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Worst Case Portfolio Optimization and HJB-Systems

Ralf Korn∗ and Mogens Steffensen†

Abstract

We formulate a portfolio optimization problem as a game where the investor chooses a

portfolio and his opponent, the market, chooses some market crashes. The asymmetry

of the opponents’ decision processes leads to a new and delicate generalization of the

classical Hamilton-Jacob-Bellman equation in stochastic control. We characterize the

optimal controls in general and specify them further in the cases of HARA, logarithmic,

and exponential utility of the investor.

Keywords: Continuous-time game, asymmetric decisions, market crash, utility opti-

mization.

1 Introduction

The problem of finding an optimal investment strategy for an investor with given utility

function and a fixed initial endowment - the so-called portfolio optimization problem - is

one of the classical problems in financial mathematics and its applications in insurance

mathematics. The corresponding modern continuous-time approach is pioneered by Merton

(1969,1971) who applied classical stochastic control methods to reduce the portfolio problem

to a matter of solving a Hamilton-Jacobi-Bellman partial differential equation (for short:

HJB-equation).

Since Merton’s pioneering work many attempts have been made to solve the portfolio

optimization problem in a framework that allows for more realistic models of stock prices,

in particular for models that can explain large price movements. Examples where portfolio

optimization problems are treated in more general settings are portfolio optimization in

jump-diffusion models (see e.g. Aase (1984)) or in a general semimartingale framework (see

e.g. Kramkov and Schachermayer (1999)).

A different portfolio problem that includes dramatic negative changes of the stock prices

(so-called crashes) has been introduced by Korn and Wilmott (2002). Their main idea

consists of two aspects, the separation between normal times where the stock price behaves

as a geometric Brownian motion, and crash times where it jumps downwards, and the

introduction of a worst-case functional that resembles the form of a game-theoretic max-

min approach. While in Korn and Wilmott (2002) the problem is only solved for the choice

of the logarithmic utility function, a more general problem of the worst-case form is treated

in Korn and Menkens (2005). At first sight, their approach seems to be an approach similar

to the HJB-equation approach of stochastic control. However, their arguments are based
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on equilibrium and indifference considerations and they derive differential equations for

the optimal portfolio processes and not for the value function. Even more, they could

prove optimality of their proposed portfolio processes only within the class of (piecewise)

deterministic control strategies.

The main purpose of this paper is to put the worst-case portfolio optimization in the

HJB-equation framework, and thus to connect it with the mainstream of stochastic control

theory. This leads us to a type of continuous-time game problem that, to our knowledge,

is new in control theory. It is the asymmetry of the opponents’ decision processes that

makes the game so interesting and challenging from a control theoretical point of view: The

investor decides about the portfolio process whereas the opponent, the market, decides when

the stock market crashes. One could fear that this very asymmetry prevents solutions to the

game problem but we show that the problem, indeed, has a solution and that the solution

can be characterized by a generalized HJB-equation.

A related financial game problem is approached by Talay and Zheng (2000). They solve

a problem where the opponent of the investor, the market, decides about the parameters in

a diffusion model. Thus, the idea of seeing the market as an opponent is exactly the same

as ours. But since their price processes are continuous, the decisions of both the investor

and the market affect only the coefficients of the continuous portfolio process. Therefore,

from a financial modelling point of view their problem is completely different from ours.

Our main result is a verification theorem asserting that a system consisting of an HJB-

type inequality, a relation between value functions before and after an action of the market,

final conditions and a complementarity condition determine the value function. This result

and its consequences are highlighted by some explicit examples. Note in particular that

we do not have to restrict ourselves to (piecewise) deterministic controls. Therefore, the

existing work on worst-case portfolio optimization is substantially generalized.

One can imagine other areas where the structure of the problem and its solution can find

applications. E.g. an insurance company decides about reinsurance against large claims

e.g. triggered by storm or earth quakes. In its battle against the merciless Mother Earth,

the company could adopt a worst case basis for making certain decisions, e.g. the extent of

reinsurance protection. The structure of the HJB-equation for such a problem is similar to

here and the relative explicit characterization of the optimal decision obtained here holds

out every promise of success in other areas.

2 The Model and the Preferences

Take as given a probability space (Ω,F , P ). Let W be a standard Brownian motion defined

on this probability space. Let us consider an agent over a fixed time interval [0, T ]. At time

0 the agent is endowed with initial wealth x0 and his problem is to allocate investments over

the given time horizon. We assume that the agent’s investment opportunities are given by

the following financial market,

dB (t) = r (t) B (t) dt,

B (0) = 1,

dS (t) = S (t−) (α (t) dt + σ (t) dW (t) − β (t−) dN (t)) ,

S (0) = s0,
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where r, α, σ, and β are assumed to be bounded deterministic functions. For N (t) = 0,

this market is a classical Black-Scholes market. We introduce, however, jumps in the Black-

Scholes market and let N be a counting process counting the number of jumps such that

N (t) = # {0 < s ≤ t : S (t) 6= S (t−)} .

