, our data show that this requirement was violated in many cases in RIPAT I. Com-

parison households were therefore chosen among households with one to eight acres to

mirror the actual distribution of farm land holdings among RIPAT households. How-

ever, 19 RIPAT households and four comparison households reported having less than

one or more than eight acres of land. In column (2) of table 8 we exclude the 28 chil-

dren from households with areas of farm land that lay outside the range of one to eight

acres. In panel A, this results in a stronger estimated impact on HAZ of 0.9 standard

deviations, significant at the one percent level. This result indicates that the impact

of RIPAT was higher among households targeted for the intervention, which is in line

with intuition.30 The estimated impact on the prevalence of stunting is unaltered.

When we calculate the height-for-age z-scores, a few observations have very ex-

treme values. In the main sample we have disregarded children with a HAZ larger

than five in absolute value (11 observations). Column (3) shows that we obtain even

stronger results if we include outlier observations. It is particularly noteworthy that

the estimated impact on the prevalence of stunting is higher and more significant than

the main result. The stunting indicator is not affected by large outliers in HAZ, so

for this specification it can indeed be argued that the outlier observations should be

30Results are very similar if we further restrict the sample to only include the 268 households which
had between one and five acres of land.
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included.

In the last two columns we consider the data quality of the HAZ. Children below

24 months of age should be measured recumbent, while children above 24 months of

age should be measured standing. Not all enumerators followed these guidelines,31 so

in column (4) of table 8 we present regression results excluding children measured in

the incorrect position for their age. We obtain fairly similar results to those in table 2;

however, the wild bootstrap p-values suggest that the estimated impacts on HAZ and

the prevalence of stunting cannot be distinguished from zero.

The calculation of the HAZ is based on the age of the child, and there might be

uncertainty about parents’ recall of their children’s birth dates. For a sub-population

of children we have their birth dates confirmed by official clinic cards, and regression

results in column (4) show that the results are still significant and within one standard

error of the estimates in table 2 when we consider this sub-population.

In general, the impact of RIPAT on height-for-age is fairly robust to the selection

of the sample, with results ranging from 0.6 to 1.2 standard deviations, all but one of

them being significant at the ten percent level. Though we have less power when we

consider the prevalence of stunting, we also consistently find large impacts of partici-

pation in RIPAT.

6 Possible alternative explanations

Our identification strategy relies on the standard assumption of treatment and control

groups sharing a common trend in the absence of treatment. In our setting this trans-

lates into an assumption that children from RIPAT and comparison households would

share a common growth profile in the absence of treatment. That is, our difference-

in-differences set-up allows for differences in child nutrition levels between RIPAT and

comparison households, but not for differences in trends or in time-varying differences

not caused by the intervention. If such differences exist, our results could be mislead-

31If a child was measured recumbent though older than 24 months or vice versa, we adjusted the
measurement by 0.7 cm, in accordance with WHO guidelines (WHO, 2006).
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ing. We study three potential factors which could lead to differences in the growth

profiles, namely time-varying differences between RIPAT and control villages, differ-

ences in fertility patterns between RIPAT and comparison households, and differences

in households’ coping capabilities in times of drought.

6.1 Village differences

In our main analysis above we compare children in RIPAT households with children

in comparison households in control villages. If the two groups of villages were differ-

entially exposed to shocks, e.g. there was a serious drought in 2009 which could have

hit the comparison villages harder than the treated villages, or vice versa, our impact

estimates may be confounded. We address this issue by comparing the RIPAT children

to other children within the RIPAT villages who did not live in participating house-

holds. The data we have from a stratified random sample of non-RIPAT households

within RIPAT villages allow us to examine whether the estimated impacts on HAZ

and stunting found above are in fact driven by time-varying village level differences.

If so, we should expect to see no difference in nutritional levels between children from

RIPAT and non-RIPAT households within the RIPAT villages. Nevertheless, we have

to keep in mind that there has been considerable diffusion of technologies within the

RIPAT villages (e.g. 13 percent of non-RIPAT farmers in RIPAT villages grow improved

banana varieties; see Gausset and Larsen (2013)). A comparison between households

within the RIPAT villages may therefore underestimate an impact.

Table 9 corresponds to table 2 above, only using children from non-RIPAT house-

holds in RIPAT villages as a comparison, rather than children from comparison vil-

lages. Standard errors are again clustered at village level (note that now there are only

eight villages) and p-values based on wild cluster bootstrapped t-statistics are shown

in square brackets. Furthermore, we have added an additional column allowing for

village fixed effects, column (4). The estimated impact on HAZ is much in the same

order of magnitude as in table 2 and appears slightly more robust across specifica-

tions, but the small number of clusters affects the bootstrapped p-values and we have
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less power. The estimated impact on the stunting indicator increases to a 26.7 percent-

age point reduction in stunting. It is reassuring that we find the same positive impact

regardless of comparison group. This rules out the possibility that the estimates are

driven purely by differences in village-level shocks.

6.2 Fertility patterns

Could project participation itself lead to endogenous changes in fertility patterns and

thus in cohort composition among the participating households relative to compari-

son households, such that the estimated impact found above is a result of this phe-

nomenon?

First, if RIPAT induces households to have fewer children, that would imply that

households would have more resources per child, which could have led to an improve-

ment in the nutritional status of the children born. However, since we control for the

number of household members between zero and five years of age, this cannot be the

mechanism for the impact we find.

Second, if participation in the project changed the timing of fertility, this could po-

tentially affect the group composition of old and young RIPAT children vis-a-vis the

comparison children. Table 1 shows that the group of RIPAT children were on av-

erage slightly older (three months) than the group of comparison children. As the

HAZ trends downwards for undernourished children, the difference-in-differences es-

timate will be upward biased if young RIPAT children were on average younger than

young comparison children or if old RIPAT children were older than old comparison

children. We have tested whether the average ages within the old and young groups

are correlated with RIPAT, and we find no significant correlations. We further test

the composition of the age cohorts by regressing age indicators on a RIPAT indicator,

while controlling for household and village characteristics. Coefficients and wild clus-

ter bootstrap confidence bounds for the RIPAT indicator are presented in figure 6.1 for

each age indicator. None of the age groups are significantly under- or overrepresented
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among the children in RIPAT households.32
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Figure 6.1: Cohort composition
Notes: OLS estimates and wild cluster bootstrap-t confidence intervals for the coefficient to the RIPAT
indicator in regressions with age indicators for ages 0, 1, 2, 3, and 4 years as dependent variables. The
regressions also control for household and village characteristics. The wild bootstrap-t procedure is
clustered at the village level, following Cameron, Gelbach and Miller (2008), and confidence intervals
are constructed by finding the highest possible null hypothesis (from below) that is rejected at the five
percent level and imposing symmetry.

Third, if the project affected timing of conception over the year, RIPAT children

might have been differently exposed to the lean season relative to the comparison chil-

dren, which again could affect our results. Hence, we run twelve regressions with

month of birth indicators as dependent variables using the same specification as in

equation 1.33 With this difference-in-differences specification we test whether poten-

tial differences in the seasonal timing of fertility between old RIPAT and old comparison

children persist among the young children. If the seasonal pattern changed remark-

ably, it could be driving the results. As can be seen in figure 6.2, the only significant

difference we find is that young RIPAT children are less likely than young comparison

children to be born in November relative to any differences among their older peers.

32This also holds with OLS confidence intervals if clusters are not taken into account.
33All children, household and village characteristics are included except the child’s age.
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For this difference to be driving our results it would need to be very unfavorable to be

born in November as compared to other months of the year.34 Our results are robust to

excluding children born in November (results available upon request) and hence, we

do not expect this small difference to be driving the large impact that we find.
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Dependent variable: Child born in month ...

RIPAT*young coefficient estimate 95% wild bootstrap CI

Figure 6.2: Seasonality in fertility
Notes: OLS estimates and wild cluster bootstrap confidence intervals for the coefficients for the RIPAT
and young interaction terms in regressions where the dependent variables are indicators for the month
when the child was born. 1 corresponds to January, 2 is February, and so forth. The regressions also
control for a RIPAT indicator, a young indicator, and child, parent, household, and village characteristics,
excluding the age of the child. Wild cluster bootstrap-t confidence intervals are constructed as in figure
6.1. We do not correct for multiple hypothesis testing.

Taken together, this suggests that the positive impacts found on height-for-age us-

ing the cohort difference-in-differences estimator are not driven by changes in fertility

patterns or cohort composition during the project period.

34It is difficult to hypothesize whether a child is better off being born in November compared to June,
say. In the former case the child is exposed to the lean season during the first trimester in utero, while
in the latter case the child is exposed during second and third trimesters. The timing of the weaning
period will also be different, and this might also play a role.
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6.3 Capabilities for coping with drought

Finally, the common growth profile assumption would also be violated if the RIPAT

and comparison households had been subject to different shocks or had coped with a

common shock in different ways, regardless of project participation. Above we showed

that we can reject the possibility that our main results are driven by a difference in

village-level shocks, since we obtain similar results when using comparison children

from RIPAT villages as opposed to control villages.

With respect to coping with shocks at the household level, we should keep in mind

that RIPAT aims at reducing vulnerability to drought shocks by introducing drought-

resistant crops and production-smoothing technologies, so we should in fact expect

that RIPAT households would have become better at coping with drought shocks. But

we need to address the concern that households who selected into RIPAT may initially

have had different coping strategies than the comparison households. Coupled with

the drought in 2009, this could have driven the impacts that we find.

We address this potential selection bias in three ways. First, we investigate whether

the impact is driven by any of the observed differences in parent and household charac-

teristics between RIPAT and comparison households in control villages. Table 1 shows

that parent characteristics differ significantly between RIPAT and comparison house-

holds in terms of father’s and mother’s age. Furthermore, mother’s education, which is

often a strong predictor of children’s health, is also marginally different, with children

in RIPAT households having more educated mothers. If, say, older or better-educated

mothers were better at nourishing their children during the 2009 drought, we would

overestimate the impact, since RIPAT mothers were on average better educated.

We demean these key parental variables and interact them with the young indicator,

the RIPAT indicator and their interaction term respectively, to allow for the treatment

effect to depend on, for example, mother’s age. This results in the following specifi-

cation, where Qh represents one of the demeaned parent or household characteristics,

Zi,h,v comprises all child, parent, household and village characteristics, and ζi,v is an
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error term with intra-village correlation:

Yi = µ1RIPATh + µ2youngi + µ3RIPATh · youngi + µ4RIPAT · Qh

+ µ5young · Qh + µ6RIPAT · young · Qh + Zi,h,vϑ + ζi,v (2)

When we allow for the relative difference between young and old children to depend

on the age of the mother, the average impact estimate captured by µ3 is unaffected by

any possible influence of RIPAT mothers’ age on the nutrition of their young children

during the drought spell in 2009.

Table 10 shows estimates of equation (2) with interactions with parental variables in

columns (1)-(3). The estimate of the mean impact of RIPAT relative to comparison chil-

dren in control villages is remarkably stable across these columns, confirming that the

impact found above is not driven by any of the differences in observed parental char-

acteristics. However, we see that the impact is negatively correlated with father’s age,

indicating that younger households benefited more from RIPAT than older households

did.

Second, using the same method, we examine whether three of the selection criteria

could be driving the results. Households self-selected into the project, but had to fulfill

a land ownership criteria. Villages were partly chosen based on suitable agricultural

conditions, including sufficient rainfall. We interact the difference-in-differences vari-

ables with three variables capturing this selection: historical rainfall, log of farm land

acres in 2006, and a proxy for self-selection using participation in other projects in the

past. From table 10 we see that differences in land ownership (column (4)) or prior

participation in other projects do not alter the estimated impact of RIPAT on the HAZ

of young children. However, turning to rainfall in column (6), we see that part of the

impact of RIPAT on HAZ is driven by a positive interaction with rainfall, reducing the

average effect of RIPAT on the HAZ to 0.77 SD. The impact of RIPAT is increased by

0.01 SD of the HAZ per additional millimeter of historical rainfall. Given that the ma-

jority of the technology options also rely on adequate rainfall, especially in the phase-in

period, this is not a surprising finding.
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Third, selection into the project could still have been based on intrinsic unobserved

differences in strategies for coping with shocks between participating and comparison

households. Due to the drought in 2009, such differences might have led to the im-

provements in height-for-age that we find for the young RIPAT children. However,

intrinsic differences in strategies for coping with drought between RIPAT and compar-

ison households should then also be detectable when comparing the HAZ of children

exposed to an earlier drought spell. To measure weather shocks, we follow Harari and

La Ferrara (2013) and examine monthly Standardized Precipitation and Evapotranspi-

ration Indices (SPEIs) for the geographical area under study, using the average of the

four preceding months and considering values of the SPEI below one SD as negative

climate shocks. We consider March to June to be the main growing season based on

the Food and Agriculture Organization crop calendar.35

Figure 6.3 shows SPEIs for the period 2004 to 2011 with three data points per year:

the four-month average SPEIs for the growing season March-June and for the non-

growing seasons July-October and November-February.36 It can clearly be seen from

figure 6.3 that the growing season in 2009 was particularly dry. But we also see that

the area was hit by a drought during the growing season in 2006.

This implies that if RIPAT and comparison households initially had different cop-

ing strategies, we should expect to see differences in the HAZ of children conceived

just before or during 2006. These are precisely the children we define as old, and where

we find no significant difference in their height-for-age between RIPAT and compar-

ison children. Thus, we argue that the improved nutrition among the young RIPAT

children cannot be driven by differences in drought coping strategies across treated

and comparison households a priori. On the contrary, we propose that RIPAT farm-

ers had improved their ability to cope with the 2009 drought through the adoption

of drought-resistant crops and production-smoothing technologies. The magnitude of

our estimated average treatment effect on HAZ might therefore have been consider-

35http://www.fao.org/agriculture/seed/cropcalendar/welcome.do
36The graph is from a grid covering half of the villages in our sample; the graph from the neighboring

grid covering the remaining villages is very similar and is available from the authors. The global SPEI
database can be found at http://sac.csic.es/spei/database.html.
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Figure 6.3: Standardized Precipitation and Evapotranspiration Index

ably smaller if the area had experienced years of bumper harvest and thus little food

insecurity and no hunger spells. In that sense, the 2009 drought has increased the

degree of variation in our data, enabling us to identify a larger impact on nutrition.

7 Discussion

In this paper, we have estimated the impact on early childhood nutrition of an holistic

agricultural intervention aimed at improving food security and poverty among small-

holder farmers. Given the widespread prevalence of severe undernutrition resulting

in stunted growth and the relatively recent acknowledgment of its many long-term

adverse implications, combating undernutrition of unborn and infant children has be-

come a very important subject that attracts attention from both researchers and policy-

makers; see for example the recent Lancet reviews by Bhutta et al. (2008); Victora et al.

(2008); Ruel and Alderman (2013) and the Cost Of Hunger in Africa report by African

Union Commission et al. (2014).

The RIPAT program studied here is an agricultural intervention. The specific inter-

vention that we examined did not have a direct nutritional aim, but rather an overall

aim of improving food security: a nutrition-sensitive intervention in the terminology

of Ruel and Alderman (2013). RIPAT is a broad intervention with a strong focus on im-
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proving drought resilience through a basket of technology options including crop di-

versification, perennial crops, conservation agriculture, improved animal husbandry,

and land use management. This holistic approach may have been key in improving

the nutritional status of young children in the participating households, as it is argued

elsewhere that these components help to improve the nutritional quality of farming

output (Miller and Welch, 2013). We find that the RIPAT intervention had a significant

positive impact of about 0.8 SD on the height-for-age z-scores of young children who

had been fully exposed to the project in their early life. Similarly, we see a reduction in

stunting prevalence among the young group of RIPAT children of around 17 percentage

points.

There are two important points to note concerning these impacts. First, they were

measured almost five years after the start of the project, which lasted three and a half

years, suggesting that these are sustainable impacts, but not necessarily quick impacts.

Second, towards the end of the project implementation period, a serious drought hit

the area, worsening and lengthening the annual hunger period. This has possibly in-

creased the difference in undernutrition levels found between participating and com-

parison households, since the intervention was designed to increase the drought re-

sistance of farmers and shield their food production, rather than to boost agricultural

output during bumper years.

According to Masset et al. (2012) and Ruel and Alderman (2013), there has been no

rigorous empirical investigation showing a significant nutritional impact of an agricul-

tural intervention among young children. Compared to impacts found of more narrow

non-agricultural nutritional interventions in Bhutta et al. (2008) and Caulfield, Huff-

man and Piwoz (1999), the impacts of the RIPAT intervention on HAZ and stunting

prevalence are sizable.37 More recent papers by Linnemayr and Alderman (2011) and

Powell-Jackson et al. (2014) find no overall effect of a randomized nutrition program

in Senegal or a randomized free health care program in Ghana, although the former

37Bhutta et al. (2008) report that the provision of food supplements in populations with insufficient
food can increase the HAZ by 0.41 SD, while Caulfield, Huffman and Piwoz (1999) review efficacy trials
to improve infant dietary intakes and find improvements in HAZ of 0.04-0.46 SD.
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do detect a positive impact among the youngest on weight-for-age z-scores of 0.27 SD

(and similar impacts on HAZ).

Based on the limited impacts found in the nutrition literature, one could suspect

that height-for-age in itself is a rigid measure that is hard to influence. However,

there is ample evidence from conflict-prone areas in Africa which shows that this is

by no means the case. Two different African conflicts have been shown to have a nega-

tive impact on HAZ of about 0.4 SD among young children exposed to those conflicts

(Akresh, Lucchetti and Thirumurthy, 2012; Minoiu and Shemyakina, 2014). In addi-

tion, Baez (2011) shows that children who are not directly exposed to conflict can also

be negatively affected (their HAZ drops by 0.6 SD) by a large and sudden influx of

poor refugees into the local communities.

In fact, the magnitude of our results is comparable in size to large-scale cash transfer

programs. The nutritional impacts of RIPAT on young children are comparable to those

found by (Duflo, 2003) in assessing the impact on young grand-daughters of extending

a generous public old-age pension scheme to low-income families in South Africa. Du-

flo finds that this increased the HAZ of young girls in the household by more than one

standard deviation if the recipient was the grandmother. Similarly, when analyzing

the impact on childhood nutrition of a large-scale conditional cash transfer program

aimed at increasing both health and education among Mexican children, PROGRESA,

Behrman and Hoddinott (2005) find that the prevalence of stunting drops to a third of

the level among comparison children.

Such an impact on HAZ does of course not come without a cost. Indeed, the cost

per household of the RIPAT intervention is also comparable to PROGRESA, which

has an annual cost of approximately USD 30038. The total cost per household for the

3.5-year RIPAT intervention studied here was USD 700.39 Although roughly USD 200

per year per family may be a relatively high cost—and considerably higher than the

38The annual budget was USD 777 million for a program covering 2.6 million families (Behrman and
Hoddinott, 2005)

39This was the first in a series of interventions, which have gradually become more cost-effective. The
cost per household is now USD 625 for a full three-year project.
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average Farmer Field Schools cost40—it must be judged against the benefits found here

in terms of improved food security and taller children. Based on the findings in the

nutrition literature regarding the adverse impact of stunting on health, economic and

social outcomes in adulthood, this positive impact is likely to follow the young RIPAT

children throughout life. In addition, we expect the adopted technologies to sustain

the improvement in food security into the future, also positively affecting children to

come.

