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Abstract

Bayesian learning provides the core concept of processing noisy information. In
standard Bayesian frameworks, assessing the price impact of information requires
perfect knowledge of news’ precision. In practice, however, precision is rarely dis-
closed. Therefore, we extend standard Bayesian learning, suggesting traders infer
news’ precision from magnitudes of surprises and from external sources. We show
that interactions of the different precision signals may result in highly nonlinear
price responses. Empirical tests based on intra-day T-bond futures price reactions
to employment releases confirm the model’s predictions and show that the effects
are statistically and economically significant.
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Bayesian learning is a powerful concept, explaining why rational market participants

may react differently to seemingly identical news: precise news moves prices more

strongly than imprecise, noisy information. However, while it is typically assumed that

the news’ precision is known, in practice, it is rarely disclosed. Consequently, traders

have to make a judgement on their own. Our analysis focuses on this lack of (perfect)

precision knowledge: First, we extend standard Bayesian learning models to cases where

traders have to gather precision estimates. A major implication of this extension is that

price response coefficients – measuring the reaction of prices to news – strongly depend

on traders’ perception of information precision. This explains non-linear price reactions

to unanticipated information. Second, we test this implication of non-constant price

impact coefficients by analyzing high-frequency price responses in the U.S. T-Bond fu-

tures market to the U.S. employment report.1 Obtaining strong empirical evidence that

instantaneous price reactions exhibit pronounced non-linearities which depend crucially

on traders’ perception of news’ precision, we provide new insights into price discovery

and market participants’ learning behavior in an uncertain environment.

Standard Bayesian learning provides a clear answer how market prices react to infor-

mation of differing quality – if this quality is perfectly known: (i) price reactions are

linear in the amount of unanticipated information and (ii) the precision of new informa-

tion relative to the precision of pre-announcement expectations determines how much

market participants adjust their expectations. Hence, noisy (or diffuse) information

has little impact on prices, whereas precise news moves market participants’ expecta-

tions and hence prices more strongly. However, so far it is theoretically and empirically

quite unclear how prices adjust in the much more realistic case when news’ precision is

unknown.

1Several studies show that among macroeconomic announcements, employment figures have by far
the most pronounced impact on financial markets, in particular, on bond and foreign exchange markets
(see, e.g., Andersen and Bollerslev, 1998, Fleming and Remolona, 1999, or Andersen, Bollerslev, Diebold
and Vega, 2003).
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A first contribution to relax the usual assumptions of normally distributed variables

with perfectly known parameters is provided by Subramanyam (1996). In his frame-

work, traders try to infer the precision of news from a single noisy precision signal,

i.e., the magnitude of the surprise component in an announcement. Due to this strict

link between the expected precision and the signal magnitude, surprisingly large news

may be interpreted as too good to be true.2 Consequently, price reactions are relatively

strong for small surprises but relatively weak for big ones. This results in S-shaped price

reactions to unexpected news. Nevertheless, a restrictive assumption in this setting is

that market participants assess the reliability of news based solely on the released fig-

ures’ magnitudes and ignore any other potentially available information on the news’

precision. This is rather unrealistic in practice and can cause severe misinterpretations

of the announced figures. Indeed, big surprises may very well be quite precise, and then,

should generate strong price reactions.

Recent empirical evidence suggests that market participants consider different sources

of information when assessing news’ precision. For the employment report, Hautsch

and Hess (2007) show that revisions of past headline figures provide information which

can be exploited for such a purpose. Furthermore, they show that prices in the T-

bond futures market indeed react more strongly to employment information when this

revision-based precision estimate indicates a high information quality. Similarly, Pilotte

and Manuel (1996) analyze price reactions in response to stock split announcements ar-

guing that investor’s confidence in the quality of a signal relies on their past experience.

Furthermore, considering company reports, Sloan (1996), Feltham and Pae (2000), and

Richardson, Sloan, Soliman and Tuna (2005), among others, show that accruals provide

information about the quality of stated earnings. Overall, these studies suggest that

2See Mattsson, Voorneveld and Weibull (2007). In an early contribution, Milgrom (1981) studied
this effect and provided conditions for monotonicity of price reactions in the announced information.
These monotonicity results, based on a monotone likelihood ratio criterion, were recently generalized
by Mattsson et al. (2007) in a discrete choice model under uncertainty.
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market participants may obtain precision signals by inspecting additional information

related to a particular announcement.

Therefore, building on Subramanyam (1996) we develop a learning model allowing for

uncertainty in news’ precision where traders infer about the quality of information using

two different sources as precision signals. First, so-called ‘external’ precision signals –

such as the sample size of a survey or the reputation of an auditing company – directly

influence the perception of information precision. Second, the released information it-

self serves as an ‘internal’ precision signal. In accordance with Subramanyam (1996),

this implies that the probability of news being imprecise increases with its magnitude

(i.e., such news is believed to be too big to be true). We show that such learning behavior

implies non-linear, S-shaped price response functions, i.e., the price response coefficient

becomes smaller for big absolute surprises. Additionally, the model predicts stronger

reactions to news which is perceived to be more precise given additional information.

In this case, the S-shaped curvature of the price response function becomes even more

pronounced and deviates strongly from linearity. We also show that our results both

hold in a framework where the precision of the prior distribution is itself uncertain and

are valid for a wide range of distributional assumptions.

In an empirical analysis of the price reactions of CBOT T-bond futures to the release

of U.S. employment data, we provide strong evidence in favor of Bayesian learning

under these two types of precision signals. From data revisions in employment releases,

we extract release-specific external precision measures, which do not depend on the

surprise itself. The estimated price response curves clearly reveal that prices (i) adjust

non-linearly in response to unanticipated information with an S-shaped pattern and

(ii) react significantly differently depending on the external precision signal. Also from

an economic perspective, our results are strongly significant. We show that ignoring

the available precision signals leads to severe estimation errors when determining the
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price impact of a news release.

The remainder of this paper is organized as follows. The following section presents

a theoretical Bayesian learning framework which allows for the precision of arriving

news to be unknown as well as for uncertainty in the prior distribution. Section 2

describes the high-frequency return data as well as the employment data and outlines

the estimation procedure. The empirical results are presented and discussed in Section

3. Finally, Section 4 concludes.

1 A Bayesian Learning Model

1.1 Standard Bayesian Learning

Bayesian learning models provide a framework for analyzing how new information is

incorporated into expectations and prices when prior information and incoming news

contain uncertainty. Throughout our analysis we assume that all market participants

are homogeneous and have the same information just before the release of some public

announcement. The price P of a risky asset is assumed to be proportional to traders’

expectations of an economic variable X with proportionality factor ν, i.e. P = ν ·E[X].

The beliefs on X prior to the announcement are assumed to be normally distributed

with known parameters, i.e. X ∼ N(µF , 1/ρF ), where µF is the mean of the prior infor-

mation on X and ρF denotes their precision, defined as the inverse of the variance. This

prior information represents the market’s conditional probability distribution of the

variable X given all available information, including, for example, all publicly released

analysts’ forecasts. Empirical research on the impact of scheduled announcements typ-

ically assumes that the distribution of prior beliefs in the market may be approximated

by the distribution of analysts’ forecasts. Hence, it is implicitly assumed that analysts’

forecasts are unbiased for X, and, together with their cross-sectional dispersion, they
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provide a consistent estimate of the market’s prior information.3

Now, say an announcement is released, providing a noisy estimate of X. It is assumed

that the released figure includes an additive error, i.e., A = X + ε, where ε is a zero-

mean normally-distributed error term with variance V ar[ε] = 1/ρε and E[X · ε] =

0. Consequently, traders receive an unbiased estimate of the underlying variable X,

whose precision is reflected by ρε. The additive error term structure implies that the

unconditional variance of the news release exceeds the variance of the market’s prior

information. Accordingly, the announcement A is distributed as A ∼ N(µF , 1/ρA).

After observing the public announcement, traders adjust their beliefs according to

Bayes’ rule. Traders’ beliefs after the announcement are normally distributed with

µP := E[X | A] = µF + (A− µF )
ρA

ρF
= µF + (A− µF )

ρε

ρF + ρε
(1)

and

ρP := V ar[X | A]−1 = ρF + ρε. (2)

Consequently, after traders observe the signal A, the market price of the risky asset

changes as

∆P = ν · (µP − µF ) = ν · S · π, (3)

where π denotes the so-called ‘price-response coefficient’

π :=
ρA

ρF
=

ρε

ρε + ρF
. (4)

Hence, the main model implication is that price changes are proportional to the surprise

S := A − µF , where the proportionality factor π depends on the relative precision of

announcements and the market’s forecast.

