
FRU        
  Finance Research Unit 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The latent factor VAR model: Testing for a common 

component in the intraday trading process 
 
 

Nikolaus Hautsch 
 

No. 2005/03 
 
 
 
 
 
 
 
 
 
 
 

Finance Research Unit 
Institute of Economics 

University of Copenhagen 
http://www.econ.ku.dk/FRU

http://www.econ.ku.dk/FRU


The latent factor VAR model:

Testing for a common component in the intraday trading process

Nikolaus Hautsch∗

This version: March 22, 2005

Abstract

In this paper, we propose a framework for the modelling of multivariate dynamic processes
which are driven by an unobservable common autoregressive component. Economically moti-
vated by the mixture-of-distribution hypothesis, we model the multivariate intraday trading
process of return volatility, volume and trading intensity by a VAR model that is augmented
by a joint latent factor serving as a proxy for the unobserved information flow. The model is
estimated by simulated maximum likelihood using efficient importance sampling techniques.
Analyzing intraday data from the NYSE, we find strong empirical evidence for the existence
of an underlying persistent component as an important driving force of the trading process.
It is shown that the inclusion of the latent factor clearly improves the goodness-of-fit of the
model as well as its dynamical and distributional properties.

Keywords: Observation vs. parameter driven dynamics, mixture-of-distribution hypothesis,
VAR model, efficient importance sampling

JEL Classification: C15, C32, C52

1 Introduction

The basic idea of the mixture-of-distribution hypothesis as introduced by Clark (1973) is to

explain the persistence in daily price volatility by an unknown autoregressive process of price

relevant information. This idea was further developed by Tauchen and Pitts (1983) to model

the relationship between daily volatility and volume. In their model, volume and volatility are

jointly directed by a single autoregressive latent component. While these models and further

extensions (see, for example, Andersen, 1996 and Liesenfeld, 1998, 2001) have been successfully

applied to daily data, there is lacking evidence regarding their use to model intraday trading

processes on financial markets.

The aim of this paper is to analyze whether on an intraday level a common autocorrelated

latent component can be identified and thus evidence for the mixture-of-distribution hypothesis

can be found. This objective is on the one hand motivated by the notion that the existence of

an underlying autoregressive information process should be independent from the aggregation
∗Email: Nikolaus.Hautsch@econ.ku.dk. Address: Studiestraede 6, University of Copenhagen, DK-1455

Copenhagen-K, Denmark, tel: ++45 35 323022, fax: ++45 35 323000. Acknowledgements: An earlier ver-
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level. Therefore, a joint latent dynamic component should be identifiable not only based on

daily data but also on an intraday level. On the other hand, the existence of an (unknown)

information process which jointly affects all trading components is the fundamental underpinning

of numerous theoretical market microstructure approaches.1 A typical assumption is that market

participants infer from the trading process with respect to the existence of information. This

should cause systematic interdependencies between intraday price changes, volumes and trading

intensities (see e.g. Easley and O‘Hara, 1992). In fact, using VAR-type models, recent empirical

studies confirm predictions arising from theoretical literature by providing empirical evidence

for distinct relationships between these variables.2

The idea of this paper is to propose a framework which allows us to directly model the un-

known underlying autoregressive (information) process by a latent dynamic component. Hence,

we extend recent approaches by augmenting a VAR model for the intraday volatility, the trad-

ing volume and the trading intensity by a dynamic latent factor which simultaneously influences

all three components. The so-called latent factor VAR (LF-VAR) model enables us to test for

the existence of an underlying autoregressive component serving as a major driving force for

contemporaneous relationships as well as interdependencies between volatilities, volumes and

trading intensities. Therefore, the contribution of this paper to the literature is two-fold: It con-

tributes, on the one hand, to the literature on dynamic multivariate latent factor models and,

on the other hand, to recent literature on high-frequency financial data in which the modelling

of intraday trading processes and a deeper understanding of market microstructure relations is

an important task.

A well known result in the literature on multivariate latent factor models is that a single

latent component is typically not sufficient to fully capture the dynamics of a multivariate

system (see Andersen, 1996, or Liesenfeld, 1998). For this reason, Liesenfeld (2001) proposes a

multi-factor model for daily volatility and volume by combining a common latent factor with

additional process-specific latent components. He illustrates a significant improvement of the

model’s explanatory power and goodness-of-fit compared to an one-factor model. However, the

major disadvantage of a latent multi-factor model is that it is computationally quite burdensome,

particularly for high-dimensional processes. For this reason, we adopt the idea proposed by

Bauwens and Hautsch (2003) and specify the LF-VAR model by combining a parameter driven

dynamic for the latent factor with an observation driven dynamic for the individual components.3

1See e.g. Diamond and Verrecchia (1987), Admati and Pfleiderer (1988), Easley and O‘Hara (1992), Blume,
Easley, and O‘Hara (1994) or Easley, Kiefer, O‘Hara, and Paperman (1996) among others.

2See e.g. Manganelli (2000), Gerhard and Pohlmeier (2002), Spierdijk (2002), or Spierdijk, Nijman, and van
Soest (2002).

3The terminology of parameter driven vs. observation driven dynamics is introduced by Cox (1981). The
latter refers to the idea that a dynamic is updated based on past variables which are either directly observable or
can be computed using a prediction error decomposition (like e.g. for a moving average process). In contrast, a
dynamic latent factor can be alternatively interpreted as a parameter of the model which follows its own dynamics
(therefore parameter driven dynamic). In this context, the innovations of the process are completely unobservable
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This approach is motivated by the idea that there is one common latent factor which serves as a

proxy for the unobserved information process and jointly affects volatility, volume and trading

intensity. In addition, the individual trading components are influenced by process-specific

(idiosyncratic) dynamics given the latent factor. In fact, it will be shown that both types of

dynamics are necessary to fully capture the strong serial interdependencies in the multivariate

system. The major advantage of assuming an observation driven dynamic for the idiosyncratic

components is that the LF-VAR model is easily extended to higher-dimensional processes since

we do not have to include additional latent factors.

The combination of a parameter driven dynamic with observation driven dynamics results

in a highly flexible model. In particular, the volatility component follows a specification which

encompasses a logarithmic GARCH specification as well as a stochastic volatility (SV) model

(Taylor, 1982). Correspondingly, the specification of the volume and trading intensity compo-

nents nest the Log-ACD model proposed by Bauwens and Giot (2000) as well as the stochastic

conditional duration (SCD) model introduced by Bauwens and Veredas (2004). Moreover, the

impact of the latent factor on the individual processes is allowed to be different from component

to component. Therefore, the LF-VAR model enables us to analyze whether and, if yes, how

strong the individual processes are influenced by the common factor.

Using this model we raise several research questions: (i) Is there evidence for a joint la-

tent component and how strong is the persistence of this factor? (ii) How strong and in which

direction influences the common component the processes of intraday volatility, trading volume

and trading intensity? (iii) Is a joint unobservable factor a major source for contemporane-

ous correlations between the individual components of the trading process? I.e., do we find

differences between conditional contemporaneous correlations given the latent component and

corresponding unconditional correlations? (iv) Does the inclusion of a joint parameter driven

dynamic improves the goodness-of-fit and the explanatory power of the VAR model?

The LF-VAR model is estimated by simulated maximum likelihood (SML). The compu-

tation of the likelihood requires to integrate the latent component out leading to an integral

of the dimension of the sample range. For this reason, we approximate the likelihood function

numerically by adopting the efficient importance sampling (EIS) algorithm proposed by Richard

(1998). In our applications, this approach is shown to be efficient and computationally feasible.

The empirical analysis uses transaction data from four highly liquid stocks traded at the

New York Stock Exchange (NYSE). Strong empirical evidence for the existence of an autore-

gressive common component is provided. Hence, from an economic point of view, we clearly

confirm the mixture-of-distribution-hypothesis on an intraday level. Furthermore, it is shown

that the inclusion of the latent component clearly improves the goodness-of-fit as well as the

and cannot be computed using a prediction error decomposition on the basis of past (observable) variables.
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dynamical and distributional properties of the model. Moreover, we find that the unobservable

factor is a major driving force of the interdependencies as well as contemporaneous relationships

between the individual trading components.

The remainder of the paper is organized in the following way: Section 2 presents the

LF-VAR model while Section 3 discusses its statistical properties. In Section 4, we illustrate

the statistical inference. Section 5 shows the data and discusses the estimation results. Finally,

Section 6 concludes.

2 The latent factor VAR model

Define {Yi, Vi, ρi}, i = 1, . . . , N, as the three-dimensional time series of positive random variables

associated with the intraday process of returns, transaction volumes and trading intensities,

respectively. Since the model can be applied either to (irregularly spaced) transaction data or

to aggregated (regularly spaced) high-frequency data, the variables Yi, Vi and ρi can be defined

in alternative ways. In the first case, ρi would correspond to the time between consecutive

trades, Vi would measure the trading volume per transaction and Yi would be associated with

the trade-to-trade log return standardized by
√

ρi. Then, Y 2
i would correspond to the trade-

to-trade volatility per time.4 In the second case, which is used in this paper, Yi corresponds

to the log return measured over equi-distant time intervals (here 5 minute intervals), Vi is the

cumulated or average volume traded in the i-th interval and ρi is the number of trades occurring

during the i-th interval. Furthermore, λi is defined as a common unobservable component that

simultaneously influences Yi, Vi and ρi and follows an autoregressive process which is updated

in every interval i.

Denote Fi := σ(Fo
i ∪ F∗i ) as the information set consisting of the history of the observ-

able processes Fo
i := (Yi, Vi, ρi, Yi−1, Vi−1, ρi−1, . . .) and the history of the latent component

F∗i := (λi, λi−1, . . .). Following Engle (2000), we propose to decompose the joint conditional

density given the information set Fi−1, f(Yi, Vi, ρi, λi|Fi−1), into the product of the correspond-

ing conditional densities. Hence,

f(Yi, Vi, ρi, λi|Fi−1) = f(Yi|Vi, ρi, λi;Fi−1) · f(Vi, ρi, λi;Fi−1) (1)

= f(Yi|Vi, ρi, λi;Fi−1) · f(Vi|ρi, λi;Fi−1) · f(ρi|λi;Fi−1) · f(λi;F∗i−1),

where it is assumed that λi depends only on its own history F∗i−1. The chosen decomposition

implies a triangular structure since Yi is assumed to depend on both the contemporaneous volume

Vi and trading intensity ρi, whereas Vi depends only on ρi. Finally, ρi itself is not affected by

any contemporaneous variable. Of course, the order of the variables in the decomposition is

arbitrary and depends on the research objective. However, researchers are typically particularly
4This setting was proposed by Engle (2000).
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interested in the volatility process given the contemporaneous volume and the contemporaneous

trading intensity (see Engle, 2000 or Manganelli, 2000). This motivates the order chosen in this

approach.

The basic idea of the so-called latent factor VAR (LF-VAR) model is to combine ob-

servation driven dynamics with parameter driven dynamics. This structure is reflected in the

specification of the processes Yi, Vi and ρi as given by

Yi = E[Yi|Fi−1] + ξi, (2)

ξi =
√

hiλ
δ1
i ηi, ηi ∼ i.i.d. N(0, 1) (3)

Vi = Φiλ
δ2
i ui, ui ∼ i.i.d.GG(a1,m1) (4)

ρi = Ψiλ
δ3
i εi, εi ∼ i.i.d.GG(a2,m2), (5)

where hi, Φi and Ψi denote (observation driven) dynamic components and ηi, ui and εi are

process-specific innovation terms which are assumed to be independent. We assume that the

volatility innovations ηi follow a standard normal distribution whereas the volume and trading

intensity innovations ui and εi follow a standard generalized gamma distribution depending on

the parameters a1,m1 and a2,m2, respectively5. The generalized gamma distribution allows for

a high distributional flexibility including the cases of over-dispersion and under-dispersion as

well as non-monotonic hazard shapes.

Note that the component hiλ
δ1
i corresponds to the conditional variance of returns given

Fi−1. Accordingly, up to a constant multiplicative factor6, Φiλ
δ2
i and Ψiλ

δ3
i correspond to the

conditional expected volume and the conditional expected trading intensity given Fi−1. Hence,

the major idea of the LF-VAR model is to model these conditional moments on the basis of a

multiplicative interaction of the processes {hi, Φi, Ψi} and λi. Thus the parameters δ1, δ2 and

δ3 drive the process-specific impact of λi. Therefore, the variables hi, Φi and Ψi correspond to

the conditional variance, the conditional expected volume and the conditional expected trading

intensity given Fi−1 and λi.

Whereas specification (3) corresponds to an augmented GARCH model, (4) and (5) are

associated with augmented ACD type models as proposed by Engle and Russell (1998). Note

that particularly for less liquid stocks, the continuity assumption for εi can be questionable since

the number of trades per interval is a counting variable and thus is clearly discrete. In such

a case, the use of a conditional autoregressive Poisson process as proposed by Davis, Rydberg,

Shephard, and Streett (2001) or Heinen (2002) could be more appropriate. However, in the
5The probability density function of the (standard) generalized gamma distribution is given by

f(x) =
a

Γ(m)
xma−1 exp [−xa] , a > 0, m > 0.

6Note that the means of ui and εi are not necessarily equal to one.
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given application, the number of trades per (5 min) interval varies on average between 20 and

427 and thus can be considered as continuous.8

For the latent factor, we assume a log-linear AR(1) process, given by

lnλi = a0 ln λi−1 + νi, νi ∼ i.i.d. N(0, 1), (6)

where νi is assumed to be independent of ηi, ui and εi. By reformulating the process-specific

impact of the latent factor, lnλi,j := lnλ
δj

i , as

lnλi,j = δja0 ln λi−1 + δjνi = a0 lnλi−1,j + δjνi, (7)

it is evident that the parameters δj act multiplicatively on the standard deviation of the latent

process.9 Since d ln λij

dνi
> (<) 0 for δj > (<) 0 with i = 1, 2, 3, the parameter δj determines the

strength and the direction of a latent shock’s influence on the component j. Note that because

of the symmetry of the distribution of νi, the sign of the individual parameters δj are not

identified. Hence, we cannot distinguish between the cases δ1 > 0, δ2 < 0 versus δ1 < 0, δ2 > 0.

