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How to Invest Optimally in Corporate Bonds:

A Reduced-Form Approach

Abstract: In this paper, we analyze the impact of default risk on the
portfolio decision of an investor wishing to invest in corporate bonds.
Default risk is modeled via a reduced form approach and we allow for
random recovery as well as joint default events. Depending on the
structure of the model, we are able to derive almost explicit results
for the optimal portfolio strategies. It is demonstrated how these
strategies change if common default factors can trigger defaults of
more than one bond or different recovery assumptions are imposed.
In particular, we analyze the effect of beta distributed loss rates.
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1 Introduction

Credit risk has been one of the hot topics in Finance over the past years. There
are mainly two approaches to model credit risk. The first approach is the so-called
structural approach and goes back to Black/Scholes (1973) and Merton (1974).
In this approach a corporate bond is modeled as a contingent claim on the value
of a firm which is assumed to be endogenously given. Starting with Black/Cox
(1976), there are several extensions in which default is modeled as the first hitting
time of the firm value on a predefined barrier. The advantage of these models is
also their main drawback: One needs to model the whole capital structure of a firm.
Besides, if the firm value is assumed to follow a diffusion process, the default time is
predictable implying that the spreads of short term debt are almost zero which is in
sharp contrast to empirical short term spreads. The second approach is the so-called
reduced form approach and was developed in the papers by Jarrow/Turnbull (1995),
Duffie/Singleton (1999a), and Lando (1998), among others. In this approach default
is modeled as the first jump of a (compound) Poisson process and therefore default
comes as a sudden surprise. Seen from a mathematical point of view, this means
that the corresponding stopping time is not predictable. This has the nice economic
implication that spreads of short term debt are greater than zero. Furthermore, the
capital structure needs not to be explicitly modeled in this approach.1

Portfolio optimization has been a heavily researched field of Finance as well. Al-
though Korn/Kraft (2003) and Kraft/Steffensen (2004) analyzed portfolio problems
with defaultable assets in a firm value framework, to the best of our knowledge, there
has not been much work on portfolio problems with default risk where default is
modeled applying a reduced-form approach. A first exception is the original work by
Merton (1971) who solves a portfolio problem in the special case of a reduced form
model with constant interest rates and constant default intensity. Of course, it is
relevant to study problems where both assumptions are relaxed. A second exception
are the papers by Hou/Jin (2002), Hou (2003), and Walder (2001). These authors
use a diversification argument presented in an insightful paper by Jarrow/Lando/Yu
(2005) implying that event risk factors (formally counting processes) do not show up
in well-diversified portfolios of corporate bonds and the impact of random recovery
on portfolio management cannot be studied. Consequently, the solution of these
simplified portfolio problem can be found analogously to a problem with stochastic
interest rates but without default risk.

Let us briefly comment on the afore-mentioned diversification argument which holds
only in the limit when the number of corporate bonds goes to infinity. In this
case, it can be shown that, roughly speaking, only a finite number of corporate
bonds admit non-zero market prices of risk for default-timing risk, otherwise the
market offers so-called asymptotic arbitrage opportunities, a notion studied by Ka-
banov/Kramkov (1998). Since investors can usually invest in default-free bonds or

1In an insightful paper by Duffie/Lando (2001) it is demonstrated how these approaches can

be unified by assuming that the firm value is not observable all the time.
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stocks as well, investment in defaultable bonds adds no risk to a portfolio beyond
the individual corporate default-timing risk. Therefore, one would expect the risk
adverse investor not to invest in a defaultable bond unless he receives a positive
market price of default-timing risk. In the following, we shall see that this intuition
holds true. But as just explained, a positive market price of default-timing risk is
not at all contradicting the no asymptotic arbitrage condition, even if the number
of corporates tends to infinity. For all these reasons, in this paper we consider a
portfolio problem with stochastic interest rates and default risk which is modeled
by a reduced-form approach. We analyze the effect of default-timing risk and the
risk of random recovery on portfolio management. Furthermore, it is demonstrated
how the possibility of joint defaults affects portfolio decisions. All these points were
not discussed in the above-mentioned papers.

The paper is structured as follows: In Section 2, we introduce a generalized version
of the multiple default framework by Schönbucher (1998) where we allow for joint
default events as introduced by Duffie/Singleton (1999b). Section 3 describes a
portfolio problem with corporate bonds. For the general framework, Section 4
derives a characterization of the optimal solution and the optimal portfolio strategy.
Section 5 analyzes the first-order conditions of the portfolio problem. In Section
6, we illustrate our results in the model of Jarrow (2001). Section 7 considers
a situation where the investor cannot hedge against shifts in the state variables.
Section 8 conludes. Technical details are relegated to the Appendix.

2 A Multiple Default Framework

Let (Ω,F ,F = {Ft}t≥0 ,P) be a filtered probability space. The economy is driven
by a K-dimensional state process Z = (Z1, . . . , ZK) consisting of economic variables
like the interest rates, stock indices, or additional macroeconomic factors. The k-th
entry of Z follows the diffusion process:

dZk(t) = αk(t)dt + βk(t)dW k(t),

where W is a K-dimensional correlated Brownian motion with < W i,W j >t= ρi,jt

and αk as well as βk are real-valued functions of t and Z(t). Here and in the following
we assume that the coefficients of all stochastic differential equations (SDEs) are
predictable processes which are sufficiently integrable such that the SDEs possess
unique solutions.2 The state diffusions can be rewritten using a K-dimensional
standard Brownian motion W with uncorrelated coordinates:

dZk(t) = αk(t)dt + βk(t)′dW (t),

where β is a triangle matrix and βk is its k-th row.3 In the economy, the short
rate is a function of time t and state Z(t). Of course, the short rate itself may be

2See, e.g., Protter (2004), pp. 249ff.
3For instance, if W is two-dimensional we obtain W 1 = W1 and W 1 = ρ1,2W1 +

√
1− ρ1,2W2.

This is a called a Cholesky decomposition.
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one of the components of Z. Let ηZ = (ηZ
1 , . . . , ηZ

K) be a predictable process being
a function t and Z(t). Assuming sufficient integrability,4 ηZ defines a risk-neutral
measure Q via Girsanov’s theorem such that

dWQ(t) = dW (t) + ηZ(t)dt,

is the increment of a K-dimensional Brownian motion under Q. The process ηZ

is said to be the market price of risk of the diffusion part of the model which is
represented by the state process Z.

In this economy, there exist firms having issued I corporate zero-coupon bonds
(defaultable bonds). The bond payoffs are affected by J different kinds of credit
events each modeled by a series of stopping times {τjn}n∈IN , j = 1, . . . , J . The
impact of a credit event triggered by factor j on the bonds is given by a series of
I-dimensional markers {Yjn}n∈IN taking values in a mark space (E, E) such that
Yjn = (Y1jn, . . . , YIjn). The corresponding counting processes are defined by

Nj(t, A) :=
∑

n≥1

1{τjn≤t}1{Yjn∈A}

and the associated counting measures by µj((0, t], A) := Nj(t, A), t ≥ 0, A ∈ E .
The process Nj(·, A) counts the credit events being triggered by factor j and leading
to an impact of A ∈ E on the corporate bonds. For instance, if one assumes
that a marker represents a fractional loss of the bonds’ notional, the event A =
[0.2; 0.4]× . . .× [0.2; 0.4] stands for defaults leading to losses between 20% and 40%.
Furthermore, we define the counting processes Nj(t) := Nj(t, E), j = 1, . . . , J ,
counting all credit events triggered by factor j. The payoff of the i-th bond is
defined as follows:

Bi(Ti, Ti) =
J∏

j=1

Nj(Ti)∏
n=1

(1− Lij(τjn)), (1)

The loss rate Lij is a predictable function of the default time τjn, the corresponding
state Z(τjn), and the marker Yjn, i.e. there exists a predictable function lij such that
Lij(t) = lij(t, Z(t), Yj(t)), where the process Yj(t) denotes the piecewise constant,
left-continuous time interpolation of {Yjn}n≥1. It is assumed that Lij takes values
in [0, 1) almost surely, i.e. total losses are excluded. To shorten notations, we will
in the following omit the functional dependency of lij on the state Z(t).