3See, e.g., Abarbanell, Lanen and Verrecchia (1995), Mohammed and Yadav (2002), Andersen,
Bollerslev, Diebold and Vega (2003) and Hautsch and Hess (2007).
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1.2 Surprises as an ‘Internal’ Signal of the Precision of Releases

Announcements such as employment figures are usually released without an associated

precision measure, which contradicts the assumptions of the standard Bayesian learn-

ing model. Therefore, Subramanyam (1996) relaxes this framework by treating news’

precision to be unknown and assuming that the announcement is conditionally nor-

mally distributed given the true precision, i.e., A|ρA ∼ N(µF , ρA). Formally, Bayesian

updating of traders works in a way similar to the basic framework, yielding

µP = E[X | A] = µF + (A− µF )
E[ρA | A]

ρF
= µF + S · π(S), (5)

with E[ρA|A] representing traders’ conditional expectation of the signal’s precision

given its realization. Hence, it turns out that the price response coefficient π(S) is

no longer constant but rather depends on the absolute surprise. Consequently, the

latter serves as an ‘internal’ signal of news’ precision. As shown by Subramanyam

(1996) and illustrated in a more general framework in the next section, this generates a

nonlinear relationship between the magnitude of the surprise and the implied update of

traders’ beliefs. In particular, if traders observe high absolute values of unanticipated

information, they conclude that these stem from an announcement with low precision.

This reduces their adjustment of beliefs in absolute terms, which in the extreme case

may even generate negative marginal contributions of surprises, resulting in an S-shaped

price response curve. However, this direct link between the amount of unanticipated

information and the expected precision is relatively restrictive, since it implies that

big surprises are always too big to be true. But in an environment where information

precision is high, occasionally, big surprises may occur as well. In such cases, we would

expect to observe stronger price reaction, which is ruled out in this setup.
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1.3 ‘External’ Signals of the Precision of Releases

Extending the previous setting, we assume that traders not only evaluate the released

information itself when assessing news’ precision but also employ other data sources. For

instance, for the U.S. employment report, Hautsch and Hess (2007) show that traders

may infer the precision of announced employment figures by inspecting the time series

of historical revisions of the headline figure. Since revisions in announcements reflect

(ex post-) sampling errors, a natural precision measure arises from their conditional

variance.

Suppose that market participants are able to observe a so-called external signal ρ̂A for

the precision of the announcement ρA. Here, ‘external’ refers to cases where the signal is

not directly linked to the announced figure itself. For example, ρ̂A might be information

on the sample size of a survey, the reliability of data collection or a precision estimate

based on (past) revisions, as in Hautsch and Hess (2007).

Let this additional precision signal follow a conditionally normal distribution given

the true precision ρA, i.e., ρ̂A | ρA ∼ N(ρA, σ
2
ρ̂A

). Moreover, we assume that the an-

nouncement A and the precision signal ρ̂A are conditionally independent given the true

precision ρA. Therefore, the precision signal and the news release are only linked indi-

rectly via the true precision. If σ2
ρ̂A

reaches zero, the signal reveals the true precision of

the announcement. In this case, the surprise itself no longer serves as an internal preci-

sion signal, and we are back to the standard Bayesian learning model. If σ2
ρ̂A

is different

from zero, both precision signals are taken into account by market participants. In a

way analogous to the updating equations given above, traders form their beliefs as4

µP = E [X | A, ρ̂A] = µF + (A− µF )
E [ρA | A, ρ̂A]

ρF
= µF + S · π(S, ρ̂A). (6)

4For a formal derivation, see Appendix A.

7



As before, adjustments in traders’ beliefs depend symmetrically on the amount of sur-

prise associated with the news. However, now the market incorporates additional infor-

mation into its price formation. This is reflected by the price response coefficient π(·)

depending not only on S but also on ρ̂A. As shown in Appendix A, the conditional

expectation of precision E [ρA | A, ρ̂A] is computed by

E [ρA | A, ρ̂A] =

∫
SA
ρAf(A | ρA)f(ρ̂A | ρA)f(ρA)dρA∫

SA
f(A | ρA)f(ρ̂A | ρA)f(ρA)dρA

, (7)

where f(·) denote the corresponding conditional and unconditional p.d.f.’s and the

support SA of f(ρA) is given by SA ∈ (ρF ,∞). Hence, it turns out that the expected

precision depends not only on ρ̂A and A but also on the unconditional prior distribution

of the precision, f(ρA).

In Proposition 1, we will show in accordance with Subramanyam (1996) that the amount

of unanticipated information influences the expected precision of the announcement

negatively. This result holds irrespective of the choice of the underlying prior distribu-

tion f(ρA):

Proposition 1 The price response coefficient π(S, ρ̂A) is strictly decreasing in

the absolute magnitude of the surprise |S| for any prior distribution f(ρA), i.e.,

∂π(S, ρ̂A)/∂|S| < 0.

Proof: See Appendix A.

Therefore, prices react relatively strongly to less surprising news and relatively weakly

to news with a high element of surprise. Consequently, there are two effects determining

the change in beliefs (µP − µF ) after an announcement is made: First, given the price

response coefficient π(·), a big (small) surprise S = A − µF strengthens (weakens)

the price reaction linearly. Second, according to Proposition 1, a big (small) surprise
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decreases (increases) the expected signal precision and thus decreases (increases) π(·).

As shown in Proposition 2, the latter effect induces price reactions which are S-shaped

in absolute surprises:

Proposition 2 The marginal impact of the surprise S on investors’ updates of beliefs,

µP − µF , is given by ∂(µP − µF )/∂S = π(S, ρ̂A) − S2ρ−1
F V ar[ρA | A, ρ̂A].

Proof: See Appendix A.

Hence, investors marginally update their expectations in the direction of the surprise

as long as π(S, ρ̂A)−S2ρ−1
F V ar[ρA | A, ρ̂A] > 0. However, if |S| becomes large, the rela-

tionship may reverse and the marginal effect of absolute surprises may become negative,

i.e., ∂(µP −µF )/∂S < 0. These effects are enforced if ρF is small and V ar[ρA | A, ρ̂A] is

large. Consequently, we obtain an S-shaped price reaction, as graphically illustrated in

Figure 1. Note that in the case of a degenerated prior distribution f(ρA), we get a linear

response, as in the basic model. Hence, the result of an S-shaped relationship between

surprises and traders’ updates of expectations according to Subramanyam (1996) still

holds in this extended framework.

However, the following proposition shows that traders’ conditional expectations of news’

precision depend positively on the external precision signal ρ̂A. Hence, traders update

their conditional expectations more strongly (less strongly) if ρ̂A increases (decreases).

Consequently, ρ̂A affects the price response coefficient π(S, ρ̂A) in the opposite direction

of |S|.

Proposition 3 The price response coefficient π(S, ρ̂A) and the absolute signal re-

sponse |µF − µP | are strictly increasing in the observed value of the preci-

sion signal ρ̂A for any prior distribution f(ρA), i.e., ∂π(S, ρ̂A)/∂ρ̂A > 0 and
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∂|µp − µF |/∂ρ̂A > 0.

Proof: See Appendix A.

The proposition also states that a central implication of standard Bayesian learning is

maintained even if the true precision parameter of the news is replaced by a noisy signal:

market prices react more strongly to news which is perceived to be more precise, whereas

news which appears to be imprecise induces rather moderate market reactions. However,

as shown in Figure 1, the existence of an ‘external’ precision measure ρ̂A induces an

additional effect which amplifies the S-shape. A higher ρA leads to a flattening of the

price response curve for small surprises near zero but to more pronounced S-shaped

price responses to big surprises.

1.4 Accounting for Uncertainty in the Prior Distribution

So far, we have assumed that traders have normally-distributed prior beliefs on the

distribution of the variable X with perfectly known parameters. However, traders gen-

erate their views by, for example, relying on analysts’ forecasts; thus, they face estima-

tion errors. In practice, traders might approximate the precision of prior information

by the dispersion of different analysts’ forecasts. However, the quality of such esti-

mates is itself subject to uncertainty. In order to capture uncertainty in the precision

of prior information, we assume that this precision is random and follows a distribu-

tion f(ρF ). Then, X is assumed to be conditionally normally distributed given ρF ,

i.e. X | ρF ∼ N(µF , 1/ρF ). This results in a scale mixture distribution for the prior

distribution, yielding

f(X) =

∫

SF

f(X | ρF )f(ρF )dρF (8)

with SF ∈ (0,∞). Nevertheless, as shown in Proposition 4, all previous results still

hold:
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Proposition 4 If the prior distribution of traders follows a scale mixture of normal

distributions, Propositions 1, 2 and 3 still hold.