All in all, this shows that a broad and highly-sustainable agricultural intervention

such as the one studied here, building on local resources, needs and constraints and of-

fering a basket of technology options for farmers to choose from, can result not only in

sustainable technology adoption and increased food security among farmers, but also

in substantial long-term impacts on the lives of the young children in participating

households. Indeed, there are reasons to believe that precisely because of the holistic

nature of the intervention and its focus on shielding farmers’ food production against

adverse impacts of drought, the nutritional and thus growth impacts on young chil-

dren are sizable and larger than those typically found in more narrow nutrition inter-

ventions as reviewed in Bhutta et al. (2008) and Caulfield, Huffman and Piwoz (1999).

As hypothesized by both Masset et al. (2012) and Ruel and Alderman (2013), our study

confirms that there is scope for agricultural interventions in alleviating undernutrition

and that they can indeed be very effective.
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Tables

Table 1: Summary statistics
RIPAT Comparison P-value

Outcome Height-for-Age Z-score -0.94 -1.05 0.59
variables (1.66) (1.66)

Stunting indicator 0.25 0.27 0.65
(0.44) (0.45)

Child Young indicator 0.61 0.65 0.26
characteristics (0.49) (0.48)

Age in months 34.11 31.20 0.11
(15.36) (15.52)

Girl 0.57 0.52 0.19
(0.50) (0.50)

Child of head 0.83 0.87 0.45
(0.37) (0.33)

Parent Father’s education 6.78 6.53 0.25
characteristics (1.68) (1.67)

Father’s age 39.12 36.99 0.02
(8.10) (8.25)

Mother’s education 6.70 6.08 0.12
(1.50) (2.66)

Mother’s age 31.85 28.67 0.00
(7.17) (6.70)

Household Household size 6.20 5.95 0.40
characteristics (2.01) (1.99)

HH members age 0-5 1.58 1.60 0.90
(0.78) (0.66)

HH members age 6-14 1.61 1.66 0.80
(1.20) (1.25)

HH members age 15-24 0.98 0.84 0.34
(1.03) (1.00)

HH members age 25-49 1.63 1.58 0.49
(0.66) (0.67)

Head is widow(er) 0.06 0.03 0.14
(0.24) (0.18)

Acres 2006 4.07 3.11 0.19
(5.32) (1.79)

Good in math 0.41 0.42 0.86
(0.49) (0.50)

Participation in other projects 0.27 0.16 0.14
(0.44) (0.37)

Household rain 738.67 706.91 0.21
(47.86) (45.64)

Village Village distance to market 9.88 5.76 0.14
characteristics (3.90) (5.00)

Village has secondary school 0.57 0.86 0.29
(0.50) (0.35)

Village had devel. project 0.60 0.41 0.52
(0.49) (0.49)

Number of children 214 182
Number of households 182 153
Number of villages 8 8

Notes: Variable means in samples of RIPAT and comparison children. Standard de-
viations in parentheses. Column 3 gives wild cluster bootstrap-t p-values from two-
sided t-tests of equal means of the RIPAT and comparison children, calculated as
suggested by Cameron, Gelbach and Miller (2008). Clustering is at the village level.
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Table 2: Impact of RIPAT on HAZ
HAZ Stunting

(1) (2) (3) (4)
RIPAT and young 0.569∗ 0.879∗∗∗ 1.377∗∗∗ -0.176∗

(0.29) (0.29) (0.43) (0.09)
[0.062] [0.012] [0.004] [0.094]

RIPAT -0.240 -0.215 0.090
(0.20) (0.24) (0.06)

Young -0.025 -0.133 -0.302 0.060
(0.11) (0.30) (0.71) (0.09)

Child characteristics No Yes Yes Yes
Other characteristics No Yes No Yes
Household fixed effects No No Yes No
Clusters (villages) 16 16 16 16
Observations 396 396 396 396

Notes: OLS estimates with HAZ as dependent variable, cluster
standard errors in parentheses, and wild cluster bootstrap-t p-
values in square brackets. "Other characteristics" include parent,
household, and village characteristics as described in the text. Sta-
tistical significance based on standard inference is indicated by ∗∗∗,
∗∗, and ∗ for the 1, 5, and 10 percent levels respectively.
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Table 3: Cohort specific impacts on HAZ
(1) (2)

RIPAT and age 0 -0.237 0.274
(0.65) (0.67)

[0.666] [0.700]
RIPAT and age 1 0.666 1.097∗

(0.49) (0.53)
[0.198] [0.064]

RIPAT and age 2 0.473 1.012∗∗

(0.46) (0.40)
[0.282] [0.018]

RIPAT and age 3 -0.332 0.106
(0.34) (0.43)

[0.388] [0.786]
RIPAT -0.042 -0.179

(0.29) (0.35)
Age 0 0.681 -0.366

(0.52) (1.37)
Age 1 -0.096 -0.751

(0.30) (0.88)
Age 2 -0.200 -0.663

(0.30) (0.54)
Age 3 0.107 -0.102

(0.31) (0.44)
All characteristics No Yes
Clusters 16 16
Observations 396 396

Notes: OLS estimates with HAZ as de-
pendent variable, cluster standard er-
rors in parentheses, and wild cluster
bootstrap-t p-values in square brack-
ets. "All characteristics" includes child,
parent, household, and village charac-
teristics as described in the text. Sta-
tistical significance based on standard
inference is indicated by ∗∗∗, ∗∗, and ∗

for the 1, 5, and 10 percent levels re-
spectively.
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Table 4: Adoption of technologies
(1) (2) (3)

RIPAT Comparison Conditional difference

Improved banana cultivation 0.657 0.121 0.523∗∗∗

(0.476) (0.327) (0.103)
[0.030]

Fruit tree(s) 0.590 0.497 0.232∗

(0.493) (0.502) (0.120)
[0.322]

Improved breed of poultry 0.309 0.013 0.243∗∗∗

(0.463) (0.115) (0.055)
[0.032]

Improved breed of goats 0.354 0.128 0.227∗∗∗

(0.480) (0.335) (0.044)
[0.006]

Zerograzing 0.275 0.242 0.230∗∗

(0.448) (0.430) (0.083)
[0.080]

Savings scheme 0.191 0.040 0.149∗∗∗

(0.394) (0.197) (0.027)
[0.024]

Number of crops in 2010 5.551 4.852 0.791∗

(2.538) (2.126) (0.390)
[0.072]

Number of households 178 149 327

Notes: Variable means in samples of RIPAT and comparison children and stan-
dard deviations in parentheses in columns (1) and (2). Column (3) presents
OLS estimates from regressions of the technology on a RIPAT indicator, cluster
standard errors are in parentheses, and wild cluster bootstrap-t p-values are in
square brackets. Regressions also control for education and age of the household
head and household and village characteristics as described in the text. Statisti-
cal significance based on standard inference is indicated by ∗∗∗, ∗∗, and ∗ for the
1, 5, and 10 percent levels respectively.
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Table 5: Food security
(1) (2) (3)

RIPAT Comparison Conditional difference

Number of worst months 3.831 4.150 -0.438∗∗∗

(1.338) (1.445) (0.135)
[0.038]

No hunger 0.365 0.265 0.159∗∗∗

(0.483) (0.443) (0.050)
[0.036]

HHS, worst month 1.494 1.789 -0.566∗∗

(1.427) (1.415) (0.205)
[0.070]

HHS, best month 0.062 0.048 -0.034
(0.304) (0.270) (0.034)

[0.532]
HHS, last four weeks 0.281 0.306 -0.067

(0.680) (0.679) (0.164)
[0.764]

At least three meals, worst month 0.708 0.667 0.163
(0.456) (0.473) (0.110)

[0.390]
At least three meals, best month 0.955 0.932 0.061∗

(0.208) (0.253) (0.029)
[0.236]

At least three meals, last four weeks 0.904 0.878 0.068∗

(0.295) (0.329) (0.038)
[0.246]

Meat consumption last week 0.764 0.694 0.183∗∗

(0.426) (0.462) (0.085)
[0.192]

Egg consumption last week 0.607 0.408 0.152∗∗

(0.490) (0.493) (0.068)
[0.180]

Dairy consumption last week 0.843 0.810 0.086
(0.365) (0.394) (0.128)

[0.664]
Number of households 178 147 325

Notes: Variable means in samples of RIPAT and comparison children and standard de-
viations in parentheses in columns (1) and (2). Column (3) presents OLS estimates from
regressions of the food security variables on a RIPAT indicator, cluster standard errors
are in parentheses, and wild cluster bootstrap-t p-values are in square brackets. Re-
gressions also control for education and age of the household head and household and
village characteristics as described in the text. Statistical significance based on standard
inference is indicated by ∗∗∗, ∗∗, and ∗ for the 1, 5, and 10 percent levels respectively.
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Table 6: Impact on HAZ, Heckman selection model
(1) (2)

Panel A: Regression equation
RIPAT and young 0.492 0.784∗∗∗

(0.33) (0.22)
RIPAT -0.072 -0.105

(0.22) (0.26)
Young -0.234 -0.354∗

(0.23) (0.21)
Panel B: Selection equation
RIPAT and young -0.191 -0.094

(0.25) (0.28)
RIPAT 0.182 0.119

(0.18) (0.23)
Young 0.172 0.697∗∗

(0.17) (0.32)
Share measured in other households by same enumerator 1.084∗∗ 1.663∗∗∗

(0.46) (0.59)
All characteristics No Yes
Clusters (villages) 16 16
Observations 535 535

Notes: Maximum Likelihood estimates from a Heckman selection model, and
cluster standard errors in parentheses. Panel A gives the estimates from the
regression equation with HAZ as dependent variable when controlling for se-
lection in measurement. Panel B gives the estimates from the selection equation.
The instrument in the selection equation is the share of children measured in
other households by the enumerator. The sample consists of children zero to
four years of age, out of which 73 percent were measured. When indicated, "All
characteristics" are included in both the regression and selection equation. They
include child, parent, household, and village characteristics corresponding to
the specification in table 2, with two modifications: 1) we include the age and
education of the household head instead of the parents’ characteristics, as we
can only identify the parents of measured children; 2) we include age emphin
years instead of age in months, as we do not have precise ages of unmeasured
children. For the same reason, the threshold for the young indicator is adjusted
to three years of age (36 months) instead of three years and three months (39
months). Statistical significance is indicated by ∗∗∗, ∗∗, and ∗ for the 1, 5, and 10
percent levels respectively.
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Table 7: Changing threshold of the young indicator
Young threshold, month of conception

(1) (2) (3) (4) (5)
May 06 Sep 06 Jan 07 Jul 07 Jan 08

RIPAT and young 0.880∗∗ 0.788∗ 0.879∗∗∗ 0.587∗∗ 0.478
(0.402) (0.393) (0.285) (0.275) (0.289)
[0.048] [0.078] [0.012] [0.050] [0.144]

RIPAT -0.336 -0.207 -0.215 0.042 0.163
(0.32) (0.31) (0.24) (0.25) (0.23)

Young -0.700 -0.422 -0.133 -0.488 -0.668∗∗

(0.44) (0.44) (0.30) (0.30) (0.31)
All characteristics Yes Yes Yes Yes Yes
Clusters (villages) 16 16 16 16 16
Observations 396 396 396 396 396

Notes: OLS estimates with HAZ as dependent variable, cluster stan-
dard errors in parentheses, and wild cluster bootstrap-t p-values in
square brackets. The column headings refer to the threshold of the
young indicator where children conceived in or after the month men-
tioned are coded as young. "All characteristics" includes child, parent,
household, and village characteristics as described in the text. Statis-
tical significance based on standard inference is indicated by ∗∗∗, ∗∗,
and ∗ for the 1, 5, and 10 percent levels respectively.
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Table 8: Alternative sample selections
(1) (2) (3) (4) (5)

Incl. older Acres Outliers Position Clinic card
Panel A: Outcome variable: HAZ
RIPAT and young 0.602∗ 0.942∗∗∗ 1.171∗∗∗ 0.652∗ 0.604∗∗

(0.31) (0.28) (0.31) (0.34) (0.25)
[0.090] [0.008] [0.004] [0.112] [0.024]

RIPAT -0.047 -0.256 -0.103 0.009 -0.241
(0.23) (0.21) (0.28) (0.28) (0.28)

Young -0.150 -0.193 -0.357 0.100 0.135
(0.29) (0.35) (0.31) (0.37) (0.29)

Panel B: Outcome variable: Stunting indicator
RIPAT and young -0.107 -0.171∗ -0.219∗∗ -0.140 -0.155∗

(0.09) (0.08) (0.09) (0.13) (0.07)
[0.266] [0.070] [0.042] [0.336] [0.064]

RIPAT 0.037 0.095∗ 0.102∗ 0.069 0.149∗∗

(0.05) (0.05) (0.05) (0.08) (0.06)
Young 0.015 0.044 0.096 0.020 -0.027

(0.08) (0.10) (0.10) (0.13) (0.13)
All characteristics Yes Yes Yes Yes Yes
Clusters 16 16 16 16 16
Observations 457 368 406 328 307

Notes: OLS estimates with HAZ as dependent variable in panel A and the
stunting indicator in panel B. In parentheses are cluster standard errors, and
in square brackets are wild cluster bootstrap-t p-values. The columns repre-
sent different sample selections compared to the main sample: (1) includes
children 61-71 months old; (2) excludes children from households with less
than one or more than eight acres; (3) includes outliers in HAZ; (4) excludes
children measured recumbent when older than 24 months and measured
standing when younger than 24 months; and (5) excludes children whose
month of birth could not be validated by a clinic card. "All characteristics"
includes child, parent, household, and village characteristics as described in
the text. Statistical significance based on standard inference is indicated by
∗∗∗, ∗∗, and ∗ for the 1, 5, and 10 percent levels respectively.
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Table 9: Impact on HAZ and likelihood of stunting with weighted RIPAT village com-
parison sample

HAZ Stunting
(1) (2) (3) (4) (5)

RIPAT and young 0.832∗ 0.788 0.710∗ 0.834∗ -0.267∗∗

(0.43) (0.43) (0.36) (0.44) (0.09)
[0.104] [0.138] [0.078] [0.474] [0.056]

RIPAT -0.129 -0.226 -0.257 0.083∗

(0.31) (0.28) (0.31) (0.04)
Young -0.287 -0.547 -0.588 -0.550 0.185

(0.31) (0.35) (1.37) (0.35) (0.16)
Child characteristics No Yes Yes Yes Yes
Household characteristics No Yes No Yes Yes
Village characteristics No Yes No No Yes
Fixed effects No No Household Village No
Clusters (villages) 8 8 8 8 8
Observations 409 409 409 409 409

Notes: OLS estimates using a comparison sample within RIPAT villages
weighted with inverse sampling probabilities. Column headings refer to the
dependent variable. In parentheses are cluster standard errors, and in square
brackets are wild cluster bootstrap-t p-values. "Household characteristics" in-
cludes parental characteristics. Statistical significance based on standard infer-
ence is indicated by ∗∗∗, ∗∗, and ∗ for the 1, 5, and 10 percent levels respectively.
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Table 10: Heterogeneous impacts on HAZ
(1) (2) (3) (4) (5) (6)

Q: Father’s Mother’s Mother’s Log acres Prior project Historical
age education age 2006 participation rainfall

RIPAT and young 0.796∗∗ 0.892∗∗∗ 0.781∗∗ 0.901∗∗∗ 0.832∗∗ 0.773∗∗∗

(0.279) (0.273) (0.287) (0.261) (0.296) (0.240)
[0.018] [0.004] [0.032] [0.006] [0.026] [0.016]

RIPAT, young and Q -0.078∗∗∗ 0.015 -0.024 -0.379 -0.749 0.012∗∗∗

(0.025) (0.127) (0.044) (0.458) (0.595) (0.003)
[0.024] [0.902] [0.544] [0.394] [0.286] [0.014]

RIPAT -0.196 -0.219 -0.177 -0.232 -0.170 -0.128
(0.241) (0.239) (0.216) (0.235) (0.219) (0.194)

RIPAT and Q 0.024 -0.123 -0.026 0.163 0.958∗∗ -0.012∗∗

(0.019) (0.080) (0.029) (0.278) (0.431) (0.005)
Young -0.077 -0.173 -0.069 -0.133 -0.066 -0.163

(0.318) (0.289) (0.311) (0.280) (0.290) (0.301)
Young and Q 0.065∗∗∗ 0.026 0.027 -0.004 0.253 -0.002

(0.014) (0.049) (0.035) (0.420) (0.312) (0.002)
Q (not demeaned) -0.051∗∗ 0.004 0.034 0.003 -0.325∗ 0.003

(0.019) (0.057) (0.027) (0.225) (0.179) (0.003)
All characteristics Yes Yes Yes Yes Yes Yes
Clusters (villages) 16 16 16 16 16 16
Observations 396 396 396 396 396 396

Notes: OLS estimates, cluster standard errors in parentheses, and wild cluster bootstrap-t p-values
in square brackets. Q refers to the variable stated in the column heading; the variable is demeaned
when it enters an interaction term, but not when included in levels. "All characteristics" includes
child, parent, household, and village characteristics as described in the text. Statistical significance
based on standard inference is indicated by ∗∗∗, ∗∗, and ∗ for the 1, 5, and 10 percent levels respec-
tively.
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A Appendix

Table 11: Sample composition
RIPAT Compa- Total RIPAT

rison village

Number of Total interviewed 506 395 901 427
households with children 0-5 years of age 254 215 469 239

with at least one child with HAZ 208 174 382 195

In final sample 182 153 335 171
Number of Total in interviewed households 344 301 645 329
children No HAZ 76 87 163 91

Don’t know month of birth 19 23 42 13
Either parent or child refused 13 16 29 14
Not all children measured in household 29 35 64 35
Other reasons 15 13 28 29

with HAZ 268 214 482 238

with missing values in characteristics 9 5 14 6
with |HAZ|>5 7 4 11 10
older than 60 months 38 23 61 27

In final sample 214 182 396 195

Notes: The table shows how the final sample of households and children used in the analysis
is composed and the different reasons for attrition. The last column gives the numbers for
households in RIPAT villages not participating in the RIPAT project (unweighted).

