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Abstract. This paper proposes a dynamic proportional hazard (PH) model with non-specified
baseline hazard for the modelling of autoregressive duration processes. A categorization of the
durations allows us to reformulate the PH model as an ordered response model based on extreme
value distributed errors. In order to capture persistent serial dependence in the duration process,
we extend the model by an observation driven ARMA dynamic based on generalized errors. We
illustrate the maximum likelihood estimation of both the model parameters and discrete points
of the underlying unspecified baseline survivor function. The dynamic properties of the model
as well as an assessment of the estimation quality is investigated in a Monte Carlo study. It is
illustrated that the model is a useful approach to estimate conditional failure probabilities based
on (persistent) serial dependent duration data which might be subject to censoring structures.
In an empirical study based on financial transaction data we present an application of the model
to estimate conditional asset price change probabilities. Evaluating the forecasting properties of
the model, it is shown that the proposed approach is a promising competitor to well-established
ACD type models.

1. Introduction

Recent literature on high-frequency finance inspired growing interest in dynamic duration

models. They serve as fundamental tools to capture the irregular spacing of financial market

events, such as e.g. trade or quote arrivals, or the occurrence of cumulative price changes or

cumulative trading volumes of a given size. Modelling the time between these events, i.e. the

so-called financial durations, allows one to analyze market microstructure relations and to quan-

tify the instantaneous volatility and liquidity as well as the dynamic interactions thereof. Since

financial durations typically reveal persistent autoregressive structures, the specification of dy-

namic duration models requires to combine features from (nonlinear) time series approaches

with those of classical duration models.
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In this paper, we introduce a new type of dynamic duration model which has its origin in

duration analysis. The main contribution is to propose a dynamic extension of the Cox (1972)

semiparametric proportional hazard (PH) model, where the baseline hazard function is non-

specified. The resulting model is called Semiparametric Autoregressive Conditional Proportional

Hazard (SACPH) model and is shown to be a useful approach to model data which reveal

characteristics of classical duration data, like censoring structures or unobservable heterogeneity

effects, but also persistent autoregressive structures.

A seminal contribution to the literature on dynamic duration models was the autoregres-

sive conditional duration (ACD) model introduced by Engle and Russell (1998) and Engle (2000)

which originates from the time series literature on GARCH and ARMA processes and was the

starting point for a wide range of extensions. In the basis ACD specification, the durations

standardized by their conditional mean are assumed to be i.i.d., where the conditional duration

mean is assumed to follow a linear autoregressive process. One string of extensions focusses

on generalizations of the specification of the conditional mean function leading to logarithmic

specifications (Bauwens and Giot, 2000), (augmented) Box-Cox type specifications (Dufour and

Engle, 2000, Fernandes and Grammig, 2006, Hautsch, 2003, 2006) as well as regime switching

specifications (Zhang, Russell, and Tsay, 2001, Hujer and Vuletic, 2005, Meitz and Teräsvirta,

2006). A further string of the literature focusses on generalizations of the distribution properties.

Whereas Engle and Russell (1998) assume that the standardized durations are exponentially or

Weibull distributed, Grammig and Maurer (2000), Lunde (2000) and Hautsch (2003) propose

Burr, generalized gamma and generalized F distributions, respectively. Further approaches deal

with the presence of long range dependence (Jasiak, 1998), the modelling of a stochastic condi-

tional duration mean process (Bauwens and Veredas, 2004) and the nonparametric treatment of

seasonality effects (Veredas, Rodriguez-Poo, and Espasa, 2002). All these specifications belong

to the class of accelerated failure time (AFT) models1, where observable characteristics, such as

lagged durations or functions thereof, serve as accelerators (or decelerators) of the time scale on

which the durations are measured2 and have their origin in (nonlinear) ARMA-GARCH type

time series models.

However, so far it is not well understood which elements of time series models and classical

duration models should be optimally combined in the specification of a dynamic duration model

and from which class of approaches to start with. Actually, Bauwens et al. (2004) illustrate that

in many applications even quite flexibly parameterized (AFT type) dynamic duration models fail

to completely capture the distribution properties of (financial) durations. A further drawback

of the ACD model is that it does not allow to account for censoring structures in duration

processes. Censoring is apparent whenever the beginning or the end of a duration, and thus the

1See e.g. Kalbfleisch and Prentice (1980).
2See Engle and Russell (1998) or Hautsch (2004) for an illustration of this relation.
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exact length of the spell cannot be completely observed and can only be approximated by upper

and/or lower boundaries. E.g., in the context of financial duration processes, censoring can occur

because of non-trading periods such as nights, weekends, holidays or trading halts. Furthermore,

particularly whenever one is not only interested in predictions of the conditional duration mean

but also in estimates of conditional failure probabilities, i.e. the conditional probability to observe

the next event arrival in a certain time interval, parametric specifications of the (conditional)

density function, as required in the ACD framework, might be too restrictive.

Motivated by these observations we propose a model which originates from the duration

literature. An obvious starting point is the Cox (1972) PH model which is still the workhorse

in classical survival analysis.3 The main contribution of this paper is to extend the Cox model

to allow for persistent serial dependence in the duration process. In particular, we assume

that the hazard function is specified as a multiplicative function of a so-called baseline hazard

component and a (parametric) function of observable characteristics (including covariates and

model dynamics). The baseline hazard captures the shape of the hazard function during the

duration spell as a deterministic function of time. A continuous-time counterpart to this type of

model has been proposed by Russell (1999) who models the hazard (or intensity) itself in terms

of an ACD type autoregressive process. However, while Russell (1999) specifies the baseline

intensity parametrically, we leave it non-specified and suggest to estimate it semiparametrically.

In the paper, we illustrate that this flexibility is required to capture the distribution properties

of (dynamic) duration data.

We use the well-known result that any PH model can be re-formulated as a linear regression

model with extreme value distributed error terms and the observable characteristics serving as

regressors.4 By employing a categorization scheme for the underlying durations we exploit

the relationship between ordered response models and models for grouped duration data (see

e.g. Sueyoshi, 1995). In this context, the PH model can be interpreted as an ordered response

model based on an extreme value distribution, where the left-hand variable in the latent equation

corresponds to the log of the integral of the baseline hazard function computed over the time

interval from the previous until the most recent event arrival (the so-called log integrated baseline

hazard). The major idea of the SACPH model is to extend this (latent) regression model by

allowing for ARMA type dynamics in terms of the log integrated baseline hazard. In order to

overcome the problem that the latter is not directly observable and to avoid the computation

of cumbersome high-dimensional integrals, we assume the model dynamics to be observation

driven, i.e. to be computable based on the observable history of the process. In this context, we

rely on the concept of generalized errors in the spirit of Gouriéroux et al. (1987) and replace the

true (unobservable) errors by their conditional expectations.

3See e.g. Kalbfleisch and Prentice (1980), Kiefer (1988) of Lancaster (1997).
4See e.g. Kiefer (1988).
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An important advantage of the proposed model is that it allows for straightforward max-

imum likelihood estimation of the model parameters as well as discrete points of the underlying

(non-specified) baseline survivor function. Since analytical expressions for the theoretical auto-

correlation function implied by the SACPH model are not available, we compute them numeri-

cally for different parameter settings. The effects of the chosen categorization on the estimation

quality is investigated on the basis of a Monte Carlo study. Results indicate that the estimation

performs nicely for a reasonable number of categories and a rather moderate sample size.

The SACPH model is a flexible approach to model various types of dynamic point pro-

cesses. Since the model dynamics are based on generalized errors, the SACPH model provides

a convenient framework to account for censored observations which enter the model dynamics

in terms of conditional expectations. This is particularly important when e.g. price intensities,

i.e. the times until the occurrence of a cumulative absolute price change of a given size, are

analyzed. Price intensities provide a powerful way to derive volatility measures which do not

require a (fixed interval) time aggregation scheme.5 However, since prices are unobservable

during non-trading periods, the exact length of the resulting duration spells are not necessarily

observed. In the paper, we illustrate an application of the SACPH model to this kind of prob-

lem by estimating (conditional) price change probabilities in the trading process of the German

BUND future traded at the EUREX. We focus on cumulative absolute price movements which

last on average over several trading days and thus reflect distinct censoring structures due to

non-trading periods. It turns out that the model does a good job in capturing the persistence in

the data and provides estimates of conditional failure probabilities which are quite robust with

respect to the choice of the underlying categorization scheme of the data. In an evaluation study,

we compare the in-sample and out-of-sample forecasting properties of the SACPH model with

those of various ACD models. In the given application, it is shown that the SACPH model pro-

vides a significantly better in-sample goodness-of-fit while simultaneously yielding out-of-sample

forecasts which are slightly worse but still qualitatively similar to those of ACD models.

Further potential applications of the model are the quantification of the conditional prob-

ability that a limit order is executed within a certain time span given the state of the market and

the length of previous (possibly censored) limit order spells. Alternative applications might be

quantifications of the intensity of bond rating changes (see e.g. Koopman, Lucas, and Monteiro,

2005) or the probability for central bank interventions. In industrial economics, an interesting

application might be the quantification of the intensity of patent activity as a measure for the

inventive activity of a firm (see e.g. Blazsek and Escribano, 2005).

The outline of the remainder of the paper is as follows: In Section 2, we briefly review

the original PH model and the relationship between grouped PH models and ordered response

models. Section 3 illustrates the extension from the standard PH model to the SACPH model.

5See Engle and Russell (1998) or Gerhard and Hautsch (2002).
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Theoretical properties are discussed in Section 4. Here, we analyze the autocorrelation structure

implied by the model, as well as small sample effects and effects of the underlying categorization

on the estimation quality. Section 5 extends the SACPH model by accounting for unobserved

heterogeneity and censoring structures in the data. Diagnostic tests for the model are given in

Section 6. In Section 7, an application of the SACPH approach based on price durations as well

as a forecasting comparison with the ACD model are presented. Finally, Section 8 concludes.

2. The Proportional Hazard Model

Let {ti}i∈{1,2,...,n} be a sequence of random event arrival times with ti < ti+1. Furthermore,

define xi := ti−ti−1 as the realization of a random variable Xi representing the duration between

two consecutive events. Following the duration literature6 the (conditional) hazard function is

defined as

λ(x;Fi−1) = lim
∆↓0

1
∆

Pr [x ≤ xi < x + ∆ |xi ≥ x;Fi−1 ] ,(1)

where Fi denotes the information set up to (inclusive) ti. The hazard function can be heuristi-

cally interpreted as the conditional instantaneous arrival rate given the information set and the

time elapsed since the beginning of the duration spell.