This framework is inspired by Duffie/Singleton (1999b) and allows us to model
various kinds of joint credit events.5 In applications, however, one will impose more
structure on the model by assuming that the counting processes trigger firm specific,
sectoral, or global default events. Besides, it may be a reasonable assumption that
the i-th element of the marker affects only the i-th bond, i.e. Lij depends only on
Yij . Even in this case it makes sense to distinguish between Lij and Yij because
there are in general two ways to model the loss rate: Firstly, one can assumes that

4A sufficient condition would be that ηZ satifies Novikov’s condition. See, e.g., Protter (2004).
5We will further comment on this point at the beginning of Section 5.3.
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Yij is the loss rate itself possessing some distribution on [0, 1] such as the beta
distribution. In this case, we have lij(t, z, y) = y. Secondly, one can assume that
each Yijn has some arbitrary distribution and then transform the realizations to
[0, 1]. If, for instance, this transformation is carried out by a logit transformation,
then lij(y) = ey

1+ey , where we disregard possible time- and state-dependencies.

The above described recovery regime is known as multiple-default model (MD) in-
troduced by Schönbucher (1998). It can be shown that, under certain conditions,
MD is equivalent to the assumption of recovery of market value (RMV). Further-
more, the assumption of recovery of treasury (RT) can be considered as special case
of RMV because under the RT-assumption a corporate bond can be interpreted as
a portfolio of a default-free bond an a defaultable bond with zero recovery.

We assume that N is a multi-dimensional Cox process with risk-neutral intensity
λQ = (λQ

1 , . . . , λQ
J ) being a function of time t and state Z(t). As a consequence, the

coordinates of N are independent if one conditions on the history of Z. Denoting
the risk-neutral compensator measure of µj by νQ

j , we further obtain:

νQ
j (dt, dy) = KQ

j (t, dy)λQ
j (t)dt,

where KQ
j (t, dy) is a risk-neutral probability measure on (E, E) providing the risk-

neutral distribution of the marker {Yjn}n≥1. For fixed y ∈ E, we allow KQ
j to be a

predictable function of time t and state Z(t). For notational convenience, we again
omit the dependency on the state Z(t). The bond dynamics are modeled as follows:

dBi(t, Ti) = Bi(t−, Ti)


r(t)dt +

K∑

k=1

σik(t)dWQ
k (t)−

J∑

j=1

dMQ
ij (t)


 , (2)

where σik is a function of time t and state Z(t) and

dMQ
ij (t) =

∫

E

lij(t, y)
(
µj(dt, dy)− νQ

j (dt, dy)
)

= lij(t, Yj(t))dNj(t)− l̄Qij(t)λ
Q
j (t)dt

is a (local) Q-martingale. Here l̄Qij(t) =
∫

E
lij(t, y)KQ

j (t, dy) is the risk-neutral local
expected loss rate which, by assumption, is a function of time t and state Z(t).
Changing the measure to the physical measure, we arrive at

dBi(t, Ti) = Bi(t−, Ti)


(r(t) + χi(t))dt +

K∑

k=1

σik(t)dWk(t)−
J∑

j=1

Lij(t)dNj(t)


 ,

(3)
with

χi =
J∑

j=1

l̂ijλjηj +
K∑

k=1

σikηZ
k ,

where l̂ij(t) =
∫

E
lij(t, y)φj(t, y)Kj(t, dy) and λj = λQ

j /ηj . The probability measure
Kj describes the distribution of the marker Yj under the physical measure and φj >

0 is a Girsanov kernel with KQ
j (dt, dy) = φj(t, y)Kj(dt, dy) and

∫
E

φj(t, y)Kj(t, dy) =
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1. The process λj is the intensity under the physical measure and ηj − 1 > −1 is
the associated Girsanov kernel. Both Girsanov kernels can be interpreted as risk
premiums and l̂ij is the risk-adjusted expected loss rate under the physical measure.
For risk averse investors, l̂ij is usually greater than the expected loss rate under the
physical measure, l̄ij(t) =

∫
E

lij(t, y)Kj(t, dy).6 It is assumed that the kernels are
predictable functions of t, Z(t), and, in the case of φj , of y ∈ E. Therefore, χi is
a predictable function of t and Z(t) as well. Note that, by assuming sufficient inte-
grability, ηZ , η, and φ uniquely define the risk-neutral measure Q via its Girsanov
density.

3 Portfolio Problem

Our goal is to analyze portfolio problems with corporate bonds. Additionally, in-
vestors may be able trade in other securities such as default-free bonds or bond
indices as well as stocks or stock indices with dynamics7

dSh(t) = Sh(t)
[
(r(t) + ah(t))dt + bh(t)′dW (t)

]
,

where the processes ah and bh are functions of t and state Z(t), h = 1, . . . , H.
We refer to these securities as indices. Consequently, the investor of our portfolio
problem can allocate his funds between a (locally risk-free) money market account
M , I defaultable bonds, and H indices. He maximizes utility from intermediate
consumption and terminal wealth at final time T ≤ min{Ti, i = 1, . . . , I} with
respect to the following utility function

U(t, x) =
1
γ

ψ(t)1−γxγ , γ < 1,

where ψ(t) = ψ(t, Z(t)) is a non-negative state-dependent discount process reflect-
ing the investor’s time preferences. Disregarding consumption for the moment, the
investor’s time-t wealth is given by

X(t) =
H∑

h=1

ϕS
h(t)Sh(t) +

I∑

i=1

ϕi(t)Bi(t, Ti) + ϕM (t)M(t),

where ϕS
h(t) denotes the number of shares of index h held in the investor’s portfolio

at time t. The processes ϕi and ϕM denote the number of shares invested in the i-th
corporate bond and the money market account. Restricting our considerations to
self-financing strategies (ϕS , ϕ, ϕM ) and applying Ito’s formula yields the dynamics

dX(t) =
H∑

h=1

ϕS
h(t)dSh(t) +

I∑

i=1

ϕi(t−)dBi(t, Ti) + ϕM (t)dM(t),

6See, e.g., Bakshi/Madan/Zhang (2001).
7More general, the market may consist of contingent claims on the state variables and the point

processes. We implicitly assume that the maturity of the claims is greater than the investor’s

horizon.
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The proportions invested in the h-th index and the i-th bond are given by πS
h =

ϕS
hSh/X and πi = ϕiBi/X. Therefore, we obtain the so-called wealth equation:

dX = X−[
(r +

∑
hπS

h ah +
∑

iπiχi)dt +
∑

kπ̃kdWk −
∑

j

∑
iπ
−
i LijdNj

]
,

where π̃k :=
∑

hπS
h bhk +

∑
iπiσik, X− := X(t−), and π−i := πi(t−). To shorten

notations, here and in the following we deliberately omit functional dependencies
whenever this causes no confusion. Since

∑
hπS

h ah +
∑

iπiχi =
∑

iπiλ̄i +
∑

kπ̃kηZ
k

with λ̄i =
∑

j l̂ijλjηj , rewriting the wealth equation gives

dX = X−[
(r +

∑
iπiλ̄i +

∑
kπ̃kηZ

k )dt +
∑

kπ̃kdWk −
∑

j

∑
iπ
−
i LijdNj

]
. (4)

If we disregard the counting processes, our problem coincides with the classical
continuous-time portfolio problem of Merton (1969, 1971, 1973). In a complete
market setting with stochastic short rate, the candidate for the value function, G,
can be factorized using the separation G(t, x, z) = 1

γ xγf(t, z)1−γ , where f is given
via a Feynman-Kac representation. Unfortunately, if we have both incompleteness
and a stochastic short rate, this nice representation result breaks down.8

It is convenient to distinguish between completeness of the continuous part of the
model represented by the K-dimensional Brownian motion and completeness of
the (pure) jump part represented by the J-dimensional counting process N . For
instance, if at least K securities are traded which depend on the diffusion factors
only, i.e. H ≥ K, the continuous part of the model is complete given that the
corresponding volatility matrix is regular. Depending on the structure of the loss
rate matrix l = (lij), there may be situations where one can achieve the same result
with defaultable bonds only. Roughly speaking, this is possible if one can set up
trading strategies such that the relevant counting processes cancel out.

As above mentioned, the literature so far suggests that closed-form solutions for
portfolio problems with stochastic interest rates and unhedgeable state variables
are not available.9 This is even valid if we disregard default risk. The focus of our
paper, however, are portfolio problems with default risk and we wish to characterize
the solutions as explicit as possible. For this reason, in Sections 4 through 6 we
assume that the diffusion part of the model is complete. From the investor’s point
of view this assumption means that he is able to hedge his portfolio against shifts
in the state process separately from his investment in corporate bonds. Section
7 discusses the consequences of dropping this assumption and explicitly solves a
corresponding portfolio problem where the unhedgeable state variable is the short
rate.