Proof: See Appendix A.

Obviously, this proposition states that our analysis is not restricted to cases with

normally-distributed variables but holds for a wide class of distributions, including

fat-tailed prior distributions.

1.5 Testable Implications of the Model

The learning model outlined above yields hypotheses on how traders’ expectations ad-

just to new information. Assuming that prices are proportional to traders’ expectations

of the observed market variable, the following testable hypotheses arise:

(1) The standard Bayesian learning model with perfectly-known normal distributions

presented in Section 11.1 implies a linear price response function,

∆P = ν · S · π.

Here, a higher magnitude of surprise implies higher absolute price reactions, since

the price response coefficient π is a constant and known parameter which does

not depend on the revealed unanticipated information, S. The price response

coefficient, then, is determined by the precision of the announcement and the

precision of the released data.

(2) As shown in Section 11.2, the model suggested by Subramanyam (1996) implies

∆P = ν · S · π(S).
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Here, news precision is unknown and is thus inferred from the magnitude of

surprises. Since large surprises serve as a signal for a low precision of news, the

price response coefficient π(S) decreases in the absolute size of the surprise |S|,

implying an S-shaped relationship between ∆P and S.

(3) Allowing for additional external precision signals ρ̂A as in Section 11.3, we get

∆P = ν · S · π(S, ρ̂A).

The previous result of an S-shaped price response curve still holds, but we ob-

serve the additional effect of a positive relationship between ∆P and ρ̂A. In this

case, both effects might work in opposite directions and the S-shape of the price

response curve is amplified if news’ precision is high.

2 Data and Empirical Framework

2.1 Data

The model implications outlined above will be empirically tested in the following sec-

tions. Note that we do not estimate this model in a structural way, since this would

require additional structural assumptions in order to estimate E[ρA|A, ρ̂A]. We rather

test for the implications summarized above in reduced form by estimating the shape

of the price reaction curve in response to S and the perceived precision of news |ρ̂A|.

We use intraday returns of CBOT T-bond futures corresponding to one of the most

liquid futures markets as well as monthly releases of the U.S. employment report. The

latter is by far the most influential scheduled macroeconomic release, and its impact

on financial markets is investigated in a wide range of studies.5 While the employment

5Several empirical studies provide evidence that unanticipated information in the employment report
has a strong influence not only on bond market prices (e.g. Becker, Finnerty and Kopecky (1996),
Fleming and Remolona (1999c), and Hautsch and Hess (2002)) but also on foreign exchange rates
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report contains detailed information on the employment situation in the U.S., market

participants focus in particular on two headline figures: the nonfarm payrolls figure and

the unemployment rate figure. The disclosure of this information offers a rare opportu-

nity to analyze Bayesian learning effects in the adjustment of price in response to news,

since both the amount of unanticipated information and a release-specific precision

measure can be obtained.

Hautsch and Hess (2007) document the importance of news’ precision in a framework

where traders are assumed to use external information to make inferences about the

precision of news. To facilitate a comparison with these results, we employ a similar

data set based on two-minute log returns of T-bond futures in 90-minute windows

around employment announcements.6 However, our dataset covers an extended sample

period of 15 years, from January 4th, 1991 to December 2nd, 2005. These high fre-

quency T-bond data are obtained from the Chicago Board of Trade (via their Time

& Sales records). From our sample period we obtain 161 event windows in which no

other major information event occurs aside from the release of the employment report.7

Thus information processing during these event windows is driven only by employment

figures. Like previous studies, we use so-called consensus estimates, i.e., medians of an-

alysts’ forecasts, to approximate the anticipated part of information in the employment

headline figures. These analysts’ forecasts are obtained from Informa Global Markets

(e.g. Hardouvelis (1988), Andersen et al. (2003)) and stock prices (e.g. Boyd, Hu and Jagannathan
(2005)).

6Log returns are calculated on the basis of the last trading price observed during a two-minute
interval. We use the same time window, 8:22-9:52 a.m. EST. Since trading starts at 8:20, the first return
can be calculated for the interval 8:22-8:24. In order to avoid the influence of other announcements,
released at 10:00 a.m. EST., only price observations up to 9:52 a.m. EST are used. Like most previous
studies, we focus on the front month contract, i.e., the most actively traded contract among the nearby
and second nearby contracts.

7We eliminate 15 days in which other reports were released during our 90-minute window, particu-
larly releases of Leading Indicators, Personal Income, and Gross Domestic Product. Furthermore, we
eliminate one inadvertently early employment release in November 1998 (Fleming and Remolona 1999b)
and another three releases which were presumably affected by the temporary shutdown of federal agen-
cies due to the budget dispute during the Clinton administration (see Hess, 2004). This leaves us with
a total of 161 observations.
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(formerly S&P Money Market Services, MMS). The announcement data are extracted

from the original, unrevised employment releases from the Bureau of Labour Statistics

(BLS). In accordance with other studies, we concentrate on the headline information

in the employment report, i.e., surprises in the nonfarm payrolls figure SNF and the

unemployment rate SUN .8 Note that nonfarm payrolls are revised in the subsequent

month. We include this revision information, RNF,m, into our analysis. In order to facil-

itate a direct comparison across the information components, all surprise and revision

variables are measured in percentage changes.

In order to extract release-specific precision measures for the monthly employment

releases, we employ the procedure suggested by Hautsch and Hess (2007). First, as

a precision measure for prior information, the dispersion of analysts’ forecasts before

an announcement is used.9 In particular, the standard deviation of analysts’ forecasts

ŝF,m for a particular month m is interpreted as a measure of the cross-sectional dis-

persion of expectations and serves as a proxy for the precision of prior information,

i.e. ρ̂F,m = 1
/
ŝ2F,m . Second, in order to obtain a measure for the precision of the

announced information itself, a one-step-ahead prediction of the (conditional) vari-

ance of revisions is used. Using revisions in nonfarm payrolls is based on the idea

that a large revision of the previous month’s figure (as provided in the current re-

port) indicates that the precision of that figure has obviously been poor. Hautsch and

Hess (2007) illustrate that the magnitude of revisions, and thus the size of estima-

tion errors in announced figures, are autocorrelated. Hence, the size of revisions as a

proxy for news’ precision is predictable. Corresponding forecasts are obtained from an

8The unanticipated information contained in the releases of month m is then measured as the
difference between the announced figure A.,m and its median forecast µF,.,m. For instance, the surprise
in a nonfarm payrolls figure,SNF,m, is determined as SNF,m = ANF,m − µF,NF,m.

9This is in accordance with Abarbanell et al. (1995), Mohammed and Yadav (2002), Andersen et
al. (2003) and Hautsch and Hess (2007), among others. However, note that the information set of all
publicly available prior information may be even much larger. Furthermore, as Ottaviani and Sorensen
(2006) argue, forecasts may be announced strategically depending on the forecaster’s loss function, e.g.
as the median of a distribution.
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ARMA-GARCH model fitted to the time series of revisions. Then, ρ̂ε,m is obtained by

ρ̂ε,m = V̂ ar[RNF,m|RNF,m−1, RNF,m−2, . . .]
−1.10

In order to reduce the impact of estimation noise on the quantification of news’ precision

and avoid the need to impose additional assumptions on the functional relationship

between the precision measure and the induced price reaction, we restrict our analysis

to a distinction between precise and imprecise news. These two states are identified

based on a proxy of the price response coefficient π̂m = ρ̂ε,m/(ρ̂ε,m + ρ̂F,m). We define

news to be precise if π̂m is equal to or above its sample median and imprecise otherwise.

Estimating the relationship between price changes, the surprise S and the derived

precision dummy allows us to test for the implications of the generalized Bayesian

learning framework outlined above.