The standard PH model has its origin in cross-sectional survival analysis in biostatistics7

and labor economics8 and is specified as the product of a baseline hazard function λ0(x) > 0

and a strictly positive function of a vector of covariates z with coefficients γ. It is given by

λ(x; zi−1) = λ0(x) exp(−z′i−1γ),(2)

where the covariates are assumed to be observable at the beginning of the duration spell. If the

baseline hazard function is fully parameterized, e.g. based on a Weibull distribution,

λ0(x) = pxp−1,(3)

where p > 0 determines the shape parameter, the model is straightforwardly estimated by max-

imum likelihood (ML). In classical duration literature, it is well known that in a full information

ML approach, a consistent estimation of γ requires the correct specification of λ0.9 However,

often parametric distributions are not sufficient to correctly capture the hazard shape. For that

reason, Cox (1972, 1975) suggested to remain the baseline hazard λ0 completely unspecified and

proposed a partial likelihood approach in order to consistently estimate γ without the knowledge

6See e.g. Kalbfleisch and Prentice (1980), Cox and Isham (1980), Kiefer (1988) or Lancaster (1997).
7See, for example, Kalbfleisch and Prentice (1980), Cox and Oakes (1984), or the survey by Oakes (2001).
8A well known example is the analysis of the length of unemployment spells which is studied by a wide range of

theoretical and empirical papers, see e.g. Lancaster (1979), Nickell (1979), Heckmann and Singer (1984), Moffitt
(1985), Honoré (1990), Meyer (1990), Han and Hausman (1990), Gritz (1993), McCall (1996) or van den Berg
and van der Klaauw (2001) among many others.

9See e.g. Heckmann and Singer (1984).
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of the baseline hazard λ0. The estimation of the baseline hazard itself follows from a modifica-

tion of the nonparametric estimator by Kaplan and Meier (1958) proposed by Breslow (1972,

1974).

An alternative way to estimate the PH model relies on the close relationship between

quantal response models and PH models for grouped durations models (see Han and Haus-

man, 1990, Meyer, 1990, or Sueyoshi, 1995). By exploiting the relation between the (condi-

tional) survivor function S(xi|Fi−1) and the hazard function, S(xi|Fi−1) = Pr(Xi ≥ xi|Fi−1) =

exp
[− ∫ xi

0 λ(s;Fi−1)ds
]
, it is straightforwardly shown that

Λ(xi) :=
∫ xi

0
λ(s;Fi−1)ds ∼ i.i.d. Exp(1),(4)

where Λ(xi) denotes the integrated hazard function.10 Then, the PH model can be rewritten as

a regression model in terms of the log integrated baseline hazard,

lnΛ0(xi) := ln
∫ xi

0
λ0(s;Fi−1)ds = z′i−1γ + ε∗i , i = 1, . . . , n,(5)

where ε∗i := lnΛ(xi) follows an i.i.d. standard extreme value type I distribution (standard Gum-

bel (minimum) distribution) with mean E[ε∗i ] = −0.5772, variance Var[ε∗i ] = π2/6 as well as

probability density function (p.d.f.) and cumulative distribution function (c.d.f) given by

fε∗(x) = exp(x− exp(x)),(6)

Fε∗(x) = exp(− exp(x)).(7)

This formulation allows us to interpret the PH model as a linear regression model with extreme

value distributed error terms and the log integrated baseline hazard serving as left hand variable.

In the special case where λ0(·) is fully parameterized, and thus lnΛ0(xi) can be directly computed

as a function of xi, the PH model can be consistently estimated even by OLS (see Kiefer, 1988

for a nice illustration.) In contrast, if λ0(·) is left unspecified, the transformation from xi to

lnΛ0(xi) is unknown and thus ln Λ0(xi) has to be treated as a latent variable.

The major idea of Han and Hausman (1990) is to group the durations according to an

exogenously given categorization scheme and to interpret the PH model as an ordered response

model based on extreme value distributed errors with (5) serving as the latent variable equation.

Following this approach, we partition the observed durations xi into K categories, where x̄k, k =

1, . . . , K − 1 denote the chosen category bounds and define

µ∗k := ln Λ0(x̄k), k = 1, . . . , K − 1,(8)

as the value of the latent variable lnΛ0(·) at the realization of the (observable) category bound

x̄k. Furthermore, define

xd
i := k · 1l {x̄k−1<xi≤x̄k}, k = 1, . . . ,K,(9)

10See e.g. Kiefer (1988). Note that this relation holds straightforwardly as long as we exclude the case of
time-varying covariates and a continuous updating of the information set. The latter case is not easily taken into
account in the given semiparametric framework and is left for future research.
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with x̄0 = 0 and x̄K = ∞ as an ordered integer variable indicating the observed category. Then,

the (conditional) probability for observing a duration lying in category k is computed as

Pr
[
xd

i = k |zi−1

]
=





Fε∗(µ∗1 − z′i−1γ) if xd
i = 1,

Fε∗(µ∗2 − z′i−1γ)− Fε∗(µ∗1 − z′i−1γ) if xd
i = 2,

...
1− Fε∗(µ∗K−1 − z′i−1γ) if xd

i = K.

(10)

The direct relationship between the latent thresholds µ∗k and the log integrated baseline hazard

lnΛ0(·) is one of the main advantages of this approach.By employing the relation between

(baseline) survivor function and integrated (baseline) hazard function, the unknown baseline

survivor function S0 can be estimated at the K − 1 discrete points by

S0(x̄k) = exp
[
−

∫ x̄k

0
λ0(s)ds

]
= exp [−Λ0(x̄k)] = exp(− exp(µ∗k)), k = 1, . . . ,K − 1.(11)

Naturally, a categorization approach induces some loss of information. However, the important

result of Cox (1975) that γ can be estimated consistently without a specification of λ0 also holds

in this categorization framework. In particular Meyer (1990) illustrates that the consistency

of γ̂ does not depend on the chosen categorization scheme and the number of the underlying

categories.11

The resulting log likelihood function has the well known form of an ordered response model

based on the standard extreme value distribution

(12) lnL(W ; θ) =
n∑

i=1

K∑

k=1

1l {xd
i =k} ln Pr

[
xd

i = k |zi−1

]
,

where W denotes the data matrix and θ the parameter vector.

The idea of interpreting (5) as the latent equation of an ordered response model will be

the starting point for a dynamic extension. This will be illustrated in the following section.

3. The Semiparametric Autoregressive Conditional Proportional Hazard Model

In order to illustrate a dynamic extension of the semiparametric PH model, we reformulate

eq. (5) in more general form as

lnΛ0,i = φi + ε∗i ,(13)

where Λ0,i := Λ0(xi) and φi denotes a function capturing the dynamics of the process as well

as potential covariates. Recall that Λ0,i is a function of the duration xi in dependence of the

unknown form of λ0. Hence, (13) can be interpreted as a latent variable model.

The appropriate parameterization of φi in a dynamic context is not obvious. Our objective

is to let φi fulfill two major tasks: (i) φi has to capture persistent serial dependence in the

duration process, and, (ii) the parameterization of φi should lead to a computationally tractable

11Nevertheless, the efficiency of the estimator is affected by the chosen categorization.
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model. Consider as an illustration a parameterization of φi as given by

φi = ψi + z′i−1γ(14)

ψi =
p∑

j=1

α̃j(ψi−j + ε∗i−j) +
q∑

j=1

β̃jε
∗
i−j(15)

=
p∑

j=1

α̃j(lnΛ0,i−j − z′i−j−1γ +
q∑

j=1

β̃jε
∗
i−j .

This specification corresponds to an ARMA(p,q) model in terms of the log integrated baseline

hazard, ln Λ0,i, which is augmented by covariates. However, the major difficulty in this context

is that Λ0,i is unobservable and thus the dynamics are attached to a latent variable. In this

context maximum likelihood estimation requires to integrate out the latent variable leading to

an integral with the dimension equal to the sample size. Even though efficient numerical methods

have been developed and successfully applied in recent literature12 they are still computationally

cumbersome for very long time series.

Therefore, we propose an alternative parameterization of φi by specifying an observation

driven dynamic which overcomes the problem that Λ0,i is not directly observable and prevents

us from computing cumbersome high-dimensional integrals. Our approach is based on the

categorization illustrated in the previous section and exploits the fact that, according to (8),

the estimated thresholds µ∗k, k = 1, . . . , K, correspond per construction to estimates of lnΛ0,i

at the realizations of the corresponding category bounds x̄k. The major idea is to replace the

unobservable (extreme value distributed) error terms ε∗i by their conditional expectation

ei := E
[
ε∗i | Fd

i

]
,(16)

where

Fd
i := σ(xd

i , x
d
i−1, . . . , x

d
1, zi, zi−1, . . . , z1)

denotes the filtration generated by the categorized durations and possible covariates. Thus, ei

can be interpreted as a generalized error in the sense of Gouriéroux et al (1987).

Then, instead of specifying ψi in terms of the original (unobservable) errors ε∗i , we propose

to specify it in terms of an observation driven ARMA type recursion given by

ψi =
p∑

j=1

αj(ψi−j + ei−j) +
q∑

j=1

βjei−j ,(17)

which is conditioned on an initial value ψ0. Since it is built on an ARMA structure based on

the conditional expectations of the latent errors given the observable categorized durations, it

allows us to compute ψi recursively using a prediction error decomposition and thus prevents

us from computing cumbersome high-dimensional integrals. We call the model as characterized

by eq. (13), (14) and (17) Semiparametric Autoregressive Conditional Proportional Hazard

(SACPH) model. The stationarity conditions for the SACPH model correspond to the well

12See e.g. Richard (1998), Liesenfeld and Richard (2003) or Bauwens and Hautsch (2006).
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known stationarity conditions of a standard ARMA model. In terms of the hazard function the

SACPH model is written as

λ
(
x;Fd

i−1

)
= λ0(x) exp (−φi) .(18)

In order to illustrate the principle of the model, we consider the special case of a parametric

ACPH model based on a fully parameterized λ0. In this case, λ0 and thus the transformation

from xi to Λ0,i are known. Then, ei = ε∗i and eq. (17) corresponds to an ARMA process in terms

of the log integrated hazard as shown in eq. (15) with parameters αj = α̃j and βj = β̃j . Consider

for illustration a Weibull specification for the baseline hazard, eq. (3). Then, lnΛ0,i = p lnxi

and the Weibull ACPH(p,q) model can be written as an ARMA(p,q) model for log durations

based on a standard extreme value distribution, i.e.

lnxi = φi + ε∗i(19)

φi =
p∑

j=1

αj(lnxi−j − z′i−j−1

γ

p
) +

q∑

j=1

βj

p
ε∗i−1 + z′i−1

γ

p
+

ε∗i
p

.(20)

An important advantage of the proposed dynamic is that it allows for a straightforward

computation of the likelihood function without requiring the use of simulation methods. Thus,

a simple maximum likelihood estimator of the model parameters as well as of the thresholds µ∗k
is directly available.

The computation of the log likelihood function requires to calculate the generalized errors

ei by

ei := E
[
ε∗i | Fd

i−1

]
= E

[
ε∗i |xd

i , φi

]

=





κ(−∞,νi,1)
Fε∗ (νi,1) if xd

i = 1,
κ(νi,k−1,νi,k)

Fε∗ (νi,k)−Fε∗ (νi,k−1) if xd
i ∈ {2, . . . ,K − 1},

κ(νi,K−1,∞)
1−Fε∗ (νi,K−1) if xd

i = K,

(21)

where νi,k := µ∗k − φi and κ(s1, s2) :=
s2∫
s1

ufε∗(u)du.13

Since the observation driven dynamic enables us to use the standard prediction error

decomposition, the likelihood is evaluated in an iterative fashion: The function ψi is initialized

with its unconditional expectation ψ0 := E[ψi]. Then, based on the recursion, eq. (17), as well

as the definition of the generalized errors, eq. (21), the likelihood contribution of observation i

given the observation rule eq. (9) is computed as follows

Pr
[
xd

i = k
∣∣∣Fd

i−1

]
=





Fε∗(µ∗1 − φi) if xd
i = 1,

Fε∗(µ∗2 − φi)− Fε∗(µ∗1 − φi) if xd
i = 2,

...
1− Fε∗(µ∗K−1 − φi) if xd

i = K.