8See, e.g., Zariphopoulou (2001). One can verify that the Feynman-Kac representation result

does not work if we have both incompleteness and default-free stochastic interest rates.
9Clearly, this statement depends on the opinion about what one is willing to accept as a closed-

form solution.
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Completeness of the continuous part allows us to treat the processes π̃k as control
variables. To see this, let the first K indices span the continuous part of the model.
Furthermore, assume that in a first step we have already computed optimal controls
π̃∗k and π∗i . By completeness of the continuous part, the system of linear equations
π̃∗k =

∑
hπS

h bhk +
∑

iπ
∗
i σik, k = 1, . . . , K can then uniquely be solved for πS

h ,
h = 1, . . . , K, establishing a one-to-one correspondence between (π̃1, . . . , π̃K) and
(πS

1 , . . . , πS
K). In view of Merton (1973), this is a consequence of his n-fund theorem.

In our problem one can think of π̃k as a proportion invested in a portfolio of assets
being affected only by the Brownian motion Wk. Therefore, the (K+I)-dimensional
process (π̃, π) can be considered as the control variable of the problem. In view of
the wealth equation (4), this leads to a clean separation of the continuous and
the jump part of the model. If the continuous part of the model is incomplete,
the variables π̃ and π cannot be chosen independently and the two step approach
discussed above breaks down.

Since we have discussed the completeness assumption from a more general perspec-
tive so far, let us finally comment on some economic implications of the completeness
assumption in the context of our particular portfolio problem with corporate bonds.
For this reason, we recall the meaning of the state variables in our portfolio prob-
lem: Although the state variables can in principle affect all parameters of the model
including risk premiums, their main purpose is to capture randomness of default
intensities via a Cox process approach, i.e. these intensities are assumed to depend
on time and state. From this point of view, assuming the continuous part of the
model to be complete means that randomness in intensities is allowed, but needs
to be hedgeable. To illustrate this point, we briefly consider the model by Jarrow
(2001) which actually inspired us to analyze the implications of the completeness
assumption for portfolio management. A detailed discussion of his model is how-
ever postponed to Section 6. Jarrow’s state process consists of the short rate and
an equity index. Therefore, his model satisfies the completeness assumption given
that the investor can trade in both default-free bonds and the equity index. This
seems to be a reasonable requirement and is in line with Jarrow’s assumptions. To
summarize, the completeness assumption of the continuous part implies that ran-
domness in intensities does not add additional incompleteness to the model. Note
that, whatever assumption is imposed on the continuous part (completeness as in
Section 4 through 6 or incompleteness as in Section 7), the model is in general an
incomplete one stemming from random recovery rates or common default factors.

4 Characterization of the Optimal Solution

In this section, we derive a solution of the investor’s portfolio problem under the
assumption that he is able to hedge his portfolio against shifts in the state process.
If we allow for consumption as well, the wealth equation (4) reads

dX = X−[
(r +

∑
iπiλ̄i +

∑
kπ̃kηZ

k )dt +
∑

kπ̃kdWk −
∑

j

∑
iπ
−
i LijdNj

]− cdt.
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The investor faces the following optimization problem:

max
π̃,π,c

E

[∫ T

0

1
γ ψ(s)1−γc(s)γds + 1

γ ψ(T )1−γ
(
X π̃,π,c(T )

)γ

]
. (5)

Calculations detailed in Appendix A.1 lead to the following first-order conditions
determining the optimal portfolio strategy and consumption

λ̄i =
∑

jλj

∫

E

lij(y)(1−∑
νπ∗ν lνj(y))γ−1 Kj(dy), i = 1, . . . , I, (6)

π̃∗k = 1
1−γ ηZ

k +
∑

mβmk
fm

f
, k = 1, . . . ,K, (7)

c∗ = x
ψ

f
,

where the function f satisfies the PDE

0 = ft − r̃f +
∑

mα̃mfm + 0.5
∑

n

∑
m

∑
kβnkβmkfnm + ψ (8)

with

r̃ = − γ
1−γ

(
r +

∑
iπ
∗
i λ̄i + 0.5 1

1−γ

∑
k(ηZ

k )2

+ 1
γ

∑
jλj

{∫

E

(1−∑
iπ
∗
i lij)γ Kj(dy)− 1

})
,

α̃m = αm + γ
1−γ

∑
kηZ

k βmk

and fm denotes the first partial derivative of f with respect to the m-th state
variable. The value function measuring the optimal utility for a given inital value
of the state process, (t, x, z), is given by G(t, x, z) = 1

γ xγf(t, z)1−γ .10 In the sequel,
we refer to the first-order conditions for the optimal corporate bond proportions
(6) as FOC. Due to (7), the portfolio proportions π̃k are of Merton-Breeden type,
i.e. each consists of a myopic term and Merton-Breeden terms taking the random
changes in the state variables into account. Furthermore, under mild regularity
conditions, the I equations (6) implicitly define the optimal proportions π∗i for the
corporate bonds. In general, these equations cannot be solved explicitly for π∗i . If,
however, the jumps are deterministic and the jump part of the model is complete
as well, then this is possible. We will discuss the FOC in the next section. In
any case, under mild technical conditions, we get solutions for π∗i , either implicitly
or explicitly. Most importantly, the corporate bond proportions π∗i depend on the
state variables, but not on f or its derivatives. For this reason, the PDE (8) for f

is of Black-Scholes-type. Assuming (8) to possess a classical solution,11 we can thus
call upon the Feynman-Kac theorem to give the following representation for f :

f(t, z) = Ẽ
t,z

[∫ T

t

e
−

∫ s

t
r̃(u) du

ψ(s) ds + e
−

∫ T

t
r̃(u) du

ψ(T )

]
, (9)

10See Appendix A.1 for a formal definition of the value function.
11See Appendix A.2 for more details.
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where the expectation Ẽ is calculated with respect to the measure P̃ defined by the
Girsanov density

dP̃
dP

∣∣∣∣∣
Ft

= exp
(
−0.5( γ

1−γ )2
∫ t

0

|ηZ(s)|2 ds + γ
1−γ

∫ t

0

ηZ(s)′ dW (s)
)

. (10)

The dynamics of the state process under P̃ are given by

dZn = α̃ndt +
∑

kβnkdW̃k

where W̃ is a Brownian motion under P̃ defined via dW̃k = dWk − γ
1−γ ηZ

k dt.

This completes our characterization of the optimal solution. Depending on the
specification of the model, it may be possible to compute the function f explicitly.
In Section 6, we will discuss an example where this is possible. Otherwise, one
needs to resort to numerical methods. Our analysis shows, however, that the FOC
does not depend on the function f . Furthermore, if we stand at time t, the inten-
sities can be treated as if they were constant. Therefore, one can solve the FOC
without specifying the intensity processes and taking their time-t value as given.
These properties are consequences of the assumption that the continuous part of the
model is complete, i.e. the investor is able to hedge his portfolio against shifts in the
state variables. This leads to a kind of separation result: The optimal proportions
invested in corporate bonds are characterized independently of the value function of
the model. Consequently, we can analyze these proportions without having calcu-
lated the value function. The decision process thus follows a two-step procedure: In
a first step, the optimal proportion invested in the corporate bonds are calculated.
In a second step, the optimal proportion of the indices are determined. The indices
serve as hedging instruments against shifts in the state variables. To discuss this
second step, we need to specify the state processes.

5 Solving the FOC

Under the completeness assumption of the diffusion part, we can characterize the
optimal portfolio decision concerned with corporate bonds independently of other
available investment opportunities. In this section, we consider three different sit-
uations which are of particular interest.

5.1 Completeness

If both the continuous and the jump part of the model are complete, then there
exists a convenient procedure to compute the optimal proportions. It is one of
the core results of Finance that, loosely speaking, a financial market is complete
if the number of traded assets is equal to (or greater than) the number of sources
of risk. For our particular problem with a finite number of traded assets, the
market can thus be complete only if finitely many jump sizes possess strictly positive

9



probabilities. For this reason, let all loss rates be deterministic functions of time,
i.e. lij depends on time t only. Then a necessary condition for the market to be
complete is that the number of traded corporate bonds is greater than the number
of different sources of credit events, I ≥ J . Without loss of generality, assume
I = J . Setting kj := (1−∑

νπ∗ν lνj)γ−1 leads to a system of linear equations for kj :

λ̄i =
∑

j lijλjkj , i = 1, . . . , I,

which has then unique solutions k∗j , j = 1, . . . , J . In a second step, one can solve
the following system of linear equations for π∗i , = 1, . . . , I:

(k∗j )
1

γ−1 = 1−∑
νπ∗ν lνj , j = 1, . . . , J.

Hence, the problem reduces to solving successively two systems of linear equations.