In usual jump-diffusion models the counting process is now assumed to follow some

probability law on (Ω,F , P ). One could e.g. let N be a Poisson process or a Cox process.

Here, however, we take the counting process to be chosen by the market, which from the

point of view of the agent, is considered as an opponent. I.e., the market decides when the

stock jumps and N is to be considered as a decision variable held by the market. We speak

of jumps in N as interventions.

We assume that the market is able to decide on an only limited number of interventions

and denote the maximal number of interventions over [0, T ] by n0. Figure 1 illustrates the

process of interventions. The market can, however, also choose not to exercise its intervention

options, so at time T the process of interventions can be in any of the states in Figure 1.

Further, to avoid technical complications, we assume that the market never intervenes more

than once in one time instant (a multiple intervention of the market in one time instant is

also not reasonable from an intuitive point of view).

n0 int. left

N = 0
→

n0 − 1 int. left

N = 1
→ · · · →

1 int. left

N = n0 − 1
→

0 int. left

N = n0

Figure 1: Process of interventions

The investment behavior of the agent is modelled by a predictable portfolio strategy π

denoting the proportion of wealth invested in S, i.e. π is a decision variable held by the

agent. Restricting ourselves to self-financing portfolio strategies, the wealth process follows

the differential equation

X (0) = x0,

dX (t) = X (t−) (r (t) dt + π (t) ((α (t) − r (t)) dt + σ (t) dW (t) − β (t−) dN (t))) .

The differential equation can be considered as a controlled differential equation with a pair

of controls being a pair of portfolio strategies and the interventions, i.e. (π, N). The agent

is allowed to choose π ∈ A and the market is allowed to choose an intervention N ∈ B

such that the pair of controls (π, N) leads to a well-posed optimization problem below.

Even more, we consider A to be the set of all predictable processes (with respect to the

σ−algebra generated by the stock price process) such that we have

E

∫ T

0

|π (t)|m ds < ∞ for m = 1, 2, ...,

π (t) β (t) < 1 for all t ∈ [0, T ] .

These requirements in particular ensure that the wealth process stays non-negative and has

finite moments of all order.

Then, given a pair of controls (π, N), the controlled differential equation describing the

wealth is given by

XπN (0) = x0, (1)

dXπN (t) = XπN (t−) (r (t) dt + π (t) ((α (t) − r (t)) dt + σ (t) dW (t) − β (t−) dN (t))) .
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For a fixed time s and given Xπ,N (s) = xs, if τ is the first intervention time after s, we

can obviously write

XπN (s) = xs,

dXπN (t) = XπN (t) (r + π (t) (α − r)) dt + π (t) σdW (t) , s < t < τ,

XπN (τ ) = XπN (τ−)
(

1 − XπN (τ−)π (τ) β
)

.

If we only need to consider X until the first intervention time, we can just as well denote

the argument N by τ and we do so below.

We assume that the investor chooses a portfolio process to maximize worst case expected

utility of terminal wealth in the sense of the following optimization problem:

sup
π∈A

inf
N∈B

E
[

U
(

XπN (T )
)]

.

For each function v ∈ C1,2 we define the differential operator Lπv by

Lπv (t, x) = vt (t, x) + vx (t, x) (r + π (α − r)) x +
1

2
vxx (t, x) π2σ2x2.

3 The Bellman system and the Verification Theorem

In this section we present and prove the Bellman system connected with the control problem

described in the previous section.

We define the value function J n (t, x, π) by

J n (t, x, π) = Et,x,n [U (Xπ (T ))] ,

where Et,x,n denotes conditional expectation given that X (t) = x and that there are at

most n possible jumps left. We define the optimal value function V n (t, x) by

V n (t, x) = sup
π∈A

inf
N∈B

J n (t, x, π, τ) .

We can now present a Bellman system in a verification theorem.

Theorem 1 (Verification Theorem) 0. Assume that v0 (t, x) is a classical solution of

0 = sup
π∈A

[

Lπv0 (t, x)
]

,

v0 (T, x) = U (x) ,

which is polynomially bounded and that

p (t) = arg sup
π∈A

[

Lπv0 (t, x)
]

is an admissible control function.

Then we have

V 0 (t, x) = v0 (t, x) ,

and the optimal control function exists and is given by

π0∗ (t) = p (t) .
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1. For n ∈ N and every function vn ∈ C1,2, define the sets A′
n (t) and A′′

n (t) by

A′
n (t) = {π : π ∈ A, 0 ≤ Lvn (t, x)} ,

A′′
n (t) =

{

π : π ∈ A, 0 ≤ vn−1 (t, x (1 − βπ)) − vn (t, x)
}

.

