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TESTING THE CONDITIONAL MEAN FUNCTION OF
AUTOREGRESSIVE CONDITIONAL DURATION MODELS

NIKOLAUS HAUTSCH∗

DEPARTMENT OF ECONOMICS
UNIVERSITY OF COPENHAGEN

Abstract. In this paper, we suggest and evaluate specification tests to test the validity
of the conditional mean function implied by Autoregressive Conditional Duration (ACD)
models. We propose Lagrange multiplier tests against sign bias alternatives, various
types of conditional moment tests and integrated conditional moment tests which are
consistent against all possible alternatives. In a Monte-Carlo study we investigate the
finite sample properties of the individual tests. Moreover, the testing framework is
applied to a variety of existing and new ACD specifications using financial duration data
based on NYSE trading. We show that conditional moment tests have the highest power
to detect general types of misspecifications. Moreover, we provide evidence that most
ACD specifications are too simple and are clearly rejected. It turns out that flexible
parameterizations of the news impact function are necessary to appropriately model
financial durations. A semiparametric ACD model proposed in this paper seem to be a
valuable alternative to existing approaches.

1. Introduction

The seminal papers of Engle and Russell (1998) and Engle (2000) have been the start-

ing point for a wide range of studies focussing on the specification and application of

autoregressive conditional duration (ACD) models. Not surprisingly, this string of the

literature is strongly affected by its resemblance to the GARCH framework. Bauwens

and Giot (2000), for example, introduce the Log-ACD model which is the counterpart to

the Log-GARCH model. Dufour and Engle (2000) and Hautsch (2003) suggest different

types of Box-Cox-ACD models whereas Fernandes and Grammig (2006) build a family

of asymmetric ACD models on the basis of the framework of asymmetric GARCH pro-

cesses introduced by Hentschel (1995). Moreover, regime-switching ACD specifications

have been introduced by Zhang, Russell, and Tsay (2001) and recently extended by Meitz
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and Teräsvirta (2006) to allow for smooth transition specifications. Finally, Jasiak (1998)

introduces a fractionally integrated ACD model.

The fundamental building block of the ACD model is the specification of the conditional

expected duration mean. The validity of this conditional mean restriction is the basic as-

sumption underlying the ACD model and is the prerequisite to ensure the quasi maximum

likelihood (QML) properties of the Exponential ACD (EACD) specification (see Engle

and Russell, 1998). Nonetheless, most diagnostics that have been applied in recent ACD

literature are not appropriate for an explicit test of the conditional mean restriction. A

common way to evaluate the ACD model is to check the goodness-of-fit, for example based

on residual diagnostics, in-sample density forecast evaluations (see Bauwens et al, 2004)

or based on nonparametric specification tests against distributional misspecification (see

Fernandes and Grammig, 2005). However, these tests do not allow to identify whether

a possible rejection is due to a violation of distributional assumptions or due to a mis-

specification of the first conditional moment implied by an ACD process. Therefore, the

fundamental motivation for this study is the need for diagnostic tests which are partic-

ularly sensitive against violations of the conditional mean restriction but not necessarily

against misspecifications of higher order moments.

The contribution of this paper is two-fold. First, we suggest and evaluate a wide range

of different types of conditional moment tests for ACD models on the basis of an exten-

sive Monte-Carlo study. Second, we apply these tests to various types of ACD models

and illustrate the need for specifications implying a flexible parameterization of the news

impact function. In this context, we suggest two new types of flexible ACD models and

demonstrate their usefulness in light of the proposed testing framework.

A natural way to construct a specification test that allows to exclusively test the condi-

tional mean restriction is to rely on the QML property of the EACD model and to apply

the framework of conditional moment tests. In this context, we consider several types of

specification tests:(i) As proposed by Engle and Russell (1994) and extended by Meitz

and Teräsvirta (2006) one simple proceeding is to specify Lagrange Multiplier (LM) tests

which have optimal power against local alternatives. However, while Meitz and Teräsvirta

construct LM tests against particular parametric alternatives, our focus is on LM tests

which allow to test for misspecifications of more general and unknown form. Therefore,

following Engle and Ng (1993), we propose LM tests against sign bias alternatives and

nonlinearities in the news impact function. Such tests allow to test whether the functional

form of the conditional mean function is appropriate to account for possibly nonlinear

news response effects. (ii) In order to apply a more general test against violations of

the conditional mean restriction, we use conditional moment (CM) tests as introduced by

Newey (1985). These tests are consistent against a finite number of possible alternatives

since they rely on a finite number of conditional moment restrictions. In this context, we
2



evaluate a wide range of different CM tests based on various weighting functions. (iii)

Moreover, we suggest the use of integrated conditional moment (ICM) tests proposed by

Bierens (1982 and 1990). By employing an infinite number of conditional moments this

test possesses the property of consistency against all possible alternatives and thus is a

generalization of the CM test. de Jong (1996) shows how to generalize Bierens’ test to-

wards data dependence and develops a simulation procedure that is capable of establishing

critical values that are asymptotically valid. We illustrate how to adapt this test to the

class of ACD models.

This testing framework is applied to three major types of ACD models. First, we propose

a new type of augmented ACD model which includes additive as well as multiplicative

stochastic components based on a flexible parameterization of the news impact function.

This specification nests the Hentschel (1995) type ACD model introduced by Fernandes

and Grammig (2006) as well as a variety of nonlinear ACD specifications. Second, we

propose an ACD specification based on a semiparametric specification of the news impact

function in the spirit of Engle and Ng (1993). Here, the news impact is modelled in terms

of a piecewise linear spline function. Third, we apply the class of Threshold ACD (TACD)

models introduced by Zhang, Russell, and Tsay (2001).

The different types of ACD models are used as data generating processes in a Monte Carlo

study where we analyze the size and power properties of the different tests. It is shown

that CM tests have the highest power and seem to be very useful diagnostic tools for the

evaluation of ACD models. Clearly less power is observed for LM tests and ICM tests.

However, we also find evidence for size distortions in finite samples. Finally, the proposed

models and tests are applied to financial durations from the AOL, Coca-Cola, Disney and

GE stock traded at the New York Stock Exchange (NYSE). We focus on trade durations

that play an important role in market microstructure analysis1 and on price durations that

are strongly related to volatility measures2. We provide strong evidence for nonlinearities

in the news response function. It is shown that more simple ACD specifications are rejected

for nearly all duration series under consideration. Clear improvements of the goodness-of-

fit are obtained by more flexible and higher parameterized ACD models. The best results

are obtained for augmented ACD models that explicitly account for nonlinearities in the

news response as well as for specifications based on a semiparametric news impact function.

Particularly the latter seem to be a valuable flexible alternative to existing approaches.

Nevertheless, especially for price durations it turns out that even high flexible ACD models

still reveal problems to ensure the conditional mean restriction.

The rest of the paper is organized in the following way: In Section 2, we present different

types of ACD specifications. Section 3 introduces model specification tests based on LM
1See, for example, Easley and O‘Hara (1992), Diamond and Verrecchia (1987) or Admati and Pfleiderer

(1988).
2See Engle and Russell (1998), Giot (2000) or Gerhard and Hautsch (2002).
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tests, CM tests and ICM tests. Section 4 presents an extensive Monte Carlo study which

allows us to gain deeper insights into the power and the size of the particular tests. In

Section 5, we show empirical results based on an application of the proposed framework

to financial durations generated from the trading process at the NYSE. The conclusions

are given in Section 6.

2. The ACD model

Let xi = ϑi − ϑi−1 denote the time between two events occurring at time ϑi and ϑi−1,

respectively. Engle and Russell (1998) propose to specify the duration process based on

a dynamic parameterization of the conditional mean function Ψi ≡ E[xi|Ii−1; θ0], where

Ii−1 denotes the filtration up to period i − 1 and θ0 is a parameter vector θ0 ∈ Θ with

Θ some compact subset of Rk. By defining εi as an i.i.d. random variable with positive

support and E[εi] = 1, the ACD model is given by

xi = Ψiεi.(1)

Hence, the specification of an ACD model includes (i) the choice of the functional form

for the conditional mean function Ψi and (ii) the choice of an appropriate distribution

for εi. The latter issue is crucial when one is interested not only in predictions of the

duration mean but also in forecasts of quantiles of the complete conditional distribution.

However, in this paper, we focus exclusively on predictions of the duration mean and

rely on the QML property of the EACD model. Engle (2000) shows that the results

of Bollerslev and Wooldridge (1992) concerning the QML property of the GARCH(p,q)

model can be carried over to the EACD(p,q) model. Therefore, the maximization of the

quasi log likelihood function implied by the EACD model leads to consistent estimates

even when the true density function is not exponential.

The most simple ACD model and direct counterpart to the (linear) GARCH model has

been proposed by Engle and Russell (1998) in their seminal paper and is given by3

Ψi = ω + αxi−1 + βΨi−1(2)

= ω + αΨi−1εi−1 + βΨi−1,

where ω denotes a constant, α is the innovation parameter, and β denotes the persis-

tence parameter. This model implies a linear news impact curve, i.e. a linear relationship

between the past innovation εi−1 and the current expected conditional mean Ψi. The

slope of the news impact curve is given by αΨi−1, thus this specification is based on a

multiplicative stochastic component.

3For simplicity of exposition the following considerations are restricted to models with a lag order of
one.
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Here, we propose a new type of augmented ACD model which nests a wide range of

specifications and is given by

Ψδ1
i = ω + αΨδ1

i−1(|εi−1 − b|+ c(εi−1 − b))δ2 + ν(|εi−1 − b|+ c(εi−1 − b))δ2 + βΨδ1
i−1,(3)

where δ1, δ2 ≥ 0. We call this specification augmented ACD (AGACD) model. It includes

both a multiplicative as well as additive stochastic component. For ν = 0, the additive

stochastic component is not existing and the AGACD model corresponds to an ACD

specification proposed by Fernandes and Grammig (2006) which is the counterpart to

the augmented GARCH process proposed by Hentschel (1995).4 Correspondingly, for

α = 0, the model contains only an additive stochastic component. The model allows for

a news impact curve which is kinked at b. The parameter δ2 determines the shape of the

piecewise functions around the kink. For δ2 > 1 the shape is convex while for δ2 < 1 it is

concave. Finally, δ1 drives a possible power transformation of Ψi. For δ1 → 0, the model is

based on a logarithmic transformation of Ψi. In this case, the multiplicative and additive

components of the model coincide. The AGACD model encompasses several important

special cases:

(i) For α = 0, δ1 → 0, and c = 1 it nests the so-called EXponential ACD model proposed

by Dufour and Engle (2000)5 and given by

lnΨi = ω + αεi−1 + c|εi−1 − 1|+ β ln Ψi−1.(4)

It captures features of the EGARCH specification proposed by Nelson (1991) and

allows for a linear news impact function which is kinked at εi−1 = 1.

(ii) For α = 0, b = 0, and c = 0 it nests the so-called Box-Cox ACD (BACD) model

introduced by Hautsch (2003) which is based on power transformations of Ψi and εi

and is given by

Ψδ1
i = ω + αεδ2

i−1 + βΨδ1
i−1.(5)

It is easily illustrated that it can be re-written in terms of Box-Cox transformations.6

This specification allows for concave, convex as well as linear news impact curves. For

δ1 → 0, δ2 → 0, it simplifies to the Log-ACD (LACD) model proposed by Bauwens

and Giot (2000) and is given by

lnΨi = ω + α ln εi−1 + β lnΨi−1(6)

= ω + α ln xi−1 + (β − α) ln Ψi−1.

(iii) For δ1 = δ2 = 1, b = c = 0, it nests a specification which we call Additive and Multi-

plicative ACD (AMACD) model and is based on a (linear) additive and multiplicative

4Though Fernandes and Grammig call their specification augmented ACD model as well, here, however,
we call it H(entschel)-ACD model in order to avoid confusion.

5They use this notation in order to prevent a confusion with the Exponential ACD (EACD) model
based on an exponential distribution.

6See Hautsch (2003).
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innovation component. It is given by

Ψi = ω + (αΨi−1 + ν)εi−1 + βΨi−1.(7)

For ν = 0 it corresponds to the basic linear ACD specification.

Furthermore, we propose a new ACD specification on the basis of a semiparametric news

response function. Following Engle and Ng (1993) we specify an ACD model based on

a news impact curve which is parameterized as a linear spline function with knots at

given break points of εi−1. In particular, the range of εi−1 is divided into m intervals

where m− (m+) denotes the number of intervals in the range εi−1 < 1 (εi−1 > 1) with

m = m− + m+. We denote the breakpoints by {ε̄m− , . . . , ε̄−1, ε̄0, ε̄1, . . . , ε̄m+}. Note that

the particular intervals have not to be equally sized, nor we need the same number of

intervals on each side of ε̄0. The so-called Semiparametric ACD (SPACD) model is given

by

lnΨi = ω +
m+∑

j=0

α+
j 1{εi−1≥ε̄j}(εi−1 − ε̄j) +

m−∑

j=0

α−j 1{εi−1<ε̄j}(εi−1 − ε̄j) + β lnΨi−1.(8)

As pointed out by Engle and Ng (1993), a slow increase of m as a function of the sample

size should asymptotically give a consistent estimate of the news impact curve. This

specification allows for quite flexible (nonlinear) news responses but does not necessarily

nest the family of AGACD models.

The theoretical properties of the AGACD and SPACD model can be derived by expressing

them in the form of a generalized polynomial random coefficient autoregressive model as

introduced by Carrasco and Chen (2002) for the analysis of GARCH processes and applied

to ACD type models by Fernandes and Grammig (2006). By constituting a general class

of ACD models in the form

ζi = A(εi)ζi−1 + B(εi),(9)

and parameterizing A(·) and B(·) appropriately, we can encompasses all ACD specifica-

tions discussed above. The theoretical properties for this class of models are derived by

Fernandes and Grammig (2006). In particular, they refer to the general results of Car-

rasco and Chen (2002) and Mokkadem (1990) which provide sufficient conditions to ensure

β-mixing, strict stationarity and the existence of higher order moments for the class of

generalized polynomial random coefficient autoregressive models. As shown by Fernandes

and Grammig (2006), the establishment of stationarity conditions for the particular ACD

specifications requires to impose restrictions on the functions A(·) and B(·).7
A further type of ACD model arises from the class of threshold models. Zhang, Russell,

and Tsay (2001) introduce a threshold ACD model which allows the expected duration

to depend nonlinearly on past information variables. The TACD model can be seen

7See Proposition 1 in Fernandes and Grammig (2006) as well as Proposition 2 and 4 in Carrasco and
Chen (2002), 2002.
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as a generalization of the threshold GARCH models introduced by Rabemananjara and

Zakoian (1993) and Zakoian (1994). By categorizing the durations into K categories with

thresholds x̄1, x̄2, . . . , xK−1, a K-regime TACD(1,1) model is given by




xi = Ψiεi

if xi−1 ∈ (x̄k−1, x̄k]
Ψi = ω(k) + α(k)xi−j + β(k)Ψi−j ,

(10)

where ω(k) > 0, α(k) ≥ 0 and β(k) ≥ 0 are regime-switching ACD parameters. Hence,

whereas in the SPACD model only the impact of lagged innovations is regime-dependent,

in the TACD model also the persistence terms are allowed to be regime-switching. Because

of the latter, the derivation of theoretical properties is not straightforward. Zhang, Russell,

and Tsay (2001) derive conditions for geometric ergodicity and the existence of moments

for the TACD(1,1) case. Extensions of this framework to the case of smooth transitions

have been recently introduced by Meitz and Teräsvirta (2006). In order to restrict the

extent of the empirical study in this paper, we do not discuss these models here.