Nevertheless, we can identify whether the latent component influences the two components in

the same or in the opposite direction. For that reason, we have to impose an identification

assumption which restricts the sign of one of the parameters δj . Then, the signs of all other δj ’s

are identified.

Whereas the latent factor follows a parameter driven dynamic, the process-specific com-

ponents hi, Φi and Ψi are assumed to follow a multivariate observation driven dynamic which

is parameterized in terms of a VAR system:

µi = ω + A0z0,i +
p∑

j=1

Ajzi−j +
q∑

j=1

Bjµi−j , (8)

where

µi := (lnhi lnΦi lnΨi)′,

z0,i := (0 lnVi ln ρi)′,

zi :=
( |ξi|√

hi

Vi

Φi

ρi

Ψi

)′
,

ω denotes a (3 × 1) vector, and A0 = {α0,i} is a (3 × 3) triangular matrix where only the

three upper right elements are nonzero. Furthermore, Aj = {αj,ik} and Bj = {βj,ik} are (3× 3)

matrices of innovation and persistence parameters, respectively. The assumption of a logarithmic

form ensures the positiveness of the individual processes without imposing additional parameter
7See the descriptive statistics in Section 6.
8Moreover, the individual components are modelled in a seasonally adjusted form where the original time

series are divided by estimated seasonality components. This standardization step generates realizations which
are clearly continuous.

9Hence, in order to identify the δj ’s, the latent variance Var[νi] is normalized to one.
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restrictions. This property eases the estimation of the model particularly when A0 6= 0 and/or

when additional explanatory variables are included. The triangular structure of A0 reflects the

used decomposition of the joint density in (1).

Note that the idiosyncratic innovation processes in (8) are updated based on variables

which are completely observable even when there exists a latent component. This reduces the

computationally effort and is particularly important to make the model applicable and estimable

even for high-dimensional processes. However, on the other hand, this structure implies that

the innovations zi implicitly depend on λi which is evident by expressing zi alternatively as

zi =
(
|ηi|λδ1/2

i uiλ
δ2
i εiλ

δ3
i

)′
. (9)

Hence, the latent factor λi influences the observation driven components {hi, Φi, Ψi} not only

directly according to the specifications (3) to (5) but affects them also through the corresponding

innovation processes. I.e., a shock in the latent factor in period i influences {hi, Φi, Ψi} not

only in period i, but (through zi) also in the following periods which causes autocorrelations

between the individual processes. The resulting dynamic properties of the assumed process will

be discussed in Section 3.

In order to illustrate the parameterizations of the individual components in more detail,

assume for simplicity A0 = 0, p = q = 1, and diagonal parameterizations of A1 and B1. Then,

the model is rewritten as

ξi =
√

h̃iηi, h̃i = hiλ
δ1
i , (10)

Vi = Φ̃iui, Φ̃i = Φiλ
δ2
i , (11)

ρi = Ψ̃iεi, Ψ̃i = Ψiλ
δ3
i , (12)

where

ln h̃i − δ1 ln λi = ω1 + α11
|ξi−1|√

hi−1

+ β11(ln h̃i−1 − δ1 ln λi−1), (13)

ln Φ̃i − δ2 ln λi = ω2 + α22
Vi−1

Φi−1
+ β22(ln Φ̃i−1 − δ2 ln λi−1), (14)

ln Ψ̃i − δ3 ln λi = ω3 + α33
Xi−1

Ψi−1
+ β33(ln Ψ̃i−1 − δ3 ln λi−1). (15)

Hence, it is evident that the latent component λi can be interpreted as an additional regressor

which is statically included and is driven by its own dynamics according to (6).

We call the first component of the LF-VAR model a latent factor GARCH

(LF-GARCH) model, whereas the second and third component is referred to a latent factor

ACD (LF-ACD) model. These specifications nest several model classes. The LF-GARCH model

encompasses a basic (Log-)GARCH specification as well as the stochastic volatility (SV) model

proposed by Taylor (1986) and permits both competing models to be tested against each other.
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In particular, for α11 = 0, (13) can be rewritten as an SV model, while for δ1 = 0 it resembles

a logarithmic GARCH specification which can be easily extended to the EGARCH model as

introduced by Nelson (1991). Furthermore, for β11 = 0 it can be interpreted as an SV model

that is mixed with a further random variable. Accordingly, the LF-ACD models as specified

in (14) and (15) nest SCD models (Bauwens and Veredas, 2004) for α22 = 0 and α33 = 0,

respectively, Log-ACD models (Bauwens and Giot, 2000) for δ2 = 0 and δ3 = 0, respectively,

and, correspondingly, mixed SCD models for β22 = 0 and β33 = 0, respectively.

3 Properties of the model

3.1 Weak stationarity

The following proposition establishes the stationarity properties of the model:

Proposition 1: Let |a0| < 1 and |ς| < 1 for all values of ς satisfying

∣∣Iςq −B1ς
q−1 −B2ς

q−2 . . .−Bq

∣∣ = 0,

where I denotes a (3 × 3) identity matrix. Then, the processes (2) through (5) are weakly

stationary.

Proof: See Appendix A.1.

3.2 Unconditional moments

The inclusion of the latent component in the VAR model renders the analytical computation

of unconditional moments and (cross-)autocorrelation functions generally quite difficult. In

the following, we analyze the statistical properties of the model based on numerous simulation

studies. For a wide range of different specifications of the LF-VAR model, we generate 100 sets

of 50, 000 observations and analyze the distributional and dynamical properties. Tables 1 and

210 show the mean, standard deviation, minimum, maximum, kurtosis, different quantiles as

well as the Ljung and Box (1978) statistic for (univariate) LF-GARCH and LF-ACD processes

under different parameterizations.11 Table 1 illustrates that the inclusion of a latent component

has a strong influence on the standard deviation, the kurtosis as well as the serial dependence

in the second moments of the simulated return process. We observe that processes generated by

high parameter values of α0 and δ1 imply a high unconditional variance, overkurtosis, fat tails as

well as a strong serial dependence in the conditional variance. It is evident that an LF-GARCH

process allows for a high distributional and dynamical flexibility and captures the well known

statistical properties of typical financial return series.
10All tables and figures are shown in the Appendix.
11Since the distribution of returns under a LF-GARCH process is symmetric and the conditional mean is set

to zero, only the quantiles of the right tail of the distribution are shown.
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Similar findings are revealed for simulated LF-ACD processes (Table 2). Again, an increase

of the latent parameters α0 and δ3 leads to a significant rise of the unconditional variance as well

as of the autocorrelations of the resulting process. As for LF-GARCH processes, it is apparent

that a high serial dependence in both the observation driven component and the parameter

driven component generate distributions with strong fat tail behavior. These effects are even

amplified when the Weibull parameter a3 is larger than one (specifications (15) and (16)).

Figures 1 through 16 show the autocorrelation and cross-autocorrelation functions implied

by a two-dimensional LF-VAR(1,1) model for the volatility and intensity process12. Figures

1 through 5 show LF-VAR processes without any interdependencies between the individual

observation driven components hi and Ψi. It is shown that the latent component generates

distinct cross-autocorrelations between both hi and Ψi as well as between Y 2
i and ρi. The

fact that the cross-autocorrelation function (CACF) between hi and Ψi is nonzero is caused

by the fact that both processes are updated by innovations zi−1 which themselves depend on

λi−1 (see eq. (9)). Hence, particularly in Figures 1 through 3, the dynamics of the processes

are completely dominated by λi. In Figures 4 and 5, both the observation driven components

and the parameter driven component reveal a relatively high persistence. Here, the dynamics of

λi amplify the dynamics of Y 2
i and ρi. In contrast, Figures 6 through 8 show processes where

λi = 0. Even though theses processes imply interactions between hi and Ψi (yielding high cross-

autocorrelations), the CACF of Y 2
i and ρi is close to zero.13 This picture changes clearly when

we allow for a non-zero latent factor (Figures 9 and 10). Here, the persistent parameter driven

dynamics imply a significant rise of the cross-autocorrelations between both processes. Figures

11 and 12 illustrate the effects when the latent factor reveals no serial dependence (α0 = 0),

however, high standard deviations. Because of the strong impact of λi (implied by high values

of δ1 and δ2) the persistence in the CACF is clearly reduced. In Figure 12 the observation

driven components interact positively whereas λi influences both processes in opposite directions

leading to a clear reduction of the CACF between Y 2
i and ρi. Similar effects can be observed

in Figures 13 to 15 where the observation driven and parameter driven components work in

opposite directions. Finally, Figure 16 shows the impact of the latent component when the

individual observation driven processes reveal a different persistence. In this case, it is evident

that λi dominates the (joint) dynamics of the resulting processes and makes them more similar.
12Since the volume component is parameterized similarly, it reveals the same properties and same interactions

with the other processes. For this reason, we refrain from showing the results for three-dimensional processes
since it would lengthen the exposition considerably.

13The asymmetric cross-autocorrelations between Y 2
i and ρi are caused by the fact that the return innovation

ξi is driven by the square root of hi, whereas ρi is driven by Ψi itself.
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4 SML estimation of the LF-VAR model

Let W denote the data matrix and define wi := (Yi Vi ρi) as a row of this matrix with Wi :=

{wj}i
j=1. Moreover, let θ denote the vector of parameters of the LF-VAR model.

The conditional likelihood given the realizations of the latent variable Li := {λj}i
j=1 is

given by

L(W ; θ|Ln) =
n∏

i=1

1√
2hiλ

δ1
i π

exp

[
− ξ2

i

2hiλ
δ1
i

]
a2V

a2m2−1
i

Γ(m2)Φa2m2
i λδ2a2m2

i

exp

[
−

(
Vi

Φiλ
δ2
i

)a2
]

(16)

× a3ρ
a3m3−1
i

Γ(m3)Ψa3m3
i λδ3a3m3

i

exp

[
−

(
ρi

Ψiλ
δ3
i

)a3
]

.

Since the latent process is not observable the conditional likelihood function must be

integrated with respect to λi using the assumed (log-normal) distribution of the latter. Hence,

the integrated log likelihood function is given by

L(W ; θ) =
∫ n∏

i=1

1√
2hiλ

δ1
i π

exp

[
− ξ2

i

2hiλ
δ1
i

]
a2V

a2m2−1
i

Γ(m2)Φa2m2
i λδ2a2m2

i

exp

[
−

(
Vi

Φiλ
δ2
i

)a2
]

(17)

× a3ρ
a3m3−1
i

Γ(m3)Ψa3m3
i λδ3a3m3

i

exp

[
−

(
ρi

Ψiλ
δ3
i

)a3
]

1√
2π

exp
[
−1

2
(lnλi − µ0,i)

2

]
dL

=
∫ n∏

i=1

g(wi|λi,Wi−1; θ)p(λi|Li−1; θ)dL =
∫ n∏

i=1

f(wi, λi|Wi−1, Li−1; θ)dL,

where µ0,i := E[lnλi|F∗i−1], g(·) denotes the conditional density of wi given (λi,Wi−1) and p(·)
denotes the conditional density of λi given Li−1. The computation of the n-dimensional integral

in (17) is performed numerically using the efficient importance sampling (EIS) method proposed

by Richard (1998). This algorithm was shown to work very well in the context of the class of

latent factor models (see Liesenfeld and Richard, 2002 or, Bauwens and Hautsch, 2003).