Assume that there exists a polynomially bounded C1,2−solution of

0 ≤ sup
π∈A′′

n(t)

[Lπvn (t, x)] ,

0 ≤ sup
π∈A′

n(t)

[

vn−1 (t, x (1 − βπ)) − vn (t, x)
]

,

0 = sup
π∈A′′

n(t)

[Lπvn (t, x)] sup
π∈A′

n(t)

[

vn−1 (t, x (1 − βπ)) − vn (t, x)
]

,

vn (T, x) = U (x) .

and that

p (t) = arg sup
π∈A′′

n(t)

[Lπvn (t, x)] ,

θ = inf
s

[

vn−1 (s, x (1 − βπ)) − vn (s, x) ≤ 0
]

,

is a pair of admissible control functions.

Then

V n (t, x) = vn (t, x) ,

and the optimal control functions exist and are given by

πn∗ (t) = p (t) ,

τn∗ = θ.

For proving the verification theorem and for this we need the following lemma.

Lemma 2 The value function can be represented in the following ways

V n (t, x) = sup
π

inf
N

Et,x,n

[

U
(

XπN (T )
)]

= inf
N

sup
π

Et,x,n

[

U
(

XπN (T )
)]

= sup
π

inf
τ

Et,x,n

[

V n−1 (τ , Xπτ (τ−) (1 − βπ (τ )))
]

= inf
τ

sup
π

Et,x,n

[

V n−1 (τ , Xπτ (τ−) (1 − βπ (τ )))
]

.

Proof of Lemma. Let ε > 0. Then, for a given first intervention time τ we can choose

a portfolio strategy π∗ which is ε/4-optimal until time τ and a portfolio strategy π∗∗ which

is arbitrary until time τ and ε/4-optimal after time τ in the sense that the following two

inequalities hold (note that we cannot yet assume that V n is indeed the value function)

sup
π

Et,x,n

[

V n−1 (τ , Xπτ (τ−) (1 − βπ (τ )))
]

(2)

≤ Et,x,n

[

V n−1
(

τ , Xπ∗τ (τ−) (1 − βπ∗ (τ ))
)]

+ ε/4,

sup
π

inf
N

Eτ,x,n

[

U
(

XπN (T )
)]

(3)

≤ inf
N

Eτ,Xπ∗∗N (τ),n−1

[

U
(

Xπ∗∗N (T )
)]

+ ε/4.
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Further, for a given portfolio strategy introduce an ε/4-optimal strategy for the first in-

tervention τ∗ and, given an arbitrary first intervention time τ , an ε/4-optimal intervention

strategy N∗ after time τ , again in the sense that the following two inequalities are valid:

inf
τ

Et,x,n

[

V n−1 (τ , Xπτ (τ−) (1 − βπ (τ )))
]

(4)

≥ Et,x,n

[

V n−1
(

τ∗ (π) , Xπτ∗

(τ∗ (π)−) (1 − βπ)
)]

− ε/4,

inf
N

Eτ,Xπ(τ),n−1

[

U
(

XπN (T )
)]

(5)

≥ Eτ,XπN∗(τ),n−1

[

U
(

XπN∗

(T )
)]

− ε/4.

Then we have the following list of inequalities (explanation follows after):

sup
π

inf
N

Et,x,n

[

U
(

XπN (T )
)]

(6)

≥ inf
N

Et,x,n

[

Eτ,Xπ∗∗N (τ),n−1

[

U
(

Xπ∗∗N (T )
)]]

≥ inf
τ

Et,x,n

[

inf
N

Eτ,Xπ∗∗N (τ),n−1

[

U
(

Xπ∗∗N (T )
)]]

≥ inf
τ

Et,x,n

[

sup
π

inf
N

Eτ,XπN (τ),n−1

[

U
(

XπN (T )
)]

]

− ε/4

≥ inf
τ

Et,x,n

[

V n−1 (τ , Xπτ (τ−) (1 − βπ (τ )))
]

− ε/4

≥ Et,x,n

[

V n−1
(

τ∗, Xπτ∗

(τ∗−) (1 − βπ (τ ∗))
)]

− ε/2.

The 1st inequality follows from plugging in the portfolio strategy π∗∗ and the tower property.

The 2nd inequality follows from interchanging the first expectation and the infimum over

intervention strategies after the first intervention. The 3rd inequality follows from (3). The

4th inequality follows from the definition of V . The 5th inequality follows from (4). Taking

supremum on both sides gives

sup
π

inf
N

Et,x,n

[

U
(

XπN (T )
)]

(7)

≥ sup
π

Et,x,n

[

V n−1
(

τ∗, Xπτ∗

(τ∗−) (1− βπ (τ ∗))
)]

− ε/2.