3. Specification tests for ACD models

The null hypothesis of correct specification of the conditional mean function of the ACD

model can be formulated in terms of the ACD residuals ei ≡ xi/Ψ̂i,

H0 : Pr[E[ei − 1|Ii−1] = 0] = 1,(11)

or, alternatively, in terms of the martingale differences xi − Ψ̂i, i.e.

H0 : Pr[E[xi − Ψ̂i|Ii−1] = 0] = 1.(12)

Asymptotically, this distinction should make no difference, however, in finite samples it

can be an issue. Correspondingly, the alternative hypotheses are formulated as

H1 : Pr[E[ei − 1|Ii−1] = 0] < 1 or H1 : Pr[E[xi − Ψ̂i|Ii−1] = 0] < 1.

In the following we discuss different types of LM tests, CM tests based on a finite number of

conditional moment restrictions and, ICM tests based on an infinite number of conditional

mean restrictions as omnibus tests against any form of misspecification.

3.1. Lagrange Multiplier (LM) Tests. In econometric literature, the LM test has

proven to be a useful diagnostic tool to detect model misspecifications. See for exam-

ple, Breusch (1978), Breusch and Pagan (1979, 1980), Godfrey (1978a, 1978b), or for an

overview in Engle (1984). In the following we restrict our consideration to the case of

QML estimation of the ACD model, i.e. we maximize the quasi likelihood function

LQML(θ) = −
n∑

i=1

[
lnΨi +

xi

Ψi

]
= −

n∑

i=1

li.(13)

In this case the LM test statistic is computed as

ΥLM = f ′0z0(z′0z0)−1z′0f0,(14)
7



where

f0 =
(

x1

Ψ1
− 1, . . . ,

xn

Ψn
− 1

)′
, z0 =

(
1

Ψ1

∂Ψ1

∂θ0
, . . . ,

1
Ψn

∂Ψn

∂θ0

)′

both evaluated under the null. It is easy to show that this test statistic corresponds to

the uncentered R2 from a regression of f0 on z0 and is commonly computed as nR2 where

R2 is the uncentered R2 from a regression of a vector of ones on the scores of the model.

To perform the LM test it is necessary to specify a general model which encompasses

the model under the null. Meitz and Teräsvirta (2006) discuss different LM tests agains

particular parametric alternatives. However, here we focus on a more general form of LM

test which allows to test for misspecifications of the conditional mean function of unknown

form. Assume that the ACD specification under the null is a special case of a more general

(additive) model of the form

Ψi = Ψ0
i + θ′azai,(15)

where Ψ0
i denotes the conditional mean function under the null depending on the param-

eter vector θ0, while θa and zai denote the vectors of additional parameters and missing

variables, respectively. Thus we can test for the correct specification of the null model by

testing the parameter restriction θa = 0. Following the idea of Engle and Ng (1993) we

specify zai in terms of so-called sign bias variables I{εi−1<1}, I{εi−1<1}εi−1 and I{εi−1≥1}εi−1,

and extensions thereof. As explained in more details in Section 4, we employ different ver-

sions of this test which allows to investigate whether the specification is appropriate to

capture possible nonlinearities in the news impact function. The resulting LM test is

formulated based on the auxiliary regression

ei = z′0iβ̃0 + z′aiβ̃a + ui,(16)

where ui is a zero mean i.i.d. error term, β̃0 and β̃a are regression coefficients, z0i =

1/Ψ0
i · ∂Ψ0

i /∂θ0 and zai = 1/Ψ0
i · ∂Ψ0

i /∂θa evaluated at θa = 0 and at the QML estimator

under the null. Then, the statistic is given by n times the R2 from the regression (16) and

follows asymptotically a χ2(m) distribution where m denotes the number of restrictions.

However, as discussed in Meitz and Teräsvirta (2006), this test is not robust if the ACD

errors εi are not exponentially distributed. They suggest to follow the approach by

Wooldridge (1990) and to apply the following procedure: (i) Compute the residuals, ri,

from a regression of zai on z0i. (ii) Regress a vector of ones on ri(xi/Ψi− 1) and compute

the sum of squared residuals, SSR. (iii) Compute the asymptotically χ2(m) distributed

test statistic as n times SSR. As illustrated by Wooldridge (1990) this procedure leads

to a consistent test which is (asymptotically) not affected by violations of the underlying

distributional assumptions.

3.2. Conditional Moment (CM) Tests. The main idea behind the CM test is to test

the validity of conditional moment restrictions implied by the data which should hold
8



when the model is correctly specified. In the ACD framework the conditional moment

test is based on a conditional moment function r(xi, θ0) which should hold conditionally

on the past filtration, thus E[r(xi, θ0)|Ii−1] = 0. Newey (1985) proposes to build a CM

test based on the unconditional moment restrictions of the form

mj(xi, θ0) = r(xi, θ0)wj(Ii−1, θ0),(17)

where wj(Ii−1, θ0) is a weighting function that is indexed by j and is based on the past

filtration. Hence, wj(·) is orthogonal to r(xi, θ0) and thus E[mj(·)] = 0. As shown by

Newey, an asymptotically χ2 distributed test statistic is built based on the vector of

unconditional moment restrictions and the vector of scores. In particular, defining g(x, θ0)

as a vector that includes the vector of the unconditional moment restrictions m(x, θ0) =

(m1(·), . . . , mj(·), . . .)′ and the score vector s(x, θ0), i.e. g(x, θ0) = (m(x, θ0), s(x, θ0))′, the

CM test statistic is given by

ΥCM = e1g(x, θ0)[g(x, θ0)′g(x, θ0)]−1g(x, θ0)′e1
a∼ χ2(m),(18)

where e1 denotes a vector of ones.

According to the null hypotheses (11) or (12), a straightforward choice of the conditional

moment restriction is

r(xi, θ0) = ei − 1(19)

or

r(xi, θ0) = xi − Ψ̂i.(20)

Valuable choices of the weighting functions wj(·) are sign bias variables (see Section 3.1)

and/or functionals (e.g. moments) of past durations.8

A well known result is that the power of the CM test depends heavily on the choice

of the weighting functions. For this reason Newey (1985) illustrates how to obtain an

optimal conditional moment test with maximal local power. It is shown that the LM test

corresponds to an optimal CM test in the case of a particular local alternative. However,

since the CM test is based on a finite number of conditional moment restrictions, it cannot

be consistent against all possible alternatives.

3.3. Integrated Conditional Moment (ICM) Tests. Bierens (1990) illustrates that

any CM test of functional form can be converted into a chi-square test that possesses

the property of consistency against all possible alternatives. The main idea behind the

consistent conditional moment test is based on the following lemma:

Lemma [Lemma 1, Bierens, 1990]: Let % be a random variable satisfying the condition

E|%| < ∞ and let z be a bounded random variable in R with Pr[E(%|z) = 0] < 1. Then

8For more details, see Section 4.
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the set S = {t ∈ R : E[% exp(tz)] = 0} is countable and thus has Lebesgue measure zero.

¤

Bierens shows that E[% exp(tz)] 6= 0 in a neighborhood of t = t0 where t0 is such that

E[% exp(t0z)] = 0 and Pr [E[% exp(tz)|z] = 0] < 1. de Jong (1996) extends Bierens’ test to-

wards the case of serial dependent data. In the following, we assume that the duration pro-

cess is stationary and obeys the concept of ν-stability. Moreover it is supposed that E|εi−
1| < ∞. By assuming that the model is misspecified, i.e. Pr[E[r(xi, θ0)|Ii−1] = 0] < 1 and

replacing the conditioning information by ξ(xi−1), ξ(xi−2), . . . where ξ(·) is a bounded one-

to-one mapping from R into R, the set

S = {t ∈ Rd : E
[
r(xi, θ0) exp

(∑d
j=1 tjξ(xi−j)

)]
= 0} with d = min(i− 1, c) has Lebesgue

measure zero. Therefore, de Jong (1996) suggests a consistent CM test based on the

unconditional moment restriction

M̂n(t) = n−1/2
n∑

i=1

r(xi, θ0) exp




d∑

j=1

tjξ(xi−j)


 ,(21)

where θ0 is estimated consistently by QML. de Jong points out that a conditional moment

restriction test based on d = c < n does not allow us to consistently test the hypotheses

H0 and H1 for an infinite number of lags and thus d = i− 1 should be preferred. Eq. (21)

has the property that under the alternative hypothesis H1, plim
n→∞

M̂n(t) 6= 0 for all t except

in a set with Lebesgue measure zero. Therefore, the principle of the consistent conditional

moment test is to employ a class of weighting functions which are indexed by a continuous

nuisance parameter (vector) t. Since this nuisance parameter is integrated out, this test

is called integrated conditional moment (ICM) test. The lemma above implies that by

choosing a vector t′ 6∈ S, a consistent CM test is obtained. However, S depends on the

distribution of the data, and thus it is impossible to choose a fixed vector t for which the

test is consistent. As suggested by de Jong (1996), a solution to this problem is to achieve

test consistency by maximizing a functional of M̂n(t) over a compact subset Ξ of Rc. The

main idea is that a vector t′ which maximizes a test statistic based on M̂n(t) cannot belong

to the set S. By defining a space for infinite sequences {t1, t2, . . .} as

Ξ = {t : aj ≤ tj ≤ bj ∀ j ; tj ∈ R},(22)

where aj < bj and |aj |, |bj | ≤ Bj−2 for some constant B, de Jong suggests to consider the

use of a functional of supt∈Ξ |M̂n(t)| as test statistic. Consequently, a difficulty arises by

the fact that the limiting distribution of the test statistic supt∈Ξ |M̂n(t)| is case-dependent

which prevents the use of generally applicable critical values. For this reason de Jong

introduces a simulation procedure based on a conditional Monte Carlo approach. In par-

ticular, he shows that under the null, the moment restriction (21) has the same asymptotic
10



finite-dimensional distribution as

ˆ̃Mn(t) = n−1/2
n∑

i=1

σir(xi, θ0) exp




d∑

j=1

tξ(xi−j)


(23)

pointwise in t, where σi are bounded i.i.d. random variables independent of xi and r(xi, θ0)

with E[σ2
i ] = 1. Thus the distribution of M̂n(t) can be approximated based on the simula-

tion of n-tuples of σi. de Jong proves that the critical regions obtained by the simulation

of ˆ̃Mn(t) are asymptotically valid (see de Jong (1996), Theorem 5). Nevertheless, a further

difficulty is that a consistent ICM test rests on the statistic supt∈Ξ |M̂n(t)|. The calcu-

lation of this test statistic is quite cumbersome since it requires the maximization over

a parameter space of dimension n − 1. For this reason de Jong suggests to find another

continuous functional of M̂n(t) that possesses the same consistency property but is more

easily calculated. Then, de Jong proposes to use the functional

Λ = n−1

∫

Ξ
M̂n(t)2ϕ1(t1)dϕ1 . . . ϕj(tj)dtj . . . ,(24)

where the integrations run over an infinite number of tj . According to (22), each tj is

integrated over the subset of R, such that aj ≤ |tj | ≤ bj . ϕj(t) denote a sequence of

density functions that integrate to one over the particular subsets. de Jong shows that the

use of this functional leads to a consistent test. Since M̂n(t) can be written as a double

summation and the integrals can be calculated one at a time, we obtain a functional

which is much easier to calculate than sup
t∈Ξ

|M̂n(t)|. By choosing a uniform distribution,

i.e. ϕj(t) = t−1, the ICM test statistic Λ results in

Λ = n−1
n∑

i=1

n∑

j=1

r(xi, θ0)r(xj , θ0)
d∏

s=1

{
1

bj − aj
[ξ(xi−s) + ξ(xj−s)]

−1(25)

× [exp(bj(ξ(xi−s) + ξ(xj−s)))− exp(aj(ξ(xi−s) + ξ(xj−s)))]} .

Summarizing, the implementation of ICM tests to ACD models requires the following

steps:

(i) (Q)ML estimation of the ACD model: Estimate the particular ACD model by (Q)ML

and calculate the conditional moment restriction r(xi, θ0).

(ii) Choice of aj and bj: Choose values for aj and bj , defining the parameter space Ξ.

de Jong (1996) suggests to use aj = Aj−2 and bj = Bj−2 where the values A and B

(0 < A < B) can be chosen arbitrarily. Asymptotically the choice of A and B should

have no influence on the power of the test, however in finite samples it probably

has. Monte Carlo simulations of de Jong (1996) suggest to choose a small range, for

example A = 0 and B = 0.5.

(iii) Choice of ξ(·): According to the lemma above, the function ξ(·) must be a bounded

one-to-one mapping from R into R. Asymptotically, the choice of the function ξ(·) is

irrelevant, however, Bierens (1990) proposes to use ξ(x) = arctan(x). In this paper

we use ξ(x) = arctan(0.01 · x) · 100 which is also a bounded function but has the
11



advantage that it is nearly linear in the relevant region which improves the small

sample properties of the test.

(iv) Choice of d: Note that in the case of dependent data the test consistency is only

ensured by accounting for all feasible lags, d = i − 1, i.e. the dimension of the

parameter space under consideration grows with the sample size. An alternative

which does not require as much computer time, would be to choose a fixed value

d < n. However, in this case the test does not allow us to consistently test the

moment condition for an infinite number of conditioning variables.

(v) Simulation of n-tuples of σi: Simulate M n-tuples of (bounded) i.i.d. random vari-

ables σi,m, i = 1, . . . , n with E[σ2
i,m] = 1 for m = 1, . . . , M . Following de Jong

(1996), we generate the σi variables such that E[σi = 1] = E[σi = −1] = 0.5.

(vi) Computation of the test statistic and simulating of the critical values:

• Compute the test statistic Λ according to (25).

• For each n-tuple of σi compute the simulated test statistic

Λ̃m = n−1
n∑

i=1

n∑

j=1

(σi,mr(xi, θ0))(σj,mr(xj , θ0))
d∏

s=1

{
1

bj − aj
[ξ(xi−s) + ξ(xj−s)]

−1

(26)

× [exp(bj(ξ(xi−s) + ξ(xj−s)))− exp(aj(ξ(xi−s) + ξ(xj−s)))]} , m = 1, . . . , M.

