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Summary

This dissertation is comprised of three self-contained papers, each of which can be read

separately. All three chapters are concerned with the same topic, though, namely the ap-

plication of regime switching models to time series of macroeconomic or financial data.

The overall aim is to narrow the gap between theoretically developed multivariate regime

switching time series models and the application to data. It is often documented that

relationships between economic variables appear non-linear or characterized by regime

switching behavior, e.g., they depend on the state of the business cycle. In addition, many

of these variables need to be modeled simultaneously to account for all dynamic effects.

Chapter 1 and 3 include empirical applications that account for these two aspects by

combining regime switching behavior with the cointegrated vector autoregressive model

(CVAR) of Johansen (1996) and Juselius (2006). Estimation of such models is, however,

non-standard and often possess serious problems to the researcher. Chapter 2, therefore,

concerns theoretical and practical details about estimation and identification of smooth

regime switching models. The parameter that determines the speed of transition between

the regimes of the popular logistic smooth transition autoregressive (LSTAR) model is par-

ticular difficult to identify, see Chan and Tong (1986) and Teräsvirta (1994), and chapter

2 analyzes the consequences hereof and suggests useful tools to improve an econometric

analysis.

Chapter 1, “Okun’s Law with Non-Linear Dynamics - a smooth transition VECM ap-

plied to the U.S. economy”, investigates regime switching behavior in the Okun’s law re-

lationship. Okun’s law is a macroeconomic relationship relating the activity in the goods

market to the activity in the labor market. The variables of the unemployment rate and

output are defined as gap variables where the individual trends are deterministic and esti-

mated simultaneously with the coefficients of the vector error correction model (VECM).

Okun’s law is then defined as a linear cointegration relationship with non-linear short-run

dynamics. This specification allows for the well-known fact of asymmetry in the steepness

of the unemployment rate, see, e.g., Neftci (1984). The relationship is analyzed by means
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of a smooth transition VECM (STVECM). The model is estimated by maximum likelihood

but is non-standard due to the transition function and its parameters, and the important

test of linearity is carried out using a recent proposed sup-LR test of Kristensen and Rah-

bek (2013). The regimes of the STVECM overlap with those of the National Bureau for

Economic Research business cycle indicator and can be interpreted as a recession regime

and an expansion regime. The estimated threshold implies that when output falls by more

than 0.26% in the previous quarter, the model enters the recessionary regime. The dynam-

ics of the two regimes differ significantly because of the large increases in the unemploy-

ment rate during recessions which the model approximates by an explosive root. Okun’s

coefficient is estimated to −0.28 and thereby close to the −1/3 rule of thumb benchmark

originally suggested by Arthur Okun in 1962.

Chapter 2, “Smooth or Non-Smooth Regime Switching Models” (joint with Emil Nejst-

gaard), analyzes the problem of selecting between regime switching models with discrete

and smooth regime switching. Regime switching models characterized by smooth tran-

sitions only differ from discrete regime switching models by the speed of transition pa-

rameter. Thus, estimation and identification of this parameter is essential not only for

economic interpretation but also for model selection. Nevertheless, the identification

problem and its consequences for estimation have received little attention in the LSTAR

literature. We show that the original parametrization of the speed of transition param-

eter is problematic as the likelihood function is characterized by large flat areas caused

by all derivatives approaching zero with faster speed of transition. This implies that the

magnitude of the estimator may depend on the arbitrary chosen stopping criteria of the

numerical optimizer. To circumvent this problem, we propose a reparametrization of the

LSTAR model. The reparametrization maps the parameter space of the original speed of

transition parameter into a much smaller interval which facilitates identifying the global

maximum of the likelihood function as well as numerical optimization. We then show

that the threshold autoregressive model can be the global maximum of a LSTAR likelihood

function, while it, by construction, is always at least a local maximum. Instead of relying

solely on economic theory when justifying the additional parameter of the LSTAR model,

we show that information criteria provide a model selection tool that can be applied if the

researcher wishes to comment on the speed of transition. We illustrate the benefits of the

new parametrization and the model selection procedure with data from two published

applications. The new parametrization provides general insights on the shape of the like-

lihood function in directions of the two parameters of the transition function that can be

generalized to a broad range of other models within the smooth switching literature.
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Chapter 3, “A Structural Analysis of the Convenience Yield on U.S. Treasury Bonds”, an-

alyzes the dynamics of the convenience yield on U.S. Treasury bonds using annual ob-

servations from 1919-2008. The convenience yield arises because of a special clientele

demand for Treasury bonds as they offer extreme liquidity and safety, attributes valuable

for, e.g., foreign central banks and insurance companies. This demand suggests an in-

verse relationship between the supply of Treasury bonds and the convenience yield, mea-

sured by the spread between yields on corporate bonds and Treasury bonds, such that

a lower supply is associated with a larger convenience yield. We model both the long-

run and short-run dynamics of the persistent variables measuring Treasury supply and

convenience yield in VECM. The long-run relationship is negative reflecting a downward-

sloping demand function as expected. Yet, this relationship implies that a fall in Treasury

supply has adverse economic effects because the associated increase in the convenience

yield reflects a muted transmission mechanism to the private sector. The paper empha-

sizes, however, that this downward-sloping demand function can only be interpreted as

a long-run demand relationship. In the short-run, the demand function has a positive

slope or is at best flat. This short-run relationship is identified by constructing impulse re-

sponses from a just-identified structural VECM. When extending the model to separate the

convenience yield into a liquidity premium and safety premium, the safety premium turns

out to be the driving factor of the short-run positive relationship. The safety premium is

reduced on impact and the first two years after a negative shock to the supply of Treasury

bonds, before turning positive and raised in accordance with the long-run negative rela-

tionship. The results are robust to a potential kink in the demand relation estimated by a

threshold VECM. Hence, the economic effects following a fall in Treasury supply may not

be as adverse as first thought.
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Resumé

Denne afhandling består af tre selvstændige papirer, som hver især kan læses separat. Alle

tre kapitler beskæftiger sig dog med det samme overordnede emne: Anvendelsen af re-

gimeskiftmodeller på tidsrækkedata fra makroøkonomiske eller finansielle variable. Det

overordnede formål er at indsnævre kløften mellem teoretisk udviklede multivariate regi-

meskiftmodeller for tidsrækkedata og anvendelser på økonomisk data. Det er ofte doku-

menteret, at relationer mellem økonomiske variabler fremstår som ikke-lineære. Fx æn-

drer mange relationer sig i takt med konjunkturudviklingen. Desuden skal flere af disse

variabler modelleres simultant for at tage højde for alle dynamiske effekter. Kapitel 1 og

3 omfatter empiriske applikationer, der kombinerer regimeskift-adfærd og den kointegre-

rede VAR model af Johansen (1996) og Juselius (2006). Kapitel 2 omhandler teoretiske og

praktiske omstændigheder omkring estimation og identifikation af den parameter, der be-

stemmer hastigheden af transitionen mellem regimerne i den populære logistic smooth

transition autoregressive (LSTAR) model , jf. Chan and Tong (1986) og Teräsvirta (1994).

Kapitel 1, “Okun’s Law with Non-Linear Dynamics - a smooth transition VECM ap-

plied to the U.S. economy”, undersøger, hvorvidt der er regimeskift-adfærd i Okuns lov,

som stammer fra Okun (1962). Okuns lov er et makroøkonomisk forhold, der relaterer ak-

tiviteten i økonomien til aktiviteten på arbejdsmarkedet. Arbejdsløshedsraten og output

defineres som gap variable, hvor den underliggende trendudvikling er deterministisk og

estimeres simultant med koefficienterne i den kointegrerede VAR model. Okuns lov de-

fineres som en lineær kointegrationsrelation med ikke-lineær kortsigtsdynamik. Denne

specifikation tillader for det velkendte faktum, at der er asymmetri i ændringerne i ar-

bejdsløshedsraten, se fx Neftci (1984). Forholdet analyseres ved hjælp af en smooth tran-

sition vector error correction model (STVECM). Modellen estimeres med maximum like-

lihood men er ikke-standard på grund af transitionsfunktionen og dens parametre. Det

afgørende test for linearitet foretages ved hjælp af et nyligt foreslået sup-LR test af Kristen-

sen and Rahbek (2013). Regimerne i den estimerede STVECM overlapper med National

Bureau for Economic Research konjunkturindikatoren og kan tolkes som henholdsvis et
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recessionsregime og et ekspansionsregime. Den estimerede grænseværdi for regimeskift

indebærer, at når output falder med mere end 0,26% i det foregående kvartal, indtræder

modellen i recessionsregimet. Dynamikken i de to regimer adskiller sig væsentligt og skyl-

des, at modellen beskriver de store stigninger i arbejdsløshedsraten under lavkonjunktu-

rer ved hjælp af en eksplosiv rod. Okuns koefficient estimeres til −0,28 og dermed tæt på

det −1/3 benchmark, som oprindeligt blev foreslået af Arthur Okun i 1962.

Kapitel 2, “Smooth or Non-Smooth Regime Switching Models " (skrevet i samarbejde

med Emil Nejstgaard), analyserer problemet med at vælge mellem regimeskiftmodeller

med diskret og kontinuert regimeskift. Regimeskiftmodeller karakteriseret ved kontinuer-

te regimeskift adskiller sig kun fra diskrete regimeskiftmodeller i form af en hastighedspa-

rameter, der bestemmer hastigheden af regimeskiftene. Derfor er estimation og identifi-

kation af denne parameter afgørende ikke blot for den økonomiske fortolkning men også

for valg af model. Ikke desto mindre har identifikationsproblemet og dets konsekvenser

for estimation fået meget lidt opmærksomhed i litteraturen. Vi viser, at den oprindelige

parametrisering af hastighedsparameteren ikke er hensigtsmæssig, da likelihoodfunktio-

nen er karakteriseret ved store flade områder forårsaget af, at alle afledte af funktionen går

mod nul med hurtigere hastighed. Dette indebærer, at størrelsen af estimatoren kan af-

hænge af de vilkårligt valgte stoppekriterier for den numeriske optimeringsalgoritme. For

at omgås dette problem, foreslår vi en reparametrisering af LSTAR modellen. Reparametri-

seringen afbilder parameterrummet af den oprindelige hastighedsparameter til et meget

mindre interval, som letter identifikationen af det globale maksimum af likelihoodfunk-

tionen samt numerisk optimering. Vi viser, at threshold autoregressive (TAR) modellen

med diskrete regimeskift kan være det globale maksimum på en LSTAR likelihoodfunk-

tion, mens det per konstruktion altid er mindst et lokalt maksimum. I stedet for udeluk-

kende at skele til økonomisk teori når den ekstra parameter i LSTAR modellen skal ret-

færdiggøres, viser vi, at informationskriterier kan bruges til vælge mellem en LSTAR og en

TAR model, hvis analytikeren ønsker at kommentere på hastigheden af regimeskiftene. Vi

illustrerer fordelene ved den nye parametrisering og metoden til at vælge mellem de to

modeller med data fra to publicerede artikler. Den nye parametrisering giver en generel

indsigt i formen af likelihoodfunktionen i retning af de to parametre i transitionsfunktio-

nen, som kan generaliseres til en bred vifte af andre modeller inden for litteraturen om

smooth transition modeller.

Kapitel 3, ”A Structural Analysis of the Convenience Yield on U.S. Treasury Bonds”, ana-

lyserer dynamikken i bekvemmelighedsafkastet på amerikanske statsobligationer ved hjælp

af årlige observationer fra 1919 til 2008. Bekvemmelighedsafkastet opstår på grund af en
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særlig efterspørgsel efter statsobligationer, forårsaget af den ekstreme likviditet og sikker-

hed, som de tilbyder, og som er egenskaber værdifulde for fx udenlandske centralban-

ker og forsikringsselskaber. Denne efterspørgsel er et tegn på et inverst forhold mellem

udbuddet af statsobligationer og spændet mellem renterne på virksomhedsobligationer

og statsobligationer. Denne sammenhæng betyder dog, at et fald i udbuddet af statsob-

ligationer har negative økonomiske effekter, fordi det er forbundet med en stigningen be-

kvemmelighedsafkastet, hvilket indikerer en begrænset transmissionsmekanisme til den

private sektor. Artiklen modellerer både den langsigtede og kortsigtede dynamik i de per-

sistente variable, der måler udbuddet af statsobligationer og bekvemmelighedsafkastet i

en vector error correction model (VECM). Den langsigtede sammenhæng er negativ som

forventet og afspejler en nedadgående efterspørgselskurve og dermed utilsigtede negati-

ve økonomiske konsekvenser af et fald i den offentlige gæld. Vi viser, at denne negative

sammenhæng kun kan tolkes som en langsigtet efterspørgselsrelation. På kort sigt har ef-

terspørgelsesfunktionen en positiv hældning eller er i bedste fald flad. Dette kortsigtsfor-

hold identificeres ved at konstruere impulsresponser fra en eksakt-identificeret strukturel

VECM. Ved at udvide modellen med en ekstra variabel kan vi opdele bekvemmeligheds-

afkastet i en likviditetspræmie og en sikkerhedspræmie. Sikkerhedspræmien viser sig at

være den afgørende faktor bag det positive kortsigtsforhold. Den reduceres øjeblikkeligt

og er negativ i de første to år efter et negativ stød til udbuddet af statsobligationer, før

den bliver positiv og øges i overensstemmelse med det langsigtede negative forhold. Re-

sultaterne er robuste over for et potentielt knæk i efterspørgselskurven, som estimeres ved

en threshold VECM. De økonomiske effekter af et fald i udbuddet af statsobligationer er

måske derfor ikke så dårlige som først antaget.
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Okun’s Law with Non-Linear Dynamics

- a smooth transition VECM applied to the U.S. economy

Line Elvstrøm Ekner*

Department of Economics, University of Copenhagen

ABSTRACT: The relationship of Okun’s law between measures of output and the unemployment rate is de-

fined as a linear cointegration relationship with non-linear short-run dynamics. This specification allows

for the well-known fact of asymmetry in the steepness of the unemployment rate. The relationship is an-

alyzed for the U.S. economy in a smooth transition vector error correction model (STVECM). The model is

estimated by maximum likelihood but is non-standard due to the transition function and its parameters,

and the important test of linearity is carried out using a recent proposed sup-LR test. The two regimes of

the fitted STVECM have asymmetric dynamics and can be classified as a recession regime and an expansion

regime. The main source of non-linearity stems from economic downturns where the model switches to the

explosive recession regime to explain the observed steep increases in the unemployment rate, before it sub-

sequently returns the to stationary expansion regime. Okun’s coefficient is estimated to -0.28 and thereby

close to the -1/3 rule of thumb benchmark originally suggested by Arthur Okun in 1962.

1. INTRODUCTION

Okun’s law is a macroeconomic relationship relating the activity in the goods market to the

activity in the labor market. Arthur Okun gave name to the relationship after his seminal

contribution, Okun (1962), in which he found that output and the unemployment rate

were inversely related with a regression coefficient of about 1/3 using U.S. post-war data.

This coefficient has since been referred to as Okun’s coefficient.

Most empirical specifications assume a relationship with linear dynamics. This as-

sumption, which implies, e.g., that expansions and contractions in output are associated

with the same absolute changes in the unemployment rate, might not be appropriate. Sev-

eral studies characterize that the U.S. unemployment rate as asymmetric with sharper in-

creases than decreases, see, e.g., Neftci (1984), Montgomery et al. (1998), McKay and Reis

(2008) and Teräsvirta et al. (2011). We allow for this observation by defining Okun’s law as

a linear cointegration relationship with non-linear short-run dynamics.

*email: line.elvstrom.ekner@econ.ku.dk
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This paper contributes to the inconclusive vector framework studies of a non-linear

Okun’s law relationship. Output and the unemployment rate are measured in terms of

deviations from a trend and are thereby gap variables. These trends are solely deter-

ministic and, different from previous studies, estimated simultaneously with the coeffi-

cients of the cointegrated vector autoregressive (CVAR) model, which is the baseline linear

model for the analysis. Thus, the resulting stochastic trends (the gaps) form the Okun’s law

cointegration relationship which reflects the interdependence of the two variables over

the longer term. The short-run dynamics of the relationship are modeled by means of

the smooth transition autoregressive (STAR) methodology in which the dynamics depend

non-linearly on a transition variable. This extension facilitates asymmetry of the two re-

sulting regimes and the transition between regimes may be smooth rather than discrete.

The combination of a STAR model and a VECM is here dubbed a STVECM. Furthermore,

and contrary to previous literature, the variable governing the non-linearity is not prespec-

ified. The STVECM is estimated for various choices of this transition variable, including

the successful output variable of the single-equation analyses.

A second contribution of this paper lies in the application of the STVECM. There has

been extensive research in the field of univariate and single-equation STAR models, see

Dijk et al. (2002) for a survey. The STVECM is, however, a fairly new model in empirical

applications. The first attempts at extending the STAR methodology to a vector framework

are found in Weise (1999) and Rothman et al. (2001). Contrary to these studies the coin-

tegration vector and short-run dynamics are estimated simultaneously based on (quasi)

maximum likelihood (ML) to avoid issues with the error otherwise present from a first step

estimation of the cointegration vector.1 Such procedure is proposed in theoretical con-

tributions by Nedeljkovic (2008) and Kristensen and Rahbek (2010; 2013). Moreover, the

essential test of linear short-run dynamics is carried out by a recent proposed sup-LR test

which approximates the unknown distribution of test statistic by bootstrap simulations.

The result shows that the dynamics of the Okun’s law relationship are indeed non-

linear. The linear model is rejected when tested against the STVECM. The two regimes

of the STVECM are interpretable as a recession regime and a normal time or expansion

regime, and roughly coincide with business cycles as classified by the National Bureau for

Economic Research (NBER). During economic downturns the model temporarily switches

to the recession regime and explains the observed large and swift increases in the unem-

ployment rate by a mildly explosive root. The estimate of the long-run Okun’s coefficient is

−0.28 and thereby close to the −1/3 rule of thumb benchmark suggested by Arthur Okun

1In a non-linear model an estimation error from a first step may affect the limiting distribution of the
parameters, cf. De Jong (2001) and Seo (2011).
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in 1962.

The literature on empirical applications of Okun’s law is reviewed in section 2. Section

3 introduces the baseline bivariate cointegration model and define the gap variables. The

framework of the STVECM and the ML estimation are discussed in section 4. Section 5

follows with the empirical analysis and the results. Finally, section 6 concludes.

2. LITERATURE

Since Okun (1962), numerous studies have investigated the symmetric relationship be-

tween the unemployment rate and output for different time periods and for different coun-

tries, see inter alia Gordon (1984), Kaufman (1988), Prachowny (1993), Weber (1995), Moosa

(1997), Moosa (1999), Attfield and Silverstone (1998), Lee (2000), Silverstone and Harris

(2001), Sogner and Stiassny (2002), Frank (2008) and Ball et al. (2013). Frank (2008) in-

cludes a table with a comprehensive list of estimated Okun’s coefficients from different

studies. While there seems to be consensus concerning the empirical validity of Okun’s

law with a negative Okun’s coefficient, discrepancy as to the actual magnitude of this co-

efficient exists. Less attention has been given to analyze asymmetry in Okun’s law rela-

tionship. As with the literature considering a symmetric Okun’s law relationship, studies

of asymmetric relationships also tend to use varying model specifications, estimation and

detrending methods, as well as different country samples. Table 2.1 summarizes the re-

sults of studies considering asymmetry in the Okun’s law relationship for the U.S. econ-

omy.
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Table 2.1: Results of asymmetric empirical applications of the Okun’s law relationship to the U.S.
economy.

Study Sample Approach st Expected asymmetry

Lee (2000) 1955-1996 gap/static ut yes, but insign.