2.2 Specification of Price Response Curves

Using two-minute log returns rt in the described 90-minute-windows around the em-

ployment release we estimate alternative ARMA-ARCH specifications augmented with

appropriate sets of explanatory variables xt, i.e.,

rt = c+

p1∑

j=1

φ1,jrt−j +

q1∑

j=1

φ2,jεt−j + x′tβ + εt, εt ∼ N(0, ht), (9)

with

ht = ω +

p2∑

j=1

ψ1,jε
2
t−j + z′tθ. (10)

Here, t indexes the two-minute intervals around the release of the employment report

for a given month m. In particular, t = 0 indicates the interval immediately following

the announcement, i.e. 8:30 - 8:32 a.m. EST and t = 1 denotes the 8:32 - 8:34 interval.

For simplicity, the index m is suppressed.

10For more details, see Hautsch and Hess (2007).
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The conditional variance equation (10) captures ARCH effects. In addition, zt (with

corresponding parameter vector θ) consists of regressors {t̄, sin(2 · r · π · t̄), cos(2 · r ·

π · t̄)} with r = 1, . . . , R associated with a Fourier series approximation of order R

defined over the interval t̄ ∈ (0, 1) capturing the used 90-minutes window around the

announcement. This allow us to control for (deterministic) seasonal volatility patterns

around news releases. Preliminary studies show that such a specification captures most

of the variation in conditional variances during the analyzed 90-minute interval.11

To test for the different implications of the Bayesian learning model discussed above,

we use alternative specifications of the vector xt. In particular, to impose the standard

Bayesian learning model in accordance with Section 11.1, a dummy variable D8:30

indicating the interval 8:30 - 8:32 and a linear term for the surprise D8:30 · SNF are

included (among other variables) as regressors in xt:

x′t = [. . . , D8:30 , D8:30 · SNF , . . . ] ,

where SNF,m contains the unexpected component in the nonfarm payrolls figure for

month m. Obviously this specification implies a linear price relationship between non-

farm payroll surprises and the implied return.

In order to capture the impact of an internal precision signal (in accordance with

Section 11.2), we allow for non-linear price responses to news in nonfarm payrolls by

including power functions of this figure into the set of explanatory variables. To keep the

model tractable, we allow for this flexibility only in the interval from 8:30-8:32, where

most of the price movements after employmant announcements typically are realized.

Correspondingly, we model the impact of surprises in nonfarm payrolls based on the

regressors

x′t =
[
. . . , D8:30 , D8:30 · SNF , D8:30 · S

2
NF , D8:30 · S

3
NF , . . .

]
.

11Nevertheless, there might be heteroscedasticity components which are still ignored in our specifi-
cation. Therefore, we use robust standard errors in accordance with Bollerslev and Wooldridge (1992).
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To estimate the most general (unrestricted) model allowing for both internal and ex-

ternal precision signals (in accordance with Section 11.3) we differentiate between pre-

cise and imprecise announcements by interacting the corresponding regressors with a

dummy variable Dπlow which takes on a value of one if the external precision signal is

below its sample median and zero otherwise:

x′t =
[
. . . , D8:30 ·D

πlow, D8:30 ·D
πhigh,

D8:30 · SNF ·Dπlow, D8:30 · SNF ·Dπhigh,

D8:30 · S
2
NF ·Dπlow, D8:30 · S

2
NF ·Dπhigh,

D8:30 · S
3
NF ·Dπlow, D8:30 · S

3
NF ·Dπhigh, . . .

]
,

where Dπhigh = 1−Dπlow. This approach is flexible enough to allow for a wide variety

of shapes of the price response function. Starting with the linear specification, the con-

ventional constant price impact coefficient is obtained as a reference case. Increasing

the order of included polynomials allows us to test whether more non-linear terms are

needed to describe the price response function appropriately. In addition, by interact-

ing these terms with dummy variables indicating a low or high value of the external

precision signal, we can analyze whether the shapes of the price response functions

differ and thus gain insights regarding the relative weight, market participants place on

internal and external precision signals.

In order to keep the model parsimonious and tractable, we mainly concentrate on the

price response induced by announcements in nonfarm payrolls, which are by far the

most influential macroeconomic headline figure.
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3 Empirical Results

Our empirical analysis proceeds in two steps. First, we will analyze whether we find

significant evidence for S-shaped price response functions in accordance with Section

11.2. Second, we will investigate the impact of external precision signals on the strength

and the shape of the price response in line with Section 11.3.

3.1 Non-linearities in Price Response due to Internal Precision Sig-

nals

Table 1 reports estimation results based on five different specifications of equation (9).

The lag order of the autoregressive components is chosen according to the Bayes infor-

mation criterion (BIC) and reveals an AR(2)-ARCH(3) specification as the preferred

model. Aside from the variables discussed in the previous section, the conditional mean

function includes additional variables consisting of surprises in the unemployment rate

SUN as well as revisions in the nonfarm payrolls figure RNF . Moreover, we allow for

potential information leakage effects in the interval 8:28-8:30 as well as lagged price

responses in the interval 8:32-8:34.

As a starting point, specification (A) provides estimation results for a basic model that

does not account for any release-specific precision of unanticipated information. The

results confirm several major findings of previous studies:12 First, the large values of

the highly significant coefficients of D8:30 · SNF and D8:30 · SUN show that surprising

headline information has a strong and significant impact on intraday returns. The

directions of observed price reactions are consistent with standard theory, i.e., T-bond

futures prices rise in response to ’good’ news from the factor labor, i.e., a lower than

12See, for example, Becker et al. (1996), Balduzzi, Elton and Green (2001), Fleming and Remolona
(1999a, b, c), or Hautsch and Hess (2002) for bond markets and Almeida, Goodhart and Payne (1998)
or Andersen et al. (2003) for foreign exchange markets.
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expected increase in nonfarm payrolls and a higher than expected unemployment rate.

Second, markets process unanticipated headline information very rapidly. As indicated

by the insignificant coefficient of D8:32 · SUN and the relatively small coefficient of

D8:32 ·SNF (as compared to D8:30 ·SNF ), the price reaction is completed within two to

four minutes.

Specifications (B) - (E) allow for non-linearities in price responses. Specifically, the

variables capturing the immediate price impact of unanticipated information in the

nonfarm payrolls figure D8:30 ·SNF are included as polynomial terms up to order three.

Note that the theoretical Bayesian learning model with uncertain news’ precision sug-

gests that price reactions are symmetric around zero. Nevertheless, the imposed poly-

nomials also allow for non-symmetric price responses. In particular, previous empirical

studies suggest asymmetric effects of ’good’ and ’bad’ news in response to information

releases.13

Specification (B) shows estimation results for a quadratic specification of the price

response, while specification (C) includes terms up to the third order. Corresponding

likelihood ratio (LR) tests clearly reject the linear specification (A) in favor of the

non-linear models. Hence, higher order terms provide additional explanatory power for

price responses to unanticipated information in the nonfarm payroll figure. On a 1%-

level, the more parsimonious specification (C) with terms up to the third order may

not be rejected in favor of (D) and (E). Overall, in line with the LR tests, the Bayesian

information criterion (BIC) suggests that specification (C) explains price responses

best.

The results imply that the standard Bayesian learning model with a constant price re-

sponse to unanticipated information can clearly be rejected. As an illustration, Figure

13See, e.g. Conrad, Cornell and Landsman (2002), Andersen et al. (2003) and Hautsch and Hess
(2007).
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2 shows the estimated price-response curve to releases of the nonfarm payroll figure un-

der specification (C). We find clear evidence for an S-shaped price response where price

reactions to big surprises are relatively weaker than reactions to small surprises. This

suggests that market participants evaluate the amount of unanticipated information

contained in an announcement as an internal signal of information precision confirming

the model by Subramanyam (1996).

3.2 External Precision Signals and the Strength of the Price Response

In order to investigate the impact of the external precision measure ρ̂A, we split the

variable D8:30 · SNF (including higher order terms) into interactions with the dummy

variables Dπhigh and Dπlow accounting for high vs. low values of πm.

The estimation results based on alternative specifications of the immediate price re-

sponse function are given in Table 2. The results for specification (F) confirm the find-

ings in Hautsch and Hess (2007) that more precise information leads to significantly

stronger price adjustments. Note that this base case does not account for nonlinear

price adjustments but does imply a linear price reaction, as graphically illustrated in

Figure 3. A comparison of the goodness-of-fit of specifications (A) and (F) based on the

BIC suggests that the inclusion of precision dummies leads to a significant improvement

in the model’s goodness-of-fit. This impression is confirmed on the basis of a LR test,

which clearly rejects specification (A) in favor of (F).