To implement the EIS algorithm, the integral (17) is rewritten as

L(W ; θ) =
∫ n∏

i=1

f(wi, λi|Wi−1, Li−1; θ)
m(λi|Li−1, φi)

n∏

i=1

m(λi|Li−1, φi)dL, (18)

where {m(λi|Li−1, φi)}n
i=1 denotes a sequence of auxiliary importance samplers indexed by aux-

iliary parameters φi. Then, the importance sampling estimate of the likelihood is obtained

by

L(W ; θ) ≈ L̂R(W ; θ) =
1
R

R∑

r=1

n∏

i=1

f(wi, λ
(r)
i (φi)|Wi−1, L

(r)
i−1(φi−1); θ)

m(λ(r)
i (φi)|L(r)

i−1(φi−1), φi)
, (19)

where {λ(r)
i (φi)}n

i=1 denotes a trajectory of random draws from the sequence of auxiliary im-

portance samplers m and R such trajectories are generated. The idea of the EIS approach is
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to choose a sequence of samplers for m(λi|Li−1, φi) that exploits the sample information on the

λi’s revealed by the observable data. Therefore, as shown by Richard (1998), the EIS principle

is to choose the auxiliary parameters {φi}n
i=1 in a way that provides a good match between

Πn
i=1m(λi|Li−1, φi) and Πn

i=1f(wi, λi|Wi−1, Li−1; θ) in order to minimize the Monte Carlo sam-

pling variance of L̂R(W ; θ). Richard (1998) illustrates that this minimization problem can be

split up into solvable low-dimensional subproblems. To define the importance sampler itself let

k(Li, φi) denote a density kernel for m(λi|Li−1, φi), given by

k(Li, φi) = m(λi|Li−1, φi)χ(Li−1, φi), (20)

where

χ(Li−1, φi) =
∫

k(Li, φi)dλi (21)

denotes the integrating constant. The implementation of EIS requires to select a class of density

kernels k(·) for the auxiliary sampler m(·) which provide a good approximation to the product

f(·)χ(·). As discussed by Richard (1998), a convenient and efficient possibility is to use a

parametric extension of the direct samplers, Gaussian distributions in this context. Since the

function g(·) appearing in (17) is essentially a product of different exponential functions, we

propose to approximate it by a normal density kernel

ζ(λi, φ) = exp
(
φ1,i lnλi + φ2,i(lnλi)2

)
, (22)

which is itself an exponential function in terms of lnλi based on the auxiliary parameters φi =

(φ1,i, φ2,i). Exploiting the property that the product of normal densities is itself a normal density,

we parameterize k(·) as

k(Li, φi) = p(λi|Li−1; θ)ζ(λi, φi)

and can show that

k(Li, φi) ∝ exp
(

(φ1,i + µ0,i) lnλi +
(

φ2,i − 1
2

)
(lnλi)2

)
(23)

= exp
(
− 1

2π2
i

(lnλi − µi)2
)

exp
(

µ2
i

2π2
i

)
,

where

π2
i =(1− 2φ2,i)−1 (24)

µi = (φ1,i + µ0,i) π2
i . (25)

Hence, the auxiliary sampler m(·) is a normal distribution with conditional mean µi and con-

ditional variance π2
i . By omitting irrelevant multiplicative factors, we obtain the integrating

11



constant as

χ(Li−1, φi) = exp

(
µ2

i

2π2
i

− µ2
0,i

2

)
. (26)

As shown by Richard (1998), the Monte Carlo variance of L̂R(W ; θ) can be minimized by splitting

the minimization problem into n minimization problems of the form

min
φi,0, φi

R∑

r=1

{
ln f

[(
wi, λ

(r)
i (θ)|Wi−1, L

(r)
i−1(θ), θ

)
· χ

(
L

(r)
i (θ), φi+1(θ)

)]

−φ0,i − ln k
(
L

(r)
i (θ), φi(θ)

)}2
, (27)

where φ0,i is a constant and {λ(r)
i (θ)}n

i=1 with λ
(r)
i (θ) := λ

(r)
i (φi(θ)) denotes a trajectory of

random draws from the sampler m with auxiliary parameters φi(θ) which themselves depend on

the model parameters θ.

In practice the implementation of the ML-EIS estimator requires the following steps:

(i) Draw R trajectories of the latent factor {λ(r)
i (φi)}n

i=1 using the direct sampler p(·).

(ii) For i : n → 1 solve the least squares problem characterized by the (auxiliary) linear

regression

D
(r)
1,i + D

(r)
2,i + D

(r)
3,i + D

(r)
4,i = φ0,i + φ1,iλ

(r)
i (θ) + φ2,i

[
λ

(r)
i (θ)

]2
+ ε

(r)
i , r = 1, . . . , R,

where

D
(r)
1,i = −1

2

(
ln hi + δ1 ln λ

(r)
i (θ)

)
− ξ2

i

2hi

(
λ

(r)
i (θ)

)δ1
,

D
(r)
2,i = (a2m2 − 1) ln Vi −

(
a2m2 ln Φi + δ2a2m2 lnλ

(r)
i (θ)

)
−


 Vi

Φi

(
λ

(r)
i (θ)

)δ2




a2

,

D
(r)
3,i = (a3m3 − 1) ln ρi −

(
a3m3 lnΨi + δ3a3m3 lnλ

(r)
i (θ)

)
−


 ρi

Ψi

(
λ

(r)
i (θ)

)δ3




a3

,

D
(r)
4,i = lnχ

(
L

(r)
i (θ), φi+1(θ)

)
,

and ε
(r)
i denotes the regression error term. These problems are solved sequentially starting

at i = n, under the initial condition χ(Ln, φn+1) = 1 and ending at i = 1. Liesenfeld and

Richard (2002) recommend to iterate the procedure about three to five times to improve

the efficiency of the approximations.

(iii) Compute the EIS sampler {m(λi|Li−1, φ̂(θ̂)}n
i=1 on the basis of the conditional mean and

variance given in (24) and (25) in order to draw R trajectories {λ(r)
i (φ̂i(θ̂))}n

i=1. These

trajectories are used to calculate the likelihood according to (19).
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The residuals of the individual processes are computed on the basis of the trajectories

drawn from the sequence of auxiliary samplers which are used to compute the likelihood function

in (19), leading to R residual series for each variable

η̂
(r)
i =

ξ̂i√
ĥi[λ

(r)
i (φ̂i(θ̂))]δ̂1

; û
(r)
i =

Vi

Φ̂i[λ
(r)
i (φ̂i(θ̂))]δ̂2

; ε̂
(r)
i =

ρi

Ψ̂i[λ
(r)
i (φ̂i(θ̂))]δ̂3

.

Summary statistics of the residuals as well as residual diagnostics are computed for each of the

R sequences separately.

5 Empirical results

5.1 Regression results

The empirical study uses transaction data from the AOL, Boeing, IBM and JP Morgan stock

traded at the New York Stock Exchange (NYSE). The data is extracted from the 2001 CD-

Roms of the Trade and Quote (TAQ) database released by the NYSE and covers a period over

5 months between 02/01/01 and 31/05/01. An aggregation level of 5 minutes is used which is

regarded as a trade-off between utilizing a maximum amount of intraday information on the one

hand and reducing the influence of too much market microstructure noise on the other hand.

Therefore, the resulting time series consist of 8008 observations of 5 min log midquote returns,

the average 5 min trading volume and the number of transactions occurring in each interval as

a measure for the trading intensity. Table 3 shows the mean, standard deviation, minimum,

maximum, different quantiles, kurtosis as well as the univariate and multivariate Ljung-Box

statistic associated with the individual time series. The latter is computed according to Ljung

and Box (1978) and is given by

MLB(s) := n(n + 2)
s∑

j=1

1
n− j

trace
(
Ĉ ′

jĈ
−1
0 ĈjĈ

−1
0

)
∼ χ2

ks,

where k denotes the number of different time series, s the number of lags taken into account and

Ĉj is the jth residual autocovariance matrix. For k = 1, the multivariate Ljung-Box statistic

reduces to the well known univariate one. The quite high Ljung-Box statistics in Table 3 indicate

that the 5 min trading data reveal strong serial (cross-)dependencies.

In order to account for intraday seasonality effects in return volatilities, volumes and

trading intensities, we standardize these variables by their corresponding seasonality component.

A simultaneous estimation of seasonality effects in a LF-VAR model is theoretically possible,

however, increases the computational burden considerable. For this reason, we removed intraday

seasonality effects in a first step by estimating cubic spline functions based on 30 minute nodes

for all individual processes separately and dividing the original variables by their corresponding
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seasonality component.14 Furthermore, we reduced the complexity of the model by estimating

ξi in a separate step as the residuals of an ARMA(1,1) process for the Yi series.15

Figures 17 through 20 show the empirical autocorrelation and cross-autocorrelation func-

tions for the plain series as well as the corresponding seasonally adjusted series. It turns out that

all processes reveal significantly positive autocorrelations and a relatively high persistence. The

highest serial dependence is observed for the series of volumes and trading intensities, whereas

for the volatility process lower autocorrelations are found. Moreover, significantly positive cross-

autocorrelations between the return volatility and the trading volume are observed whereas the

interdependencies between the volatility and the trading intensity are only very weak. In con-

trast, significantly negative cross-autocorrelations between the trading volume and the trading

intensity are found. Hence, higher volumes enter the market with a lower speed.

Tables 4 through 6 show the estimation results of univariate LF-GARCH as well as LF-

ACD models for 5 min volatilities, trading volumes and trading intensities for the four stocks.

To ensure model parsimony, we restrict the models to specifications with a maximal lag order

of two. For all processes and all stocks, we find significant evidence for the existence of a

persistent latent component. As revealed by the estimates of the parameter α0, the strongest

serial dependence in the latent component is observed for the volatility and trading intensity

processes, whereas it is lower for trading volumes. It turns out that both the parameter driven

dynamic as well as the observation driven dynamic interact. In particular, α0 declines when

observation driven dynamics are included. Accordingly, in the observation driven component,

the innovation parameter declines and the persistence parameter is driven towards one when

the latent factor is taken into account. Hence, news enter the model primarily through the

latent component, which is in line with the idea that the underlying factor serves as a proxy

for the unobserved information process. Furthermore, it is shown that the inclusion of the

latent component increases the goodness-of-fit as well as the dynamical properties of the model.

Actually, for the volatility and the volume processes, a pure parameter driven dynamic in form of

a SV and SCD specification, respectively (column (3)), outperforms a pure observation driven

dynamic in form of a logarithmic GARCH or ACD specification, respectively (column (2)).

Nevertheless, we observe that neither the parameter driven component nor the observation

driven component can be rejected. Hence, for nearly all time series, the best goodness-of-fit is

obtained by specifications (4) or (5) which include both types of dynamics.

Tables 7 to 10 give the estimation results for multivariate LF-VAR models including all

three trading components. In order to identify the sign of the parameters δj , we restrict δ1 to

be positive. As in the univariate models, we ensure model parsimony by restricting the maximal
14For the process of squared returns, the cubic splines are estimated based on absolute log returns.
15However, since for all return series the ARMA component is very close to zero, and thus ξi is very similar to

Yi, we refrain from showing the estimates here.
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lag order to two. In addition, we restrict A2 and B2 to be diagonal matrices. The major findings

can be summarized as following:

(i) We find significant evidence for a persistent latent common component with an autore-

gressive parameter which is on average around â0 ≈ 0.94. It turns out that the impact of the

latent component is quite robust over all individual specifications. This result indicates that the

latent factor seems to capture an underlying common autoregressive process which is obviously

not covered even by high-parameterized observation driven dynamics. The estimated parame-

ters δ1, δ2 and δ3 are significantly positive indicating that a latent shock affects the volatility, the

average trading volume and the trading intensity in the same direction. However, it turns out

that the underlying joint component influences primarily the volatility and volume component,

whereas its impact on the trading intensity is comparably low16.

(ii) For all four stocks, the VAR specifications without latent factor (columns (1) through

(3)) are not able to completely capture the dynamics of the system as indicated by highly signif-

icant Ljung-Box statistics for the residuals. However, the introduction of the latent component

clearly improves the dynamic properties of the model. Given the results discussed under (i),

it is not surprising that this is particularly true for the volatility and the volume component,

whereas in some cases the dynamics in the trading intensity are not completely captured by the

model. Moreover, the inclusion of the latent component leads to a reduction of the multivari-

ate Ljung-Box statistic indicating that the latent component does a good job in capturing the

multivariate dynamics and interdependencies between the individual processes. Furthermore,

as revealed by the Bayes information criterion (BIC), the LF-VAR model yields a clearly better

goodness-of-fit compared to VAR specifications without a latent factor.

(iii) The worst performance is observed for specification (4), where any observation driven

dynamics are omitted and only a parameter driven dynamic is included. Hence, a single common

autoregressive component is not sufficient to completely capture the dynamics of the multivariate

system which is in line with the findings by Andersen (1996) or Liesenfeld (1998). Therefore, as

in the univariate models we can neither reject the parameter driven dynamic nor the observation

driven dynamic. Actually, the best performance is revealed by specifications which include both

types of dynamics confirming the basic idea of the proposed model.

(iv) The inclusion of the latent factor leads to a significant decline of the magnitude of

the parameters α12
0 and α13

0 . This indicates that the conditional contemporaneous correlations

between ξ2
i and Vi as well as between ξ2

i and ρi given λi are lower than the corresponding

unconditional correlations. However, in contrast, the parameter α23
0 remains relatively stable

indicating that the (negative) contemporaneous relation between Vi and ρi is widely unaffected

by the latent factor. Furthermore, it is shown that the inclusion of λi reduces the impact of
16For AOL it is even insignificant.
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the individual idiosyncratic innovations and increases the persistence in the observation driven

dynamics. Similarly, as indicated by a decline of the magnitude of the non-diagonal elements

in A1 and B1, the latent factor reduces the cross-autocorrelations between the individual obser-

vation driven components. Hence, in accordance with the results for the univariate models, we

find evidence that news enter the model primarily through the latent factor, whereas the impact

of the process-specific innovations declines.

Since our major findings are quite robust across the different stocks, we can conclude that

there is clear empirical evidence for the existence of an underlying persistent factor which jointly

affects all individual trading components and is a major driving force for interdependencies as

well as contemporaneous relationships between the particular processes.

In order to analyze the impact of shocks on the LF-VAR process, we rely on the concept

of the generalized impulse response function (GIRF) introduced by Koop, Pesaran, and Potter

(1996) which is given by

GIRFXi(h, δ,Fi−1) = E[Xi+h|$i = δ,Fi−1]− E[Xi+h|Fi−1], (28)

where Xi ∈ {λi, Y
2
i , Vi, ρi}, $i ∈ {νi, ηi, ui, εi}, δ is the magnitude of the shock, and h denotes

the number of periods over which the GIRF is computed. As shown in this representation, the

GIRF conditions on the shock and on the history of the process whereas innovations occurring

in intermediate time periods are averaged out. Then, the GIRF can be interpreted as a ran-

dom variable in terms of the history Fi−1. In nonlinear models, analytical expressions for the

conditional expectations used in (28) are often not available and thus, Monte-Carlo simulation

techniques have to be performed. Figures 21 through 24 show the generalized impulse response

functions for a shock in the latent innovation νi with magnitude of one standard deviation. The

GIRF is computed by conditioning on the unconditional means E[Xi] and E[$i] and is estimated

by

ĜIRFXi(h, δ,Fi−1) = Ê [Xi+h|εi = 1,Fi−1]− Ê [Xi+h|Fi−1] ,

where the conditional expectations are estimated by sample averages based on 5, 000 simulated

paths of Xi, Xi+1, . . . , Xi+h given the corresponding conditioning information and using the

parameter estimates of specification (8) in Tables 7 through 10. For all processes, we observe a

positive, persistent response of ξ2
i , Vi and ρi due to a shock in the latent component. In most

cases, the impulse response function declines monotonically and approaches zero after around

30-40 lags.