We also have the following list of inequalities (explanation follows after):

inf
N

sup
π

Et,x,n

[

U
(

XπN (T )
)]

≤ sup
π

Et,x,n

[

Eτ,XπN∗(τ),n−1

[

U
(

XπN∗

(T )
)]]

≤ sup
π

Et,x,n

[

inf
N

Eτ,XπN (τ),n−1

[

U
(

XπN (T )
)]

]

+ ε/4

≤ sup
π

Et,x,n

[

sup
π

inf
N

Eτ,XπN (τ),n−1

[

U
(

XπN (T )
)]

]

+ ε/4

≤ sup
π

Et,x,n

[

V n−1
(

τ , XπN (τ−) (1 − βπ (τ ))
)]

+ ε/4.

The 1st inequality follows from plugging in the intervention strategy N ∗ and the tower

property. The 2nd inequality follows from 5). The 3rd inequality is obvious. The 4th

inequality follows from the definition of V . Taking infimum on both sides results in

inf
N

sup
π

Et,x,n

[

U
(

XπN (T )
)]

(8)

≤ inf
τ

sup
π

Et,x,n

[

V n−1 (τ , Xπτ (τ−) (1− βπ (τ )))
]

+ ε/4.
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Finally we can gather the inequalities (explanation follows after):

sup
π

inf
N

Et,x,n

[

U
(

XπN (T )
)]

≥ sup
π

Et,x,n

[

V n−1
(

τ∗, Xπτ∗

(τ∗−) (1 − βπ (τ ∗))
)]

− ε/2

≥ inf
τ

sup
π

Et,x,n

[

V n−1 (τ , Xπτ (τ−) (1 − βπ (τ)))
]

− ε/2

≥ inf
τ

Et,x,n

[

V n−1
(

τ , Xπ∗τ (τ−) (1 − βπ∗ (τ))
)]

− ε/2

≥ inf
τ

sup
π

Et,x,n

[

V n−1 (τ , Xπτ (τ−) (1 − βπ (τ)))
]

− 3ε/4

≥ inf
N

sup
π

Et,x,n

[

U
(

XπN (T )
)]

− ε

≥ sup
π

inf
N

Et,x,n

[

U
(

XπN (T )
)]

− ε.

The 1st inequality is just (7). The 2nd inequality follows from giving up the specification of

the first intervention. The 3rd inequality follows from plugging in the portfolio strategy π∗.

The 4th inequality follows from (2). The 5th inequality follows from (8). The 6th inequality

is the usual sup inf ≤ inf sup− relation.

The reversed line of arguments (left to the reader) gives that

inf
N

sup
π

Et,x,n

[

U
(

XπN (T )
)]

≤ sup
π

inf
τ

Et,x,n

[

V n−1
(

τ , XπN (τ−) (1 − βπ)
)]

+ ε/2

≤ sup
π

inf
N

Et,x,n

[

U
(

XπN (T )
)]

+ ε

≤ inf
N

sup
π

Et,x,n

[

U
(

XπN (T )
)]

+ ε.

Since all inequalities above hold for any ε, they must hold as equalities, and consequently

the theorem is proved.

Proof of Verification Theorem. Concerning the part of the verification theorem num-

bered by 0 (corresponding to 0 interventions left) is classical and its proof can be found in

any textbook on dynamic portfolio optimization, e.g. Korn (1997).

The second part is proved by induction. Firstly, we prove the verification theorem for

n = 1. Here the control N and the control τ are equivalent and we can denote Xπ,N by

Xπ,τ .

Choose an arbitrary control (π, τ) and fix a point (t, x). Let X follow the dynamics given

in (1) with the time point 0 replaced by the time point t. Inserting Xπ,τ in v1 and using

Itô’s formula we obtain

v1 (t, Xπ,τ (t)) = v1 (t, x) ,

dv1 (s, Xπ,τ (s)) = Lv1 (s, Xπ,τ (s)) ds + v1
x (s, Xπ,τ (s)) σXπ,τ (s) dW (s) , t < s < τ,

dv1 (τ , Xπ,τ (τ )) = v1 (τ , Xπ,τ (τ−) (1 − π (τ ) β)) − v1 (τ−, Xπ,τ (τ−)) .

such that

v1 (τ−, Xπ,τ (τ−)) − v1 (t, x) =

∫ τ

t

Lv1 (s, Xπ,τ (s)) ds (9)

+

∫ τ

t

v1
x (s, Xπ,τ (s)) σXπ,τ (s) dW (s) .
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Now fix the investment strategy π (s) = p (s), t ≤ s ≤ τ . Then we know from the

Bellman system that for t ≤ s ≤ τ ,

0 ≤ Lpv1 (s, Xp,τ (s)) ,

and since p (s) ∈ A′′
v1 (s), also

0 ≤ v0 (s, Xp,τ (s) (1 − βp (s))) − v1 (s, Xp,τ (s)) .

But this means that inserting p in (9) gives the inequality

v1 (t, x) ≤ v0 (τ , Xp,τ (τ−) (1 − βp (τ ))) −

∫ τ

t

v1
x (s, Xp,τ (s)) σXp,τ (s) dW (s) .