(22)

Under the standard regularity conditions for maximum likelihood estimation and the assumption

that the data generating process (DGP) is given by (13), (14) and (17), the model parameters

13For an extended discussion of generalized errors, see Gouriéroux et al. (1987).
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are consistently estimated. However, a requirement for consistency is that the true DGP is based

on generalized errors as computed in eq. (21). Naturally, this might be a restrictive assumption,

particularly when the chosen categorization is relatively rough.

In order to illustrate the model properties in more detail, assume that the true DGP

corresponds to (15), in which ln Λ0,i follows an ARMA process based on the true errors ε∗i and the

parameters α̃j and β̃j . In this case, the SACPH model as given by (14) and (17) does generally

not provide consistent estimates of α̃j and β̃j . However, the higher the number of categories, the

closer is the difference between the generalized error ei and its true (unobservable) counterpart

ε∗i . If K →∞, S0(x) is estimated at an infinite number of points, and thus is quasi-observable.

Then, the SACPH model based on generalized errors, eq. (17) converges to its counterpart based

on true errors, eq. (15), with parameters αj = α̃j and βj = β̃j . Therefore, (15) can be seen as

the limiting case in which the log integrated baseline hazard lnΛ0,i is completely observable and

follows an ARMA dynamic based on extreme value distributed errors. Hence, as long as if we

assume (15) to be the true DGP, α̂j and β̂j are generally not consistent estimates for α̃j and β̃j ,

but can be only seen as approximations. The quality of this approximation is explored in the next

section on the basis of a Monte Carlo study. It will be illustrated that for a moderate number

of categories and a reasonable sample size, the estimates α̂j and β̂j are nearly unbiased for α̃j

and β̃j . Hence, it turns out that the SACPH process provides a sufficiently good approximation

of an ARMA process in terms of the log integrated baseline hazard, ln Λ0,i, based on extreme

value distributed errors.

4. Properties of the SACPH Model

4.1. Autocorrelation Structure. Since the dynamics of the model are based on a latent

structure, an important question is how the autoregressive parameters can be interpreted with

respect to the observable duration process. This issue will be considered in more details in the

present subsection.

The main difficulty is that no closed form expression for the generalized errors and the

p.d.f of the latent variable Λ0,i can be given, so that one needs to resort to numerical methods to

evaluate the model’s autocorrelation function (ACF). For this reason, we conduct a simulation

study, where we generate three different processes. Firstly, using predetermined autoregressive

parameters α and β14 and random draws from a standard extreme value distribution, we simulate

an SACPH(1,1) process according to (13), (14) and (17). Since the unconditional quantiles of the

resulting distribution of lnΛ0,i endogenously depend on the chosen categorization, we employ an

iteration procedure in order to find category bounds which exactly resemble given unconditional

quantiles of ln Λ0,i. Then, the SACPH process is simulated using three different categorizations.

14For simplicity, we assume that γ = 0.
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The first grouping is based on only two categories, in particular, below and above the 0.5-

quantile of ln Λ0,i. Correspondingly, the other categorizations are based on the 0.25-, 0.5- and

0.75-quantiles, as well as on the 0.1-, 0.2-,. . ., 0.9-quantiles. The former categorization can

be seen as the worst possible approximation of the true baseline hazard λ0 one could possible

think of in the context of the given model and the latter being a more realistic case of using

a moderate number of thresholds. Secondly, we compute the resulting (observable) duration

process implied by the simulated realizations of ln Λ0,i. In this context, we have to impose

a parametric assumption for the baseline hazard λ0. In order to keep the analysis simple, we

assume a Weibull hazard with parameter p = 0.5.15 Thirdly, as benchmark case we also simulate

process (15) for α = α̃ and β = β̃. As discussed in the previous section, this process corresponds

to the limiting case of an SACPH process when K →∞, i.e., when λ0 is quasi-observable.

Figure 1: Simulated autocorrelation functions (ACF) of ln Λ0,i and xi based on an underlying

Weibull-ACPH(1,0) structure with α = 0.5 and p = 0.5. Categorizations based on (simulated)

unconditional quantiles of lnΛ0,i. Left: 0.5-quantile, middle: 0.25-, 0.5-, 0.75-quantiles, right: 0.1-,

0.2-,. . ., 0.9-quantiles. Solid line: ACF of ln Λ0,i based on (15). Broken line: ACF of lnΛ0,i based

on (17). Dotted line: ACF of xi implied by (17).

Figure 2: Simulated autocorrelation functions (ACF) of lnΛ0,i and xi based on an underlying

Weibull-ACPH(1,0) structure with α = 0.9 and p = 0.5. Categorizations based on (simulated)

unconditional quantiles of lnΛ0,i. Left: 0.5-quantile, middle: 0.25-, 0.5-, 0.75-quantiles, right: 0.1-,

0.2-,. . ., 0.9-quantiles. Solid line: ACF of ln Λ0,i based on (15). Broken line: ACF of lnΛ0,i based

on (17). Dotted line: ACF of xi implied by (17).

Figures 1 and 2 show the ACF’s for all three simulated processes based on underlying ARMA(1,0)

dynamics with parameters α = 0.5 and α = 0.9, respectively, based on 100, 000 random draws.

We observe a close relationship between the autocorrelation functions of the three simulated pro-

cesses. However, this relation depends rather on the chosen categorization than on the strength

15We also simulated SACPH processes based on more flexible functional forms for λ0, however, did not find
substantially different results regarding the dynamic properties of the resulting duration process.
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of the serial dependence. Whereas for the two-category-grouping clear differences in the auto-

correlation functions are observed, quite similar shapes are revealed for the finer categorizations.

It is nicely illustrated that the ACF implied by the SACPH process, (17), converges towards the

limiting case, eq. (15), when the categorization becomes finer. Moreover, we also observe a quite

close relationship between the ACF of the latent variables ln Λ0,i and the implied observable

durations xi.

Figure 3: Simulated autocorrelation functions (ACF) of ln Λ0,i and xi based on an underlying

Weibull-ACPH(1,1) structure with α = 0.5, β = 0.7 and p = 0.5. Categorizations based on

(simulated) unconditional quantiles of ln Λ0,i. Left: 0.5-quantile, middle: 0.25-, 0.5-, 0.75-quantiles,

right: 0.1-, 0.2-,. . ., 0.9-quantiles. Solid line: ACF of ln Λ0,i based on (15). Broken line: ACF of

lnΛ0,i based on (17). Dotted line: ACF of xi implied by (17).

Figure 4: Simulated autocorrelation functions (ACF) of lnΛ0,i and xi based on an underlying

Weibull-ACPH(1,1) structure with α = 0.5, β = 0.5 and p = 0.5. Categorizations based on

(simulated) unconditional quantiles of lnΛ0,i. Left: 0.5-quantile, middle: 0.25-, 0.5-, 0.75-quantiles,

right: 0.1-, 0.2-,. . ., 0.9-quantiles. Solid line: ACF of lnΛ0,i based on (15). Broken line: ACF of

lnΛ0,i based on (17). Dotted line: ACF of xi implied by (17).

These results are confirmed by the simulations based on SACPH(1,1) processes (Figures 3 and

4). We can conclude that for a sufficiently fine categorization, the autocorrelation structures

of the latent and the observable processes are quite similar. Hence, it turns out that the ACF

implied by the estimated ARMA coefficients of an SACPH model is a good proxy for the ACF

implied by the limiting case, eq. (15), and for the ACF of the resulting observed duration process.

This eases the interpretation of the parameters considerably.

4.2. Evaluating the Estimation Quality in Dependence of the Categorization. The

main advantage of using a dynamic based on generalized errors, eq. (17), instead of a dynamic

based on true (however unobservable) errors, eq. (15), are the straightforward and fast maximum

likelihood estimation and the fact that the generalized errors ei employed in the approximation

are equal to the true errors ε∗i if the baseline hazard is known. Yet, as it is at the core of our

model that the baseline hazard λ0 is not known, the question to be answered in this section
12



is how large the approximation error is, if the underlying latent errors are approximated by

generalized errors on the basis of a given (possibly rough) categorization.

To gain some evidence on the bias incurred by the categorization approach, we perform

a Monte Carlo study for different sample sizes and two different categorizations. We assume

that the true DGP corresponds to the limiting case, (15), which is simulated using random

draws from the standard extreme value distribution. Since the focus is here on the bias of the

dynamic parameters, the threshold parameters µ∗k as given by eq. (8) are predetermined and

are set to certain quantiles of ln Λ0,i. We focus on two alternative categorizations with K1 = 2

and K2 = 10 categories associated with the 0.5-quantile, as well as the 0.1-,. . ., 0.9-quantiles of

lnΛ0,i, respectively. I.e., as input for the estimation step we use the simulated time series of the

predetermined thresholds µ∗k associated with the individual observed categories. Based on these

series, we estimate SACPH processes according to (13), (14) and (17). The two-category-model

is replicated for two sample sizes n = 50 and n = 500. The model with more thresholds is only

estimated for a small sample size n = 50. This set-up allows us to compare the improvement

achieved by increasing the number of observations versus the benefit of a better approximation

of the baseline hazard.

Table 1: Summary statistics for a Monte Carlo study based on SACPH(p,q)
models with K categories and n observations. MSE denotes the mean squared error
and MAE denotes the mean absolute error.

p q K n bias MSE MAE

1 0 2 50 -0.0062 0.0294 0.1188
1 0 10 50 0.0045 0.0096 0.0734
1 0 2 500 0.0053 0.0024 0.0372
0 1 2 50 -0.0079 0.0743 0.2025
0 1 10 50 -0.0053 0.0189 0.0939
0 1 2 500 0.0158 0.0200 0.0959

We consider the cases of ARMA(1,0) and ARMA(0,1) dynamics. A range of parameter

values for α and β are covered in the simulations, concisely, α, β ∈ Q = {−0.9,−0.8, . . . , 0.8, 0.9}
providing nMC

i = 1, 000, i ∈ Q, replications for each value. A summary of the results for all

nMC = 19, 000 replications are reported in Table 1. It gives the aggregated descriptive statistics

of the biases, i.e. the differences between the true parameters and the corresponding estimates,

α(i) − α̂(i), and β(i) − β̂(i), for i = 1, . . . , nMC . Although we aggregate over all parameter

values, the small sample properties match the expectation build from asymptotic theory, i.e. the

variance decreases over an increasing sample size. The results indicate that even a moderately

sized sample of 50 observations is quite sufficient to obtain reasonable results. In particular, for

the SACPH(1,0) model the asymptotic properties seem to hold quite nicely. The performance

of the SACPH(0,1) model seems to be worse than of the corresponding SACPH(1,0) model.

To gain more insight into the consequences the categorization grid of the durations bears

for the estimation, the results of the Monte Carlo experiment are scrutinized with respect to the

parameters of the model, α and β. Box plots of the biases of α̂ for each of the 19 considered
13



values of α are given in Figures 5 to 7. The results are quite encouraging and indicate that for

most parameter constellations the bias is very close to zero. Even the quite considerable bias

incurred for an SACPH(1,0) based on K = 2 categories is reduced substantially once a higher

parameterized model based on K = 10 categories is employed. Furthermore, for a reasonable

sample size (n = 500) even for the two-category-model, the performance of the estimator is quite

encouraging over all parameter values considered.
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Figure 5: SACPH(1,0), K = 2, n = 50: Box plots of

α(i) − α̂(i) for 19 values of the parameter α(i) in a Monte Carlo

study with nMC
i = 1, 000 replications for each set i = 1, . . . , 19.