6 Conclusions

In this paper, we propose a statistical framework to model multivariate systems which are driven

by an underlying common latent component. The basic idea of the so-called latent factor VAR
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(LF-VAR) model is to combine a multivariate observation driven (VAR-type) dynamic with

an underlying univariate parameter driven dynamic which jointly affects all individual compo-

nents of the system. Whereas the observation driven dynamic is updated by process-specific

innovations which are completely observable given the process history, the parameter driven

component follows an autoregressive process which is updated by unobservable innovations in-

dependent from the idiosyncratic components.

The model is used to analyze whether evidence for a joint latent autoregressive component

in intraday trading processes on financial markets is found. Economically this approach is

motivated by the mixture-of-distribution hypothesis as postulated by Clark (1973) assuming

that the trading process is driven by an unobservable autoregressive process of price relevant

information. Moreover, this assumption is the underpinning of numerous theoretical market

microstructure approaches such as Easley and O‘Hara (1992) or Easley, Kiefer, O‘Hara, and

Paperman (1996), among others. By specifying a LF-VAR model for the return volatility, the

average trading volume as well as the number of trades per 5 minutes interval, this paper

investigates whether an underlying autoregressive component can be identified, how it affects

the individual trading components and whether its explicit inclusion in the model leads to an

improved statistical modelling.

Using intraday data from four blue chip stocks traded at the New York Stock Exchange,

we find clear evidence for the existence of a joint latent dynamic component and thus a clear

confirmation of the mixture-of-distribution hypothesis on an intraday level. It is shown that

a latent shock simultaneously drives the return volatility, the trading volume as well as the

trading intensity in the same direction. However, the strength of the latent factor’s influence

on the individual components differ significantly. An interesting finding is that the unobserved

component primarily influences the volatility and the volume whereas its impact on the trading

intensity is comparably weak.

Moreover, our results show that the latent factor is an important driving force for in-

terdependencies between the particular components. Actually, we observe that the conditional

contemporaneous correlations as well as cross-autocorrelations given the latent factor are lower

than the corresponding unconditional ones. Hence, we can distinguish between effects that can

be related to the unobserved information flow in the market and effects that can be attributed to

trading mechanisms given the latent information. In this sense, the LF-VAR model is a valuable

approach for the analysis of market microstructure relationships and provides deeper insights

into the underlying data generating process.

A further important finding is that the inclusion of a latent factor significantly improves

the goodness-of-fit of the model as well as its dynamic and distributional properties. Hence,

taking explicitly a joint unobserved autoregressive component into account leads to an improved
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statistical model for financial trading processes. Nonetheless, it turns out that a single parameter

driven dynamic is not sufficient to completely capture the dynamics of the multivariate system

and that the inclusion of additional process-specific dynamics for the individual components is

required to obtain a well-specified model. The fact that a specification which includes both the

parameter driven dynamic as well as the multivariate observation driven dynamic provides the

best goodness-of-fit and highest explanatory power confirms the underlying idea of the LF-VAR

model.
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Appendix

A.1 Proof of Proposition 1

For |a0| < 1, the latent process λi is strictly stationary. Since the innovations ηi, ui and εi

are i.i.d. random variables, the processes (2) through (5) are only weakly stationary if (hi, Φi,
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Ψi) are weakly stationary themselves. However, since a transformation of a weakly stationary

variable is itself weakly stationary, it is sufficient to show that µi := (lnhi lnΦi lnΨi)′ is weakly

stationary. Without loss of generality, the process (8) can be written in terms of a VARMA(1,1)

model given by

yi = C + Byi−1 + A0z0,i + Azi−1, (29)

where

yi =




lnµi

lnµi−1

lnµi−2
...

ln µi−q




; C =




ω
0
...
...
0




; B =




B1 B2 · · · Bq

I 0 · · · 0

0
. . .

...
...

. . . 0
0 · · · 0 I




; A0 =




A0

0
...
...
0




;

zi =




zi

zi−1

zi−2
...

zi−p




; z0,i =




z0,i

0
...
...
0




; A =




A1 A2 · · · Ap

0 0 · · · 0

0
. . .

...
...

. . . 0
0 · · · 0 0




and I denotes a (3 × 3) identity matrix. Under the assumption that the absolute value of the

eigenvalues of B lie inside the unit circle, i.e. |ς| < 1 for all values of ς satisfying

∣∣Iςq −B1ς
q−1 −B2ς

q−2 . . .−Bq

∣∣ = 0,

(29) can be rewritten as

yi = (I−BL)−1 (C + A0z0,i + Azi−1) ,

corresponding to an infinite moving average representation in terms of the elements of z0,i and

zi−1, where L denotes the lag operator.

The innovation components zi−j can be written as zi−j = (|η̃i|, ũi, ε̃i), where η̃i = ηiλ
δ1/2
i ,

ũi = uiλ
δ2
i and ε̃i = εiλ

δ3
i . Since, the product of an i.i.d. variate and a strictly stationary variable

is strictly stationary, the vector zi itself is strictly stationary.

It remains to show the stationarity of the component A0z0,i. This is easily verified by

exploiting the triangular structure of A0. Since the third component Ψi depends only on zi, it

is itself weakly stationary. Hence, ρi is weakly stationary which implies weak stationarity of the

second component Φi and thus Vi. The weak stationarity of hi and Yi are proven following an

analogous argumentation. ¤
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A.2 Simulation results

A.2.1 Simulated moments of LF-GARCH and LF-ACD processes

Table 1: Simulated unconditional moments for differently parameterized LF-GARCH processes. The model
corresponds to the specification given by (6), (10) and (13). The simulations are based on 100 sets of 50, 000
observations.
Evaluated statistics: Standard deviation, maximum, 75%-, 90%-, 95%-, 99%-quantile and kurtosis of the
simulated return process as well as the Ljung-Box statistic (associated with 20 lags) for squared returns. The
conditional mean return is set to zero.

(1) (2) (3) (4) (5) (6) (7) (8)
Parameterization

ω1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
α1 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100
β1 0.100 0.100 0.100 0.100 0.100 0.100 0.700 0.900
α0 0.000 0.100 0.500 0.900 0.900 0.900 0.900 0.500
δ1 0.000 0.100 0.100 0.100 0.200 0.300 0.300 0.500

Summary Statistics
S.D. 1.046 1.049 1.050 1.062 1.109 1.195 1.341 1.673
Max 4.472 4.539 4.539 5.016 6.477 9.556 11.944 11.615
quant75 0.705 0.705 0.704 0.702 0.695 0.684 0.751 0.997
quant90 1.340 1.341 1.342 1.346 1.368 1.406 1.557 2.012
quant95 1.721 1.725 1.726 1.743 1.809 1.918 2.141 2.706
quant99 2.435 2.454 2.454 2.515 2.741 3.116 3.533 4.255
Kurtosis 3.010 3.046 3.055 3.194 3.798 5.209 5.812 4.488
LB(20) 109.027 112.222 122.304 384.497 2277.973 6131.453 9835.528 1706.835

(9) (10) (11) (12) (13) (14) (15) (16)
Parameterization

ω1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
α1 0.100 0.100 0.100 0.100 0.100 0.100 0.200 0.500
β1 0.900 0.950 0.950 0.950 0.950 0.950 0.700 0.500
α0 0.100 0.100 0.500 0.700 0.900 0.900 0.900 0.900
δ1 0.500 0.500 0.500 0.300 0.300 0.500 0.500 0.500

Summary Statistics
S.D. 1.617 2.457 2.554 2.416 2.978 6.860 3.206 48.175
Max 9.999 15.461 18.572 15.064 37.967 330.067 181.854 6993.980
quant75 0.999 1.507 1.509 1.499 1.497 1.536 0.836 0.949
quant90 1.980 2.996 3.053 2.961 3.226 4.026 2.078 2.518
quant95 2.634 3.995 4.126 3.928 4.581 6.544 3.255 4.202
quant99 4.036 6.158 6.558 6.014 8.137 15.854 7.237 11.448
Kurtosis 3.974 4.077 4.658 3.961 10.995 692.717 1422.349 15327.022
LB(20) 648.889 1422.047 2974.460 3837.337 29423.516 37688.351 18684.144 3758.646
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Table 2: Simulated unconditional moments for differently parameterized LF-ACD processes. The model
corresponds to the specification given by (6), (12) and (15). The simulations are based on 100 sets of 50, 000
observations.
Evaluated statistics: Mean, standard deviation, maximum, minimum, 1%-, 5%-, 10%-, 25%-, 50%-, 75%-, 90%-,
95%-, 99%-quantile as well as the Ljung-Box statistic (associated with 20 lags).

(1) (2) (3) (4) (5) (6) (7) (8)
Parameterization

ω3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
α3 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100
β3 0.100 0.100 0.100 0.100 0.100 0.700 0.900 0.900
a3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
m3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
α0 0.000 0.100 0.500 0.900 0.900 0.900 0.500 0.100
δ3 0.000 0.100 0.100 0.100 0.200 0.200 0.500 0.500

Summary Statistics
Mean 1.124 1.131 1.133 1.167 1.310 1.795 4.585 3.771
S.D. 1.138 1.158 1.166 1.267 1.846 3.095 14.255 6.032
Max 14.371 15.559 15.732 21.927 90.964 185.843 1689.343 327.620
Min 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
quant01 0.011 0.011 0.011 0.011 0.010 0.012 0.025 0.026
quant05 0.057 0.057 0.057 0.056 0.051 0.063 0.130 0.135
quant10 0.117 0.117 0.117 0.115 0.106 0.130 0.272 0.280
quant25 0.320 0.319 0.319 0.314 0.296 0.368 0.782 0.791
quant50 0.773 0.774 0.772 0.769 0.755 0.953 2.105 2.052
quant75 1.552 1.559 1.558 1.577 1.651 2.144 5.029 4.627
quant90 2.591 2.611 2.617 2.709 3.076 4.161 10.433 8.915
quant95 3.387 3.421 3.436 3.618 4.357 6.103 16.006 12.908
quant99 5.255 5.359 5.399 5.920 8.192 12.530 36.328 25.277
LB(20) 615.291 648.092 751.600 2203.408 10739.092 26168.753 22413.452 10965.638

(9) (10) (11) (12) (13) (14) (15) (16)
Parameterization

ω3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
α3 0.100 0.100 0.100 0.200 0.500 0.100 0.100 0.100
β3 0.950 0.950 0.950 0.700 0.500 0.700 0.700 0.700
a3 1.000 1.000 1.000 1.000 1.000 0.800 1.500 5.000
m3 1.000 1.000 1.000 1.000 1.000 1.200 0.500 0.500
α0 0.700 0.100 0.100 0.100 0.500 0.900 0.900 0.900
δ3 0.300 0.500 0.300 0.300 0.300 0.200 0.200 0.200

Summary Statistics
Mean 11.946 12.470 9.145 2.239 6.210 1.794 1.806 1.788
S.D. 24.246 20.691 11.628 2.939 75.995 3.129 3.614 3.035
Max 1494.324 959.318 292.183 123.230 6500.553 206.091 314.030 175.815
Min 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
quant01 0.071 0.078 0.073 0.018 0.022 0.012 0.012 0.012
quant05 0.365 0.402 0.374 0.094 0.117 0.063 0.063 0.063
quant10 0.760 0.837 0.773 0.194 0.242 0.131 0.131 0.130
quant25 2.170 2.387 2.158 0.539 0.683 0.368 0.369 0.367
quant50 5.753 6.328 5.445 1.350 1.808 0.953 0.955 0.950
quant75 13.495 14.716 11.748 2.879 4.335 2.146 2.153 2.140
quant90 27.540 29.405 21.505 5.208 9.519 4.159 4.182 4.150
quant95 41.859 43.777 30.103 7.253 15.926 6.091 6.128 6.074
quant99 93.118 91.284 54.793 13.248 55.442 12.537 12.607 12.451
LB(20) 49335.797 26192.140 19098.324 8604.206 255.547 25235.396 25247.540 26940.587
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A.2.2 Autocorrelation and cross-autocorrelation functions of simulated bivariate
LF-VAR processes

The following figures show autocorrelation functions (ACF) and cross-autocorrelation functions (CACF) implied

by bivariate LF-VAR(1,1) processes for the return volatility and the trading intensity. The model is specified as

a two-dimensional version of the processes as given by (1) through (8).

From left to right: ACF of λi, ACF’s of hi (solid line) and Ψi (broken line), ACF’s of Y 2
i (solid line) and ρi

(broken line), CACF’s of hi and Ψi (solid line) as well as of Y 2
i and ρi (broken line). The CACF graphs show the

plot of Corr(xi, zi−j) versus j. The conditional mean return is set to zero. The simulations are based on 100 sets

of 50, 000 observations.

Figure 1: ω = (0, 0), α0,12 = 0, A1 = (0.1 0, 0 0.1), B1 = (0.1 0, 0 0.1), α0 = 0.9, δ1 = δ2 = 0.1.

Figure 2: ω = (0, 0), α0,12 = 0, A1 = (0.1 0, 0 0.1), B1 = (0.1 0, 0 0.1), α0 = 0.9, δ1 = δ2 = 0.3.

Figure 3: ω = (0, 0), α0,12 = 0, A1 = (0.1 0, 0 0.1), B1 = (0.1 0, 0 0.1), α0 = 0.9, δ1 = 0.3, δ2 = −0.3.