5.2 No Joint Defaults

One can assume that each default factor is associated with exactly one corporate
bond, i.e. joint default events cannot occur. In this case, the factor Ni counts the
number of defaults of that firm which issued the i-th corporate bond and the payoff
(1) of this bond simplifies into

Bi(Ti, Ti) =
Ni(Ti)∏
n=1

(1− Yin),

where, for simplicity, the loss rate is assumed to be li(t, Yi(t)) = Yi(t). Therefore,
the first-order condition for the optimal proportion invested in the i-th corporate
bond reads

l̂iηi =
∫

[0,1]

y(1− πiy)γ−1Ki(dy) (11)

with l̂i =
∫
[0,1]

φi(y)yKi(dy). We wish to stress that the default intensity cancels out
meaning that our result holds independently of a specific choice of this intensity.12

In general, the optimal proportion πi is state- and time-dependent because φi, ηi,
and Ki can be state- and time-dependent. Otherwise, the left-hand side is simply
a constant implying that the proportion πi is a constant as well. If the loss rate is
also constant implying l̂i = l̄i = li = Yi = const., we immediately get

π∗i =
1− η

1
γ−1
i

li
, (12)

which is a special case of the complete case discussed in Subsection 5.1. In the
sequel, we will frequently compare the optimal proportions of more involved models
with this result. It can be considered as a rule of thumb for an investor deliberately
ignoring the randomness of recovery rates. We refer to this proportion as naive
strategy. Figure 5.1 demonstrates how this benchmark result varies with different

12Note that η does not cancel out. Since η is the ratio of risk-neutral default intensity to physical

default intensity, this ratio between default intensities plays an important role.
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values of the risk premium ηi and different degrees of risk aversion γ. The loss rate
li is equal 0.5. It can be seen that the optimal proportion increases (decreases) with
the risk premium (with the degree of risk aversion). The shape of the hyperplane
looks very similar for different choices of the loss rate, but the absolute values of
the optimal proportions are greater (smaller) for smaller (greater) loss rates.

[INSERT FIGURE 5.1 ABOUT HERE]

To model recovery risk, in applications loss rates are frequently assumed to be beta
distributed. This is a reasonable assumption because the probability mass of a
beta distribution is concentrated on the interval [0, 1]. Besides, the class of beta
distributions is rather flexible allowing for various kinds of loss distributions. Under
this assumption, Ki has a density given by Ki(dy) = ypi−1(1 − y)qi−1dy/B(pi, qi),
where pi and qi are positive constants and B(pi, qi) =

∫ 1

0
spi−1(1 − s)qi−1ds is the

beta function. Loosly speaking, pi controls for the shape of the distribution of large
losses and qi for the shape of the distribution of small losses. Some examples can
be found in Figure 5.4. Note that, in general, we allow the loss distribution Ki to
depend on time and state. In the particular case of a beta function, this means
that pi and qi may depend on time and state. Since for a given time point t, both
variables can be considered as constants, we disregard possible dependencies in this
subsection. The FOC reads:

l̂iηi =
1

B(pi, qi)

∫ 1

0

ypi(1− πiy)γ−1(1− y)qi−1 dy. (13)

Using the hypergeometric function h, this can be rewritten in a compact way:

l̂i
l̄i

ηi = h(pi + 1, 1− γ, pi + qi + 1, π), (14)

where we refer the reader to Appendix A.3 for further details on the hypergeometric
function. The ratio between the risk-adjusted expected loss rate and the actual
expected loss rate, l̂i/l̄i, can be interpreted as a risk premium due to recovery risk.
Hence, the left-hand side is the product of two risk premiums: The risk premium
ηi stems from the fact that generally a default can happen (default-timing risk
premium) and the risk premium l̂i/l̄i stems from the fact that the impact of a
default event is random (premium for recovery risk). According to the FOC (14)
the optimal proportion needs to be chosen such that the product of risk premiums
is matched by the hypergeometric function on the right-hand side.

In general, equation (13) needs to be solved by numerical integration techniques.
If, however, pi, qi ∈ IN , which already allows for a wide range of loss distributions,
we obtain

l̂iηi =
(pi + qi − 1)!

(pi − 1)!(qi − 1)!

qi−1∑

k=0

(
qi − 1

k

)
(−1)k

∫ 1

0

ypi+k(1− πiy)γ−1 dy.

The integral on the right-hand side has a closed form solution which can be found by
partial integration. For instance, given that the loss rates are uniformly distributed
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(pi = qi = 1), this simplifies into the following non-linear equation for πi:

0 = 1− (1 + γ)πi(1− πi)γ − (1− πi)1+γ − l̂iηiγ(1 + γ)π2
i .

Note again that we are able to derive these results without specifying the default
intensities or the term structure of default-free bonds. We end this subsection by
discussing some numerical examples. From the FOC (14) it is obvious that for
given γ, pi, and qi only the product of the risk premiums, l̂iηi/l̄i, is relevant for
computing the optimal proportion. For instance, the choices l̂i/l̄i = 1.5 and ηi = 1
as well as l̂i/l̄i = 1 and ηi = 1.5 lead to the same optimal proportion. Therefore, in
the following numerical examples we set φi = 1 and vary ηi only, i.e. we use ηi as the
scaling factor of the overall risk premium. Firstly, we fix the investor’s risk aversion
γ = −5 and set ηi = 1.5.13 The goal is now to analyze how the optimal proportion
changes with different values for pi and qi of a beta distribution. The results are
detailed in Figures 5.2 and 5.3. For the convenience of the reader, Figure 5.4 plots
some characteristic shapes of a beta distribution. In principle, large values of pi

(qi) increase the probability of large (small) losses. For pi = qi the distribution is
symmetric including the uniform distribution as a special case for pi = qi = 1. For
pi > qi (pi < qi) the distribution is left-skewed (right-skewed). If both values are
greater than one, the distribution has a single hump. If, however, one of the values
is smaller than one, then the corresponding tail value goes to infinity. Having these
properties of the class of beta distributions in mind, the results shown in Figure
5.2 are pretty intuitive. If pi (qi) is increased, i.e. the probability of large losses
increases (decreases), then the investor reduces (increases) his exposure to default
risk. In general, the optimal proportion behaves rather moderately. Only for high
values of qi the proportion increases heavily. Loosely speaking, in this case the loss
given default is small compared to the risk premium and, therefore, the corporate
bond is a good deal for the investor. In Figure 5.3 we compare the optimal strategy
satisfying (14) with the naive strategy (12) where the constant loss rate li is set
to be equal to the expected value of the beta distribution, pi/(pi + qi). The figure
shows the relative deviation (π∗i − πc

i )/πc
i , where πc

i denotes the naive strategy.
Since the naive case does not take random losses into account, we have reduced
the risk premium to ηc

i = 1.3. We emphasize that the shape of the plane remains
almost the same if ηc

i is varied. The only consequence of varying ηc
i is that the whole

hyperplane is moved up or down. For instance, setting ηc
i = ηi, the hyperplane is

located below zero. For our parameter choice, the message of Figure 5.3 is clear:
If the parameter pi is large (small), i.e. large losses become more (less) likely, then
the naive strategy underestimates (overestimates) the optimal solution. On the
other hand, the deviation decreases with the parameter qi. The main reason is
that a constant loss rate approximated by the expected value cannot capture the
randomness of the loss rate. Finally, Figure 5.5 shows how the optimal proportion
varies with the risk aversion and the risk premium. The parameters of the beta

13See Berndt/Douglas/Duffie/Ferguson/Schranz (2004) for an extensive analysis of the value of

default risk premiums.
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distribution are pi = 6 and qi = 2. We obtain the intuitive result that the optimal
proportion increases with the risk premium and decreases with the investor’s risk
aversion.

[INSERT FIGURES 5.2, 5.3, 5.4, 5.5 ABOUT HERE]

5.3 Joint Defaults

Schönbucher (1998) points out that the default correlation induced by correlated
intensities following diffusion processes may be too low for relatively high-quality
entities. For this reason, in this section we also allow for joint defaults as introduced
by Duffie/Singleton (1999b). They assume that upon certain credit events two or
more firms may default on its debt. These default events could include for instants
liquidity breakdowns or political events such as the acts of foreign governments.
As noted in their paper, although correlations in the incidence of defaults within a
given year are realistically captured, the model may imply an unrealistic amount of
default within a given week or month. Since portfolio decisions are usually long-term
decisions, this problem seems to be not so severe in our context.14

To formalize the idea of common default events, we add one additional default
factor to the model of Subsection 5.2 such that every corporate bond depends on
this factor as well. The corresponding counting process is denoted by NM . When
this factor is triggered, an I-dimensional vector of loss rates is drawn from some
distribution KM (dy), y = (y1, . . . , yI) ∈ [0, 1]I . If the loss rates are independently
distributed, the distribution can be rewritten as KM (dy) = K1M (dy1) . . .KIM (dyI),
where KiM (dyi) denotes the loss distribution of the i-th bond with respect to the
common factor. Clearly, we can assume that some of the bonds do not depend on
NM implying that the corresponding distributions KiM are Dirac measures concen-
trated at zero.