(vii) Computation of simulated p-values: Since the critical region of the test has the form

(C,∞], we compute the simulated p-value of the ICM test as

pvICM =
1
M

M∑

m=1

I{Λ̃m≤Λ}.(27)

4. Monte Carlo studies

In order to gain deeper insights into the size and power properties of the proposed diagnos-

tic tests, we conduct an extensive Monte Carlo study. We draw samples of size 3000 which

is a still relatively small sample size for high-frequency financial data. Each Monte Carlo

experiment is repeated 500 times. We use 7 data generating processes (DGP’s) based on

different parameterizations of the ACD, LACD, BACD, EXACD, AGACD, SPACD and

TACD model. We choose the persistence parameter β to be 0.8 whereas the innovation pa-

rameters are associated with different (non-linear) news impact functions. Table 1 shows

the parameterizations of the individual DGP’s. Figure 1 illustrates the news response

functions underlying the particular DGP’s graphically. We consider convex and concave

as well as clearly non-monotonous news impact curves as e.g. revealed by the SPACD

and AGACD specifications. Furthermore, the DGP based on the AMACD model allows

to quantify the power of the tests to detect misspecifications due to shifts of the (lin-

ear) news impact function. Finally, the DGP associated with the TACD model is chosen
12



in accordance with the empirical results by Zhang, Russell, and Tsay (2001). For each

replication both a (linear) ACD(1,1) and LACD(1,1) model are estimated.

Besides different types of LM, CM and ICM tests we also apply a simple alternative test.

As proposed by Engle and Russell (1998), a valuable way to detect nonlinear dependencies

between the ACD residuals and the past information set is to divide the residuals into

bins which range from 0 to ∞ and to regress {ei} on indicators for the magnitude of

the previous duration. A standard F -test on joint significance of the regressors indicates

whether there is remaining prediction power implied by the bin indicators. Table 2 shows

the specifications of the different tests used in this study. The LM tests are based on

different forms of sign-bias variables with respect to the first two lags. For the CM tests

we use two different types of conditional moment restrictions, eq. (19) and (20), and various

weighting functions based on functions of past durations and innovations. Moreover, we

evaluate different specifications of ICM tests. Since for the case d = i−1 and large samples,

the calculation of the ICM test statistic and the simulated critical values is computational

quite intensive, we restrict our analysis to the cases d ∈ {1, 2, 5, 10}. In accordance with

the simulation results by de Jong (1996), the parameters A and B are set to 0 and 0.5,

respectively. Finally, the ICM test statistics are computed based on M = 100 replications.

Table 3 shows the rejection rates of the particular tests based on estimations of the basic

ACD(1,1) model. Correspondingly, Table 4 displays the results based on estimations

of the LACD(1,1) model. The first three parameters correspond to the median values

of the (L)ACD(1,1) parameters estimated for each replication. In both tables, the first

Monte-Carlo experiment is devoted to a check of the size of the tests since the estimated

model is in line with the assumed data generating process. Actually, we find evidence

for significant size distortions. It turns out that the LM tests and ICM tests are clearly

undersized whereas the CM and NL tests tend to be oversized in most cases. We attribute

this finding to finite sample properties which seem to be still present based on a sample size

of 3, 000. The remaining experiments allow us to gain insights into the power properties of

the particular tests. As revealed by Table 3 we find a remarkably high power by testing a

basic ACD model against the EXACD, SPACD, LACD and AGACD model. Slightly lower

but still high rejection rates are shown based on the AMACD model as data generating

process. This result indicates that the distinction between additive and multiplicative

stochastic components can be an important source of model misspecification. In contrast,

violations of the conditional mean restriction implied by TACD dynamics are more difficult

to detect. A similar picture is revealed by Table 4. Nevertheless, the test’s power against an

underlying linear ACD specification when a LACD model is estimated is clearly lower than

in the reversed case. Moreover, not surprisingly, the tests have lower power to distinguish

between a LACD model and an alternative specification implying also a concave news

impact function. Overall, we find the highest power for conditional moment tests based
13



on weighting functions which are particularly sensitive against nonlinearities in the news

response function. This is still true even when we take into account that the tests tend

to be oversized. Furthermore, even though the LM test has optimal power against local

alternatives, it underperforms the CM test in nearly all cases. Thus for more general

forms of misspecification the optimality of the LM test diminishes. Not surprisingly, the

F-tests reveal a high power particularly in cases when the true data generating process

implies strong nonlinearities in the news impact curve. In contrast, the test has only

low power to detect violations due to neglected additive stochastic components (AMACD

specification). The worst performance is shown for the ICM test. Even though this test

is asymptotically consistent, its power is quite low in most cases. Only in cases of very

fundamental misspecifications, we find a sufficient power. Nevertheless, in all cases the

test is outperformed by the CM test.

Summarizing the Monte Carlo results, we can conclude that the CM test seems to be

the most appropriate diagnostic tool to detect functional misspecification of general form

even when size distortions in finite samples are taken into account. It is evident that

the results are widely robust against the particular choice of the weighting function. LM

tests against general forms of nonlinear news impacts underperform CM tests. However,

as illustrated by Meitz and Teräsvirta (2006), the latter are quite powerful in case we

want to test against particular parametric alternatives. Overall, it turns out that it is

reasonable to combine these particular types of diagnostic tests to detect different forms

of model misspecification.

5. Application to NYSE financial durations

In this section we apply the proposed ACD models and diagnostic tests to financial du-

ration data from the New York Stock Exchange (NYSE). The sample covers the period

from 01/02/01 to 05/30/01 and is extracted from the Trades and Quotes (TAQ) database

available from the NYSE. We analyze the four intensively traded stocks AOL, Coca-Cola,

Disney and GE and focus on trade durations as well as price durations. The price dura-

tions are generated as the time until a cumulated absolute price change of a given size is

realized. In order to obtain price durations which are on average of comparable length

we use $0.100 midquote changes for the AOL stock and $0.050 midquote changes for the

other three stocks. In order to obtain comparable sample sizes, the trade durations are

constructed using ten trading days from 03/19/01 to 03/30/01. Overnight spells as well

as observations before 9:30 and after 16:00 are removed. In order to account for season-

ality effects, which are well documented for financial durations (see for example Engle

and Russell, 1998, Giot, 2000, or Gerhard and Hautsch, 2002), we use seasonally adjusted

durations x̃i = xi/si, where si correspond to diurnal factors which are estimated based

on a regression of the plain durations on cubic splines with nodes at each 30 minutes.
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Descriptive statistics of plain durations as well as seasonally adjusted durations for the

four stocks are given in Table 5.

For each type of financial duration we estimate the ACD, LACD, BACD, EXACD, AGACD,

SPACD and TACD model using QML. The lag order is chosen according to the Bayes

Information Criterion (BIC). For all duration series, except for Disney and GE price dura-

tions, we find an ACD(2,1) parameterization to be the best specification. For the Disney

and GE price durations we choose an ACD(2,2) specification. Note that for the nonlinear

ACD specifications the inclusion of a second lag is not straightforward since it requires to

parameterize also the news impact function of the latter. This leads to a doubling of the

corresponding news response parameters which is not practicable especially for the highly

parameterized AGACD and SPACD model. For this reason we choose a parameterization

which allows us on the one hand to account for higher order dynamics but ensures on

the other hand model parsimony. In particular, we model the news impact of the second

lag also on the basis of the parameters δ1, δ2 and b and double only the autoregressive

parameters α, β, c and ν. Then, the AGACD(2,2) is given by

Ψδ1
i = ω +

2∑

j=1

{
αjΨδ1

i−j(|εi−1 − b|+ cj(εi−1 − b))δ2

+νj(|εi−1 − b|+ cj(εi−1 − b))δ2
}

+
2∑

j=1

βjΨδ1
i−j .

Applying the same principle to the SPACD model, the SPACD(2,2) specification is given

by

Ψi = ω +
m+∑

j=0

α+
j 1{εi−1>ε̄j}(εi−1 − ε̄j) +

m−∑

j=0

α−j 1{εi−1<ε̄j}(εi−1 − ε̄j)

+
m+∑

j=0

(α+
j + a+)1{εi−1>ε̄j}(εi−1 − ε̄j) +

m−∑

j=0

(α−j + a−)1{εi−1<ε̄j}(εi−1 − ε̄j) + βΨi−1.

Furthermore, in order to restrict the computational burden, we estimate the TACD model

based on three regimes and exogenously fixed threshold values. They are fixed to the

values 0.25 and 1.50 which is in accordance with the Monte Carlo study and the empirical

results provided by Zhang, Russell, and Tsay (2001).

Two difficulties have to be considered: First, for nonlinear models involving absolute

value functions in the news impact function the estimation of the Hessian matrix is quite

cumbersome due to numerical difficulties. For this reason we estimate the asymptotic

standard errors by the OPG estimator of the information matrix. Second, even though the

news impact function implied by the AGACD specification allows for more flexibility, it has

one major drawback since the parameter restriction |c| <= 1 has to be imposed whenever

δ2 6= 1 in order to circumvent complex values. Note that this restriction is binding in the

case where the model implies an upward kinked concave news impact function which is
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quite typical for financial durations and which is only possible for c < −1 (and α < 0). In

this case, a restricted version of the model has to be estimated. In particular, whenever

c converges to the boundary, either δ2 or, alternatively, |c| has to be fixed to 1. Setting

δ2 = 1 implies a piecewise linear news impact function which is kinked at b. Alternatively,

by setting c = 1, the AGACD(1,1) specification becomes

Ψδ1
i = ω + α̃Ψδ1

i−1(εi−1 − b)δ21{εi−1≥b} + ν̃(εi−1 − b)δ21{εi−1≥b} + βΨδ1
i−1,

where α̃ = 2δ2α and ν̃ = 2δ2ν. Thus the news impact function is zero for εi−1 ≤ b and

follows a concave (convex) function for δ2 < 1 (δ2 > 1). Correspondingly, setting c = −1

leads to

Ψδ1
i = ω + α̃Ψδ1

i−1(b− εi−1)δ21{εi−1≤b} + ν̃(b− εi−1)δ21{εi−1≤b} + βΨδ1
i−1.

Note that the latter two restricted AGACD specifications do not nest the EXACD model

but the BACD model for ν = 0 and b = 0 (b →∞) whenever c is set to 1 (−1).

Tables 6, 8, 10 and 12 give the estimation results for the different types of financial dura-

tions. The following findings can be summarized: First, for trade durations the autoregres-

sive parameters reveal only weak innovation components while the persistence parameters

are close to one. In several cases even negative values for α1 are obtained, however, in

these cases they are overcompensated by positive values for α2.9 For price durations also

a strong persistence is revealed while the innovation component is clearly higher than

that for trade durations.10 Second, comparing the goodness-of-fit of the individual speci-

fications based on the BIC we find the best performance for EXACD and BACD models.

Especially for price durations the more simple (linear and logarithmic) models are rejected

in favor of the BACD, AGACD and EXACD model. For trade durations no clear picture

is revealed. While for the AOL and the Coca-Cola stock the AGACD and EXACD model

is the best specification, for the Disney and the GE stock the basic ACD model leads to

the highest BIC. The estimates of the TACD model provide evidence for regime-switching

behavior of the autoregressive parameter, nevertheless, this specification is outperformed

by the other models in terms of explanatory power. For all specifications we observe the

strongest increase of the log-likelihood function when the (L)ACD model is extended to a

BACD or EXACD model. This result illustrates that for both types of financial durations

it is crucial to account for nonlinear news impact effects.

Third, the estimated Box-Cox parameters δ̂1 and δ̂2 are mostly lower than one for price

durations while for trade durations both values lower and larger than one are obtained.

These results lend support against the linear ACD model since we notice that price dura-

tion processes imply concave news impact curves, i.e. the adjustments of the conditional

9In this context it has to be noted that in a nonlinear ACD specification an upward kinked concave
news impact function actually implies a negative value for α, see also Section 2.

10This finding is not surprising since price durations are aggregates of trade durations. It can be
analytically shown that the innovation component increases with the aggregation level.
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expected mean are stronger in periods of smaller than expected price durations (volatility

shocks) than in periods with low price intensities. Corresponding results are found based

on the EXACD model since the mostly highly significant negative parameters c imply

upward kinked concave shaped news response curves. For trade durations the picture is

less clear since we obtain evidence for concave as well as convex news impact curves.

Fourth, in most cases only restricted versions of the augmented ACD models are estimated

since either δ1 tends to zero and/or |c| tends to one. Since the most duration series

seem to imply a concave news impact function, it is not surprising that especially the

second restriction is binding for nearly all series. In the first case, the model is estimated

under the restriction δ → 0 which is practically performed by estimating the model based

on a logarithmic transformation. In this case, the AGACD consists only of an additive

stochastic component. In the second case, two restricted versions of the model are re-

estimated: one specification under the restriction |c| = 1 and one model under δ2 = 1.

Then we choose the specification leading to the higher log-likelihood value. In general,

we observe that the extension from the BACD/EXACD model to the AGACD model

is supported by the data since we find an increase of the log-likelihood function and

significant coefficients in most cases. Hence, a further flexibilization of the news impact

function seems to be an important issue. Nevertheless, in some cases we also find evidence

against an additive stochastic component since the parameter ν converges to zero. In

this case, we fix the parameter at zero and re-estimate a restricted version of the model.

In contrast, for AOL and GE trade durations we observe significant values of ν lending

support for the need for additive as well as multiplicative stochastic factors. Especially for

the AOL stock this extra flexibility leads to a strong increase of the log likelihood function

and also the BIC value.

Fifth, the SPACD model is estimated using the categorization {0.1, 0.25, 0.5, 1.0, 1.5, 2.0, 3.0}
with ε̄0 = 1.0 which allows for high flexibility concerning very small and very large inno-

vations. The mostly significant parameters a+ and a− indicate that it is useful to account

also for flexible news impact effects of the second lag. Figures 2 and 3 depict the news

impact functions for the particular duration series computed based on the estimates of the

SPACD models. The shape of the obtained news impact curves is strongly consistent with

the estimates of the parametric ACD models. The news response curves for trade dura-

tions reveal high nonlinearities especially for very small innovations. For two of the stocks

(AOL and Coca-Cola) we even observe a news response function that implies a downward

shape for low values of εi−1. Hence, it turns out that for extremely small innovations (with

exception of the GE stock) the first order autocorrelation is rather negative than positive.

However, only for larger values of εi−1 the ACF is slightly positive. This finding illustrates

that small durations induce significantly different adjustments of the expected mean than

long durations which has be to taken into account in the econometric modelling. This
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result is in line with the findings of Zhang, Russell, and Tsay (2001) who provide evidence

for similar effects based on estimations of a Threshold ACD model. Therefore, since such

a news impact curve is not in accordance with symmetric ACD models, it is not surprising

that the basic linear ACD model, especially for the AOL stock, is misspecified and not

sufficient to model trade durations. The news response function for price durations reveals

a significantly different shape. The larger (positive) slope of the curve indicates a higher

(positive) autocorrelation for price durations. Nonetheless, we notice a non-linear news

impact curve with a strongly increasing pattern for εi−1 < 1 and a nearly flat function

for εi−1 > 1. Hence, also for price durations we observe different adjustment processes for

unexpected small durations, i.e. in periods of unexpected high volatility.