Lee (2000) 1955-1996 diff./static ∆ut yes

Silverstone and Harris (2001) 1978:1-1999:1 diff./TVECM ecmt−1 no

Viren (2001) 1960-1997 diff.* ut yes

Cuaresma (2003) 1965:1-1999:1 gap/dynamic yt yes

Silvapulle et al. (2004) 1947:1-1999:4 gap/dynamic yt yes/no(short-run)

Frank (2008) 1980:1-2004:1 gap/dynamic yt yes, but insign.

Mendonca (2008) 1948:1-2007:2 gap/TVECM ecmt−1 no
Note: st is the transition variable determining the prevailing regime. st is a gap variable, unless else stated.

ut and yt are variables of unemployment rate and output, respectively. Approach refers to whether variables
are defined as gap variables or in first differences, and whether lags are included in the regression. TVECM
is a threshold VECM originating in Balke and Fomby (1997). Expected asymmetry refers, broadly, to faster
adjustment in the unemployment rate in periods of low growth than in periods of higher growth.
*This study augments a first difference version of Okun’s law by a working age population variable and an error
correction term reflecting deviations from an equlibrium relation between number of unemployed persons,
working age population and a time trend.

A static approach to Okun’s law is employed in Lee (2000) and Viren (2001). They iden-

tify asymmetry by means of an indicator function2 allowing the effects of the output vari-

able to depend on whether transition variable (st in table 2.1) is above and below zero,

or above and below an estimated threshold value. Notably, Lee (2000) uses the unem-

ployment rate as the independent variable and, consequently, the change in the unem-

ployment rate serves as an indicator of the state of the economy.3 Asymmetry is found

using first difference variables with Okun’s coefficient being larger (in absolute value) for

increases in the unemployment rate than for decreases.

Silvapulle et al. (2004), Cuaresma (2003) and Frank (2008) find some evidence of non-

linearity of the expected form in their single-equation versions of Okun’s law with con-

structed gap variables as measurements. However, in such single-equation models, with

the unemployment rate as the dependent variable, the implicit assumption of no feedback

from the unemployment rate to output may be violated and the risk of violation increases

with lower frequency of the data. For instance, if annual data is used, changes in the un-

employment rate, initiated by output changes, may feedback and affect output within the

same period. For this reason, and among other things, Silverstone and Harris (2001) and

Mendonca (2008) relax this assumption by analyzing Okun’s law relationship in a vector

framework given by a threshold VECM (TVECM). The non-linear short-run dynamics are

2The indicator function is defined as I [A] = 1 if A is true and I [A] = 0 otherwise.
3Lee (2000) argues that general conclusions based on this specification are qualitatively the same as

those reported from studies with output as the independent variable.

16



determined by deviations from a linear Okun’s law cointegration relation estimated in a

first step. The two studies differ in their deterministic specification but neither of them

find asymmetry of the form expected, and, if anything, the unemployment rate adjusts

significantly downward but not upward.

Overall, for the U.S. economy, the evidence for asymmetry of the form expected with

the unemployment rate adjusting faster in contractions than in expansions is mixed.

3. THE LINEAR MODEL: VECM

Similar to Silverstone and Harris (2001) and Mendonca (2008), we analyze the Okun’s law

relationship by interpreting it as a long-run linear relationship between output and the

unemployment rate with possible non-linear short-run dynamics. The analysis thus rests

on the assumption that Okun’s law is a linear equilibrium relation serving as a resting point

towards which the stochastic processes of output and the unemployment rate are drawn

after they have been pushed away. This assumption is motivated by the numerous studies

that since Okun (1962) have found a stable linear Okun’s law relationship for the U.S., also

over longer horizons.

The statistical framework for the analysis is the CVAR model of Johansen (1996) and

Juselius (2006). The CVAR framework accommodates a bivariate specification of the out-

put and unemployment rate dynamics which is consistent with the long-run Okun’s law

interpretation. The baseline linear model for the analysis is the p-dimensional CVAR in

VECM form:

∆Zt =αβ′Z̄t−1 +
k−1∑

i=1
Γi∆Zt−i +εt , t = 1,2, ...,T. (3.1)

Zt is a p×1 vector of variables and Z̄t is (Z ′
t ,1)′. α andβ are matrices of dimension p×r and

(p +1)×r , respectively, with β′Z̄t representing the r ≤ p cointegrating relationships and α

giving the direction and speed of adjustment towards equilibrium. k is the number of lags

in the corresponding VAR presentation and the autoregressive coefficients, Γi , ...,Γk−1, are

of dimension p × p. For estimation, it is assumed that εt is an i.i.d. Gaussian sequence,

Np (0,Ω), while conditioning on the initial values, Z−k+1, ..., Z0. Estimation is then carried

out using the ML procedure of Johansen (1996), where maximization of the log-likelihood

function is reduced to solving an eigenvalue problem.
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3.1. SPECIFICATION OF GAP VARIABLES

The gap version of Okun’s law is constructed by estimating and extracting the determin-

istic trends of the variables within the CVAR model. I.e., the trends are estimated simul-

taneously with the coefficients of the CVAR model such that the stochastic trends left in

the variables form linear relationships. If one or more of these relationships are station-

ary, the deterministic detrended (or gap) variables cointegrate. Hence, a cointegration

relationship of this kind can be interpreted as an estimated gap version of the Okun’s law

relationship. Note, however, that these gap variables are not interpretable and compara-

ble to the notion of gap variables normally used in the literature since they are not sta-

tionary.4 Employing the approach of Christensen and Nielsen (2009), the CVAR model is

used to approximate the evolution of the deterministic trends of the unemployment rate

and the level of output. To extract information about theses trends, the trend of the un-

employment rate is assumed to be smooth and a fourth-order polynomial in time is used

as approximation. This trend may be seen as an estimate of the evolution of the natural

rate of unemployment. The order of the polynomial is chosen rather arbitrary, but is yet a

testable assumption. The trend in output is approximated by a linear trend in time.

In effect, the simultaneous estimation of deterministic trends and the CVAR coeffi-

cients implies that the system is reformulated in terms of gap variables. Following Chris-

tensen and Nielsen (2009), the vector of variables becomes

Zt = X t −ϕD t (3.2)

where D t = ( t t 2 t 3 t 4 )′, such that ϕD t is a fourth-order polynomial in time. X t is

the vector of observed variables, X t = ( yobs
t uobs

t )′. To avoid polynomial terms in the

trend of yobs
t , and enable only a linear trend, the following restriction is imposed on ϕ:

Zt =
(

yt

ut

)
= X t −ϕD t =

(
yobs

t

uobs
t

)
−

(
ϕ11 0 0 0

ϕ21 ϕ22 ϕ23 ϕ24

)



t

t 2

t 3

t 4




. (3.3)

To solve the well-known problem of multicollinarity present in a regular polynomial, D t is

replaced by a Legendre polynomial of the same order. A Legendre polynomial is charac-

terized by its orthogonal terms, see Courant and Hilbert (2008: ch.2), and greatly facilitates

4Often gap variables are constructed by extracting deterministic and stochastic trends by means of a
filter, for instance, the HP, Kalman, or Harvey filter. As a result, such gap series are stationary by construction.
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estimation of the polynomial coefficients. The baseline linear model is thus the VECM in

(3.1) with Zt = ( yt ut )′ defined in (3.3). Hence, with p = 2 at most one, r ≤ 1, cointe-

gration relationship exists among the variables of Zt . Note that if ϕ22 = ϕ23 = ϕ24 = 0 the

model is equivalent to one with two restricted trends. The present specification, however,

allows for a richer specification of trends.

In the CVAR, the short-run adjustment is linear. This linearity property imposes at least

two strong restrictions on the underlying economic behavior:

(i) The short-run dynamics are a constant proportion of the equilibrium error in the

previous period and of lagged changes in the variables.

(ii) The short-run dynamics are symmetric. For example, all phases of the business cy-

cle induce identical dynamics.

The VECM in (3.1) can be modified to relax restrictions (i) and (ii). The resulting model is

here the STVECM presented next.

4. THE NON-LINEAR MODEL: STVECM

The STAR methodology enables gradual transitions between two or more regimes, such

that the regime switches are not necessarily abrupt like in a threshold autoregressive (TAR)

model. Moreover, the smoothness of the STAR likelihood function simplifies asymptotic

theory significantly compared to a TAR model. The STVECM results from adding the STAR

methodology to the VECM framework of section 2.

4.1. THE MODEL

The two-dimensional STVECM with two regimes is defined as:

∆Zt =
(
α1β′Z̄t−1 +

k−1∑

i=1
Γ1

i∆Zt−i

)
(1−G(st ;γ,c)) (4.1)

+
(
α2β′Z̄t−1 +

k−1∑

i=1
Γ2

i∆Zt−i

)
G(st ;γ,c)+εt

for t = 1,2, ...,T . The dimensions of the vectors and matrices are equivalent to those of the

VECM in (3.1). Note that only the short-run parameters differ between regimes, while the

cointegration vector, β, is assumed constant across regimes. st is the transition variable

governing the regime shifts, whereas c and γ are parameters of the transition function
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Gt := G(st ;γ,c), which is continuous and bounded between zero and unity. Thus, one of

the extreme regimes is associated with Gt = 0 and adjustment coefficients α1,Γ1
i , ..,Γ1

k−1,

and the other extreme regime with Gt = 1 and adjustment coefficients α2,Γ2
i , ..,Γ2

k−1. The

model is thereby a regime switching model in which the transition between regimes may

be smooth.

A frequently applied transition function is the logistic transition function, leading to a

logistic STAR (LSTAR) model:

G(st ;γ,c) = 1

1+exp{−γ(st − c)/σ̂s}
, γ> 0 (4.2)

where σ̂s is the sample standard deviation of st . The inclusion of σ̂s normalizes the de-

viations of st from the threshold value c and facilitates interpretation and estimation of

the speed of transition parameter, γ. The logistic transition function is characterized by

changing monotonically from zero to unity as st increases. The threshold parameter c

determines when the transition occurs, while γ indicates, as a function of st , how rapid

the transition from zero to unity is. As γ increases, Gt approaches the indicator func-

tion, I [st > c], and, consequently, Gt changes from zero to unity almost instantaneous at

st = c. Hence, the TVECM of Silverstone and Harris (2001) and Mendonca (2008) is on the

boundary of the STVECM with γ→∞. The linear model, VECM, is also on the boundary of

the STVECM and prevails when γ= 0. The logistic transition function provides a suitable

framework in the present context where the expected asymmetry of the Okun’s law rela-

tionship is with respect to different states of the economy approximated by the magnitude

of st (e.g., GDP growth).5

The STVECM applied in the empirical analysis consists of (4.1) with the logistic transi-

tion function defined in (4.2), and the model is estimated by ML.

4.2. MAXIMUM LIKELIHOOD ESTIMATION

The parameters of the STVECM are estimated based on the Gaussian log-likelihood im-

plying that for the log-likelihood function, the residuals are defined as

εt (θ) = ∆Zt −
(
α1β′Z̄t−1 +

k−1∑

i=1
Γ1

i∆Zt−i

)
(1−G(st ;γ,c))

5The related exponential transition function, leading to an ESTAR model, is in contrast appropriate in
situations where asymmetry is believed associated with the absolute size of the transition variable.
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−
(
α2β′Z̄t−1 +

k−1∑

i=1
Γ2

i∆Zt−i

)
G(st ;γ,c) (4.3)

with θ = (α1,Γ1
i , ...,Γ1

k−1,α2,Γ2
i , ...,Γ2

k−1,β′,γ,c). Then, given T observations, Z1, Z2, ..., ZT ,

and the initial values Z−k+1, ..., Z0 fixed, the concentrated log-likelihood function takes the

form (up to the scale of a constant):

LT (θ) = LT (Ω̂(θ)) =−T

2
log

∣∣Ω̂(θ)
∣∣ (4.4)

where Ω̂(θ) = 1
T

∑T
t=1εt (θ)εt (θ)′ is the ML estimator of the covariance matrix Ω. The ML

estimator of θ is thus defined as:

θ̂ = argmax
θ∈Θ

LT (θ) (4.5)

Θ= {
α1,Γ1

1, ...
∣∣γ> 0,P (|st | < c) ≤ 0.8

}
. The maximization problem is constrained to ensure

economic interpretability of the estimated model by avoiding sorting too few observations

in one regime. In contrast to ML estimation of the CVAR model, no analytical solution exist

and the problem is accordingly solved by numerical optimization.

The estimation of the STVECM is non-standard due to well-documented problems

with joint estimation of the two parameters of the transition function, cf., Teräsvirta (1994;

1998) and Dijk et al. (2002). Several local maxima may exist for different combinations of

c and γ, and, hence, the estimation result is sensitive to the choice of starting values for γ

and c. The examples of profiled log-likelihood functions in figure 4.1 below illustrate the

high degree of curvature present in the current model for some choices of the transition

variable st .

The search for starting values of γ and c are found by a two-dimensional coarse grid,

as recommended by Dijk et al. (2002).6 Another issue is the difficulty of identifying γ, in

particular when being large. To obtain an accurate estimate of γ one needs many ob-

servations in the immediate neighborhood of c since even large changes in γ have only

small effect on the shape of the transition function. This is, however, rarely the case and a

6To reduce the computational time of the grid search, the likelihood function in (4.5) is further con-
centrated on (β,γ,c), while the rest of the parameters are estimated by OLS. The two-dimensional grid
search over γ and c is performed for γ ∈ [0.5;1.5, ...,20.5] ∪ [30,40,60,80,100] and cmi n = st |t=T∗10% to
cmax = st |t=T∗90% with a step of (cmax − cmi n)/25, respectively.

21



Figure 4.1: Examples of curvature of the profiled log-likelihood functions for combinations of c and γ.

large standard error of γ̂ is consequently obtained.7 It turns out that estimation is greatly

facilitated by holding γ fixed in the estimation at the value found in the grid search with-

out significantly altering the result. This is also supported by figure 4.1; the log-likelihood

functions are fairly flat in the direction of γ. The procedure implies that the rest of the

parameters are estimated conditional on γ. Starting values for the rest of the parameters

are obtained from the linear VECM.

4.3. TEST OF LINEARITY

If the observed dynamic relationship between output and the unemployment rate can be

modeled adequately by a linear model, then applying a non-linear model is redundant.

Testing for linearity is therefore of great importance. The test is, however, non-standard

because the parameters of the transition function become nuisance parameters; they are

identified under the alternative hypothesis of a STVECM, but not under the null hypothe-

sis of a VECM. This complicates the testing problem with the main consequence that the

classical likelihood ratio (LR) and Lagrange multiplier (LM) test statistics do not have the

usual asymptotic distributions under the null hypothesis. The unknown distribution of

test statistics can, however, be approximated. The most recent contribution within this

strand of the literature is by Kristensen and Rahbek (2013), who propose a sup-LR test of

7Note that a corresponding small t-value does not suggest redundancy of the non-linear component.
The t-value does not have its customary interpretation as a test for the hypothesis γ = 0, because of the
nuisance parameter problem discussed in connection with the test of linearity in section 4.3.
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linearity based upon ML estimation and implemented with a wild bootstrap procedure.

The test is carried out by the following steps:

1. Estimate the model (3.1) under the null hypothesis of linearity. Save the estimated parame-

ters, θ̂0 = (α̂, β̂′, Γ̂i , ..., Γ̂k−i ), and the maximized log-likelihood value LT (θ̂0).

2. Estimate the model under the alternative (4.1) by the estimation procedure presented in sec-

tion 4.2. Save the (recentered) residuals, ε̂t , and the maximized log-likelihood value LT (θ̂).

3. Compute the sup-LR test statistic

supLRT
c∈C , γ∈Y

= 2
[
LT (θ̂)−LT (θ̂0)

]
(4.6)

where C and Y are the parameter spaces of c and γ, respectively.

4. Bootstrap the distribution of the test statistic (4.6) by generating B = 399 bootstrap samples

under the null hypothesis of linearity with the saved estimates from the linear model in step

1, θ̂0. That is, compute B samples of Z∗
t from

∆Z∗
t = α̂β̂′Z̄∗

t−1 +
k−1∑

i=1
Γ̂i∆Z∗

t−i +ε∗t , t = 1,2, ...,T.

where the resampled errors, ε∗t , are generated using a wild bootstrap procedure, originally

suggested by Wu (1986): ε∗t = ε̂tωt , where ωt is i.i.d. N (0,1). Recall that ε̂t are the residuals

from the non-linear model estimated in step 2. The k initial values equal the k first observa-

tions from the original data.

5. For each bootstrap sample, Z∗
tb , repeat step 1-3 to obtain a test statistic supLR∗

T b .

6. Compute critical values of the empirical distribution of supLR∗
T and compare with supLRT .

An approximate p-value is

p∗(supLRT ) = 1

B

B∑

b=1
I (supLR∗

T b > supLRT )

where I (·) denotes the indicator function.

One advantage of such a sup test approach is that linearity is tested against a specified

non-linear model and no approximative model is used. In addition, Francq et al. (2010)

show that for an AR(1) model a sup LR test of linearity is superior in terms of power com-

pared to the frequently applied LM test of Luukkonen et al. (1988a;b) which is derived
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using a Taylor series expansion of the non-linear part of the model. Another advantage

of the sup-LR test is in terms of robustness. Autocorrelation may lead to spurious find-

ings of non-linearity and the same is true for neglected heteroskedasticity. Although het-

eroskedasticity robust versions of the test by Luukkonen et al. (1988a;b) exist, they remove

most of the power of the test, cf., Dijk et al. (2002). In contrast, the use of the wild bootstrap

in the implementation should make the sup-LR test robust to ARCH effects, cf., Kristensen

and Rahbek (2013).

5. EMPIRICAL ANALYSIS

The empirical analysis initiates from the VECM in (3.1). It then proceeds with the STVECM

in (4.1) with the logistic transition function defined by (4.2). The specification of the

STVECM is subsequently discussed before the results are presented and evaluated with

respect to the non-linear hypothesis of the Okun’s law relationship. The analysis is carried

out using Ox and PcGive (see Doornik (2009) and Doornik and Hendry (2009)).

5.1. DATA

The data is quarterly observations of output and the unemployment rate for the U.S. for

the period 1948:1-2011:2. Output is measured by the log of GDP in constant 2005-prices

and is obtained from Bureau of Economic Analysis (BEA). The unemployment rate is a

three month average of monthly observations of the unemployment rate, in which the rate

is calculated as the number of unemployed persons as a percentage of the civilian labor

force (16 years and over). The resulting series is divided by 100 to match the scaling of the

output variable. The monthly series is obtained from the Bureau of Labor Statistics (BLS).

The output and unemployment rate series are both seasonally adjusted and illustrated in

figure 5.1 (red solid).

The underlying trend in output appears well approximated by a linear deterministic

trend in time. A more flexible trend is needed to approximate the trend, or natural rate, in

the unemployment rate, and, as discussed in section 3.1, it is approximated by a fourth-

order polynomial.

5.2. RESULTS FROM THE LINEAR MODEL - VECM

As a first step in the econometric analysis, the unrestricted VAR model, H(2), is estimated.

The model is estimated with the preferred deterministic specification in (3.3). Table A.1
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Figure 5.1: (a) Log of GDP in constant prices from BEA (red solid) and the estimated deterministic trend

from the reduced rank VECM (black dotted). (b) The unemployment rate from BLS (red solid), the estimated

deterministic trend from the reduced rank VECM (black dashed).

and A.2 in appendix A report tests of misspecification and lag-length determination. In-

formation criteria and general-to-specific testing indicate that a lag structure of k = 3 is

sufficient to capture the time dependence, and, hence, no severe residual autocorrelation

is present. The normality assumption of the residuals is rejected because of outliers. Out-

liers are, however, not removed by including dummy variables, because the non-linear

model may be successful in explaining some of these outliers.