96



Table 12: Poverty
(1) (2) (3)

RIPAT Comparison Conditional difference

PPI 40.611 41.185 5.094∗

(13.733) (12.710) (2.733)
[0.265]

Good quality floor 0.272 0.305 0.042
(0.446) (0.462) (0.099)

[0.825]
(Mobile) phone 0.728 0.795 0.031

(0.446) (0.405) (0.107)
[0.855]

Number of households 180 151 331

Notes: Variable means in samples of RIPAT and comparison children and
standard deviations in parentheses in columns (1) and (2). Column (3)
presents OLS estimates from regressions of the poverty variables on a RI-
PAT indicator, cluster standard errors are in parentheses, and wild cluster
bootstrap-t p-values are in square brackets. The "Progress out of Poverty In-
dex" (PPI), as developed by Schreiner (2012), captures the probability that a
household falls below the national poverty line. The PPI is country-specific
and is based on ten simple questions that together provide a statistically
strong and simple predictor of whether a household’s consumption level is
likely to be below the national poverty line as established in the 2007 Tanza-
nian Household Budget Survey. The PPI score ranges from 0 (most likely to
be below a poverty line) to 100 (least likely to be below a poverty line). The
PPI regression also controls for age and gender of household head, log acres
2006 and village characteristics, while the floor quality and phone regres-
sions control for education and age of the household head and household
and village characteristics as described in the text. (The household charac-
teristics included in the PPI regression differ because some of the household
characteristics enter the PPI calculation and hence they cannot be used as
covariates). Statistical significance based on standard inference is indicated
by ∗∗∗, ∗∗, and ∗ for the 1, 5, and 10 percent levels respectively.
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The network at work:

Diffusion of banana cultivation in Tanzania

Anna Folke Larsen∗

Abstract

This paper investigates the role of networks for diffusion of improved banana

cultivation introduced by an agricultural project in Tanzania. In the existing lit-

erature on networks and technology adoption, network effects are interpreted as

learning. I show that a farmer’s network can affect the adoption of a new crop not

only through social learning, but also by providing necessary inputs for adoption.

I set up a simple model for adoption and derive similar model implications for

the provision of either inputs or information through the network. Empirically, I

find that a farmer is 39 percentage points more likely to adopt banana cultivation if

there is at least one banana grower in the farmer’s network. I use three falsification

tests to support causal interpretation of the network effect on adoption. Provision

of inputs (banana seedlings) through networks is found to play an important role

for the network effects found.

1 Introduction

There are huge disparities in agricultural productivity across countries with agri-

cultural output per worker being more than 100 times larger in the United States than

in Sub-Saharan African countries (Gollin et al., 2014). As the majority of poor people

in developing countries are employed in the agricultural sector, agricultural growth

∗Department of Economics, University of Copenhagen, email: afl@econ.ku.dk, tel.: +4561661159. I
would like to thank the Rockwool Foundation for financial support for the data collection, Helene Bie
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Maria Fibæk and Dominick Ringo, Catherine Maguzu and all other RECODA staff for great support
during field work, Jens Vesterager for agricultural technical guidance and Cathrine Søgaard Hansen for
research assistance. All errors remain my own.
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has the strongest potential compared to other sectors to reduce poverty in developing

countries, in particular among the poorest of the poor (Ligon & Sadoulet, 2011; de Jan-

vry & Sadoulet, 2010; Christiaensen et al., 2011).1 Though Africa’s Green Revolution

has been a long time coming, agricultural growth in Sub-Saharan African countries is

still key to transforming their economies and reducing poverty. Indeed, population

growth and declining farm sizes call for locally adapted technological change in the

agricultural sector (Diao et al., 2010). Moreover, climate change increases the necessity

of technological change in agriculture to adapt to the more erratic rainfall (Lybbert &

Sumner, 2012).

Hence, understanding barriers to adoption and diffusion of new agricultural tech-

nologies is key for agricultural development, poverty reduction and adaptation to cli-

mate change. The topic is not new; adoption of new agricultural technologies has been

studied in a variety of countries and settings since the seminal work by Griliches (1957)

(see reviews by Foster & Rosenzweig, 2010; Sunding & Zilberman, 2001; Evenson &

Westphal, 1995; Feder et al., 1985).

In this paper I study how a farmer’s network affects the decision to adopt a new

agricultural technology in the context of African small-scale farming. The existing lit-

erature focus on the role of social learning through networks (Carter et al., 2014; Mag-

nan et al., 2015; Conley & Udry, 2010; Bandiera & Rasul, 2006; Munshi, 2004; Foster &

Rosenzweig, 1995; Krishnan & Patnam, 2014). These studies suggest that the network

helps to relax an informational constraint faced by the farmer. I contribute to this litera-

ture by showing that a farmer’s network can affect the adoption of a new crop not only

through social learning, but also by providing necessary inputs for adoption. To my

knowledge, the provision of inputs through networks has not been studied as an alterna-

tive or a complement to social learning.2 This is an important distinction both because

the role of information through networks may be exaggerated if it is confounded by

1The contribution to poverty reduction from the agricultural sector stems not only from the size of
the sector and the participation of poor people in the sector, but also from its indirect impact on growth
in other sectors (Christiaensen et al., 2011).

2Emerick (2013) study the efficiency of input provision through networks as opposed to door-to-door
visit, but he does not consider information provision through networks. Besides, he does not have data
on networks but rely on sub-caste and last name as proxies for network connections.
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input provision, but in particular because networks have the potential to mitigate not

only imperfect information, but also input market imperfections. This can be used

deliberately when designing future projects to increase diffusion of agricultural tech-

nologies, in particular in remote areas where input distribution is complicated by poor

infrastructure.

Indeed, Spencer (1996) argues that the Green Revolution in Africa has been hin-

dered by a low coverage of rural roads which impedes the distribution of inputs such

as improved seeds and fertilizer. Road density in the low-income countries of Sub-

Saharan Africa is less than half of that in low-income countries in the rest of the world

(Carruthers et al., 2009). Malfunctioning input markets have been found to hamper the

adoption of hybrid maize in Kenya (Suri, 2011) and improved pigeon pea varieties in

Tanzania (Shiferaw et al., 2008). As many improved seed varieties can be multiplied

locally, the local farmer network may work to relax the input constraint. In a recent

paper by Shiferaw et al. (2015), constraints to information and access to seeds are con-

sidered jointly in the case of improved groundnut varieties in Uganda, but they do not

explore how farmer networks can relax these constraints.

I study how networks affect the adoption of improved banana cultivation in the

Arusha region in Tanzania. Improved banana variety seedlings and a new banana

cultivation technique were introduced to participants of a Farmer Field School project

called RIPAT in eight villages. I explore how the adoption among non-participants in

the project villages depends on their informational links to project participants and to

other farmers. The RIPAT project was designed to foster diffusion of banana cultivation

to non-participants through a solidarity chain principle: Participants were obliged to

pass on thrice as many seedlings as they received through the project to other farmers,

free of charge. As the improved banana variety seedlings were not available through

formal channels, input provision through networks becomes very important for adop-

tion in this context.

To guide intuition for the adoption behavior among non-participating farmers, I

set up a simple model of crop choice. Following the literature on social learning, I

100



first derive model implications under imperfect information and show that adopters

in the network can affect the farmer’s adoption decision through information about

expected yields of the new crop. I then extend the model by allowing the network to

provide inputs for the new crop when there is an imperfect input market. I can derive

the exact same model implications with an imperfect input market as under imperfect

information.

For the empirical analysis I use data on 509 non-participating farmers from house-

holds within the eight RIPAT villages collected for the purpose of this study. I find

large network effects on adoption behavior: discussing farming issues with at least one

farmer growing improved bananas increases the propensity to adopt by 39 percentage

points. The data suggest that provision of inputs through the network contribute to

this very strong network effect.

I further add to the literature by showing that network members who do not grow

improved bananas have a negative effect on the propensity to adopt. The theoreti-

cal model provides the following intuition: Network members not growing bananas

provide information or inputs that makes other crops more attractive, reducing the

relative profitability of bananas. For a given amount of land, the farmer is then less

likely to adopt banana cultivation. This finding points to the importance of controlling

for network size when assessing the impact on adoption of adoption behavior in the

network. Failing to do so (e.g. as in Bandiera & Rasul, 2006) potentially confounds the

network estimate.

The network effects described are inherently difficult to identify (Manski, 1993,

2000; Brock & Durlauf, 2007; Bramoullé et al., 2009). Experimental variation in adop-

tion in the network can facilitate identification (e.g. Magnan et al., 2015; Cai et al., 2015;

Carter et al., 2014; Kremer & Miguel, 2007), but it is often not available. As partici-

pation in RIPAT is voluntary and hence subject to self-selection I must use a different

approach to address causality.

First, I note that the network is captured prior to adoption (using a recall question),

and there is a natural ordering in the timing of adoption as RIPAT participants are the
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first to be introduced to improved banana cultivation. This mitigates the concern of a

simultaneity problem. Next, I carefully investigate the different confounding factors

and perform three falsification tests to address whether the estimated network effects

are confounded by a) contextual effects; b) correlated effects; and c) self-selection into

RIPAT, where a) and b) refers to the terminology of Manski (1993). Contextual effects

cover the impact of the characteristics (rather than the behavior) of network members

on individual behavior. I exploit detailed data on the RIPAT farmers in the network to

test if the network effects are driven by the socioeconomic characteristics of network

members. I do not find the characteristics to be driving the network effects found. Cor-

related effects capture the correlation in behavior within the network which is due to

a common environment or a correlation in unobserved characteristics. I capture local

growing conditions by the number of adopters within a radius of a half kilometer of

the household and by subvillage fixed effects. I control for previous or current cultiva-

tion of traditional bananas to capture unobserved preferences for banana cultivation

or prior knowledge of banana cultivation. Furthermore, I address the potential cor-

relation of unobservables within networks in a placebo study. The network measures

cannot predict adoption of three placebo crops, which leads me to conclude that the

network effects found are not driven by a correlation in openness to new crops within

networks. Finally, self-selection into RIPAT creates a concern for the interpretation of

the results. My interpretation of the network effect is that the farmer is affected by the

adoption behavior in his or her network either through the information or input channel.

But as participation in RIPAT is voluntary the non-participants in my sample have im-

plicitly self-selected out of RIPAT. They may have chosen to do so because they have

network members who participate and they expect to receive information and inputs

from them. In that case, they have decided to adopt regardless of the adoption behav-

ior in the network and I would expect them to adopt as soon as possible. Hence, I

explore the difference between early and late adopters to test if this behavior is driving

the results. I find that the strong network effects persist among late adopters support-

ing my interpretation of the network estimates. Taken together, none of the evidence
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suggests that the estimated network effects are confounded.

The remainder of the paper is structured as follows: Section 2 introduces the Farmer

Field School project and the agricultural technology under study. In section 3 I set up

a simple model of crop choice to illustrate how the adoption decision is affected by

the network through either information or input provision and I derive testable impli-

cations of the model. I proceed with a description of the data and summary statistics

in section 4, and subsequently, I present the empirical specification and estimation

results in section 5. Section 6 discusses the identification of the network effects. In

this section I address contextual and correlated effects and self-selection into RIPAT

with three falsification tests and furthermore, I discuss how the provision of seedlings

through networks could explain a part of the network effects found. Finally, section 7

concludes.

2 RIPAT and improved banana cultivation

The improved banana cultivation studied in this paper is introduced by a project called

RIPAT (Rural Initiatives for Participatory Agricultural Transformation). RIPAT is a

multifaceted agricultural and livestock project that aims to alleviate food insecurity

and poverty among the participating households.3 A series of RIPAT projects have

been implemented, and this study considers the first RIPAT project which took place

in eight villages in Arumeru district in Northern Tanzania from 2006 to 2009. It was

implemented by a local NGO RECODA and funded by the Rockwool Foundation.

Two Farmer Field School (FFS) groups are established in each village consisting

of 30-35 farmers each. The farmers sign up voluntarily, but are only considered if

they are dealing with agriculture already and if they have between one and five acres

of land (however not rigorously abided).4 The FFS group cultivates a common plot,

where RECODA facilitators demonstrate new agricultural techniques from a ’basket

of options’. After learning about the new techniques and improved varieties the par-

3See thorough information on the project at www.RIPAT.org.
4The fact that RIPAT farmers self-select into the project also implies that the non-RIPAT farmers are

a selected group. I discuss this issue in section 6.3.
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ticipating farmers can choose to adopt on their own farm the components that best fit

their soil, water accessibility, availability of household labor and land, preferences and

taste.

The main component in the basket of options (and the most successful in terms of

adoption) is a new technique of banana cultivation which is studied in this paper. It

consists of special instructions for how to prepare the hard-pan soil and establish and

tend a banana plantation, in conjunction with the introduction of five improved ba-

nana varieties which are more drought resistant than the traditional bananas grown in

the area. The preparation of the soil consists of digging a one cubic meter hole which

is then filled with a mixture of top soil and farm yard manure before planting the im-

proved banana seedling. The soil around the plant can thereby contain more moisture

which makes the plant more drought tolerant. The improved banana cultivation facili-

tates large scale plantations which is not possible with the traditional techniques in this

area. The banana cultivation technique is indeed new in the area; when RIPAT was in-

troduced at village meetings some people would laugh when banana plantations were

mentioned because they knew it was not feasible–at least not with the existing tech-

niques. The other components of the project include conservation agriculture, crop di-

versification, improved animal husbandry, fruit and multipurpose trees, soil and water

conservation and post-harvesting technologies.

The project is designed to facilitate dissemination of the introduced technologies

and varieties in several ways. A solidarity chain is established where participating farm-

ers are obliged to pass on thrice as many improved banana seedlings to other farmers

as they have received, free of charge. In addition, Super Farmers are chosen among the

RIPAT farmers and educated to teach other farmers about banana cultivation. They

are selected by the groups themselves among the best farmers to practice and teach the

new methods. Furthermore, two criteria were set up for the formation of the Farmer

Field School groups to foster dissemination of technologies: First, only farmers who

were socially acceptable people and willing to share with others were admitted into

the groups. Second, since each of the villages consist of two to five subvillages which
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are not necessarily contiguous, it was ensured that all subvillages where represented

in the FFS groups.

I study the role of networks in the local diffusion of improved banana cultivation

from participating to non-participating farmers within the project villages. In particu-

lar, I study how the adoption of improved banana cultivation among non-RIPAT farm-

ers residing in the project villages depend on whether they discuss farming issues with

RIPAT farmers who have adopted the new technique. For expositional purposes I will

only use the term ’improved’ when it is important to distinguish between the existing

’traditional’ banana cultivation and the new technique. Henceforth, ’banana cultiva-

tion’ refers to the new technique.

The solidarity chain principle for improved banana seedlings was important for

the diffusion of improved banana cultivation as the seedlings could not be purchased

through formal channels in the area. Once the banana plant is established it produces

seedlings which the farmer can only use if he or she wants to expand the banana plan-

tation and hence the opportunity cost of giving them away is low. This is different

from annual crops where the opportunity costs of the seed corn is to eat it or plant it

on your own farm as you have to replant the crop every year.

The solidarity chain reduces the investment costs related to the establishment of

a banana plantation. However, the opportunity costs of land and labor may still be

considerable. The labor investment related to the establishment of the plantation is

large as it is a very strenuous task to dig the big holes in the hard soil and some farmers

may even choose to hire casual labor to dig the holes at a rate of around 2,000 Tanzanian

Shillings (1.25 US dollars) per hole.5 Nevertheless, planting one or two banana plants

is manageable and affordable for most farmers and a gradual expansion of the banana

plantation can then be decided upon after testing the banana plantation on a small

scale.

Figure 1 illustrates the adoption of banana cultivation among RIPAT farmers and

the diffusion to non-RIPAT farmers over time. The maps are based on household GPS

5As noted by the anthropologist, Quentin Gausset, during field studies in the RIPAT villages.
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location and adoption information from the data presented in section 4.1.6 Before

project implementation in 2005 very few households in the sample had adopted ba-

nana cultivation. Already at the end of 2006, the first year of RIPAT, we see widespread

adoption of banana cultivation among RIPAT households, and some few non-RIPAT

households have followed suit at this early stage. By 2008 the number of adopting RI-

PAT households has almost doubled and the new technique is also catching on among

non-RIPAT households. One year after the end of the project, 69 percent of the RIPAT

households are growing improved bananas on their farm and the improved banana

cultivation has spread to 20 percent of the non-RIPAT households. This is considered a

very large degree of diffusion compared to the existing Farmer Field School literature,

where only limited diffusion of the new technologies is documented (See reviews in

Davis et al., 2012; Waddington et al., 2014). The high degree of adoption of improved

banana cultivation among RIPAT participants and diffusion to non-RIPAT households

suggests that banana cultivation indeed suits the local needs and preferences, that it

is trialable at a smaller scale, and that it is profitable compared to existing crops and

technologies.

3 A simple model of crop choice

To guide intuition for the empirical results, I set up a simple model that illustrates

how the crop adoption decision is affected by the network of the farmer when the

information is not perfect or when the input market is not functioning. The model

allows me to derive testable implications for how the adoption decision is affected by

the network of the farmer either through information or input provision.

I model how the adoption decision depends on the egocentric network including

links to three different types of farmers: RIPAT farmers, non-RIPAT banana growers

and other farmers who do not grow bananas. There are two main differences be-

tween the model I present and existing learning models (e.g. Foster & Rosenzweig,

1995; Bardhan & Udry, 1999; Munshi, 2004; Conley & Udry, 2010; Besley & Case, 1993;

6Data are collected in January 2011 and time of adoption is based on a recall question
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Banerjee, 1992; Saha et al., 1994): 1) I show how social learning and provision of inputs

through the network can lead to the exact same network effects on adoption behavior;

and 2) I allow for network members growing other crops than the main crop studied

to affect the adoption decision. To my knowledge, this has not been done before.

I will focus on model predictions for the extensive margin of the adoption deci-

sion (whether or not the farmer adopts) which corresponds to the empirical analysis.

Initially, the farmer grows a traditional crop with a constant yield, ya, and considers

to adopt a new crop with a risky yield, yb = µ + ε, where the shock ε ∼ N (0, σ2).

As a benchmark I analyze the adoption decision under perfect information where the

farmer knows the mean, µ, and variance, σ2, of the yield of the risky crop, and without

imperfections on the input market. In this setting there will be no role for the network

of the farmer.

3.1 Perfect information

The farmer can choose to adopt the new crop on some share, ω, of his or her land where

the total farm area is normalized to one. The total farm yield will then be a weighted

average of the yield from the traditional and the new crop:

y = ωyb + (1−ω)ya, 0 ≤ ω ≤ 1

For simplicity I abstract from crop prices, but we could think of ya and yb as the

value of the yields.7 If I assume that the input cost is linear in the yield and normalize

the input price to zero for now,8 ya and yb represents the profits of the two crops. I

return to the role of inputs in section 3.5. The crop choice of the farmer corresponds

to a portfolio choice where the risk averse investor will trade-off mean and variance of

the assets in his or her portfolio as exploited by Munshi (2004) in his model of acreage

allocation and social learning. I follow Sargent (1979, pp.:150-151) and assume that the

farmer values the total yield according to the utility function

7The analysis will be unaltered if I either assume constant prices or that the farmer only considers
the current prices at the adoption decision.

8As long as input prices are constant, the analysis is unaffected.
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U(y) = −e−λy, λ > 0

U(y) is increasing and concave and λ captures the degree of risk aversion.9 This utility

function is convenient because the expected utility can be rewritten to depend on the

expected mean and variance of y, see Appendix A. The resulting expression for the

expected utility is

E [U (y(ω))] = −e−λ((1−ω)ya+µω− 1
2 ω2λσ2)

The farmer maximizes the expected utility by choosing the optimal share of farm

land, ω, to allocate to the risky crop. The interior solution is found by the first order

condition:

ω∗ =
µ− ya

λσ2 (3.1)

This result is quite intuitive: the optimal share of land allocated to the risky crop

is increasing in the difference between the mean yield and the yield of the traditional

crop. It is decreasing in the variance of the crop and in the risk aversion of the farmer.