Sixth, for all processes except the ACD, AGACD and TACD model, stationarity is ensured

by
∑2

j=1 βj < 1. Correspondingly, in the ACD case the inequality
∑2

j=1 αj + βj < 1 has

to be satisfied while the AGACD model implies
2∑

j=1

βj + αj(|εi − b|+ c(εi − b))δ2 < 1.

Checking these restrictions using the corresponding parameter estimates, we notice that

stationarity is ensured for all considered specifications.11 The analytical derivation of the

stationarity conditions for higher order TACD models is difficult and is beyond the scope

of this study.12 However, own simulation studies show evidence for the stationarity of the

estimated TACD processes.

The Tables 7, 9, 11 and 13 display the p-values of the applied LM, CM and ICM tests.

For the LM and CM tests as well as the F-tests against nonlinearities in the news impact

function we apply the same specifications as in the Monte Carlo experiments. Since for

large samples the computation of the ICM test statistic is quite time consuming we use

only the ICM test specifications ICM1, ICM2 and ICM3. Note that such a test is not

consistent against misspecifications with respect to a higher number of lags.

For AOL trade durations we notice that the more simple specifications are rejected on the

basis of nearly all diagnostics. Especially the ACD, LACD and TACD model seem to be

clearly misspecified. The more flexible models, like the BACD and EXACD specification

lead to slightly higher p-values, nonetheless especially based on the CM tests the null

hypothesis of a correct specification of the conditional mean is rejected for all models.

Better results are obtained for the AGACD and the SPACD model. These findings are

in line with the regression results that also indicate the best goodness-of-fit for these two

specifications. The CM tests employing the conditional mean restriction (19) indicate

a satisfying goodness-of-fit which is also supported by the corresponding F -tests. In

contrast, CM tests using the restriction (20) still reject in most cases. However, overall, the

11Since it is cumbersome to verify the stationarity condition for the AGACD model analytically, it is
evaluated based on a simulation procedure.

12Zhang, Russell, and Tsay (2001) derive the stationarity properties for the TACD(1,1) case.
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SPACD and AGACD model seem to be the most appropriate specifications, nevertheless,

they still reveal deficiencies to fully capture nonlinearities in the news response. For AOL

price durations we observe a clear misspecification of the ACD and LACD model since

the null is rejected based on nearly all test statistics. Significantly better results are found

for the BACD, EXACD and AGACD model that allow for a more flexible modelling of

the (nonlinear) news impact function. Even though we find evidence for model rejections

based on individual CM tests, the overall test results clearly support the more flexible ACD

specifications. However, for both trade durations and price durations, we notice that the

ICM test statistics indicate no rejection of the null hypothesis. Hence, the ICM test does

not seem to have enough power to detect these particular forms of model misspecification.

Similar results are found for Coca-Cola trade durations. Again we observe a clear rejec-

tion of the null hypothesis for the more simple models, like the ACD and LACD model.

Interestingly, even the BACD model is clearly rejected. The best performance is found

for the SPACD specification which seems to capture the properties in the data quite well.

In contrast, based on Coca-Cola price durations effectively all specifications are rejected

based on the individual CM tests. Nevertheless, the best fits are observed for the EXACD,

AGACD and SPACD model. Again, the ICM test seems to have not enough power to

detect model misspcecifications. Nonetheless, for the most flexible ACD parameterizations

lower p-values are displayed.

A quite different picture is obtained for Disney trade durations. Here, for all models, the

validity of the conditional mean restriction is not rejected. Thus the news impact curve

of this duration series seem to reveal a largely linear pattern which is in accordance with

more simple ACD models. This result is confirmed by the plot of the estimated news

response curve (Figure 2) that actually depicts an almost linear pattern, with exception

of extremely small innovations. Nonetheless, a somewhat puzzling finding is that the ICM

test statistic displays misspecifications for all estimated specifications. Hence, a possible

explanation could be that the LM and CM tests do not have enough power to detect the

sharp drop in the upper tail of the news impact curve. For Disney price durations we

find similar results as for AOL and Coca-Cola price durations. We notice again a clear

rejection of the ACD and LACD model while the higher parameterized models induce

higher p-values of the individual tests. Here, the AGACD model is the horse race winner.

Nevertheless, as indicated by the low p-values of the corresponding CM and LM tests,

the augmented ACD specifications still seem not to be able to fully capture the existing

asymmetric news impact effects in the data.

The diagnostic results for GE financial durations are similar to the findings for the AOL

and Coca-Cola stock. While the more simple models are largely rejected, it turns out that

the more sophisticated specifications of the conditional mean function yield additional

reward as they seem to be more appropriate to pass the individual tests. The overall best
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diagnostic results are again achieved by the AGACD and NPACD model. Nonetheless,

the CM test statistics still indicate rejections of the null hypothesis of correct model

misspecification due to unconsidered asymmetries in the news response.

Summarizing the diagnostic results based on the investigated financial duration series

we conclude the following findings: First, overall it seems to be easier to model trade

durations than price durations. This finding is also supported by the graphical illustrations

of the estimated news impact functions. It clearly turns out that asymmetric news impact

effects are much more apparent for price durations than for trade durations. Second, the

overall best performance in terms of a valid conditional mean restriction is obtained by

the AGACD and SPACD model which allow for quite flexible parameterizations of the

news impact curve. Third, it turns out that nonlinear news response effects exist not

only for the first lag but also for higher order lags which has to be taken into account

in the econometric specification. Fourth, LM tests are more conservative than CM tests.

These findings confirm the results of the Monte-Carlo study. Overall, the CM tests clearly

indicate the highest power to detect potential misspecificatios of the underlying model.

Slight evidence is found that the conditional moment restriction (20) induces a higher

power. However, as indicated by the Monte-Carlo studies, some of the CM tests are over-

sized which should be taken into account when the sample size is small. Nevertheless, our

results clearly show the usefulness of these tests to detect model misspecifications. Fifth,

in nearly all cases ICM tests seem to have not enough power. Given the computational

effort which is needed to compute the ICM test statistics (particularly for long time series),

their benefit is questionable compared to traditional CM tests.

6. Conclusions

This paper suggests and analyzes different types of specification tests to test the validity

of the conditional mean restriction implied by ACD models. Three types of tests are

suggested: Lagrange Multiplier (LM) tests against sign bias alternatives, conditional mo-

ment (CM) tests based on various types of weighting functions, and integrated conditional

moment (ICM) tests based on an infinite number of conditional moment restrictions as

omnibus tests against arbitrary forms of model misspecification. The proposed testing

framework is applied to a wide range of existing and new ACD specifications includ-

ing augmented ACD models based on additive and multiplicative stochastic components,

threshold ACD models, and a new type of ACD model based on a semiparametric specifi-

cation of the news response function. In order to examine the power of the particular tests

we conduct an extensive Monte-Carlo experiment. We find evidence for size distortions in

finite samples. In particular, LM tests seem to be undersized whereas CM tests tend to be

oversized. The highest power is provided by CM tests based on weighting functions which

include sign bias variables and are sensitive against nonlinearities in the news response
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function. Despite of their consistency, ICM tests have the lowest power and seem to be

undersized in finite samples.

The individual ACD models and tests are applied to trade durations and price durations

of the AOL, Coca-Cola, Disney and GE stock traded at the NYSE. We find evidence for

strong nonlinearities in the news impact function leading to clear rejections of linear and

logarithmic ACD specifications. In particular, trade durations reveal a convex news re-

sponse curve which is downward shaped for small innovations and follows an upward shape

for high innovations. For price durations a concave news impact function is observed which

is strongly increasing for small durations and nearly constant for durations larger than

expected. While more simple ACD specifications imply clear violations of the conditional

mean restriction, the overall best performance is obtained by flexible augmented ACD

models and semiparametric ACD models. In general, trade durations seem to be easier

modelled than price durations. Especially for price durations, even highly parameterized

ACD models are not flexible enough to capture nonlinearities in the news response and to

ensure a valid conditional mean specification.

Three major conclusions can be drawn based on this study: First, it turns out there is

actually need to test the validity of the functional form of ACD models since it is shown

that especially more simple models imply clear violations of the conditional mean restric-

tion. Second, CM tests seem to be a very useful diagnostic tool to detect misspecifications

of the model. In contrast, the additional benefit of ICM tests is limited given the low

power in small samples and the high computational effort required to compute these tests.

Third, there is necessity for ACD models which allow for nonlinear news response func-

tions. The empirical results point out that in particular very small innovations associated

with unexpected high active trading periods imply different updates of the conditionally

expected mean. Our results show that a semiparametric specification of the news impact

function as implied by the semiparametric ACD model proposed in this paper provides

a valuable starting point in order to appropriately capture the statistical properties of

financial duration processes.
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Appendix

A.1. Monte Carlo Studies.

Table 1: Assumed data generating processes in the Monte-Carlo study.
Categories for the SPACD model: 0.1, 0.2, . . . , 2.0, where ε̄0 = 1.0. Thresh-
old values for the three-regime TACD model: 0.25 and 1.50.

(1) (2) (3) (4) (5) (6) (7)
ACD EXACD AMACD SPACD TACD LACD AGACD

ω 0.100 −0.180 0.000 0.237 0.137 0.010
α 0.100 0.500 0.050 −0.100 0.300 0.100
β 0.800 0.800 0.800 0.800 0.800 0.800
δ1 0.800
δ2 1.500
ν 0.500 0.200
c −0.300
δ1 0.500
δ2 1.500
b 0.600
α1 0.300
α+

2 −0.200
α+

3 −0.200
α+

4 −0.150
α+

5 0.000
α+

6 0.050
α+

7 0.000
α+

8 0.050
α+

9 0.100
α+

10 0.200
α−1 0.700
α−2 0.100
α−3 0.100
α−4 0.000
α−5 0.100
α−6 0.000
α−7 0.500
α−8 −0.500
α−9 −2.000
α−10 −7.000
ω1 0.050
α1 0.200
β1 0.850
ω2 0.100
α2 0.050
β2 0.900
ω3 0.200
α3 0.030
β3 0.800
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Figure 1: News impact curves underlying the different data generating processes used in the

Monte-Carlo studies.

Table 2: Parameterizations of the specification tests used in the Monte-Carlo studies and in the
empirical applications.

LM tests

LM1 z1
ai =

(
1l {εi−1<1}, 1l {εi−1<1}εi−1, 1l {εi−1≥1}εi−1

)′
LM2 z2

ai =
(
z1′

ai, 1l {εi−2<1}, 1l {εi−2<1}εi−2, 1l {εi−2≥1}εi−2,
)′

LM3 z3
ai =

(
1l {xi−1<1}, 1l {xi−1<1}xi−1, 1l {xi−1≥1}xi−1

)′
LM4 z4

ai =
(
z3′

ai, 1l {xi−2<1}, 1l {xi−2<1}xi−2, 1l {xi−2≥1}xi−2,
)′

LM5 z5
ai =

(
z1′

ai, z
3′
ai,

)′
LM6 z6

ai =
(
z2′

ai, z
4′
ai,

)′
LM7 bins for εi−1 and εi−2 : [0, 0.1), [0.1, 0.2), [0.2, 0.5), [0.5, 0.8), [0.8, 1), [1.2, 1.5), [1.5, 2), [2, 3), [3,∞)
LM8 bins for εi−1 and εi−2 : [0, 0.1), [0.1, 0.2), [0.2, 0.5), [0.5, 0.8), [0.8, 1), [1.2, 1.5), [1.5, 2), [2, 3), [3,∞)

F-tests against nonlinearities in the news response

NL1 bins for εi−1 : [0, 0.1), [0.1, 0.2), [0.2, 0.5), [0.5, 0.8), [0.8, 1), [1.2, 1.5), [1.5, 2), [2, 3), [3,∞)
NL2 bins for εi−1 and εi−2 : [0, 0.1), [0.1, 0.2), [0.2, 0.5), [0.5, 0.8), [0.8, 1), [1.2, 1.5), [1.5, 2), [2, 3), [3,∞)
NL3 bins for xi−1 : [0, 0.1), [0.1, 0.2), [0.2, 0.5), [0.5, 0.8), [0.8, 1), [1.2, 1.5), [1.5, 2), [2, 3), [3,∞)
NL4 bins for xi−1 and xi−2 : [0, 0.1), [0.1, 0.2), [0.2, 0.5), [0.5, 0.8), [0.8, 1), [1.2, 1.5), [1.5, 2), [2, 3), [3,∞)

CM tests

CM1
· r(·) = ei − 1

CM2
· r(·) = xi − Ψ̂i

CM ·
1 w1(·) =

(
xi−1, x2

i−1, x3
i−1, ei−1, e2

i−1, e3
i−1

)′
CM ·

2 w2(·) =
(
w1(·)′, xi−2, x2

i−2, x3
i−2, ei−2 e2

i−2, e3
i−2

)′
CM ·

3 w3(·) =
(
xi−1, z1′

ai

)′
CM ·

4 w4(·) =
(
xi−1, xi−2, z2′

ai

)′
CM ·

5 w5(·) =
(
ei−1, z3′

ai

)′
CM ·

6 w6(·) =
(
ei−1, ei−2, z4′

ai

)′
CM ·

7 w7(·) =
(
z1′

ai, z
3′
ai,

)′
CM ·

8 w8(·) =
(
z2′

ai, z
4′
ai,

)′
CM ·

9 w9(·) = (xi−1, xi−2, . . . , xi−10)
′

CM ·
10 w10(·) = (ei−1, ei−2, . . . , ei−10)

′

CM ·
11 bins for εi−1 and εi−2 : [0, 0.1), [0.1, 0.2), [0.2, 0.5), [0.5, 0.8), [0.8, 1), [1.2, 1.5), [1.5, 2), [2, 3), [3,∞)

CM ·
12 bins for xi−1 and xi−2 : [0, 0.1), [0.1, 0.2), [0.2, 0.5), [0.5, 0.8), [0.8, 1), [1.2, 1.5), [1.5, 2), [2, 3), [3,∞)

ICM tests

ICM1 r(·) = xi − Ψ̂i, w(·) = 1, A = 0, B = 0.5, M = 100 d = 1

ICM2 r(·) = xi − Ψ̂i, w(·) = 1, A = 0, B = 0.5, M = 100 d = 2

ICM3 r(·) = xi − Ψ̂i, w(·) = 1, A = 0, B = 0.5, M = 100 d = 5

ICM4 r(·) = xi − Ψ̂i, w(·) = 1, A = 0, B = 0.5, M = 100 d = 10
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Table 3: Rejection frequencies of the applied diagnostic tests (see Table 2) based on the data
generating processes shown in Table 1. Size of simulated samples: 3000. Number of replications: 500.
Estimated model: ACD(1,1).