The test of cointegration rank, or equivalent the number of unit roots in the data, is

based on the VAR model following the Johansen procedure, originating in Johansen (1988).

Table 5.1 reports the LR test statistics of the maximum eigenvalue tests and the trace tests

for the cointegration rank, H(r ). The reduction H(1)|H(2) is easily accepted with a small

Table 5.1: LR tests for rank determination.

LRmax 5% CV LRtr ace 5% CV
H(0)|H(1) 17.82 26.66
H(1)|H(2) 8.36 20.41 8.36 20.41
H(0)|H(2) 26.17 34.23

Note: The critical values are from simulated asymptotic dis-
tributions. The deterministic specification includes a re-
stricted constant in addition to the restricted trends reflect-
ing the linear trend and the fourth-order polynomial in the
levels of output and unemployment rate, respectively.

test statistic of 8.36 suggesting that restricting the system to contain one unit root is rea-

sonable. Restricting both variables to be unit root processes, H(0)|H(2), is, however, also

accepted. It is not entirely clear how these rank tests perform if the true model includes

non-linear error correction of the STAR type. In such case, the linear model reflects the

average across the regimes. Moreover, Corradi et al. (2000) claims that the trace test in
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general has no simple limiting distribution in the presence of neglected non-linearities.8

The roots of the companion matrix provide additional information about the unit roots in

the data. They are shown in figure B.1 in appendix B together with a plot of the suggested

cointegration relation for the system restricted to include one unit root, that is p − r = 1.

When this (acceptable) restriction is imposed, the second largest root is 0.82. In this area it

is hard to discriminate between a unit root and a stationary relation with slow adjustment

back to equilibrium. The plot confirms that the mean reversion is quite slow. The combi-

nation of the low power of the rank test and the plot, which does not reject the hypothesis

of a stationary relation, warrants the choice of r = 1.

The reduced rank VECM serves as the benchmark linear model and will be tested

against the non-linear model. In the cointegration space, the parameter to the unem-

ployment rate, ut , is normalized, which is sufficient for identification of the cointegration

vector. The results are presented below (t-values in round parenthesis and p-values in

square parenthesis)9:

(
∆yt

∆ut

)
=




0.124
(1.40)

−0.172
(−4.81)




(
0.290
(12.02)

1
(...)

−2.557
(−12.30)

)



yt−1

ut−1

1




+



0.169
(2.03)

−0.856
(−3.29)

−0.096
(−3.90)

0.483
(6.28)




(
∆yt−1

∆ut−1

)

+



0.169
(1.99)

0.792
(3.43)

−0.088
(−3.51)

−0.220
(−3.19)




(
∆yt−2

∆ut−2

)
. (5.1)

T = 251 Log l i k = 2745.72 AR(1) : 5.33[0.25] AR(1-2) : 11.48[0.18]

ARC H(2) : 23.05[0.19] Nor mal i t y : 26.17[0.00]

8Nevertheless, the monte carlo study of Corradi et al. (2000) reveals that an acceptable level of power
of the trace test can be achieved, but only when the linear model includes a constant in the non-stationary
direction. Otherwise, the power is low and the test performs poorer with increased complexity of the non-
linearity, e.g., when the non-linear component enters more than one of the equations of the system.

9The misspecification tests are multivariate LM tests, except the normality test which is the multivariate
test of Doornik and Hansen (2008). AR(1) and AR(1-2) are tests of no autocorrelation of order one and of
order one and two, respectively. The ARCH test is the test of Lütkepohl and Krätzig (2004) which has power
against a broad range of ARCH effects.
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As for the unrestricted model, the reduced rank VECM appears well specified. Table C.1

in appendix C shows that a fourth-order polynomial trend is sufficient to capture the de-

terministic trend in the unemployment rate, interpretable as an estimate of the natural

level of the unemployment rate, and pictured in figure 5.1(b) (black dotted). The recent

financial crisis has induced a notable deviation from the historical trend growth in output,

see figure 5.1(a), and a large and swift increase in the unemployment rate, increasing the

natural rate once again after the fall during the 80s and 90s.

5.3. THE RESULTS OF THE NON-LINEAR MODEL - STVECM

The next step in the analysis is the STVECM. As for the VECM, the STVECM is estimated

with k = 3 VAR lags and r = 1. To facilitate estimation, precision of the estimates and re-

duce the computational time, it turns out to be necessary to reduce the large number of

parameters in the STVECM by estimating the deterministic trends in a first step. Con-

sequently, observed data is detrended with the estimated trends from the VECM before

estimating the STVECM. Hence, no deterministic trends are estimated in the STVECM.

Before turning to the estimation results, the transition variable, st , needs to be deter-

mined. Based on the p-values from the linearity test of the STVECM for different candi-

Table 5.2: Log-likelihood value and p-value of the null hypothesis of linearity.

st ∆yt−1 ∆yt−2 ∆yt−3 ∆yt−4 ∆4 yt−1 ∆ut−1 ∆ut−2 ∆ut−3 ∆ut−4 ∆4ut−1

Log L 2771 2764 2754 2758 2762 2768 2764 2760 2755 2765

p*-value 0.005 0.113 0.822 0.479 0.105 0.023 0.068 0.607 0.739 0.065

Note: The p*-value is the wild bootstrap p-value of the null hypothesis of linearity with 399 bootstrap repli-
cations. ∆4xt = xt − xt−4, xt = yt−1,ut−1. The non-standard distribution of the LR test statistic is confirmed
by plots of some of the bootstrap distributions, see figure D.1 in appendix D. They are shifted considerable to
the right and with a much fatter right tail than the χ2-distribution, which under normal circumstances is the
asymptotic distribution of the LR test statistic.

dates of st , reported in table 5.2, misspecification tests and inspection of the found opti-

mum for each model, st =∆yt−1.

The exogenous given NBER business cycle indicator was considered as transition vari-

able. However, as noted by Camacho and Perez Quiros (2007), such choice of st would

create a potential endogeneity problem because the NBER indicator has been constructed

on the basis of knowing the actual value of output growth. More importantly, this model

would fail to capture the fact that the economy can recover on its own since the timing

of the regime shifts depends entirely on the NBER indicator, which has been exogenously

defined.
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The estimation results and misspecification tests for the model with st = ∆yt−1 are

reported in table 5.3 and 5.4, respectively. The usual LM test for residual autocorrelation

is modified because the gradient vector must be augmented with elements related to the

non-linear part of the model. The test is derived for the current model in appendix E.

In contrast, the usual LM test of ARCH effects is unchanged from the VECM since the

information matrix is still block diagonal. The same holds true for the normality test of the

residuals, cf., Teräsvirta (1998). The model appears reasonable well specified, although, as

for the linear model, the normality assumption of the errors is violated.

Table 5.3: Estimated STVECM with st =∆yt−1.
Regime 1 Regime 2

∆yt ∆ut ∆yt ∆ut

β̂′Z̄t−1 − −0.153
(−1.89)

− −0.099
(−4.93)

∆yt−1 0.350
(2.44)

−0.181
(−4.06)

0.179
(1.84)

−0.064
(−2.35)

∆ut−1 −1.159
(−2.13)

0.596
(4.04)

−1.020
(−3.03)

0.390
(4.61)

∆yt−2 0.511
(1.71)

−0.250
(−3.04)

− −0.050
(−2.49)

∆ut−2 3.093
(3.49)

−0.844
(−3.67)

0.463
(2.44)

−0.110
(−1.42)

β̂′Z̄t−1

(
0.277
(12.95)

yt−1 +ut−1−2.437
(−13.27)

)

ĉ −0.010
(−99.05)

γ̂ 100

EV 1.10 (i ) 0.87 (r )

Obs 31(12%) 220(88%)

T 251

Log L 2767.95

Note: The restrictions are accepted with a p-value
of 0.16. Due to signs of ARCH effects, the
heteroskedasticity-consistent standard errors of
White (1982) are used. γ is fixed at the value found
in the grid search for initial values, as explained i
section 4.2, and thus no standard error of γ̂ is
computed. EV is the modulus of the largest
unrestricted eigenvalue present in each extreme
regimes. (i) and (r) refer to imaginary and real root,
respectively.
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Table 5.4: Misspecification tests of the STVECM.

∆yt ∆ut V ector

AR(1) 2.49[0.18] 1.01[0.34] 9.07[0.08]

AR(1−2) 3.56[0.45] 3.97[0.28] 15.51[0.06]

AR(1−4) 1.96[0.98] 2.40[0.88] 21.21[0.27]

ARC H(2) 4.90[0.09] 6.71[0.03] 19.77[0.34]

Nor mal i t y 11.91[0.00] 11.17[0.00] 20.69[0.00]

Note: The AR tests are the robust version of single-equation
F-tests of autocorrelation in STAR models, originally derived
by Eitrheim and Teräsvirta (1996). The vector test is from Ca-
macho (2004) and applied with β fixed at β̂. The tests of ARCH
and normality of the errors are unchanged from VECM.

Comparing the size of the estimated parameters with those from the VECM in (5.1),

regime 2 is similar to the VECM. About 88% of the quarterly observations give rise to

a larger weight of regime 2 (yt−1 > ĉ) and the other 12% to a larger weight of regime 1

(yt−1 < ĉ). Figure 5.2 presents different charts related to the estimated model. The rela-

tive few observations belonging to regime 1 are highlighted by figure 5.2(a). The value of ĉ

corresponds to an approximative quarterly growth rate in output of −0.26%. Hence, when

output shrinks by more than 0.26% in the previous quarter regime 1 dominates. Econom-

ically, regime 1 can thus be interpreted as a recession regime whereas regime 2 represents

a normal time or expansion regime. Such an interpretation is confirmed by figure 5.2(b)

which depicts Ĝt and NBER defined business cycles.10 The large estimate of γ̂ indicates a

very fast speed of regime switching, which figure 5.2(c) also highlights by the great steep-

ness of Ĝt . As a result, the estimated STVECM approximates a threshold model.

The non-linearity is present in every term of the STVECM. The non-linearity may, how-

ever, only be relevant for the error correction mechanism or one of the equations of the

system. Testing the extent of the non-linearity is fairly simple since such restricted models

can be shown to be nested without the presence of nuisance parameters. The null hy-

pothesis of non-linearity only in the error correction mechanism is rejected with a p-value

of 0.00. To obtain an econometric model closer to the original Okun’s law equation, the

non-linear dynamics is restricted to the unemployment rate equation, while the dynam-

ics of output growth are linear with no error correction. Such a hypothesis is rejected with

a p-value of 0.016.

The largest unrestricted eigenvalue of the companion matrix for each regime provides

information about the local dynamics of the model and are reported in table 5.3. Regime

10The time series of NBER indicator is obtained from www.nber.org.
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Figure 5.2: All charts are from the restricted STVECM with transition variable st = ∆yt−1. (a) The
level of the transition variable (red solid) and the estimated threshold parameter ĉ (black solid). (b)
The estimated transition function, Ĝt , plotted against time (red solid) and NBER recessions (gray
shade). (c) The estimated transition function, Ĝt , plotted against st . Each dot represents an obser-
vation. (d) The estimated cointegration relation β̂′Z̄t−1.

1 is characterized by an explosive root whereas regime 2 is stationary. The explosiveness

of regime 1 is the means by which the model explains the observed large and abrupt in-

creases in the unemployment rate stemming from the flexible U.S. labor market. This is

the main source of non-linearity in the model. Importantly, it never degenerates because

the model stays only in regime 1 in a maximum of three consecutive quarters, as seen from

5.2(b).

Although such dynamics appear strange, it is not an unusual finding in univariate STAR

models, see, e.g., Teräsvirta and Anderson (1992), Teräsvirta (1995) and Teräsvirta et al.

(2011). The stability of the estimated STVECM can be checked by means of extrapolation

of the process.11 Examples of such extrapolation are showed in figure F.1 in appendix F.

The two processes converge to constant levels, irrespectively of the initial regime, indi-

cating a stable model. For this particular STVECM it is, however, not trivial to show the

11According to Teräsvirta et al. (2011), “a necessary condition for stability is that extrapolation of the
process after switching of the noise should lead to convergence” (p. 388).
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conditions necessary for global stability given the explosive regime 1 and is an area for

future research.12,13

The cointegration coefficient to output of −0.277 reflects an estimate of Okun’s coeffi-

cient. A 1 percentage point output gap is associated with a decrease in the unemployment

rate gap of 0.28 percentage point. The estimate is thus close to the −1/3 rule of thumb

benchmark originally suggested by Okun (1962). Figure 5.2(d) displays the deviations from

this long-run relationship over time. While large increases are related to recession periods,

the relationship initiates at a all time low in the start of the sample. The estimated coin-

tegration vector of the STVECM is, as expected, similar to that of the VECM, and may be

caused by the necessity of prior estimation of the trends. Yet, this exercise shows that in

a model with non-linear short-run dynamics, a linear cointegration vector, which is con-

stant across regimes, can be rather precisely estimated simultaneously with the short-run

parameters. The constant term has no economic interpretation as it reflects the estimated

long run difference between the (unidentified) constant levels of the two observed vari-

ables.

The error correction parameters provide information about how the long-run Okun’s

law relationship is sustained. The observed slow mean reversion in figure 5.2(d) is con-

firmed by the (numerical) small error correction estimates (coefficients in the top row of

table 5.3). Moreover, the output variable is weakly exogenous.14 This implies that the out-

put variable does not adjust to deviations from the long-run equilibrium. Moreover, the

accumulated innovations of the output equation can be considered a common driving

trend of the system, and thus shocks to the unemployment rate have no permanent ef-

fect on output. Although the dynamics of the regimes differ, the asymmetry of the error

correction of the unemployment rate is insignificant.

12Seo (2011) develops asymptotic theory for a class of non-linear VECMs, including the TVECM and the
STVECM, but with the regime switching depending on the previous period equilibrium error. In the related
work of Kristensen and Rahbek (2010; 2013), the previous period equilibrium error is also governing the
regime shifts, and in Gonzalo and Pitarakis (2006) an exogenous stationary variable determines the regime
switching. The theory for the model of this paper with the lag of an endogenous variables as the transition
variable, has, to the best of knowledge of the author, yet to be derived.

13This implies that the asymptotic distribution of the parameters is unknown and may be non-standard.
Hence, the t-values reported in table 5.3 are not necessarily asymptotically normal distributed and any in-
ference is only indicative.

14If the hypothesis of weakly exogenous output is tested alone, the null hypothesis is accepted with a
p-value of 0.25
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6. SUMMARY AND CONCLUSION

This paper estimates a non-linear version of the Okun’s law relationship between esti-

mated gaps of the unemployment rate and output by means of a smooth transition coin-

tegration model called a STVECM. Okun’s law is defined as a linear cointegration rela-

tionship, reflecting the interdependence of the two variables over the longer term, and

with any non-linearity prevailing in the short-run dynamics. The result of the sup-LR test

of linearity shows that linearity, and hence symmetry, of the short-run dynamics is re-

jected when tested against the STVECM with the chosen transition variable st = ∆yt−1.

The regimes of the STVECM overlap with those of the NBER business cycle indicator and

can be interpreted as a recession regime and an expansion regime. The estimated thresh-

old implies that when output falls by more than 0.26% in the previous quarter, the model

enters the recessionary regime 1. The estimated speed of the regime switching is fast and,

thus, the model effectively approximates a threshold model. The dynamics of the two

regimes differ significantly and is caused by the large increases in the unemployment rate

during recessions which the model approximates by an explosive root. However, the sta-

bility of the model appears unaffected since the model returns to the stationary expansion

regime shortly after a recession. The error correction mechanism reveals that the output

variable does not significantly adjust to deviations from the equilibrium Okun’s law rela-

tionship, and shocks to the unemployment rate, therefore, have no permanent effect of

output. Finally, the estimate of Okun’s coefficient is −0.28. Hence, although five decades

have passed, the structure of the economy has changed and a different econometric model

is applied, the estimate is still close to the −1/3 rule of thumb benchmark originally sug-

gested by Okun (1962).
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A. MISSPECIFICATION TESTS OF THE UNRESTRICTED VAR

Table A.1: Misspecification tests of the unrestricted VAR.

∆yt ∆ut V ector

AR(1) 0.55[0.46] 1.35[0.25] 5.95[0.20]

AR(1−2) 0.73[0.69] 1.53[0.47] 10.87[0.21]

ARC H(2) 4.87[0.09] 4.01[0.13] 22.36[0.22]

Nor mal i t y 21.86[0.00] 13.26[0.00] 28.08[0.00]

Note: The misspecification tests are LM tests and asymptoti-
cally χ2-distributed. The normality test is the test of Doornik
and Hansen (2008). AR(1) and AR(1 − 2) are tests of auto-
correlation of order one and order one through two, respec-
tively. The ARCH test is the test of Lütkepohl and Krätzig
(2004) which has power against a broad range of ARCH ef-
fects.

Table A.2: Information criteria and LR tests of lag-
length.

k = 2 k = 3 k = 4

SC −21.634 −21.613 −21.547

H −Q −21.718 −21.733 −21.699

LR(k = 4|k = 3) 5.13[0.28]

LR(k = 3|k = 2) 17.52[0.00]

Note: SC and H-Q are the Schwartz and the Hannan-
Quinn information criterion, respectively. The p-value
of the LR tests are from theχ2(4)-distribution. The mod-
els are estimated with the same number of observa-
tions.
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B. RANK DETERMINATION

Figure B.1 shows the eigenvalues of the companion matrix and the suggested cointegra-

tion relation for the reduced rank VECM.
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Figure B.1: Cointegration relation and eigenvalues of the VECM with a rank of 1.
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C. SHAPE OF POLYNOMIAL TREND OF THE UNEMPLOYMENT RATE

It is not possible to tell, ex ante, whether, for instance, a fourth-order polynomial is suffi-

cient to capture the deterministic trend of the unemployment rate or perhaps a fifth-order

polynomial is required. Such hypotheses are, however, easily tested by, respectively, im-

posing the restriction ϕ24 = 0 and extent ϕD t to a fifth-order polynomial in (3.3). The

result of LR tests of these hypotheses for the reduced rank VECM are reported in table C.1.

Table C.1: LR test of hy-
potheses on the shape of
the deterministic trend of
the unemployment rate, re-
duced rank VECM.

LRT p-value

θ24 = 0 8.21 0.00
θ25 = 0 2.53 0.11

Note: The p-value is from aχ2-
distribution with one degree of
freedom. Alternatively, the hy-
pothesis can be tested by t-
tests.
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D. DISTRIBUTION OF THE SUP-LR TEST STATISTIC

Figure D.1 depicts the wild bootstrap distributions of sup-LR test statistics for four differ-

ent choices of transition variable. For comparison, the χ2-distribution with 12 degrees of

freedom is plotted as well. 12 reflects the number of additional parameters in the STVECM

compared to the VECM (8 additional lag parameters, 2 additional error correction param-

eters and 2 transition parameters).
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Figure D.1: Distribution of sup-LR test statistics of a null hypothesis of linearity.
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E. TEST FOR RESIDUAL AUTOCORRELATION

Eitrheim and Teräsvirta (1996) propose a modified LM test of residual autocorrelation in a

univariate STAR model, claiming that the customary Ljung-Box test for residual autocor-

relation is inapplicable when applied to STAR residuals. In the framework of the STVECM,

the univariate tests are derived below and applied assuming the estimated cointegration

vector, β̂, is a fixed parameter, and thus ecmt = β̂′Z̄t is perceived as a regressor. The ap-

plied vector test is derived in Camacho (2004), also assuming β̂ fixed.