-1

-.5

0

.5

1

 diff

-.9
-.8

-.7
-.6

-.5
-.4

-.3
-.2

-.1
0

.1
.2

.3
.4

.5
.6

.7
.8

.9

Figure 6: SACPH(1,0), K = 10, n = 50: Box plots of

α(i) − α̂(i) for 19 values of the parameter α(i) in a Monte Carlo

study with nMC
i = 1, 000 replications for each set i = 1, . . . , 19.
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Figure 7: SACPH(1,0), K = 2, n = 500: Box plots of

α(i) − α̂(i) for 19 values of the parameter α(i) in a Monte Carlo

study with nMC
i = 1, 000 replications for each set i = 1, . . . , 19.

Figures 8-10 give the corresponding results for SACPH(0,1) models. Although, qualitatively

similar, it is evident from the study that the SACPH(0,1) model performs worse than the

corresponding SACPH(1,0) model. After an increase in the number of categories from K = 2 to

K = 10, the approximation reaches about the quality of the SACPH(1,0) process with K = 2

categories, except for the parameter value β = 0.9. The reason for this can be found in the

differing ACF of an AR(1) and an MA(1) process. The relatively bad performance of the

SACPH(0,1) process for parameters β with a large absolute value is due to the flattening out of

the ACF towards the limits of the invertible region.

Overall, we can summarize that for moderate sample sizes and number of categories the

bias induced by the categorization approach is rather small and the approximation of true errors

by generalized errors is quite good. Hence, if the true DGP corresponds to (15), the SACPH

model provides a close approximation to it. If the true DGP is given by (17), the SACPH

estimator is consistent anyway.
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Figure 8: SACPH(0,1), K = 2, n = 50: Box plots of β(i)− β̂(i)

for 19 values of the parameter β(i) in a Monte Carlo study with

nMC
i = 1, 000 replications for each set i = 1, . . . , 19.
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Figure 9: SACPH(0,1), K = 10, n = 50: Box plots of

β(i) − β̂(i) for 19 values of the parameter β(i) in a Monte Carlo

study with nMC
i = 1, 000 replications for each set i = 1, . . . , 19.
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Figure 10: SACPH(0,1), K = 2, n = 500: Box plots of

β(i) − β̂(i) for 19 values of the parameter β(i) in a Monte Carlo

study with nMC
i = 1, 000 replications for each set i = 1, . . . , 19.

5. Extensions of the SACPH Model

5.1. Censoring. A typical property of economic duration data is the occurrence of censoring

leading to incomplete spells. A wide strand of econometric duration literature focusses on

the consideration of censoring mechanisms16. For example, in the context of financial point

processes, censoring occurs if there exist intervals in which the point process cannot be observed

directly. This might be, for example, due to non-trading periods, like nights, weekends, holidays

or trading halts. Assume in the following that it is possible to identify whether a particular point

ti lies within such a censoring interval. By referring to our application in Section 7 consider as

an example a point process where the points are associated with the occurrence of a cumulative

absolute price change of given size. Then, prices move during non-trading periods as well (due

to trading on other markets), but can be observed at the earliest at the beginning of the next

16See, for example, Horowitz and Neumann (1987, 1989), the survey by Neumann (1997), Gorgens and Horowitz
(1999) or Orbe, Ferreira, and Nunez-Anton (2002).
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trading period. In this case, we only know that a price event occurred but we do not know when

it exactly has occurred.17 Hence, we can identify only the minimum length of the corresponding

duration (i.e., the time from the previous point ti−1 to the beginning of the censoring interval)

and the maximum length of the spell (the time from the end of the censoring interval to the

next point ti+1).

In the following, tli and tui with tli ≤ ti ≤ tui are defined as the boundaries of a potential

censoring interval around ti, and ci is defined as the indicator variable that indicates whether

censoring occurs, i.e.

ci =

{
1 if ti ∈ (tli; t

u
i ),

0 if ti = tli = tui .

In the case of left-censoring, right-censoring or left-right-censoring, the non-observed duration xi

can be only approximated by the boundaries xi ∈ [xl
i, x

u
i ] where the lower and upper boundary

xl
i and xu

i are computed corresponding to

xi ∈





[ti − tui−1; ti − tli−1] if ci−1 = 1, ci = 0 (left-censoring)
[tli − ti−1; tui − ti−1] if ci−1 = 0, ci = 1 (right-censoring)
[tli − tui−1; t

u
i − tli−1] if ci−1 = 1, ci = 1 (left-right-censoring).

(23)

A common assumption that is easily fulfilled in the context of financial data is the as-

sumption of independent censoring. This assumption implies that the censoring mechanism is

determined exogenously and is not driven by the duration process itself. For a detailed exposition

and a discussion of different types of censoring mechanisms, see e.g. Neumann (1997).

Under the assumption of independent censoring, the likelihood can be decomposed into

L(W ; θ|c1, . . . , cn) = L(W ; θ, c1, . . . , cn) · L(c1, . . . , cn).(24)

Define in the following xd,l
i and xd,u

i as the categorized counterparts to the duration boundaries

xl
i and xu

i . Hence, xd
i ∈ [xd,l

i , xd,u
i ], where xd,l

i and xd,u
i are computed corresponding to eq. (23)

by accounting for the observation rule, eq. (9).

Then, in the case of a censored observation i, the corresponding log likelihood contribution

in eq. (12) is replaced by

Pr
[
xl

i ≤ xd
i ≤ xu

i

∣∣∣Fd
i−1, ci−1, ci, ci+1

]
= Fε∗(µ∗u − φi)− Fε∗(µ∗l − φi),(25)

where

µ∗l = µ∗k if xd,l
i = k + 1,

µ∗u = µ∗k if xd,u
i = k.

17However, note that we cannot identify whether more than one price movement have occurred during the
non-trading period.
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Moreover, the computation of the generalized error needs to be slightly modified. Hence,

in the case of censoring, the conditional expectation of ε∗i is computed as

ei = E
[
ε∗i |xd

i , φi, ci−1, ci, ci+1

]
= E

[
ε∗i |xd,l

i , xd,u
i , φi

]

=
κ(νl

i , ν
u
i )

Fε∗(νl
i)− Fε∗(νu

i )
,(26)

where νl
i := µ∗l − φi and νu

i := µ∗u − φi.

5.2. Unobserved Heterogeneity. A further advantage of the SACPH model is that it is

readily extended to allow for unobservable heterogeneity. In duration literature, it is well known

that ignoring unobserved heterogeneity can lead to biased estimates of the baseline hazard

function.18 Following Han and Hausman (1990), we specify unobserved heterogeneity effects

by a random variable which enters the hazard function multiplicatively leading to a mixed

SACPH model. From an econometric point of view, accounting for unobserved heterogeneity

can be interpreted as an additional degree of freedom. Lancaster (1997) illustrates that the

inclusion of a heterogeneity variable can capture errors in the variables. In financial duration

data, unobservable heterogeneity effects can be associated with different states of the market.

The standard procedure to account for unobserved heterogeneity in the SACPH model is

to introduce an i.i.d. random variable vi in specification (18) to obtain

(27) λ
(
x;Fd

i−1, vi

)
= λ0(x) · vi · exp (−φi) .

For the random variable vi we assume a Gamma distribution with mean one and variance η−1,

which is standard for this type of mixture models, see e.g. Lancaster (1997). Then, the c.d.f. of

the compounded model is obtained by integrating out vi leading to

(28) F
(
xi;Fd

i−1

)
= 1− [

1 + η−1 exp(−φi)Λ0,i

]−η
.

Note that this is identical to the c.d.f of a BurrII(η) distribution under appropriate parame-

terization. The latter gives rise to an analogue model based on the categorization approach

outlined in Section 3. By augmenting the log linear model of the integrated baseline hazard by

the compounder, we obtain an extended SACPH model based on the modified latent process

ln Λ0,i = ln(η) + φi + ε∗i ,(29)

where the error term ε∗i follows a BurrII(η) distribution with p.d.f. and c.d.f. given by

fε∗(x) =
η exp(x)

[1 + exp(x)]η+1
,(30)

Fε∗(x) = 1− [1 + exp(x)]−η .(31)

It is easily shown that

lim
η→∞

[
1 + η−1φiΛ0,i

]−η = exp(−Λ0,iφi),

18See e.g. Lancaster (1979) or Heckmann and Singer (1984).
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i.e. for η−1 = Var(vi) → 0, the BurrII(η) distribution converges to the standard extreme value

distribution. Hence, if no unobservable heterogeneity effects exist, the model coincides with the

basic SACPH model.

The estimation procedure is similar to the procedure described in Section 3. The differ-

ence is just that the model is now based on a BurrII(η) distribution. Apart from an obvious

adjustment to the generalized errors, the relationship between the estimated thresholds and the

baseline survivor function, as given in eq. (11), is slightly modified to

(32) S0(x̄k) =
1[

1 + exp(µ∗k − ln(η))
]η , k = 1, . . . ,K − 1.

6. Testing the SACPH Model

An obvious way to test for correct specification of the SACPH model is to evaluate the

properties of the series of the estimated log integrated hazard functions ε̂∗i = ln Λ̂(xi) which

should be i.i.d. standard extreme value distributed or BurrII(η) distributed, respectively. How-

ever, the difficulty is that we cannot directly estimate ε∗i but only its conditional expectation

êi = Ê[ε∗i |Fd
i ]. Thus, the SACPH model has to be evaluated by comparing the distributional

and dynamical properties of êi with their theoretical counterparts.

The unconditional mean of ei is straightforwardly computed as

E[ei] = E[E[ε∗i |xd
i , φi]] = E[ε∗i ].(33)

However, the computation of higher order moments of ei is a difficult task. The reason is that

the categorization is based on lnΛ0,i, and thus the category boundaries for ε∗i , νi,k = µ∗k−φi, are

time-varying and depend itself on lags of ei. Therefore, the derivation of theoretical moments

can only be performed on the basis of the estimated model dynamics, and thus they are of limited

value for powerful diagnostic checks of the model. Hence, only upper limits for the moments

in the limiting case K → ∞ can be given. In this case, ei = ε∗i , and thus the moments of ei

correspond to the moments of the standard extreme value or BurrII(η) distribution, respectively.