Due to our requirements on the admissible controls and on the value function, the stochas-

tic integral vanishes when taking expectation, leaving us with the inequality

v1 (t, x) ≤ Et,x

[

v0 (τ , Xp,τ (τ−) (1 − βp (τ )))
]

. (10)

Then, on the one hand, we can immediately conclude that

v1 (t, x) ≤ sup
π

Et,x

[

v0 (τ , Xπ,τ (τ−) (1 − βπ (τ )))
]

.

such that taking infimum over τ on both sides gives

v1 (t, x) ≤ inf
τ

sup
π

Et,x

[

v0 (τ , Xπ,τ (τ−) (1 − βπ (τ)))
]

. (11)

On the other hand, taking infimum over τ on both sides of (10) gives

v1 (t, x) ≤ inf
τ

Et,x

[

v0 (τ , Xp,τ (τ−) (1 − βp (τ)))
]

,

and then we can conclude that also

v1 (t, x) ≤ sup
π

inf
τ

Et,x

[

v0 (τ , Xπ,τ (τ−) (1 − βπ (τ)))
]

. (12)

Consider again the equation (9). Now fix the time τ = θ. Then we know that

v0
(

s, Xπ,θ (s−) (1 − βπ (s))
)

− v1
(

s−, Xπ,θ (s−)
)

> 0, t ≤ s < θ, (13)

v0
(

θ, Xπ,θ (θ−) (1 − βπ (θ))
)

− v1
(

θ, Xπ,θ (θ−)
)

≤ 0. (14)

Now, either 0 > Lπv1 (s, Xπ,τ (s)) or 0 ≤ Lπv1 (s, Xπ,τ (s)). But if 0 ≤ Lπv1 (s, Xπ,τ (s))

then π ∈ A′
v1 , and then (13) give us that

sup
π∈A′

v1 (s)

[

v0
(

s, Xπ,θ (s−) (1 − βπ (s))
)

− v1
(

s−, Xπ,θ (s−)
)]

> 0.

By complementarity, we then know that

sup
π∈A′′

v1 (s)

[

Lπv1
(

s, Xπ,θ (s)
)]

= 0,

But since π (s) ∈ A′′
v1 (s) by (13), we then know that

Lπv1
(

s, Xπ,θ (s)
)

≤ 0.
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So, in any case, Lπv1
(

s, Xπ,θ (s)
)

≤ 0, s < θ. But this means that inserting θ in (9) and

using (14) gives the inequality

v1 (t, x) ≥ −

∫ θ

t

vx

(

s, Xπ,θ (s)
)

σXπ,θ (s) dW (s) + v0
(

θ, Xπ,θ (θ−) (1 − βπ (θ))
)

.

Due to our requirements on the admissible controls and on the value function, the stochas-

tic integral vanishes when taking expectation, leaving us with the inequality

v1 (t, x) ≥ Et,x

[

v0
(

θ, Xπ,θ (θ−) (1 − βπ (θ))
)]

. (15)

Then, on the one hand, we can conclude that

v1 (t, x) ≥ inf
τ

Et,x

[

v0 (τ , Xπ,τ (τ−) (1 − βπ (τ )))
]

,

such that taking supremum over π on both sides gives

v1 (t, x) ≥ sup
π

inf
τ

Et,x

[

v0 (τ , Xπ,τ (τ−) (1 − βπ (τ)))
]

. (16)

On the other hand, taking supremum over π on both sides of (15) gives

v1 (t, x) ≥ sup
π

Et,x

[

v0
(

θ, Xπ,θ (θ−) (1 − βπ (θ))
)]

,

such that we can conclude that

v1 (t, x) ≥ inf
τ

sup
π

Et,x

[

v0 (τ , Xπ,τ (τ−) (1 − βπ (τ)))
]

. (17)

From (11), (12), (16), and (17), we conclude that

v1 (t, x) = inf
τ

sup
π

Et,x

[

v0 (τ , Xπ (τ−) (1 − βπ (τ )))
]

= sup
π

inf
τ

Et,x

[

v0 (τ , Xπ (τ−) (1 − βπ (τ )))
]

,

and it only remains to be realized that V is characterized by this equation.

Remark 3 A careful inspection of the proof shows that the expectation requirements on the

admissible controls and the polynomial growth condition for the value function are indeed

only needed for the expectation of the stochastic integrals to vanish just before relations (10)

and (15). Of course, these requirements are only sufficient for the proof to go through. The

assumption of polynomial growth of the value function is not satisfied for our examples of

the logarithmic utility and the exponential utility function below. However, one can directly

check that the above proof still goes through for those special choices of the utility functions

as it can be verified that the expectations of the two mentioned stochastic integrals vanish.

4 Characterization of the Solution

To apply the verification theorem we are now going to construct (in a heuristic way) general

candidates for the value functions V n and the optimal controls along the lines of the theorem.