For a given increase in the variance of the yield, the more risk averse farmers will

choose a larger reduction in the share of land allocated to the risky crop.

Assume for practical purposes that the share of land allocated to the risky crop

cannot be infinitely small. I define a share ωmin which is the minimum feasible value

of ω other than zero. This implies that I will consider ω∗ as a latent variable and the

observed adoption of the risky crop will be

ω =


0 i f ω∗ < ωmin

ω∗ i f ωmin ≤ ω∗ < 1

1 i f 1 ≤ ω∗

9The Arrow-Pratt index of absolute risk aversion is U′′(y)/U′(y) = λ Pratt (1964).
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Requiring a minimum share introduces the variance and the risk aversion in the

extensive margin decision:

ω =


0 i f µ− ya < λσ2ωmin

ω∗ i f λσ2ωmin ≤ µ− ya < λσ2

1 i f λσ2 ≤ µ− ya

(3.2)

3.2 Imperfect information

Now I turn to the case where the expected yield of the risky crop, µ, is unknown to the

farmer. This assumption is in line with models of Munshi (2004) and Besley & Case

(1993), but in contrast to the target input type models where the subject of learning is

the optimal input level (Foster & Rosenzweig, 1995; Conley & Udry, 2010). For simplic-

ity I assume that the farmers know the dispersion of the yield, σ2, say because they are

familiar with the dispersion of the rainfall. The farmer can discuss farming issues with

other farmers who grow the risky crop (henceforth informants) to obtain information

about the expected yield of the new crop. The farmer holds a belief about the expected

yield:

µ̄ ∼ N
(

µ,
1

qN + k

)
I assume that the variance of the belief is inversely related to the number of infor-

mants, N, weighted by the quality of their information, q.10 When the farmer has no

informants the variance of the belief is k−1 which is assumed to be very large (k is a

very small positive number). As the farmer discusses farming issues with more people

growing the new crop, his or her belief will approach the true expected yield of the

new crop.

I can find the optimal share allocated to the risky crop following the same deriva-

tions as in section 3.1, but now replacing yb by ȳb = µ̄ + ε. Assuming that the belief

about the expected yield and the yield shock are uncorrelated, ȳb will follow a nor-

10This assumption can be motivated by a Baysian updating model where the variance of the signals
from each informant is 1/q and the variance of the prior is 1/k.
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mal distribution with mean µ and variance σ2 + (qN + k)−1. Thus, due to uncertainty

about the expected yield the farmer will consequently overestimate the variance of the

yield. The optimal (latent) share which maximizes expected utility is then equal to:

ω∗ =
µ− ya

λ (σ2 + (qN + k)−1)

As expected, the optimal (latent) share of land allocated to the new crop is lower when

uncertainty is introduced compared to the perfect information case (equation 3.1). The

realized share will be

ω =


0 i f µ− ya < λ

(
σ2 + (qN + k)−1)ωmin

ω∗ i f λ
(
σ2 + (qN + k)−1)ωmin ≤ µ− ya < λ

(
σ2 + (qN + k)−1)

1 i f λ
(
σ2 + (qN + k)−1) ≤ µ− ya

(3.3)

Equation 3.3 suggests the first testable empirical implication:

Model implication 1: Adopting the new crop is positively correlated with the

number of informants growing the new crop.

When the farmer does not know anyone who grows the crop (N = 0) the variance

of the belief about the risky yield is very large. For sufficiently small k,11 a risk averse

farmer will not adopt a new crop which none of his or her informants grows. This is an

alternative way of modeling that an information threshold has to be exceeded before

adoption becomes feasible as in the model Saha et al. (1994). Discussing farming issues

with just one farmer who grows the new crop will make the optimal latent share jump

from (almost) zero to (µ− ya)/(λ(σ2 + (q+ k)−1)). As long as µ > ya the second order

derivative of ω∗ with respect to N is negative and hence, the extensive margin change

is the unit change in the number of informants that leads to the largest increase in the

propensity to adopt over the support of N.

Model implication 2: The change in the propensity to adopt is larger for ex-

11k < ((µ− ya)/(λωmin)− σ2)−1
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tensive than intensive margin changes in the number of informants.

The positive correlation between adoption and number of adopters in the network is

also found in existing learning models, at least when there are few adopters in the

network. Ambiguous effects for large networks are found in the target input model

(Foster & Rosenzweig, 1995; Bardhan & Udry, 1999) where the subject of learning is the

optimal amount of input rather than the expected yield. The farmer can learn about

the optimal input both through learning by doing and learning from others which

can create an incentive for strategic delay of adoption. When the farmer knows many

adopters, s/he can free ride on the experimentation in the network and avoid costly

experimentation on his or her own farm. This leads to an inverted U-shape relationship

between the network and adoption which has been found empirically by Bandiera &

Rasul (2006). In this model I do not specify how beliefs about the new crop are affected

once the farmer has adopted the new crop because the empirical implications are not

relevant in the context I consider.12

3.3 Information of different quality

Informants may not possess equally good information about the new crop. In the case

of banana cultivation, RIPAT participants have received weekly training in the new

cultivation technique for three years whereas non-RIPAT banana growers are likely

to have less information about the new technique. When they pass on information

on how to cultivate bananas I would expect information from RIPAT farmers to be of

a higher quality than that of non-RIPAT farmers, qR > qnR. I can insert the sum of

information from RIPAT and non-RIPAT informants, qN = qRNR + qnRNnR, into the

expression for the optimal latent share of the new crop:

ω∗ =
µ− ya

λ
(

σ2 + 1
qR NR+qnR NnR+k

)
12In the sample 97 percent of the farmers discuss farming issues with no more than three banana

growers. Hence, the number of informants growing bananas is not large enough to identify a non-linear
relationship between the propensity to adopt and the banana network on the intensive margin. Bandiera
& Rasul (2006) find the vertex of the inverted U to be at 10 adopters in the network.
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High quality informants are better at reducing the variance of the expected yield

than low quality informants. Hence, they also have a larger impact on the adoption

decision. This leads to the third testable implication:

Model implication 3: The adoption decision is more affected by changes in

the number of high quality than low quality informants.

3.4 Several risky crops

The model can be extended to include more than one risky crop. I consider the case

where the farmer can choose to allocate land to two risky crops with yields yb and yc,

which both outperform the traditional crop and hence in optimum no land is allocated

to the traditional crop. The yields of the two crops are both assumed to be normally

distributed and for simplicity, I assume that they are uncorrelated.

yj ∼ N
(

µj, σ2
j

)
, µj > ya, j ∈ {b, c}

Total yield is now a weighted average of the two risky crops, y = ωbyb +(1−ωb)yc.

Because the two yields are uncorrelated I can simply apply the same trick as in section

3.1 and expected utility under perfect information can be written as

E [U(y)] = −e−λ(µbωb+µc(1−ωb)− 1
2 λω2

b σ2
b−

1
2 λ(1−ωb)

2σ2
c ) (3.4)

First I note that the expected disutility of risk is minimized when the farmer grows

both crops (ωb = σ2
c /(σ2

b + σ2
c )) because crop diversification reduces the variance of

the total yield, in particular when the two yields are uncorrelated. Next, I maximize

3.4 with respect to ωb and the first order condition gives

ω∗b =
µb − µc + λσ2

c

λ
(
σ2

b + σ2
c
) (3.5)

Again, I let the expected yields of the two crops be unknown to the farmer and let
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the variance of the belief about the expected yields be the inverse of the number of

informants growing the crop scaled by an information quality factor.13 Let the number

of informants growing crop b and c be Nb and Nc respectively. Assuming that the

beliefs for the two crops are independently distributed I can simply insert the inflated

variances in equation 3.5

ω∗b =
µb − µc + λ

(
σ2

c +
1

qNc+k

)
λ
(

σ2
b +

1
qNb+k + σ2

c +
1

qNc+k

)
and when I impose that the crops cannot be allocated a smaller non-zero share than

ωmin, the realized share is

ωb =


0 i f ω∗b < ωmin

ω∗b i f ωmin ≤ ω∗b ≤ 1−ωmin

1 i f 1 < ωmin + ω∗b

Discussing farming issues with farmers growing crop b still increases the propen-

sity to adopt crop b. But the question is now whether the informants who grow crop c

rather than crop b affect the choice to adopt crop b? I differentiate ω∗b with respect to

Nc which yields

∂ω∗b
∂Nc

=
q
[
µb − µc − λ

(
σ2

b +
1

qNb+k

)]
λ(qNc + k)2

(
σ2

b +
1

qNb+k + σ2
c +

1
qNc+k

)2 (3.6)

µb − µc

λ
(

σ2
b +

1
qNb+k

) < 1 =⇒
∂ω∗b
∂Nc

< 0

Empirically, it would appear reasonable to assume that network size is positively

correlated with the adoption of new crops even after controlling for the number of

people in the network who grows the new crop, simply because the network size

may correlate with unobserved characteristics such as entrepreneurship and openness.

However, within this model framework I present how imperfect information may lead

13For simplicity, I let the information quality factor be equal for the two crops.
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to the opposite correlation. Network information about another crop makes that crop

relatively more attractive through a reduction in the uncertainty about its yield. The

farmer has to trade off the two crops and hence will allocate a lower share to crop b

if crop c becomes more attractive. This only holds if crop b does not fully outperform

crop c.14

I can consider crop c to represent the crop portfolio of all other risky crops grown

by those of the farmer’s informants who do not grow crop b. Then I can draw a final

empirical implication of the model:

Model implication 4: An increase in the number of informants not growing

crop b will decrease the adoption of crop b.

3.5 Imperfect input market

Model implication 1 through 4 are derived under the assumption that the network pro-

vides knowledge about the mean yield of the risky crop(s). However, the same impli-

cations could be derived from a model with perfect information, but where the inputs

are instead very costly and where the social network can lower the cost of inputs.

To see how, I define the profit from growing crop b on the total farm area as πb =

yb− κb(Nb), where yb represents the value of the yield, and κb(Nb) is the cost of the seed

input which depends negatively on the number of network members growing crop b.

The yield is still risky which implies that the profit follows a normal distribution with

mean µb − κb and variance σ2
b . I can derive the optimal share allocated to crop b the

same way as in section 3.1, so equation 3.1 is now modified by the input costs:

ω∗ =
µb − κb − ya

λσ2
b

and the optimal share becomes

14In the case where (µb − µc) /
(

λ
(

σ2
b + 1

qNb+k

))
≥ 1 then ω∗b ≥ 1. Hence, crop b outperforms crop

c, (ωb = 1), and ωb is unaffected by changes in Nc.
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ω =


0 i f µb − κb − ya < λσ2

b ωmin

ω∗ i f λσ2
b ωmin ≤ µb − κb − ya < λσ2

b

1 i f λσ2
b ≤ µb − κb − ya

Consider the case where the input market is distorted by high transaction costs due

to poor infrastructure, such that the cost of inputs when purchased through formal

channels is so high that it is not optimal to adopt the new crop, µb − κb(0) − ya <

λσ2
b ωmin. It is clear to see that allowing the network members to provide inputs at a

reduced or zero cost creates a positive network effect on the propensity to adopt. This

corresponds to model implication 1 above. If I furthermore assume that one network

member provides a sufficient amount of inputs, then follows implication 2. Actually,

there would only be an effect on adoption from an extensive margin change in the net-

work. Alternatively, I could assume decreasing marginal returns to seed inputs for a

given level of land and labor inputs which would also yield implication 2.15 Model im-

plication 3 would require the assumption that RIPAT network members would lower

the input costs more than non-RIPAT members or be more likely to provide inputs.

Given that they are obliged by the project to pass on seedlings, this is not an unreason-

able assumption. Implication 4 could also easily be derived assuming that the network

members growing other crops similarly lowered the adoption costs of these other crops

making them more profitable than crop b.

Hence, empirical support for the four model implications would be evidence for

network effects, but not for the mechanisms through which the network affects the

adoption decision. It is a possibility that knowledge and input sharing simultaneously

play a role.

15In the current specification I implicitly assume a linear relationship between seed inputs and
yields, but I could instead assume a Cobb-Douglas production function which would exhibit decreasing
marginal returns.
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4 Data and summary statistics

4.1 Data collection

The empirical analysis is based on cross-sectional data collected in January 2011 as a

part of an impact evaluation funded by the Rockwool Foundation and administered

by Helene Bie Lilleør and the author (see Larsen & Lilleør, 2014). Household data

were collected from RIPAT households, non-RIPAT households in RIPAT villages and

households in comparison villages. This paper employs data from the choice-based

sample of non-RIPAT households from the eight RIPAT villages. Households grow-

ing bananas were oversampled to ensure enough adopting households which are the

households of interest for this study. Within the biomedical literature choice-based

sampling is known as case-control studies and is widely used for studying infrequent

events (Prentice & Pyke, 1979). The sample of non-RIPAT households consists of a ran-

dom sample of households in the RIPAT villages and additional households who had

received banana seedlings from RIPAT households according to RECODA records. The

random sample facilitates the calculation of the population share of adopters among

non-RIPAT households. The calculation is described in Appendix C. For a detailed

description of the sampling scheme, see Appendix A of Larsen (2012).

The main respondent was either the person who took the decision to grow ba-

nanas or the person who takes most farming decisions, depending on whether the

household had adopted bananas or not. This person was interviewed about his or

her personal characteristics and network, and about the members of the household,

their farm, crops, livestock, and assets. In addition, the adult female in the household

was interviewed about household facilities and food security, and we collected child

anthropometrics.

The sample of non-RIPAT households for the analysis of the adoption decision is

constructed as follows: 597 non-RIPAT households in the eight RIPAT villages were

interviewed in total. Out of these, 62 households are disregarded due to missing data

on network or other explanatory variables. The data are not systematically missing
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from either adopting or non-adopting households. In addition, 26 households are left

out of the analysis because they either claim to have planted their first improved ba-

nanas before 2006 or because they moved to the village later than 2006 when RIPAT

was implemented.16 This leaves a final sample of 509 households among which 193

are growing improved bananas as listed in the final row of Table 1.

4.2 Measuring networks

When assessing the role of the network for adoption of technology, it is important

how the network is measured. Maertens & Barrett (2013) argue that the network is

almost surely misrepresented if the researcher does not have explicit network data,

but instead relies on proxy measures such as other farmers in the village (e.g. Foster &

Rosenzweig, 1995; Munshi, 2004; Moser & Barrett, 2006), or geographical neighbors of

the farmer (e.g. Krishnan & Patnam, 2014). Direct network measures typically capture

egocentric networks either by prompting the farmer about links to other farmers in

the study (Conley & Udry, 2010; Carter et al., 2014; Magnan et al., 2015) or by open-

ended questions about whom they discuss farming issues with (Bandiera & Rasul,

2006). Open-ended questions might only elicit the farmer’s “strong” network links

because the “weak” links may be forgotten when the farmer is not prompted (Maertens

& Barrett, 2013). However, the network size is not captured when the researcher only

asks about links to other farmers in the sample, and I show in this paper that the size

is important to account for. Also, women may have systematically smaller network

measures than men if only the network links within the village are elicited and it is

a patri-local society where the women moves to the men’s villages when they marry.

This is the case in the context I study.

Hence, I employ three open-ended questions to capture the egocentric networks

of non-RIPAT respondents. The phrasing below was used for non-adopting farmers

while adopting farmers received the questions in past tense and the recall frame in

square brackets was used.

16Including households who planted before 2006 as either adopting or non-adopting households does
not alter the results. Neither does the inclusion of immigrants.
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Network size: Think about your relatives and friends and other people that you know.

[Before you decided to start growing improved bananas,] how many people

do you discuss farming issues with?

Banana network: Among these, how many of them are growing improved bananas [be-

fore you decided to grow improved bananas]?

RIPAT banana network: If any of these are RIPAT farmers, could you please give me

their names?

The timing of the recall was chosen to avert the potential upward bias due to endoge-

nous network formation: If the network was measured after the adoption decision I

could capture links between banana cultivating farmers that were established because

they both grow bananas. This would induce an upward bias in the correlation between

the banana network and the adoption decision.

The questions are sequential such that the mentioned farmers will be a subset of

the response to the preceding question. This implies that only RIPAT farmers who

were growing bananas were listed. The listed RIPAT farmers can be linked to detailed

household and farmer characteristics, because the data collection also covered all RI-

PAT farmers. I exploit this information in section 6.1 to study whether the effect of the

RIPAT network depend on the socioeconomic characteristics of the RIPAT farmers.

The empirical network measures easily relate to the network in the theoretical model

presented in section 3. The banana network net of the RIPAT banana network will cap-

ture the number of non-RIPAT banana growers in the network. From model implica-

tion 1, I expect that the RIPAT and non-RIPAT network are positively correlated with

the propensity to adopt. Model implication 3 suggests that the RIPAT network has a

stronger impact than the non-RIPAT network. The network size for a given banana

network will capture the number of informants growing other crops than bananas and

model implication 4 predicts a negative correlation between the network size and the

propensity to adopt conditional on the banana network. Furthermore, controlling for

the network size ensures that the impact of the banana network is not confounded by
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the network degree.

Is there any correlation between the banana network measured and the propen-

sity to adopt in the raw data? Figure 2 shows the sample share of adopting house-

holds depending on the number of people in the farmer’s banana network (2a) and the

farmer’s RIPAT network (2b).17 The sample share of adopting farmers is clearly larger

for the subsets of farmers who discuss farming issues with banana growers which cor-

responds with model implication 1. The figure suggests that the greatest difference

is on the extensive margin, i.e. whether you discuss farming issues with at least one

RIPAT farmer or other banana grower. This is in line with model implication 2.

4.3 Summary statistics

Table 1 summarizes farmer and household characteristics for the full sample of non-

RIPAT households and for adopting and non-adopting households separately. Due to

the choice-based sampling of non-RIPAT households the adoption share in the sample

is 38 percent which is almost twice the population share of 20 percent of adopting

households among non-RIPAT households.

The explanatory variables of interest are the network variables. The farmers in

the sample discuss farming issues with 2.8 people on average, where 0.5 are RIPAT

banana growers, 0.3 are non-RIPAT banana growers and the remaining two people

do not grow bananas. Adopting farmers are more likely to discuss farming issues

with banana growers than non-adopting farmers, and though adopters also have a

larger total network size than non-adopters, they discuss farming issues with 0.8 fewer

people who are not growing bananas.

Furthermore, I control for a range of farmer and household level characteristics.

At the farmer level, I include gender, age, religion and literacy. The reference cate-

gory for the religion dummies is that the farmer is Protestant. ’Other religion’ is a

combined group of both traditional religion practitioners, Seventh Day Adventists and

other groups that do not fall into the three main religion groups. Adopting and non-

17Recall that the adoption share in the sample does not correspond to the population share due to
choice-based sampling.
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adopting farmers are quite similar, though adopting farmers are slightly more likely to

be Catholic and less likely to be Muslim than non-adopting farmers.