First, the estimated STVECM in (4.1) is slightly reformulated in compact form as

∆Zt := H(Wt ,Φ)+εt =ϑ′Wt +δ′WtG(st ;γ,c)+εt ,

where Wt = (ecmt−1,∆zt−1, ...,∆zt−k−1)′ for zt = yt ,ut . Φ= (ϑ,δ,γ,c)′. The test of no auto-

correlation of order q in the STVECM residuals, ε̂ j ,t , with j =∆y t ,∆ut and referring to an

equation in the system, is then carried out by running the auxiliary regression:

ε̂ j ,t = κ+π1ε̂ j ,t−1 +π1ε̂ j ,t−2 + ...+πq ε̂ j ,t−q +λ′V̂t +u j ,t ,

where κ is a constant and λ is a ((2k +2)×1) vector of coefficients to the gradient V̂t given

by

V̂t = ∂H(Wt ,Φ)

∂Φ

∣∣∣Φ=Φ̂

=
(
∂H

∂ϑ′ ,
∂H

∂δ′
,
∂H

∂γ
,
∂H

∂c

)′ ∣∣∣Φ=Φ̂ = (
Wt ,WtG(st ; γ̂, ĉ), ĥγ

t , ĥc
t

)′
. (E.1)

The derivatives ĥγ
t and ĥc

t with respect to γ and c, respectively, are evaluated in the ML

estimates:

ĥγ
t = ∂Gt

∂γ
δ̂′Wt = (1+exp{−γ̂(st − ĉ)/σ̂s})−2 exp{−γ̂(st − ĉ)/σ̂s}((st − ĉ)/σ̂s))δ̂′Wt

= Ĝt (1−Ĝt )((st − ĉ)/σ̂s))δ̂′Wt

ĥc
t = ∂Gt

∂c
δ̂′Wt =−(1+exp{−γ̂(st − ĉ)/σ̂s})−2 exp{−γ̂(st − ĉ)/σ̂s}γ̂δ̂′Wt

= −Ĝt (1−Ĝt )γ̂δ̂′Wt

The test static is then computed as
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F j ,LM = (SSR0 −SSR)/q

SSR/(T −n −q)
, SSR0 =

∑
T
t=1ε̂

2
j ,t and SSR =

∑T
t=1 û2

j ,t

which approximately follows an F -distribution with (q,T−n−q) degrees of freedom under

the null hypothesis of no autocorrelation in ε j ,t . The dimension of the gradient vector (E.1)

is n = ((2k +2)×1). According to Eitrheim and Teräsvirta (1996), the F -version of the test

is preferred to the χ2-version which suffers from size problems in small samples. Note

that if γ̂ is large, the derivatives of the transition function are close to zero and V̂t becomes

singular. In such cases, ĥγ
t and ĥc

t are dropped from V̂t .
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F. EXTRAPOLATION EXERCISE
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Figure F.1: Chart (a)-(b) display extrapolation of the joint process initiating from observations in
the expansionary regime 2. Chart (c)-(d) display extrapolation of the joint process initiating from
observations in the recessionary regime 1.
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Chapter 2

Smooth or Non-Smooth Regime Switching
Models
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Smooth or Non-Smooth Regime Switching Models*

Line Elvstrøm Ekner† and Emil Nejstgaard‡

Department of Economics, University of Copenhagen

ABSTRACT: We propose a reparametrization of the logistic smooth transition autoregressive

(LSTAR) model which facilitates identification and estimation of the so-called speed of transition

parameter. We show that all derivatives of the likelihood function are approaching zero as the

parameter measuring the speed of transition increases, and, hence, the threshold autoregressive

(TAR) model always represents at least a local maximum of the LSTAR likelihood function. We pro-

pose to use information criteria for the choice between the two models and show the effectiveness

of this procedure by means of simulations. Two empirical applications illustrate the usefulness of

our findings.

1. INTRODUCTION

Regime switching models have become increasingly popular in the time series literature

over the last decades and applied to data from potential regime switching processes such

as, e.g., the business cycle, the unemployment rate, exchange rates, prices, interest rates,

etc. The majority of the models initiate from the threshold autoregressive (TAR) model

first presented by Tong and Lim (1980). Nevertheless, the idea of smooth regime switch-

ing was discussed by Bacon and Watts (1971), but not formalized in terms of a time se-

ries model until Chan and Tong (1986) proposed what they called a smoothed threshold

autoregressive model as an extension to the TAR model of Tong and Lim (1980). Heav-

ily cited contributions by Luukkonen et al. (1988) and Teräsvirta (1994) changed the label

from “smoothed threshold” to “smooth transition” resulting in the label smooth transition

autoregression (STAR) used today. For an overview of the TAR and STAR literature, see

Tong (2011), Teräsvirta et al. (2010), and van Dijk et al. (2002).
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The logistic STAR (LSTAR) model differs from the TAR model by having smooth regime

switches over time parametrized by the speed of transition parameter. The switches in

the TAR model are in contrast discontinuous. The primary economic motivation for the

LSTAR model is that economic time series are often results of decisions made by a large

number of economic agents. Even if agents are assumed to make only dichotomous de-

cisions or change their behavior discretely, it is unlikely that they do so simultaneously.

Hence, any regime switching in economic time series may be more accurately described

as taking place smoothly over time. Moreover, the speed of the regime switching can be of

separate interest to an economist, e.g., to analyze how fast the economy adapts to another

regime or state of the economy. In empirical applications it is, however, often very difficult

to identify the speed of transition parameter, and, thus, it is important to test whether this

additional parameter of the LSTAR model is at all relevant compared to a TAR model.

The first contribution of this paper is a reparametrization of the LSTAR model. In terms

of the proposed parametrization we can explicitly illustrate the problem of distinguishing

LSTAR and TAR alternatives.

The second contribution is to show that this distinction is complicated both theoreti-

cally and in terms of numerical optimization by the fact that all derivatives of the LSTAR

likelihood function are approaching zero with faster speed of transition, i.e., when the

LSTAR model approaches the TAR model. Using likelihood analysis, we study the conse-

quences of this identification problem for estimation and inference in the LSTAR model.

The new parametrization avoids some of the numerical difficulties that arise when apply-

ing the original LSTAR parametrization, and, moreover, clarifies that the LSTAR likelihood

function can have a maximum corresponding to a TAR model. In the literature of LSTAR

models economic theory is used as the only motivation for modeling an LSTAR model in-

stead of a TAR model, see, e.g., Granger and Teräsvirta (1993) and Teräsvirta (1998). How-

ever, our new parametrization facilitates a decision based upon the data, possibly in con-

junction with economic theory. We show how information criteria provide a neat, but

conservative, tool to select an LSTAR model over a TAR model that can be applied if the

researcher wishes to comment on the speed of transition.

The related issue of selecting between an LSTAR model and an autoregressive (AR)

model is not treated in this paper. Although testing such hypothesis of linearity is non-

standard, procedures are available and well-described in the literature of both the (L)STAR

and TAR models, see Davies (1987), Luukkonen et al. (1988), Hansen (1996), and Kris-

tensen and Rahbek (2013).

Furthermore, we discuss numerical optimization of the LSTAR likelihood function. In

particular, we consider the origin of multiple maxima on the likelihood function and the
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use of grid search methods. Finally, we illustrate the benefits of the new parametrization

and the model selection procedure with data from two published applications. In the first

application, the likelihood function for the reparametrized speed of transition parameter

reveals that the published result is only a local maximum on the likelihood function, and

that the global maximum is a TAR model. In the second example, data contains insuffi-

cient information about the speed of transition parameter which then becomes irrelevant,

and, as a result, information criteria prefer a TAR model over the published LSTAR model.

The new parametrization can be applied to all kinds of regime switching models where

the regime switching is governed by one or more logistic type transition functions. Iden-

tification of the speed of transition parameter in the related exponential STAR (ESTAR)

model with an exponential transition function has recently been studied by Heinen et al.

(2012). However, the problem is different in the ESTAR model since this model approaches

an AR model when the speed of transition approaches infinity and not a TAR model. Hence,

their results do no carry over to the LSTAR model. Nevertheless, the new parametrization

can also be beneficial for estimation of the ESTAR model by facilitating numerical opti-

mization as well as identification of the global maximum of the likelihood function.

2. THE MODEL AND THE IDENTIFICATION PROBLEM

To fix ideas, consider a simple LSTAR model of order one for yt ∈R, cf., Teräsvirta (1994),

yt =αyt−1Gt +εt , t = 1,2, ..,T (2.1)

with εt ∼ i .i .N (0,σ2) and where Gt is the logistic transition function given by

Gt :=G
(
yt−1;γ,c

)= (
1+exp

{−γ(yt−1 − c)
})−1. (2.2)

The AR parameter isα, γ is the speed of transition parameter and c is the threshold param-

eter. While |α| < 1 and c ∈ R, we assume that γ ∈ R̄+ where R̄+ := R+∪∞. Thus, we extend

the original definition of the parameter space for γ to include infinity, hereby making it

feasible to discuss both the LSTAR model and the TAR model within the same framework.

Figure 2.1 shows how the functional form of Gt changes with γ. In particular, note that

as γ→ 0, Gt → 1
2 and as γ→∞, Gt → I{yt−1−c>0} where I{A} is the indicator function equal

to one when A is true and zero otherwise. Hence, the TAR model is a limiting case of the

LSTAR model prevailing when γ=∞. This feature of the model is central to the identifica-
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Figure 2.1: The logistic transition function Gt =
{
1+exp(−γ(yt−1 − c))

}−γ for different values of γ.

yt−1
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tion problem discussed in this paper.

The related ESTAR model is given by (2.1) and G
(
yt−1;γ,c

) = 1− exp
{−γ(yt−1 − c)2

}
.

When γ→ ∞, Gt → 0 (with a single blip at yt−1 = c) and the ESTAR model approaches a

white noise process or, in a more general case, an AR model. Hence, poor identification

of the speed of transition parameter is, in contrast to the LSTAR model, often anticipated

when testing against a linear model, which is standard in the STAR literature.

3. LIKELIHOOD ANALYSIS OF THE SPEED OF TRANSITION PARAMETER

LSTAR models are traditionally estimated by maximum likelihood (ML) or non-linear least

squares (NLS). The two approaches are equivalent when the errors are assumed i.i.d. Gaus-

sian, and thus the essential insights from the following ML analysis carry over to NLS. Be-

fore introducing the new parametrization, we illustrate some of the less attractive conse-

quences of the original parametrization for estimation and inference in the LSTAR model.

We are interested in analyzing only the properties of the ML estimator of γ, and, hence, we

fix σ2, α and c. The (log-)likelihood function is, apart from a constant, given by

LT (γ) =
T∑

t=1
`t

(
γ
)=−1

2

T∑
t=1

εt
(
γ
)2 , εt

(
γ
)= yt −αyt−1Gt (3.1)

where Gt is the logistic transition function given by (2.2). Lemma 1 below provides results

on the behavior of the derivatives of the likelihood function as the speed of transition pa-
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rameter, γ, tends to infinity. Observe, in particular, that both the score and Hessian tend

to zero as γ→∞, meaning that the likelihood function becomes flat as the LSTAR model

approximates the TAR model. Hence, the TAR model always represents at least a local

maximum of the likelihood function.

Lemma 1. With the likelihood function given in (3.1), it holds for n ≥ 1 that

lim
γ→∞

∂n`t
(
γ
)

(
∂γ

)n = 0. (3.2)

The proof is given in the appendix.

To illustrate the consequences for estimation, we simulate a data set from an LSTAR model

with T = 150, γ0 = 2, σ2 = 1, c = 0 and α = 0.5. The data series and Gt is graphed in

figure A.1 in appendix A while the corresponding likelihood function as a function of γ

is depicted in figure 3.1(a) below. Observe that the likelihood function gets flatter as the

value of γ grows and the maximum is found, roughly, somewhere in the interval γ ∈ [35;∞]

which does not contain γ0 = 2. In empirical applications, researchers often estimate a

large value of γ with a large standard error. As our parametrization below clarifies, this is

in effect identical to estimating a TAR model, and a more satisfactory solution might be to

switch to the TAR framework which by now has a well-developed theoretical framework,

see Tong and Lim (1980), Hansen (1997), Seo and Linton (2007) among others.

3.1. THE δ-PARAMETRIZATION

To minimize the harmful flat areas of the likelihood function, we propose the following

reparametrization. We define a new parameter δ ∈ (0;1], such that

δ= γ

1+γ (3.3)

with δ→ 0 as γ→ 0 and δ→ 1 as γ→∞. Hence, the transition function in (2.2) is replaced

by

G
(
yt−1;δ,c

)=
(
1+exp

{
− δ

1−δ (yt−1 − c)

})
−1 (3.4)

Although lemma 1 also applies to an LSTAR likelihood function with (3.4), the reparametriza-

tion has advantages compared to the γ-parametrization. The main advantage is that it

emphasizes the part of the likelihood function that is of principal interest in an LSTAR

model. Essentially, the new parametrization maps γ ∈ R̄+ into δ ∈ (0;1], where δ ∈ (0;1) is
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an LSTAR model, δ= 1 is a TAR model, and δ= 0 is an AR model. Of particular importance

is the mapping of γ ∈ [U ;∞] into δ ∈ [u;1], where U is some large value potentially tend-

ing to infinity and u is the corresponding value in the δ parametrization. For example, in

figure 3.1 set U ≈ 9 and, hence, γ ∈ [9;∞] is mapped into δ ∈ [0.9;1]. This feature can fa-

cilitate numerical optimization of the likelihood function because the large flat part of the

likelihood function appearing in figure 3.1(a) is now mapped into a much smaller interval

as evident from figure 3.1(b). An example hereof is discussed in the next subsection.

Figure 3.1: The profiled likelihood function as a function of γ(a) and δ(b), respectively. The data
set is simulated for T = 150, γ0 = 2 (δ0 = 2

3 ), σ2 = 1,c = 0, α= 0.5.

(a) (b)

The reparametrization highlights two important aspects that were less clear with the

original γ-parametrization. First, the likelihood function is bimodal with a well defined

local maximum around δ= 0.45, corresponding to an LSTAR model with γ≈ 0.8 and, thus,

not equal to the true value of γ0 = 2 (δ0 = 2
3 ). Apparently, for this particular realization

the local maximum undershoots the true value of the speed of transition. Second, the

δ-parametrization stresses that the global maximum of the likelihood function is found

close to or at the boundary of the parameter space corresponding to a TAR model. The

fact that the likelihood function actually continues to increase until δ ≈ 1 is less likely to

be seen from the γ-parametrization.

3.1.1. CONSEQUENCES FOR NUMERICAL OPTIMIZATION

Granger and Teräsvirta (1993, p. 123) note that γ tend to be overestimated, and this is also
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observed in the literature on LSTAR models where γ̂ has been reported to have a positive

sample bias, see e.g. Areosa et al. (2011). This bias may be caused by the estimation of γ

without recognizing the behavior of the numerical optimizer when the threshold alterna-

tive is the global maximum of a model with a logistic transition function. Table 3.1 shows

results from a Monto Carlo study in which the estimated bias in γ̂ is computed for different

values of the stopping criterion of the numerical optimizer used to estimate γ. We focus

on the stopping criterion related to the score of the likelihood function. The positive bias

in γ̂ depends heavily on the value of this criterion. This illustrates that the often arbitrary

choice of stopping criterion for the numerical optimizer affects the bias in γ̂. However,

for the δ-parametrization, the bias appears (almost) unaffected by the size of the stopping

criterion.1

Table 3.1: Estimated bias in γ̂ and δ̂ as a function of the stopping criterion for the numeri-
cal optimizer.

Number of observations T = 150 T = 300

ST (x̂) = ∂`T (x̂)
∂x̂ ≤ 10−2 ≤ 10−6 ≤ 10−16 ≤ 10−2 ≤ 10−6 ≤ 10−16

�B I AS(γ̂) =∑M
m=1(γ̂m −γ) 0.9063 8.2439 49.509 0.6594 5.4652 21.781

�B I AS(δ̂) =∑M
m=1(δ̂m −δ) 0.0533 0.0545 0.0545 0.0146 0.0148 0.0148

Note: The DGP is γ= 1 (δ= 1
2 ), σ2 = 1,c = 0 and α= 0.5. M = 10,000 and c and α are fixed in

estimation.

4. SELECTING BETWEEN LSTAR AND TAR WITH INFORMATION CRITERIA

The bimodality of the likelihood function seen in figure 3.1(b) is a common small sample

property of LSTAR models. Typically, there exists one inner maximum corresponding to

an LSTAR model and a maximum on the boundary of the parameter space (δ = 1) corre-

sponding to a TAR model. The simulation considered above in figure 3.1 is an extreme

example of this, where the global maximum of the likelihood function is at δ≈ 1. A more

typical case is one with the inner maximum being the global maximum and a local, smaller

maximum is found at the TAR solution, see for example figure 6.2(b). A relevant question

is therefore whether the likelihood value of the inner maximum is large enough compared

1Note that the size of the bias is not comparable across parametrizations due to the different scaling of
the parameters and that since the ML estimator is consistent, the bias diminishes as T grows.
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to the likelihood value of the boundary TAR maximum to justify estimation of a speed of

transition parameter. One way to investigate this question would be to derive a test for the

null-hypothesis of δ = 1. However, such a test is highly non-standard since, as Lemma 1

shows, all derivatives are zero and, hence, it is not obvious how to obtain critical values.

We propose instead to conduct model selection based on information criteria, where no

critical values are needed. Information criteria combine a measure of goodness-of-fit with

a penalty for model complexity. Comparing information criteria would therefore indicate

whether the additional speed of transition parameter of an estimated LSTAR model leads

to a notable improvement of fit compared to a corresponding TAR model. Note that the

theoretical foundation for validity of the information criteria when the true model is the

TAR model suffers from the same difficulties as a formal test. As a result, we are unable

to prove the asymptotic validity of this selection procedure analytically. Rather, we rely

on simulation studies which give clear indications that the model selection proceduce is

indeed consistent. We conjecture that these simulation results are not specific to the se-

lected models, such that information criteria can be used more generally to select between

TAR and STAR models.

Psaradakis et al. (2009) pursue a comparable idea and consider selecting between sev-

eral non-linear autoregressive models by means of information criteria. In the following,

we conduct a similar simulation study for the choice between a TAR model and an LSTAR

model using the proposed reparametrization. With LT (δ) being the likelihood function

given in (3.1) evaluated with respect to δ, the information criteria are of the form

ICT (δ,k) =−2LT (δ)+kcT , (4.1)

where k is the number of estimated parameters which equals 1 for the LSTAR and 0 for the

TAR. The term cT is a function of T that satisfies limT→∞ cT =∞ and limT→∞(T −1cT ) = 0.

We focus on the Bayesian Information Criterion (BIC), Schwarz (1978), with cT = log(T ),

and the Hannan-Quinn Information Criterion (HQIC), Hannan and Quinn (1979), with

cT = 2log
(
log(T )

)
. Both criteria fulfill the requirements for cT . We use the information

criteria to estimate the number of parameters, k, and denote this estimate k̂. The selection

procedure is consistent if k̂ → k0 as T →∞. We illustrate this selection method using four

different models, three LSTAR models withδ= {0.2,0.5,0.9}, respectively, and a TAR model.

We simulate M = 10,000 data sets and estimate only the speed of transition parameter δ.

The remaining parameters are fixed at the true values: σ2 = 1, α= 0.5 and c = 0. For each

replication, we calculate the percentage selected LSTAR models of the two information

criteria. The experiment is done for different sample lengths and the selection percentages
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are given in table 4.1.

Table 4.1: Percentage selected LSTAR models using information criteria. c = 0.

DGP LSTAR, δ= 0.2 LSTAR, δ= 0.5 LSTAR, δ= 0.9 TAR, δ= 1

T BIC HQIC BIC HQIC BIC HQIC BIC HQIC

100 48 64 13 25 1 4 0 0

250 82 92 26 45 0 3 0 0

500 98 99 47 69 1 3 0 0

1,000 100 100 76 90 1 4 0 0

10,000 100 100 100 100 1 6 0 0

50,000 100 100 100 100 2 21 0 0

100,000 100 100 100 100 6 42 0 0

1,000,000 100 100 100 100 100 100 0 0

Note: Only δ is estimated. Remaining parameters are fixed at true values of σ2 = 1,
α= 0.5 and c = 0.