Nevertheless, the dynamic properties of the êi series is evaluated based on a test for serial

dependence as proposed by Gourieroux, Monfort, and Trognon (1985). The test is based on the

direct relationship between the score of the observable and the latent model. By considering

a model which includes unobserved heterogeneity (see Section 5.2), the latent model can be

rewritten in a more general form as

lnΛ0,i = ln(η) + φi + ui,(34)

ui = αjui−j + ε∗i ,(35)
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where ε∗i is i.i.d. BurrII(η) distributed and j denotes the tested lag. As shown in the appendix,

a χ2 statistic for the null hypothesis of no serial dependence, H0 : αj = 0, is obtained by

Υ(j) =

[
n∑

i=j+1
êi−j

[
1− (η̂ + 1)ˆ̃ei

]]2

n∑
i=j+1

ê2
i−j

[
1− (η̂ + 1)ˆ̃ei

]2

a∼ χ2(1),(36)

where ẽi := E
[

exp(ε∗i )
1+exp(ε∗i )

∣∣∣Fd
i

]
. Correspondingly, for the standard extreme value case, the test

modifies to

Υ(j) =

[
n∑

i=j+1
êi−j

(
ˆ̃ei − 1

)]2

n∑
i=j+1

ê2
i−j

[
ˆ̃ei − 1

]2

a∼ χ2(1)(37)

with ẽi := E
[
exp(ε∗i )| Fd

i

]
.

7. Applying and Evaluating the SACPH Model

7.1. Estimating Conditional Price Change Probabilities. In this section, we illustrate

an application of the SACPH model to the modelling of price durations, i.e. the time it takes

for the price of an asset to leave an interval of a given size. Hence, in contrast to classical

approaches where one aggregates over time, here, the aggregation scheme is based on the price

process itself. Engle and Russell (1998) and Gerhard and Hautsch (2002) illustrate that price

durations are strongly related to return volatility and allow to construct alternative risk measures

that explicitly account for time structures in the price process. Price durations allow for the

quantification of the risk of a given price change within a certain time interval and are of

particular interest whenever an investor is able to determine his risk in terms of a certain price

movement.

In the following analysis, we estimate the conditional probability to observe a cumulative

absolute price change of predetermined size within a certain time. In this context, we explicitly

focus on very large price movements which might be of interest for short-term risk management

and can be associated with the execution probability of a hypothetical limit order. Our data

base consists of a time series of transaction data originating from the trading process of the

German Bund future traded at the electronic trading system of the EUREX. The sample consists

of 883 trading days between 04/03/94 and 05/03/97, corresponding to 2, 072, 785 individual

transactions. The Bund future is a future contract on a synthetical 6% German government

bond. It is one the most liquid future contracts in Europe and within the analyzed sample

period it had a face value of DEM 250,000. It has a maturity of 8.5 years and four contract

maturities per year, March, June, September and December. Prices are denoted in basis points

of face value, thus, in the considered sampling interval one tick was equivalent to a value of DEM

25. In the following we focus on durations associated with cumulative absolute price changes of
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30, 40 and 50 ticks lasting 24, 44 and 66 hours on average resulting in 1226, 698 and 484 price

duration observations, respectively, over the complete sample period (see Table 2).

Table 2: Distribution of categorized non-censored price durations and lower boundaries of censored
price durations, as well as the number of censored observations. Based on Bund future price durations
using 30, 40 and 50 tick price changes. Descriptive statistics given in hours.

30 ticks 40 ticks 50 ticks

obs mean cens obs mean cens obs mean cens

[0h, 0.5h] 67 0.287 11 13 0.300 6 3 0.361 2
[0.5h, 1h] 82 0.771 24 20 0.778 9 4 0.733 4
(1h, 2h] 118 1.380 27 37 1.493 12 23 1.430 11
(2h, 3h] 72 2.494 22 32 2.444 7 17 2.382 4
(3h, 4h] 58 3.528 7 19 3.533 2 10 3.621 2
(4h, 5h] 39 4.581 6 22 4.445 4 9 4.564 2
(5h, 6h] 48 5.465 3 20 5.516 4 10 5.435 5
(6h, 7h] 40 6.506 6 27 6.511 3 18 6.409 2
(7h, 8h] 30 7.484 7 19 7.554 5 11 7.571 2
(8h, 9h] 19 8.392 17 8 8.465 9 10 8.308 4
(9h, 24h] 174 19.403 19 81 19.829 13 43 20.115 3
(24h, 28h] 58 25.429 7 48 25.747 4 24 25.355 4
(28h, 32h] 38 29.932 1 26 30.397 6 25 29.968 3
(24h, 36h] 2 32.583 8 1 32.204 6 0 - 2
(36h, 48h] 25 43.683 0 25 44.041 0 28 43.318 0
(48h, 72h] 60 61.141 7 62 61.445 5 43 59.700 4
(72h, 96h] 51 84.360 6 38 86.217 4 27 85.671 5
(96h, 120h] 26 108.997 4 35 105.171 4 27 107.722 3
(120h, 144h] 18 129.724 2 9 133.271 7 20 131.571 1
(144h, 168h] 5 157.528 1 15 155.533 5 22 154.114 1
(168h, 192h] 6 171.227 0 6 175.071 3 12 175.733 2
(192h, 240h] 1 221.664 1 5 220.328 0 10 213.893 2
(240h, 288h] 2 253.001 0 7 259.383 0 7 255.332 0
(288h,∞ 1 361.949 0 5 312.421 0 11 317.666 2

Total 1040 23.9468 186 580 43.8744 118 414 65.8607 70

For the resulting price durations, we choose a categorization scheme which ensures sufficient

frequencies in each category and includes durations up to 240 hours for 30 and 40 price changes

and up to 288 hours for 50 tick price changes. Table 2 shows the distribution of the categorized

durations for the individual price duration series. An important feature of such high aggregated

financial duration data is the occurrence of censoring structures. As motivated in Section 5.2,

this is due to the fact that price change events can also be caused by news occurring during

non-trading periods, like nights, weekends or holidays. Then, the resulting price changes are

observable only at the beginning of the next trading day, and thus, it is difficult to identify

whether the price changes are driven by overnight news or by information which occurred re-

cently. Following Gerhard and Hautsch (2002), we define the first price event which occurs

within the first 15 minutes of a trading day as censored, i.e. this price change is defined to be

driven by events occurring overnight. This identification rule implies that price events occurring

after the first 15 minutes of a trading day are assumed to be driven by recent information. For

these observations, the exact duration is measured as the time since the last observation of the

previous trading day. By applying this identification scheme, we obtain 186, 118 and 70 censored

observations, respectively, for the three duration series.
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Table 3: ML estimates of SACPH(1,1) models for Bund futures price durations using 30 tick price
changes. Standard errors computed based on robust estimates of the covariance matrix. Diagnostics:
Log Likelihood (LL), as well as test statistics for a test on serial correlation (inclusive p-values) of the
SACPH residuals.

(1) (2) (3) (4) (5)
est. S.E. est. S.E. est. S.E. est. S.E. est. S.E.

Thresholds

ν∗1 (x̄1 = 0.5h) -1.325 0.800
ν∗1 (x̄1 = 1h) -0.360 0.796 -0.104 0.642
ν∗2 (x̄2 = 2h) 0.485 0.810 0.737 0.657
ν∗3 (x̄3 = 3h) 0.900 0.820 1.154 0.668
ν∗4 (x̄4 = 4h) 1.204 0.830 1.460 0.677 1.527 0.719
ν∗5 (x̄5 = 5h) 1.401 0.838 1.659 0.681
ν∗6 (x̄6 = 6h) 1.638 0.845 1.898 0.690
ν∗7 (x̄7 = 7h) 1.834 0.851 2.097 0.697
ν∗8 (x̄8 = 8h) 1.983 0.856 2.248 0.704 2.299 0.741
ν∗9 (x̄9 = 9h) 2.083 0.859 2.349 0.709
ν∗10 (x̄10 = 24h) 3.177 0.909 3.463 0.761 3.476 0.784 5.364 1.401 5.295 1.380
ν∗11 (x̄10 = 28h) 3.519 0.928
ν∗12 (x̄10 = 32h) 3.775 0.944
ν∗13 (x̄11 = 36h) 3.790 0.945 4.122 0.804 4.120 0.817
ν∗14 (x̄12 = 48h) 3.995 0.958 4.326 0.820 4.320 0.830 6.229 1.462
ν∗15 (x̄13 = 72h) 4.636 1.004 4.967 0.875 4.943 0.872 6.865 1.512 6.807 1.490
ν∗16 (x̄14 = 96h) 5.415 1.072 5.772 0.955 5.724 0.935 7.670 1.589
ν∗17 (x̄15 = 120h) 6.141 1.136 6.526 1.050 6.455 1.011 8.425 1.682 8.385 1.657
ν∗18 (x̄16 = 144h) 7.107 1.249 7.531 1.188 7.428 1.120 9.429 1.803
ν∗19 (x̄17 = 168h) 7.620 1.322 8.066 1.261 7.945 1.179 9.962 1.859 9.928 1.827
ν∗20 (x̄18 = 192h) 8.655 1.508 9.144 1.416 8.984 1.308 11.048 1.978
ν∗21 (x̄19 = 240h) 9.045 1.608 9.551 1.485 9.372 1.368 11.456 2.022 11.524 2.007

α1 0.985 0.005 0.984 0.009 0.986 0.007 0.990 0.004 0.990 0.004
β1 -0.913 0.015 -0.911 0.028 -0.909 0.023 -0.910 0.018 -0.909 0.019
η 0.801 0.099 0.768 0.106 0.791 0.088 0.755 0.104 0.757 0.103

Obs 1226 1226 1226 1226 1226
LL -2966 -2781 -1967 -1132 -944

est. p-val. est. p-val. est. p-val. est. p-val. est. p-val.

Υ(1) 4.640 0.031 4.476 0.034 3.578 0.058 1.036 0.308 2.971 0.084

Υ(2) 1.569 0.210 1.547 0.213 1.911 0.166 1.302 0.253 1.017 0.313

Υ(3) 0.823 0.364 0.824 0.363 1.051 0.305 2.527 0.111 1.535 0.215

Υ(4) 0.152 0.696 0.098 0.753 0.669 0.413 2.154 0.142 2.161 0.141

Υ(5) 0.662 0.415 0.745 0.387 0.315 0.574 0.171 0.678 0.010 0.919

Tables 3 through 5 show the estimation results based on SACPH models which account for

unobserved heterogeneity. The lag order is chosen according to the Bayes Information Criterion

(BIC) indicating an SACPH(1,1) model as the best specification in all cases.19 We find highly

significant autoregressive parameters with estimates of α1 close to one and estimates of β1 around

−0.9. This finding indicates a relatively strong persistence in the data and is typical for financial

duration series. For the heterogeneity parameter η, we observe highly significant estimates, as

well. Comparisons with re-estimates of the individual models based on SACPH models without

unobserved heterogeneity effects (which are not shown here) indicate a clear increase of the

maximized log likelihood function and the BIC value when unobserved heterogeneity is taken

into account. These findings illustrate the usefulness of the gamma compounded model.

19We also re-estimated all models by accounting explicitly for possible intraday and time-to-maturity season-
alities based on flexible Fourier forms (see Gerhard and Hautsch, 2002). However, insignificant coefficients and no
improvements of the BIC indicated that on such high aggregated levels deterministic seasonality structures seem
to be negligible. For this reason we refrain from showing these estimates here. Nevertheless, they are available
upon request from the authors.
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Table 4: ML estimates of SACPH(1,1) models for Bund future price durations using 40 tick price
changes. Standard errors computed based on robust estimates of the covariance matrix. Diagnostics:
Log Likelihood (LL), as well as test statistics for a test on serial correlation (inclusive p-values) of the
SACPH residuals.

(1) (2) (3) (4) (5)
est. S.E. est. S.E. est. S.E. est. S.E. est. S.E.