At the household level I consider different components of the household structure,

namely the highest education level obtained, available household labor, whether the

household head is a widow(er), the wealth of the household, and the farm size. This

range of variables address constraints to adoption with respect to inputs to agricul-

tural production: capital, labor, human capital, and land. The highest level of edu-

cation achieved within the household will be the level of formal knowledge that the

farmer can tap into. Since the highest level is ’completed primary education’ (7 years)

in 58 percent of the households I use this as the reference point and include indicators

for having less or more education than completed primary. Adopting households are

more likely than non-adopting households to have a household member with more

than primary education. To capture household composition I control for whether the

household head is a widow(er) and for the available household labor which is mea-

sured as the number of household members who can do hard manual labor to full

extent. Adopting households have significantly more household labor and are less

likely to be widowed. The level of wealth of the household is measured by a Tanza-

nian poverty score developed by Schreiner (2011) and I also include the number of

acres of land the household employ in 2006. I use a recall measure for the farm size

since it may be endogenous to the adoption decision, say if a farmer finds that banana

cultivation is lucrative and rent in more land.18 I do not have a recall measure for the

poverty score but in the impact evaluation of RIPAT (Larsen & Lilleør, 2014) we do not

find the poverty score to be significantly affected by project participation. Adopting

households are significantly more wealthy than non-adopting households, but they do

not have more land. In addition I measure remoteness by the distance from the GPS

location of the household to the nearest road,19 and this measure is not significantly

18As 97.5 percent of the sample owns at least some of their land and 83.9 percent owns all of the crop
land they cultivate, inadequate incentives with respect to farm tenure arrangements should not be a
constraint. Hence, I do not distinguish between whether the household owns or rent in the land that
they cultivate.

19Data on roads are downloaded from OpenStreetMap (http://download.geofabrik.de/africa/tanzania.html)
and kilometer distance from household GPS points is calculated in ArcGIS.
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correlated with adoption.

I further include variables that capture agricultural practices, entrepreneurship and

growing conditions that may correlate with both network and adoption.20 Entrepreneurial

households who are open for change could be more likely to participation in an NGO

project (other than RIPAT) and to grow more different crops (net of improved bananas),

and these two variables are indeed positively correlated with adoption. Whether or not

the household has grown traditional bananas indicates if the household has some prior

knowledge about or special preferences for banana cultivation and it appears to be an

significant determinant of adoption: Adopting households are 18 percentage points

more likely to have grown traditional bananas than non-adopters. This is important

to control for as farmers who have grown traditional bananas may be more likely to

discuss farming issues with each other. The local growing conditions are captured by

the number of banana growers within a radius of 0.5 kilometers from the household

where the distance is measured as the distance between GPS points taken at the house-

hold’s compound. As we have not collected census data the measure is not complete,

but it is a good proxy for the growing conditions that the household faces.21 Indeed,

there is geographical clustering in the adoption of banana cultivation with adopting

households having more neighbors who also grow bananas than non-adopters. The

inclusion of this variable may cause the network estimates to be downward biased

if farmers mainly discuss farming issues with their neighbors. However, if I exclude

it, the network estimates may be confounded by a correlation in growing conditions

within networks, hence I prefer the conservative estimates.

The eight villages in the data have a total of 24 subvillages with two to five sub-

villages in each village. Between six and 55 households are included in the sample

from each subvillage. One subvillage has no adopting farmers and hence, these six

observations are excluded when subvillage fixed effects are controlled for.

20I could further include measures to capture access to information such as household ownership of a
mobile phone or a radio, but these variables are uncorrelated with adoption and inclusion of them does
not alter the results. I leave them out to reduce dimensionality.

21Once the number of banana growers within a 0.5km radius is controlled for, use of irrigation chan-
nel, historical rainfall at the household level and distance to nearest waterway becomes insignificant.
Hence these measures are not included. Including them does not alter the results.
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5 Econometric analysis

I estimate a logistic model of the probability of adopting banana cultivation:

Pr {adopti = 1} = Λ [β1Ri + β2nRi + β3Ni + δXi + γGi + αs] (5.1)

where Ri is the RIPAT banana network of farmer i, nRi is the non-RIPAT banana net-

work and Ni is the network size. According to model implication 1 from section 3 β1

and β2 are positive, while model implication 3 predicts that β1 > β2. Model implica-

tion 4 suggests that β3 is negative. In the main specification, the two banana network

variables are specified as the number of (non-)RIPAT banana farmers in the network.

To investigate the effect of the network on the extensive margin, I use a more flexible

specification of the network. Instead of Ri and nRi I include three indicator variables:

Discuss farming issues with at least one; at least two; or at least three banana farmers.

To allow for differential effects between RIPAT and non-RIPAT banana growers I also

include corresponding indicator variables for at least one, two and three non-RIPAT

banana growers in the network. This specification will allow me to test the model im-

plication 2 that the extensive margin network effect is larger than the intensive margin

effect.

In addition to the network variables, I control for farmer and household characteris-

tics, Xi, and growing conditions, Gi, as these may both correlate with the network and

the adoption decision. These are described in section 4.3. I can further control for lo-

cal factors that makes adoption behavior correlate within the subvillages by subvillage

fixed effects, αs.22 All standard errors are clustered at the subvillage level.

The logistic model is based on the assumption that the individual unobserved char-

acteristics are logistically distributed. This is a convenient model for choice-based sam-

ples because it provides consistent estimates of the parameters–apart from the constant

term–as opposed to the linear probability model and the probit model (McFadden,

22The model including fixed effects are estimated using conditional maximum likelihood where I
only use within-subvillage variation in the adoption behavior to estimate the parameters (Chamberlain,
1982).
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1973; Prentice & Pyke, 1979). The bias of the constant term can be corrected if the

proportion of adopting households in the population is known. This enables the cal-

culation of marginal effects when subvillage fixed effects are not included. Appendix B

derives the consistency of the logit estimator for a choice-based sample and subvillage

fixed effects. It further describes how the correction of the constant term is calculated.

Marginal effects are calculated for the specification that includes farmer and house-

hold characteristics but not subvillage fixed effects. For count variables such as the

network variables, the marginal effect is calculated as the change in the propensity to

adopt for a discrete change around the mean value of the count variable.23 The re-

maining explanatory variables are evaluated at the sample mean and the constant is

corrected for choice-based sampling. In the second specification I calculate For indi-

cator variables I provide the marginal effect of a discrete change and for continuous

variables I provide the usual marginal effect, still correcting the constant term and us-

ing the sample mean of the remaining variables.

The model in section 3 motivates a causal interpretation of the β estimates as net-

work effects. However, the identification of such network effects requires careful scrutiny

of all potentially confounding effects and considerations of reverse causality. The es-

timates of the network effects may be confounded by contextual or correlated effects

using the terminology of Manski (1993), and they may be driven by self-selection into

RIPAT. I will discuss the issues of identification in section 6 and address them with

three falsification tests. I will also discuss whether the network effects are driven by

dissemination of information or provision of inputs. But before I address the issues of

identification I will present the regression results based on the specification in equation

5.1.
23For the number of RIPAT and non-RIPAT banana growers in the network this corresponds to a

change from zero to one while for the network size it is a change from two to three. For the second
specification, I consider discrete changes in the indicator variables. E.g. the marginal effect of knowing at
least two RIPAT banana growers is calculated by changing this variable from zero to one while knowing
at least one RIPAT banana grower is set equal to one and knowing at least three is equal to zero.
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5.1 Empirical results

Table 2 presents logistic coefficients and marginal effects for the propensity to adopt

improved banana cultivation. Column (1) presents the simple logistic regression of the

propensity to adopt on the three network variables. Discussing farming issues with

a banana grower – whether RIPAT or non-RIPAT – is significantly positively corre-

lated with the decision to adopt which is in line with model implication 1. Knowing

an extra RIPAT farmer appears to be five to six times as important as knowing an ex-

tra non-RIPAT farmer who grows bananas, given network size, which correspond to

model implication 3. The network size is negatively correlated with adoption when

the number of banana growers is controlled for as predicted by model implication 4.

These strong correlations persist when I include farmer and household characteristics

in the regression. Furthermore, they remain unaffected when I account for subvillage

fixed effects.24 Since these parameters are only identified by variation within subvil-

lages, factors that cause adoption rates to be correlated within subvillages such as soil

quality, distance to markets and village institutions are not confounding the network

effects.

The marginal effect show that the RIPAT network is really economically signifi-

cant: Knowing an extra RIPAT banana grower increases the propensity to adopt by 24

percentage points. The non-RIPAT network appears to provide information of much

lower quality as an extra farmer only increases the propensity to adopt by 5 percent-

age points. On the other hand discussing farming issues with a person not growing

bananas reduces the propensity to adopt by 5 percentage points. These results illus-

trate well a situation of information deficit: Farmers are easily convinced to try a new

crop by well-informed farmers, they are less affected by farmers who provide second

hand knowledge and if they are in general more informed through a larger network,

they are more difficult to persuade. But they might as well be explained by the provi-

sion of seedlings through the network which I return to in section 5.2.

Turning to farmer characteristics, female farmers are 14 percentage points more

24The number of observations is reduced by six households because one subvillage does not have any
adopting farmers in the sample.
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prone to adopt banana cultivation than male farmers. This is well in line with an-

thropological field work in the area which concludes that women generally have the

authority over bananas as compared to beans which is the domain of men (Mogensen

& Pedersen, 2013). There appears to be an inverse U-shaped relationship between the

propensity to adopt and the age of the farmer, though the two terms are not jointly

significant at the ten percent level.25 Though the coefficients are not significant, the

pattern is well interpretable. Until the age of 41 there is an increasing relationship

between the farmer’s age and adoption while the relationship is negative for older

farmers. This can be explained by the different phases in a household where a young

farmer has to spend time on child rearing, while when the children become older the

household can draw on teenage labor force. For older farmers, the children may have

left home leaving fewer hands in the family farming activity.

Religion appears to play an important role showing that Catholics are 19 percentage

points more likely to adopt than Protestants who constitute the reference group.26 The

other religion dummies are not significantly different from zero. The literacy of the

farmer does not correlate with the adoption decision.

The highest education attained in the household does also not correlate with the

adoption decision.27 The little importance of education suggests that the new technol-

ogy is so simple that lack of formal education is not a barrier to adoption. On the other

hand, household labor appears to have some impact on adoption though it is only sig-

nificant at the ten percent level. It is measured as the number of household members

who are able to do hard manual labor to a full extent. As the establishment of a banana

plantation requires a lot of hard manual labor it is intuitive that the available house-

hold labor is positively correlated with adoption. Whether the household head is a

widow(er) seems to be negatively correlated with the adoption decision as expected.

The estimated coefficient is rather large, but quite inaccurate and hence not statistically

25Wald tests of joint significance: χ2
(2) = .49, p = 0.11.

26Catholics are equally represented among RIPAT and non-RIPAT farmer, so the large coefficient can
not be explained by Catholics being reluctant to join RIPAT groups. The role of religion in networks
would be an interesting topic for future studies.

27Neither does the education of the farmer if that was included instead.
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significant. Naturally, a widow(er) household has less available household labor, and

the strong negative correlation between household labor and the widow dummy ex-

plains the large standard errors. The wealth of the household as measured by a poverty

score does not appear to be a determinant of adoption and neither does the number of

acres the household has access to. Hence, little wealth or limited access to land does

not seem to be important barriers to adoption, supporting the trialability of banana cul-

tivation and further suggesting that network effects are not driven by access to credit.

The distance to the road does not correlate significantly with adoption so more remote

farmers are not more or less likely to adopt banana cultivation. Bandiera & Rasul (2006)

finds participation in other NGO projects to be an important determinant of adoption

of sunflower cultivation, and in Larsen & Lilleør (2014) we find project participation

in the past to be correlated with participation in RIPAT. However, I do not find project

participation to correlate with adoption of banana cultivation among the non-RIPAT

participants.

The last three variables cover agricultural practices and conditions. I include the

number of crops the household grew in 2010, net of traditional and improved bananas,

to control for the combination of entrepreneurship and preference for risk diversifica-

tion that would induce the farmer to plant many different crops. The number of crops

grown in 2010 is indeed positively correlated with the adoption of banana cultivation.

Previous or current cultivation of traditional bananas indicates that the household

has some prior knowledge about banana cultivation reducing the information gap.

It could also capture that the household has adequate growing conditions or special

preferences for banana cultivation. Households who grows or have grown traditional

bananas are 17 percentage points more likely to adopt improved banana cultivation.

Finally, I control for growing conditions such as soil quality and rainfall by including

the number of banana growers within a radius of 0.5 kilometers and the parameter

is positive and significantly different from zero though less so when subvillage fixed

effects are included as they capture some of the same variation in the data.

Among the list of characteristics, the number of RIPAT banana growers in the net-
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work of the farmer prevails as one of the most important determinants of adoption

both economically and statistically. It represents the highest marginal effect on the

propensity to adopt and the t-statistic of the parameter estimate of 6.00 is by far the

largest t-statistic of the included controls. As the sample share of adopting households

is 24 percent for those farmers who do not know any RIPAT farmers, discussing farm-

ing issues with just one RIPAT farmer doubles the propensity to adopt.

I use standard errors clustered at the subvillage level to assess the significance level

of the estimates. However, there are 24 subvillages in the data and this rather low

number of clusters raises the question of the asymptotic distribution of the test statis-

tics. Following Cameron et al. (2008) I address this question by estimating a linear

probability model using ordinary least squares and calculate wild bootstrap-t p-values

for the network variables. The coefficients to the RIPAT network and the network size

both have p-values below 0.01, however the non-RIPAT network variable is not statis-

tically significant when all covariates are included. Results are shown in panel A of

Table A.1 in Appendix.

Even though I address the oversampling of adopting households by using the logit

estimator, there might be an additional concern. The logit estimator provides con-

sistent estimates if the additional adopting households are drawn randomly among

all adopting households in the population. I identify additional adopting households

through RECODA records and may thereby exactly sample households who are con-

nected to RIPAT farmers potentially leading to an upward bias in the network esti-

mates. However, I obtain the same parameters when I only include households drawn

randomly, see Table A.2 in Appendix. If anything, the network estimates based on the

random sample are larger, so I do not overestimate the effects using the non-random

sample.

5.1.1 Extensive and intensive margin effects

Figure 2 suggested that the relationship between the propensity adopt and the banana

network is not linear, but rather that the extensive margin change in the number of
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banana informants is what matters for adoption. This is also supported by model im-

plication 2. The regression results presented in Table 3 allows for a flexible relationship

between the propensity to adopt and the banana network using six indicator variables:

Discuss farming issues with at least one; at least two; or at least three banana growers

or non-RIPAT banana growers in the network.

The correlation between the banana network and adoption is clearly driven by the

extensive margin: Knowing at least one banana grower increases the propensity to

adopt by 39 percentage points.28 In the sample of farmers with no banana growers

in their network, 22 percent grow bananas on their own farm and hence, this corre-

sponds to a 177 percent increase in adoption! When controlling for having at least one

banana grower in the network, the second and third banana grower does not correlate

significantly with the adoption decision. The effect of knowing at least one non-RIPAT

banana grower is not significantly smaller than knowing a RIPAT banana grower, how-

ever it is rather imprecisely estimated.29

If I believe that the network effects are indeed driven by dissemination of knowl-

edge, this result tells me something about the nature of the information constraint that

the farmers are facing. It suggests that the informational barrier is relatively easily sur-

passed as only one source of information is needed to relax the constraint. This requires

that the agricultural technique for improved banana cultivation is relatively simple to

learn, and that just one observation can convince the farmer that improved banana

cultivation is very profitable compared to many of the traditional crops grown in the

area.

However, the importance of the extensive margin of the network is also very well

in line with the idea of input provision through the network. It only requires contact

to one banana grower to get hold of the first improved banana seedlings which makes

adoption of improved banana cultivation feasible. This would generate the network

28Using the random sample only, the marginal effect is as large as 49 percentage points, see Table A.2
in Appendix.

29When I account for the small number of clusters using wild bootstrap-t p-values from OLS regres-
sions, the extensive margin of the banana network is still significantly different from zero at the one
percent level (see panel B of Table A.1 in Appendix).
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effects found even if the farmers do not face an information constraint about the agri-

cultural technique or profitability of improved banana cultivation. Both the input and

information channel could very well be in play at the same time, and I am not able to

fully disentangle the two. In the following section I present evidence that provision of

inputs takes place in the networks.

5.2 Provision of inputs

There could be several interpretations consistent with the network effects found. The

theoretical model presented in section 3 demonstrates that the network effects found

are consistent with a story of social learning. However, as pointed out in section 3.5, the

same model implications could be derived from a model where the network members

provide free access to inputs, but no information. Hence, the fact that the data are in

accordance with the model from section 3 does not allow me to conclude on whether

the network effects are driven by learning about the expected yield or reduced costs of

adoption.

Data on where adopting farmers got hold of their first improved seedlings can shed

some light on the role of input provision. Adopting farmers were asked who gave or

sold them the first banana seedlings and if they mentioned a RIPAT farmer I can cross

check if the farmer is also in the network. The data are presented in Table 4. The first

row covers the full sample of adopting farmers and shows from whom they received

their first banana seedling. The majority (37 percent) received it from a RIPAT farmer

in their network, while 29 percent received it from a RIPAT farmer who is not in their

network.30 Hence, two thirds received the seedling from a RIPAT farmer. A quarter

received it from a non-RIPAT farmer and the remaining nine percent either received

it directly from the implementing organization, a RIPAT group, or another NGO. No

one bought the seedlings through formal channels suggesting that limited access to

improved banana seedlings could be a binding constraint for adoption.

Network connections could also affect the price of the banana seedlings, and I

30The person may belong to the higher order network.
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can use information on whether the farmer paid anything in cash or in kind for the

first seedling(s) to shed light on the issue. The majority (78 percent) received the first

seedlings for free and this is statistically independent from whether they received the

seedling from a RIPAT or non-RIPAT farmer. On the other hand, 44 percent of those

who received their seedlings from the other sources mentioned above had to pay either

in cash or in kind for the seedlings. This suggests that being connected to other banana

growers reduces the cost of inputs.

The network measure I apply relates to the dissemination of information (“dis-

cussing farming issues”). Nevertheless, this network measure could very well be cor-

related with the provider of the first seedlings. Not surprisingly, discussing farming

issues with one or more RIPAT banana growers increases the probability of receiving a

seedling from a RIPAT farmer. This can be seen from the second row of Table 4 where

I only consider adopting farmers who know at least one RIPAT banana grower (107

observations). Among these, 65 percent receive the first seedlings from a RIPAT net-

work member suggesting that the network plays an important role for the provision

of inputs. To test this more formally, I consider whether the farmer received the first

banana seedlings from a RIPAT farmer and regress this indicator on the network vari-

ables and other covariates using various specifications. The results are presented in

Table 5. Panel A shows the main specification where the network variables are en-

tered linearly. When I account for subvillage fixed effects in column (4) none of the

network variables are significantly correlated with the provision of seedlings from a

RIPAT farmer. However, a very different pattern emerges when I allow for different

effects on the extensive and intensive margin in Panel B of Table 5: Now discussing

farming issues with at least one RIPAT farmer increases the probability of receiving

the first seedlings from a RIPAT farmer with 19 percentage points. Surprisingly, know-

ing a second RIPAT farmer decreases the probability again by 11 percentage points.