The results show that the slower the speed of transition, the better the performance

of the information criteria. Nevertheless, even with a relatively slow transition speed of

δ = 0.5 and T = 1,000, BIC and HQIC still select a rather large number of incorrect TAR

models, 24% and 10%, respectively. For the LSTAR model with δ= 0.9 the information cri-

teria are apparently punishing too severely for the additional parameter and do not choose

the LSTAR model in 100% of the cases until T = 1,000,000. Again, this shows that while the

identification problem for δ is a small sample problem, the label “small sample” is mis-

leading since T needs to be extremely large to get a clear distinction between an LSTAR

and a TAR model. This finding is also supported by the results of Castle and Hendry (2013,

table 3) which shows that data generated from the two models is highly correlated. Ob-

serve that when the TAR model is the DGP, the information criteria perform well.

The results of a repeated Monte Carlo experiment with c = 1 in table 4.2 show signifi-

cant improvements in the selection rates of the information criteria for small samples. It

is peculiar that the power of the information criteria depends on the (fixed) value of the

threshold parameter c.
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Table 4.2: Percentage selected LSTAR models using information criteria. c = 1.

DGP LSTAR, δ= 0.2 LSTAR, δ= 0.5 LSTAR, δ= 0.9 TAR, δ= 1

T BIC HQIC BIC HQIC BIC HQIC BIC HQIC

100 52 67 24 42 4 11 0 0

250 84 92 51 71 6 17 0 0

500 98 99 77 89 9 27 0 0

1,000 100 100 96 98 18 45 0 0

10,000 100 100 100 100 98 100 0 0

50,000 100 100 100 100 100 100 0 0

100,000 100 100 100 100 100 100 0 0

1,000,000 100 100 100 100 100 100 0 0

Note: Only δ is estimated. Remaining parameters are fixed at true values of σ2 = 1,
α= 0.5 and c = 1.

Overall, if model selection based on information criteria prefer an LSTAR, it is a clear

indication that the speed of transition is slow enough to make a difference compared to the

TAR model. On the other hand, if the TAR is chosen, there is a risk that one has incorrectly

fixed δ = 1 and selected the TAR model. However, this only means that δ is irrelevant for

the model. Hence, information criteria provide a conservative tool to select LSTAR models

over TAR models that can be used if the researcher wishes to comment on the speed of

transition.

5. ESTIMATING LSTAR MODELS

The properties of the likelihood function for LSTAR models discussed so far introduce dif-

ficulties for numerical optimization. We observe two separate problems that have to be

taken into account. First, the likelihood function might have a multiple maxima in the

direction of δ, as described in the previous sections. To handle this, it is useful to estimate

δ with a derivative based optimizer and using different initial values from the parameter

space δ ∈ (0;1]. To ensure that the reached maximum is global, it is important to always

calculate the additional likelihood value at the limit, δ= 1.

The second difficulty is that the likelihood function approaches the step-wise likeli-

hood function of a TAR model in the direction of c as δ→ 1. Consequently, many local
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maxima exist in the direction of c and derivative based optimizers will not work well. For

an illustration see figure 5.1, which shows the likelihood as a function of c for different

values of δ. To circumvent the problem of a step-wise likelihood function, a grid search

algorithm over c can be performed with an interval that covers observed values of yt−1

spanning from, e.g., the 10th to the 90th percentile of the distribution of yt−1. This grid

search technique for c is standard in the TAR literature and ensures that all relevant points

for threshold locations are examined. The rest of the parameters are estimated using least

squares conditional on the transition function parameters.

When estimating simple models, as the one analyzed in this paper, performing a two

dimensional grid search overδ and c and drawing the profiled likelihood function is gener-

ally informative. This approach allows the researcher to take into account both problems.

Note that this proposal is by no means new and is in fact standard practice in the litera-

ture for finding candidates for initial values, see inter alia Bec et al. (2008) and Teräsvirta

et al. (2010, ch. 12). Our contribution is that the δ-parametrization clarifies the reason for

doing the grid search, and we emphasize that the main problem of multiple equilibria of

the LSTAR model is related to the fact that the likelihood function approaches a step-wise

likelihood function as δ→ 1.

Figure 5.1: Profiled likelihood functions in the direction of c for different values of δ. Data is one
realization from an LSTAR model with T = 300, σ2 = 1, c = 0 and α= 0.5.
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6. EMPIRICAL APPLICATIONS

We illustrate by two empirical applications from the LSTAR literature the advantages of the

δ-parametrization over the γ-parametrization and model selection based on information

criteria. The first application illustrates a situation where the δ-parametrization reveals

that the reported maximum of the likelihood function is not the global maximum. In the

second application, the δ-parametrization confirms that the global maximum is the re-

ported one, but information criteria prefer the TAR model over the LSTAR model because

the regime switching is so fast that estimating the additional speed of transition parameter

is superfluous.

6.1. WOLF’S ANNUAL SUNSPOT NUMBERS

Teräsvirta et al. (2010, p. 390), illustrate a suggested STAR modeling procedure by analyz-

ing Wolf’s annual sunspot numbers dating from 1700 to 1979. The data is published at

the Belgian web page of Solar Influences Data Analysis Center.2 Following Teräsvirta et al.

(2010) the series is transformed as: yt = 2
{
(1+ z t )1/2 −1

}
where zt is the original series.

The motivation for transformation is that the transformed series is easier to model than

the untransformed one. The original estimated LSTAR model is reproduced with both

parametrizations and given by (standard errors in parenthesis)

yt = 1.46
(0.08)

yt−1 −0.76
(0.13)

yt−2 +0.17
(0.05)

yt−7 +0.11
(0.04)

yt−9

+(2.65
(0.85)

−0.54
(0.13)

yt−1 +0.75
(0.18)

yt−2 −0.47
(0.11)

yt−3

+0.32
(0.11)

yt−4 −0.26
(0.07)

yt−5 −0.24
(0.05)

yt−8 +0.17
(0.06)

yt−10)×Ĝ x
t (6.1)

x = γ : Ĝγ = 1+exp{−5.46
(1.11)

(yt−2 −7.88
(0.36)

)/σ̂yt−2 }−1

x = δ : Ĝδ = 1+exp



−

0.85
(0.03)

1−0.85
(0.03)

(yt−2 −7.88
(0.36)

)/σ̂yt−2





−1

T = 270, RSS = 921.84, Log L =−2,091.2

2http://www.sidc.oma.be/sunspot-data/
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B IC = 4,260.8, HQIC = 4,230.7

The normalization by σ̂yt−2 in the transition function is standard in the literature of ap-

plied STAR models because it facilitates the choice of grid or initial values for γ, see van

Dijk et al. (2002). The profiled likelihood function in direction of c andγ for each parametriza-

tion is showed in figure 6.1. The characteristically flatness in the direction of γ is pro-

Figure 6.1: Profiled likelihood functions of the LSTAR model for Wolf ’s sunspot numbers, 1710-
1979. (a) is for the γ-parametrization and (b) is the for the δ-parametrization.

(a) (b)

nounced in figure 6.1(a), and the reported maximum for (ĉ, γ̂) = (5.46,7.88) appears rel-

atively well-defined. However, figure 6.1(b) reveals that the global maximum is actually

the TAR model at the boundary δ= 1, whereas the LSTAR model is only a local maximum.

The γ-parametrization has effectively blurred the shape of the likelihood function. At the

boundary, the TAR likelihood function is characterized by discrete jumps over the range of

c. This implies that performing a careful grid search over potential values of c is crucial for

the estimation of c, as discussed in section 5 and, more importantly, that inference on c is

non-standard, cf., Chan (1993) and Hansen (1997). Estimating the TAR model yields3

yt = 1.43
(0.08)

yt−1 −0.77
(0.14)

yt−2 +0.17
(0.05)

yt−7 +0.12
(0.05)

yt−9

3The grid search of c is performed over values of yt−2, disregarding values in the lower 10% percentile
and upper 90% percentile of the distribution of yt−2. No standard error of ĉ is reported due to the non-
standard inference on the threshold parameter in a TAR model.
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+(2.69
(0.70)

−0.45
(0.11)

yt−1 +0.69
(0.18)

yt−2 −0.48
(0.11)

yt−3

+0.36
(0.11)

yt−4 −0.27
(0.07)

yt−5 −0.21
(0.05)

yt−8 +0.14
(0.05)

yt−10)× I(yt−2 > 6.39
)

. (6.2)

T = 270, RSS = 920.66, Log L =−2,090.9

B IC = 4,254.6, HQIC = 4,226.6

While the AR parameters are almost identical to those of the LSTAR model in (6.1), the

threshold parameter differs between the models. This TAR maximum is preferred by the

information criteria to the reported LSTAR model in (6.1) because the TAR model achieves

a higher (lower) value of LogL (RSS) in addition to be one parameter short of the LSTAR

model.4 The TAR maximum (6.2) can easily be reproduced with the δ-parametrization by

performing a two-dimensional grid search over c and δ ∈ (0;1]. A similar exercise for the

γ-parametrization produces, depending on the choice of grid for γ as well as the choice

of stopping criterion, either the local LSTAR maximum of (6.1) or an invalid maximum

with all observations in one regime. Hence, the model that truly maximizes the likelihood

function is impossible to estimate with the γ-parametrization because γ is infinity.

Nevertheless, given that an LSTAR process has a TAR maximum as a small sample

property, as found in section 4, and the relatively small sample size of 270, the LSTAR

model cannot be discarded as being the DGP of this sunspot data. In addition, the likeli-

hood function in the region of the local LSTAR maximum in (6.1) and appearing in figure

6.1, seems closely approximated by a quadratic form, and is thus a well defined maxi-

mum. Based on these considerations, one could also argue that the LSTAR model may be

the DGP of the process.

6.2. U.S. UNEMPLOYMENT RATE

The paper by van Dijk et al. (2002) illustrates a suggested STAR modeling cycle which in-

cludes, among others, impulse response and forecasting analysis. The data series is the

monthly seasonally unadjusted unemployment rate for U.S. males aged 20 and over for

the period 1968:6-1989:12.5

4Teräsvirta et al. (2010) reach similar conclusion when estimating a TAR model for the same data later
in the book, though, without specifying a measurement. Their TAR model is, however, specified differently
and non-nested with (6.2) and (6.1) which makes direct comparisons infeasible.

5The series is constructed from data on the unemployment level and labor force for the particular sub
population. These two series are published together with Gauss programs used to estimate their model at
http://swopec.hhs.se/hastef/abs/hastef0380.htm.
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The LSTAR model is reproduced with both parametrizations and given by (standard

errors in parenthesis)

∆yt = 0.479
(0.07)

+0.645
(0.07)

D1,t −0.342
(0.10)

D2,t −0.680
(0.09)

D3,t −0.725
(0.11)

D4,t −0.649
(0.10)

D5,t

−0.317
(0.09)

D6,t −0.410
(0.09)

D6,t −0.501
(0.09)

D8,t −0.554
(0.09)

D9,t −0.306
(0.07)

D10,t

+[−0.040
(0.01)

yt−1 −0.1460
(0.08)

∆yt−1 −0.101∆
(0.06)

yt−6 +0.097
(0.06)

∆yt−8 −0.123
(0.06)

∆yt−10

+0.129
(0.07)

∆yt−13 −0.103∆
(0.06)

yt−15]× [1−Ĝ x
t ]

+[−0.011
(0.01)

yt−1 +0.225
(0.08)

∆yt−1 +0.307∆
(0.08)

yt−2 −0.119
(0.07)

∆yt−7 −0.155
(0.09)

∆yt−13

−0.215
(0.09)

∆yt−14 −0.235
(0.09)

∆yt−15]×Ĝ x
t (6.3)

x = γ : Ĝγ = 1+exp{−23.15
(21.75)

(∆12 yt−1 −0.274
(0.04)

)/σ̂∆12 yt−1 }−1

x = δ : Ĝδ = 1+exp



−

0.96
(0.04)

1−0.96
(0.04)

(∆12 yt−1 −0.274
(0.04)

)/σ̂∆12 yt−1





−1

T = 240, RSS = 8.178, Log L =−725.0

B IC = 1,597.9, HQIC = 1,541.8

Ds,t is monthly dummy variables where Ds,t = 1 if observation t corresponds to month s

and Ds,t = 0 otherwise. van Dijk et al. (2002) have sequentially removed all variables with

a t-statistic lower than 1 in absolute value. Observe that γ is rather large and imprecisely

estimated indicating that data contains little information about the size of this parameter.

The profiled likelihood functions for the two parametrizations are displayed in figure 6.2.

Because γ̂ is so large, the maximum is visually absorbed by the flatness of the γ-likelihood

function in figure 6.2(a). In contrast, the δ-likelihood function in figure 6.2(b) confirms

that the reported maximum is in fact the global maximum of the likelihood function. In-

terestingly, the δ-likelihood function shows that the local TAR maximum at the boundary

leads to only a minor drop in likelihood value compared to the LSTAR model. To check

whether this TAR model is preferred by information criteria, the TAR model is estimated

59



Figure 6.2: Profiled likelihood functions of the LSTAR model for U.S. male unemployment rate,
1968:6-1989:12. (a) is for the γ-parametrization and (b) is the for the δ-parametrization.

(a) (b)

and given by6

∆yt = 0.473
(0.07)

+0.644
(0.07)

D1,t −0.343
(0.10)

D2,t −0.675
(0.09)

D3,t −0.721
(0.11)

D4,t −0.641
(0.10)

D5,t

−0.308
(0.09)

D6,t −0.410
(0.09)

D6,t −0.505
(0.08)

D8,t −0.546
(0.09)

D9,t −0.295
(0.07)

D10,t

+[−0.040
(0.01)

yt−1 −0.140
(0.08)

∆yt−1 −0.094∆
(0.06)

yt−6 +0.092
(0.06)

∆yt−8 −0.116
(0.06)

∆yt−10

+0.136
(0.07)

∆yt−13 −0.106∆
(0.06)

yt−15]× I(∆12 yt−1 ≤ 0.268
)

[−0.012
(0.01)

yt−1 +0.227
(0.08)

∆yt−1 +0.307∆
(0.08)

yt−2 −0.094
(0.07)

∆yt−7 −0.146
(0.09)

∆yt−13

−0.211
(0.09)

∆yt−14 −0.216
(0.09)

∆yt−15]× I(∆12 yt−1 > 0.268
)

(6.4)

T = 240, RSS = 8.191, Log L =−725.3

B IC = 1,593.2, HQIC = 1,539.1

The information criteria prefer this TAR model implying that the speed of transition is too

poorly estimated to make a difference.

This application highlights one of the key points of the present paper, namely that a

6Similar to the previous TAR estimation, the grid search of c is performed over values of ∆12 yt−1, disre-
garding values in the lower 10% percentile and upper 90% percentile of the distribution of∆12 yt−1. No stan-
dard error of ĉ is reported due to the non-standard inference on the threshold parameter in a TAR model.
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large and imprecisely estimated γ implies that the LSTAR model is effectively a TAR model.

Estimation of the LSTAR model is too much to ask of the data. Moreover, we observe the

consequences of the flat likelihood function for inference on γ̂. The estimated standard

error of γ̂ (s.e.(γ̂)) is large due to the flatness of the likelihood function in direction of γ

towards infinity, see figure 6.2(a). However, the large s.e.(γ̂) seems less justified towards

zero where one observes a large drop in the likelihood. This illustrates how the flatness

contaminates the estimation of the variance of γ̂ for which zero is well within a two s.e.(γ̂).

Consequently, one might conclude that γ could be zero, which from a look at the function

in figure 6.2(a) seems unlikely. For this reason (and because a test of γ= 0 results in vanish-

ing parameters and, thus, is a non-standard test), it is common practice in the LSTAR liter-

ature not to comment on the s.e.(γ̂). It is seen from the s.e.(δ̂) that the δ-parametrization

does not suffer from this problem in the present application.

7. CONCLUSION

Regime switching models characterized by smooth transitions only differ from discrete

regime switching models by the speed of transition parameter. Thus, estimation and iden-

tification of this parameter is essential not only for economic interpretation but also for

model selection. Nevertheless, the identification problem and its consequences for esti-

mation have received little attention in the literature. We show that the original parametriza-

tion of the speed of transition parameter is problematic as the likelihood function is char-

acterized by large flat areas caused by all derivatives approaching zero with faster speed

of transition. This implies that the magnitude of the estimator may depend on the arbi-

trarily chosen stopping criteria of the numerical optimizer. To circumvent this problem,

we propose a reparametrization of the LSTAR model. The reparametrization maps the pa-

rameter space of the original speed of transition parameter into a much smaller interval

which facilitates identifying the global maximum of the likelihood function as well as nu-

merical optimization. We then show that the TAR model can be the global maximum of a

LSTAR likelihood function, while it, by construction, is always at least a local maximum.

Instead of relying solely on economic theory when justifying the additional parameter of

the LSTAR model, we show that information criteria provide a model selection tool that

can be applied if the researcher wishes to comment of the speed of transition. Acknowl-

edging that the LSTAR model considered in this paper is simple and the presented simu-

lation results only apply to this particular framework, the new parametrization provides

general insights on the shape of the likelihood function in directions of the two param-
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eters of the transition function that can be generalized to a broad range of other models

within the smooth switching literature. For example, the double-logistic smooth transi-

tion (D-LSTAR), the Multi-Regime Smooth Transition Autoregression (MR-STAR) and the

logistic autoregressive conditional root (LACR) model, see, e.g. , Bec et al. (2010) and Bec

et al. (2008).
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A. SIMULATED LSTAR PROCESS AND LOGISTIC TRANSITION FUNCTION

Figure A.1: Simulated data series (a) and transition function (b) for the LSTAR model (2.1) with
γ= 2, c = 0, α= 0.5 and T = 150.

(a) (b)
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B. PROOF OF LEMMA 1

Observe initially that with Gt defined in (2.2), it holds that

∂Gt

∂γ
=Gt (1−Gt )

(
yt−1 − c

)=:ψt
(
yt−1 − c

)

and
∂2Gt(
∂γ

)2 = ∂ψt

∂γ

(
yt−1 − c

)=ψt (1−2Gt )
(
yt−1 − c

)2 .

Moreover, as γ→∞, one has ψt → 0 and hence ∂Gt/∂γ→ 0 and ∂2Gt/(∂γ)2 → 0. In fact, note

that all higher order derivatives will have the form

∂nGt(
∂γ

)n =ψt g (Gt )
(
yt−1 − c

)n

where g (Gt ) is a function consisting of an integer and of sums and products of Gt . In par-

ticuler, observe that since 0 <Gt < 1, it holds for any n <∞ that g (Gt ) = K for a constant

K <∞. Thus, we have that
∂nGt(
∂γ

)n → 0 as γ→∞. (B.1)

Next, consider the likelhood contribution given by `t
(
γ
)

in (3.1). Standard calculus gives

∂`t
(
γ
)

∂γ
= εt

(
γ
)
αyt−1

∂Gt

∂γ
=αyt−1 yt

∂Gt

∂γ
−α2 y2

t−1Gt
∂Gt

∂γ
=: at

(
γ
)+bt

(
γ
)

.

Observe that the higher order derivatives of the terms at
(
γ
)

and bt
(
γ
)

with respect to γ

will be of the respective forms

∂n at
(
γ
)

(
∂γ

)n =αyt−1 yt
∂nGt(
∂γ

)n and
∂nbt

(
γ
)

(
∂γ

)n =−α2 y2
t−1

n∑

k=0

(
n

k

)
∂kGt
(
∂γ

)k

∂n−kGt
(
∂γ

)n−k
.