In the following chapters it is shown that for special choices of the utility function U these

heuristically derived candidates indeed satisfy all the requirements of the verification theorem

9



and are thus solutions of the control problem. We assume in this section and the following

examples that for some real constant β we have that

β(t) = β.

Let us start by considering the inequality

0 ≤ sup
π∈A′

n(t)

[

V n−1 (t, x (1 − βπ)) − V n (t, x)
]

. (18)

As for β > 0 and a (strictly) increasing utility function U we have that V n−1 (t, x (1 − βπ))

is a decreasing function of π, the supremum in (18) is obtained for the smallest π with

V n
t (t, x) ≥ −V n

x (t, x) (r + π (α − r)) x −
1

2
V n

xx (t, x) π2σ2x2. (19)

Under the assumption of a concave V n we have that the supremum in (18) is attained for the

smallest value of π for which (19) holds as an equality. We consider the obvious choice for

the separation of the (t, x)−space into the set M where the right hand side of the inequality

(18) is strictly positive, and its complement. Outside M, π and V are determined by the

set of equations

V n (t, x) = V n−1 (t, x (1 − βπ)) ,

V n
t (t, x) = −V n

x (t, x) (r + π (α − r)) x −
1

2
V n

xx (t, x) π2σ2x2.

Note that the first equation has to hold by the complementarity condition in the verification

theorem. Inside M we must have supπ∈A′′

n(s)

[

Lπvn
(

s, Xπ,θ (s)
)]

= 0, again by comple-

mentarity. Ignoring the constraint π ∈ A′′
n (t) we can compute the usual candidate for an

optimal portfolio process by the first order conditions as:

π = −
V n

x (t, x)

V n
xx (t, x) x

α − r

σ2
. (20)

If for the strategy (20), we have that

V n (t, x) ≤ V n−1 (t, x (1 − βπ)) ,

then (20) indeed satisfies the constraint π ∈ A′′
n (t) and can be considered as the candidate

optimal portfolio. If however for π as given in equation (20) we have that

V n (t, x) > V n−1 (t, x (1 − βπ)) ,

then again (under suitable assumptions on U and β) we know that V n−1,0 (t, x (1 − βn,uπ))

decreases as a function of π. We further assume that

V n−1 (t, x (1 − βπ)) → ∞

(this always has to be checked for concrete choices of the utility function U when even more

explicit computations are performed in later sections!). As

V n
x (t, x) (r + π (α − r)) x +

1

2
V n

xx (t, x) π2σ2x2

10



is increasing for π < −
V n

x (t,x)
V n

xx(t,x)x
α−r
σ2 , then supπ∈A′′

n(s)

[

Lπv1
(

s, Xπ,θ (s)
)]

is obtained for the

π for which

V n (t, x) = V n−1 (t, x (1 − βπ))

holds and consequently π and V are determined by the set of equations

V n (t, x) = V n−1 (t, x (1 − βπ)) ,

V n
t (t, x) = −V n

x (t, x) (r + π (α − r)) x −
1

2
V n

xx (t, x) π2σ2x2.

As this is the same case as outside M, we realize that M is not the relevant set that

decomposes the state space in an appropriate way. Instead, we consider now a set N where

we have

π (t, x) = −
V n

x (t, x)

V n
xx (t, x) x

α − r

σ2
,

V n
t (t, x) = −V n

x (t, x) (r + π (α − r)) x −
1

2
V n

xx (t, x) π2σ2x2, (21)

and its complement characterized by

V n (t, x) = V n−1 (t, x (1 − βπ)) ,

V n
t (t, x) = −V n

x (t, x) (r + π (α − r)) x −
1

2
V n

xx (t, x) π2σ2x2. (22)

Note in particular that for n = 0 we have that N typically equals the whole possible

(t, x)−space while for n > 1 it might be possible that N is empty as we show for the specific

choices of the utility functions below.

5 Power utility

In this section we consider the case of power utility,

U (x) =
1

γ
xγ , γ < 1, γ 6= 0,

and assume α > r. Inspired by the solution of the usual portfolio problem we try a solution

of the form

V n (t, x) =
1

γ
fn (t)

(

x

fn (t)

)γ

leading to

V n
t (t, x) =

1 − γ

γ
fn

t (t)

(

x

fn (t)

)γ

,

V n
x (t, x) =

(

x

fn (t)

)γ−1

,

V n
xx (t, x) = − (1 − γ)

1

fn (t)

(

x

fn (t)

)γ−2

.