Discussing farming issues with at least one non-RIPAT banana grower decreases the

likelihood of receiving seedlings from a RIPAT farmer, simply because it increases the

probability of receiving seedlings from a non-RIPAT farmer. This can also be seen from
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the third row of Table 4.

Hence, the provision of seedlings through networks could be a plausible explana-

tion for why the network effects are found to be so large. In particular, the fact that the

network effects are dominant on the extensive margin could be driven by seedling pro-

vision. You only need to know one banana grower to get your first improved seedlings.

The difference in the network effect for RIPAT and non-RIPAT banana growers

could also be explained by seedling provision. Among the adopting farmers who

knows both at least one RIPAT and non-RIPAT banana grower, 65 percent receives

the first seedling from a RIPAT farmer (either in network or not) while only 29 percent

receives the seedling from a non-RIPAT farmer, as presented in the fourth row of Table

4. This suggests that RIPAT farmers are more likely to share seedlings in their network.

There could be several explanations for this. It takes approximately one year from the

establishment of a banana plant before the farmer can harvest seedlings that can be

passed on to other farmers in the network. Hence, if non-RIPAT banana growers have

planted recently, they may not be able to share seedlings in their network. Also, RI-

PAT farmers may be more prone to share seedlings than non-RIPAT farmers. In fact,

61 percent of the RIPAT farmers who grow bananas and have passed on seedlings to

other farmers mention “obligation in the project” as one of the reasons for passing

on improved banana seedlings to other farmers. This points to the importance of the

solidarity chain principle for the diffusion of improved banana seedlings.

This fact raises the question of whether the adopting farmers simply plant a few ba-

nana plants because they received the seedlings as gifts which leads to the high impact

of RIPAT network on adoption or whether they really learn the new technology and

adopt it because they perceive improved banana cultivation to be advantageous. I in-

vestigate this issue by considering whether the farmer has a plantation with more than

ten banana plants instead of at least one banana plant. I find the same network effects

on the propensity to establish a banana plantation as on propensity to grow at least one

plant (see Table A.3 in Appendix). Hence, the network effects on adoption are not arti-

ficially high because the solidarity chain principle could induce RIPAT farmers to pass
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on banana seedlings to other farmers who where not interested in banana cultivation.

Naturally, data on seedling provision can only explain variation within adopting

farmers as they do not exist for non-adopting farmers. To assess the constraints faced

by the non-adopting farmers, they were asked why they had not planted improved

bananas, and Table 6 presents the categories of answers to this open-ended question.

Water shortage is the dominant self-reported reason for not planting improved ba-

nanas, while land constraint is the second most important reason mentioned by the

farmers. Lack of knowledge about production techniques is mentioned as frequently

as no access to seedlings suggesting that these two constraints are both in play and are

equally important.

These data suggest that provision of improved banana seedlings takes place within

the networks. However, I cannot rule out that the farmers also disseminate information

about improved banana cultivation through the networks. The fact that I find very

strong network effects could suggest that both channels are at work.

6 Identification of network effects

Identification of social interaction effects is inherently difficult because most networks

are endogenously shaped through individual choices. This may cause behavior to cor-

relate within the network for other reasons than social interaction In section 5.1 I found

that the network of the farmer is a very strong predictor of the farmer’s adoption de-

cision. Regardless of whether this network effect is driven by information or input

provision I consider it to be a social interaction effect as the adoption behavior of the

network member is a prerequisite for both the information and input channel. In this

section I will go through all the different causes of correlated adoption behavior in the

networks which cannot be assigned to social interaction and address them one by one.

In order to identify social interaction, Manski (1993) employs the useful vocabulary

of endogenous social interaction effects, contextual effects and correlated effects. The

endogenous effects describe how the behavior of the individual is affected by the behav-
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ior in the peer group. These are the network effects I want to identify. The contextual

effects (or exogenous social effects) cover how the behavior of the individual is affected

by the exogenous characteristics of the group such as education or wealth.31 I inves-

tigate whether the network effects found are driven by characteristics of the network

rather than their adoption behavior in section 6.1. The correlated effects are covariation

in behavior within a group due to similar unobserved individual characteristics or be-

cause group members face a similar environment. Endogenous network formation

naturally leads to a correlation in individual unobserved characteristics if similar peo-

ple prefer to share information. In addition, behavior may be spatially correlated due

to growing conditions or institutions. I address these confounding factors in section

6.2.

Furthermore, Manski (1993) discuss the reflection problem that arises when the re-

searcher wants to determine how the average behavior in a group affects the individual

behavior in the group. The simultaneity within the group makes it difficult to identify

who affects whom. In the network I study there is a natural ordering of events which

circumvents this kind of simultaneity bias. I consider how non-RIPAT farmers are af-

fected by discussing farming issues with RIPAT farmers who have adopted improved

bananas. The ordering is created by the fact that RIPAT farmers were the first to be in-

troduced to improved banana cultivation. Data on time of adoption allows me to check

that non-RIPAT farmers did indeed plant bananas later than the RIPAT farmers in their

networks. In 96 percent of the links, the RIPAT farmer planted before the non-RIPAT

farmer and for 98 percent of the adopting non-RIPAT farmers at least one of the RIPAT

farmers in their network planted before them. Hence, I do not consider simultaneity

bias to be a great concern.

Another type of reverse causality could occur if the network was measured after

adoption as banana growing farmers may endogenously form networks after adop-

tion. However, recall that I capture the network prior to the adoption decision. Though

I cannot rule out the existence of a recall bias, this suggests that the estimated network

31Manski (1993) uses the word “exogenous”, however, it should be noted that if networks are endoge-
nously formed then the characteristics of network members may be endogenous too.
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effects presented in section 5.1 are not confounded by the creation of links between

banana cultivating farmers after they have chosen to adopt.

Even though networks are measured prior to the adoption decision, the self-selection

into RIPAT could potentially cause adoption behavior to correlate without the RIPAT

farmer affecting the non-RIPAT farmer to adopt. I discuss this issue in section 6.3.

It should be noted that when studying the impact of the network on adoption be-

havior, I cannot distinguish imitative behavior from learning as pointed out by Fos-

ter & Rosenzweig (1995). It would require farm productivity data to distinguish be-

tween imitation and learning which are very costly to collect and often subject to a

large degree of measurement error. Nevertheless, if I assume that farmers are rational,

adoption must indicate that they perceive improved banana cultivation to be relatively

advantageous either with respect to profits, household food security or social factors

such as prestige.

6.1 Contextual effects

Could the network effects found in section 5.1 be driven by the characteristics of net-

work members? For instance, if banana growers are on average wealthier than other

farmers, then knowing several banana growers implies knowing several wealthy peo-

ple who may provide informal credit or insurance for you. In that case, a positive

correlation between the number of banana growers in network and own adoption is

not an evidence for learning or input provision but confounded by access to informal

credit.

Ideally, I would like to control for the average characteristics of all the information

network members to ensure that the correlation between adoption and the adoption

behavior in the network is not driven by exogenous characteristics of network mem-

bers. However, I only have detailed information about the RIPAT farmers in the net-

work and not other network members.32 To the extent that exogenous characteristics

are highly correlated within the network, controlling for farmer characteristics, Xi, that

32To my knowledge, the only paper analyzing adoption of agricultural technologies and networks
with detailed information on all network members is that of Van den Broeck & Dercon (2011).
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are expected to affect adoption partly resolves the issue. But it is not sufficient in the

case of heterogeneous networks. Though I do not have data on all network members,

I can exploit the detailed data I have on RIPAT farmers. I split the RIPAT farmers in

the network based on five central socioeconomic characteristics: wealth, land, edu-

cation, gender, and age, and I examine whether the network effects differ dependent

on the characteristics of the network members. If the network effects were driven by

the characteristics of the farmers in the network rather than their adoption behavior

(contextual effects), I would expect to find different network effects for e.g. rich and

poor network members. No differential effects would support the hypothesis that the

network effects found are not driven by contextual effects.

I measure wealth by a poverty score with a range of 0-100 (Schreiner, 2011) and split

the sample of RIPAT farmers in networks at the mean poverty score, 47.4. I split the

RIPAT farms into small and large by the average number of acres of 4.4. With respect

to education, RIPAT farmers are divided into three groups: less than seven years of

education (26.9 percent), seven years of education (68.1 percent) and more than seven

years of education (5.0 percent of the sample). The gender split is self-explanatory,

while the sample is split into young and old farmers at the mean age of 46.9 years.

Table 7 shows the estimation results together with tests of equal network effects

across different characteristics of network members. Column (1) does not provide sup-

port for the hypothesis that the network effect is driven by access to credit through

network members as the estimated effect of knowing rich RIPAT banana growers is in

fact lower than knowing poor RIPAT banana growers. However, this difference is very

far from being significant. The same pattern shows when I split the RIPAT network

on the size of the farm in column (2) which could also be considered as a measure of

wealth. RIPAT farmers with a small farm actually appear to have a stronger network

impact, but again the difference is not significant.

Turning to the split on farmers’ education in column (3), it appears that there is

a smaller effect from knowing RIPAT banana growers with less than seven years of

education, but there is no significant difference on the three estimated network effects
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for different education categories. The coefficient for knowing RIPAT farmers with a

high education is imprecisely estimated as the group is fairly small.33 To ensure that

the acceptance of the null hypothesis is not driven by large standard errors induced by

the high education category, I combine the high and medium education category, and

again I accept the null of no difference in network effects across education of network

members.34

As can be seen in column (4), the impact of knowing a male RIPAT farmer seems

to be larger than knowing a female RIPAT farmer. Nevertheless I again reject that the

network effects are differential across gender. Neither do the estimates and test results

in column (5) provide evidence for a difference in the network effects across age.

Hence, I conclude that the network effects appear to be rather homogenous across

these five socioeconomic characteristics which indicates that the network effects are

not driven by the characteristics of the farmers in the network, i.e. contextual effects.

At least, the network effects do not seem to be driven by access to informal credit or

e.g. by knowing older RIPAT farmers who are maybe more respected and influential

in the village.

6.2 Correlated effects

I distinguish between correlated effects due to environment (growing conditions and

location institutions) or individual unobserved characteristics.

Farmers within a network may behave similarly because they face the same en-

vironment. Agricultural activities may be correlated for neighboring farmers due to

similar growing conditions rather than social network effects. If the subvillage leader-

ship is supporting and promoting banana cultivation in a particular subvillage then a

correlation in adoption behavior within networks in the subvillage would not neces-

sarily indicate the existence of social network effects. In the empirical specification in

section 5.1 I have addressed these issues in several ways.

33Only 13 farmers in the sample know a RIPAT farmer with high education.
34Estimation results not reported. Wald test of equal effects for knowing RIPAT farmers with low and

medium/high education: χ2
(1) = 1.00, p = 0.318.
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I capture the growing conditions of a farmer by the number of banana growers in

my sample within a radius of 0.5 kilometers from the farmer’s dwelling as measured

by GPS,35 and the results in Table 2 show that this measure is an important deter-

minant of adoption. As all RIPAT farmers are interviewed and in some villages all

identified adopting farmers are interviewed, this measure almost corresponds to the

actual number of banana growers within a radius of half a kilometer. However, in the

villages where adoption is very wide spread so that the sample does not include all

adopting households in the village, it understates the number of adopters within the

radius. This is somewhat problematic since it will not capture the full effect of growing

conditions in these villages. To mitigate this problem, I could additionally control for

the historical rainfall within one square kilometer of the household,36 the distance from

the household to the nearest waterway37 and whether the household uses an irrigation

channel. However, I do not find any of these measures to be important for adoption

once the number of neighboring adopters is controlled for, neither does inclusion of

them affect the estimated network effects. Hence, I consider the number of adopters

within a small radius to be a good measure for the growing conditions of the farmer.

To ensure that institutional effects are not driving the results I show that the network

estimates are invariant to the inclusion of subvillage fixed effects. The fixed effects also

capture general equilibrium effects such as the effect of wide spread adoption in the

local market price of bananas.38

Another important correlated effect stems from the likely correlation of unobserved

individual characteristics within networks which are formed by individual choices.

Entrepreneurial farmers may first of all have larger networks and hence, be more likely

35The distance is calculated using the ’geodist’ package in Stata. The GPS measure is taken at the
household dwelling and not at the farmer’s plot(s), but this should not add too much noise as the
majority of households have plots that are contiguous to their dwelling.

36For historical rainfall I use interpolated data on yearly precipitation measured in mm from the pe-
riod 1950-2000 available from http://www.worldclim.org/ and link it to the households using GPS
coordinates.

37Data on waterways is downloaded from OpenStreetMap available from
http://download.geofabrik.de/osm/africa/ and the kilometer distance to household GPS points
is calculated using ArcGIS.

38However, it should be noted that the majority of farmers face periods of food insecurity and mainly
grow bananas for home consumption.
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to know adopting farmers. Thus, I control for network size in all regressions. In addi-

tion, an entrepreneurial farmer may choose to discuss farming issues with other farm-

ers who are themselves entrepreneurial. Hence, a correlation between their adoption

behavior may simply reflect that they are of the same type rather than being an in-

dication of social interaction effects. If eligibility into RIPAT had been randomized, I

could have used the random variation in the network of the non-eligible farmers to cir-

cumvent this problem (see e.g. Kremer & Miguel, 2007). But because participation in

RIPAT was voluntary I must address the potential correlation of unobservables within

the network. I do that by performing the following placebo study.

6.2.1 Placebo study

To examine if the strong correlation I find between adoption behavior and adopters in

network is driven by a correlation in unobservables I consider adoption of three other

crops: vegetables, sunflowers and sugarcane which are all profitable cash crops.

Cultivation of vegetables (e.g. onions, tomatoes) is very profitable but also requires

access to water and intensive seasonal labor input. Sunflowers can be grown under

rather dry conditions and the sunflower oil can be extracted from the seeds with a

simple hand press. Sugar cane is a perennial grass that can be grown under varying

conditions but access to irrigation water increases yields.39 If the profitability of ba-

nana cultivation dominates the profitability of vegetables, sunflowers and sugarcane

for all farmers then the placebo test has no bite. However, I would argue that this is not

the case. Farmers who have access to plenty of water would profit more from vegeta-

bles than bananas whereas it might be more beneficial to grow sunflowers for farmers

who have very limited access to water. I have chosen these three crops because their

profitability relative to banana cultivation varies across farmers conditional on their

available inputs. Banana cultivation is not very likely to dominate the cultivation of all

of these crops.

If the correlation between the number of banana growers in network and adoption

39Information on cultivation of vegetables, sunflowers and sugarcane is based on conversations with
Jens Vesterager, Programme Manager, Rockwool Foundation.
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of banana cultivation is driven by a correlation of entrepreneurship in the network I

would expect the number of banana growers in network to explain variation in the

adoption of vegetables, sunflowers and sugarcane. If knowing more RIPAT farmers is

simply a proxy for being more open to new ideas then it should be correlated with the

adoption of other crops too. However, if the RIPAT banana growers in the network

also grew vegetables a positive correlation would occur in the case of social interaction

within vegetables production. Hence, I control for the number of RIPAT banana grow-

ers in network who also grow the placebo crop. Since only 13 percent of the farmers

grow sunflowers and eight percent grow sugarcane there are several subvillages with

no variation in the adoption of the placebo crop which results in a fewer number of

observations.

Table 8 presents the estimates from logistic regressions of adoption of vegetables,

sunflowers and sugarcane, respectively, on the network variables and farmer and house-

hold characteristics. None of the network estimates are significantly different from zero

and they appear small in magnitude. These results show that the number of banana

growers in the network cannot explain adoption of any of the three placebo crops.

The lower number of observations in particular in column (2) and (3) raises the

question of whether the regressions have enough power to explain the variation in

adoption of sunflower and sugarcane. If the effects of the network variables are not

significantly different from zero simply due to large standard errors caused by smaller

sample sizes then the placebo test has no bite. Running the regressions without fixed

effects can serve a double purpose: First, it allows me to keep the full sample in the re-

gression to obtain smaller standard errors. Second, it allows me to calculate marginal

effects and thereby assess the magnitude of the network effects found on the adop-

tion of placebo crops. However, exploiting variation across subvillages may bias the

network estimates if bananas and placebo crops require the same growing conditions

which are correlated within subvillages, and if farmers generally discuss farming is-

sues with their neighbors. Table A.4 in Appendix shows the logit estimates and the

marginal effects for the network variables when subvillage fixed effects are excluded.
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In this specification, the adoption of sunflower is significantly correlated with the RI-

PAT network and the network size, however the marginal effects are miniscule com-

pared to those presented in Table 2. I conclude that the large network effects found

cannot be explained by a correlation in entrepreneurship within the networks of farm-

ers who adopt banana cultivation.

Entrepreneurship may not be the only unobserved factor which is correlated within

networks. It seems plausible that farmers who prefer a certain crop are more prone

to discuss farming issues with each other. Preferences for banana cultivation are most

likely captured by the indicator for traditional banana cultivation, but what about other

crops? If improved banana cultivation dominates the cultivation of beans, say, then the

adoption behavior among bean growers could be correlated, and this would cause a

spurious correlation between adoption of banana cultivation and adoption in the net-

work. I can investigate this for the farmers who adopt in the second half of 2009 or later

as I have data on the crops grown in 2009. I include indicator variables for the four most

popular crops (improved maize, traditional maize, beans and vegetables) to see if the

cultivation of any of these crops in 2009 is driving the subsequent adoption and hence

the network effects found. The estimates are shown in Table A.5 in Appendix. The

effects of the RIPAT and non-RIPAT banana network on adoption are unaffected when

I control for the cultivation of improved and traditional maize, beans and vegetables,

respectively.40 When subvillage fixed effects are included, the coefficients to these four

cultivation indicators are jointly insignificant.

This further supports the existence of network effects on adoption behavior since it

does not provide support for a potential correlation in unobserved farmer characteris-

tics within networks as the main driver of the network effects found.

6.3 Self-selection into RIPAT

The self-selection into RIPAT creates an additional concern. A farmer who knew many

farmers who signed up for RIPAT could have chosen not to sign up simply because

40Column (1) shows that the network effects for this subsample are slightly smaller compared to the
full sample estimates from Table 2, before controlling for the cultivation of the other crops.
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she knew that she would learn about the new technologies anyway. Since participa-

tion in RIPAT required weekly participation in meetings and joint cultivation of the

demonstration plot and hence, many work hours, it is a reasonable concern that some

farmers who were initially interested in improved banana cultivation could have cho-

sen not to sign up for RIPAT, because several of their network members had done so.

This corresponds to the idea of strategic delay derived from the target input model

where a farmer would choose to postpone adoption if she knows sufficiently many

adopters allowing her to learn from their experimentation without incurring the cost

of experimenting herself (Bandiera & Rasul, 2006). Similarly, a farmer could avoid the

opportunity cost of labor related to RIPAT participation if one or more network mem-

bers had chosen to participate from whom she could get improved banana seedlings

and instructions.