In specifications (G)-(L), the precision dummies are interacted with different power

functions of SNF of an order up to three. It turns out that orders higher than three are

not required and do not significantly improve the model fit. In order to gain sufficient

insights into the underlying nonlinear effects, we consider alternative specifications

based on different polynomial functions. Specification (H) includes third-order terms
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for low values of the external precision signal, i.e., for Dπlow = 1, and first-order terms

for high values of the external precision signal (for specification (I), the reverse is true).

Model (J) includes third-order terms for Dπlow = 1 and captures quadratic impacts for

Dπhigh = 1 (again, for model (K), the reverse is true). The most comprehensive model

(L) includes third-order terms for both low and high values of the external precision

signal. However, the LR tests as well as the BIC values favour specification (J). Figure

4 provides a graphical illustration of the estimated price response curves for the best

performing specification (J) over the range of observed surprise values.

Finally, a comparison of the models underlying Sections 11.2 and 11.3 is performed

on the basis of a LR test of specification (L) against specification (C). Here, specifi-

cation (C) is clearly rejected.14 Note that specifications (C) and (J) yield nearly the

same BIC values, which indicates that precision effects do not significantly improve

the model’s goodness-of-fit over the whole 90-minute period. However, this is due to

the fact that price adjustments are mainly observed over the two to four minutes after

the announcement, corresponding to 2-4% of the sample. In this sense, the BIC is not

very informative about the statistical (and economic) importance of precision effects.

Therefore, we instead rely on the significance of estimates and the employed LR tests

which reflect that short-term price adjustments are significantly affected by precision

effects.

Thus, we can summarize that both the internal and external precision signals contribute

to the explanation of differences in the strength of the price reaction. This suggests that

traders try to infer information precision from different sources, not only by looking

at the magnitude of the surprise as suggested by Subramanyam (1996), but also by

inspecting additional detail information related to the headline figures, as suggested by

Hautsch and Hess (2007).

14Note that model (C) is not nested in (J), and thus a LR test is not applicable.
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As shown in Figure 4, prices react in a rather non-linear way if the perceived precision is

low. We find strong evidence for an S-shaped price response curve, as predicted by the

model in Subramanyam (1996). In particular, the price response coefficient decreases for

absolute surprises in the positive as well as negative surprise range. For large, negative

surprises, we even obtain some evidence of a negative marginal price reaction.

Moreover, we find evidence that the S-shape of the price response curve is dampened

if the external precision signal is high. In that case, the curvature of the price response

function significantly declines, and we observe a nearly linear relationship between price

changes and surprises; if an announcement figure is perceived to be of high precision,

market participants react to big surprises with a strength similar to that of the re-

action to small surprises. In contrast, if the external precision measure indicates that

the announced information is of low quality, investors react more moderately to larger

surprises. Given the nearly linear shape of the price response curve in a state of high in-

formation precision, we might be tempted to argue that market participants completely

ignore the internal precision signal if the perceived precision is high.

However, the model derived in 11.3 suggests that the opposite is true. In fact, non-

linearities in the price response should be more pronounced for a high value of the

external precision signal (recall Figure 1 for an illustration). Within our sample period,

we might not have sufficiently large surprise values to observe the situation depicted by

Figure 1 (a). Presumably, we face the situation illustrated by Figure 1 (b), where the

curvature is dampened in a relatively narrow region around zero and the price response

curve becomes almost linear when precision is high. Consequently, we should be careful

in interpreting the reduced non-linearities in the price-response curve in periods of high

precision.

Note that our results are robust regarding the imposed functional form of the price re-
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sponse relationship. Instead of capturing potential nonlinearities based on power func-

tions, we also estimated the model based on flexible Fourier forms defined over the

range of surprises. The fact that we get quantitatively the same results indicates the

robustness of our findings.15

As can be seen from the following example, our results are also significant from an eco-

nomic perspective. Assume that market participants observe a median-sized piece of

’good’ nonfarm payrolls news (i.e., a nonfarm payrolls figure which is 0.06% lower than

the median forecast) in connection with a ’low’ external precision. According to the best

performing specification (J) and accounting for both the internal and external precision,

prices increase by about 0.31% in response to this release. If, instead, market partici-

pants ignore both precision signals (in accordance with the standard Bayesian learning

model in specification (A)), prices would increase by about 0.22%. Hence, ignoring both

precision signals would lead to a severe underestimation of the price response by about

one third. In contrast, suppose that an extreme surprise of SNF = −0, 18% is observed,

corresponding to the 90% quantile for ’good news,’ again in connection with a ’low’ ex-

ternal precision signal. Since the internal signal suggests a very low precision, according

to specification (J), prices react only slightly more strongly, i.e., we would observe a

return of 0, 36%. However, ignoring both precision signals would strongly overestimate

price responses by 89% and result in an expected return of 0, 67%.

Overall, these results provide strong evidence in favor of the claim of Bayesian learning

that the perceived quality of information plays an important role in determining its

price impact. The results suggest that market participants actually use internal as well

as external signals to determine the precision of released news. Ignoring the available

information on news’ precision may result in strong over- or underestimations of the

15For sake of brevity, the latter results are not included in the paper, but they are available upon
request from the authors.
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price reaction.

4 Conclusion

If agents in financial markets are confronted with new information, they process it by

adjusting their expectations on asset values. Bayesian learning provides a concept for

processing this information consistently. Since, in contrast to standard assumptions, the

precision of information is rarely available to market participants, we derive different

settings of Bayesian learning models which allow for uncertainty in the precision of

news. Within these models, one common principle remains true: Market participants’

perception of information quality plays a major role in determining the strength of price

adjustments. However, this perception of precision may be based on different precision

signals.

The theoretical models show that the amount of unanticipated information in an an-

nouncement may provide traders with an ‘internal’ signal of its precision, i.e., the price

response coefficient is decreasing with the magnitude of surprises. In addition, price

responses to news may be influenced by ‘external’ signals of news precision, such as the

reputation of an auditing company, the reliability of a newspaper or the data coverage

of an agency. If we observe a high value for such an external precision measure, the price

response to a given surprise is relatively stronger than in a situation of low perceived

precision.

To test these implications, we focus on the most influential macroeconomic report, i.e.,

the U.S. employment release. In its headline figures, this report does not contain any

release-specific precision measures. Instead, market participants may extract precision

measures of the released headline figures by analyzing related detail information. As

suggested by Hautsch and Hess (2007), revisions of previously announced figures in
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conjunction with the cross-sectional standard deviations of analysts’ forecasts may be

used to derive such an external precision measure.

We investigate the price reaction of CBOT T-bond futures to these employment an-

nouncements using high-frequency data. The price response curves extracted from the

data illustrate a non-linear price impact of information depending on its surprise com-

ponent. As predicted by the theory, our empirical results suggest that market partic-

ipants seem to interpret the magnitude of the surprise contained in a news release as

an internal indication of its precision. Consequently, if traders observe an announce-

ment that strongly deviates from their expectations, they tend to conclude that this

announcement is imprecise.

Using the precision measures proposed by Hautsch and Hess (2007) as an additional

external signal of the precision of the released data, we confirm the strong link between

the perceived precision of news and the price response. If the precision signal derived

from past revision data indicates a high relative precision level of news, market prices

react stronger to the unanticipated part of the data. If the external precision signal

indicates a poor quality of the released figures, market prices react only weakly.

Overall, our empirical analysis provides evidence in favor of Bayesian learning in cases

where the precision of news is uncertain. The results show that the quality of news

significantly determines the implied price impact. The results also suggest that if exact

quality measures for a release are missing, traders try to infer news’ precision by drawing

on different sources. When observing a piece of news, they assess for themselves how

precise it is. Market participants seem to include in these assessments information on

the reliability of the source of the message.

To our knowledge, the present analysis is the first that describes the impact of these

two simultaneous – internal and external – precision signals in a unified framework.
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Such Bayesian learning models accounting for uncertain news precision provide further

insight into price formation mechanisms and help to assess risky positions. For example,

to infer how the release of an unexpectedly high unemployment figure will affect the

value of a bond portfolio, traders and portfolio managers need to use an adequate

model for the price impact of employment data. We show that ignoring the available

information on announcements’ precision may result in strong over- or underestimations

of the price impact of news.
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Appendix A

We first derive the posterior beliefs of traders after observing an announcement and a

proxy for the precision of the signal. Recall the assumption that the random variables

A and ρ̂A are conditionally independent given the precision ρA, i.e.

fA,ρ̂A|ρA
(A, ρ̂A | ρA) = fA|ρA

(A | ρA)fρ̂A|ρA
(ρ̂A | ρA). (11)

Then, the conditional expectation of X given A and ρ̂A is given by

µP = E [X | A, ρ̂A]

= E [E [X | A, ρ̂A, ρA] | A, ρ̂A]

= E [µF + (A− µF )ρA/ρF | A, ρ̂A]

= µF + E [(A− µF )ρA/ρF | A, ρ̂A]

= µF + (A− µF )E [ρA | A, ρ̂A] /ρF

≡ µF + S · π(S, ρ̂A).