Figure 4: ω = (0, 0), α0,12 = 0, A1 = (0.1 0, 0 0.1), B1 = (0.7 0, 0 0.7), α0 = 0.9, δ1 = 0.3 = δ2 = 0.3.
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Figure 5: ω = (0, 0), α0,12 = 0, A1 = (0.1 0, 0 0.1), B1 = (0.9 0, 0 0.9), α0 = 0.9, δ1 = δ2 = 0.3.

Figure 6: ω = (0, 0), α0,12 = 1.0, A1 = (0.1 0, 0 0.1), B1 = (0.9 0, 0 0.9), α0 = 0, δ1 = δ2 = 0.

Figure 7: ω = (0, 0), α0,12 = 0, A1 = (0.1 0.1, 0.1 0.1), B1 = (0.7 0.2, 0.2 0.7), α0 = 0, δ1 = δ2 = 0.

Figure 8: ω = (0, 0), α0,12 = 0.1, A1 = (0.1 0.1, 0.1 0.1), B1 = (0.7 0.2, 0.2 0.7), α0 = 0, δ1 = δ2 = 0.

Figure 9: ω = (0, 0), α0,12 = 0.1, A1 = (0.1 0.1, 0.1 0.1), B1 = (0.7 0.2, 0.2 0.7), α0 = 0.9, δ1 = δ2 = 0.1.
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Figure 10: ω = (0, 0), α0,12 = 0.1, A1 = (0.1 0.1, 0.1 0.1), B1 = (0.7 0.2, 0.2 0.7), α0 = 0.9, δ1 = 0.3, δ2 = 0.1.

Figure 11: ω = (−0.2,−0.2), α0,12 = 0.1, A1 = (0.1 0.1, 0.1 0.1), B1 = (0.7 0.2, 0.2 0.7), α0 = 0, δ1 = δ2 = 1.0.

Figure 12: ω = (−0.2,−0.2), α0,12 = 0.1, A1 = (0.1 0.1, 0.1 0.1), B1 = (0.7 0.2, 0.2 0.7), α0 = 0, δ1 = 1.0,

δ2 = −1.0.

Figure 13: ω = (0, 0), α0,12 = −0.3, A1 = (0.1 0, 0 0.1), B1 = (0.9 0, 0 0.9), α0 = 0.9, δ1 = 0.1, δ2 = 0.1.

Figure 14: ω = (0, 0), α0,12 = −0.3, A1 = (0.1 0, 0 0.1), B1 = (0.9 0, 0 0.9), α0 = 0.9, δ1 = 0.3, δ2 = 0.3.
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Figure 15: ω = (−0.2,−0.2), α0,12 = 0.1, A1 = (0.1 0.1, 0.1 0.1), B1 = (0.7 0.2, 0.2 0.7), α0 = 0.9, δ1 = −0.5,

δ2 = 0.2.

Figure 16: ω = (0, 0), α0,12 = 0, A1 = (0.1 0.1, 0.1 0.1), B1 = (0.5 0, 0 0.9), α0 = 0.1, δ1 = δ2 = 0.5.
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A.3 Descriptive Statistics

Table 3: Descriptive statistics of log returns (multiplied by 100), squared log returns, average volumes as well
as the number of trades based on 5-min intervals for the AOL, Boeing, JP Morgan, and IBM stocks traded at
the NYSE. Extracted from the 2001 TAQ data base. Sample period 02/01/01 to 31/05/01.
The following descriptive statistics are shown: Number of observations, mean, standard deviation, minimum,
maximum, 5%-, 10%-, 50%-, 90%-, as well as 95%-quantile, kurtosis, univariate and multivariate Ljung-Box
statistic (computed for squared log returns, volumes and number of trades) associated with 20 lags.

AOL Boeing
Returns Sq. returns Avg. volumes Trades Returns Sq. ret. Avg. volumes Trades

Obs 8008 8008 8008 8008 8008 8008 8008 8008
Mean 0.005 0.143 7084.337 26.424 0.000 0.060 1829.393 19.735
S.D. 0.378 0.403 5979.153 9.537 0.245 0.153 1683.701 8.283
Min -2.973 0.000 1.000 1.000 -1.680 0.000 1.000 1.000
Max 3.000 9.000 84250.000 75.000 1.854 3.437 24766.666 63.000
q05 -0.556 0.000 1645.000 12.000 -0.391 0.000 450.000 9.000
q10 -0.404 0.001 2131.818 15.000 -0.272 0.000 561.765 10.000
q50 0.000 0.034 5383.333 26.000 0.000 0.013 1327.273 19.000
q90 0.406 0.335 13876.471 39.000 0.269 0.150 3600.000 31.000
q95 0.593 0.581 17995.000 43.000 0.380 0.257 4900.000 35.000
Kurtosis 8.968 - - - 7.423 - - -
LB(20) 25.129 1132.700 14754.230 9868.857 42.988 1767.233 2878.382 18609.976
MLB(20) 41942.224 35931.744

JP Morgan IBM
Returns Sq. returns Avg. volumes Trades Returns Sq. ret. Avg. volumes Trades

Obs 8008 8008 8008 8008 8008 8008 8008 8008
Mean 0.002 0.099 2960.285 33.070 0.001 0.073 2375.869 41.962
S.D. 0.315 0.374 2685.456 11.204 0.270 0.186 2076.318 12.175
Min -2.355 0.000 1.000 1.000 -1.668 0.000 1.000 1.000
Max 3.994 15.950 59153.332 78.000 2.000 4.000 45540.000 101.000
q05 -0.476 0.000 747.826 16.000 -0.430 0.000 696.774 24.000
q10 -0.334 0.000 920.000 19.000 -0.310 0.000 841.509 27.000
q50 0.000 0.021 2233.333 32.000 0.000 0.018 1794.595 41.000
q90 0.338 0.229 5729.412 48.000 0.289 0.182 4470.371 58.000
q95 0.479 0.411 7358.824 53.000 0.425 0.308 5906.667 64.000
Kurtosis 15.197 - - - 7.464 - - -
LB(20) 55.335 1401.054 9011.564 12520.965 26.568 2590.101 19751.120 18070.49
MLB(20) 43873.529 70348.102
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Empirical autocorrelation and cross-autocorrelation functions

The following figures show the autocorrelation functions (ACF) and cross-autocorrelation functions (CACF) of
squared log returns, average volumes as well as the number of trades based on 5-min intervals for the AOL,
Boeing, JP Morgan and IBM stocks traded at the NYSE. The upper plots are based on the plain series, whereas
the lower plots are based on the seasonally adjusted series. The pictures on the left show the ACF of squared
log returns (solid line), average volumes (broken line) and the number of trades (dotted line). The pictures on
the right show the CACF of squared log returns and average volumes (solid line), of squared log returns and the
number of trades (broken line), and of average volumes and the number of trades (dotted line). Data extracted
from the 2001 TAQ data base. Sample period 02/01/01 to 31/05/01.

Figure 17: (Cross-)autocorrelation functions for the AOL stock.

Figure 18: (Cross-)autocorrelation functions for the Boeing stock.
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Figure 19: (Cross-)autocorrelation functions for the JP Morgan stock.

Figure 20: (Cross-)autocorrelation functions for the IBM stock.

29



A.4 Estimation results

A.4.1 Univariate Models

Table 4: Maximum likelihood efficient importance sampling (ML-EIS) estimates of different parameterizations of
(LF-)GARCH models up to a lag order of p = q = 2 for 5 min log returns based on the AOL, Boeing, JP Morgan
and IBM stocks traded at the NYSE. The model corresponds to the specification shown in (6), (10) and (13),
where, however, higher lags are included. Data extracted from the 2001 TAQ data base. Sample period 02/01/01
to 31/05/01. Overnight returns are excluded. The models are re-initialized at every trading day. Standard errors
are computed based on the inverse of the estimated Hessian. The ML-EIS estimates are computed using R = 50
Monte Carlo replications based on 5 EIS iterations.
Diagnostics: log likelihood function (LL), Bayes Information Criterion (BIC), average diagnostics (mean,
standard deviation and Ljung-Box (LB) statistic based on 20 lags) over all trajectories of the residuals.

AOL Boeing
(1) (2) (3) (4) (5) (1) (2) (3) (4) (5)

ω1 -0.098∗∗∗ -0.001∗∗∗ 0.314∗ -0.028∗∗∗ -0.006 -0.091∗∗∗ -0.154∗∗∗ 0.3092∗∗∗ -0.035∗∗∗ -0.011∗∗
α1

1 0.140∗∗∗ 0.197∗∗∗ 0.034∗∗∗ -0.035 0.136∗∗∗ 0.166∗∗∗ 0.042∗∗∗ -0.064∗∗∗
α1

2 -0.195∗∗∗ 0.043∗ 0.060∗∗∗ 0.077∗∗∗
β1
1 0.987∗∗∗ 1.917∗∗∗ 0.997∗∗∗ 1.718∗∗∗ 0.982∗∗∗ 0.143∗∗∗ 0.996∗∗∗ 1.585∗∗∗

β1
2 -0.918∗∗∗ -0.719∗∗∗ 0.830∗∗∗ -0.586∗∗∗

Latent Component
a0 0.961∗∗∗ 0.768∗∗∗ 0.830∗∗∗ 0.941∗∗∗ 0.675∗∗∗ 0.775∗∗∗
δ1 0.229∗∗∗ 0.428∗∗∗ 0.403∗∗∗ 0.291∗∗∗ 0.553∗∗∗ 0.513∗∗∗

Diagnostics
LL -13343 -13278 -13115 -13060 -13057 -13456 -13449 -13217 -13151 -13145
BIC -13357 -13300 -13129 -13082 -13088 -13469 -13471 -13230 -13173 -13177
Mean 1.000 1.002 1.007 1.009 1.011 1.000 1.000 1.009 1.012 1.014
S.D. 2.548 2.302 1.510 1.461 1.450 2.283 2.266 1.524 1.471 1.462
LB(20) 58.610∗∗∗ 37.567∗∗ 23.447 17.147 17.341 61.037∗∗∗ 56.611∗∗∗ 30.715∗ 24.426 23.546

JP Morgan IBM
(1) (2) (3) (4) (5) (1) (2) (3) (4) (5)

ω1 -0.149∗∗∗ -0.139∗∗∗ 0.283∗∗ -0.013∗∗∗ -0.003∗∗∗ -0.121∗∗∗ -0.009∗∗∗ 0.323 -0.030∗∗∗ -0.045∗∗
α1

1 0.224∗∗∗ 0.260∗∗∗ 0.016∗∗∗ -0.031∗∗∗ 0.168∗∗∗ 0.228∗∗∗ 0.037∗∗∗ 0.003
α1

2 -0.052 0.035∗∗∗ -0.215∗∗∗ 0.051∗
β1
1 0.967∗∗∗ 0.972∗∗∗ 0.998∗∗∗ 1.729∗∗∗ 0.986∗∗∗ 1.826∗∗∗ 0.997∗∗∗ 0.593

β1
2 -0.000 -0.730∗∗∗ -0.827∗∗∗ 0.402

Latent Component
a0 0.951∗∗∗ 0.860∗∗∗ 0.876∗∗∗ 0.981∗∗∗ 0.860∗∗∗ 0.847∗∗∗
δ1 0.275∗∗∗ 0.379∗∗∗ 0.384∗∗∗ 0.167∗∗∗ 0.302∗∗∗ 0.320∗∗∗

Diagnostics
LL -13351 -13349 -13071 -13028 -13023 -13040 -12998 -12883 -12849 -12848
BIC -13365 -13371 -13085 -13050 -13055 -13054 -13021 -12896 -12871 -12879
Mean 1.000 1.000 1.007 1.008 1.010 1.000 1.004 1.004 1.006 1.007
S.D. 2.766 2.787 1.502 1.475 1.463 2.122 2.030 1.491 1.457 1.450
LB(20) 21.383 21.587 20.516 20.415 18.206 51.400∗∗∗ 17.026 23.200 19.907 19.083
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Table 5: Maximum likelihood efficient importance sampling (ML-EIS) estimates of different parameterizations of
(LF-)ACD models up to a lag order of p = q = 2 for 5 min average trading volumes based on the AOL, Boeing,
JP Morgan and IBM stocks traded at the NYSE. The model corresponds to the specification shown in (6), (11)
and (14), where, however, higher lags are included. Data extracted from the 2001 TAQ data base. Sample period
02/01/01 to 31/05/01. Overnight observations are excluded. The models are re-initialized at every trading day.
Standard errors are computed based on the inverse of the estimated Hessian. The ML-EIS estimates are computed
using R = 50 Monte Carlo replications based on 5 EIS iterations.
Diagnostics: log likelihood function (LL), Bayes Information Criterion (BIC), average diagnostics (mean,
standard deviation and Ljung-Box (LB) statistic based on 20 lags) over all trajectories of the residuals.