ACD EXACD AMACD SPACD TACD LACD AGACD

5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

Median of estimated ACD(1,1) parameters

ω 0.107 0.107 0.159 0.159 0.466 0.466 0.174 0.174 0.188 0.188 0.147 0.147 0.061 0.061
α 0.101 0.101 0.491 0.491 0.255 0.255 0.310 0.310 0.042 0.042 0.488 0.488 0.476 0.476
β 0.792 0.792 0.387 0.387 0.646 0.646 0.525 0.525 0.799 0.799 0.401 0.401 0.496 0.496

LM tests

LM1 0.002 0.014 1.000 1.000 0.021 0.038 0.242 0.348 0.028 0.050 0.970 0.984 1.000 1.000
LM2 0.012 0.022 0.998 1.000 0.058 0.096 0.460 0.550 0.044 0.078 0.996 0.998 1.000 1.000
LM3 0.008 0.026 0.998 0.998 0.027 0.031 0.284 0.402 0.042 0.070 1.000 1.000 0.106 0.158
LM4 0.010 0.022 1.000 1.000 0.058 0.072 0.434 0.568 0.074 0.102 1.000 1.000 0.106 0.166
LM5 0.008 0.034 1.000 1.000 0.069 0.151 0.316 0.440 0.028 0.074 1.000 1.000 0.998 1.000
LM6 0.014 0.040 1.000 1.000 0.165 0.244 0.442 0.588 0.056 0.108 1.000 1.000 1.000 1.000
LM7 0.032 0.052 0.986 0.994 0.031 0.093 0.996 0.998 0.086 0.156 0.992 0.996 1.000 1.000
LM8 0.016 0.044 0.986 0.992 0.048 0.076 0.902 0.954 0.084 0.150 1.000 1.000 0.560 0.700

CM tests

CM1
1 0.066 0.126 1.000 1.000 0.498 0.605 0.578 0.680 0.140 0.212 1.000 1.000 0.996 0.996

CM1
2 0.076 0.142 1.000 1.000 0.526 0.670 0.640 0.740 0.132 0.210 0.994 1.000 0.890 0.936

CM1
3 0.074 0.146 1.000 1.000 0.454 0.591 0.630 0.748 0.156 0.250 1.000 1.000 1.000 1.000

CM1
4 0.070 0.148 1.000 1.000 0.443 0.584 0.638 0.764 0.162 0.246 1.000 1.000 0.934 0.956

CM1
5 0.068 0.138 1.000 1.000 0.464 0.581 0.754 0.838 0.168 0.254 1.000 1.000 1.000 1.000

CM1
6 0.064 0.136 1.000 1.000 0.436 0.584 0.830 0.894 0.162 0.266 1.000 1.000 0.966 0.972

CM1
7 0.074 0.116 1.000 1.000 0.485 0.591 0.834 0.896 0.182 0.282 1.000 1.000 1.000 1.000

CM1
8 0.076 0.130 1.000 1.000 0.447 0.567 0.856 0.916 0.186 0.284 1.000 1.000 0.976 0.990

CM1
9 0.072 0.120 1.000 1.000 0.488 0.601 0.634 0.748 0.168 0.274 0.998 1.000 0.998 1.000

CM1
10 0.068 0.122 1.000 1.000 0.440 0.564 0.650 0.752 0.188 0.286 0.996 1.000 0.882 0.936

CM1
11 0.064 0.104 1.000 1.000 0.519 0.615 0.716 0.820 0.210 0.314 1.000 1.000 1.000 1.000

CM1
12 0.066 0.126 1.000 1.000 0.450 0.574 0.706 0.794 0.222 0.338 1.000 1.000 0.958 0.974

CM2
1 0.070 0.116 1.000 1.000 0.419 0.529 0.786 0.860 0.154 0.256 1.000 1.000 1.000 1.000

CM2
2 0.064 0.128 1.000 1.000 0.388 0.495 0.856 0.930 0.156 0.260 1.000 1.000 0.984 0.994

CM2
3 0.078 0.154 1.000 1.000 0.440 0.560 0.828 0.896 0.174 0.282 1.000 1.000 1.000 1.000

CM2
4 0.080 0.156 1.000 1.000 0.368 0.522 0.890 0.934 0.174 0.306 1.000 1.000 0.990 1.000

CM2
5 0.068 0.120 0.998 1.000 0.471 0.588 0.604 0.708 0.090 0.150 0.988 0.996 0.812 0.884

CM2
6 0.070 0.122 0.972 0.988 0.478 0.598 0.596 0.708 0.098 0.178 0.952 0.980 0.526 0.640

CM2
7 0.068 0.128 1.000 1.000 0.117 0.199 0.406 0.516 0.074 0.150 1.000 1.000 0.990 0.992

CM2
8 0.060 0.122 1.000 1.000 0.388 0.519 0.622 0.722 0.102 0.170 0.998 0.998 0.756 0.846

CM2
9 0.108 0.168 1.000 1.000 0.103 0.141 1.000 1.000 0.218 0.348 1.000 1.000 1.000 1.000

CM2
10 0.098 0.174 1.000 1.000 0.192 0.326 1.000 1.000 0.222 0.338 1.000 1.000 0.998 1.000

CM2
11 0.094 0.156 0.976 0.988 0.082 0.117 0.980 0.992 0.228 0.350 1.000 1.000 1.000 1.000

CM2
12 0.082 0.180 0.998 1.000 0.261 0.392 0.996 0.998 0.232 0.354 1.000 1.000 0.974 0.992

F-tests against nonlinearites in the news response

NL1 0.064 0.136 1.000 1.000 0.052 0.110 1.000 1.000 0.166 0.266 1.000 1.000 1.000 1.000
NL2 0.062 0.138 1.000 1.000 0.058 0.113 1.000 1.000 0.164 0.258 1.000 1.000 1.000 1.000
NL3 0.080 0.154 0.928 0.964 0.065 0.120 0.972 0.990 0.170 0.292 0.998 0.998 0.818 0.890
NL4 0.056 0.126 0.940 0.974 0.058 0.107 0.990 0.996 0.194 0.322 0.998 1.000 0.810 0.896

ICM tests

ICM1 0.010 0.022 0.930 0.952 0.175 0.251 0.476 0.538 0.014 0.034 0.840 0.872 0.202 0.288
ICM2 0.008 0.020 0.918 0.940 0.203 0.275 0.484 0.552 0.014 0.034 0.822 0.860 0.226 0.302
ICM3 0.010 0.022 0.908 0.930 0.199 0.306 0.492 0.576 0.012 0.030 0.824 0.860 0.244 0.328
ICM4 0.006 0.022 0.912 0.934 0.199 0.316 0.488 0.578 0.016 0.030 0.818 0.852 0.250 0.340
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Table 4: Rejection frequencies of the applied diagnostic tests (see Table 2) based on the data
generating processes shown in Table 1. Size of simulated samples: 3000. Number of replications: 500.
Estimated model: LACD(1,1).

LACD EXACD AMACD SPACD TACD ACD AGACD

5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

Median of estimated ACD(1,1) parameters

ω 0.101 0.101 0.120 0.120 0.254 0.254 0.078 0.078 0.043 0.043 0.036 0.036 0.154 0.154
α 0.100 0.100 0.256 0.256 0.132 0.132 0.144 0.144 0.035 0.035 0.065 0.065 0.260 0.260
β 0.795 0.795 0.800 0.800 0.847 0.847 0.814 0.814 0.880 0.880 0.888 0.888 0.848 0.848

LM tests

LM1 0.010 0.020 0.032 0.080 0.676 0.814 0.938 0.970 0.008 0.013 0.112 0.194 0.996 0.998
LM2 0.012 0.026 0.064 0.120 0.891 0.929 0.978 0.990 0.020 0.035 0.218 0.362 1.000 1.000
LM3 0.008 0.016 0.044 0.096 0.579 0.707 0.948 0.980 0.005 0.020 0.110 0.194 0.976 0.990
LM4 0.014 0.028 0.066 0.124 0.843 0.916 0.990 0.994 0.008 0.025 0.232 0.344 1.000 1.000
LM5 0.008 0.026 0.082 0.164 0.667 0.789 0.964 0.984 0.012 0.032 0.114 0.186 1.000 1.000
LM6 0.016 0.038 0.094 0.186 0.812 0.902 0.996 0.996 0.017 0.038 0.202 0.310 1.000 1.000
LM7 0.020 0.048 0.694 0.778 0.759 0.854 1.000 1.000 0.032 0.058 0.160 0.252 1.000 1.000
LM8 0.016 0.052 0.248 0.392 0.257 0.393 0.998 1.000 0.018 0.047 0.112 0.214 1.000 1.000

CM tests

CM1
1 0.096 0.140 0.860 0.918 0.743 0.843 1.000 1.000 0.062 0.113 0.224 0.346 1.000 1.000

CM1
2 0.082 0.148 0.838 0.896 0.701 0.808 1.000 1.000 0.063 0.113 0.250 0.374 1.000 1.000

CM1
3 0.100 0.156 0.942 0.964 0.910 0.948 1.000 1.000 0.058 0.122 0.306 0.458 1.000 1.000

CM1
4 0.090 0.150 0.872 0.916 0.887 0.941 1.000 1.000 0.058 0.132 0.324 0.470 1.000 1.000

CM1
5 0.060 0.130 0.960 0.976 0.893 0.946 1.000 1.000 0.072 0.135 0.342 0.496 1.000 1.000

CM1
6 0.062 0.128 0.936 0.964 0.843 0.908 1.000 1.000 0.070 0.147 0.326 0.492 0.998 0.998

CM1
7 0.078 0.132 0.994 0.994 0.960 0.979 1.000 1.000 0.077 0.130 0.438 0.590 1.000 1.000

CM1
8 0.074 0.134 0.968 0.982 0.935 0.964 1.000 1.000 0.080 0.142 0.422 0.558 1.000 1.000

CM1
9 0.072 0.126 0.874 0.918 0.935 0.962 1.000 1.000 0.067 0.127 0.320 0.464 1.000 1.000

CM1
10 0.068 0.124 0.866 0.914 0.881 0.946 1.000 1.000 0.067 0.132 0.312 0.446 1.000 1.000

CM1
11 0.080 0.146 0.912 0.948 0.969 0.981 1.000 1.000 0.070 0.137 0.410 0.564 1.000 1.000

CM1
12 0.084 0.134 0.856 0.910 0.950 0.977 1.000 1.000 0.077 0.140 0.412 0.528 1.000 1.000

CM2
1 0.058 0.128 0.930 0.968 0.925 0.960 1.000 1.000 0.072 0.123 0.292 0.442 1.000 1.000

CM2
2 0.064 0.126 0.924 0.950 0.845 0.923 1.000 1.000 0.077 0.120 0.310 0.448 1.000 1.000

CM2
3 0.084 0.154 0.990 0.992 0.952 0.975 1.000 1.000 0.068 0.142 0.394 0.528 1.000 1.000

CM2
4 0.082 0.144 0.972 0.982 0.927 0.964 1.000 1.000 0.072 0.152 0.402 0.528 1.000 1.000

CM2
5 0.088 0.160 0.132 0.222 0.918 0.958 1.000 1.000 0.048 0.098 0.744 0.842 0.978 0.990

CM2
6 0.086 0.178 0.072 0.136 0.435 0.579 0.908 0.950 0.048 0.095 0.566 0.714 0.618 0.738

CM2
7 0.090 0.136 0.236 0.342 0.992 0.998 1.000 1.000 0.043 0.105 0.762 0.844 1.000 1.000

CM2
8 0.084 0.140 0.106 0.164 0.866 0.925 0.998 1.000 0.045 0.097 0.730 0.808 0.954 0.980

CM2
9 0.076 0.126 0.980 0.986 0.927 0.954 1.000 1.000 0.098 0.182 0.366 0.488 1.000 1.000

CM2
10 0.068 0.144 0.946 0.970 0.843 0.910 1.000 1.000 0.105 0.190 0.366 0.474 1.000 1.000

CM2
11 0.098 0.180 0.864 0.918 0.682 0.793 1.000 1.000 0.087 0.148 0.332 0.464 1.000 1.000

CM2
12 0.094 0.170 0.782 0.856 0.644 0.753 1.000 1.000 0.085 0.158 0.346 0.448 1.000 1.000

F-tests against nonlinearites in the news response

NL1 0.064 0.108 0.972 0.984 0.918 0.952 1.000 1.000 0.077 0.162 0.360 0.488 1.000 1.000
NL2 0.040 0.104 0.972 0.986 0.960 0.979 1.000 1.000 0.072 0.147 0.422 0.550 1.000 1.000
NL3 0.056 0.118 0.670 0.788 0.533 0.653 1.000 1.000 0.082 0.168 0.270 0.392 1.000 1.000
NL4 0.056 0.114 0.602 0.718 0.573 0.692 1.000 1.000 0.067 0.127 0.292 0.412 1.000 1.000

ICM tests

ICM1 0.026 0.074 0.042 0.098 0.065 0.128 0.378 0.482 0.008 0.028 0.066 0.134 0.198 0.274
ICM2 0.030 0.064 0.046 0.096 0.044 0.088 0.336 0.436 0.003 0.023 0.074 0.166 0.150 0.228
ICM3 0.034 0.066 0.042 0.102 0.048 0.094 0.334 0.422 0.005 0.015 0.074 0.166 0.122 0.196
ICM4 0.038 0.084 0.044 0.110 0.046 0.109 0.296 0.430 0.003 0.022 0.078 0.172 0.136 0.204
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A.2. Empirical Application to NYSE Financial Durations.

Table 5: Descriptive statistics and Ljung-Box statistics of plain and seasonally adjusted trade
durations and price durations for the AOL, Coca-Cola, Disney and GE stock traded at the NYSE. Data
extracted from the TAQ data base, sample period from 02/01/01 to 05/30/01 for price durations and
from 03/19/01 to 03/30/01 for trade durations.

AOL Coca-Cola
trade durations price durations trade durations price durations
plain adj. plain adj. plain adj. plain adj.

Obs 20988 20988 10083 10083 15174 15174 12971 12971
Mean 11.121 1.000 237.936 1.000 15.302 1.000 183.659 1.000
Std.dev. 13.631 1.221 302.962 1.141 19.231 1.255 248.438 1.287
LB(20) 851 723 2809 2138 232 138 3166 2318

Disney GE
trade durations price durations trade durations price durations
plain adj. plain adj. plain adj. plain adj.