In order to solve the described problem, we need to consider the following first-order
conditions for the optimal corporate bond proportions:

λ̄i = λi

∫

[0,1]

yi(1− πiyi)γ−1Ki(dyi) + λM

∫

[0,1]I
yi(1−

∑
νπνyν)γ−1KM (dy)

where λ̄i = l̂iλiηi + l̂iMλMηM . In contrast to (11), the intensities do not cancel
out implying that the optimal proportions π∗i are in general state dependent. By
specifying distributions for Ki and KM , one can solve these conditions numerically.
To concentrate on joint defaults only, we assume that the loss rates belonging to
the bond specific factors are constant. This assumption allows us to use the concise
result (12) as benchmark case and to abstract away from effects stemming from
stochastic loss rates. Furthermore, we only consider a portfolio problem with two
corporate bonds because this situation allows us to highlight the main results while
possessing rather concise first-order conditions. The loss rates belonging to the

14See Duffie/Singleton (2003), pp. 247ff, for a detailed discussion of this issue.
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common factor are modeled in the following way:15

YiM =





liM ∈ (0, 1) with piM = P (YiM = liM ) ∈ (0, 1),

0 with 1− piM

(15)

leading to loss rates which are Bernoulli distributed. Note that liM has the inter-
pretation of a loss rate given default which is assumed to be constant. The FOC
for the optimal corporate bond proportions reads:

λ̄i = λili(1− πili)γ−1

+ λMpiM liM [pkM (1− πiliM − πklkM )γ−1 + (1− pkM )(1− πiliM )γ−1],

where i, k ∈ {1, 2}, i 6= k, and λ̄i = liλiηi + piM liMφiMλMηM . Recall that the
loss rate li and the loss rate given default liM are constants. Besides, the risk
premiums ηi, ηM , and φiM are assumed to be constants as well. For this reason,
λ̄i is weighted average of the intensities λi and λM which are state-dependent.
Therefore, the optimal proportions π∗i are state-dependent although li and liM are
constants. To calculate the optimal proportions, we need estimates for the time-t
values of the intensities. Although these values are typically estimated by specifying
the dynamics of the intensities, the exact specification is irrelevant for computing π∗i
and for a fixed point in time t we can treat the intensities as if they were constant.
Let us now demonstrate our results by a numerical example.

[INSERT FIGURES 5.6, 5.7, 5.8, 5.9 ABOUT HERE]

Figures 5.6 and 5.7 show how the optimal proportions π∗1 and π∗2 vary with the
probabilities p1M and p2M . The relevant parameters are chosen as follows: ηM =
1.5, λM = 0.02, γ = −5, li = liM = 0.5, ηi = 1.5, φiM = 1.2, λi = 0.05 for i ∈ {1, 2}.
It can be seen that due to the choice of parameters the figures are symmetric.
Note that the benchmark case without a common default factor corresponds to the
point in the hyperplane where p1M = p2M = 0. At first glance, it is somewhat
counter-intuitive that for small p2M the proportion π∗1 increases with p1M . The
reason, however, is that the investor is rewarded with a higher risk premium if p1M

increases because p1M serves as a scaling factor in the excess return of the corporate
bond. For the behavior of the optimal proportions it is thus crucial how large the
default-timing risk premium of the common factor, ηM , is compared to the other risk
premiums in the model. This becomes clear from Figure 5.8 where ηM is reduced
to 1.2. In this case, the optimal proportions invested in the first bond decreases
in all directions. On the other hand, for ηM = 2.0 the proportion π∗1 increases in
all directions (except for p2M close to one). This is detailed in Figure 5.9. We
wish to remark that a similar behavior can be observed for the risk premiums φ1M

and φ2M . The message of this numerical example is thus as follows: If a common
15With a slight abuse of notation, we denote the constant loss rate given default by liM although

the unconditional loss rate is not constant but Bernoulli distributed. In the same way, we denote

the corresponding realization of the risk premium by φiM instead of φiM (liM ).
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default factor is relevant, the behavior of the optimal proportions (compared to
the benchmark case) critically hinges upon the structure of the risk premiums. In
general, it is not clear in advance whether the proportions increase or decrease. As
a rule of thumb, the proportions decrease with the corresponding probabilities if the
risk premiums associated with the common factor are close to one. How large these
risk premiums need to be such that the proportions increase basically depends on
the values of the other risk premiums.

We end this section by a comment on the model behind the numerical results.
We have here worked with constant individual loss rates and Bernoulli distributed
common loss rates as suggested by Duffie/Singleton (1999b). However, this is not a
unique specification of the loss rate distribution within our setup. Another model
which specifies the same distribution is the following: A constant common loss
rate triggered with intensity λMp1Mp2M and two individual default factors for each
corporate with constant loss rates triggered with intensities λ1 and λMp1M (1 −
p2M ) and with intensities λ2 and λMp2M (1 − p1M ), respectively. Then we have
no Bernoulli distributions but instead five default factors. A third alternative is to
collect the four individual default factors into two individual factors with intensities
λ1 +λMp1M (1−p2M ) and λ2 +λMp2M (1−p1M ). Then one could keep the constant
common loss rate and instead introduce individual Bernoulli distributed loss rates
with probabilities λ1/(λ1+λMp1M (1−p2M ) and λMp1M (1−p2M )/(λ1+λMp1M (1−
p2M ) for the first corporate and similarly for the second. All these specifications
lead to the same distribution and the number of market prices of risk are, of course,
also the same.

6 Jarrow’s Model

So far we have not specified the state process Z and the dependencies of the asset
dynamics on Z. In a series of papers,16 Robert Jarrow and co-authors have investi-
gated a tractable model integrating market and credit risk with correlated defaults.
Correlated defaults arise due to the fact that the firms’ default intensities depend
on common macro-factors, namely the short rate and an equity market index. The
short rate is assumed to follow a Vasicek model,

dr(t) = (θ − κr(t))dt + βdW (t)

with θ and β being constants. The dynamics of a default-free bond with maturity
Tf read

dP (t, Tf ) = P (t, T1) [(r(t) + η̄rdP (t, Tf ))dt− βdP (t, T1)dW (t)] ,

where dP (t, s) = 1
κ (1 − e−κ(s−t)) denotes the duration of the default-free bond

and η̄r is a constant. This specification of the excess return, η̄rdP (t), implies a

16See, e.g., Janosi/Jarrow/Yildiray (2000), Jarrow/Turnbull (2000), Jarrow (2001), and Jar-

row/Yu (2001).
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constant market price of risk ηZ = −η̄r/β. We emphasize that our results hold for
deterministic and bounded market prices of risk as well (i.e. η̄r can be bounded
and deterministic instead of constant). As in Jarrow’s papers, one can introduce a
time-dependent θ in the short rate dynamics to make the model consistent with a
given initial default-free term structure. In general, this implies a time-dependent
η̄r as well.

Since Janosi/Jarrow/Yildiray (2000) found that including an equity market index
does not add additional explanatory power in the pricing of corporate debt, we
assume that the default intensities depend on the short rate only. If the investor
can trade in the equity index, it is straightforward to incorporate the equity index in
our portfolio problem as well and the value function is still given in closed form. In
Jarrow’s model each default factor is associated with exactly one corporate bond, i.e.
joint default events cannot occur. For this reason, we are in the situation described
in Subsection 5.2. The default intensity of the firm which issued the corporate bond
i is assumed to be linear in the short rate, i.e.

λi(t) = λ0
i + λr

i r(t),

where λ0
i and λr

i are constants. Alternatively, one can assume λ0
i to be a determin-

istic function which can then be used to calibrate the model to a given defaultable
term structure (e.g. corporate bond prices or CDS quotes). The state process Z

is one-dimensional and consists of the short rate only. For simplicity, we assume
that the loss rates are i.i.d. and independent from all other random variables in the
model. Besides, the risk premium ηi, which links together the default intensities
under the physical and the risk-neutral measure, is assumed to be constant. The
risk premium φi is assumed to depend on the loss rate Yi only. Then the dynamics
of i-th corporate bond read17

dBi(t, Ti) = Bi(t−, Ti)[(r(t) + χi(t))dt− βdP (t, Ti)(1 + ci)dW (t)− Yi(t)dNi(t)],

where ci = l̂iλ
r
i ηi with l̂i = E[φi(Yi1)Yi1] is a constant18 and the excess return is

given by
χi(t) = l̂iλi(t)ηi + η̄rdP (t, Ti)(1 + ci).