Thresholds

ν∗1 (x̄1 = 0.5h) -3.519 0.741
ν∗1 (x̄1 = 1h) -2.536 0.729 -2.478 0.738
ν∗2 (x̄2 = 2h) -1.677 0.732 -1.628 0.742
ν∗3 (x̄3 = 3h) -1.207 0.734 -1.159 0.745
ν∗4 (x̄4 = 4h) -0.981 0.737 -0.934 0.747 -0.888 0.458
ν∗5 (x̄5 = 5h) -0.744 0.742 -0.698 0.753
ν∗6 (x̄6 = 6h) -0.545 0.747 -0.499 0.758
ν∗7 (x̄7 = 7h) -0.297 0.752 -0.252 0.763
ν∗8 (x̄8 = 8h) -0.130 0.757 -0.085 0.768 -0.034 0.459
ν∗9 (x̄9 = 9h) -0.058 0.759 -0.013 0.771
ν∗10 (x̄10 = 24h) 0.743 0.792 0.789 0.805 0.819 0.474 1.231 0.778 1.276 0.788
ν∗11 (x̄10 = 28h) 1.092 0.809
ν∗12 (x̄10 = 32h) 1.298 0.820
ν∗13 (x̄11 = 36h) 1.307 0.821 1.383 0.836 1.412 0.487
ν∗14 (x̄12 = 48h) 1.527 0.834 1.598 0.849 1.626 0.491 2.043 0.794
ν∗15 (x̄13 = 72h) 2.177 0.876 2.231 0.893 2.258 0.505 2.680 0.808 2.746 0.822
ν∗16 (x̄14 = 96h) 2.643 0.909 2.700 0.927 2.726 0.519 3.156 0.824
ν∗17 (x̄15 = 120h) 3.253 0.961 3.312 0.981 3.337 0.537 3.775 0.843 3.854 0.859
ν∗18 (x̄16 = 144h) 3.482 0.985 3.543 1.006 3.567 0.545 4.008 0.850
ν∗19 (x̄17 = 168h) 4.043 1.044 4.107 1.067 4.129 0.571 4.577 0.874 4.675 0.891
ν∗20 (x̄18 = 192h) 4.403 1.094 4.469 1.119 4.491 0.592 4.942 0.889
ν∗21 (x̄19 = 240h) 4.810 1.160 4.878 1.187 4.899 0.623 5.355 0.912 5.452 0.932

α1 0.978 0.011 0.977 0.011 0.979 0.012 0.981 0.011 0.980 0.011
β1 -0.891 0.026 -0.892 0.025 -0.894 0.023 -0.881 0.022 -0.877 0.023
η 0.905 0.127 0.897 0.130 0.899 0.056 0.879 0.063 0.874 0.064

Obs 698 698 698 698 698
LL -1864 -1774 -1432 -1015 -815

est. p-val. est. p-val. est. p-val. est. p-val. est. p-val.

Υ(1) 0.332 0.564 0.383 0.535 0.343 0.557 1.487 0.222 2.383 0.122

Υ(2) 0.198 0.655 0.244 0.621 0.113 0.735 0.260 0.609 0.045 0.830

Υ(3) 2.394 0.121 2.446 0.117 2.400 0.121 3.263 0.070 3.124 0.077

Υ(4) 0.337 0.560 0.550 0.458 0.556 0.455 4.910 0.026 4.932 0.026

Υ(5) 0.024 0.875 0.034 0.853 0.072 0.787 0.032 0.855 0.050 0.822

The tests on serial correlation in the SACPH residuals indicate that the null hypothesis of no

serial correlation cannot be rejected in nearly all cases. Thus, the SACPH model does a good

job in capturing the dynamics in the data. In order to examine the influence of the chosen

categorization and the number of the categories on the estimates of the dynamic parameters

α̂1 and β̂1, we re-estimate the individual models based on different groupings of the left hand

variable. Hence, while specification (1) corresponds to a highly parameterized model leading to a

quite precise estimation of the underlying baseline survivor function, specification (5) is based on

only six categories associated with boundaries of 24, 72, 120, 168 and 240 hours. We observe that

the estimates of α1 and β1 remain remarkably stable over all particular regressions. Nevertheless,

we observe changes in the estimates of the corresponding threshold parameters, as well as of

the heterogeneity parameter η. These differences are due to the fact that the distributional

properties of the generalized error ei change whenever we use a different categorization.
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A useful check of the results’ robustness over the particular specifications is to compare

the resulting estimates of the corresponding discrete points of the baseline distribution function.

Table 6 shows the estimated conditional failure probabilities associated with the corresponding

category boundaries20. Again, we observe quite stable estimates over the individual specifica-

tions which confirms our findings from the Monte Carlo study. These results illustrate that the

SACPH model works nicely even based on a very small number of categories. Hence, the model

dynamics can be estimated quite precisely while ensuring model parsimony. Thus, by apply-

ing the SACPH model, it is sufficient to estimate only those points of the conditional duration

distribution function which are of particular interest in the corresponding application.

Table 5: ML estimates of SACPH(1,1) models for Bund future price durations using 50 tick price
changes. Standard errors computed based on robust estimates of the covariance matrix. Diagnostics:
Log Likelihood (LL), as well as test statistics for a test on serial correlation (inclusive p-values) of the
SACPH residuals.

(1) (2) (3) (4) (5)
est. S.E. est. S.E. est. S.E. est. S.E. est. S.E.

Thresholds

ν∗1 (x̄1 = 1h) -3.321 1.290 -3.304 0.61
ν∗2 (x̄2 = 2h) -1.779 1.243 -1.762 0.55
ν∗3 (x̄3 = 3h) -1.247 1.247 -1.230 0.55
ν∗4 (x̄4 = 4h) -1.002 1.251 -0.985 0.55 -1.146 1.252
ν∗5 (x̄5 = 5h) -0.804 1.241 -0.787 0.56
ν∗6 (x̄6 = 6h) -0.596 1.248 -0.578 0.56
ν∗7 (x̄7 = 7h) -0.261 1.259 -0.243 0.57
ν∗8 (x̄8 = 8h) -0.073 1.269 -0.056 0.57 -0.235 1.270
ν∗9 (x̄9 = 9h) 0.091 1.278 0.108 0.57
ν∗10 (x̄10 = 24h) 0.752 1.317 0.769 0.58 0.567 1.315 1.268 1.177 1.301 1.175
ν∗11 (x̄11 = 30h) 1.177 1.342
ν∗11 (x̄11 = 36h) 1.316 1.356 1.344 0.59 1.135 1.351
ν∗12 (x̄12 = 48h) 1.647 1.386 1.672 0.60 1.459 1.377 2.176 1.233
ν∗13 (x̄13 = 72h) 2.200 1.431 2.223 0.62 2.002 1.418 2.727 1.267 2.779 1.268
ν∗14 (x̄14 = 96h) 2.580 1.468 2.602 0.63 2.375 1.451 3.107 1.293
ν∗15 (x̄15 = 120h) 3.039 1.515 3.060 0.65 2.825 1.494 3.566 1.327 3.627 1.330
ν∗16 (x̄16 = 144h) 3.435 1.563 3.455 0.67 3.212 1.535 3.960 1.362
ν∗17 (x̄17 = 168h) 4.010 1.643 4.028 0.70 3.773 1.607 4.531 1.424 4.596 1.429
ν∗18 (x̄18 = 192h) 4.434 1.703 4.449 0.73 4.182 1.661 4.950 1.472
ν∗19 (x̄19 = 240h) 4.963 1.795 4.974 0.77 4.691 1.741 5.469 1.538 5.561 1.551
ν∗19 (x̄19 = 288h) 5.493 1.882

α1 0.975 0.013 0.975 0.01 0.977 0.012 0.982 0.011 0.982 0.011
β1 -0.872 0.030 -0.872 0.02 -0.874 0.029 -0.876 0.030 -0.874 0.030
η 0.836 0.176 0.838 0.08 0.867 0.171 0.833 0.144 0.828 0.146

Obs 484 484 484 484 484
LL -1249 -1207 -1040 -811 -647

est. p-val. est. p-val. est. p-val. est. p-val. est. p-val.

Υ(1) 2.953 0.085 2.882 0.089 1.904 0.167 2.259 0.132 2.093 0.147

Υ(2) 1.758 0.184 0.950 0.329 1.475 0.224 2.967 0.084 3.505 0.061

Υ(3) 1.636 0.200 0.863 0.352 0.667 0.414 0.107 0.743 0.246 0.619

Υ(4) 1.100 0.294 0.773 0.379 1.573 0.209 2.910 0.088 2.850 0.091

Υ(5) 2.069 0.150 1.932 0.164 2.180 0.139 1.891 0.169 2.016 0.155

20Here, ei and φi are set to their unconditional means.
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Table 6: Failure probabilities based on Bund future price durations using 30, 40 and 50 tick price
changes. Based on the estimates in Tables 3, 4 and 5.

30 ticks 40 ticks

(1) (2) (3) (4) (5) (1) (2) (3) (4) (5)

Pr[xi <= 0.5h] 0.032 0.014
Pr[xi <= 1h] 0.080 0.079 0.037 0.037
Pr[xi <= 2h] 0.166 0.164 0.083 0.083
Pr[xi <= 3h] 0.230 0.227 0.126 0.126
Pr[xi <= 4h] 0.286 0.283 0.294 0.153 0.153 0.156
Pr[xi <= 5h] 0.326 0.323 0.186 0.186
Pr[xi <= 6h] 0.378 0.374 0.218 0.217
Pr[xi <= 7h] 0.422 0.418 0.262 0.261
Pr[xi <= 8h] 0.457 0.452 0.463 0.296 0.294 0.300
Pr[xi <= 9h] 0.480 0.476 0.311 0.309
Pr[xi <= 24h] 0.714 0.710 0.715 0.723 0.724 0.496 0.494 0.496 0.498 0.496
Pr[xi <= 28h] 0.771 0.580
Pr[xi <= 32h] 0.808 0.627
Pr[xi <= 36h] 0.810 0.811 0.814 0.629 0.634 0.635
Pr[xi <= 48h] 0.836 0.836 0.838 0.843 0.677 0.680 0.681 0.682
Pr[xi <= 72h] 0.897 0.896 0.898 0.900 0.901 0.795 0.794 0.795 0.795 0.796
Pr[xi <= 96h] 0.943 0.943 0.943 0.944 0.857 0.856 0.857 0.857
Pr[xi <= 120h] 0.968 0.968 0.968 0.968 0.969 0.913 0.913 0.913 0.913 0.915
Pr[xi <= 144h] 0.985 0.985 0.985 0.985 0.928 0.928 0.929 0.929
Pr[xi <= 168h] 0.990 0.990 0.990 0.990 0.990 0.956 0.956 0.956 0.956 0.957
Pr[xi <= 192h] 0.995 0.996 0.996 0.996 0.968 0.968 0.968 0.968
Pr[xi <= 240h] 0.996 0.997 0.997 0.997 0.997 0.977 0.978 0.978 0.977 0.978

50 ticks

(1) (2) (3) (4) (5)