Obs 16272 16272 9618 9618 25101 25101 16008 16008
Mean 14.335 1.000 248.000 1.000 8.881 1.000 150.497 0.999
Std.dev. 16.984 1.151 341.513 1.249 9.245 1.038 195.008 1.200
LB(20) 548 194 1842 823 875 803 8466 4827

Price durations for AOL stock based on $0.1 midquote changes and for the Coca-Cola, Disney and GE
stock based on $0.05 midquote changes. Descriptive statistics of durations in seconds.
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Table 6: QML estimates of various types of ACD models for AOL trade durations and $0.100 price durations.
Data extracted from the TAQ database available from the NYSE, sample period from 03/19/01 to 03/30/01 for trade
durations and 01/02/01 to 05/30/01 for price durations. Standard errors based on OPG estimates (in brackets).
NPACD model estimated based on the category bounds (0.1, 0.2, 0.5, 1.0, 1.5, 2.0, 3.0) with ε̄0 = 1.0. The threshold
values for the three-regime TACD model are fixed exogenously to 0.25 and 1.50. The estimates of the TACD model
are shown in the same rows as those of the SPACD model.

(1) (2) (3) (4) (5) (6) (7) (1) (2) (3) (4) (5) (6) (7)
ACD LACD BACD EXACDAGACDSPACD TACD ACD LACD BACD EXACDAGACDSPACD TACD

ω 0.009 −0.022 −0.024 −0.024 −0.001 −0.014 −0.040 0.029 −0.080 −0.512 −0.066 0.021 0.036 −0.010
(0.001) (0.001) (0.007) (0.002) (0.012) (0.004) (0.015) (0.005) (0.005) (0.215) (0.006) (0.009) (0.014) (0.012)

α1 −0.005 −0.003 −0.002 −0.020 −0.102 0.181 0.129 0.106 0.848 0.190 −0.233 0.136
(0.005) (0.005) (0.007) (0.009) (0.023) (0.134) (0.013) (0.011) (0.340) (0.014) (0.035) (0.145)

α2 0.030 0.025 0.036 0.038 0.185 −0.171 −0.039 −0.027 −0.304 −0.071 0.130 0.228
(0.005) (0.005) (0.011) (0.009) (0.037) (0.124) (0.013) (0.011) (0.137) (0.015) (0.030) (0.134)

β1 0.967 0.991 0.990 0.989 0.935 0.981 1.030 0.883 0.967 0.968 0.967 0.968 0.972 0.835
(0.002) (0.001) (0.002) (0.002) (0.019) (0.002) (0.011) (0.010) (0.005) (0.005) (0.006) (0.005) (0.005) (0.016)

δ1 1.585 1.897 -∗ -∗

(0.350) (0.662) -∗ -∗

δ2 1.055 0.647 0.164 1.000
(0.077) (0.074) (0.071) -

b 0.499 0.697
(0.027) (0.061)

c1 0.029 1.000 −0.161 −1.172
(0.012) − (0.020) (0.069)

c2 −0.022 0.061 0.084 −0.934
(0.012) (0.144) (0.020) (0.090)

ν1 0.091 0.000∗∗

(0.021)
ν2 −0.077 0.000∗∗

(0.033)
α+

1 (ω2) 0.030 0.027 0.035 0.052
(0.010) (0.006) (0.026) (0.014)

α+
2 (α2

1) −0.017 0.029 −0.037 0.147
(0.019) (0.020) (0.053) (0.029)

α+
3 (α2

2) 0.003 −0.012 0.059 −0.047
(0.016) (0.021) (0.047) (0.029)

α+
4 (β2

1) −0.017 0.947 −0.027 0.870
(0.007) (0.006) (0.024) (0.018)

α−1 (ω3) −0.037 0.058 0.245 0.081
(0.014) (0.012) (0.028) (0.032)

α−2 (α3
1) −0.076 −0.006 0.211 0.070

(0.020) (0.006) (0.057) (0.015)
α−3 (α3

2) 0.029 0.024 0.463 −0.023
(0.048) (0.006) (0.177) (0.012)

α−4 (β3
1) −0.448 0.942 0.064 0.920

(0.199) (0.012) (0.410) (0.027)
a+ 0.090 −0.366

(0.025) (0.040)
a− 0.002 −0.008

(0.004) (0.009)

Obs 20988 20988 20988 20988 20988 20988 20988 10083 10083 10083 10083 10083 10083 10083
LL -20576 -20578 -20572 -20571 -20540 -20545 -20548 -9385 -9395 -9342 -9344 -9340 -9336 -9343
BIC -20596 -20598 -20602 -20601 -20589 -20605 -20608 -9404 -9413 -9365 -9372 -9372 -9391 -9398
¯̂εi 1.000 1.001 1.001 1.002 1.001 1.001 1.001 1.005 1.005 1.005 1.008 1.004 1.006 1.005
SD 1.164 1.164 1.162 1.161 1.152 1.154 1.155 1.051 1.051 1.047 1.047 1.043 1.045 1.048
LB 32.179 33.222 31.937 32.915 29.072 29.640 30.446 10.056 9.867 13.955 10.623 11.453 12.427 11.896

Diagnostics: Log Likelihood (LL), Bayes Information Criterion (BIC), mean (¯̂εi), standard devation (SD) and
Ljung-Box statistic with respect to 20 lags (LB) of ACD residuals.
∗: Estimation based on logarithmic model. ∗∗: Parameters set to zero.

28



Table 7: P-values of the different types of diagnostic tests (see Table 2) for the estimates based on
AOL trade durations and price durations (see Table 6).

Trade durations Price durations

(1) (2) (3) (4) (5) (6) (7) (1) (2) (3) (4) (5) (6) (7)

LM tests

LM1 0.224 0.521 0.604 0.958 0.921 1.000 0.548 0.000 0.000 0.551 0.724 1.000 0.999 0.996
LM2 0.086 0.116 0.329 0.381 0.709 0.965 0.323 0.000 0.000 0.020 0.038 0.190 0.453 0.662
LM3 0.740 0.748 0.658 1.000 0.975 0.999 0.965 0.000 0.000 0.774 0.329 0.526 0.854 0.908
LM4 0.211 0.225 0.325 0.530 0.796 0.941 0.736 0.000 0.000 0.378 0.335 0.546 0.776 0.914
LM5 0.402 0.382 0.713 0.629 0.932 0.986 0.716 0.000 0.000 0.218 0.162 0.296 0.690 0.135
LM6 0.135 0.140 0.237 0.227 0.646 0.744 0.454 0.000 0.000 0.033 0.024 0.069 0.269 0.092
LM7 0.012 0.003 0.013 0.004 0.081 0.309 0.052 0.000 0.000 0.093 0.006 0.069 0.551 0.385
LM8 0.048 0.026 0.047 0.097 0.209 0.581 0.428 0.000 0.000 0.713 0.311 0.660 0.923 0.962

CM tests

CM1
1 0.038 0.106 0.168 0.155 0.466 0.156 0.137 0.000 0.000 0.098 0.051 0.040 0.055 0.001

CM1
2 0.030 0.106 0.260 0.172 0.584 0.211 0.141 0.000 0.000 0.394 0.116 0.068 0.076 0.002

CM1
3 0.009 0.012 0.036 0.006 0.065 0.040 0.048 0.000 0.000 0.097 0.262 0.225 0.236 0.013

CM1
4 0.009 0.011 0.052 0.006 0.060 0.039 0.040 0.000 0.000 0.290 0.480 0.361 0.355 0.031

CM1
5 0.026 0.046 0.085 0.018 0.204 0.211 0.011 0.000 0.000 0.045 0.025 0.052 0.017 0.000

CM1
6 0.024 0.067 0.113 0.104 0.339 0.302 0.035 0.000 0.000 0.149 0.063 0.081 0.022 0.001

CM1
7 0.012 0.014 0.060 0.005 0.103 0.065 0.010 0.000 0.000 0.014 0.024 0.027 0.012 0.000

CM1
8 0.007 0.009 0.059 0.007 0.108 0.053 0.020 0.000 0.000 0.118 0.095 0.065 0.026 0.003

CM1
9 0.041 0.072 0.135 0.108 0.293 0.218 0.041 0.000 0.000 0.059 0.039 0.054 0.027 0.000

CM1
10 0.029 0.080 0.160 0.161 0.395 0.282 0.069 0.000 0.000 0.183 0.082 0.098 0.041 0.001

CM1
11 0.011 0.016 0.059 0.020 0.147 0.083 0.030 0.000 0.000 0.132 0.187 0.237 0.106 0.002

CM1
12 0.004 0.007 0.041 0.009 0.111 0.053 0.027 0.000 0.000 0.412 0.328 0.286 0.130 0.012

CM2
1 0.071 0.104 0.177 0.051 0.339 0.313 0.032 0.000 0.000 0.085 0.070 0.140 0.049 0.001

CM2
2 0.075 0.175 0.192 0.257 0.581 0.457 0.087 0.000 0.000 0.225 0.159 0.216 0.072 0.003

CM2
3 0.009 0.014 0.029 0.002 0.063 0.014 0.011 0.000 0.000 0.042 0.053 0.061 0.038 0.001

CM2
4 0.005 0.010 0.033 0.004 0.060 0.010 0.015 0.000 0.000 0.136 0.065 0.059 0.046 0.006

CM2
5 0.017 0.004 0.002 0.002 0.010 0.019 0.020 0.991 0.804 0.308 0.407 0.485 0.223 0.186

CM2
6 0.129 0.054 0.013 0.048 0.060 0.084 0.124 0.841 0.981 0.836 0.766 0.775 0.601 0.259

CM2
7 0.001 0.001 0.001 0.000 0.003 0.005 0.004 0.893 0.694 0.101 0.285 0.474 0.156 0.511

CM2
8 0.001 0.001 0.001 0.000 0.003 0.005 0.004 0.893 0.694 0.101 0.285 0.474 0.156 0.511

CM2
9 0.012 0.002 0.005 0.000 0.004 0.013 0.002 0.000 0.000 0.040 0.000 0.006 0.036 0.007

CM2
10 0.032 0.006 0.007 0.003 0.014 0.021 0.006 0.000 0.000 0.093 0.004 0.028 0.092 0.002

CM2
11 0.020 0.009 0.008 0.021 0.015 0.054 0.036 0.000 0.000 0.171 0.023 0.057 0.137 0.037

CM2
12 0.022 0.010 0.011 0.023 0.031 0.055 0.065 0.000 0.000 0.161 0.042 0.084 0.177 0.004

F-tests against nonlinearites in the news response

NL1 0.007 0.006 0.013 0.006 0.013 0.008 0.016 0.000 0.000 0.188 0.090 0.491 0.788 0.254
NL2 0.005 0.001 0.001 0.001 0.010 0.020 0.008 0.000 0.000 0.090 0.002 0.032 0.156 0.076
NL3 0.013 0.009 0.007 0.025 0.031 0.041 0.086 0.000 0.000 0.314 0.151 0.300 0.412 0.410
NL4 0.016 0.009 0.008 0.013 0.035 0.047 0.076 0.000 0.000 0.512 0.163 0.301 0.513 0.696

ICM tests

ICM1 0.540 0.480 0.390 0.270 0.600 0.330 0.430 0.090 0.060 0.610 0.610 0.610 0.780 0.540
ICM2 0.510 0.380 0.380 0.170 0.530 0.270 0.450 0.080 0.040 0.650 0.700 0.630 0.610 0.480
ICM3 0.480 0.420 0.360 0.230 0.580 0.350 0.400 0.130 0.020 0.550 0.680 0.650 0.660 0.430
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Table 8: QML estimates of various types of ACD models for Coca-Cola trade durations and $0.05 price durations.
Data extracted from the TAQ database available from the NYSE, sample period from 03/19/01 to 03/30/01 for
intertrade durations and 01/02/01 to 05/30/01 for price durations. Standard errors based on OPG estimates (in
brackets). SPACD model estimated based on the category bounds (0.1, 0.2, 0.5, 1.0, 1.5, 2.0, 3.0) with ε̄0 = 1.0. The
threshold values for the three-regime TACD model are fixed exogenously to 0.25 and 1.50. The estimates of the
TACD model are shown in the same rows as those of the SPACD model.

(1) (2) (3) (4) (5) (6) (7) (1) (2) (3) (4) (5) (6) (7)
ACD LACD BACD EXACDAGACDSPACD TACD ACD LACD BACD EXACDAGACDSPACD TACD

ω 0.122 −0.038 0.100 −0.041 0.010 −0.036 0.041 0.012 −0.050 −0.004 −0.036 0.035 0.020 0.003
(0.016) (0.003) (0.043) (0.004) (0.010) (0.011) (0.079) (0.002) (0.003) (0.027) (0.003) (0.007) (0.009) (0.010)

α1 −0.024 −0.025 −0.026 −0.075 0.066 0.393 0.079 0.075 0.037 0.183 −0.170 −0.111
(0.004) (0.004) (0.038) (0.009) (0.011) (0.192) (0.005) (0.005) (0.061) (0.011) (0.032) (0.122)

α2 0.065 0.063 0.058 0.104 −0.062 −0.271 −0.020 −0.025 −0.019 −0.113 0.132 0.336
(0.005) (0.005) (0.087) (0.009) (0.011) (0.140) (0.003) (0.004) (0.031) (0.010) (0.025) (0.115)

β1 0.837 0.869 0.872 0.868 0.871 0.899 0.921 0.930 0.988 0.987 0.990 0.991 0.989 0.893
(0.019) (0.017) (0.018) (0.018) (0.018) (0.014) (0.076) (0.004) (0.002) (0.002) (0.002) (0.002) (0.002) (0.013)

δ1 0.483 -∗ 0.081 -∗

(0.736) -∗ (0.135) -∗

δ2 0.672 1.000 0.275 1.096
(0.089) - (0.044) (0.137)

b 1.420 1.016
(0.203) (0.103)

c1 0.080 −0.773 −0.179 −1.000
(0.012) (0.119) (0.013) -

c2 −0.068 −1.393 0.136 −0.801
(0.013) (0.187) (0.013) (0.035)

ν1 0.000∗∗ 0.000∗∗

ν2 0.000∗∗ 0.000∗∗

α+
1 (ω2) 0.062 0.071 0.021 0.010

(0.021) (0.037) (0.018) (0.010)
α+

2 (α2
1) −0.071 −0.023 0.010 0.137

(0.039) (0.024) (0.034) (0.024)
α+

3 (α2
2) 0.031 0.038 −0.034 −0.059

(0.031) (0.023) (0.029) (0.022)
α+

4 (β2
1) −0.033 0.896 0.006 0.931

(0.013) (0.037) (0.014) (0.011)
α−1 (ω3) −0.124 0.457 0.226 0.062

(0.020) (0.072) (0.020) (0.021)
α−2 (α3

1) −0.153 −0.005 0.246 0.039
(0.038) (0.008) (0.038) (0.008)

α−3 (α3
2) 0.245 0.061 0.324 −0.011

(0.112) (0.008) (0.101) (0.006)
α−4 (β3

1) −0.863 0.465 −0.157 0.960
(0.335) (0.073) (0.199) (0.019)

a+ 0.230 −0.394
(0.026) (0.028)

a− 0.009 0.005
(0.004) (0.003)

Obs 15174 15174 15174 15174 15174 15174 15174 12971 12971 12971 12971 12971 12971 12971
LL -15059 -15060 -15056 -15047 -15045 -15038 -15040 -12072 -12081 -12016 -11996 -11996 -11991 -12023
BIC -15079 -15079 -15085 -15075 -15079 -15095 -15098 -12091 -12100 -12044 -12024 -12029 -12048 -12080
¯̂εi 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.008 1.008 1.033 1.005 1.005 1.004 1.007
SD 1.245 1.246 1.249 1.245 1.246 1.242 1.242 1.208 1.210 1.234 1.196 1.196 1.194 1.204
LB 17.146 15.823 16.083 15.254 15.761 17.527 16.059 30.816 31.776 26.809 23.016 24.431 23.217 29.219

Diagnostics: Log Likelihood (LL), Bayes Information Criterion (BIC), mean (¯̂εi), standard devation (SD) and
Ljung-Box(20) statistic with respect to 20 lags (LB) of ACD residuals.
∗: Estimation based on logarithmic model. ∗∗: Parameters set to zero.
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Table 9: P-values of the different types of diagnostic tests (see Table 2) for the estimates based on
Coca-Cola trade durations and price durations (see Table 8).