Note that in this setting the expected risk-adjusted jump size l̂i is constant. We
consider a portfolio problem where the investor can put his funds into a money
market account, defaultable bonds, and at least one default-free bond with maturity
Tf greater than the investor’s horizon T . Given our assumptions so far, the wealth
equation (4) reads

dX = X−[
(r +

∑
iπiλ̄i + π̃ηZ)dt + π̃dW −∑

iπ
−
i YidNi

]

17For constant loss rates see Jarrow/Turnbull (2000). The generalization to the setting with

i.i.d. loss rates is straightforward.
18Since the series of loss rates {Yin}n∈IN is i.i.d., without loss of generality we can take expec-

tations with respect to the first loss Yi1.
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with π̃ = −βπfdP (t, Tf ) − β
∑

iπidP (t, Ti)(1 + ci) and λ̄i = l̂iλiηi. The optimal
proportions invested in the corporate bonds are given by equation (11) and are
constant. It remains to determine the value function and the proportion π̃. For
simplicity, we assume that the investor maximizes terminal wealth only and that
the discount factor ψ is equal to one. By (9), the function f is given by f(t, r) =
Ẽ

t,r
[
exp(− ∫ T

t
r̃(u) du)

]
with r̃ = b1r + b0, where

b1 = − γ
1−γ

(
1 +

∑
iπ
∗
i l̂iηiλ

r
i + 1

γ

∑
iλ

r
i {E[(1− π∗i Yi1)γ ]− 1}

)
,

b0 = − γ
1−γ

(∑
iπ
∗
i l̂iηiλ

0
i + 0.5 1

1−γ (ηZ)2 + 1
γ

∑
iλ

0
i {E[(1− π∗i Yi1)γ ]− 1}

)

with E[(1 − π∗i Yi1)γ ] =
∫
[0,1]

(1 − π∗i y)γ Ki(dy), i = 1, . . . , I, are constants. By
standard arguments, we obtain

f(t, r) = eA(t,T )−C(t,T )r (16)

with C(t, T ) = b1
κ (1 − e−κ(T−t) = b1dP (t, T ) and A is a deterministic function

being irrelevant for our further considerations. From (7) we have π̃∗(t) = 1
1−γ ηZ −

βC(t, T ), leading to the following optimal proportion invested in the default-free
bond:

πf (t) =
1

dP (t, Tf )

(
1

1− γ

η̄r

β2
+ b1dP (t, T )−∑

iπ
∗
i dP (t, Ti)(1 + ci)

)
.

If we set πi = 0 for all i = 1, . . . , I, then we obtain the optimal portfolio strategy for
a portfolio problem where the investor can put his funds only into a money market
account and a default-free bond with maturity Tf .19 Compared with this problem,
the investor invests less in the default-free bond because, by investing in corporate
bonds, he is already exposed to interest rate risk. The default-free bond is used
to adjust this exposure such that his overall investment in the default-free interest
rate market is optimal.

In the original version of Jarrow’s model default correlation only arises due to the
fact that a firms default intensities depend on common macro-factors. Clearly, we
can also add joint default factors as in Subsection 5.3. If, however, the intensity
is state-dependent, the optimal corporate bond proportions in general become in-
volved functions of the state variables. Hence, there will not exist a closed-form
solution for f such as the affine representation (16) in the case without joint de-
faults. Although the Feynman-Kac representation (9) for f still holds, one needs to
solve the expectation numerically. If we assume that all intensities are determinis-
tic, i.e. λr

i = 0, then the corporate bond proportions are deterministic as well and
f is again given by (16), where b1 is replaced by − γ

1−γ .

19See, e.g., Korn/Kraft (2001).
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7 Unhedgeable State Variables

So far we have assumed that the investor is able to hedge shifts in the state variables
representing the continuous part of the model. As a consequence, the FOC does
not depend on the function f being a central part of the value function. Therefore,
we were able to analyze the FOC without specifying the state variables. If we drop
the assumption that shifts in the state variables are hedgeable, then this separation
result breaks down. We demonstrate this point for the case where the investor
trades in corporate bonds only. We wish to remark that one gets a similar result
if parts of the state variables are hedgeable. Calculations detailed in Appendix A.4
show that the corresponding FOC reads:

λ̄i +
∑

kηZ
k σik + (1− γ)

∑
m

∑
kβmkσik

fm

f
(17)

= (1− γ)
∑

k

∑
νπνσνkσik +

∑
jλj

∫

E

lij(y)(1−∑
νπν lνj(y))γ−1 Kj(dy).

In contrast, to the previous sections, the FOC also involves terms of Merton-Breeden
type, βmkσik

fm

f . Whereas before the investor invested in corporate bonds to op-
timize exclusively his default risk exposure, he now tries to resolve the trade-off
between this goal and the wish to hedge against shifts in the state variables. For
this reason, the Merton-Breeden terms enter the FOC distorting the clean result (6)
which can be reproduced by setting formally all σik equal to zero in (17). On the
other hand, setting all λj equal to zero, the credit risk vanishes and the corporate
bonds become default-free. In this case, the FOC corresponds to the first-order
condition of a portfolio problem with default-free bonds.

In abstract mathematical terms, the optimal proportions invested in corporate
bonds now depend on f and an explicit Feynman-Kac representation for f is not
available. In general, the only way out is thus to solve the HJB numerically. It
is well-known that this is a non-trivial task. In this section, we will analyze a sit-
uation where despite of non-hedgeable state variables a closed-form solution still
exists. We consider a problem where the investor maximizes expected utility from
terminal wealth with ψ ≡ 1 and puts his funds into corporate bonds only. The
dynamics of the bonds are modeled according to Jarrow’s model with joint defaults
and we allow for stochastic recovery rates being state-independent. Furthermore,
we assume the default intensities to be deterministic, i.e. λr

i = 0. This requirement
allows us to derive a closed solution. Note that in this setting default correlation
arises due to joint default events only. In analogy to Section 6, the corporate bond
dynamics read:

dBi(t, Ti) = Bi(t−, Ti)[(r(t) + χi(t))dt + σi(t)dW (t)−
J∑

j=1

Yij(t)dNj(t)] (18)

with σi(t) = −βdP (t, Ti) and χi(t) =
∑

j l̂ijλj(t)ηj + η̄rdP (t, Ti). Recall that the
marker Yj consists of I components, where in this specification its i-th component,
Yij , is equal to the factor-j loss rate of bond i. The risk premium φj is assumed to
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be of the form φj(y) =
∏I

i=1 φij(yi) such that l̂ij = E[φij(Yij1)Yij1], where each φij

depends on the loss rate Yij only (and not on time or state). The excess return χi

is thus a deterministic function. In Appendix A.4 it is shown that the FOC of this
problem reads

χi − σiβC = (1− γ)σi

∑
νπνσν +

∑
jλj

∫

E

yi(1−
∑

νπνyν)γ−1 Kj(dy),

where C(t, T ) = −γ
κ (1−e−κ(T−t)) = −γdP (t, T ). Although the optimal proportions

depend on C which is a part of the value function, in our setting the FOC completely
characterizes the optimal proportions invested in corporate bonds and we are not
in the same trouble as in the general case of equation (17). This is due to the
fact that the relevant part of the value function, C, can be calculated explicitly.
Since C is deterministic, the optimal proportions are deterministic as well. It is
straightforward to solve the FOC numerically for the optimal proportions invested
in the corporate bonds.