AOL Boeing
(1) (2) (3) (4) (5) (1) (2) (3) (4) (5)

ω2 -0.384∗∗∗ -0.180∗∗∗ -3.291∗∗∗ -0.080∗∗∗ -0.037∗∗∗ -0.403∗∗∗ -0.416∗∗∗ -5.841∗∗∗ -0.070∗∗∗ -0.057∗∗∗
α2

1 0.007∗∗∗ 0.013∗∗∗ 0.018∗∗∗ -0.013∗∗∗ 0.001∗∗∗ 0.002∗∗∗ 0.011∗∗∗ -0.006∗∗
α2

2 -0.007∗∗∗ 0.021∗∗∗ -0.000 0.014∗∗∗
β2
1 0.943∗∗∗ 1.216∗∗∗ 0.986∗∗∗ 1.340∗∗∗ 0.928∗∗∗ 0.761∗∗∗ 0.981∗∗∗ 1.074∗∗∗

β2
2 -0.240∗∗∗ -0.349∗∗∗ 0.165 -0.091

a2 0.636∗∗∗ 0.682∗∗∗ 0.715∗∗∗ 1.315∗∗∗ 1.342∗∗∗ 0.517∗∗∗ 0.519∗∗∗ 0.450∗∗∗ 1.202∗∗∗ 1.188∗∗∗
m2 7.916∗∗∗ 6.974∗∗∗ 9.380∗∗∗ 4.609∗∗∗ 4.672∗∗∗ 8.032∗∗∗ 7.991∗∗∗ 12.753∗∗∗ 4.276∗∗∗ 4.321∗∗∗

Latent Component
a0 0.934∗∗∗ 0.500∗∗∗ 0.654∗∗∗ 0.954∗∗∗ 0.260∗∗∗ 0.391∗∗∗
δ2 0.180∗∗∗ 0.373∗∗∗ 0.363∗∗∗ 0.113∗∗∗ 0.506∗∗∗ 0.494∗∗∗

Diagnostics
LL -4896 -4859 -4665 -4594 -4568 -6211 -6200 -6019 -5954 -5943
BIC -4919 -4890 -4688 -4626 -4608 -6234 -6232 -6041 -5985 -5983
Mean 1.003 1.002 1.001 1.003 1.004 1.011 1.010 1.007 1.004 1.005
S.D. 0.655 0.648 0.481 0.359 0.349 0.871 0.870 0.739 0.409 0.412
LB(20) 78.440∗∗∗ 24.061 42.693∗∗∗ 23.355 18.991 39.166∗∗∗ 23.256 46.466∗∗∗ 24.470 21.645

JP Morgan IBM
(1) (2) (3) (4) (5) (1) (2) (3) (4) (5)

ω2 -0.403∗∗∗ -0.307∗∗∗ -3.420∗∗∗ -0.072∗∗∗ -0.139∗∗∗ -0.435∗∗∗ -0.206∗∗∗ -2.440∗∗∗ -0.087∗∗∗ -0.060∗∗∗
α2

1 0.004∗∗∗ 0.007∗∗∗ 0.018∗∗∗ 0.021∗∗∗ 0.008∗∗∗ 0.015∗∗∗ 0.022∗∗∗ -0.002
α2

2 -0.002∗∗∗ 0.020∗∗∗ -0.008∗∗∗ 0.018∗∗∗
β2
1 0.932∗∗∗ 0.915∗∗∗ 0.984∗∗∗ -0.016∗∗∗ 0.929∗∗∗ 1.242∗∗∗ 0.980∗∗∗ 1.194∗∗∗

β2
2 0.034 0.983∗∗∗ -0.273∗∗∗ -0.210

a2 0.591∗∗∗ 0.614∗∗∗ 0.666∗∗∗ 1.388∗∗∗ 1.475∗∗∗ 0.692∗∗∗ 0.737∗∗∗ 0.888∗∗∗ 1.462∗∗∗ 1.531∗∗∗
m2 7.844∗∗∗ 7.314∗∗∗ 8.772∗∗∗ 3.950∗∗∗ 3.458∗∗∗ 8.696∗∗∗ 7.740∗∗∗ 7.894∗∗∗ 4.445∗∗∗ 4.371∗∗∗

Latent Component
a0 0.919∗∗∗ 0.398∗∗∗ 0.419∗∗∗ 0.932∗∗∗ 0.512∗∗∗ 0.590∗∗∗
δ2 0.182∗∗∗ 0.429∗∗∗ 0.424∗∗∗ 0.159∗∗∗ 0.314∗∗∗ 0.317∗∗∗

Diagnostics
LL -5454 -5429 -5260 -5164 -5158 -4229 -4201 -4038 -3973 -3956
BIC -5477 -5460 -5282 -5196 -5199 -4251 -4232 -4060 -4004 -3996
Mean 1.005 1.005 1.001 1.004 1.006 1.001 1.001 1.001 1.003 1.003
S.D. 0.741 0.738 0.542 0.368 0.371 0.570 0.563 0.414 0.328 0.316
LB(20) 37.492∗∗ 10.981 39.256∗∗∗ 21.829 20.520 74.995∗∗∗ 24.832 35.589∗∗ 28.402 22.822
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Table 6: Maximum likelihood efficient importance sampling (ML-EIS) estimates of different parameterizations of
(LF-)ACD models up to a lag order of p = q = 2 for the number of trades in 5 min intervals based on the AOL,
Boeing, JP Morgan and IBM stocks traded at the NYSE. The model corresponds to the specification shown in (6),
(12) and (15), where, however, higher lags are included. Data extracted from the 2001 TAQ data base. Sample
period 02/01/01 to 31/05/01. Overnight observations are excluded. The models are re-initialized at every trading
day. Standard errors are computed based on the inverse of the estimated Hessian. The ML-EIS estimates are
computed using R = 50 Monte Carlo replications based on 5 EIS iterations.
Diagnostics: log likelihood function (LL), Bayes Information Criterion (BIC), average diagnostics (mean,
standard deviation and Ljung-Box (LB) statistic based on 20 lags) over all trajectories of the residuals.

AOL Boeing
(1) (2) (3) (4) (5) (1) (2) (3) (4) (5)

ω3 -0.307∗∗∗ -0.060∗∗∗ -0.226∗∗∗ -0.055∗∗∗ -0.047∗∗∗ -0.202∗∗∗ -0.025∗∗∗ -0.426∗∗∗ -0.035∗∗∗ -0.042∗∗∗
α3

1 0.146∗∗∗ 0.177∗∗∗ 0.053∗∗∗ 0.104∗∗∗ 0.077∗∗∗ 0.105∗∗∗ 0.026∗∗∗ 0.046∗∗∗
α3

2 -0.143∗∗∗ -0.061∗∗∗ -0.092∗∗∗ -0.018
β3
1 0.892∗∗∗ 1.554∗∗∗ 0.972∗∗∗ 0.940∗∗∗ 0.953∗∗∗ 1.704∗∗∗ 0.991∗∗∗ 0.562∗∗∗

β3
2 -0.571∗∗∗ 0.035 -0.708∗∗∗ 0.427∗

a3 1.910∗∗∗ 2.016∗∗∗ 2.800∗∗∗ 3.695∗∗∗ 3.241∗∗∗ 1.632∗∗∗ 1.752∗∗∗ 2.170∗∗∗ 2.563∗∗∗ 2.366∗∗∗
m3 2.970∗∗∗ 2.707∗∗∗ 2.002∗∗∗ 1.326∗∗∗ 1.524∗∗∗ 3.674∗∗∗ 3.237∗∗∗ 2.639∗∗∗ 2.100∗∗∗ 2.317∗∗∗

Latent Component
a0 0.913∗∗∗ 0.731∗∗∗ 0.793∗∗∗ 0.957∗∗∗ 0.766∗∗∗ 0.821∗∗∗
δ3 0.097∗∗∗ 0.128∗∗∗ 0.103∗∗∗ 0.067∗∗∗ 0.110∗∗∗ 0.092∗∗∗

Diagnostics
LL -1707 -1680 -1697 -1661 -1652 -1982 -1957 -1975 -1925 -1921
BIC -1729 -1711 -1720 -1693 -1693 -2005 -1988 -1998 -1956 -1961
Mean 1.000 0.999 1.003 1.002 1.001 0.999 0.999 1.002 1.002 1.002
S.D. 0.308 0.307 0.263 0.256 0.267 0.323 0.322 0.290 0.279 0.286
LB(20) 69.340∗∗∗ 37.517∗∗ 62.817∗∗∗ 42.030∗∗∗ 31.200∗ 55.018∗∗∗ 33.285∗∗ 50.428∗∗∗ 34.512∗∗ 25.000

JP Morgan IBM
(1) (2) (3) (4) (5) (1) (2) (3) (4) (5)

ω3 -0.339∗∗∗ -0.013∗∗∗ -0.018 -0.013∗∗∗ -0.011∗∗ -0.372∗∗∗ -0.167∗∗∗ -0.226∗∗∗ -0.4510∗∗∗ -0.022∗∗
α3

1 0.184∗∗∗ 0.212∗∗∗ 0.014∗∗∗ 0.144∗∗∗ 0.150∗∗∗ 0.183∗∗∗ 0.1223∗∗∗ 0.056∗∗∗
α3

2 -0.203∗∗∗ -0.134∗∗∗ -0.107∗∗∗ -0.081∗∗∗
β3
1 0.847∗∗∗ 1.629∗∗∗ 0.997∗∗∗ 1.252∗∗∗ 0.908∗∗∗ 1.282∗∗∗ 0.3125∗∗∗ 0.811∗∗∗

β3
2 -0.631∗∗∗ -0.254∗∗∗ -0.316∗∗∗ -0.009

a3 2.234∗∗∗ 2.429∗∗∗ 4.174∗∗∗ 4.561∗∗∗ 3.307∗∗∗ 2.121∗∗∗ 2.220∗∗∗ 3.758∗∗∗ 2.8989∗∗∗ 3.436∗∗∗
m3 2.718∗∗∗ 2.386∗∗∗ 1.316∗∗∗ 1.214∗∗∗ 1.702∗∗∗ 4.762∗∗∗ 4.406∗∗∗ 2.492∗∗∗ 3.2868∗∗∗ 2.758∗∗∗

Latent Component
a0 0.873∗∗∗ 0.739∗∗∗ 0.783∗∗∗ 0.913∗∗∗ 0.9506∗∗∗ 0.951∗∗∗
δ3 0.105∗∗∗ 0.126∗∗∗ 0.082∗∗∗ 0.083∗∗∗ 0.0464∗∗∗ 0.068∗∗∗

Diagnostics
LL -966 -869 -969 -877 -854 948 987 985 1021 1022
BIC -988 -901 -991 -909 -894 926 955 962 989 981
Mean 1.000 1.000 1.003 1.003 1.001 1.000 0.999 1.001 1.000 1.001
S.D. 0.277 0.273 0.229 0.221 0.246 0.218 0.217 0.176 0.195 0.181
LB(20) 139.049∗∗∗ 46.393∗∗∗ 103.030∗∗∗ 72.420∗∗∗ 38.232∗∗ 87.077 ∗∗∗ 10.400 47.357∗∗∗ 11.636 17.809
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A.4.2 Multivariate Models

Table 7: Maximum likelihood efficient importance sampling (ML-EIS) estimates of different parameterizations of
(LF)-VAR models up to a lag order of p = q = 2 models for the log return volatility, the average volume and the
number of trades per 5 min interval for the AOL stock traded on the NYSE. Data extracted from the 2001 TAQ
data base. The model is specified as given by (1) through (8). Sample period 02/01/01 to 31/05/01. Overnight
observations are excluded. The models are re-initialized for every trading day. Standard errors are computed
based on the inverse of the estimated Hessian. The ML-EIS estimates are computed using R = 50 Monte Carlo
replications based on 5 EIS iterations.
Diagnostics: log likelihood function (LL), Bayes Information Criterion (BIC), average diagnostics (mean,
standard deviation and univariate as well as multivariate Ljung-Box statistics (LB and MLB, respectively) based
on 20 lags) over all trajectories of the residuals.

(1) (2) (3) (4) (5) (6) (7)
ω1 -0.419∗∗∗ -0.041 -0.540∗∗∗ 0.592∗∗∗ -0.062∗∗∗ 0.271∗∗∗ 0.308∗
ω2 -0.933∗∗∗ -2.236∗∗∗ -1.116∗∗∗ -2.091∗∗∗ -1.627∗∗∗ -1.879∗∗∗ -1.877∗∗∗
ω3 -0.265∗∗∗ -0.062∗∗∗ -0.023∗∗∗ -0.286∗∗∗ -0.307∗∗∗ -0.057∗∗∗ -0.076∗∗∗

α0
12 0.082∗∗∗ 0.789∗∗∗ 0.255∗∗∗ 0.365∗∗∗ -0.038∗∗∗ 0.080∗∗∗ 0.064∗∗∗

α0
13 -0.144∗∗∗ 0.714∗∗∗ 0.201∗∗∗ 0.692∗∗∗ -0.032∗∗∗ 0.112∗∗∗ 0.130∗∗

α0
23 -0.739∗∗∗ -0.669∗∗∗ -0.762∗∗∗ -0.589∗∗∗ -0.778∗∗∗ -0.785∗∗∗ -0.784∗∗∗

α1
11 0.136∗∗∗ 0.331∗∗∗ 0.165∗∗∗ 0.064∗∗∗ 0.110∗∗∗ 0.091∗∗∗

α1
12 0.010∗ 0.047∗∗∗ 0.030∗∗∗ 0.002 -0.004

α1
13 0.010∗∗∗ 0.000 -0.004∗∗∗ 0.000 0.002

α1
21 -0.001∗∗∗ 0.007∗∗∗ 0.001 -0.030∗∗∗ -0.026∗∗∗

α1
22 0.018 0.014∗∗∗ 0.011∗∗∗ 0.003∗ 0.005∗∗∗ 0.009∗∗∗

α1
23 0.000∗∗∗ 0.000∗∗ 0.000∗∗∗ 0.000 0.000

α1
31 0.156 0.028 -0.121∗∗∗ -0.065∗ -0.025

α1
32 0.328∗∗∗ -0.109∗∗∗ 0.020 -0.008 -0.015

α1
33 0.177∗∗∗ 0.183∗∗∗ 0.228∗∗∗ 0.146∗∗∗ 0.176∗∗∗ 0.170∗∗∗

α2
11 0.293∗∗∗ 0.134∗∗∗ 0.053∗∗∗ 0.032∗

α2
22 0.010∗∗∗ 0.006∗∗∗ 0.001 -0.001

α2
33 -0.151∗∗∗ -0.212∗∗∗ -0.144∗∗∗ -0.145∗∗∗

β1
11 0.974∗∗∗ -0.137∗∗∗ 0.055∗∗∗ 0.994∗∗∗ 0.508∗∗∗ 0.516∗∗∗

β1
12 0.050∗∗∗ 0.111∗∗∗ -0.239∗∗∗

β1
13 -0.011∗∗∗ 0.000 -0.005∗

β1
21 -0.058∗∗∗ -0.174∗∗∗ 0.051

β1
22 0.840∗∗∗ 0.079∗ 0.298∗∗∗ 0.223∗∗∗ 0.233 0.193∗∗∗

β1
23 0.021∗∗∗ 0.001 -0.012

β1
31 0.113∗∗∗ -0.188∗∗∗ -0.005

β1
32 0.700∗∗∗ 0.838∗∗∗ 0.003

β1
33 0.904∗∗∗ 1.574∗∗∗ 1.699∗∗∗ 0.892∗∗∗ 1.567∗∗∗ 1.551∗∗∗

β2
11 0.290∗∗∗ 0.864∗∗∗ 0.450∗∗∗ 0.473∗∗∗

β2
22 0.371∗∗∗ 0.394∗∗∗ -0.025∗∗∗ -0.004

β2
33 -0.589∗∗∗ -0.706∗∗∗ -0.582∗∗∗ -0.578∗∗∗

a2 0.771∗∗∗ 0.684∗∗∗ 0.732∗∗∗ 0.965∗∗∗ 0.989∗∗∗ 0.916∗∗∗ 0.898∗∗∗
m2 7.081∗∗∗ 8.233∗∗∗ 8.031∗∗∗ 6.248∗∗∗ 6.153∗∗∗ 6.770∗∗∗ 6.775∗∗∗
a3 2.020∗∗∗ 2.000∗∗∗ 2.231∗∗∗ 2.103∗∗∗ 1.910∗∗∗ 2.009∗∗∗ 2.008∗∗∗
m3 2.686∗∗∗ 2.746∗∗∗ 2.227∗∗∗ 2.052∗∗∗ 2.970∗∗∗ 2.728∗∗∗ 2.730∗∗∗