If I assume that these farmers would adopt banana cultivation relatively early since

they were interested in banana cultivation already at the start of the project, I can split

the sample of adopters into early and late adopters to see if there are differential effects.

If the network effects only persist among early adopters, they may simply be generated

by self-selection mechanisms into RIPAT.

I split the sample of adopting farmers on early and late adopters, where ’early

adopters’ planted their first improved bananas in 2006 or 2007. Within these two years

RIPAT farmers would have time to plant bananas on their own farm and the plants

would grow sufficiently to produce seedlings that can be shared in the network. I as-

sume that the type of farmers who self-select out of RIPAT because they have network

members in a RIPAT group would adopt as soon as possible and hence they would fall

in the category of early adopters. If they do believe initially that banana cultivation is

more profitable than other crops they grow, the optimal strategy would be to adopt as

soon as possible.

Table 9 show the logit estimates with and without farmer and household charac-

teristics and subvillage fixed effects for the two subsamples. There is indeed a larger

parameter estimate for the RIPAT network for early adopters but the parameter es-
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timate for the late adopters is very close to the full sample estimate and still highly

significant. So even though some of the network effects found in this paper may be ex-

plained by self-selection out of RIPAT groups, it appears that social learning also takes

place through the perception of the relative profitability of banana cultivation.

7 Conclusion

This paper studies how networks can relax constraints to adoption of a new agricul-

tural technology. The existing literature on networks and adoption of technologies fo-

cus on the provision of information through networks (Conley & Udry, 2010; Bandiera

& Rasul, 2006; Munshi, 2004; Foster & Rosenzweig, 1995). I contribute to this litera-

ture by showing that networks can affect the adoption of a new crop not only through

information provision, but also by providing necessary inputs for adoption.

I set up a theoretical model to illustrate how a farmer’s network can impact the

adoption decision through the two different channels. The model has equivalent im-

plications for both information and input provision through networks which calls for

caution when interpreting empirical estimates of network effects.

Empirically, I study the adoption of improved banana cultivation which has been

introduced by a project called RIPAT in Tanzania. I study how the adoption among

non-RIPAT farmers is affected by their self-reported links to RIPAT farmers and other

farmers and find that knowing at least one banana growing farmer increases the propen-

sity to adopt by 39 percentage points. I carefully investigate whether I can consider this

estimate to be a causal network effect and I find no evidence for contextual or corre-

lated effects confounding the network estimate. The estimated network effect is most

likely a compound effect of information and input provision through the network.

Though I cannot fully determine their separate channels, I document that the input

provision channel is playing an important role. A solidarity chain principle imbedded

in RIPAT obliges participants to pass on thrice as many improved banana seedlings as

they have received, and I find that 65 percent of the adopting farmers who knows a
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RIPAT farmer have received their first improved banana seedlings from him or her.

I furthermore add to the literature on networks and adoption by extending the typ-

ical measure of the egocentric network to also include network members who are not

growing the crop of interest. The estimates show that they have a negative impact

on the adoption decision. The model provides a theoretical explanation for this find-

ing: Network members growing other crops provide information or inputs that makes

other crops more attractive, reducing the relative profitability of the crop of interest.

For a given amount of land, the farmer is then less likely to adopt the crop of interest.

When the total network size is not controlled for in an adoption regression, the effect

of the network members who grow the crop of interest may be confounded.

Diffusion of knowledge in networks has received a lot of attention in the literature

and recent work by Banerjee et al. (2014) explores the policy question of whom to target

to increase the diffusion of knowledge. This is relevant for societies where information

flows are hampered by limited access to information technologies.

However, lack of access to information is not the only barrier to adoption of agricul-

tural technologies. In societies with poor infrastructure input markets suffer from high

transportation costs which can be a barrier to adoption even if the gross return is high

(Suri, 2011; Shiferaw et al., 2008). Hence, diffusion of agricultural inputs in networks

is a highly relevant topic to study in that context. To my knowledge, Emerick (2013)

provides the only empirical study of network trading of agricultural inputs. He finds

that input provision through networks is inefficient compared to door-to-door sales of

inputs as door-to-door sales lead to a larger degree of adoption in the context of a new

rice variety in India. However, the low road density in Sub-Saharan Africa may im-

pede such a market based input distribution due to high transportation costs. The first

best solution may be to increase the road density, but according to Spencer (1996) the

corresponding costs are so high that it is a more viable strategy to develop agricultural

technologies that rely on local input provision.41

This is one of the motivations for the solidarity chain principle implemented in

41The efficiency of road construction may have improved since the 1990s but poor infrastructure re-
mains an important challenge in Sub-Saharan Africa (Carruthers et al., 2009).
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RIPAT: When farmers are obliged to pass on improved banana seedlings it creates a

local supply of inputs that are necessary for adoption of the new technology. This

study documents that the project has successfully fostered diffusion of improved ba-

nana cultivation, and that input provision through networks has played an important

role. However, the design of the project does not allow me to assess the contribution of

the solidarity chain principle to the diffusion of technology. How to best design agri-

cultural projects to foster diffusion of new technologies remains an interesting topic

for future research. Not only diffusion of knowledge, but also access to inputs must be

addressed, and their separate contributions to the diffusion of new agricultural tech-

nologies should be assessed. More research is needed in order to understand when

and how network based approaches to the distribution of new inputs can improve on

the existing distribution systems.
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Figure 1: Diffusion of improved banana cultivation
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Figure 2: Network measures and sample share of adopting households

151



Tables

Table 1: Summary statistics

All Adopting Non-adopting P-value
Grew improved bananas in 2010 0.38 (0.49) 1.00 0.00
NETWORK VARIABLES

RIPAT banana growers in network 0.52 (0.91) 0.95 (1.10) 0.26 (0.64) 0.000
Non-RIPAT banana growers in network 0.32 (1.87) 0.52 (2.73) 0.20 (1.04) 0.056
Network size 2.83 (4.12) 2.95 (3.79) 2.76 (4.32) 0.613
FARMER CHARACTERISTICS

Farmer is female 0.22 (0.41) 0.23 (0.42) 0.22 (0.41) 0.736
Age of farmer 44.77 (15.54) 44.06 (13.31) 45.20 (16.76) 0.420
Farmer is Catholic 0.08 (0.28) 0.11 (0.32) 0.07 (0.25) 0.062
Farmer is Muslim 0.05 (0.22) 0.03 (0.16) 0.07 (0.25) 0.033
Farmer has other religion 0.25 (0.43) 0.25 (0.44) 0.25 (0.43) 0.859
Farmer can read 0.20 (0.40) 0.18 (0.38) 0.22 (0.41) 0.287
HOUSEHOLD CHARACTERISTICS

Highest education, less than primary 0.07 (0.25) 0.05 (0.22) 0.08 (0.27) 0.238
Highest education, more than primary 0.35 (0.48) 0.44 (0.50) 0.30 (0.46) 0.002
Household labor 2.54 (1.51) 2.84 (1.63) 2.35 (1.40) 0.000
Household head is widow(er) 0.09 (0.29) 0.06 (0.23) 0.11 (0.31) 0.040
Wealth (poverty score) 44.30 (15.14) 46.32 (14.77) 43.07 (15.26) 0.019
Acres of land 2006 4.21 (6.04) 4.12 (4.36) 4.27 (6.87) 0.780
Distance to nearest road, km 1.45 (1.22) 1.49 (1.26) 1.42 (1.20) 0.526
Participate in other project 0.24 (0.42) 0.28 (0.45) 0.21 (0.41) 0.068
Number of crops grown, 2010 3.96 (1.93) 4.44 (1.95) 3.67 (1.86) 0.000
HH grows/has grown traditional bananas 0.36 (0.48) 0.47 (0.50) 0.29 (0.45) 0.000
No. banana growers within radius of 0.5km 10.83 (8.37) 13.62 (8.61) 9.12 (7.76) 0.000
Observations 509 193 316

Notes: Sample means and standard deviations in parantheses for all farmers in the sample and for adopting
and non-adopting farmers, respectively. The last column presents p-values from double-sided t-tests of equal
means for adopting and non-adopting farmers.

152



Table 2: Adoption of improved banana cultivation

Logit estimates Marg.eff.
(1) (2) (3) (4) (5)

NETWORK VARIABLES

RIPAT banana growers in network 1.126∗∗∗ 1.105∗∗∗ 0.999∗∗∗ 0.989∗∗∗ 0.241∗∗∗

(0.14) (0.14) (0.17) (0.17)
Non-RIPAT banana growers in network 0.202∗∗ 0.210∗∗ 0.201∗∗ 0.203∗∗ 0.049∗∗

(0.10) (0.10) (0.10) (0.08)
Network size -0.124∗ -0.127 -0.163∗∗ -0.207∗∗∗ -0.040∗∗

(0.08) (0.08) (0.08) (0.06)
FARMER CHARACTERISTICS

Farmer is female 0.399 0.592∗∗ 0.581∗ 0.141∗∗

(0.29) (0.27) (0.35)
Age of farmer 0.058∗∗ 0.053 0.043 0.007

(0.03) (0.04) (0.05)
Age of farmer, sq./100 -0.062∗∗ -0.064∗ -0.053

(0.03) (0.04) (0.05)
Farmer is Catholic 0.835∗∗ 0.817∗∗ 0.880∗ 0.185∗∗

(0.41) (0.39) (0.45)
Farmer is Muslim -0.788 -0.211 -0.060 -0.052

(0.50) (0.53) (0.61)
Farmer has other religion 0.006 -0.055 -0.044 -0.014

(0.22) (0.28) (0.31)
Farmer can read -0.092 0.147 0.309 0.036

(0.29) (0.33) (0.39)
HOUSEHOLD CHARACTERISTICS

Highest education, less than primary 0.218 -0.109 0.053
(0.35) (0.66)

Highest education, more than primary 0.382 0.411 0.093
(0.26) (0.29)

Household labor 0.132 0.188∗ 0.032
(0.08) (0.10)

Household head is widow(er) -0.739 -0.585 -0.183
(0.49) (0.51)

Wealth (poverty score) 0.011 0.011 0.002
(0.01) (0.01)

Log of acres, 2006 -0.119 -0.127 -0.017
(0.19) (0.17)

Log distance to road 0.016 -0.103 0.002
(0.11) (0.14)

Participate in NGO project -0.057 0.113 -0.014
(0.24) (0.29)

Number of crops grown, 2010 0.176∗∗ 0.204∗∗∗ 0.044∗∗

(0.07) (0.07)
HH grows/has grown traditional bananas 0.689∗∗ 0.625∗∗ 0.165∗∗

(0.28) (0.26)
No. banana growers within radius of 0.5km 0.055∗∗∗ 0.033∗ 0.008∗∗∗

(0.02) (0.02)
Subvillage fixed effects No No No Yes No
Observations 509 509 509 503 509

Notes: The dependent variable is an indicator equal to one if the farmer grows improved bananas
in 2010. Logit coefficient estimates are presented in column (1)-(4), constant not reported. Standard
errors in parentheses are clustered at the subvillage level. Marginal effects presented in column (5) are
calculated as described in the text based on estimates from column (3). * denotes significance at 10 pct.,
** at 5 pct., and *** at 1 pct. level.
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Table 3: Extensive and intensive margin network

Logit estimates Marg.eff.
(1) (2) (3) (4) (5)

1+ banana grower in network 1.908∗∗∗ 1.890∗∗∗ 1.694∗∗∗ 1.495∗∗∗ 0.392∗∗∗

(0.26) (0.26) (0.29) (0.32)
2+ banana growers in network 0.248 0.231 0.496 0.659 0.078

(0.41) (0.41) (0.40) (0.43)
3+ banana growers in network 0.579 0.520 -0.182 -0.212 -0.027

(0.47) (0.49) (0.53) (0.64)
1+ non-RIPAT banana grower in network -0.384 -0.328 -0.061 -0.499 -0.011

(0.30) (0.31) (0.36) (0.43)
2+ non-RIPAT banana growers in network -0.934 -0.930 -1.440∗ -1.227 -0.294∗

(0.73) (0.72) (0.82) (0.88)
3+ non-RIPAT banana growers in network 1.189 1.353 2.027 1.847 0.387

(1.24) (1.20) (1.35) (1.23)
Network size -0.078 -0.081 -0.113∗ -0.123∗∗∗ -0.028∗

(0.06) (0.06) (0.07) (0.05)
Farmer characteristics No Yes Yes Yes Yes
Household characteristics No No Yes Yes Yes
Subvillage fixed effects No No No Yes No
Observations 509 509 509 503 509

Notes: The dependent variable is an indicator equal to one if the farmer grows improved bananas in 2010.
Logit coefficient estimates are presented in column (1)-(4), standard errors in parentheses are clustered at
the subvillage level. Column (5) presents marginal effects calculated as described in the text. * denotes
significance at 10 pct., ** at 5 pct., and *** at 1 pct. level.

Table 4: Where did the adopting farmers get the first banana seedlings?

Received seedling from

RIPAT RIPAT not Non- Other Total Obs.
Sample in network in network RIPAT
All adopting farmers 36.9% 29.4% 25.3% 8.4% 100% 193
Know 1+ RIPAT banana grower 65.4% 14.0% 15.9% 4.7% 100% 107
Know 1+ non-RIPAT banana grower 25.7% 25.7% 37.1% 11.5% 100% 35
Know both 52.9% 11.8% 29.4% 5.9% 100% 17

Notes: The numbers in the first five columns are percentages while the last column gives the num-
ber of observations for the given row. Percentages in each row sum to 100. The category "Other"
covers the implementing organization, a RIPAT group, or another NGO. The last row includes
adopting farmers who discuss farming issues with at least one RIPAT banana grower and at least
one non-RIPAT banana grower.
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Table 5: Receive first banana seedling from RIPAT farmer

Logit estimates Marg.eff.
(1) (2) (3) (4) (5)

PANEL A: MAIN SPECIFICATION

RIPAT banana growers in network 0.260∗∗ 0.265∗∗ 0.253∗∗ 0.101 0.036∗∗

(0.12) (0.12) (0.13) (0.20)
Non-RIPAT banana growers in network -0.028 -0.013 -0.074 -0.067 -0.010

(0.10) (0.10) (0.11) (0.14)
Network size 0.069 0.059 0.113 0.097 0.015

(0.08) (0.08) (0.10) (0.10)
PANEL B: EXTENSIVE AND INTENSIVE MARGIN

1+ RIPAT banana grower in network 1.651∗∗∗ 1.703∗∗∗ 1.668∗∗∗ 1.797∗∗∗ 0.192∗∗∗

(0.35) (0.39) (0.40) (0.55)
2+ RIPAT banana growers in network -1.114∗ -1.131∗ -1.162∗ -1.287∗∗ -0.109∗

(0.66) (0.64) (0.63) (0.65)
3+ RIPAT banana growers in network 0.548 0.584 0.764 0.341 0.082

(0.77) (0.72) (0.63) (0.81)
1+ non-RIPAT banana grower in network -0.858∗∗ -0.735∗ -0.957∗∗ -1.312∗∗ -0.147∗∗

(0.37) (0.41) (0.42) (0.62)
2+ non-RIPAT banana growers in network 0.302 0.285 0.154 0.134 0.029

(1.28) (1.20) (1.41) (1.27)
3+ non-RIPAT banana growers in network 0.506 0.683 0.798 1.456 0.117

(2.57) (2.52) (2.57) (1.91)
Network size 0.063 0.047 0.092 0.040 0.011

(0.07) (0.07) (0.08) (0.09)
Farmer characteristics No Yes Yes Yes Yes
Household characteristics No No Yes Yes Yes
Subvillage fixed effects No No No Yes No
Observations 193 193 193 172 193

Notes: The dependent variable is an indicator equal to one if the farmer received the first banana
seedlings from a RIPAT farmer. Only the sample of adopting farmers is used to produce the esti-
mates. Panel A presents network estimates based on the main specification as presented in Table
2. Panel B presents the extensive and intensive margin estimates as presented in Table 3. Logit
coefficient estimates are presented in column (1)-(4), standard errors in parentheses are clustered
at subvillage level. Marginal effects presented in column (5) are calculated as described in the text
based on estimates from column (3). * denotes significance at 10 pct., ** at 5 pct., and *** at 1 pct.
level.
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Table 6: Reasons for not adopting improved bananas

Why have you not planted any improved bananas? percent
Water shortage 39.2
I don’t have enough land 17.4
I do not know the production techniques 13.3
Never got seedlings 13.0
The work is too hard 10.1
Weather is not suitable 5.7
I have never grown bananas 4.4
My soil is inadequate for banana cultivation 4.1
I prefer growing traditional bananas 3.2
I think it will not be remunerative 0.6
Other 0.6
Observations 316

Notes: Multiple answers were possible so the percentages do not sum
to 100.

156



Table 7: Adoption of improved banana cultivation, split on characteristics of RIPAT
network

Wealth Land Education Gender Age
(1) (2) (3) (4) (5)

Poor RIPAT banana growers 1.144∗∗∗

(0.25)
Rich RIPAT banana growers 0.842∗∗∗

(0.23)
RIPAT banana growers w. small farm 1.255∗∗∗

(0.24)
RIPAT banana growers w. large farm 0.719∗∗∗

(0.24)
RIPAT banana growers with low edu. 0.474

(0.36)
RIPAT banana growers with medium edu. 1.184∗∗∗

(0.22)
RIPAT banana growers with high edu. 0.926

(0.75)
Male RIPAT banana growers 1.066∗∗∗

(0.20)
Female RIPAT banana growers 0.764∗∗

(0.31)
Young RIPAT banana growers 1.000∗∗∗

(0.26)
Old RIPAT banana growers 1.009∗∗∗

(0.26)
Non-RIPAT banana growers in network 0.205∗∗ 0.215∗∗ 0.208∗∗ 0.206∗∗ 0.214∗∗

(0.09) (0.09) (0.09) (0.09) (0.09)
Network size -0.204∗∗∗ -0.195∗∗∗ -0.210∗∗∗ -0.198∗∗∗ -0.204∗∗∗

(0.06) (0.06) (0.06) (0.06) (0.06)
Observations 503 503 503 503 503
χ2 test of equalitya 0.84 2.56 3.00 0.71 0.00
P-value 0.360 0.109 0.223 0.398 0.981

Notes: The dependent variable is an indicator equal to one if the farmer grows improved bananas in
2010. Conditional logit coefficient estimates controlling for farmer and household characteristics and
accounting for subvillage fixed effects. Standard errors in parentheses are clustered at the subvillage
level. * denotes significance at 10 pct., ** at 5 pct., and *** at 1 pct. level.
a The following is tested: Column (1): Poor = rich (df = 1), Column (2): small = large (df = 1), Column (3):
Low edu. = medium edu. = high edu. (df = 2), Column (4): Male = female (df = 1), Column (5): Young =
old (df = 1).
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Table 8: Placebo study results, adoption of vegetables, sunflowers and sugarcane

(1) (2) (3)
Vegetables Sunflower Sugarcane

RIPAT banana growers in network 0.261 0.222 -0.030
(0.26) (0.20) (0.25)

Non-RIPAT banana growers in network 0.139 -0.003 -0.064
(0.19) (0.15) (0.19)

Network size 0.047 0.024 -0.031
(0.03) (0.08) (0.10)

RIPAT growing vegetables -0.169
(0.34)

RIPAT growing sunflowers 0.295
(0.58)

RIPAT growing sugarcanes 0.763
(0.97)

Observations 487 337 305
Mean of dependent variable 0.489 0.134 0.081
Std.dev. of dependent variable (0.500) (0.341) (0.272)

Notes: The dependent variables are a indicators equal to one if the farmer grows veg-
etables (column 1), sunflowers (column 2) and sugarcane (column 3) in 2010. Condi-
tional logit coefficient estimates accounting for subvillage fixed effects. Standard errors
in parentheses are clustered at the subvillage level. Farmer and household characteris-
tics are included in all specifications, but in column (2) religion dummies are excluded
as Catholic dummy predicts non-adoption perfectly leading to drop of 43 observations.
Results are robust to inclusion of religion dummies. The number of crops grown in 2010
is subtracted traditional and improved bananas and the placebo crop. Due to lack of
variation in adoption within some subvillages, the number of observations is lower than
509.