To understand the consequences of unhegeable state variables for the management of
corporate bond portfolios, finally we are going to discuss a numerical examples. We
analyze the situation of Subsection 5.2 where the firm specific loss rates are assumed
to be constant. To keep the FOC as simple as possible, a portfolio problem with
only two corporate bonds is considered. Our assumptions allow us to compare the
results with the benchmark solution (12), where the loss rates are constant. The
FOC simplifies into

χi − σiβC = (1− γ)σi(π1σ2 + π2σ2) + λili(1− πili)γ−1

for i ∈ {1, 2}. Figure 7.10 shows how the optimal proportion invested in one of the
corporate bond varies with risk averion γ and risk premium ηi. The parameters of
the corporate bonds are fixed as follows: li = 0.5, φiM = 1.2, λi = 0.05, Ti = 10 for
i ∈ {1, 2}. The investor’s time horizon is T = 5 years and he is standing at time
zero. The parameters of the default-free term structure are η̄r = 0.00075, β = 0.02,
and κ = 0.25.20

[INSERT FIGURES 7.10, 7.11 ABOUT HERE]

Due to our choice of parameters, we are in the same situation as in Figure 5.1 except
for the fact that the investor cannot hedge against shifts in the short rate. It is
obvious that the investor now invests in corporate bonds even if the risk premium
is zero. This comes from his hedging demand against shifts in the risk-free term
structure. In general, he thus puts more money into corporate bonds. Only for
high values of the risk premium he invests less than before. Although a high risk
premium makes a corporate bond a good deal, a big position in corporate bonds
is always combined with a great exposure to default-free interest rate risk which
cannot be hedged away. Therefore, his demand for corporate bonds increases more

20The same parameters were used in Sørensen (1999) who analyzed a portfolio problem with

default-free bonds.
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slowly than before. Furthermore, for a risk premium close to one the hyperplane
is not monotonously decreasing with risk aversion, but hump-shaped. The reason
is that an logarithmic investor (γ = 0) does not wish to hedge against shifts in
state variables. This well-known feature of a logarithmic investor distinguishes his
so-called myopic portfolio strategy from investors with different risk aversions. Al-
though an investor with γ < 0 reduces his investment in risky assets because of
this more pronounced risk aversion, he does hedge his portfolio against shifts in the
short rate. Since default-free bonds are not available for him, he increases his posi-
tion in corporate bonds. Which of these two effects will dominate depends on the
degree of risk aversion. Figure 5.1 demonstrates that this trade-off vanishes if the
investor can trade in default-free bonds. To get an impression how the investor’s in-
tertemporal hedging demand behaves over time, Figure 7.11 details how the optimal
proportion varies with time t. All parameters are the same as before except for the
maturities of the corporate bonds which are Ti = T = 5 years. Due to this choice,
the optimal bond proportions converge to the benchmark strategy (12) when time
approaches the time horizon. Since this effect is especially pronounced for smaller
degrees of risk aversion, Figure 7.11 only shows risk aversions with γ ≤ −2. For
simplicity, we keep the intensities constant over time. It can be seen that due to
the hedging demand the investment in corporate bonds is three times greater than
in the benchmark case if the investment horizon lies five years ahead.

8 Conclusion

The goal of this paper has been to analyze portfolio problems with corporate bonds.
To model default risk, we have used a combination of the multiple default framework
by Schönbucher (1998) and the joint default framework by Duffie/Singleton (1999b).
Under the assumption that shifts in the state process, which above all drives the
default intensities, are hedgeable, we have derived a Feynman-Kac representation
for the solution of the portfolio problem. Besides, we have been able to analyze
the first-order condition determining the optimal proportions invested in corporate
bonds separately from the rest of the model. Using the optimal proportions for
constant recovery without joint defaults as benchmark results, we have shown how
random recovery rates (especially beta distributed loss rates) or joint default factors
influence the investor’s portfolio decision. We have pointed out that the structure
of the risk premiums is crucial for the derivation from the benchmark case. In
principal, assuming the recovery rates to be constant can lead to inferior portfolio
decisions. The same is true if one ignores common default factors. Finally, we have
demonstrated that dropping the aforementioned completeness assumption leaves the
investor with a trade-off: He needs to find a balance between an optimal exposure
to default risk and hedging against unfavorable shifts in the state variables.
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A Appendix

A.1 Derivation of the Optimal Strategies

In this part of the Appendix we will solve the investor’s problem (5). The value
function of the problem is defined by

G(t, x, z) = sup
π̃,π,c

Et,x,z

[∫ T

t

1
γ ψ(s)1−γc(s)γds + 1

γ ψ(T )1−γ
(
X π̃,π,c(T )

)γ

]
.

The Hamilton-Jacobi-Bellman equation (HJB) for the candidate G of the value
function is given by

0 = sup
π̃,π,c

{
Aπ̃,π,cG + 1

γ ψ1−γcγ
}

(19)

with terminal condition G(T, x, z) = 1
γ ψ1−γxγ and

Aπ̃,π,cG = Gt + {x(r +
∑

iπiλ̄i +
∑

kηZ
k π̃k)− c}Gx +

∑
kαkGk

+0.5x2∑
kπ̃2

kGxx + x
∑

m

∑
kπ̃kβmkGxm + 0.5

∑
n

∑
m

∑
kβnkβmkGnm

+
∑

jλj

{∫

E

G(t, x(1−∑
iπilij(y)), z)Kj(dy)−G

}

where, to shorten notations,
∫

E

G(t, x(1−∑
iπilij(y)), z) Kj(dy)

=
∫

E

G(t, x(1−∑
iπi(t)lij(t, y)), z)Kj(t, dy).

Note that, except for i = 1, . . . , I and j = 1, . . . , J , all sums run from 1 to K.
Besides, Gk = ∂G/∂zk, Gxm = ∂2G/(∂zm∂x), and Gnm = ∂2G/(∂zm∂zn). The
first-order conditions for πi, π̃k, and c read

0 = λ̄iGx −
∑

jλj

∫

E

lij(y)Gx(t, x(1−∑
νπ∗ν lνj(y)), z)Kj(dy),

π̃∗k = −ηZ
k

Gx

xGxx
−∑

mβmk
Gxm

xGxx
,

c∗ = ψG
1

γ−1
x ,

where ν = 1, . . . , I. Applying the separation G(t, x, z) = 1
γ xγf(t, z)1−γ with

f(T, z) = ψ(T ) yields a PDE for f in terms of the optimal proportions and op-
timal consumption:

0 = 1−γ
γ ft + (r +

∑
iπ
∗
i λ̄i +

∑
kηZ

k π̃∗k)f − c∗f
x + 1−γ

γ

∑
kαkfk (20)

−0.5(1− γ)
∑

k(π̃∗k)2f + (1− γ)
∑

m

∑
kπ̃kβmkfm

−0.5(1− γ)
∑

n

∑
m

∑
kβnkβmkfmfnf−1 + 0.5 1−γ

γ

∑
n

∑
m

∑
kβnkβmkfnm

+ 1
γ

∑
jλj

{∫

E

(1−∑
iπ
∗
i lij(y))γ Kj(dy)− 1

}
f + 1

γ ψ1−γ
(

c∗f
x

)γ

,

Moreover, the FOC can be rewritten as in (6). Substituting the FOC for π̃∗k and c∗

into the PDE (20) and simplifying, we arrive at (8). We emphasize that terms with
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fnfmf−1 which were present in (20) have canceled out in (8) leading to a Black-
Scholes-type PDE. This results from the assumption that the continuous part of the
model is complete. Otherwise, these terms would not cancel out completely and a
Feynman-Kac representation for f would not hold. Remarkably, this representation
is not affected by the completeness or incompleteness of the jump part.

Finally, we emphasize that this procedure is only meaningful if the operator Aπ̃,π,c

and the value function remain finite. Since for γ < 0 the value function is bounded
from above by zero, in principle, problems can only occur for γ > 0. A positive γ,
however, leads to a risk aversion being unrealisticly low (at least from a practical
point of view) and we thus discuss this issue only briefly. The problems which
may occur from explosions stemming from the continuous part are comprehensively
discussed in Korn/Kraft (2004) and we will not repeat the discussion here. For the
jump part of the model, one needs to ensure that

∫

E

(1−∑
iπilij(y))γ Kj(dy) < ∞ (21)

for the optimal proportions π∗i invested in corporate bonds. For γ > 0 this condition
needs to be imposed for all admissible strategies as well, i.e. for all strategies which
the investor is allowed to choose. In Subsection A.3, we will exemplify this point
for the beta distribution.

A.2 Verification

The HJB (19) is of partial integro-differential type. The advantage of our approach
is that we are able to transform this HJB into a Cauchy problem (8), where the
“integro part” has vanished. Under suitable technical conditions, this problem can
be solved by applying the Feynman-Kac theorem. The intention of this part of the
Appendix is to sketch briefly why this method can be justified. The main questions
to be asked are the following:

(i) Does the FOC (6) uniquely characterize the optimal proportions invested in
the corporate bonds, π∗?