Pr[xi <= 1h] 0.009 0.009
Pr[xi <= 2h] 0.041 0.041
Pr[xi <= 3h] 0.068 0.068
Pr[xi <= 4h] 0.085 0.085 0.091
Pr[xi <= 5h] 0.101 0.102
Pr[xi <= 6h] 0.122 0.122
Pr[xi <= 7h] 0.162 0.162
Pr[xi <= 8h] 0.189 0.189 0.197
Pr[xi <= 9h] 0.215 0.215
Pr[xi <= 24h] 0.342 0.342 0.350 0.345 0.342
Pr[xi <= 30h] 0.439
Pr[xi <= 36h] 0.471 0.474 0.481
Pr[xi <= 48h] 0.549 0.551 0.558 0.554
Pr[xi <= 72h] 0.670 0.672 0.678 0.674 0.675
Pr[xi <= 96h] 0.742 0.743 0.749 0.745
Pr[xi <= 120h] 0.812 0.813 0.818 0.815 0.816
Pr[xi <= 144h] 0.860 0.861 0.865 0.862
Pr[xi <= 168h] 0.910 0.911 0.914 0.911 0.912
Pr[xi <= 192h] 0.936 0.936 0.938 0.936
Pr[xi <= 240h] 0.958 0.958 0.960 0.958 0.959
Pr[xi <= 288h] 0.973

7.2. A Forecasting Evaluation. In order to compare the performance of the SACPH model

to that of alternative dynamic duration models, we evaluate the competing models based on

their in-sample and out-of-sample forecasting power. As suggested by Dufour and Engle (2000)

and Bauwens, Giot, Grammig, and Veredas (2004) a natural and powerful way to assess a

model’s forecasting performance is to evaluate the model on the basis of density forecasts. The

advantage of this procedure is that it is easily implemented and that it allows to compare non-

nested models regardless of the user’s loss function. Moreover, evaluating the complete forecast

density (instead of just the first moment) provides a more thorough assessment of the model.
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Denote {pi(xi|Fi−1)}n
i=1 as the sequence of densities associated with the underlying DGP of

xi. Correspondingly, {fi(xi|Fi−1)}n
i=1 defines the sequence of one-step-ahead density forecasts

produced by the model. Diebold, Gunther, and Tay (1998) propose to test the null hypothesis

{fi(xi|Fi−1)}n
i=1 = {pi(xi|Fi−1)}n

i=1 by evaluating the probability integral transform (PIT)

ξi :=
∫ xi

−∞
fi(s)ds.(38)

Building on the results by Rosenblatt (1952), Diebold, Gunther, and Tay (1998) show that under

the null hypothesis, the ξi’s are i.i.d. uniformly distributed.

A difficulty in the SACPH framework is that the durations are categorized and thresholds

µ∗k are only estimated for the corresponding category bounds. A simple possibility to overcome

this problem, is to linearly interpolate (and extrapolate, respectively) the estimated threshold

parameters µ∗k, k = 1, . . . , K − 1 over the range of the observed durations. Then, by denoting

the interpolated thresholds associated with a realization xi by µ̆i, the corresponding PIT (for a

non-censored observation) is straightforwardly computed as

ξi = Fε∗(µ̆i − φi) if xi is non-censored.(39)

The consideration of censored observations is more difficult since they are per definition not

observable. The most appropriate solution is to evaluate the PIT of a censored observation

at the value of its conditional expectation given the lower and upper category bound. This is

easily performed by computing the PIT for a censored observation based on the corresponding

generalized residual, i.e.

ξi = Fε∗(ei) if xi is censored.(40)

In order to assess the forecasting performance of the SACPH model we suggest to compare

it to that of an ACD model which is by far the most prominent dynamic duration model in

the literature of financial point processes and whose performance has been already extensively

analyzed in several evaluation studies, such as in Bauwens, Giot, Grammig, and Veredas (2004),

Meitz and Teräsvirta (2006) or Hautsch (2006). In the ACD model, durations xi follow a

multiplicative error structure of the form

xi = Ψiεi,(41)

where Ψi := E[xi|Fi−1] denotes the conditional expected duration and εi is positive valued

i.i.d. error term with E[εi] = 1. Engle and Russell (1998) propose to specify Ψi in terms of an

autoregressive process of the form

Ψi = ω +
p∑

j=1

αjxi−j +
q∑

j=1

βjΨi−j(42)

leading to a linear ACD(p,q) model. It can be easily shown that the ACD model belongs to the

class of accelerated failure time (AFT) models (see e.g. Engle and Russell, 1998) in the sense

that Ψi accelerates or decelerates the time to failure. One of the most prominent variations is
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the Log-ACD model proposed by Bauwens and Giot (2000) which does not require any non-

negativity constraints and is given by

lnΨi = ω +
p∑

j=1

αj ln xi−j +
q∑

j=1

βj lnΨi−j .(43)

Table 7: Evaluation of one-step-ahead in-sample density forecasts based on Bund future price
durations using 30, 40 and 50 tick price changes. The density forecasts are computed using the
SACPH estimates shown in Tables 3, 4 and 5 and using the estimates of (Log-)ACD models based
on a generalized gamma and Burr distribution, respectively. The table shows Ljung-Box statistics
and χ2-goodness-of-fit test statistics based on the ξi series as well as the corresponding p-values. The
first two test statistics are computed based on the complete ξi series. Here, censored observations are
evaluated at their observable minimum. The test statistics indexed by a ’∗’ are computed based on
realizations of ξi which are not subjected to censoring.

30 ticks

SACPH(1) SACPH(2) SACPH(3) SACPH(4) SACPH(5) GG-ACD B-ACD GG-LACD B-LACD

χ2
19 20.003 39.938 181.11 493.90 523.98 89.400 72.499 65.713 74.489

p-val 0.394 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000
LB(20) 24.606 22.461 21.449 1046.9 1127.8 33.943 28.397 21.169 26.725
p-val 0.216 0.316 0.371 0.000 0.000 0.027 0.100 0.387 0.143
χ2∗

19 37.346 56.538 122.536 630.80 677.00 61.308 59.077 69.654 79.962
p-val∗ 0.007 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
LB(20)∗ 16.011 16.175 25.227 2418.0 2705.3 31.036 21.752 19.409 15.978
p-val∗ 0.715 0.705 0.192 0.000 0.000 0.055 0.354 0.495 0.718

40 ticks

SACPH(1) SACPH(2) SACPH(3) SACPH(4) SACPH(5) GG-ACD B-ACD GG-LACD B-LACD

χ2
19 17.194 19.140 47.523 121.85 132.84 49.298 53.303 61.830 60.685

p-val 0.576 0.447 0.000 0.000 0.000 0.000 0.000 0.000 0.000
LB(20) 12.450 13.017 13.542 30.450 34.305 18.436 18.049 17.311 17.402
p-val 0.899 0.876 0.852 0.062 0.024 0.559 0.584 0.633 0.627
χ2∗

19 28.068 28.137 46.206 165.726 178.75 50.759 39.862 58.000 57.448
p-val∗ 0.082 0.080 0.000 0.000 0.000 0.000 0.003 0.000 0.000
LB(20)∗ 16.338 15.940 17.329 51.498 58.882 18.036 17.330 17.672 17.464
p-val∗ 0.695 0.720 0.631 0.000 0.000 0.585 0.631 0.609 0.623

50 ticks

SACPH(1) SACPH(2) SACPH(3) SACPH(4) SACPH(5) GG-ACD B-ACD GG-LACD B-LACD

χ2
19 16.578 19.636 45.586 52.942 54.595 29.719 35.917 37.570 35.917

p-val 0.618 0.416 0.000 0.000 0.000 0.055 0.011 0.007 0.011
LB(20) 27.541 27.405 30.014 37.679 40.587 49.488 46.580 49.393 46.580
p-val 0.120 0.124 0.069 0.009 0.004 0.000 0.001 0.000 0.001
χ2∗

19 21.265 23.874 37.980 65.323 68.222 23.295 30.541 38.367 30.541
p-val∗ 0.322 0.201 0.005 0.000 0.000 0.225 0.045 0.005 0.045
LB(20)∗ 12.105 12.551 12.760 15.175 18.990 28.936 29.679 32.324 29.679
p-val∗ 0.912 0.895 0.887 0.766 0.522 0.089 0.075 0.040 0.075

A simple choice for the distribution of the ACD error εi is an exponential distribution which

however is clearly too restrictive in most applications. Formulating an ACD model based on

generalized error term structures, such as e.g. the generalized gamma distribution based on the

parameters φi, a and m (see Lunde, 2000), leads to

Ψi = φiζ(a,m),(44)

where

ζ(a,m) :=
Γ(m + 1/a)

Γ(m)
,(45)

Γ(·) denotes the gamma function, and the time-varying scaling parameter φi captures the serial

dependence of the process. Then, assuming for simplicity a linear ACD(1,1) specification, φi is
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given by

φ =
ω

ζ(a,m, η)
+

α

ζ(a,m, η)
xi−1 + βφi−1(46)

leading the log likelihood function

lnL(W ; θ) =
n∑

i=1

ln(a)− ln Γ(m)− am ln φi + (am− 1) lnxi − (xi/φi)a.(47)

ACD specifications based on alternative distributions, like the generalized F distribution (Hautsch,

2003) or the Burr distribution (Grammig and Maurer, 2000), are obtained similarly.

Table 8: Evaluation of one-step-ahead out-of-sample density forecasts based on Bund future price
durations using 30, 40 and 50 tick price changes. The density forecasts are evaluated based on the
last 25% of the sample using SACPH and (Log-)ACD estimates which are produced based on the first
75% of the sample. The SACPH estimates are based on categorizations as shown in the Tables 3, 4
and 5. The ACD estimates are based on estimates of (Log-)ACD models with a generalized gamma
and Burr distribution, respectively. The table shows Ljung-Box statistics and χ2-goodness-of-fit test
statistics based on the ξi series as well as the corresponding p-values. The first two test statistics
are computed based on the complete ξi series. Here, censored observations are evaluated at their
observable minimum. The test statistics indexed by a ’∗’ are computed based on realizations of ξi

which are not subjected to censoring.