Latent Component
a0 0.933∗∗∗ 0.936∗∗∗ 0.950∗∗∗ 0.943∗∗∗
δ1 0.176∗∗∗ 0.231∗∗∗ 0.263∗∗∗ 0.279∗∗∗
δ2 0.156∗∗∗ 0.143∗∗∗ 0.119∗∗∗ 0.111∗∗∗
δ3 -0.032∗∗∗ 0.000 0.002 0.003

Diagnostics
LL -18856 -19100 -18730 -19818 -18359 -18278 -18250
BIC -18981 -19226 -18883 -19881 -18449 -18422 -18421
MLB(20) 183.004∗∗∗ 1390.851∗∗∗ 354.426∗∗∗ 16000.525∗∗∗ 258.547∗∗∗ 107.914∗∗∗ 98.147∗∗∗

Diagnostics for the volatility process
Mean 1.000 1.000 1.000 1.001 1.004 1.003 1.004
S.D. 2.384 1.850 2.450 1.754 1.600 1.571 1.531
LB(20) 40.032∗∗∗ 322.974∗∗∗ 40.399∗∗∗ 793.226∗∗∗ 20.946 16.902 18.228

Diagnostics for the volume process
Mean 1.000 1.000 1.000 1.000 1.000 1.000 1.001
S.D. 0.536 0.554 0.531 0.424 0.418 0.433 0.445
LB(20) 116.754∗∗∗ 1306.748∗∗∗ 67.612∗∗∗ 92.822∗∗∗ 21.286 20.583 20.708

Diagnostics for the trading intensity process
Mean 0.999 0.999 0.999 0.999 1.000 0.999 0.999
S.D. 0.308 0.307 0.308 0.341 0.308 0.307 0.307
LB(20) 67.939∗∗∗ 32.587∗∗∗ 138.980∗∗∗ 8166.409∗∗∗ 69.409∗∗∗ 37.849∗∗∗ 37.623∗∗∗

33



Table 8: Maximum likelihood efficient importance sampling (ML-EIS) estimates of different parameterizations of
(LF)-VAR models up to a lag order of p = q = 2 models for the log return volatility, the average volume and the
number of trades per 5 min interval for the Boeing stock traded on the NYSE. Data extracted from the 2001 TAQ
data base. The model is specified as given by (1) through (8). Sample period 02/01/01 to 31/05/01. Overnight
observations are excluded. The models are re-initialized for every trading day. Standard errors are computed
based on the inverse of the estimated Hessian. The ML-EIS estimates are computed using R = 50 Monte Carlo
replications based on 5 EIS iterations.
Diagnostics: log likelihood function (LL), Bayes Information Criterion (BIC), average diagnostics (mean,
standard deviation and univariate as well as multivariate Ljung-Box statistics (LB and MLB, respectively) based
on 20 lags) over all trajectories of the residuals.

(1) (2) (3) (4) (5) (6) (7)
ω1 1.829∗∗∗ 0.532∗∗∗ 0.733∗∗∗ 0.625∗∗∗ -0.121∗∗∗ 0.460∗∗∗ 0.712
ω2 -1.087∗∗∗ -0.809∗∗∗ -0.610∗∗∗ -6.611∗∗∗ -2.197∗∗∗ -2.531∗∗∗ -2.124∗∗∗
ω3 -0.224∗∗∗ -0.030∗∗∗ -0.033∗∗∗ -0.408∗∗∗ -0.188∗∗∗ -0.155∗∗∗ -0.128∗∗∗

α0
12 0.554∗∗∗ 0.576∗∗∗ 0.565∗∗∗ 0.594∗∗∗ -0.087∗∗∗ 0.020 0.004

α0
13 1.037∗∗∗ 1.040∗∗∗ 1.081∗∗∗ 0.682∗∗∗ 0.034∗∗∗ 0.259∗∗∗ 0.828∗∗∗

α0
23 -0.235∗∗∗ -0.042∗∗∗ -0.214∗∗∗ -0.422∗∗∗ -0.381∗∗∗ -0.442∗∗∗ -0.257∗∗∗

α1
11 0.257∗∗∗ 0.252∗∗∗ 0.224∗∗∗ 0.134∗∗∗ 0.083∗∗∗ 0.083∗∗∗

α1
12 -0.005 0.032∗∗∗ -0.025∗∗∗ -0.032∗∗∗ -0.043∗∗∗

α1
13 0.003 -0.001 -0.001∗∗ -0.006∗∗ -0.002∗∗∗

α1
21 -0.001∗∗∗ -0.001∗∗∗ -0.001∗∗∗ -0.005∗∗∗ -0.004∗∗∗

α1
22 0.000∗∗∗ 0.001∗∗∗ 0.001∗∗∗ -0.001∗∗ -0.000 -0.001∗∗

α1
23 0.000 0.000∗∗ 0.000∗∗∗ -0.000∗∗∗ 0.000∗∗

α1
31 -0.167∗∗∗ -0.173∗∗∗ -0.207∗∗∗ -0.236∗∗∗ -0.269∗∗∗

α1
32 0.048∗∗∗ 0.016 0.078∗∗∗ -0.064∗∗ 0.035

α1
33 0.076∗∗∗ 0.109∗∗∗ 0.099∗∗∗ 0.077∗∗∗ 0.090∗∗∗ 0.085∗∗∗

α2
11 0.193∗∗∗ 0.158∗∗∗ 0.140∗∗∗ 0.116∗∗∗

α2
22 0.001∗∗∗ -0.001∗∗∗ 0.000 -0.001∗

α2
33 -0.095∗∗∗ -0.093∗∗∗ -0.002 -0.084∗∗∗

β1
11 0.386∗∗∗ 0.256∗∗∗ 0.337∗∗∗ 0.948∗∗∗ 0.560∗∗∗ 0.560∗∗∗

β1
12 0.112∗∗∗ 0.066∗∗∗ -0.066∗∗

β1
13 0.002 0.002∗∗∗ -0.005∗∗

β1
21 0.227∗∗∗ 0.058 0.176

β1
22 0.808∗∗∗ 0.221∗∗ 1.090∗∗∗ 0.169∗∗∗ 0.163 0.423∗∗

β1
23 -0.003 -0.004∗∗∗ -0.035∗∗∗

β1
31 -0.029 -0.306∗∗∗ -0.742∗∗∗

β1
32 0.032 0.104∗∗∗ 0.187∗∗

β1
33 0.950∗∗∗ 1.680∗∗∗ 1.767∗∗∗ 0.948∗∗∗ 0.606∗∗∗ 1.778∗∗∗

β2
11 0.117∗∗∗ 0.121∗∗∗ 0.301∗∗∗ 0.343∗∗∗

β2
22 0.652∗∗∗ -0.197∗∗∗ 0.092 -0.051

β2
33 -0.685∗∗∗ -0.773∗∗∗ 0.343∗∗∗ -0.783∗∗∗

a2 0.491∗∗∗ 0.500∗∗∗ 0.505∗∗∗ 0.396∗∗∗ 0.774∗∗∗ 0.625∗∗∗ 0.622∗∗∗
m2 9.167∗∗∗ 8.640∗∗∗ 8.698∗∗∗ 12.650∗∗∗ 6.750∗∗∗ 8.313∗∗∗ 8.520∗∗∗
a3 1.628∗∗∗ 1.786∗∗∗ 1.739∗∗∗ 2.164∗∗∗ 1.726∗∗∗ 1.879∗∗∗ 1.663∗∗∗
m3 3.696∗∗∗ 3.128∗∗∗ 3.293∗∗∗ 2.551∗∗∗ 3.424∗∗∗ 3.084∗∗∗ 3.626∗∗∗

Latent Component
a0 0.950∗∗∗ 0.656∗∗∗ 0.804∗∗∗ 0.827∗∗∗
δ1 0.111∗∗∗ 0.625∗∗∗ 0.524∗∗∗ 0.453∗∗∗
δ2 0.058∗∗∗ 0.407∗∗∗ 0.305∗∗∗ 0.283∗∗∗
δ3 0.069∗∗∗ 0.046∗∗∗ 0.070∗∗∗ 0.025∗∗∗

Diagnostics
LL -21087 -21140 -21015 -21744 -21022 -20906 -20819
BIC -21213 -21265 -21168 -21807 -21112 -21050 -20990
MLB(20) 356.292∗∗∗ 159.818∗∗∗ 208.131∗∗∗ 5483.858∗∗∗ 181.521∗∗∗ 103.361∗∗∗ 66.069

Diagnostics for the volatility process
Mean 0.999 1.000 0.999 1.000 1.007 1.007 1.005
S.D. 1.768 1.766 1.764 1.690 1.489 1.477 1.483
LB(20) 192.869∗∗∗ 154.072∗∗∗ 116.050∗∗∗ 497.411∗∗∗ 24.346 28.626∗ 19.698

Diagnostics for the volume process
Mean 1.010 1.010 1.010 1.012 1.003 1.006 1.003
S.D. 0.851 0.862 0.849 0.869 0.514 0.596 0.591
LB(20) 44.154∗∗∗ 39.175∗∗∗ 24.091 1966.330∗∗∗ 33.089∗∗ 29.633∗ 28.638∗∗

Diagnostics for the trading intensity process
Mean 0.999 0.999 0.999 1.000 1.000 0.996 1.000
S.D. 0.323 0.321 0.321 0.296 0.316 0.306 0.319
LB(20) 54.691∗∗∗ 33.924∗∗ 33.712∗∗ 279.141∗∗∗ 53.238∗∗∗ 29.348∗ 34.078∗∗
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Table 9: Maximum likelihood efficient importance sampling (ML-EIS) estimates of different parameterizations
of (LF)-VAR models up to a lag order of p = q = 2 models for the log return volatility, the average volume and
the number of trades per 5 min interval for the JP Morgan stock traded on the NYSE. Data extracted from the
2001 TAQ data base. The model is specified as given by (1) through (8). Sample period 02/01/01 to 31/05/01.
Overnight observations are excluded. The models are re-initialized for every trading day. Standard errors are
computed based on the inverse of the estimated Hessian. The ML-EIS estimates are computed using R = 50
Monte Carlo replications based on 5 EIS iterations.
Diagnostics: log likelihood function (LL), Bayes Information Criterion (BIC), average diagnostics (mean,
standard deviation and univariate as well as multivariate Ljung-Box statistics (LB and MLB, respectively) based
on 20 lags) over all trajectories of the residuals.