Consequently, it holds by (B.1) that ∂n`t (γ)/(∂γ)n → 0 as γ→∞.

Observe that the same result holds for the parametrization with δ since

∂nGt

(∂δ)n = ∂nGt(
∂γ

)n
∂nγ

(∂δ)n and
∂nγ

(∂δ)n = n!

(δ−1)(n+1)
,

where ∂nγ/(∂δ)n is function that grows as δ→ 1. However, the grows rate is slower than the
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exponential decay of ∂nGt/(∂γ)n and, hence, we still have,

lim
δ→1

∂nGt

(∂δ)n = 0.
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Chapter 3

A Structural Analysis of the Convenience
Yield on U.S. Treasury Bonds
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A Structural Analysis of the Convenience Yield on

U.S. Treasury Bonds

Line Elvstrøm Ekner*

ABSTRACT: U.S. Treasury bonds are the most liquid and safe assets on the market. This fact leads to a

convenience yield on Treasury bonds relative to high grade corporate bonds which depends on the supply

of Treasury bonds. We model the dynamics of the persistent variables measuring Treasury supply and con-

venience yield in vector error correction model (VECM). The long-run relationship is negative reflecting a

downward-sloping demand function for liquidity and safety. However, the short-run relationship is positive

and identified by means of a structural VECM. The driving factor of the short-run result is the safety pre-

mium of the convenience yield. The safety premium is reduced on impact and the first two years after a

negative shock to the supply of Treasury bonds, before turning positive and raised in accordance with the

long-run negative relationship. The results are robust to a potential kink in the demand relation estimated

by a threshold VECM.

1. INTRODUCTION

An asset is said to carry a convenience yield or is called “special” if it offers benefits from

holding it rather than having a contract on the asset. The identifying feature of such an

asset is that its price will be inflated relative to other benchmarks, or equivalently, its yield

will be lower than benchmarks. It has been argued that U.S. Treasury bonds carry such a

convenience yield because they offer extreme liquidity and safety for an investor, see Rein-

hart et al. (2000), Fleming (2000) and Krishnamurthy and Vissing-Jørgensen (2012). The

almost certain promise of nominal repayment is valuable because it implies that these as-

sets can be used as guarantee in financial transactions and because investment needs of,

e.g., foreign central banks and insurance companies, only can be satisfied by holding safe

and liquid assets. Thus, given a limited supply of Treasury bonds, a convenience yield is

induced by investors’ demand for liquidity and safety related to this scarce asset. Krish-

namurthy and Vissing-Jørgensen (2012) argue that the safety premium on Treasury bonds

differs from a standard risk premium because it arises from these inverstors’ demand and,

*Øster Farimagsgade 5, Building 26, DK-1353 Copenhagen K, Denmark, line.elvstrom.ekner@econ.ku.dk
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as a result, the size of the safety premium depends on the supply of Treasury bonds. In

contrast, a risk premium is normally unrelated to the supply of the given asset.

This paper analyzes the dynamics of the convenience yield on U.S. Treasuries using

annual observations from 1919-2008. We confirm the results found in previous studies,

namely, that there is a negative relationship between the supply of U.S. Treasury bonds,

measured by U.S. government debt, and the convenience yield, measured by the long-

term spread between yields of corporate bonds and Treasury bonds. Corporate bonds of-

fer less liquidity and/or less safety for an investor than Treasury bonds, and, hence, the

spread measures the convenience yield. We emphasize, however, that the downward-

sloping demand function can only be interpreted as a long-run demand relationship. In

the short-run, the results show that the demand function has a positive slope or is at best

flat.

In light of the recent emphasis on Quantitative Easing as a monetary policy tool, there

is by now a rich literature documenting a positive relationship between the (expected

and/or relative) supply of Treasuries and the yield of Treasuries, see, e.g, Kuttner (2006),

D’Amico and King (2012), Hamilton and Wu (2012), and D’Amico et al. (2012). However,

the literature relating the supply of Treasury bonds to yield spreads is still scarce. The

earlier literature on a Treasury convenience yield was motivated by declining debt in the

late 1990s. Reinhart et al. (2000) and Fleming (2000) hypothesized an increasing conve-

nience yield with the debt pay-down and attributed it to higher liquidity and safety of

Treasuries compared to other assets. Empirical evidence is presented by Cortes (2003)

who observes a positive relation between the expected budget balance and swap spreads

using monthly observations for 1994-2003. The swap spread is the difference between

swap rates and government bond yields of same maturity. Thus, the more positive expec-

tations, the smaller is the expected government bond issuance, the wider the swap rates.

Longstaff (2004) uses monthly observations from 1991-2001 and finds a significant liquid-

ity premium on Treasury bonds and, moreover, that it is negatively related to changes in

the supply of Treasuries available to the investors. As a control variable, changes in default

credit risk is, among others, included. Longstaff et al. (2005) find, using weekly observa-

tions for 2001-2002, that a large part of the yield spread between corporate bonds and

Treasury bonds is caused by a component unrelated to default risk considerations of the

investor. This indicates that the yield spread contains a convenience yield factor. Krish-

namurthy and Vissing-Jørgensen (2012) argue that the convenience yield is isolated from

the default risk component and present a theoretical model to explain the presence of a

convenience yield consisting of a liquidity and a safety premium. Using annual data of

different sample lengths they quantify a convenience yield consisting of a liquidity and
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a safety premium and disentangle it from default risk. Finally, Sunderam (2013) presents

empirical evidence using weekly data for 2001-2007 of a negative relationship between the

supply of short-term maturity Treasury notes and the spread between the yield of asset-

backed commercial papers and the Treasury notes.

Overall, the previous studies find evidence for a negative demand relation for Treasury

bonds induced by a convenience yield. It has the main implication, as also noted in some

of the papers, that the Federal Reserve (Fed) purchases of Treasury bonds will increase the

yield spreads by disproportionally lowering Treasury yields. Moreover, this may suggest a

muted transmission mechanism to the private sector and an adverse economic effect of a

reduction in government debt.

Despite the high persistence in the yield spread series and the variable measuring the

supply of Treasuries, none of the studies take these properties into account by modeling

the dynamics of the relationship directly. More importantly, the nondefault component

of the yield spread found in Longstaff et al. (2005) is shown to be time-varying. Hence,

valuable information about the behavior of the convenience yield may be present in the

short-run dynamics, which is the focus of this paper. An important advantage of using

yield spreads in the analysis rather than yield levels is that the spreads are unaffected by

shocks that equally affect both yields, e.g., expected inflation shocks. This facilitates eco-

nomic interpretation of the structural shocks in the econometric analysis.

To specify the full dynamics of the convenience yield and the supply of Treasury bonds

and, furthermore, model them jointly, we employ a vector autoregression (VAR) model

and use a long sample dating from 1919 to 2008. By imposing an acceptable restriction on

the cointegration rank, we identify the long-run negative demand relation and the equi-

librating force in a vector error correction model (VECM) by Johansen (1996). Similar to

Shapiro and Watson (1988), Blanchard and Quah (1989), King et al. (1991) we identify a

just-identified structural model by constraining the long-run impact as well as the covari-

ance matrix of the residuals. We estimate a structural VECM (SVECM) as a reduced rank

VECM and then transform the system by post-multiplying the VECM by a rotation matrix

that imposes the necessary restrictions on the covariance matrix. Impulse responses fol-

lowing a convenience yield demand shock and a Treasury supply shock are then computed

to shed light on the short-run dynamics of the relationship. Next, we extend the model to

include measures of each of the convenience yield components and repeat the structural

analysis, albeit the short-run identification becomes more subtle. The structural analy-

sis shows that for shorter horizons, 0-2 years, the supply of Treasury bonds is positively

related to the convenience yield which encompasses a positive relation to the safety pre-

mium and an insignificant relation to the liquidity premium. This contrasts the long-run
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negative relations and two premiums of almost equal size found in previous studies and

also in this study. In addition, the transitory demand shocks to liquidity and safety are rel-

atively long-lived and the effects die out after about four years for the spread variables and

about six years for the Treasury supply variable. The results are shown to be robust to a

potential kink in the demand relations estimated by a threshold VECM (TVECM), an influ-

ential observation and choice of identifying restriction. Hence, a reduction in government

debt may not have adverse economic effects for the shorter horizons as first thought.

Section 2 introduces the statistical methodology and the structural model used to an-

alyze the short-run effects. The data is then presented in section 3 before the dynamics of

the total convenience yield are estimated in section 4. In section 5 the analysis continues

by separating the convenience yield into a liquidity premium and safety premium. The

robustness of the results are investigated in section 6 while section 7 concludes.

2. METHODOLOGY

The statistical framework for the analysis is the cointegrated VAR (CVAR) model of Jo-

hansen (1996) and Juselius (2006). By means of the CVAR we can analyze the short-run

relationship between the yield spreads and the supply of Treasuries as well as the long-

run relationship within the same framework. The baseline model for the analysis is the

p-dimensional CVAR in VECM form, sometimes referred to as the reduced form VECM:

∆Zt =αβ′Z̄t−1 +
k−1∑

i=1
Γi∆Zt−i +εt , t = 1,2, ...,T. (2.1)

Zt is a p × 1 vector of variables, Zt = (z1t z2t ... zpt )′ , and Z̄t is (Z ′
t ,1)′. α and β are

matrices of dimension p × r and (p +1)× r , respectively, with β′Z̄t representing the r ≤ p

cointegrating relationships and α giving the direction and speed of adjustment towards

equilibrium. k is the number of lags in the corresponding VAR presentation and the au-

toregressive coefficients, Γ1, ...,Γk−1, are of dimension p ×p. For estimation, it is assumed

that εt is an i.i.d. Gaussian sequence, Np (0,Ω), while conditioning on the initial values,

Z−k+1, ..., Z0.

2.1. THE GRANGER REPRESENTATION

To gain further insights into the dynamics of the process Zt , the Granger Representation

Theorem of Johansen, cf. Johansen (1995), is applied. It decomposes Zt into I (1) and I (0)

components. If α′
⊥(Ip −∑k−1

i=1 Γi )β⊥ has full rank, p − r , the solution to (2.1) is
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Zt =C
t∑

i=1
εt +C∗(L)εt + Z̃0 (2.2)

where the long-run impact matrix is

C =β⊥

(
α′
⊥(Ip −

k−1∑

j=1
Γ j )β⊥

)−1

α′
⊥.

The rank of C is p − r , and hence when multiplied by the random walks
∑t

i=1εt , C
∑t

i=1εt

represents the p − r stochastic trends driving the system. The initial values are contained

in Z̃0 while C∗(L) =∑∞
i=0 C∗

i Li is a convergent polynomial in the lag operator L, and, thus,

C∗(L)εt is an I (0) process.

2.2. IMPULSE RESPONSES

The cointegration vectors give the long-run associations between the variables of the sys-

tem. These long-run relationships, however, ignore all other relations between the vari-

ables which are only summarized in the VECM. The exact form of these relations is usu-

ally difficult to see directly from the coefficients. Therefore, impulse response functions

are often computed. They represent the marginal responses of the endogenous variables

of the system to an impulse in one of the endogenous variables. These may be regarded

as conditional forecasts of the endogenous variables given that they have been zero up to

the time when an impulse on one of the variables occurs.

The impulse responses can be computed from (2.2) by noticing that the coefficients to

the convergent polynomial C∗(L) can be recursively obtained from the equation

∆C∗
i =αβ′C∗

i−1 +
k−1∑

j=1
Γ j∆C∗

i− j , i = 1,2, ...

with C∗
0 = Ip −C and C∗

−1 = ... = C∗
−k+1 = −C , cf. Hansen (2005). The impulse response

function of the reduced form model is then given by the coefficients Ci = C +C∗
i which

can be calculated by the recursion, cf. Johansen (2010)

Ci =
k∑

j=1
Πi Ci− j , with initial values C0 = Ip ,Ci = 0, i < 0 (2.3)

whereΠ1 = Ip +αβ′+Γ1,Πi = Γi −Γi−1, i = 2, ...,k−1,Πk =−Γk−1. Note that as the number

of impulse responses, i , increases C∗
i → 0 and Ci →C .
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2.2.1. INFERENCE

We base the statistical inference regarding the impulse responses on bootstrap methods,

as first suggested by Runkle (1987). Various bootstrap approaches have been proposed for

setting up confidence intervals for the impulse responses. We focus on Hall’s percentile

interval, cf. Hall (1992), which is pointed out by Benkwitz et al. (2001) to be advantageous

due to the build-in bias-correction of the bootstrap distribution in case of biased impulse

response estimates. The bootstrap samples are generated by resampling the (recentered)

residuals with replacement, and the cointegration vectors are reestimated for each boot-

strap sample. Alternatively, the estimation uncertainty arising from reestimation of the

cointegration vectors could be ignored by fixing them at the superconsistently estimated

vectors from the original sample. However, Benkwitz et al. (2001) argue that it makes little

difference for the impulse response inference and may just cover up actual estimation un-

certainty. For the estimated models below, no apparent differences in confidence intervals

were observed when fixing the cointegration vector of the bootstrap samples.

2.3. SVECM

A SVECM provides a framework for a structural interpretation of the shocks that drive the

system. In contrast to a VAR model, the estimated cointegration relationships impose con-

straints on the long-run impact matrix, C , in (2.2). This facilitates identification of the

structural shocks because these long-run restrictions imply that the number of perma-

nent and transitory components are already given when turning to the SVECM, see, e.g.,

Shapiro and Watson (1988) and King et al. (1991). Here, we focus on the just-identified

structural model which is in fact only a rotation of the Granger Representation in (2.2).

The SVECM is given by

B∆Zt = Bαβ′Z̄t−1 +
k−1∑

i=1
BΓi∆Zt−i +Bεt (2.4)

with ε ∼ i .i .d(0, Ip ). We introduce the structural shocks or innovations, denoted by µt ,

which are assumed to be related to the reduced-form disturbances, εt , by linear relations:

µt = Bεt ⇔ εt = B−1µt (2.5)

where B is an invertible p × p matrix. The Granger Representation (2.2) is modified by
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inserting (2.5)

Zt =C B−1
t∑

i=1
µt +C∗(L)B−1µt + Z̃0. (2.6)

Let Ri = R +R∗
i where R =C B−1 is the structural long-run impact matrix and R∗

i =C∗
i B−1.

The impulse response function corresponding to the structural shocks becomes

Ri =
k∑

j=1
Πi Ri− j . (2.7)

The structural shocks are the central quantities in an SVECM and may be associated with

an economic meaning. They are, however, not identified, and B must obey certain require-

ments to allow for a structural interpretation. How to choose B and achieve identification

is the subtle part of the structural analysis.

2.3.1. IDENTIFICATION STRATEGY1

By adding the rotation matrix B to (2.4) we have introduced p × p new parameters, and

we then need to impose as many restrictions to reach a just-identified model, which is the

case considered here. Moreover, a structural interpretation of the shocks requires that the

rotation 1) separates the shocks with permanent effects from those with transitory effects;

2) identifies each individual shock; and 3) orthogonalizes the shocks to facilitate impulse

response analysis.

To fix ideas, we need to find the rotation matrix B

B = H−1EG ,

where the matrices H , E and G each rotate the system to perform one of the three tasks

needed to achieve an identified model with a structural interpretation of the shocks.

1. Separation The shocks are decomposed into two groups with the matrix G

G =
(
α′Ω−1

α′
⊥

)
.

The first group consists of r shocks with transitory effects and the last group consists of

p − r shocks with permanent effects.

1This section builds on Warne (1993) and Gonzalo and Ng (2001).
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2. Identification Additional restrictions are often required because the assumption of

orthogonal shocks introduced in step 3 below is not sufficient to achieve identification in

many systems. Given a rank of r there can be at most p − r shocks with transitory effects

and at least r with permanent effects. Hence, r (r −1)/2 additional restrictions are needed

to exactly identify the transitory shocks and (p − r )(p − r −1)/2 restrictions to identify the

permanent shocks. These restrictions can be obtained from a “timing scheme” for the

shocks. For such a scheme it is assumed that the shocks may affect a subset of variables

directly within the current time period, whereas another subset of variables is affected

with a time lag only. Given the aim of a just-identified structural model, a rotation which

identifies the shocks can be achieved by pre-multiplying G with the inverse of full rank

p ×p matrix, E

E =
(

E1 0

0 E2

)
.

The shocks with transitory effect are identified with E1, which is an r ×r matrix. It consists

of the r first elements of the rows in G−1 where unit vectors are wanted. Similarly, the

shocks with permanent effect are identified with E2, which is (p−r )×(p−r ) and it consists

of the last p − r elements of the rows of the (until this step) long-run impact matrix CG−1.

Observe that step 1 and 2 imply that the structural covariance matrix EGΩG ′E ′ is block-

diagonal

EGΩG ′E ′ =
(

E1 0

0 E2

)(
α′Ω−1

α′
⊥

)
Ω

(
Ω−1α α⊥

)(
E ′

1 0

0 E ′
2

)

=
(

E1α
′Ω−1

E2α
′
⊥

)
Ω

(
Ω−1αE ′

1 α⊥E ′
2

)

=
(

E1α
′Ω−1ΩΩ−1αE ′

1 E1α
′Ω−1Ωα⊥E ′

2

E2α
′
⊥ΩΩ

−1αE ′
1 E2α

′
⊥Ωα⊥E ′

2

)

=
(

E1α
′Ω−1αE ′

1 0

0 E2α
′
⊥Ωα⊥E ′

2

)
.

3. Orthogonalization The final requirement for the rotation matrix is that the shocks are

uncorrelated. This is needed to consider the dynamic impact of an isolated shock. If the

shocks were correlated, we should take into account the relationship between the shocks.

The shocks EGεt can be orthogonalized by means of a Cholesky decomposition that solves

H H ′ = EGΩG ′E ′.
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Given the block-diagonal structure of EGΩG ′E ′, the Cholesky decomposition results in

H =
(

H1 0

0 H2

)
and H−1 =

(
H−1

1 0

0 H−1
2

)

where H1 and H2 are lower triangular matrices resulting from the Cholesky decomposition

of E1α
′Ω−1αE ′

1 and E2α
′
⊥Ωα⊥E ′

2, respectively.

The final rotation matrix is then B = H−1EG . Observe that it also normalizes the vari-

ances and standard deviations of the structural shocks to unity

BΩB ′ = H−1EGΩG ′E ′(H−1)′ = Ip .

Moreover, note that the Cholesky decomposition is not the single tool used for identifica-

tion as shocks are also identified by step 2. Consequently, the impulse responses will not

depend on the ordering of the variables in the system.

To sum up, a total of p×p restrictions are needed to just-identify the structural model.

Given the cointegration rank, only r shocks have transitory effects and r (p−r ) restrictions

are thus already imposed on the rotation matrix. Hence, p2 − r (p − r ) restrictions are left.

Step 2 imposes r (r −1)/2+(p−r )(p−r −1)/2 = 1
2 p(p−1)−r (p−r ) restrictions, whereas the

final orthogonalization takes up p(p +1)/2 restrictions. This adds up to the p2 − r (p − r )

restrictions.

Since the just-identified structural model is only a rotation of the Granger Represen-

tation, efficient estimates of the model can be calculated in two steps: first, the reduced

form VECM is estimated imposing the cointegration restriction and possibly also short-

run restrictions as well. Second, the estimated reduced rank VECM is transformed into

the structural model using the three steps given above.

3. DATA

We consider a total of four variables, all sampled at an annual frequency from 1919-2008.