The expected precision of the announcement is given as

E [ρA | A, ρ̂A] =

∫

SA

ρAf(ρA | A, ρ̂A)dρA

=

∫

SA

ρA

f(A, ρ̂A | ρA)f(ρA)

f(A, ρ̂A)
dρA

=

∫
SA
ρAf(A | ρA)f(ρ̂A | ρA)f(ρA)dρA

f(A, ρ̂A)

=

∫
SA
ρAf(A | ρA)f(ρ̂A | ρA)f(ρA)dρA∫

SA
f(A, ρ̂A | ρA)f(ρA)dρA

=

∫
SA
ρAf(A | ρA)f(ρ̂A | ρA)f(ρA)dρA∫

SA
f(A | ρA)f(ρ̂A | ρA)f(ρA)dρA

,

where the support of f(ρA) is given by SA ∈ (ρF ,∞).

Using these relations we now turn to the proofs of the particular theorems.
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Proof of Theorem 1: Note that ∂f(A | ρA)∂S2 =
(
−1

2ρA

)
f(A | ρA), since we

assumed that A is conditionally normally distributed given ρA. We need to show that

the partial derivative of the conditional expected precision with respect to the absolute

surprise is strictly negative.

∂E [ρA | A, ρ̂A]

∂S2
=

∂

∂S2

∫
SA
ρAf(A | ρA)f(ρ̂A | ρA)f(ρA)dρA∫

SA
f(A | ρA)f(ρ̂A | ρA)f(ρA)dρA

=
( ∂

∂S2

∫
SA
ρAf(A | ρA)f(ρ̂A | ρA)f(ρA)dρA)

∫
SA
f(A | ρA)f(ρ̂A | ρA)f(ρA)dρA

(
∫

SA
f(A | ρA)f(ρ̂A | ρA)f(ρA)dρA)2

−

∫
SA
ρAf(A | ρA)f(ρ̂A | ρA)f(ρA)dρA( ∂

∂S2

∫
SA
f(A | ρA)f(ρ̂A | ρA)f(ρA)dρA)

(
∫

SA
f(A | ρA)f(ρ̂A | ρA)f(ρA)dρA)2

=
− 1

2

∫
SA
ρ2

Af(A | ρA)f(ρ̂A | ρA)f(ρA)dρA

∫
SA
f(A | ρA)f(ρ̂A | ρA)f(ρA)dρA

(
∫

SA
f(A | ρA)f(ρ̂A | ρA)f(ρA)dρA)2

−

∫
SA
ρAf(A | ρA)f(ρ̂A | ρA)f(ρA)dρA(− 1

2 )
∫

SA
ρAf(A | ρA)f(ρ̂A | ρA)f(ρA)dρA

(
∫

SA
f(A | ρA)f(ρ̂A | ρA)f(ρA)dρA)2

= −

∫
SA
ρ2

Af(A | ρA)f(ρ̂A | ρA)f(ρA)dρA

2
∫

SA
f(A | ρA)f(ρ̂A | ρA)f(ρA)dρA

+
(
∫

SA
ρAf(A | ρA)f(ρ̂A | ρA)f(ρA)dρA)2

2(
∫

SA
f(A | ρA)f(ρ̂A | ρA)f(ρA)dρA)2

= −
1

2

[∫
SA
ρ2

Af(A | ρA)f(ρ̂A | ρA)f(ρA)dρA∫
SA
f(A | ρA)f(ρ̂A | ρA)f(ρA)dρA

−

(∫
SA
ρAf(A | ρA)f(ρ̂A | ρA)f(ρA)dρA∫

SA
f(A | ρA)f(ρ̂A | ρA)f(ρA)dρA

)2



= −
1

2

(
E[ρ2

A | A, ρ̂A] − (E[ρA | A, ρ̂A])2
)

= −
1

2
V ar[ρA | A, ρ̂A] < 0,

for any non-degenerate distribution of the precision ρA. Since |S| and S2 are positively

and monotonically related, the result can be applied for |S|. Then, it is straightforwardly

shown that ∂π(S, ρ̂A)/∂|S| < 0. �
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Proof of Theorem 2: Note that ∂f(A | ρA)∂S = −ρASf(A | ρA), since we assume

that A is conditionally normally distributed given ρA. Then,

∂E [ρA | A, ρ̂A]

∂S
= 2S ·

∂E [ρA | A, ρ̂A]

∂S2
.

Hence, using Theorem 1 we get

∂E [ρA | A, ρ̂A]

∂S
= −S · V ar[ρA | A, ρ̂A]

and thus

∂(µP − µF )

∂S
= π(S, ρ̂A) +

S

ρF

∂E[ρA|A, ρ̂A]

∂S
= π(S, ρ̂A) −

S2

ρF
V ar[ρA | A, ρ̂A].

�
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Proof of Theorem 3: Note that ∂f(ρ̂A | ρA)∂ρ̂A =

(
− ρ̂A−ρA

2σ2
ρ̂A

)
f(ρ̂A | ρA), since we

assume a normal distribution for ρ̂A. We need to show that the partial derivative of the

conditional expected precision with respect to the precision signal is strictly positive,

∂E[ρA | A, ρ̂A]

∂ρ̂A

=

∫
SA
ρAf(A | ρA)∂f(ρ̂A|ρA)

∂ρ̂A
f(ρA)dρA

∫
SA
f(A | ρA)f(ρ̂A | ρA)f(ρA)dρA

(∫
SA
f(A | ρA)f(ρ̂A | ρA)f(ρA)dρA

)2

−

∫
SA
ρAf(A | ρA)f(ρ̂A | ρA)f(ρA)dρA

∫
SA
f(A | ρA)∂f(ρ̂A|ρA)

∂ρ̂A
f(ρA)dρA

(∫
SA
f(A | ρA)f(ρ̂A | ρA)f(ρA)dρA

)2

=

∫
SA
ρAf(A | ρA)

(
− ρ̂A−ρA

2σ2

ρ̂A

)
f(ρ̂A | ρA)f(ρA)dρA

∫
SA
f(A | ρA)f(ρ̂A | ρA)f(ρA)dρA

(∫
SA
f(A | ρA)f(ρ̂A | ρA)f(ρA)dρA

)2

−

∫
SA
ρAf(A | ρA)f(ρ̂A | ρA)f(ρA)dρA

∫
SA
f(A | ρA)

(
− ρ̂A−ρA

2σ2

ρ̂A

)
f(ρ̂A | ρA)f(ρA)dρA

(∫
SA
f(A | ρA)f(ρ̂A | ρA)f(ρA)dρA

)2

=
1

2σ2
ρ̂A

[∫
SA
ρ2

Af(A | ρA)f(ρ̂A | ρA)f(ρA)dρA∫
SA
f(A | ρA)f(ρ̂A | ρA)f(ρA)dρA

−

(∫
SA
ρAf(A | ρA)f(ρ̂A | ρA)f(ρA)dρA∫

SA
f(A | ρA)f(ρ̂A | ρA)f(ρA)dρA

)2



=
1

2σ2
ρ̂A

(
E[ρ2

A | A, ρ̂A] − (E[ρA | A, ρ̂A])
2
)

=
1

2σ2
ρ̂A

V ar[ρA | A, ρ̂A] > 0,

for any non-degenerate distribution of the precision ρA. Then, it is straightforwardly

shown that ∂π(S, ρ̂A)/∂ρ̂A > 0 and ∂|µP − µF |/∂ρ̂A > 0. �

30



Proof of Theorem 4: The posterior mean of X is written as

µP = E [X | A, ρ̂A]

= E [E [X | A, ρF , ρA, ρ̂A] | A, ρ̂A]

= E [(A− µF )ρA/ρF + µF | A, ρ̂A]

= µF + (A− µF ) · E [ρA/ρF | A, ρ̂A]

= µF + (A− µF ) ·

∫

SF

∫

SA

ρA/ρF f(A, ρ̂A | ρA, ρF )f(ρA, ρF )dρAdρF

= µF + (A− µF ) ·

∫

SF

1/ρF

∫

SA

ρAf(A, ρ̂A | ρA, ρF )f(ρA | ρF )dρA

︸ ︷︷ ︸
E[ρA|A,ρF ,ρ̂A]

f(ρF )dρF

≡ µF + (A− µF ) · π(S, ρ̂A).