Trade durations Price durations

(1) (2) (3) (4) (5) (6) (7) (1) (2) (3) (4) (5) (6) (7)

LM tests

LM1 0.015 0.012 0.152 1.000 0.998 1.000 0.704 0.000 0.000 0.269 0.216 0.373 0.665 0.027
LM2 0.026 0.025 0.177 0.998 0.995 1.000 0.828 0.000 0.000 0.121 0.179 0.298 0.587 0.010
LM3 0.019 0.020 0.249 0.994 0.999 1.000 0.728 0.000 0.000 0.206 0.233 0.363 0.647 0.043
LM4 0.056 0.033 0.239 0.981 0.996 1.000 0.823 0.000 0.000 0.081 0.160 0.239 0.519 0.014
LM5 0.010 0.007 0.151 0.900 0.940 0.995 0.754 0.000 0.000 0.351 0.384 0.530 0.760 0.030
LM6 0.025 0.012 0.225 0.867 0.949 0.999 0.908 0.000 0.000 0.153 0.156 0.222 0.381 0.012
LM7 0.142 0.130 0.391 0.973 0.993 0.997 0.758 0.000 0.000 0.411 0.485 0.478 0.660 0.061
LM8 0.051 0.038 0.129 0.819 0.874 0.953 0.432 0.000 0.000 0.102 0.128 0.187 0.452 0.006

CM tests

CM1
1 0.000 0.000 0.000 0.101 0.068 0.019 0.016 0.000 0.000 0.013 0.024 0.037 0.019 0.000

CM1
2 0.000 0.000 0.000 0.038 0.024 0.013 0.020 0.000 0.000 0.027 0.066 0.084 0.037 0.000

CM1
3 0.000 0.000 0.000 0.010 0.012 0.002 0.011 0.000 0.000 0.024 0.019 0.023 0.021 0.000

CM1
4 0.000 0.000 0.000 0.003 0.003 0.001 0.013 0.000 0.000 0.049 0.040 0.044 0.035 0.000

CM1
5 0.000 0.000 0.001 0.212 0.185 0.216 0.013 0.000 0.000 0.031 0.012 0.021 0.005 0.000

CM1
6 0.000 0.000 0.000 0.058 0.026 0.180 0.029 0.000 0.000 0.303 0.053 0.083 0.020 0.000

CM1
7 0.001 0.000 0.001 0.045 0.087 0.397 0.075 0.000 0.000 0.004 0.004 0.007 0.001 0.000

CM1
8 0.001 0.000 0.000 0.052 0.036 0.326 0.113 0.000 0.000 0.067 0.028 0.059 0.010 0.000

CM1
9 0.001 0.000 0.003 0.240 0.231 0.243 0.019 0.000 0.000 0.025 0.011 0.020 0.006 0.000

CM1
10 0.001 0.000 0.001 0.046 0.029 0.192 0.040 0.000 0.000 0.145 0.043 0.068 0.018 0.000

CM1
11 0.002 0.000 0.002 0.132 0.175 0.456 0.080 0.000 0.000 0.006 0.002 0.004 0.001 0.000

CM1
12 0.001 0.000 0.001 0.093 0.069 0.374 0.123 0.000 0.000 0.036 0.009 0.020 0.004 0.000

CM2
1 0.001 0.000 0.001 0.065 0.080 0.302 0.041 0.000 0.000 0.046 0.039 0.061 0.020 0.000

CM2
2 0.001 0.000 0.000 0.064 0.030 0.286 0.088 0.000 0.000 0.287 0.083 0.135 0.059 0.000

CM2
3 0.005 0.000 0.003 0.103 0.175 0.682 0.263 0.000 0.000 0.006 0.006 0.008 0.003 0.000

CM2
4 0.005 0.001 0.001 0.157 0.112 0.626 0.367 0.000 0.000 0.060 0.040 0.067 0.027 0.000

CM2
5 0.021 0.035 0.598 0.072 0.095 0.131 0.222 0.072 0.043 0.036 0.134 0.111 0.109 0.014

CM2
6 0.005 0.001 0.445 0.019 0.029 0.098 0.148 0.477 0.513 0.091 0.395 0.319 0.327 0.044

CM2
7 0.254 0.172 0.381 0.259 0.230 0.249 0.414 0.009 0.008 0.017 0.044 0.041 0.040 0.004

CM2
8 0.254 0.172 0.381 0.259 0.230 0.249 0.414 0.009 0.008 0.017 0.044 0.041 0.040 0.004

CM2
9 0.033 0.029 0.068 0.792 0.896 0.715 0.149 0.000 0.000 0.045 0.096 0.076 0.022 0.000

CM2
10 0.028 0.027 0.047 0.711 0.868 0.621 0.209 0.000 0.000 0.080 0.283 0.259 0.116 0.001

CM2
11 0.009 0.005 0.007 0.353 0.333 0.265 0.038 0.000 0.000 0.006 0.008 0.006 0.011 0.000

CM2
12 0.010 0.006 0.005 0.327 0.291 0.228 0.117 0.000 0.000 0.038 0.089 0.063 0.104 0.000

F-tests against nonlinearites in the news response

NL1 0.011 0.007 0.020 0.534 0.786 0.299 0.288 0.000 0.000 0.053 0.367 0.236 0.181 0.001
NL2 0.060 0.056 0.094 0.766 0.904 0.786 0.462 0.000 0.000 0.115 0.308 0.159 0.168 0.015
NL3 0.008 0.009 0.062 0.237 0.331 0.187 0.140 0.000 0.000 0.108 0.110 0.093 0.147 0.000
NL4 0.050 0.063 0.176 0.540 0.597 0.521 0.429 0.000 0.000 0.074 0.038 0.026 0.068 0.000

ICM tests

ICM1 0.950 0.900 0.860 0.240 0.240 0.480 0.430 0.840 0.970 0.660 0.410 0.340 0.280 0.470
ICM2 0.700 0.760 0.650 0.310 0.160 0.360 0.450 0.830 0.940 0.680 0.420 0.330 0.290 0.530
ICM3 0.670 0.650 0.640 0.190 0.110 0.270 0.400 0.900 0.940 0.650 0.490 0.410 0.460 0.460
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Table 10: QML estimates of various types of ACD models for Disney trade durations and $0.05 price durations.
Data extracted from the TAQ database available from the NYSE, sample period from 03/19/01 to 03/30/01 for trade
durations and 01/02/01 to 05/30/01 for price durations. Standard errors based on OPG estimates (in brackets).
NPACD model estimated based on the category bounds (0.1, 0.2, 0.5, 1.0, 1.5, 2.0, 3.0) with ε̄0 = 1.0. The threshold
values for the three-regime TACD model are fixed exogenously to 0.25 and 1.50. The estimates of the TACD model
are shown in the same rows as those of the SPACD model.

(1) (2) (3) (4) (5) (6) (7) (1) (2) (3) (4) (5) (6) (7)
ACD LACD BACD EXACDAGACDSPACD TACD ACD LACD BACD EXACDAGACDSPACD TACD

ω 0.034 −0.023 −0.065 −0.023 −0.026 0.010 0.021 0.055 −0.045 −0.038 −0.032 −0.046 0.040 −0.006
(0.006) (0.003) (0.028) (0.003) (0.017) (0.007) (0.036) (0.010) (0.008) (0.018) (0.005) (0.025) (0.011) (0.006)

α1 0.018 0.017 0.076 0.038 0.070 0.045 0.170 0.136 0.265 0.210 −0.125 0.563
(0.006) (0.006) (0.031) (0.011) (0.052) (0.043) (0.011) (0.008) (0.066) (0.012) (0.125) (0.164)

α2 0.007 0.006 0.042 −0.009 −0.037 0.184 −0.089 −0.092 −0.184 −0.147 0.056 −0.351
(0.006) (0.006) (0.029) (0.011) (0.046) (0.060) (0.013) (0.009) (0.048) (0.012) (0.100) (0.178)

β1 0.941 0.970 0.954 0.968 0.916 0.969 0.915 0.983 1.291 1.296 1.302 1.429 1.245 0.959
(0.008) (0.006) (0.008) (0.006) (0.047) (0.006) (0.044) (0.099) (0.085) (0.069) (0.070) (0.165) (0.071) (0.064)

β2 −0.116 −0.323 −0.329 −0.329 −0.389 −0.277 −0.055
(0.080) (0.080) (0.065) (0.066) (0.145) (0.067) (0.053)

δ1 3.268 4.996 0.518 0.047
(0.966) (2.335) (0.138) 0.328

δ2 0.881 0.895 0.339 0.355
(0.126) (0.148) (0.052) 0.052

b 0.362 0.021
(0.150) (0.008)

c1 −0.034 1.000 −0.134 1.000
(0.014) - (0.016) -

c2 0.026 1.000 0.092 1.000
(0.014) - (0.015) -

ν1 −0.003 0.142
(0.035) (0.062)

ν2 0.065 −0.068
(0.035) (0.063)

α+
1 (ω2) 0.012 0.007 −0.018 0.036

(0.014) (0.018) (0.021) (0.018)
α+

2 (α2
1) −0.034 0.019 0.170 0.139

(0.027) (0.019) (0.041) (0.034)
α+

3 (α2
2) 0.041 0.034 −0.112 −0.038

(0.023) (0.021) (0.035) (0.039)
α+

4 (β2
1) −0.021 0.945 0.039 1.109

(0.010) (0.019) (0.015) (0.074)
α−1 (β2

2) 0.069 0.286 −0.220
(0.019) (0.023) (0.056)

α−2 (ω3) 0.019 0.156 0.193 0.161
(0.028) (0.046) (0.040) (0.046)

α−3 (α3
1) −0.115 0.006 0.380 0.095

(0.086) (0.008) (0.113) (0.016)
α−4 (α3

2) 1.057 0.017 −0.073 −0.063
(0.354) (0.008) (0.222) (0.014)

a+ (β3
1) −0.082 0.831 −0.440 1.091

(0.031) (0.043) (0.031) (0.105)
a− (β3

2) 0.006 −0.036 −0.235
(0.004) (0.006) (0.081)

Obs 16272 16272 16272 16272 16272 16272 16272 9618 9618 9618 9618 9618 9618 9618
LL -16147 -16147 -16141 -16144 -16140 -16138 -16140 -9039 -9048 -8986 -8999 -8982 -8986 -8984
BIC -16166 -16166 -16170 -16173 -16183 -16197 -16198 -9062 -9071 -9018 -9031 -9028 -9046 -9053
¯̂εi 1.002 1.001 1.001 1.001 1.001 0.999 1.001 1.004 1.004 1.004 1.003 1.004 0.998 1.004
SD 1.135 1.134 1.134 1.135 1.133 1.131 1.135 1.195 1.194 1.194 1.195 1.193 1.186 1.195
LB 20.796 21.195 19.971 21.438 19.861 20.288 20.631 33.222 29.055 30.176 31.262 30.403 32.697 31.269

Diagnostics: Log Likelihood (LL), Bayes Information Criterion (BIC), mean (¯̂εi), standard devation (SD) and
Ljung-Box statistic with respect to 20 lags (LB) of ACD residuals.
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Table 11: P-values of the different types of diagnostic tests (see Table 2) for the estimates based on
Disney trade durations and price durations (see Table 10).

Trade durations Price durations

(1) (2) (3) (4) (5) (6) (7) (1) (2) (3) (4) (5) (6) (7)

LM tests

LM1 0.859 0.841 0.996 0.973 0.998 1.000 1.000 0.000 0.000 0.994 0.743 1.000 1.000 1.000
LM2 0.937 0.925 0.996 0.994 0.999 1.000 1.000 0.000 0.000 0.105 0.007 0.296 0.208 0.539
LM3 0.841 0.809 0.994 0.993 0.997 1.000 1.000 0.000 0.000 0.968 0.622 0.996 1.000 0.999
LM4 0.937 0.909 0.996 0.999 0.998 1.000 1.000 0.000 0.000 0.118 0.008 0.387 0.298 0.633
LM5 0.673 0.632 0.979 0.982 0.993 0.998 0.997 0.000 0.000 0.994 0.804 0.999 1.000 1.000
LM6 0.817 0.781 0.981 0.969 0.994 0.993 0.985 0.000 0.000 0.228 0.034 0.289 0.303 0.767
LM7 0.804 0.692 0.973 0.936 0.990 1.000 0.978 0.000 0.000 0.190 0.008 0.385 0.226 0.844
LM8 0.877 0.850 0.972 0.985 0.984 1.000 0.998 0.000 0.000 0.119 0.001 0.473 0.266 0.773