The three yield spreads are: the spread between the yield of Moody’s AAA-rated corpo-

rate bonds and the yield of U.S. Treasury bonds, saa−tb
t ; the spread between the yield of

Moody’s BAA-rated corporate bonds and the yield of U.S. Treasury bonds, sba−tb
t ; and the

spread between the yield of Moody’s BAA-rated corporate bonds and the yield of Moody’s

AAA-rated corporate bonds, sba−aa
t . All bonds are long-maturity bonds. The series are ob-

tained from the Federal Reserve’s FRED database2, except for the yields on Treasury bonds

2Series AAA, BAA and LTGOVTBD and GS20
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for the years 1919-1924 which are obtained from Banking and Monetary Statistics, 1914-

1941, table 128.3 The yield spreads are sampled to match the fiscal year; that is in July

of the year up to and including 1976 and in October of each year after that. The fourth

variable is the (log of) U.S. government debt-to-GDP, `DRt , measuring the supply of Trea-

sury bonds. Debt is ultimo government’s fiscal year and GDP is for the same fiscal year.

The series is from Henning Bohn’s web page and constructed for Bohn (2008).4 The data

set is identical to the one used in Krishnamurthy and Vissing-Jørgensen (2012), except for

debt-to-GDP, here kept in face value.5

Figure 3.1 shows the development of the variables over the period. The variables ap-

Figure 3.1: Yield spreads and log of debt-to-GDP, 1919-2008.
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pear quite persistent, in particular `DRt , and it is not obvious that any of them are char-

acterized by stationary processes. The rank tests of the VECMs will perform formal tests

of the order of integration of the variables. The influence of the large spike in the spread

series in 1932 during the crises of the 1930s is investigated as a robustness check of the

results.

The basic unrestricted estimations and tests below are carried out with CATS in RATS,

RATS (2009). All additional estimations and tests are computed using MATLAB, MATLAB

3http://fraser.stlouisfed.org/publication/?pid=38
4http://www.econ.ucsb.edu/~bohn/data.html
5Krishnamurthy and Vissing-Jørgensen (2012) report that they get similar results whether debt-to-GDP

is in face value or in market value.

78



(2010).

4. THE TOTAL CONVENIENCE YIELD

To analyze the relationship between Treasury supply and the convenience yield, we es-

timate a two-dimensional VECM for Zt = ( Sba−tb
t `DRt )′. The yield spread between

BAA-rated corporate bonds and Treasury bonds includes both liquidity and safety consid-

erations of the investor, thus, measuring the full effect of a convenience yield. Part of the

yield spread is, however, also due to a default risk on the corporate bonds. Nevertheless,

we do not include a measure hereof in the analysis because the relationship appears ro-

bust in shorter samples to different measures of default risk as well as to the state of the

business cycle, see Longstaff (2004) and Krishnamurthy and Vissing-Jørgensen (2012). In

addition, no data is available for the entire sample that can match the specification of the

other series.

The unrestricted VECM appears well-specified with one lag, see table A.1 and A.2 in

appendix. None of the variables are trending, as seen in figure 3.1, and, thus, only a re-

stricted constant is included in the deterministic specification. The result of the trace test

by Johansen (1995) is shown in table 4.1 and suggests one cointegration relation in the

system, r = 1. Hence, both variables are non-stationary, but a linear combination of them

is stationary. I.e., the two variables co-move over the period and are driven by the same

underlying stochastic trend. The final model is presented in (4.1) (t-values in parenthesis)

Table 4.1: Trace test for rank determination with a
restricted constant.

Trace test Bartlett corrected

H(0)|H(2) 25.19[0.01] 23.81[0.01]
H(1)|H(2) 6.14[0.19] 5.93[0.20]

Note: The asymptotic distribution of the test statistic is
non-standard and approximated by the Gamma distri-
bution, see Doornik (1998). The Bartlett corrected tests
are computed using Bartlett small sample corrections
of Johansen (2002).

and misspecification tests are reported in (4.2).

(
∆Sba−tb

t

∆`DRt

)
=


−0.50

(−6.82)

0




(
Sba−tb

t−1 +1.60
(4.53)

`DRt−1 −0.45
(−1.26)

)
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+

 0 0

0.04
(3.42)

0.66
(8.89)




(
∆Sba−tb

t−1

∆`DRt−1

)
(4.1)

Ω̂ =
(

0.455

0.016 0.006

)
, cor r (ε̂t ) =

(
1

0.320 1

)
(4.2)

The zero restrictions on the short-run dynamics are simultaneously accepted with a p-

Table 4.2: Misspecification tests of the two-
dimensional VECM.

∆Sba−tb
t ∆`DRt

AR(1−2) 0.74[0.69] 3.47[0.18]

ARC H(1−2) 1.86[0.40] 1.72[0.42]

Nor mal i t y 52.35[0.00] 25.34[0.00]

Note: The misspecification tests are LM tests
and χ2-distributed with two degrees of free-
dom. The normality test is that of Doornik and
Hansen (2008).

value of 0.99. The rejection of normality of the residuals is caused by a few large observa-

tions during the crises of the 1930’s and the World War 2 period. These observations are

not corrected for by dummy variables since the number of observations is limited and the

lack of normality has no crucial effect on the further analysis.

The estimated cointegration coefficient to `DRt implies that a decrease of one stan-

dard deviation in debt-to-GDP from its mean value of 0.419 to 0.234 is, in the long run,

associated with an increase in the convenience yield as measured by Sba−tb
t of 93 basis

points.6 Note that the total supply of Treasury bonds, as measured by the variable `DRt ,

is only approximating the supply of long-maturity Treasury bonds and, hence, the effect

related to the long-maturity yield spread may be imprecisely estimated. Nevertheless, the

result suggests that when the supply of Treasury bonds falls the yields on both BAA-rated

corporate bonds and Treasury bonds fall. However, over the longer run, the Treasury yield

falls by more than the corporate bond yield, implying an increase in the spread, and, thus,

a larger convenience yield. The effect found here is somewhat larger than the one found

in a cross-sectional analysis of Krishnamurthy and Vissing-Jørgensen (2012). Although in-

significant, the constant term reflects that at zero supply, a demand for the attributes of

Treasury bonds is still present and induces a positive spread.

6The effect is computed as 1.598(log (0.419)− l og (0.234)) = 0.933.
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Deviations from the long-run relationship are corrected by changes in Sba−tb
t and the

adjustment is quite fast as 50% of the deviation in the previous period is corrected in the

current period. `DRt does not error-correct and is, thus, weakly exogenous. This implies

that shocks to `DRt have permanent affect on both variables of the system, while shocks

to Sba−tb
t have only transitory effect on the system. The instantaneous residual correlation

in (4.2) is moderate in size, and, hence, to perform the structural analysis the orthogonal-

ization of shocks becomes crucial for interpretation.

4.1. STRUCTURAL IMPULSE RESPONSE ANALYSIS

The above analysis concerned the long-run relationship between the variables

Zt = ( Sba−tb
t `DRt )′. To analyze the behavior of the variables in the short-run, we con-

struct structural impulse responses. Identification of the structural shocks is in this two-

dimensional system given by the cointegration rank, r = 1, and the weak exogeneity of

`DRt : the system is hit by a temporary shock when the shock is to Sba−tb
t and a permanent

shock when the shock is to `DRt . Besides the orthogonalization of two shocks, no further

restrictions are required to identify the shocks because r (r −1)/2 = (p − r )(p − r −1)/2 =
0. Moreover, we label the shocks as a convenience yield demand shock (or a flight-to-

liquidity-and-safety shock) and a Treasury supply shock, µt = (µconv
t ,µsuppl y

t )′. The long-

run impact matrix, R =C B−1, and rotation matrix, B , are given by:

R =
[

0 ∗
0 ∗

]
, B−1 =

[
∗ ∗
0 ∗

]
. (4.3)

Asterisks denote unrestricted elements. The zero column in R reflects the transitory ef-

fects of a convenience yield demand shock. The zero in the first column of B−1 is induced

by the weak exogeneity of `DRt and implies that a shock to the convenience yield has no

instantaneous impact on the supply of Treasury bonds. The estimated structural impulse

responses from a negative shock to the system are displayed in figure 4.1. A negative shock

is defined as a fall in µt . The impulse responses are normalized such that the permanent

effects are unity. The confidence bands (dashed lines) are 90% Hall’s percentile intervals,

Hall (1992), as discussed in section 2.2.1, and thereby corresponding to a one-sided 5%

test. The bands are based on 2000 bootstrap replications. The impulse response of Sba−tb
t

following a permanent Treasury supply shock, µsuppl y
t → Sba−tb

t , is interesting because the

short-run effect has opposite sign of the long-run effect. On impact Sba−tb
t decreases by

almost three quarters of the total long-run effect. Two years after the negative shock, the
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Figure 4.1: Impulse responses from negative shocks to the system Zt = ( Sba−tb
t `DRt )′.
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effect turns positive. The confidence interval, however, includes zero the first two years af-

ter the initial effect. The estimated long-run impact and rotation matrix are given in (4.4).7

The instantaneous effects in the second column of B̂−1 are normalized on the permanent

effect similar to the impulse responses in figure (4.1).

R̂ =



0 −1.298
(−3.69)

0 0.187
(−3.55)


 , B̂−1 =




0.639
(6.20)

0.725
(1.78)

0 0.396
(6.86)


 . (4.4)

Given that B̂−1 is constructed from a Cholesky decomposition of Ω̂ it is invariant to column-

wise sign changes. Hence, the sign of the impulse responses arising from µconv
t are not

identified, and we can only infer that a convenience yield demand shock affects the two

variables in the system in the same direction. More importantly, these transitory effects

die out relatively slowly. Zero is not included in the confidence interval until about four

years after for Sba−tb
t and about six years after for `DRt . The impact on `DRt is rather

7The t-values in the brackets are derived using bootstrapped standard deviations of the estimates as
suggested by Lütkepohl and Krätzig (2004).
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small and reaching a maximum effect of 0.025% after two years. The slower reversion of

`DRt is nevertheless noteworthy and may be a result of the high persistence characteriz-

ing the process.

Combining the results of the VECM with the impulse response analysis suggests two

things. First, the estimated cointegration vector conforms that the long-run demand curve

for Treasury bonds is indeed downward sloping reflecting a convenience yield. This sug-

gests an isolated adverse effect on the economy of an otherwise expansionary decrease in

the supply of Treasury bonds. The entire fall in the yield of Treasury bonds is not trans-

mitted to the private sector, such that the price of raising capital for the sector does not

decrease with the same effect as for the government. The second thing to observe is that

this adverse effect is not present at shorter horizons. In the short-run, the demand curve

for Treasury bonds is upward sloping or at best flat. When a negative shock hits Treasury

supply, the yield spread reduces on impact and enhances the expansionary effect on the

economy. The effect on the spread is not significantly positive until three years after the

shock.

One possible explanation for the observed opposite short-run effect may be that a neg-

ative supply shock is followed by a negative demand shock that is unrelated to the conve-

nience yield. This moves the entire demand function down such that the net effect is a

fall in the spread. Over time the demand function moves up again and the lower sup-

ply then raises the premium on Treasury bonds. The theoretical model of Krishnamurthy

and Vissing-Jørgensen (2012) offers another explanation. If the fall in Treasury supply is

accompanied by an increase in the supply of private substitutes resulting in a larger to-

tal holdings of assets providing convenience yield services, the convenience yield will fall

because the marginal utility of the representative investor is decreasing in total holdings.

To find out whether it is the demand for liquidity, safety or both that is driving the

dynamics of the total convenience yield, a three-dimensional VECM is estimated next.

5. LIQUIDITY AND SAFETY PREMIUMS

To split the convenience yield into a liquidity premium and a safety premium, two sim-

plifying assumptions are needed. First, we assume that AAA-rated corporate bonds and

Treasury bonds provide similar safety for an investor, and the spread between these bond

yields therefore measures the premium investors are willing to pay (in terms of receiving

a lower yield) for the excess liquidity of Treasury bonds. Second, we assume that the liq-

uidity of BAA-rated and AAA-rated corporate bonds is alike and the spread between the

yield of these bonds includes a safety premium. The later assumption is empirical valid
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based on the results of Chen et al. (2007) who find similar liquidity for the two types of cor-

porate bonds. We estimate the relationship between each of the two components of the

convenience yield and Treasury supply measured by debt-to-GDP by estimating a three-

dimensional VECM for Zt = (Saa−tb
t Sba−aa

t `DRt )′.
As for the two-dimensional VECM, the unrestricted model appears dynamically well-

specified with one lag, see table B.1 and B.2 in appendix. Table 5.1 reports the results of

the trace test. The test suggests a rank of two, r = 2. The estimated reduced rank VECM

Table 5.1: Trace test for rank determination with a
restricted constant.

Trace test Bartlett corrected

H(0)|H(3) 40.63[0.01] 37.81[0.02]
H(1)|H(3) 20.40[0.05] 19.29[0.06]
H(2)|H(3) 6.30[0.17] 6.01[0.20]

Note: The asymptotic distribution of the test statistic is
non-standard and approximated by the Gamma distri-
bution, see Doornik (1998). The Bartlett corrected tests
are computed using Bartlett small sample corrections
of Johansen (2002).

is given by (5.1) (t-values in parenthesis). We specify the two cointegration relations as

reflecting a demand relation for each of the two premiums in the convenience yield. Note

that the cointegration matrix, β, is just-identified such that the imposed restrictions on β

are non-testable.



∆Saa−tb

t

∆Sba−aa
t

∆`DRt


 =




−0.35
(−4.11)

0

0 −0.42
(−5.69)

0 0







Saa−tb
t−1 +0.76

(3.65)
`DRt−1 − 0.11

(−0.52)

Sba−aa
t−1 +0.83

(2.59)
`DRt−1 − 0.36

(−1.08)




+




0 0 −0.59
(−2.23)

0 0 0

0 0.05
(4.08)

0.64
(8.92)






∆Saa−tb

t−1

∆Sba−aa
t−1

∆`DRt−1


 (5.1)

Ω̂ =




0.069

0.056 0.280

0.001 0.015 0.005


 , cor r (ε̂t ) =




1

0.405 1

0.078 0.394 1


 (5.2)

The zero-coefficient restrictions on the short-run dynamics are simultaneously accepted
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Table 5.2: Misspecification tests of the three-dimensional
VECM.

∆Saa−tb
t ∆Sba−aa

t ∆`DRt

AR(1−2) 5.72[0.06] 4.29[0.12] 3.62[0.16]

ARC H(1−2) 0.34[0.85] 5.98[0.05] 1.71[0.43]

Nor mal i t y 10.69[0.01] 73.08[0.00] 23.21[0.00]

Note: The misspecification tests are LM tests and χ2-
distributed with two degrees of freedom. The normality test
is that of Doornik and Hansen (2008).

with a p-value of 0.93. The implications of the estimated cointegration relationships are

that a one standard deviation in debt-to-GDP from its mean value of 0.419 to 0.234 is in

the long run associated with an increase in Saa−tb
t and Sba−aa

t of 44 and 49 basis points,

respectively. Thus, the total convenience yield is in the long run close to being equally di-

vided between the two premiums. For comparison, Krishnamurthy and Vissing-Jørgensen

(2012) find a liquidity premium of about twice the size of the safety premium. To see how

the two premiums behave for shorter horizons, we perform a structural analysis below.

The two spreads error-correct deviations from their own cointegration relationship

and the mechanism is again relatively fast. Observe that, as for the two-dimensional

VECM, lDRt does not error-correct deviations from the two cointegration relations such

that shocks to this variable have permanent effect on the levels of all the variables. Again,

the residuals are correlated, see (5.2), and orthogonalization of the shocks is vital for the

structural analysis.

5.1. STRUCTURAL IMPULSE RESPONSE ANALYSIS

To investigate the short-run behavior of the liquidity and safety premium, we perform

a structural impulse response analysis similar to the one above for the two-dimensional

VECM. However, identification of the structural shocks is now not implicitly given by the

rank of the VECM because the system contains an additional variable. Consequently, iden-

tification and the choice of rotation matrix follows from the steps outlined in section 2.3.1.

Given a rank of r = 2 and the weak exogeneity of `DRt , the shocks to Saa−tb
t and Sba−aa

t

have only transitory effect whereas the shock to `DRt has permanent effect. To identify

the transitory shocks, we need additional r (r − 1)/1 = 1 restriction while the permanent

shock is already identified, (p − r )(p − r −1)/2 = 0. The chosen rotation matrix B and the
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long-run impact matrix R =C B−1 are given by (5.3)

R =




0 0 ∗
0 0 ∗
0 0 ∗


 , B−1 =



∗ 0 ∗
∗ ∗ ∗
0 0 ∗


 (5.3)

Hence, B , separates, identifies and orthogonalizes the structural shocks which we label as

demand shocks to liquidity and safety and a Treasury supply shock,

µt = (µl i q
t ,µsa f e

t ,µsuppl y
t )′. The two zero columns in R reflect the transitory effect of the

two shocks, µl i q
t and µ

sa f e
t . The two zeroes in the final row of B−1 show that a shock to

either of the spreads has no instantaneous effect on the weakly exogenous variable `DRt .

The additional restriction needed is imposed via the zero in the first row of B−1 in (5.3). It

implies that a safety demand shock has no instantaneous effect on Saa−tb
t . This restriction

relies on the initial assumption that the spread between yields on corporate AAA-rated

bonds and Treasury bonds is due to a liquidity premium on Treasury bonds as they pro-

vide similar safety for an investor.

The estimated structural impulse responses following a negative shock are given in

figure 5.1. The negative shock is again defined as a fall in µt . The impulse responses are

again normalized such that the permanent effects are unity and the confidence bands are

computed as 90% Hall’s percentile intervals with bootstrap replications. The impulse re-

sponses of the permanent Treasury supply shock to the two spreads, µsuppl y
t → Saa−tb

t and

µ
suppl y
t → Sba−aa

t , respectively, reveal instantaneous effects of opposite sign to the long-

run effect. While the initial effect in period 0 on Saa−tb
t is close to zero, as also reflected

by the low t-value in (5.4) below, the effect on Sba−aa
t is large and zero is only borderline

included in the confidence interval. Moreover, the initial fall in Sba−aa
t is larger in absolute

value than the long-run effect. This suggests that the safety premium on Treasury bonds

is the most sensitive component of the convenience yield. From period 1−5, zero is in-

cluded in the confidence interval for the impulse responses of µsuppl y
t → Sba−aa

t , before

turning positive thereafter.

As for the two-dimensional VECM, the transitory effects in figure 5.1 are only identified

up to a sign. The impulse responses for µl i q
t → Saa−tb

t show a moderate effect the first two

years after the shock. The effects of the two transitory shocks on `DRt persist for about

ten years, although zero is included in the confidence interval after about six years. The

effects are, however, small in size. The consequence of the additional restriction needed

for identification of the two transitory shocks is seen in the graph for µsa f e
t → Saa−tb

t in

figure 5.1. The initial zero effect in period 0 is transferred to period 1 because ∆Sba−aa
t−1 has
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Figure 5.1: Impulse responses from negative shocks to the system Zt = (Saa−tb
t Sba−aa

t `DRt )′.
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no significant effect on ∆Saa−tb
t , as seen in (5.1). In section 6.3, we investigate the con-

sequences of the placement of the identifying restriction. The estimated long-run impact

matrix and rotation matrix, with the latter normalized on the long-run effect, are given by

(t-values in parenthesis)

R̂ =




0 0 −0.138
(−3.29)

0 0 −0.152
(−3.02)

0 0 0.182
(3.11)




, B̂−1 =




0.263
(9.65)

0 0.148
(0.59)

0.200
(2.59)

0.447
(5.58)

1.375
(2.21)

0 0 0.404
(7.10)




. (5.4)

The t-values in (5.4 ) are computed like those of (4.4) with bootstrap methods. Only the

instantaneous effect of the shock µsuppl y
t → Saa−tb

t in the upper right of B̂−1 turns out to

be insignificant with a small t-value.