Using the result established in Theoreom 1, we can show

∂π(S)/∂S2 =
∂

∂S2

∫

SF

1/ρF

∫

SA

ρAf(A, ρ̂A | ρA, ρF )f(ρA | ρF )dρAf(ρF )dρF

=

∫

SF

1/ρF

∂
∫
SA
ρAf(A, ρ̂A | ρA, ρF )f(ρA | ρF )dρA

∂S2
f(ρF )dρF

=

∫

SF

1/ρF
∂E [ρA | A, ρF , ρ̂A]

∂(S2)︸ ︷︷ ︸
<0

f(ρF )dρF < 0.

Here, the price response coefficient π(S, ρ̂A) is just a weighted average of the price

response coefficients in the case of known variance of the prior information weighted

by the corresponding probability. Hence, the results established by Theorems 1 and 3

still hold. �
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Appendix B

FIGURE 1:

Price response curves resulting from the Bayesian learning model
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(a) Large range of surprises
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(b) Small range of surprises

x-axis: surprises in the announcement S = (A − µA), i.e. deviations of the announced figure

from its mean, y-axis: price responses, i.e. changes in expectations µP − µF . The graphs show a

numerical example of price response curves given the model specification in section 11.3. Prior beliefs

are normally distributed with µF = 0 and ρF = 1, while news’ precision ρA follows a truncated gamma

distribution with scale parameter λ = 1 and shape parameter r = 1. Additionally, an external estimate

of news’ precision ρ̂A is observed which is normally distributed as ρ̂A ∼ N(ρA, σρ̂A
). Price response

curves are increasing in the observed value of the precision proxy, the graphs correspond to external

precision signals of ρ̂A = 0.5, 1, 1.5 while we choose σρ̂A
= 0.25.
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FIGURE 2:

Estimated price-response curve allowing for internal precision signals

x-axis: surprises in the U.S. nonfarm payrolls figure SNF (in percentage points), y-axis: estimated price

response r̂t (log-returns ×1000). This figure provides an illustration of the price response curve to surprises

in announcements of nonfarm payrolls figures corresponding to specification (C) in table 1. The results are

based on a QML estimation of AR(2)-ARCH(3) models for two-minute log returns during the intraday

interval 8:22-9:52 a.m. EST on employment announcement days on which no other macroeconomic report

was released at the same time. The sample period is Jan. 1991 - Dec. 2005, resulting in 7245 observations

(i.e., 161 days with no overlapping announcements × 45 two-min intervals). According to the Bayes infor-

mation criterion (BIC), the model that includes polynomial terms in nonfarm payrolls surprises up to the

third order provides the best specification. Thus, as predicted by the theoretical model, the resulting price

response curves are non-linear, since big surprises serve as a signal for low news’ precision. Therefore, big

surprises in the announced figure lead to relatively weaker price reactions than small surprises do.
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FIGURE 3:

Estimated linear price-response curves for high and low external precision

signals

x-axis: surprises in the U.S. nonfarm payrolls figure SNF (in percentage points), y-axis: estimated price

response r̂t (log-returns ×1000). A graphical illustration of the price response curve to nonfarm payrolls

figures as described by specification (F) in table 2. The results are based on a QML estimation of AR(2)-

ARCH(3) models for two-min log returns during the intraday interval 8:22 - 9:52 a.m. EST on employment

announcement days for which no other macroeconomic report is released at the same time. The sample

period is Jan. 1991 - Dec. 2005, resulting in 7245 observations (i.e., 161 days with no overlapping an-

nouncements × 45 two-min intervals). The curve corresponding to high precision signals has a significantly

larger slope. A higher external precision signal leads to stronger price reactions given the same amount of

unexpected information in a news release.
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FIGURE 4:

Estimated price-response curves allowing for internal and external precision

signals

x-axis: surprises in the U.S. nonfarm payrolls figure SNF (in percentage points), y-axis: estimated price

response r̂t (log-returns ×1000). A graphical illustration of the price response curve to nonfarm payrolls

figures as described by specification (J) in table 2. The results are based on a QML estimation of AR(2)-

ARCH(3) models for two-min log returns during the intraday interval 8:22-9:52 a.m. EST on employment

announcement days on which no other macroeconomic report was released at the same time. The sample

period is Jan. 1991 - Dec. 2005, resulting in 7245 observations (i.e., 161 days with no overlapping an-

nouncements × 45 two-min intervals). Prices tend to react more strongly to news with a high precision

signal. For high precision signals, polynomial terms in nonfarm payroll surprises are captured only up to

the second order, while for low precision signals, terms up to the third order are included.
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TABLE 1

Estimation of price response functions
with surprises as an internal precision signal

Model (A) (B) (C) (D) (E)

Mean equation
cons -0,002 -0,002 -0,002 -0,002 -0,002

D8:28
· SNF 4,406 3,619 3,927 4,078 3,829

D8:30 -0,080 0,530 0,355 0,558 0,637
D8:30

· S1
NF -37,873 *** -42,415 *** -53,447 *** -54,909 *** -50,344 ***

D8:30
· S2

NF -91,220 ** -55,336 * -119,526 -145,530
D8:30

· S3
NF 531,752 *** 624,49 *** 80,073

D8:30
· S4

NF 1658,397 2337,978
D8:30

· S5
NF 9945,756

D8:32
· SNF -4,000 ** -4,322 ** -4,274 ** -4,181 ** -4,277 **

D8:28
· SUN 1,636 1,278 1,320 1,314 1,175

D8:30
· SUN 5,003 ** 5,617 ** 5,746 *** 6,212 *** 6,367 ***

D8:32
· SUN 1,448 * 1,325 1,356 1,332 1,286

D8:28
·RNF 2,206 1,841 2,010 1,999 1,839

D8:30
·RNF -6,872 *** -6,390 *** -6,215 ** -5,889 ** -5,808 **

D8:32
·RNF 0,083 -0,428 -0,071 -0,106 -0,258

rt−1 -0,091 *** -0,091 *** -0,090 *** -0,090 *** -0,091 ***
rt−2 -0,001 0,000 0,000 0,000 0,000

Variance equation
cons 0,439 *** 0,439 *** 0,436 *** 0,436 *** 0,437 ***
ARCH(1) 0,148 ** 0,141 *** 0,146 *** 0,145 *** 0,144 ***
ARCH(2) 0,057 *** 0,059 *** 0,058 *** 0,058 *** 0,058 ***
ARCH(3) 0,031 *** 0,033 *** 0,034 *** 0,034 *** 0,034 ***

LL -8020,69 -7999,57 -7987,29 -7985,32 -7984,12
BIC 2,2485 2,2439 2,2417 2,2424 2,2433

LR-Test against model (A) 42,24 *** 66,80 *** 70,73 *** 73,13 ***
LR-Test against model (B) 24,56 *** 28,49 *** 30,89 ***
LR-Test against model (C) 3,93 ** 6,33 **
LR-Test against model (D) 2,40
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TABLE 1 (continued)

QML estimation of AR(2)-ARCH(3) models for two-min log returns during the intraday interval 8:22-9:52

a.m. EST on employment announcement days for which no other macroeconomic report is released at the

same time. The sample period is Jan. 1991 - Dec. 2005, resulting in 7245 observations (i.e. 161 days with

no overlapping announcements × 45 2-min intervals).

The estimated model for log returns rt is given by rt = c+
P

2

j=1
φjrt−j + x′tβ + εt, where εt ∼ N(0, ht),

t indexes the first interval after the announcement, 8:30-8:32 a.m., xt denotes a vector of explanatory

variables and β is the corresponding coefficient vector. ht is given by ht = ω +
P

3

j=1
ψjε

2
t−j + st, where

st = δs
· t +

P

5

j=1

`

δs
c,j cos(j · t · 2π) + δs

s,j sin(j · t · 2π)
´

denotes the seasonality function based on the

parameters δs, δs
c,j , δ

s
s,j and a normalized time trend t ∈ [0, 1] given by the elapsed time (in minutes) in

the interval 8:22 to 9:52 a.m. divided by 90. The estimated seasonality parameters are omitted in the

table.