(ii) Under which conditions does the PDE (8) possess a unique solution?

ad (i). We define the function F = (F1, . . . , FI) by

Fi(π1, . . . , πI) =
∑

jλj

∫

E

lij(y)
{
ηjφj(y)− (1−∑

νπν lνj(y))γ−1
}

Kj(dy)

such that (6) can be rewritten as F (π) = 0. The function F is continuous and
increasing in every component of π. For π → −∞I the function F (π) becomes
positive in every component. On the other hand, due to the root (·)γ−1 one cannot
choose πi arbitrarily large. More precisely, πi has to be smaller than 1/ infy liji(y).
For this reason, it is crucial that the function F becomes negative in every com-
ponent if we take the limits πi → 1/ infy liji(y). In this case, by continuity, there
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exists a strategy π′ such that F (π′) = 0. However, there are rare cases where F

remains positive. From an economic point of view, the risk premium η is then too
large compared to the risk aversion of the investor, i.e. such problems can occur
if both η and γ are large. It is beyond the scope of this paper to consider such a
problem in detail and we assume that F becomes negative for πi → 1/ infy liji(y).
In our applications, one can easily check if this is valid and it is true for all our
numerical examples. To prove uniqueness, in general further conditions (e.g. on the
loss rates) need to be imposed. However, if we are in the situation of Subsection
5.2, one can directly conclude that the solution is unique given that there exists
a solution. Furthermore, in this case it is also immediately clear that the HJB is
strictly concave in the controls πi, π̃k, and c implying that the first-order conditions
are also sufficient. This is so because the corresponding Hessian matrix is a diagonal
matrix with negative entries on the diagonal. We wish to remark that the HJB of
the problem of Subsection 5.3 is strictly concave as well.

ad (ii). A Cauchy problem possesses a unique classical solution if one imposes
certain continuity and boundedness conditions on the coefficients. The interested
reader is referred to the monograph by Duffie (2001, p. 345) and the references
therein.

Since the answers to (i) and (ii) are in general positive, one can then prove that
G(t, x, z) = 1

γ xγf(t, z)1−γ with f given by (9) is the value function of our problem.
Because we are dealing with a Cauchy problem, one can carry out the verification
procedure by applying similar methods as used in problems with stochastic interest
rates, but without default risk. The interested reader is referred to Korn/Kraft
(2001) or Kraft (2004).

A.3 Beta Distribution and Optimality

In this part of the Appendix we analyze condition (13) in more detail. For c > a > 0
we define the hypergeometric function by

h(a, b, c, x) =
Γ(c)

Γ(a)Γ(c− a)

∫ 1

0

ya−1(1− xy)−b(1− y)c−a−1 dy, (22)

where Γ is the gamma function. Since Γ(x+1) = xΓ(x), B(p, q) = Γ(p)Γ(q)/Γ(p+q),
and l̄i = E[Yi1] = pi

pi+qi
, one can easily show that (14) holds. Note that usually the

hypergeometric function is defined by the series h(a, b, c, x) =
∑∞

k=0
(a)k(b)k

(c)kk! xk with
(a0) = 1 and (a)k = a(a + 1) . . . (a + k − 1) being rising factorials. One can then
show that on the convergence region of the series both representations coincide for
c > a > 0. Furthermore, it can be verified that (22) is real-valued for x ∈ (−∞, 1).
If additionally

c > a + b (23)

then (22) is also real-valued for x = 1. We now consider condition (21) which
becomes ∫ 1

0

ypi−1(1− πiy)γ(1− y)qi−1dy < ∞. (24)
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Condition (23) equals γ > −qi which is always satisfied for γ > 0. Hence, for γ > 0
condition (24) is valid for all π ∈ (−∞, 1]. As indicated in Appendix A.1, for γ < 0
we need to check (24) only for the optimal proportion π∗i . As long as π∗i < 1, this
is valid in any case and we are done. Hence, in both cases we only get into trouble
if the FOC does not possess a null. As pointed out in Appendix A.1, we do not
analyze this situation in detail. Nevertheless, we wish to remark that in the case
where the FOC does not possess a null π∗i = 1 is indeed the optimal proportion if
γ > −qi. For γ ≤ −qi the problem is ill posed. This, however, can only happen for
γ < 0.

A.4 Optimality with Unhedgeable State Variables

The FOC (17) follows directly from (19) by replacing π̃k by
∑

iπiσik and taking
derivative with respect to πi.

The HJB to the concrete problem of Section 7 where the bond dynamics are given
by (18), reads

0 = sup
π

AπG

with terminal condition G(T, x, r) = 1
γ xγ and

AπG = Gt + x(r +
∑

iπiχi)Gx + (θ − κr)Gr + 0.5x2(
∑

iπiσi)2Gxx + 0.5β2Grr

+x
∑

iπiσiβGxr +
∑

jλj

{∫

E

G(t, x(1−∑
iπiyi), z) Kj(dy)−G

}
.

In contrast to Section 3 and Appendix A.1, we directly start with the more specific
affine separation G(t, x, r) = 1

γ xγeA(t,T )−C(t,T )r with A(T, T ) = C(T, T ) = 1, where
A and C are supposed to be deterministic functions. A priori, it is not obvious that
deterministic functions A and C exist such that the corresponding function G fulfils
the HJB. Taking derivative with respect to πi yields the FOC:

χi − σiβC = (1− γ)σi

∑
νπνσν +

∑
jλj

∫

E

yi(1−
∑

νπνyν)γ−1 Kj(dy).

Therefore, if a deterministic function C exists, the optimal proportion π∗ is deter-
ministic as well. Substituting our separation into the HJB leads to the following
equation:

At + (κC − Ct + γ)r = −γ
∑

iχiπi + θB + 0.5γ(1− γ)(
∑

iπσi)2 − 0.5β2B2 (25)

+γβB
∑

iπiσi −
∑

jλj

{∫

E

(1−∑
iyi)γKj(dy)− 1

}
.

The deterministic function C(t, T ) = −γ
κ (1− e−κ(T−t)) solves the Riccati equation

κC − Ct + γ = 0. Integrating the remaining part of (25), we obtain the function
A which is deterministic because π∗i is indeed deterministic. Note that A does not
show up in the FOC. Hence, for practical purposes, its exact form is not relevant.
The only important fact is that A is deterministic. Finally, we give a (not rigorous)
argument why stochastic intensities do not admit closed-form solutions. In this
case, the optimal proportions π∗ are state-dependent leading to a state dependent
A which violates the assumption that A is deterministic.
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Figure 5.1: The figure details how the optimal portfolio proportion invested in a corporate bond

varies with the risk premium ηi and the degree of risk aversion γ if the loss rate is constant with

l̄i = 0.5 and joint defaults cannot occur.

27



0.5

3.5

6.5

9.5

0.5

3.5
6.5

9.5

0

0.1

0.2

0.3

0.4

0.5

q

p

Figure 5.2: The figure details the optimal portfolio proportion invested in a corporate bond. The

loss rate is beta distributed with parameters p and q. These parameters are varied in the figure.

The risk aversion equals γ = −5 and the risk premiums η = 1.5 and φ = 1.
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Figure 5.3: The figure compares the optimal strategy from Figure 5.2 with the optimal strategy

if constant recovery is assumed. In the latter case the loss rate is set to be the expected value of

the beta distribution.
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Figure 5.4: The figure details some characteristic shapes of the density of a beta distribution

with parameters p and q.
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Figure 5.5: The figure shows how the optimal proportion varies with the risk premium and the

investor’s risk aversion. The parameters of the beta distribution are pi = 6 and qi = 2.
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Figure 5.6: The figure shows the optimal proportion invested in the first corporate bond, π∗1 ,

when the probabilities p1M and p2M are varied. The parameters are chosen as follows: ηM = 1.5,

λM = 0.02, γ = −5, li = liM = 0.5, ηi = 1.5, φiM = 1.2, λi = 0.05 for i ∈ {1, 2}.
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Figure 5.7: The figure shows the optimal proportion invested in the second corporate bond, π∗2 ,

when the probabilities p1M and p2M are varied. The parameters are identical to the parameters

in Figure 5.6.
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Figure 5.8: The figure shows the optimal proportion invested in the first corporate bond, π∗1 ,

when the probabilities p1M and p2M are varied. The parameters are identical to the parameters

in Figure 5.6 except for ηM = 1.2.
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Figure 5.9: The figure shows the optimal proportion invested in the first corporate bond, π∗1 ,

when the probabilities p1M and p2M are varied. The parameters are identical to the parameters

in Figure 5.6 except for ηM = 2.0.
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Figure 7.10: The figure shows how the optimal proportion invested in a corporate bond varies

with risk aversion γ and risk premium ηi if the investor cannot hedge against shifts in the short

rate. The parameters of the two available corporate bonds are li = 0.5, φiM = 1.2, λi = 0.05,

Ti = 10 for i ∈ {1, 2}. The investor’s time horizon is T = 5 years and he is standing at time zero.

The parameters of the default-free term structure are η̄r = 0.00075, β = 0.02, and κ = 0.25.
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Figure 7.11: The figure shows how the optimal proportion invested in a corporate bond varies

with time t and risk premium ηi if the investor cannot hedge against shifts in the short rate. The

parameters are the same as in Figure 5.10 except for Ti = T = 5 for i ∈ {1, 2}.
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