158



Table 9: Adoption of banana cultivation, early and late adopter subsamples

Early adopters Late adopters
(1) (2) (3) (4) (5) (6)

RIPAT network 1.497∗∗∗ 1.393∗∗∗ 1.394∗∗∗ 1.049∗∗∗ 0.964∗∗∗ 0.903∗∗∗

(0.24) (0.22) (0.32) (0.13) (0.17) (0.18)
Non-RIPAT network 0.386∗∗ 0.401∗∗ 0.318 0.195∗ 0.186∗ 0.191∗∗

(0.19) (0.18) (0.30) (0.10) (0.10) (0.09)
Network size -0.399∗∗ -0.504∗∗∗ -0.536∗∗∗ -0.108 -0.136∗ -0.180∗∗∗

(0.16) (0.16) (0.17) (0.07) (0.07) (0.06)
Farmer characteristics No Yes Yes No Yes Yes
Household characteristics No Yes Yes No Yes Yes
Subvillage fixed effects No No Yes No No Yes
Observations 358 358 256 464 464 458

Notes: The dependent variable is an indicator equal to one if the farmer grows improved
bananas in 2010. Logit coefficient estimates, standard errors in parentheses clustered at the
subvillage level. Column (1)-(3) is based on data from non-adopting households and house-
holds who adopted in 2006 or 2007. Column (4)-(6) is based on data non-adopting households
and households who adopted in 2008 or later. * denotes significance at 10 pct., ** at 5 pct., and
*** at 1 pct. level.
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Appendix

A Derivation of mean-variance expected utility

To see how the expected utility E [U(y)] = E
[
−e−λ((1−ω)ya+ωyb)

]
can be rewritten to

depend on the expected mean and variance of yb, I first write the expected utility as

E [U(y)] =
−e−λ(1−ω)ya

σ
√

2π

ˆ ∞

−∞
−e−λωyb e−

(yb−µ)2

2σ2 dyb (A.1)

I rewrite the exponent within the integral into two terms where one does not de-

pend on yb:

λωyb +
(yb − µ)2

2σ2 =
(yb − µ + ωλσ2)2

2σ2 + λ

(
µω− ω2λσ2

2

)
Inserting this exponent in equation A.1 and rearranging gives

E [U(y)] =
−e−λ((1−ω)ya+µω− 1

2 ω2λσ2)

σ
√

2π

ˆ ∞

−∞
e−

(yb−µ+ωλσ2)2

2σ2 dyb

Now, I exploit that for all µ̃ (including µ̃ = µ−ωλσ2)

1
σ
√

2π

ˆ ∞

−∞
e−

(yb−µ̃)2

2σ2 dyb = 1

because the left hand side is just the total area under the density function when the

mean is µ̃ and the standard deviation is σ2. This implies that the expression for the

expected utility simplifies to

E [U(y)] = −e−λ((1−ω)ya+µω− 1
2 ω2λσ2)
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B Choice-based sampling in a logit model

This section shows that the logit model provides consistent estimates of the parameters

in the case of choice-based sampling.42

Assume that the probability of adoption in the population, P̃(ai = 1), is logistically

distributed and depends on a range of farmer and household characteristics, Zi and

subvillage fixed effects, αs:

P̃(ai = 1|Zi, αs) = Λ(θZi + αs) =
exp(θZi + αs)

1 + exp(θZi + αs)
(B.1)

For simplicity assume that all the covariates are discrete, such that I can consider

probabilities instead of distributions. The result generalizes to continuous covariates.

The probability of adoption in the sample, P(ai = 1), conditional on covariates and

subvillage fixed effects can be rewritten using Bayes rule:

P(ai = 1|Zi, αs) =
P(ai = 1, Zi, αs)

P(Zi, αs)

I now use that the sample of adopting farmers is a random sample such that the

probability of the covariates given that the farmer is adopting is the same in the sam-

ple and in the population, P(Zi, αs|ai = 1) = P̃(Zi, αs|ai = 1), and correspondingly

for non-adopting farmers. In addition, I use the law of iterated expectations in the

denominator:

P(ai = 1|Zi, αs) =
P̃(Zi, αs|ai = 1) · P(ai = 1)

∑ P̃(Zi, αs|ai = 0) · P(ai = 0) + ∑ P̃(Zi, αs|ai = 1) · P(ai = 1)
(B.2)

Applying Bayes rule and using equation B.1, I can rewrite:

P̃(Zi, αs|ai = 1) =
P̃(Zi, αs, ai = 1)

P̃(ai = 1)
=

P̃(Zi, αs) ·Λ(θZi + αs)

P̃(ai = 1)
(B.3)

42I would like to thank Professor Bo Honoré, Princeton University, for indispensable help with the
following derivation.
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Correspondingly,

P̃(Zi, αs|ai = 0) =
P̃(Zi, αs) · (1−Λ(θZi + αs))

P̃(ai = 0)
(B.4)

I now insert equation B.3 and B.4 in equation B.2:

P(ai = 1|Zi, αs) =

P(ai=1)
P̃(ai=1) · P̃(Zi, αs) ·Λ(θZi + αs)

P(ai=0)
P̃(ai=0) P̃(Zi, αs) · (1−Λ(θZi + αs)) +

P(ai=1)
P̃(ai=1) · P̃(Zi, αs) ·Λ(θZi + αs)

I divide numerator and denominator with P̃(Zi, αs) and insert the definition of the

logistic distribution:

P(ai = 1|Zi, αs) =

P(ai=1)
P̃(ai=1) ·

exp(θZi+αs)
1+exp(θZi+αs)

P(ai=0)
P̃(ai=0) ·

1
1+exp(θZi+αs)

+ P(ai=1)
P̃(ai=1) ·

exp(θZi+αs)
1+exp(θZi+αs)

Finally, I divide both numerator and denominator with the first term of the denom-

inator and rearrange:

P(ai = 1|Zi, αs) =
exp(θZi + αs + ln(c))

1 + exp(θZi + αs + ln(c))
, c ≡

P(ai=1)/P̃(ai=1)

P(ai=0)/P̃(ai=0)
(B.5)

Comparing the probability of adoption in the sample (equation B.5) with the prob-

ability of adoption in the population (equation B.1), it is evident that the choice-based

sampling only affects the estimation of the subvillage fixed effects (or the constant in

the case of no fixed effects) and hence, the estimated parameters of the covariates (θ)

are unaffected by the sampling method.

C Correction of the constant term for calculation of marginal

effects

In order to calculate marginal effects I need to correct the constant term with the factor

ln(c).
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ln(c) = ln
(

P(ai=1)/P̃(ai=1)

P(ai=0)/P̃(ai=0)

)
= ln (P(ai = 1)) + ln

(
P̃(ai = 0)

)
− ln

(
P̃(ai = 1)

)
− ln (P(ai = 0))

The population and sample probability differ due to non-random sampling. I will

simply estimate the sample probabilities by sample proportions:

• P(ai = 1) is equal to the share of adopting farmers in the final sample of nonRI-

PAT farmers

• P(ai = 0) is equal to the share of non-adopting farmers in the final sample of

nonRIPAT farmers

The population probabilities are more complicated to calculate due to a complex sam-

pling design. It is briefly described in the following, for more details see Appendix A

in Larsen (2012).

We drew a random sample of size R in each village among which the village leader

identified the adopting households. Let Li be the indicator for being identified as

adopting household by the village leader. This is however not a perfect measure of

adoption, P(Li = 1) 6= P(ai = 1). Within the random sample we only interviewed a

stratified subsample, which was stratified to achieve the same share of adopting and

non-adopting farmers based on village leader identification. The population probabil-

ity of being an adopting household can be calculated as:

P̃ (ai = 1) = P (ai = 1|Li = 1) · P (Li = 1) + P (ai = 1|Li = 0) · P (Li = 0) (C.1)

All elements can be estimated by sample shares:

• P̂ (ai = 1|Li = 1): the share of adopting households in the final random sample

among those identified as adopting by the village leader
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• P̂ (ai = 1|Li = 0): the share of adopting households in the final random sample

among those identified as non-adopting by the village leader

• P̂ (Li = 1): the share of adopting households as identified by the village leader in

the random sample

• P̂ (Li = 0): the share of non-adopting households as identified by the village

leader in the random sample

These sample shares are then inserted in equation C.1 to calculate the population

probability of being an adopting household. The probability of being a non-adopting

household can be calculated in a corresponding way.
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D Appendix tables

Table A.1: OLS results with wild bootstrap-t p-values in square brackets

(1) (2) (3)
PANEL A: Linear network variables
RIPAT banana growers in network 0.192 0.192 0.149

(0.030) (0.031) (0.028)
[0.000] [0.000] [0.000]

Non-RIPAT banana growers in network 0.041 0.042 0.026
(0.015) (0.015) (0.015)
[0.038] [0.030] [0.302]

Network size -0.024 -0.024 -0.023
(0.008) (0.008) (0.007)
[0.002] [0.002] [0.002]

PANEL B: Extensive and intensive margin
1+ banana grower in network 0.333 0.331 0.260

(0.070) (0.070) (0.070)
[0.000] [0.000] [0.002]

2+ banana growers in network 0.044 0.043 0.061
(0.099) (0.097) (0.098)

3+ banana growers in network 0.081 0.087 -0.032
(0.190) (0.187) (0.175)

1+ non-RIPAT banana grower network -0.113 -0.106 -0.075
(0.099) (0.099) (0.093)
[0.286] [0.330] [0.454]

2+ non-RIPAT banana growers network 0.037 0.030 -0.066
(0.131) (0.127) (0.121)

3+ non-RIPAT banana growers network -0.094 -0.088 0.033
(0.212) (0.217) (0.206)

Network size -0.022 -0.022 -0.022
(0.008) (0.008) (0.008)
[0.002] [0.002] [0.002]

Farmer characteristics No Yes Yes
Household characteristics No No Yes
Observations 509 509 509

Notes: The dependent variable is an indicator equal to one if the farmer
grows improved bananas in 2010. OLS estimates, standard errors in paren-
theses clustered at the subvillage level, wild bootstrap-t p-values are pre-
sented in square brackets calculated as suggested by Cameron et al. (2008).
Observations are weighted with inverse sampling probability weights.

165



Table A.2: Network estimates using random sample only

Logit estimates Marg.eff.
(1) (2) (3) (4) (5)

PANEL A: MAIN SPECIFICATION

RIPAT banana growers in network 1.481∗∗∗ 1.546∗∗∗ 1.298∗∗∗ 1.291∗∗∗ 0.279∗∗∗

(0.22) (0.23) (0.27) (0.32)
Non-RIPAT banana growers in network 0.356∗∗ 0.347∗∗ 0.273∗ 0.186 0.056∗

(0.15) (0.14) (0.16) (0.22)
Network size -0.358∗∗∗ -0.365∗∗∗ -0.392∗∗∗ -0.397∗∗∗ -0.078∗∗∗

(0.14) (0.13) (0.14) (0.11)
PANEL B: EXTENSIVE AND INTENSIVE MARGIN

1+ banana grower in network 2.645∗∗∗ 2.697∗∗∗ 2.322∗∗∗ 1.980∗∗∗ 0.490∗∗∗

(0.47) (0.47) (0.55) (0.50)
2+ banana growers in network 0.273 0.416 0.561 0.763 0.120

(0.53) (0.59) (0.63) (0.67)
3+ banana growers in network 0.655 0.582 -0.680 -0.460 -0.149

(1.01) (0.97) (1.29) (1.21)
1+ non-RIPAT banana grower in network -0.824 -0.883∗ -0.547 -0.939 -0.132

(0.53) (0.53) (0.61) (0.66)
2+ non-RIPAT banana growers in network 0.015 -0.007 -0.146 0.064 -0.034

(0.90) (0.90) (1.23) (1.21)
Network size -0.399∗∗∗ -0.404∗∗∗ -0.405∗∗∗ -0.407∗∗∗ -0.077∗∗∗

(0.14) (0.14) (0.14) (0.11)
Farmer characteristics No Yes Yes Yes Yes
Household characteristics No No Yes Yes Yes
Subvillage fixed effects No No No Yes No
Observations 356 356 356 309 356

Notes: The dependent variable is an indicator equal to one if the farmer grows improved bananas in
2010. Only the random sample of farmers is used to produce the estimates. Panel A presents network
estimates based on the main specification as presented in Table 2. Panel B presents the extensive and
intensive margin estimates as presented in Table 3, however as only 4 farmers know 3 or more non-
RIPAT banana growers in the random sample, this variable is excluded. Logit coefficient estimates are
presented in column (1)-(4), standard errors in parentheses are clustered at subvillage level. Marginal
effects presented in column (5) are calculated as described in the text based on estimates from column
(3). * denotes significance at 10 pct., ** at 5 pct., and *** at 1 pct. level.
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Table A.3: Having a banana plantation with ten or more plants

Logit estimates Marg.eff.
(1) (2) (3) (4) (5)

RIPAT banana growers in network 1.093∗∗∗ 1.061∗∗∗ 0.985∗∗∗ 0.881∗∗∗ 0.235∗∗∗

(0.15) (0.16) (0.19) (0.17)
Non-RIPAT banana growers in network 0.272∗∗ 0.280∗∗ 0.310∗∗∗ 0.308∗∗∗ 0.076∗∗∗

(0.11) (0.11) (0.10) (0.10)
Network size -0.163 -0.176∗ -0.206∗∗ -0.255∗∗∗ -0.051∗∗

(0.11) (0.10) (0.09) (0.07)
Farmer characteristics No Yes Yes Yes Yes
Household characteristics No No Yes Yes Yes
Subvillage fixed effects No No No Yes No
Observations 509 509 509 496 509

Notes: Dependent variable is an indicator variable equal to one if the farmer has a banana planta-
tion with ten banana plants or more. Logit coefficient estimates in column (1)-(4), standard errors in
parentheses, clustered at subvillage level. Marginal effects presented in column (5) are calculated
as described in the text based on estimates from column (3). * denotes significance at 10 pct., ** at
5 pct., and *** at 1 pct. level.

Table A.4: Placebo results without subvillage fixed effects and with marginal effects

Vegetables Sunflower Sugar cane

(1) (2) (3) (4) (5) (6)
logit marg.eff. logit marg.eff. logit marg.eff.

RIPAT banana growers in network -0.046 -0.010 0.263∗∗ 0.034∗∗ 0.115 0.008
(0.25) (0.10) (0.14)

Non-RIPAT banana growers in network 0.131 0.028 -0.036 -0.005 -0.007 -0.000
(0.15) (0.09) (0.08)

Network size 0.027 0.006 0.049∗∗ 0.006∗∗ -0.060 -0.004
(0.03) (0.02) (0.09)

RIPAT growing vegetables 0.401 0.083
(0.33)

RIPAT growing sunflowers 0.758∗∗ 0.123∗∗

(0.38)
RIPAT growing sugarcanes 1.628∗∗∗ 0.216∗∗∗

(0.59)
Observations 509 509 509
Mean of dependent variable 0.489 0.134 0.081
Std.dev. of dependent variable 0.500 0.341 0.272

Notes: The dependent variables are a indicators equal to one if the farmer grows vegetables (column 1-2),
sunflowers (column 3-4) and sugarcane (column 5-6) in 2010. Conditional logit coefficient estimates are
presented in column (1), (3) and (5), standard errors in parentheses are clustered at the subvillage level.
The remaining columns present marginal effects calculated at the sample mean. Farmer and household
characteristics are included in all specifications, but in column (3)-(4) religion dummies are excluded as
Catholic dummy predicts non-adoption perfectly leading to drop of 43 observations. The number of crops
grown in 2010 is subtracted traditional and improved bananas and the placebo crop. * denotes significance
at 10 pct., ** at 5 pct., and *** at 1 pct. level.
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Table A.5: Adoption of banana cultivation in second half of 2009 or later, controlling
for other crops grown in 2009

Logit estimates Marg.eff.
(1) (2) (3) (4) (5) (6)

RIPAT banana growers in network 0.783∗∗∗ 0.863∗∗∗ 0.873∗∗∗ 0.855∗∗∗ 0.807∗∗∗ 0.183∗∗∗

(0.23) (0.20) (0.19) (0.22) (0.23)
Non-RIPAT banana growers in network 0.123 0.134 0.130 0.118 0.128 0.025

(0.11) (0.11) (0.11) (0.12) (0.11)
Network size -0.120∗ -0.076 -0.074 -0.088 -0.129∗ -0.018

(0.07) (0.09) (0.08) (0.09) (0.07)
Grows improved maize in 2009 0.233 0.296 0.125 0.109 0.026

(0.29) (0.30) (0.36) (0.42)
Grows traditional maize in 2009 -0.060 -0.094 -0.174 0.104 -0.037

(0.33) (0.34) (0.35) (0.41)
Grows beans in 2009 0.853∗∗ 0.828∗∗ 0.929∗∗ 0.768 0.168∗∗

(0.41) (0.40) (0.40) (0.50)
Grows vegetables in 2009 0.233 0.283 -0.086 -0.243 -0.018

(0.28) (0.27) (0.35) (0.40)
Farmer char. Yes No Yes Yes Yes Yes
Household char. Yes No No Yes Yes Yes
Subvillage fixed effects Yes No No No Yes No
Observations 318 392 392 392 318 392
P-value (testing other crops = 0) 0.045 0.015 0.068 0.587

Notes: The dependent variable is an indicator equal to one if the farmer grows improved bananas in 2010.
Farmers who planted bananas before the second half of 2009 are exluded from the sample. Column (1)
provides logit estimates using the same specification as column (4) in Table 2 on this subsample. Column
(2)-(5) provides logit estimates while column (6) presents marginal effects based on column (4) estimates.
Standard errors in parentheses are clustered at the subvillage level. The bottom row presents p-values from
χ2 tests of joint insignificance of the coefficients to the four other crops (improved and traditional maize,
beans and vegetables). * denotes significance at 10 pct., ** at 5 pct., and *** at 1 pct. level.
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