The regressors xt are the surprise in U.S. nonfarm payrolls, SNF , and in unemployment rates, SUN , as

well as revisions of nonfarm payrolls RNF interacted with time dummies indicating the intervals 8:28-8:30

a.m. (D8:28), 8:30-8:32 a.m. (D8:30) and 8:32-8:34 a.m. (D8:32). To capture non-linear immediate price

responses in the interval 8:30-8:32, surprises in nonfarm payrolls SNF are included as polynomials up to

the order 5. Surprises are computed based on U.S. employment report figures released by the BLS and

consensus forecasts provided by Informa Global Markets, formerly MMS.

The table reports the log likelihood (LL), the Bayes information criterion (BIC) and χ2 statistics of LR

tests on the inequality of individual parameters. Statistical inference is based on QML standard errors

(Bollerslev and Wooldridge 1992). ∗∗∗, ∗∗, and ∗ indicates significance at the 1%, 5%, and 10% level,

respectively. Except for the LR tests, the level of significance is based on two-sided tests.
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TABLE 2

Estimation of price response functions
differentiated by low and high values of the additional external precision proxy

Model (F) (G) (H) (I)

Mean equation
cons -0,002 -0,002 -0,002 -0,002
D8:28

· SNF 4,365 3,411 3,862 4,147

D8:30
·Dπlow -0,074 0,782 0,611 -0,069

D8:30
·Dπhigh -0,141 0,315 -0,131 0,203

D8:30
· S1

NF ·Dπlow -30,439 *** -34,498 *** -46,901 *** -30,356 ***

D8:30
· S1

NF ·Dπhigh -47,601 *** -53,413 *** -47,713 *** -56,190 ***

D8:30
· S2

NF ·Dπlow -106,693 ** -77,937 **

D8:30
· S2

NF ·Dπhigh -87,544 * -61,651

D8:30
· S3

NF ·Dπlow 503,544 **

D8:30
· S3

NF ·Dπhigh 217,349
D8:32

· SNF -4,020 ** -4,694 ** -4,422 ** -4,305 **
D8:28

· SUN 1,623 1,197 1,327 1,499
D8:30

· SUN 5,553 ** 6,275 *** 6,286 *** 5,723 **
D8:32

· SUN 1,484 * 1,286 1,414 1,349
D8:28

·RNF 2,051 1,701 1,989 1,885
D8:30

·RNF -5,901 ** -5,220 ** -5,424 ** -5,585 **
D8:32

·RNF -0,080 -0,664 0,010 -0,460
rt−1 -0,091 *** -0,091 *** -0,091 *** -0,090 ***
rt−2 0,000 0,000 0,000 0,000

Variance equation
cons 0,437 *** 0,437 *** 0,437 *** 0,437 ***
ARCH(1) 0,151 ** 0,143 ** 0,148 ** 0,148 **
ARCH(2) 0,057 *** 0,059 *** 0,057 *** 0,058 ***
ARCH(3) 0,032 *** 0,035 *** 0,033 *** 0,034 ***

LL -8008,54 -7982,99 -7981,52 -8002,00
BIC 2,2476 2,2430 2,2426 2,2482

LR-Test against model (A) 24,30 *** 75,40 *** 78,34 *** 37,38 ***
LR-Test against model (C)

LR-Test against model (F) 51,10 *** 54,04 *** 13,08 ***
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TABLE 2 (continued)

Estimation of price response functions
differentiated by low and high values of the additional external precision proxy

Model (J) (K) (L)

Mean equation
cons -0,002 -0,002 -0,002
D8:28

· SNF 3,660 3,400 3,651

D8:30
·Dπlow 0,630 0,774 0,624

D8:30
·Dπhigh 0,323 0,236 0,264

D8:30
· S1

NF ·Dπlow -46,957 *** -34,580 *** -46,950 ***

D8:30
· S1

NF ·Dπhigh -53,605 *** -55,948 *** -55,534 ***

D8:30
· S2

NF ·Dπlow -78,320 ** -106,453 ** -78,297 **

D8:30
· S2

NF ·Dπhigh -89,156 * -66,847 -73,585

D8:30
· S3

NF ·Dπlow 512,233 ** 509,326 **

D8:30
· S3

NF ·Dπhigh 186,343 141,106
D8:32

· SNF -4,692 ** -4,693 ** -4,692 **
D8:28

· SUN 1,169 1,207 1,176
D8:30

· SUN 6,694 *** 6,097 *** 6,556 ***
D8:32

· SUN 1,230 1,338 1,267
D8:28

·RNF 1,707 1,745 1,744
D8:30

·RNF -4,736 ** -5,464 ** -4,932 **
D8:32

·RNF -0,549 -0,510 -0,435
rt−1 -0,091 *** -0,091 *** -0,091 ***
rt−2 0,000 0,000 0,000

Variance equation
cons 0,436 *** 0,437 *** 0,436 ***
ε2t−1 0,146 ** 0,143 ** 0,146 **
ε2t−2 0,059 *** 0,059 *** 0,058 ***
ε2t−3 0,035 *** 0,035 *** 0,035 ***

LL -7974,53 -7982,74 -7974,38
BIC 2,2419 2,2441 2,2431

LR-Test against model (A) 92,32 *** 75,90 *** 92,62 ***
LR-Test against model (C) 25,82 ***

LR-Test against model (F) 68,02 *** 51,59 *** 68,31 ***
LR-Test against model (G) 16,92 *** 0,50 17,21 ***
LR-Test against model (H) 13,98 *** 14,27 ***
LR-Test against model (I) 38,51 *** 55,22 ***
LR-Test against model (J) 0,29
LR-Test against model (K) 16,71 ***
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TABLE 2 (continued)

QML estimation of AR(2)-ARCH(3) models for two-min log returns during the intraday interval 8:22-9:52

a.m. EST on employment announcement days for which no other macroeconomic report is released at the

same time. The sample period is Jan. 1991 - Dec. 2005, resulting in 7245 observations (i.e. 161 days with

no overlapping announcements × 45 2-min intervals).

The estimated model for log returns rt is given by rt = c+
P

2

j=1
φjrt−j + x′tβ + εt, where εt ∼ N(0, ht),

t indexes the first interval after the announcement, 8:30-8:32 a.m., xt denotes a vector of explanatory

variables and β is the corresponding coefficient vector. ht is given by ht = ω +
P

3

j=1
ψjε

2
t−j + st, where

st = δs
· t +

P

5

j=1

`

δs
c,j cos(j · t · 2π) + δs

s,j sin(j · t · 2π)
´

denotes the seasonality function based on the

parameters δs, δs
c,j , δ

s
s,j and a normalized time trend t ∈ [0, 1] given by the elapsed time (in minutes) in

the interval 8:22 to 9:52 a.m. divided by 90. The estimated seasonality parameters are omitted in the

table.

The regressors xt are the surprise in U.S. nonfarm payrolls, SNF , and in unemployment rates, SUN ,

as well as revisions of nonfarm payrolls RNF interacted with time dummies indicating the intervals

8:28-8:30 a.m. (D8:28), 8:30-8:32 a.m. (D8:30) and 8:32-8:34 a.m. (D8:32). Surprises are computed based

on U.S. employment report figures released by the BLS and consensus forecasts provided by Informa

Global Markets (IGM), formerly MMS. The variables SNF are included as polynomials up to order 3 and

interact with dummy variables Dπ high (Dπ low) which takes on the value 1 if estimated price-response

coefficient π̂m at month m is higher (lower) than its sample median, and 0 otherwise. π̂m is given

by π̂m = ρ̂A,m/ (ρ̂F,m + ρ̂A,m), where ρ̂A,m = 1/ĝm+1|m, ĝm+1|m is the one-step-ahead prediction of

the conditional variance of (percentage) revision of the nonfarm payroll figure in month m, ṘNF,m,

computed based on rolling sample ARMA-GARCH models for the time series of historical revisions,

and ρ̂F,m = 1/ŝ2F,m with ŝF,m denoting the cross-sectional standard deviation of IGM forecasts for the

employment release for a particular month m.

The table reports the log likelihood (LL), the Bayes information criterion (BIC) and χ2 statistics of LR

tests on the inequality of individual parameters. Statistical inference is based on QML standard errors

(Bollerslev and Wooldridge 1992). ∗∗∗, ∗∗, and ∗ indicates significance at the 1%, 5%, and 10% level,

respectively. Except for the LR tests, the level of significance is based on two-sided tests.
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