With these relations we obtain the optimal portfolio

π∗n =







1
1−γ

α−r
σ2 , (t, x, n) ∈ N ,

1
β

(

1 −
(

fn(t)
fn−1(t)

)

1−γ
γ

)

, (t, x, n) /∈ N .
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(here we have again implicitly assumed strict concavity of V n!). The usual solution in the

case of n = 0 is well-known and given by (see e.g. Kraft and Steffensen (200x))

π∗0 (t, x) =
1

1 − γ

α − r

σ2
,

f0 (t) = e−(r+ 1
2

α−r

σ2
1

1−γ ) (T−t)(1−γ)
γ

Under the assumption of β > 0 we now conjecture that N is indeed empty for n > 0, i.e.

for n > 0 we assume that we are always in the situation of

π∗n (t, x) =
1

β

(

1 −

(

fn (t)

fn−1 (t)

)

1−γ
γ

)

,

Lπ∗n

vn (t, x) = 0

If we now plug in our guess for π∗n (t, x) and for vn (t, x) into the second condition above

and use the final condition of

vn (T, x) = vn−1 (T, x) = ... = v0 (T, x) =
1

γ
xγ

implying

π∗n (T, x) = 0,

we arrive at the following ordinary differential equation for f ,

fn
t (t) = fn (t)

(

−
γ

1 − γ
(r + (α − r) π∗n) + γ

1

2
(π∗n)2 σ2

)

, fn (T ) = 1.

for n = 1, 2, .... With the help of this equation and the definition of π∗n We can derive an

ordinary differential equation for π∗n which holds for (t, x, n) /∈ N ,

π∗n
t (t) =

1

β
(1 − π∗nβ)

(

(α − r)
(

π∗n − π∗n−1
)

−
1

2
(1 − γ) σ2

(

(π∗n)
2 −

(

π∗n−1
)2
)

)

,

π∗n (T ) = 0.

Using the explicit form of this differential equation and its final condition, one can show

via induction that its solution satisfies

0 ≤ π∗n (t) ≤ π∗n−1 (t) ,

is unique, and for n = 1 it can be explicitly given as the solution of a non-linear equation (see

Korn and Wilmott (2002), Korn and Menkens (2005)). A consequence of this is in particular

that the solution of the differential equation for fn (t) is always positive which implies that

V n of the above form is a concave function in x, as desired. Thus, all assumptions of

the verification theorem are satisfied and we have indeed computed the optimal portfolio.

The form of these optimal portfolio processes are illustrated via Figure 2 below where the

maximum number n of crashes that can still occur determines which of the five lines is

relevant for the optimal portfolio process π∗n (t) .

In the case of β < 0 it can easily be verified that it is never optimal for the market to

intervene if the investor uses the portfolio process π∗0 = 1
1−γ

α−r
σ2 . Consequently, in this

setting we have

vn (t, x) = vn−1 (t, x) = ... = v0 (t, x) ,

12
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Figure 2: π∗n (t) for n = 0, 1, 2, 3, 4 (from top to bottom), parameters: β = 0.05, α =

0.11, r = 0.05, σ = 0.4, T = 2, γ = 0.5

and the optimality criteria of the verification theorem can only be satisfied for the strategy

that consists of no intervention before time T at all. This is also intuitively clear, because

this portfolio process leads to the highest expected utility in the standard market setting on

one hand, and on the other hand a jump of positive size (which is the case for β < 0) would

even make the situation of the investor better. Hence, the infimum over the intervention

strategies is attained for the above mentioned no-jump strategy.

6 Log utility

The situation in the case of the logarithmic utility function is very similar to that of the

Hara utility. In fact, it can mainly be solved by using the results of the foregoing section

and setting γ = 0. We therefore shorten its presentation. Consider

U (x) = log x.

and assume α > r. The main difference to the Hara case is our guess of the form of the

value functions (again inspired by the case n = 0):

V n (t, x) = log x + fn (t) ,

V n
t (t, x) = fn

t (t) ,

V n
x (t, x) =

1

x
,

V n
xx (t, x) = −

1

x2
.

Inside N we obtain the form of π∗n as in the case of n = 0 while outside N the (candidate

for the) optimal portfolio process is determined by the indifference requirement V n (t, x) =

V n−1 (t, x (1 − βπ)). This leads to

π∗ =

{

α−r
σ2 , (t, x, n) ∈ N ,

1−efn(t)−fn+1(t)

β
, (t, x, n) /∈ N .
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Again, the case of n = 0 is well-known and given by (see e.g. Korn (1997))

π∗0 (t, x) =
α − r

σ2
,

f0 (t) =

(

r +
1

2

α − r

σ2

)

(T − t) .

As above, for β > 0 we conjecture N to be empty for n > 0. As above we use form of

the candidate for the optimal portfolio in this case, insert our guess into (21) and obtain a

differential equation for f ,

fn
t (t) = − (r + π∗n (α − r)) +

1

2
(π∗n)

2
σ2, f(T ) = 0.

As above this leads to an ordinary differential equation for π which holds for (t, x, n) /∈ N ,

π∗n
t =

1

β
(1− π∗nβ)

(

fn+1
t (t) − fn

t (t)
)

=
1

β
(1− π∗nβ)

(

(α − r)
(

π∗n − π∗n+1
)

−
1

2
σ2
(

(π∗n)
2 −

(

π∗n+1
)2
)

)

.