CM tests

CM1
1 0.197 0.240 0.441 0.443 0.116 0.559 0.439 0.000 0.000 0.682 0.350 0.621 0.296 0.279

CM1
2 0.080 0.110 0.379 0.267 0.082 0.462 0.362 0.000 0.000 0.611 0.350 0.601 0.308 0.178

CM1
3 0.267 0.285 0.543 0.370 0.253 0.507 0.404 0.000 0.000 0.048 0.002 0.050 0.003 0.033

CM1
4 0.148 0.172 0.467 0.263 0.193 0.444 0.332 0.000 0.000 0.101 0.011 0.125 0.019 0.053

CM1
5 0.558 0.530 0.783 0.404 0.672 0.910 0.661 0.000 0.000 0.690 0.388 0.649 0.342 0.216

CM1
6 0.593 0.576 0.815 0.509 0.739 0.900 0.794 0.000 0.000 0.754 0.440 0.801 0.121 0.213

CM1
7 0.708 0.731 0.851 0.548 0.850 0.974 0.666 0.000 0.000 0.015 0.001 0.015 0.000 0.005

CM1
8 0.719 0.747 0.904 0.577 0.911 0.950 0.739 0.000 0.000 0.053 0.011 0.065 0.001 0.021

CM1
9 0.598 0.553 0.788 0.617 0.642 0.856 0.678 0.000 0.000 0.485 0.206 0.458 0.417 0.155

CM1
10 0.653 0.617 0.818 0.613 0.722 0.863 0.816 0.000 0.000 0.536 0.211 0.585 0.299 0.157

CM1
11 0.740 0.741 0.839 0.730 0.772 0.951 0.563 0.000 0.000 0.016 0.001 0.017 0.000 0.010

CM1
12 0.770 0.780 0.893 0.690 0.851 0.930 0.646 0.000 0.000 0.063 0.005 0.077 0.001 0.039

CM2
1 0.604 0.585 0.816 0.635 0.755 0.745 0.778 0.000 0.000 0.621 0.158 0.545 0.224 0.153

CM2
2 0.773 0.777 0.922 0.769 0.893 0.891 0.936 0.000 0.000 0.463 0.048 0.576 0.036 0.113

CM2
3 0.850 0.852 0.928 0.798 0.908 0.839 0.713 0.000 0.000 0.024 0.001 0.016 0.000 0.010

CM2
4 0.920 0.937 0.981 0.879 0.973 0.940 0.845 0.000 0.000 0.048 0.004 0.059 0.001 0.026

CM2
5 0.676 0.490 0.752 0.580 0.786 0.773 0.693 0.004 0.004 0.009 0.004 0.012 0.002 0.014

CM2
6 0.859 0.818 0.795 0.815 0.817 0.833 0.739 0.000 0.000 0.041 0.011 0.039 0.004 0.078

CM2
7 0.594 0.414 0.783 0.510 0.801 0.776 0.713 0.001 0.001 0.002 0.001 0.003 0.000 0.000

CM2
8 0.594 0.414 0.783 0.510 0.801 0.776 0.713 0.001 0.001 0.002 0.001 0.003 0.000 0.000

CM2
9 0.591 0.440 0.845 0.708 0.801 0.959 0.640 0.000 0.000 0.055 0.002 0.036 0.005 0.074

CM2
10 0.668 0.506 0.887 0.775 0.825 0.974 0.768 0.000 0.000 0.167 0.042 0.090 0.033 0.434

CM2
11 0.677 0.635 0.753 0.826 0.665 0.904 0.733 0.000 0.000 0.025 0.000 0.018 0.011 0.031

CM2
12 0.729 0.686 0.747 0.826 0.664 0.905 0.718 0.000 0.000 0.085 0.003 0.025 0.084 0.133

F-tests against nonlinearites in the news response

NL1 0.448 0.276 0.692 0.551 0.587 0.710 0.572 0.000 0.000 0.900 0.240 0.856 0.663 0.990
NL2 0.787 0.627 0.945 0.862 0.905 0.949 0.895 0.000 0.000 0.219 0.034 0.246 0.041 0.635
NL3 0.600 0.559 0.728 0.691 0.640 0.701 0.849 0.000 0.000 0.149 0.001 0.173 0.045 0.504
NL4 0.883 0.856 0.923 0.921 0.877 0.910 0.932 0.000 0.000 0.251 0.004 0.227 0.107 0.583

ICM tests

ICM1 0.040 0.020 0.020 0.070 0.040 0.060 0.040 0.030 0.010 0.650 0.220 0.630 0.220 0.400
ICM2 0.010 0.010 0.050 0.000 0.010 0.010 0.020 0.020 0.000 0.710 0.190 0.690 0.150 0.460
ICM3 0.040 0.030 0.020 0.020 0.040 0.040 0.000 0.040 0.000 0.560 0.130 0.530 0.200 0.470
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Table 12: QML estimates of various types of ACD models for GE trade durations and $0.05 price durations. Data
extracted from the TAQ database available from the NYSE, sample period from 03/19/01 to 03/30/01 for trade
durations and 01/02/01 to 05/30/01 for price durations. Standard errors based on OPG estimates (in brackets).
NPACD model estimated based on the category bounds (0.1, 0.2, 0.5, 1.0, 1.5, 2.0, 3.0) with ε̄0 = 1.0. The threshold
values for the three-regime TACD model are fixed exogenously to 0.25 and 1.50. The estimates of the TACD model
are shown in the same rows as those of the SPACD model.

(1) (2) (3) (4) (5) (6) (7) (1) (2) (3) (4) (5) (6) (7)
ACD LACD BACD EXACDAGACDSPACD TACD ACD LACD BACD EXACDAGACDSPACD TACD

ω 0.036 −0.038 −0.003 −0.037 0.005 −0.007 0.060 0.009 −0.030 −0.093 −0.034 −0.016 0.012 −0.002
(0.005) (0.003) (0.030) (0.003) (0.022) (0.007) (0.036) (0.002) (0.004) (0.017) (0.005) (0.003) (0.006) (0.006)

α1 −0.001 −0.001 −0.000 −0.014 −0.091 −0.215 0.143 0.122 0.372 0.174 −0.389 0.788
(0.006) (0.006) (0.006) (0.010) (0.037) (0.131) (0.009) (0.007) (0.049) (0.011) (0.062) (0.158)

α2 0.043 0.038 0.042 0.056 0.162 0.051 −0.094 −0.092 −0.269 −0.128 0.325 −0.620
(0.006) (0.006) (0.033) (0.010) (0.069) (0.096) (0.007) (0.006) (0.036) (0.010) (0.054) (0.160)

β1 0.922 0.965 0.964 0.966 0.907 0.962 0.942 1.227 1.532 1.434 1.433 1.408 1.391 1.066
(0.007) (0.005) (0.005) (0.005) (0.044) (0.005) (0.033) (0.073) (0.057) (0.063) (0.067) (0.066) (0.068) (0.093)

β2 −0.284 −0.538 −0.442 −0.442 −0.417 −0.400 −0.137
(0.066) (0.056) (0.062) (0.066) (0.065) (0.067) (0.081)

δ1 0.705 2.078 -∗ -∗

(0.558) (1.223) -∗ -∗

δ2 0.758 0.702 0.407 1.000
(0.107) (0.098) (0.051) -

b 0.430 0.355
(0.052) (0.032)

c1 0.023 1.000 −0.100 −1.235
(0.014) - (0.014) (0.043)

c2 −0.031 0.573 0.082 −1.179
(0.014) (0.398) (0.014) (0.041)

ν1 0.084 0.000∗∗

(0.038)
ν2 −0.046 0.000∗∗

(0.052)
α+

1 (ω2) 0.039 0.031 0.020 0.005
(0.014) (0.012) (0.012) (0.007)

α+
2 (α2

1) −0.021 −0.001 0.051 0.147
(0.027) (0.018) (0.024) (0.026)

α+
3 (α2

2) −0.014 0.051 0.002 −0.097
(0.023) (0.018) (0.020) (0.027)

α+
4 (β2

1) −0.008 0.918 0.018 1.253
(0.012) (0.013) (0.009) (0.086)

α−1 (β2
2) −0.030 0.211 −0.299

(0.019) (0.017) (0.077)
α−2 (ω3) −0.048 0.080 0.223 0.032

(0.030) (0.028) (0.029) (0.019)
α−3 (α3

1) −0.227 −0.014 0.120 0.083
(0.096) (0.006) (0.072) (0.016)

α−4 (α3
2) 0.636 0.041 0.512 −0.044

(1.290) (0.006) (0.181) (0.017)
a+ (β3

1) 0.097 0.922 −0.377 1.328
(0.031) (0.028) (0.028) (0.097)

a− (β3
2) 0.006 −0.039 −0.392

(0.005) (0.006) (0.088)

Obs 25101 25101 25101 25101 25101 25101 25101 16008 16008 16008 16008 16008 16008 16008
LL -24813 -24815 -24811 -24813 -24800 -24801 -24804 -14705 -14706 -14670 -14674 -14660 -14662 -14665
BIC -24834 -24836 -24841 -24843 -24851 -24862 -24865 -14729 -14730 -14699 -14708 -14699 -14725 -14737
¯̂εi 1.001 1.000 0.999 1.000 1.000 1.001 1.000 1.002 1.001 1.000 1.001 1.000 1.000 1.000
SD 1.007 1.007 1.006 1.007 1.006 1.005 1.006 1.060 1.057 1.059 1.059 1.056 1.057 1.059
LB 38.695 37.281 36.779 37.039 40.831 36.380 39.267 33.643 23.238 35.240 29.765 32.469 33.801 36.461

Diagnostics: Log Likelihood (LL), Bayes Information Criterion (BIC), mean (¯̂εi), standard devation (SD) and
Ljung-Box statistic with respect to 20 lags (LB) of ACD residuals.
∗: Estimation based on logarithmic model. ∗∗: Parameters set to zero.
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Table 13: P-values of the different types of diagnostic tests (see Table 2) for the estimates based on
GE trade durations and price durations (see Table 12).

Trade durations Price durations

(1) (2) (3) (4) (5) (6) (7) (1) (2) (3) (4) (5) (6) (7)

LM tests

LM1 0.457 0.823 0.877 0.846 0.992 1.000 0.793 0.000 0.000 0.851 0.921 0.985 1.000 1.000
LM2 0.142 0.506 0.755 0.897 0.857 0.999 0.588 0.000 0.000 0.539 0.679 0.282 0.870 0.986
LM3 0.973 0.948 0.681 1.000 0.998 1.000 0.997 0.000 0.000 0.588 0.414 0.618 0.993 0.999
LM4 0.529 0.330 0.145 0.950 0.800 0.958 0.941 0.000 0.000 0.028 0.022 0.009 0.201 0.288
LM5 0.283 0.398 0.326 0.338 0.974 0.941 0.542 0.000 0.000 0.147 0.067 0.404 0.982 0.887
LM6 0.080 0.104 0.137 0.124 0.831 0.602 0.336 0.000 0.000 0.022 0.006 0.010 0.318 0.073
LM7 0.404 0.455 0.520 0.745 0.634 0.849 0.726 0.000 0.000 0.438 0.117 0.481 0.176 0.986
LM8 0.808 0.812 0.882 0.996 0.880 0.928 0.765 0.000 0.000 0.068 0.028 0.020 0.291 0.203

CM tests

CM1
1 0.036 0.063 0.079 0.000 0.403 0.147 0.026 0.000 0.000 0.221 0.053 0.011 0.022 0.044

CM1
2 0.021 0.037 0.047 0.000 0.281 0.122 0.014 0.001 0.000 0.379 0.101 0.024 0.051 0.083

CM1
3 0.005 0.008 0.034 0.000 0.118 0.035 0.009 0.001 0.000 0.145 0.069 0.022 0.029 0.018

CM1
4 0.007 0.011 0.045 0.000 0.140 0.052 0.007 0.001 0.000 0.254 0.083 0.017 0.039 0.040

CM1
5 0.010 0.021 0.008 0.000 0.182 0.052 0.002 0.000 0.000 0.003 0.003 0.009 0.154 0.003

CM1
6 0.007 0.011 0.004 0.000 0.167 0.024 0.002 0.000 0.000 0.014 0.022 0.014 0.246 0.016

CM1
7 0.001 0.002 0.003 0.000 0.056 0.007 0.001 0.000 0.000 0.000 0.000 0.000 0.011 0.000

CM1
8 0.001 0.002 0.004 0.000 0.054 0.006 0.001 0.000 0.000 0.004 0.002 0.000 0.024 0.000

CM1
9 0.014 0.027 0.014 0.000 0.251 0.089 0.005 0.000 0.000 0.000 0.000 0.001 0.023 0.000

CM1
10 0.007 0.011 0.005 0.000 0.214 0.056 0.003 0.000 0.000 0.001 0.001 0.001 0.036 0.000

CM1
11 0.001 0.002 0.003 0.000 0.060 0.008 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000

CM1
12 0.001 0.002 0.004 0.000 0.054 0.008 0.001 0.000 0.000 0.000 0.000 0.000 0.001 0.000

CM2
1 0.033 0.070 0.021 0.000 0.328 0.089 0.006 0.000 0.000 0.000 0.001 0.003 0.039 0.000

CM2
2 0.022 0.040 0.015 0.000 0.354 0.068 0.007 0.000 0.000 0.003 0.002 0.005 0.057 0.001

CM2
3 0.008 0.015 0.016 0.000 0.199 0.024 0.006 0.000 0.000 0.000 0.000 0.000 0.001 0.000

CM2
4 0.008 0.015 0.024 0.000 0.202 0.033 0.006 0.000 0.000 0.000 0.000 0.000 0.003 0.000

CM2
5 0.000 0.000 0.000 0.000 0.001 0.001 0.000 0.111 0.000 0.025 0.034 0.022 0.010 0.004

CM2
6 0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.018 0.000 0.151 0.118 0.112 0.073 0.028

CM2
7 0.003 0.000 0.001 0.000 0.001 0.006 0.001 0.002 0.000 0.000 0.001 0.001 0.000 0.001

CM2
8 0.003 0.000 0.001 0.000 0.001 0.006 0.001 0.002 0.000 0.000 0.001 0.001 0.000 0.001

CM2
9 0.122 0.134 0.052 0.000 0.087 0.175 0.039 0.000 0.000 0.000 0.000 0.000 0.000 0.002

CM2
10 0.063 0.072 0.025 0.000 0.072 0.045 0.013 0.000 0.000 0.000 0.000 0.000 0.000 0.000

CM2
11 0.461 0.488 0.369 0.000 0.226 0.288 0.026 0.000 0.000 0.000 0.000 0.000 0.000 0.000

CM2
12 0.313 0.358 0.237 0.000 0.193 0.106 0.012 0.000 0.000 0.000 0.000 0.000 0.000 0.000

F-tests against nonlinearites in the news response

NL1 0.332 0.274 0.285 0.013 0.219 0.540 0.237 0.000 0.000 0.048 0.001 0.396 0.061 0.806
NL2 0.163 0.217 0.211 0.000 0.177 0.408 0.215 0.000 0.000 0.016 0.000 0.079 0.001 0.175
NL3 0.574 0.567 0.525 0.020 0.419 0.676 0.364 0.000 0.000 0.002 0.000 0.012 0.031 0.019
NL4 0.406 0.432 0.462 0.000 0.320 0.396 0.265 0.000 0.000 0.001 0.000 0.001 0.002 0.001

ICM tests

ICM1 0.340 0.400 0.360 0.850 0.810 0.270 0.560 0.950 0.000 0.870 0.970 0.940 0.990 0.930
ICM2 0.260 0.390 0.310 0.770 0.650 0.360 0.500 0.900 0.030 0.870 0.920 0.910 0.940 0.930
ICM3 0.300 0.300 0.240 0.750 0.590 0.290 0.520 0.900 0.000 0.700 0.940 0.920 0.920 0.780
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Figure 2: Estimated news impact curves for trade durations of the AOL, Coca-Cola, Disney and GE

stock.

Figure 3: Estimated news impact curves for price durations of the AOL, Coca-Cola, Disney and GE

stock.
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