30 ticks

SACPH(1) SACPH(2) SACPH(3) SACPH(4) SACPH(5) GG-ACD B-ACD GG-LACD B-LACD

χ2
19 37.820 36.127 59.188 137.23 141.27 23.228 29.091 17.495 30.915

p-val 0.006 0.010 0.000 0.000 0.000 0.227 0.065 0.556 0.041
LB(20) 21.232 20.791 23.271 206.06 207.08 16.381 17.873 21.073 25.849
p-val 0.383 0.409 0.275 0.000 0.000 0.693 0.596 0.393 0.171
χ2∗

19 41.624 36.090 40.201 145.65 161.78 19.016 24.075 27.395 21.229
p-val∗ 0.001 0.010 0.003 0.000 0.000 0.456 0.193 0.096 0.324
LB(20)∗ 18.980 19.387 22.722 304.04 337.79 21.590 20.393 19.763 20.736
p-val∗ 0.523 0.496 0.302 0.000 0.000 0.363 0.434 0.473 0.413

40 ticks

SACPH(1) SACPH(2) SACPH(3) SACPH(4) SACPH(5) GG-ACD B-ACD GG-LACD B-LACD

χ2
19 31.742 24.657 30.142 30.142 29.000 21.686 23.971 32.429 31.743

p-val 0.033 0.172 0.050 0.050 0.065 0.300 0.197 0.028 0.033
LB(20) 17.623 17.519 16.794 14.374 15.145 14.736 14.740 16.831 16.853
p-val 0.612 0.619 0.666 0.810 0.767 0.791 0.791 0.664 0.662
χ2∗

19 27.507 24.318 29.536 33.594 29.826 19.391 20.841 26.348 27.507
p-val∗ 0.093 0.184 0.058 0.020 0.054 0.432 0.346 0.121 0.093
LB(20)∗ 12.853 13.178 14.722 14.551 15.278 11.769 11.634 12.191 12.130
p-val∗ 0.883 0.869 0.792 0.801 0.760 0.924 0.928 0.909 0.912

50 ticks

SACPH(1) SACPH(2) SACPH(3) SACPH(4) SACPH(5) GG-ACD B-ACD GG-LACD B-LACD

χ2
19 25.942 32.553 27.264 30.239 32.884 14.372 13.380 14.702 13.380

p-val 0.131 0.027 0.098 0.048 0.024 0.762 0.819 0.741 0.819
LB(20) 25.671 24.317 24.728 30.118 30.784 27.064 23.826 26.012 23.826
p-val 0.176 0.228 0.212 0.067 0.058 0.133 0.250 0.165 0.250
χ2∗

19 30.156 34.862 29.372 33.686 32.509 14.078 13.294 16.039 13.294
p-val∗ 0.049 0.014 0.060 0.020 0.027 0.779 0.823 0.655 0.823
LB(20)∗ 16.347 16.305 16.970 18.191 17.478 17.881 17.842 18.380 17.842
p-val∗ 0.694 0.697 0.654 0.574 0.621 0.595 0.598 0.562 0.598

As an useful benchmark for the SACPH model we estimate ACD(1,1) and Log-ACD(1,1) models

with generalized gamma as well as Burr distributed error terms.21 As argued above, a main

21We also estimate ACD models based on the generalized F distribution. However, in nearly all cases it turns
out that the additional flexibility provided by the generalized F distribution is not supported by the data.
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drawback of ACD-type models is that censoring is not easily taken into account since the au-

toregressive structure has to be updated by past realizations of the observed duration process.

Since a more-in-depth treatment of this issue is clearly beyond the scope of this paper, we

choose a more pragmatic solution based on two alternative estimation strategies. Firstly, we

estimate the ACD models using the complete series xi and evaluate censored observations at

their corresponding lower limit (as defined in see Section 5.1). Alternatively, we simply skip

all censored observations and estimate and evaluate the model based on non-censored durations

only.22 Then, in both strategies the PIT’s are straightforwardly computed on the basis of the

implied one-step-ahead forecasted densities using (38).

The competing density forecasts are evaluated by testing the distributional and dynamical

properties of the resulting ξi series. The latter are checked based on Ljung-Box statistics (with

respect to 20 lags). The former are tested based on a test against the uniform distribution on

the basis of a simple χ2-goodness-of-fit test of the form

χ2 =
K∑

k=1

(nk − n/K)2

n/K
∼ χ2

K−1(48)

where K denotes the number of categories dividing the range [0; 1] in equal categories and nk

is the number of realizations of {ξi} lying in category k. Table 7 shows the in-sample density

forecasting evaluations using K = 20. Since the ACD model is evaluated based on both the

complete series and alternatively only based on non-censored observations, we additionally also

report the corresponding SACPH evaluations based on the ξi series which excludes censored

observations.23 The results show that the SACPH model on the basis of a sufficient number of

categories clearly out-performs the ACD model in terms of distributional and dynamical prop-

erties. This picture is robust over all three aggregation levels. Not surprisingly, the forecasting

quality of the SACPH model declines when the number of the underlying categories becomes

smaller. This is particularly evident for the two quite broad categorizations in specifications

(4) and (5), where no categories smaller than 24h are used. However, these results clearly indi-

cate that the SACPH model seems to be a reasonable model in order to capture the stochastic

properties of the data. Because of its semiparametric nature, it can cover the (conditional) dis-

tribution of the durations arbitrarily precise in dependence of the number of chosen categories

while simultaneously capturing persistent serial dependencies in the data.

Table 8 shows the corresponding out-of-sample forecasting results. Here, the individual

models are estimated using the first 75% of the sample, whereas one-step-ahead forecasts are

produced for the remaining 25%. While the reported Ljung-Box statistics based on the PIT series

are qualitatively quite similar for both types of models we see a slightly better performance of

22In order to facilitate a direct comparison between both competing approaches, we estimate the ACD models
on the basis of the raw durations xi without a pre-filtering of seasonality effects. As mentioned above, the latter
have not been found to be important on the chosen aggregation level. For sake of brevity, we do not show the
ACD estimates in the paper.

23These results are indexed by a ∗.
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the ACD type models with respect to the distributional properties of the forecasts. This result

is strongest for 30-tick price changes and becomes weaker for higher aggregation levels. For

these series it is evident that the qualitative difference in the forecasting power between SACPH

models with many categories and those with less categories is significantly smaller than those on

the basis of in-sample forecasts. This result clearly illustrates the well-known trade-off between

in-sample (over-)fitting and out-of-sample forecasting performance.

Nevertheless, with respect to both the in-sample and out-of-sample performance, we can

conclude that the SACPH model seems to be a promising competing model to well-established

approaches. We see the strength of the SACPH model particularly in its ability to provide a

very satisfying in-sample goodness-of-fit (particularly compared to quite flexible ACD models)

while simultaneously producing qualitatively similar out-of-sample forecasts. Moreover, it allows

us to rigorously accounting for censoring structures in a dynamic framework (which is not

straightforwardly possible in ACD type models). This is particularly important when duration

spells are modelled which may last longer than one trading day. Nevertheless, the SACPH

model also provides a useful framework for the modelling of high-frequency duration processes.

A comparison between SACPH and ACD models based on trade durations or highly frequent

price durations is beyond the scope of the current study but is a clear issue for future research.

8. Conclusions

In this paper, we have proposed a dynamic extension of a proportional hazard (PH)

model in which the baseline hazard is non-specified. The major idea is to use a categorization

approach and to exploit the close relationship between PH models for grouped duration data

and ordered response models. We reformulated the PH model as an ordered response model

based on extreme value distributed errors with the unobservable log integrated baseline hazard

serving as latent variable. In order to account for (persistent) serial dependence in the duration

process, we extend the latent equation by an observation driven ARMA dynamic based on

generalized errors. In a Monte Carlo study, we illustrated that the proposed dynamic provides

a close approximation to the corresponding dynamic based on true errors. Hence, the so-called

semiparametric autoregressive conditional proportional hazard (SACPH) model nicely captures

the autocorrelation structure in the unobservable log integrated baseline hazard. Furthermore,

it was illustrated that the autocorrelation function implied by the estimates of an SACPH model

is a close proxy for the autocorrelation function of the observable duration process.

Therefore, the SACPH model has the virtue of being easy to implement, avoiding the

computation of cumbersome high-dimensional integrals and being straightforwardly estimated

by maximum likelihood. A further advantage is that the estimates of the threshold parameters

associated with the individual categories directly provide estimates of discrete points of the

unknown baseline survivor function.
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Moreover, we demonstrated that the model allows to account for censoring structures in

a dynamic framework and can be easily extended to accommodate unobserved heterogeneity.

Diagnostic tests for the SACPH model have been proposed by adopting a test for serial de-

pendence proposed by Gourieroux, Monfort, and Trognon (1985). In an empirical study we

employed the SACPH approach to the modelling of financial durations which are subjected to

censoring structures. We illustrated the usefulness and flexibility of the approach to estimate

the conditional probabilities of observing fundamental (absolute) price changes in a given time

interval. It was shown that the model nicely captures the underlying dynamics in the censored

data even when only a small number of categories is used. Furthermore, we illustrated how to

produce density forecasts and evaluated them on an in-sample and out-of-sample basis against

competing (flexible) ACD models. It turned out that the SACPH model provides a significantly

better in-sample goodness-of-fit while yielding a widely similar out-of-sample performance.

Overall, we can conclude that a dynamic semiparametric proportional hazard specification

provides a reasonable framework to model autoregressive persistent duration series and yields a

sensible alternative to AFT type models originating from traditional time series analysis. The

major advantage of the proposed model is that it allows us to combine central features of duration

data, like censoring or unobserved heterogeneity, with those of persistent autoregressive time

series processes. In this sense, the SACPH model fills an important gap in the recent literature

on dynamic point processes. Extensions of the proposed framework, like accounting for state-

dependent baseline hazard functions, non-linear news impact functions in the model dynamics

(as heavily discussed in the ACD literature) or multivariate extensions are clear avenues for

future research.

Appendix

Testing for Serial Dependence in the SACPH Model. The test on serial dependence is

based on the score of the observable model. Along the lines of the work of Gourieroux, Monfort,

and Trognon (1985), the observable score is equal to the conditional expectation of the latent

score, given the observable categorized variable, i. e.,

∂ lnL(W ; θ)
∂θ

= E
[

∂ lnL∗(L∗; θ)
∂θ

∣∣∣∣Fd
i

]
,(49)

where lnL∗(·) denotes the log likelihood function of the latent model and L∗ denotes the n× 1

vector of the realizations of the latent variable, ln Λ0,i. Under the assumption of a BurrII(η)

distribution for ε∗i , the log likelihood function of the latent model is given by

lnL∗(L∗; θ) =
n∑

i=j+1

ln fε∗(ui − αjui−j)

=
n∑

i=j+1

[ln(η) + αjui−j − ui − (η + 1) ln [1 + exp(αjui−j − ui)]] .
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Under the null, the score with respect to αj , s(αj), is given by

s(αj) = E
[

∂ lnL∗(L∗; θ)
∂αj

∣∣∣∣Fd
i

]
(50)

=
n∑

i=j+1

E
[
e∗i−j

∣∣Fd
i

] [
1− (η + 1)E

[
exp(ε∗i )

1 + exp(ε∗i )

∣∣∣∣Fd
ti

]]

=
n∑

i=j+1

ei−j [1− (η + 1)ẽi] ,

where

ẽi := E
[

exp(ε∗i )
1 + exp(ε∗i )

∣∣∣∣Fd
i

]
.(51)

Hence,

s(α̂j) =
n∑

i=j+1

êi−j

[
1− (η̂ + 1)ˆ̃ei

]
.(52)

Under the null, the expectation of ˆ̃ei is given by E[ˆ̃ei] = (η + 1)−1, and thus,

E[s(α̂j)] = 0. Exploiting the asymptotic normality of the score (see Gourieroux, Monfort,

and Trognon, 1985), i.e.,

1√
n

s(αj)
d−→ N


0, plim

1
n

n∑

i=j+1

e2
i−j [1− (η + 1)ẽi]

2


 ,

a χ2 statistic for the null hypothesis H0 : αj = 0 is obtained by

Υ(j) =

[
n∑

i=j+1
êi−j

[
1− (η̂ + 1)ˆ̃ei

]]2

n∑
i=j+1

ê2
i−j

[
1− (η̂ + 1)ˆ̃ei

]2

a∼ χ2(1).(53)

Correspondingly, for the standard extreme value case, it is straightforwardly shown that

Υ(j) =

[
n∑

i=j+1
êi−j

(
ˆ̃ei − 1

)]2

n∑
i=j+1

ê2
i−j

[
ˆ̃ei − 1

]2

a∼ χ2(1)(54)

with

ẽi := E
[
exp(ε∗i )| Fd

i

]
.(55)
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