Again, as shown in Korn and Menkens (2005) it has a unique solution which is bounded

by 0 from below and by π
∗(n−1)
t from above for n ≥ 1. Also for numerical examples, we refer

to Korn and Menkens (2005).

Further, it is obvious that in the case of β < 0 the optimal intervention strategy consists

of never doing a jump at all.

7 Exponential Utility

In this section we consider the case of exponential utility, i.e.

U (x) = −e−θx,

for some θ < 0. Compared to the foregoing examples of the log-utility and the Hara case, the

situation for the exponential is fundamentally different with respect to two aspects. First

of all, a separation of the t− and the x−variables in the HJB-equation is not possible, a

property that is essentially due to the fact that the derivative of the exponential function

is itself the exponential function. It is well-known from standard portfolio optimization

(see e.g. Browne (1995)) that it is therefore more suitable to consider the amount of money

invested in the risky stock at time, in our notation π (t) X (t), as control variables as opposed

to the portfolio process itself. As second difference, compared to the two utility functions

considered above, note that the exponential utility function has a finite slope in x = 0 which

results in the fact that the (unconstrained) optimal wealth process can attain negative

values. Again, this is well known (compare again with Browne (1995)). To apply our main

verification it would therefore be necessary to refine our definition of an admissible control.

This can be done along the lines of Browne (1995), but details are left to the reader. Note

that in contrast to Korn (2005) we do not have to restrict to deterministic strategies.

Keeping all these consideration in mind, we guess the following form of the value function,

inspired by the case n = 0,

V n (t, x) = −e−θf(t)x−gn(t),
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leading to

V n
t (t, x) = −e−θf(t)x−gn(t) (−θft (t) x − gn

t (t)) ,

V n
x (t, x) = θf (t) e−θf(t)x−gn(t),

V n
xx (t, x) = −θ2f (t)2 e−θf(t)x−gn(t).

Assuming strict concavity of V n in x - which is given if f is non-vanishing - (suitable)

application of the verification theorem yields the following candidate for the optimal amount

of money invested in the stock,

π∗x =

{

1
θf(t)

α−r
σ2 , (t, x, n) ∈ N ,

1
θf(t)

gn+1(t)−gn(t)
β

, (t, x, n) /∈ N .
.

In the case of n = 0 it is well-known that we have

f (t) = exp (r (T − t)) ,

g0 (t) =
1

2

(

α − r

σ

)2

(T − t) ,

π∗0 (t) x =
1

θ

α − r

σ2
e−r(T−t).

Once again, assuming N to be empty for n > 0, we use the above derived form of our

candidate optimal strategy π∗x and insert our guesses in (21) to obtain a differential equation

for gn,

gn
t (t) = −

gn+1 (t) − gn (t)

β
(α − r) +

1

2

(

gn+1 (t) − gn (t)
)2

β2 σ2.

This results in an ordinary differential equation for π∗x for (t, x, n) /∈ M,

π∗n
t (t) x = rπ∗n (t) x −

(

π∗n+1 (t) x − π∗n (t) x
) α − r

β

+
(

(

π∗n+1 (t) x
)2

− (π∗n (t) x)
2
) 1

2θf (t) σ2

β
,

π∗n
T (t) x = 0,

for which we can show with standard arguments that a unique bounded and non-negative

solution exists. Before we illustrate the form of the optimal strategy let us remark that, in

the case of r = 0, an explicit solution for n = 1 exists which has the form (see Korn (2005)

for a different derivation),

π∗1 (t) x =
α

θσ2
+

2β

θσ2
[

(T − t) − 2β
α

] .

The form of the optimal trading strategies are illustrated in Figure 3 below. They look very

similar to the optimal portfolio processes of Figure 2 and of course the comments for their

use depending on the maximum number n of crashes remain valid. However, note that if we

would plot the portfolio processes we would have very irregular curves as they are inversely

proportional to the actual wealth process curve, and for small values of the wealth process

the portfolio process can grow above all limits (but the amount of money invested in the

stock stays bounded!).
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Figure 3: π∗n (t) x for n = 0, 1, 2, 3, 4 (from top to bottom), parameters: β = 0.05, α =

0.16, r = 0, σ = 0.4, T = 1, θ = 0.01

8 Conclusion and Further Aspects

In this paper we have put the worst-case approach to portfolio optimization as developed by

Korn and Wilmott (2002) into a generalized HJB-equation framework. This has the partic-

ular advantage that the restriction to deterministic control processes is no longer required.

This framework can be used for a worst-case approach in other areas than finance. But even

within the portfolio application, there remain many open problems and generalizations for

future research such as

• Explicit solution of problems with many stocks (in contrast to the Korn and Wilmott

(2002) approach this should be possible in a more explicit way using our new approach)

• Explicit solution of problems with non-constant β (this should again be possible in an

easier way in our HJB-equation framework)

• Weakening the regularity assumptions of the verification theorem (maybe via the use

of viscosity solution techniques).
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