(1) (2) (3) (4) (5) (6) (7)
ω1 2.394∗∗∗ 0.217∗∗∗ 1.996∗∗∗ 0.529∗∗∗ -0.097∗∗∗ 0.167∗∗∗ 0.209
ω2 -1.584∗∗∗ -2.635∗∗∗ -1.410∗∗∗ -2.240∗∗∗ -1.471∗∗∗ -2.035∗∗∗ -2.122∗∗∗
ω3 -0.292∗∗∗ -0.018∗∗∗ -0.016∗∗∗ -0.225∗∗∗ -0.337∗∗∗ -0.008∗∗∗ -0.005
α0

12 0.817∗∗∗ 0.979∗∗∗ 0.859∗∗∗ 0.492∗∗∗ -0.078∗∗∗ 0.023∗ 0.050∗∗∗
α0

13 0.841∗∗∗ 1.112∗∗∗ 0.910∗∗∗ 0.365∗∗∗ -0.091∗∗∗ 0.022 -0.033
α0

23 -0.885∗∗∗ -0.785∗∗∗ -0.882∗∗∗ -1.158∗∗∗ -0.953∗∗∗ -0.941∗∗∗ -0.958∗∗∗

α1
11 0.149∗∗∗ 0.225∗∗∗ 0.138∗∗∗ 0.097∗∗∗ 0.085∗∗∗ 0.072∗∗∗

α1
12 0.025∗∗∗ 0.068∗∗∗ 0.009 -0.004 -0.010

α1
13 0.020∗∗∗ 0.000 0.001∗∗∗ 0.000 0.001

α1
21 -0.001 0.005∗∗∗ -0.003 -0.022∗∗∗ -0.029∗∗∗

α1
22 0.003∗∗∗ 0.010∗∗∗ 0.005∗∗∗ 0.005∗∗∗ 0.005∗∗∗ 0.010∗∗∗

α1
23 0.000∗∗ 0.000 0.000∗∗ 0.000∗∗∗ 0.000∗∗

α1
31 0.554∗∗∗ 0.008 0.550∗∗∗ -0.037 0.096

α1
32 0.320∗∗∗ -0.110∗∗∗ 0.388∗∗∗ -0.054 -0.101∗∗

α1
33 0.208∗∗∗ 0.216∗∗∗ 0.216∗∗∗ 0.188∗∗∗ 0.212∗∗∗ 0.214∗∗∗

α2
11 0.263∗∗∗ 0.117∗∗∗ 0.053∗∗ 0.049∗∗

α2
22 0.007∗∗∗ -0.002∗∗∗ -0.001 -0.004∗∗

α2
33 -0.205∗∗∗ -0.207∗∗∗ -0.206∗∗∗ -0.210∗∗∗

β1
11 0.007 -0.107∗∗∗ 0.051 0.972∗∗∗ 0.861∗∗∗ 0.789∗∗∗

β1
12 0.191∗∗∗ 0.170∗∗∗ -0.246∗∗∗

β1
13 -0.006 0.000 -0.001

β1
21 0.677∗∗∗ 0.646∗∗∗ 0.066

β1
22 0.646∗∗∗ 0.057 0.708∗∗∗ 0.178∗∗∗ 0.115∗∗ 0.083

β1
23 0.025∗∗∗ 0.000 -0.001

β1
31 1.320∗∗∗ 1.166∗∗∗ 0.180∗∗

β1
32 0.472∗∗∗ 0.527∗∗∗ -0.427∗∗

β1
33 0.873∗∗∗ 1.609∗∗∗ 1.623∗∗∗ 0.836∗∗∗ 1.625∗∗∗ 1.655∗∗∗

β2
11 0.089∗∗∗ -0.068∗∗ 0.086 0.177

β2
22 0.305∗∗∗ -0.017 0.025 -0.077

β2
33 -0.612∗∗∗ -0.625∗∗∗ -0.626∗∗∗ -0.657∗∗∗

a2 0.687∗∗∗ 0.634∗∗∗ 0.720∗∗∗ 0.863∗∗∗ 1.027∗∗∗ 0.854∗∗∗ 0.890∗∗∗
m2 7.633∗∗∗ 8.066∗∗∗ 6.947∗∗∗ 5.800∗∗∗ 4.917∗∗∗ 6.537∗∗∗ 5.869∗∗∗
a3 2.308∗∗∗ 2.393∗∗∗ 2.438∗∗∗ 2.414∗∗∗ 2.287∗∗∗ 2.454∗∗∗ 2.579∗∗∗
a3 2.577∗∗∗ 2.451∗∗∗ 2.373∗∗∗ 1.986∗∗∗ 2.620∗∗∗ 2.364∗∗∗ 2.173∗∗∗

Latent Component
a0 0.951∗∗∗ 0.907∗∗∗ 0.941∗∗∗ 0.930∗∗∗
δ1 0.165∗∗∗ 0.339∗∗∗ 0.339∗∗∗ 0.350∗∗∗
δ2 0.122∗∗∗ 0.176∗∗∗ 0.136∗∗∗ 0.132∗∗∗
δ3 0.024∗∗∗ 0.009∗∗∗ 0.011∗∗∗ 0.015∗∗∗

Diagnostics
LL -18403 -18784 -18306 -19398 -18201 -18040 -18009
BIC -18529 -18910 -18458 -19461 -18291 -18184 -18180
MLB(20) 769.914∗∗∗ 1830.305∗∗∗ 665.637∗∗∗ 13692.174∗∗∗ 266.583∗∗∗ 145.293∗∗∗ 109.606∗∗∗

Diagnostics for the volatility process
Mean 0.999 1.000 0.999 1.000 1.002 1.002 1.003
S.D. 1.750 1.745 1.714 1.622 1.536 1.511 1.487
LB(20) 376.349∗∗∗ 406.581∗∗∗ 355.220∗∗∗ 382.224∗∗∗ 25.398 19.872 21.652

Diagnostics for the volume process
Mean 1.001 1.001 1.001 1.000 1.001 1.001 1.001
S.D. 0.598 0.617 0.600 0.503 0.450 0.477 0.484
LB(20) 27.975 1393.848∗∗∗ 22.132 161.411∗∗∗ 21.541 13.175 13.391

Diagnostics for the trading intensity process
Mean 1.000 1.000 1.000 1.000 1.000 0.999 1.000
S.D. 0.276 0.274 0.273 0.304 0.276 0.272 0.271
LB(20) 138.865∗∗∗ 38.987∗∗∗ 43.659∗∗∗ 6623.880∗∗∗ 141.237∗∗∗ 52.276∗∗∗ 55.277∗∗∗
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Table 10: Maximum likelihood efficient importance sampling (ML-EIS) estimates of different parameterizations
of (LF)-VAR models up to a lag order of p = q = 2 models for the log return volatility, the average volume and the
number of trades per 5 min interval for the IBM stock traded on the NYSE. Data extracted from the 2001 TAQ
data base. The model is specified as given by (1) through (8). Sample period 02/01/01 to 31/05/01. Overnight
observations are excluded. The models are re-initialized for every trading day. Standard errors are computed
based on the inverse of the estimated Hessian. The ML-EIS estimates are computed using R = 50 Monte Carlo
replications based on 5 EIS iterations.
Diagnostics: log likelihood function (LL), Bayes Information Criterion (BIC), average diagnostics (mean,
standard deviation and univariate as well as multivariate Ljung-Box statistics (LB and MLB, respectively) based
on 20 lags) over all trajectories of the residuals.

(1) (2) (3) (4) (5) (6) (7)
ω1 0.057∗∗∗ 0.547∗∗∗ 0.372∗∗∗ 0.504∗∗∗ 0.494∗∗∗ 0.316∗∗∗ 1.079∗∗∗
ω2 -0.089∗∗∗ -1.267∗∗∗ -0.784∗∗∗ -1.420∗∗∗ -1.831∗∗∗ -1.307∗∗∗ -1.403∗∗∗
ω3 -0.036∗∗∗ -0.192∗∗∗ -0.200∗∗∗ -0.517∗∗∗ -0.373∗∗∗ -0.160∗∗∗ -0.305∗∗∗

α0
12 0.077∗∗∗ 0.821∗∗∗ 0.792∗∗∗ 0.704∗∗∗ 0.596∗∗∗ 0.128∗∗∗ 0.140∗∗∗

α0
13 0.074∗∗∗ 0.712∗∗∗ 0.746∗∗∗ 0.182∗∗ 0.585∗∗∗ 0.099∗∗∗ 0.429∗∗∗

α0
23 -0.080∗∗∗ -0.394∗∗∗ -0.783∗∗∗ -1.355∗∗∗ -0.768∗∗∗ -0.866∗∗∗ -0.789∗∗∗

α1
11 0.024∗∗∗ 0.203∗∗∗ 0.183∗∗∗ 0.070∗∗∗ 0.068∗∗∗ 0.067∗∗∗

α1
12 0.003∗∗∗ 0.044∗∗∗ 0.025∗∗∗ 0.018∗∗ 0.015∗∗

α1
13 0.000 0.003 0.000 -0.001 0.002

α1
21 -0.005∗∗∗ -0.015∗∗∗ -0.052∗∗∗ -0.061∗∗∗ -0.064∗∗∗

α1
22 0.002∗∗∗ 0.019∗∗∗ 0.021∗∗∗ 0.016∗∗∗ 0.012∗∗∗ 0.013∗∗∗

α1
23 0.000∗∗∗ 0.001∗∗∗ 0.001∗∗∗ -0.001∗∗ 0.001∗∗

α1
31 -0.012∗∗∗ -0.138∗∗∗ -0.136∗∗∗ -0.086∗∗ 0.015

α1
32 0.031∗∗∗ -0.061∗∗∗ 0.344∗∗∗ 0.110∗∗ 0.136∗∗∗

α1
33 0.016∗∗∗ 0.188∗∗∗ 0.191∗∗∗ 0.153∗∗∗ 0.182∗∗∗ 0.151∗∗∗

α2
11 0.230∗∗∗ 0.131∗∗∗ 0.086∗∗∗ 0.048∗∗

α2
22 0.014∗∗∗ -0.004∗∗∗ 0.001 0.001

α2
33 -0.110∗∗∗ -0.101∗∗∗ -0.105∗∗∗ -0.087∗∗∗

β1
11 0.063∗∗∗ 0.340∗∗∗ 0.580∗∗∗ -0.228∗∗∗ 0.471∗∗∗ 0.596∗∗∗

β1
12 0.007∗∗∗ 0.048∗∗∗ -0.050

β1
13 0.000 0.001 -0.007∗∗

β1
21 -0.006∗∗ -0.108∗∗∗ 0.477∗∗∗

β1
22 0.081∗∗∗ 0.071∗∗ 0.866∗∗∗ 0.176∗∗∗ 0.400∗∗∗ 0.436∗∗∗

β1
23 0.001 0.000 -0.059∗∗∗

β1
31 -0.030∗∗∗ -0.347∗∗∗ 0.114

β1
32 0.068∗∗∗ 0.701∗∗∗ 0.105

β1
33 0.091∗∗∗ 1.289∗∗∗ 1.211∗∗∗ 0.900∗∗∗ 1.272∗∗∗ 1.122∗∗∗

β2
11 0.133∗∗∗ 0.044 0.496∗∗∗ 0.414∗∗∗

β2
22 0.642∗∗∗ -0.009 -0.091∗∗ -0.115∗∗

β2
33 -0.329∗∗∗ -0.252∗∗∗ -0.313∗∗∗ -0.229∗∗

a2 0.083∗∗∗ 0.759∗∗∗ 0.847∗∗∗ 1.168∗∗∗ 0.965∗∗∗ 1.190∗∗∗ 1.115∗∗∗
m2 7.271∗∗∗ 7.778∗∗∗ 6.936∗∗∗ 4.466∗∗∗ 6.492∗∗∗ 4.953∗∗∗ 5.470∗∗∗
a3 2.225∗∗∗ 2.222∗∗∗ 2.303∗∗∗ 2.294∗∗∗ 2.156∗∗∗ 2.278∗∗∗ 2.172∗∗∗
a3 4.373∗∗∗ 4.424∗∗∗ 4.131∗∗∗ 3.499∗∗∗ 4.642∗∗∗ 4.255∗∗∗ 4.620∗∗∗

Latent Component
a0 0.942∗∗∗ 0.967∗∗∗ 0.940∗∗∗ 0.944∗∗∗
δ1 0.154∗∗∗ 0.141∗∗∗ 0.263∗∗∗ 0.256∗∗∗
δ2 0.146∗∗∗ 0.087∗∗∗ 0.133∗∗∗ 0.123∗∗∗
δ3 0.044∗∗∗ 0.004∗∗∗ 0.012∗∗∗ 0.003∗∗

Diagnostics
LL -15389 -15798 -15338 -16959 -15349 -15106 -15086
BIC -15515 -15924 -15490 -17021 -15439 -15250 -15257
MLB(20) 324.925∗∗∗ 686.107∗∗∗ 240.460∗∗∗ 20283.796∗∗∗ 1026.523∗∗∗ 83.109∗∗ 68.273

Diagnostics for the volatility process
Mean 1.000 1.000 1.000 1.001 1.000 1.002 1.002
S.D. 1.720 1.724 1.705 1.609 1.553 1.475 1.471
LB(20) 175.325∗∗∗ 282.111∗∗∗ 154.973∗∗∗ 915.176∗∗∗ 537.847∗∗∗ 16.854 15.788

Diagnostics for the volume process
Mean 1.000 1.000 0.999 1.000 1.000 1.001 1.000
S.D. 0.485 0.512 0.484 0.411 0.420 0.384 0.391
LB(20) 50.970∗∗∗ 444.839∗∗∗ 47.007∗∗∗ 407.268∗∗∗ 63.613∗∗∗ 23.199 24.031

Diagnostics for the trading intensity process
Mean 0.999 0.999 0.999 1.000 1.000 1.000 1.000
S.D. 0.217 0.216 0.216 0.237 0.217 0.215 0.216
LB(20) 83.299∗∗∗ 9.630 12.195 8382.230∗∗∗ 84.800∗∗∗ 12.514 11.609
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A.4.3 Estimated generalized impulse response functions

Figure 21: Generalized impulse response of a one S.D. shock of λi on ξ2
i (left), Vi (middle) and ρi (right) for the

AOL stock. Computed based on 5, 000 Monte Carlo simulations using the estimates of specification (8) (Table
7).

Figure 22: Generalized impulse response of a one S.D. shock of λi on ξ2
i (left), Vi (middle) and ρi (right) for the

Boeing stock. Computed based on 5, 000 Monte Carlo simulations using the estimates of specification (8) (Table 8).

Figure 23: Generalized impulse response of a one S.D. shock of λi on ξ2
i (left), Vi (middle) and ρi (right) for

the JP Morgan stock. Computed based on 5, 000 Monte Carlo simulations using the estimates of specification
(8) (Table 9).

Figure 24: Generalized impulse response of a one S.D. shock of λi on ξ2
i (left), Vi (middle) and ρi (right) for the

IBM stock. Computed based on 5, 000 Monte Carlo simulations using the estimates of specification (8) (Table 10).
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