The results of the three-dimensional VECM add several aspects to the relationships.

First, a fall in the Treasury supply is in the long run associated with an increase in both

spreads of almost equal size. Second, the same does not hold for shorter horizons. A

negative Treasury supply shock reduces both spreads on impact. Third, the safety spread,
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Sba−aa , is more sensitive in the short run than the liquidity spread, Saa−tb , relative to their

individual long-run effects. This stands in stark contrast to the almost equal sized long-

run effects. Hence, it is primarily the safety premium that drives the result for the total

convenience yield found in section 4.1. The safety premium falls the first two years after

a negative Treasury supply shock. This suggests that an unexpected fall in the supply of

Treasury bonds provides an expansionary effect for the economy by lowering the safety

premium and it lasts for about two years before the long-run adverse effect takes over and

raises the premium compared to the pre-shock level.

A small liquidity effect and a dominant safety effect is in line with the findings from an

event-study analysis of the effects of Fed policy carried out by Krishnamurthy and Vissing-

Jørgensen (2011), but, importantly, with opposite sign of the effects. In addition, Fleming

(2000) suggests that the liquidity premium may decrease following a fall in the supply of

Treasury bonds, as found here, because the lower supply reduces the actual liquidity in the

market, and, thus, also the willingness to pay for the liquidity attribute of Treasury bonds.

The reduction in the safety premium may be caused by increasing expectations of better

economic outlook following the initial reduction in Treasury supply.

6. SENSITIVITY ANALYSIS

In this section we investigate the robustness of the results from the three-dimensional

VECM towards changes in the specification and identification.

6.1. A THRESHOLD ALTERNATIVE

Reinhart et al. (2000) and Krishnamurthy and Vissing-Jørgensen (2012) argue that there

may be a kink in the demand for Treasury bonds because some investors have an inelas-

tic demand, e.g., foreign official institutions that place great importance on liquidity and

safety. This implies that increasing Treasury supply can not drive the two spreads all the

way to zero and the relationships will be different at the lower bound of the spreads. To

investigate how this potential kink in the demand affects the dynamics of the relation-

ships, a two-regime TVECM, originating in Balke and Fomby (1997), is estimated. This

model allows the error-correction coefficients to switch between two regimes depending

on whether the (lagged) level of Treasury supply is above or below an estimated threshold

value. The cointegration matrix is kept constant across regimes such that any regime dif-

ferences show up in the error-correction coefficients only. Thereby, we do not estimate a

demand relation for each regime, which is deemed too ambitious given the relatively few
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observations for estimating a threshold model.

The TVECM is given by

∆Zt = αlowβ′Z̄t−1I (`DRt−1 ≤ c)+αhi g hβ′Z̄t−1I (`DRt−1 > c)

+
k−1∑

i=1
Γi∆Zt−i +ηt , t = 1,2, ...,T (6.1)

where I (A) is an indicator function such that I (A) = 1 if A is true and otherwise I (A) =
0, and ηt is an i.i.d. Gaussian sequence, Np (0,Ω). The definitions of β, Z̄t and Zt are

unchanged from the VECM in (2.1). The threshold parameter, c, determines the level of

Treasury supply where the model switches to the other regime. The likelihood function,

LT , to be maximized is (up to the scale of a constant)

LT (θ) =−T

2
log |Ω̂(θ)| (6.2)

where Ω̂(θ) = 1
T

∑T
t=1ηt (θ)ηt (θ)′ is the maximum likelihood estimator of the covariance

matrixΩ and

ηt (θ) = ∆Zt −αlowβ′Z̄t−1I (`DRt−1 ≤ c)−αhi g hβ′Z̄t−1I (`DRt−1 > c)

−
k−1∑

i=1
Γi∆Zt−i .

The parameter vector to be estimated is given by θ = (αlow ,αhi g h ,β′,Γ1, ...,Γk−1,c). Max-

imum likelihood estimation of the TVECM is non-standard because the likelihood func-

tion in (6.2) is not smooth due to the threshold specification. This implies that conven-

tional derivative based optimization algorithms are not suitable for its maximization. The

non-differentiability of the likelihood function is illustrated in figure 6.1 which shows the

profiled likelihood function for the threshold parameter, c, over values of the threshold

variable, `DRt . However, conditional on the threshold parameter, the model can be es-

timated by maximum likelihood. As a result, it is standard in the literature on threshold

models to estimate the threshold parameter using a grid, see, e.g., Hansen and Seo (2002).

In the case considered here with a single regime indicator, namely, the level of Treasury

supply, the grid search for a value of the threshold parameter is performed over values of

`DRt , disregarding values in the lower 10% percentile and upper 90% percentile of the dis-

tribution of `DRt . The observations are in effect split into two subsets and the assumption
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Figure 6.1: Profiled likelihood function for the threshold parameter, c, over values of the threshold
variable `DRt .
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about the threshold value is located between the two percentiles ensures that a sufficient

number of observations are present in each regime.

The TVECM is estimated using initial values from the VECM and with k = 2 and r = 2.

It results in (t-values in parenthesis)



∆Saa−tb

t

∆Sba−aa
t

∆`DRt


=




−0.36
(−3.8)

0

0 −0.43
(−5.8)

0 0







Saa−tb
t−1 +1.09

(3.69)
`DRt−1 +0.18

(0.57)

Sba−aa
t−1 +0.97

(2.59)
`DRt−1 − 0.20

(−0.35)


 I (`DRt−1 ≤−0.77)

+




0 0

0 0

−0.21
(−3.2)

0.12
(2.35)







Saa−tb
t−1 +1.09

(3.69)
`DRt−1 +0.18

(0.57)

Sba−aa
t−1 +0.97

(2.59)
`DRt−1 − 0.20

(−0.35)


 I (`DRt−1 >−0.77)

+




0 0 −0.53
(−2.0)

0 0 0

0 0.05
(4.4)

0.60
(8.4)






∆Saa−tb

t−1

∆Sba−tb
t−1

∆`DRt−1


 (6.3)

Ω̂=




0.068

0.053 0.279

0.001 0.015 0.005


 , cor r (ε̂t ) =




1

0.383 1

0.071 0.416 1




The zero-coefficient restrictions on the short-run dynamics are simultaneously accepted

90



with a p-value of 0.24. The misspecification tests are reported in table 6.1. The test for no

Table 6.1: Misspecification tests of TVECM.

∆Saa−tb
t ∆Sba−aa

t ∆`DRt

AR(1−2) 2.71[0.26] 6.65[0.04] 3.94[0.14]

ARC H(1−2) 0.50[0.78] 7.89[0.02] 3.53[0.02]

Nor mal i t y 12.02[0.00] 65.23[0.00] 25.61[0.00]

Note: The misspecification tests are LM tests and χ2-
distributed with two degrees of freedom. The normality test is
that of Doornik and Hansen (2008). The test for no autocorre-
lation is augmented with regressors from both regimes to take
the regime structure into account. The tests for no-ARCH and
normality are unchanged from the VECM.

autocorrelation is slightly modified to take the regime structure into account. The t-values

in parenthesis in (6.3) are computed using standard errors obtained from the square root

of the diagonal of the inverted Hessian matrix. They should, however, be interpreted with

caution as no formal distributional theory exists for the parameter estimates and stan-

dard errors of this model. In addition, no standard error of the threshold estimate, ĉ, is

reported due to the non-standard inference on the threshold parameter, cf. Chan (1993)

and Hansen (1997). Moreover, given that the value of the likelihood function is constant

between the values in the grid, as observed in figure 6.1, the threshold estimate could be

reported as an interval.

The estimated cointegration relationships from the TVECM enhance the liquidity and

safety premiums. A fall of one standard deviation in debt-to-GDP from its mean value of

0.419 to 0.234 is in the long run associated with an increase in Saa−tb
t and Sba−aa

t of 61

and 57 basis points, respectively. The estimated threshold value of −0.77 corresponds to

a debt-to-GDP ratio of 0.46 and can be interpreted as the location of the kink in the de-

mand functions. Krishnamurthy and Vissing-Jørgensen (2012) find a slightly higher ratio

for the kink in their piece-wise linear demand function. The threshold level is graphed in

figure 6.2 together with the threshold variable determining the regime switches. 64 out of

88 effective observations are located in the lower regime with debt-to-GDP≤ 0.46 which

characterizes the more normal times and is similar to the estimated VECM in (5.1). As ev-

ident from figure 6.2, the TVECM mainly isolates the observations/years with high debt-

to-GDP ratios during the 1940s and 1950s in the upper regime. These observations are the

most extreme sets of observations in the data set and reflect high debt levels associated
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Figure 6.2: Estimated threshold value and threshold variable `DRt .
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with low spreads (see also figure 3.1).8 Consequently, any economic interpretation of the

error-correction mechanism of this regime may be spurious.

Nevertheless, a way to perceive the lower regime of the estimated TVECM is as an out-

lier corrected version of the VECM in (5.1). The TVECM excludes the extreme sets of ob-

servations in the lower end of the demand relations by placing them in a separate regime

with a very distinct error-correction mechanism. As a result, the two long-run demand

functions are estimated with steeper slopes than in the VECM.

We continue the analysis by inspecting the structural impulse responses of the lower

regime of the TVECM for comparability with those of the VECM in figure (5.1). Figure 6.3

shows the impulse responses to the lower regime following a negative shock to each of

the variables in the system, and (6.4) displays the estimated long-run impact and rotation

matrix B , which gives the instantaneous effects:

R̂ =




0 0 −0.162
(−3.88)

0 0 −0.152
(−3.30)

0 0 0.156
(5.13)




, B̂−1 =




0.261
(9.57)

0 0.115
(0.57)

0.187
(2.68)

0.442
(5.55)

1.448
(2.33)

0 0 0.447
(9.68)




. (6.4)

As seen from figure 6.3 and (6.4) the effects are close to the effects in the VECM. Relative

to their long-run effects, the effect of a negative supply shock reduces the safety premium

slightly more than in the VECM while the liquidity premium is less reduced.

8During this period the Fed was committed to keep the long-term interest rate low to help finance World
War 2 by purchasing long-term Treasury bonds. Nonetheless, the Fed ended up accumulating only a small
portion of long-term Treasury bonds, because of an announced commitment to keep yields low, and large
purchases of short-term Treasuries, cf. Bernanke (2002).
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Figure 6.3: Impulse responses from negative shocks to the lower regime of TVECM.
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The results of the TVECM suggest that a steeper demand function for safety does not

alter the short-run positive relationship. The previous result of a decreasing safety pre-

mium following a fall in the supply of Treasury bonds is, thus, robust to the extreme ob-

servations during and after the World War 2 period.

6.2. INFLUENTIAL OBSERVATIONS

The large spike in 1932 observed in the levels of the spread series in figure 3.1 may affect

the estimates and the dynamics. We investigate whether this is the case by including a

dummy variable to account for the extraordinary large shock in 1932 during the recession.

The dummy is included as an additive outlier because no level shifts are observed in the

spread series implying no transmission of the shock through the autoregressive structure

of the model, cf. Juselius (2006) and Nielsen (2004). This implies that the dummy variable

is included with the full lag structure of the endogenous variables.

The model is estimated with k = 2 and r = 2 and is given by (6.5) and (6.6) (t-values in
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parenthesis)



∆S̃aa−tb

t

∆S̃ba−aa
t

∆`D̃R t


 =




−0.36
(−4.30)

0

0 −0.28
(−4.44)

0 0







S̃aa−tb
t−1 +0.75

(3.81)
`D̃R t−1 +0.11

(0.56)

S̃ba−aa
t−1 +0.80

(2.39)
`D̃R t−1 +0.36

(1.07)




+




0 0 −0.47
(−1.83)

0 0 0

0 0.10
(4.84)

0.69
(9.68)






∆S̃aa−tb

t−1

∆S̃ba−aa
t−1

∆`D̃R t−1


 (6.5)




S̃aa−tb
t

S̃ba−aa
t

`D̃R t


 =




Saa−tb
t

Sba−aa
t

`DRt


−




0.38
(1.77)

2.84
(10.77)

0.02
(−0.74)




D1932
t (6.6)

Ω̂ =




0.066

0.037 0.133

0.001 0.001 0.005


 , cor r (ε̂t ) =




1

0.393 1

0.041 0.357 1




The dummy variable is defined as D1932
t = 1 for t = 1932 and 0 otherwise. Similar to the

TVECM the t-values are computed using standard errors obtained from the square root of

the diagonal of the inverted Hessian matrix. Note that the estimators related to the dummy

variable are not consistent as no additional information about the outlier is gained when

increasing the number of observations. Moreover, the reported t-values in (6.6) are not

valid for testing. The restrictions implied by (6.6) minimize the degrees of freedom used to

approximate the outlier to p = 3 parameters. Without the restrictions, the dynamics of the

outlier would be approximated by p(k −1) = 6 parameters for the lag structure and with

r = 2 cointegration parameters, a total of 8 parameters. For larger samples, the difference

between the estimated models with and without the restrictions (6.6) may be negligible,

but given the small sample of this application, we prefer the restricted version. The mis-

specification tests are reported in table 6.2. Observe that the test for no-ARCH effects in

the Sba−aa
t equation is now accepted with much larger p-value. The slopes of the two de-

mand relations imply that a fall in debt-to-GDP of one standard deviation is associated

with increases in Saa−tb
t and Sba−aa

t of 44 and 47 basis points, respectively. Hence, this

single observation accounts for a reduction in the associated safety premium change of 2

basis points compared to the model without a dummy variable.

The short-run relationships are by and large unaffected by the dummy variable. The

94



Table 6.2: Misspecification tests of the three-dimensional
VECM with a dummy variable.

∆Saa−tb
t ∆Sba−aa

t ∆`DRt

AR(1−2) 3.08[0.21] 7.81[0.02] 2.82[0.26]

ARC H(1−2) 0.73[0.70] 0.27[0.87] 1.33[0.51]

Nor mal i t y 11.40[0.00] 43.40[0.00] 26.74[0.00]

Note: The misspecification tests are LM tests and χ2-
distributed with two degrees of freedom. The normality test
is that of Doornik and Hansen (2008).

estimated structural impulses and rotation matrix are showed in figure 6.4 and (6.7). The

instantaneous effects on the spreads are still of opposite sign to the long-run effect, but

somewhat smaller in magnitude than for the model without the dummy variable.

R̂ =




0 0 −0.137
(−3.47)

0 0 −0.146
(−3.07)

0 0 0.183
(4.38)




, B̂−1 =




0.256
(9.10)

0 0.077
(0.32)

0.138
(2.41)

0.311
(9.44)

0.895
(2.02)

0 0 0.392
(6.70)




(6.7)

6.3. IDENTIFICATION STRATEGY

Recall that the impulse responses following the two transitory demand shocks, µl i q
t and

µ
sa f e
t , are identified by imposing a zero restriction in the rotation matrix such that µsa f e

t

has no instantaneous impact on Saa−tb
t . Alternatively, we can restrict µl i q

t to have no in-

stantaneous impact on Sba−aa
t . Imposing both restrictions simultaneously results in an

over-identified model which is not pursued here. Changing the identifying restriction to

the alternative gives the impulse responses shown in figure C.1 and instantaneous effects

in (C.1), both appearing in the appendix. Note, that the impacts of the permanent supply

shock are unchanged from the VECM in section 5 because of the orthogonalization of per-

manent and transitory shocks. The liquidity shock, µl i q
t , now only affects Saa−tb

t because

the combination of the identifying restriction and the zero restrictions in the short-run

dynamics imply that the shock is not transmitted to the other two variables. The effects

are indeed similar to those with the initial identifying restriction, except for the now un-

restricted instantaneous effect of µsa f e
t → Saa−tb

t , which induces changes in Saa−tb
t in the

same direction as for the other two variables.
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Figure 6.4: Impulse responses from negative shocks to the VECM with dummy variable.
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7. CONCLUSION

The presence of a demand driven convenience yield on U.S. Treasury bonds suggests that

decreases in the supply of Treasury bonds are associated with increases in the spread be-

tween yields on corporate bonds and Treasury bonds. We show that this adverse economic

effect of, e.g., an unexpected debt pay-down or Quantitative Easing is only a long-run ef-

fect. The dynamics of the yield spread and the supply of Treasury bonds, measured as

(log of) debt-to-GDP, are modeled jointly in a reduced rank VECM, which gives a long-run

negative relationship. This relationship is interpretable as a downward-sloping demand

relation for Treasury bonds. By means of a just-identified SVECM, we present evidence

that for shorter horizons, the relationship is positive, and, thus, with opposite sign than

in the long-run. An unexpected fall in Treasury supply is on a horizon of 0-2 years asso-

ciated with a reduction in the convenience yield. When extending the model to separate

the convenience yield into a liquidity and safety premium, the safety premium turns out

to be the driving factor of the short-run positive relationship. The results are robust to a

potential kink in the demand relation for Treasury bonds estimated by a TVECM and also
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an influential observation during the recession of the 1930s. Hence, the economic effects

following a fall in Treasury supply may not be as adverse as first thought.
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A. MISSPECIFICATION TESTS AND LAG-LENGTH DETERMINATION OF THE

UNRESTRICTED TWO-DIMENSIONAL VECM

Table A.1: Misspecification tests of the two-
dimensional VECM, unrestricted.

∆Sba−tb
t ∆`DRt

AR(1−2) 0.70[0.70] 3.31[0.19]

ARC H(1−2) 2.02[0.36] 1.78[0.41]

Nor mal i t y 41.75[0.00] 27.04[0.00]

Note: The misspecification tests are LM tests
and χ2-distributed with two degrees of free-
dom. The normality test is that of Doornik and
Hansen (2008).

Table A.2: Information criteria and LR tests of
lag-length, two-dimensional VECM.

k = 1 k = 2 k = 3

SC −5.359 −5.668 −5.494

H −Q −5.462 −5.840 −5.735

LR(k = 3|k = 2) 2.99[0.56]

LR(k = 2|k = 1) 44.03[0.00]

Note: SC and H-Q are the Schwartz and the
Hannan-Quinn information criterion, respectively.
The p-value of the LR tests are from the χ2(4)-
distribution. The models are estimated with the
same number of observations.
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B. MISSPECIFICATION TESTS AND LAG-LENGTH DETERMINATION OF THE

UNRESTRICTED THREE-DIMENSIONAL VECM

Table B.1: Misspecification tests of the three-dimensional
VECM, unrestricted.

∆Saa−tb
t ∆Sba−aa

t ∆`DRt

AR(1−2) 3.63[0.16] 1.11[0.57] 2.95[0.23]

ARC H(1−2) 0.19[0.91] 6.02[0.05] 1.54[0.46]

Nor mal i t y 10.56[0.01] 52.08[0.00] 24.68[0.00]

Note: The misspecification tests are LM tests and χ2-
distributed with two degrees of freedom. The normality test
is that of Doornik and Hansen (2008).

Table B.2: Information criteria and LR tests of
lag-length, three-dimensional VECM.

k = 1 k = 2 k = 3

SC −8.502 −8.562 −8.228

H −Q −8.708 −8.923 −8.743

LR(k = 3|k = 2) 11.55[0.24]

LR(k = 2|k = 1) 45.10[0.00]

Note: SC and H-Q are the Schwartz and the
Hannan-Quinn information criterion, respectively.
The p-value of the LR tests are from the χ2(9)-
distribution. The models are estimated with the
same number of observations.
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C. ALTERNATIVE IDENTIFICATION OF TRANSITORY SHOCKS

Figure C.1: Impulse responses from negative shocks to the system Zt = (Saa−tb
t Sba−aa

t `DRt )′.
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B̂−1 =




0.239
(10.33)

0.107
(3.26)

0.148
(0.59)

0 0.487
(4.99)

1.375
(2.21)

0 0 0.404
(7.10)




. (C.1)
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