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Static Replication and Model Risk:

Razor’s Edge or Trader’s Hedge?∗

Morten Nalholm† Rolf Poulsen‡

Abstract

We investigate how sensitive a variety of dynamic and static hedge strategies for

barrier options are to model risk. We that find using plain vanilla options to hedge

barrier options offers considerable improvements over usual ∆-hedges. Further, we

show that the hedge portfolios involving options are relatively more sensitive to model

risk, the Devil is in the detail, but that the degree of misspecification sensitivity is quite

robust across commonly used models.

1 Introduction

Models may produce similar plain vanilla option prices, yet give markedly different prices

of exotic options. This in documented for instance in Hirsa, Courtadon & Madan (2002).

Focusing on barrier options, we investigate the natural follow-up question: How does this

affect hedge portfolios? Qualitatively, if barrier options are derivatives of plain vanilla

options, then hedge portfolios are second derivatives, and you could fear that a further

order of accuracy was lost. The question is made all the more interesting because there are

several alternatives to traditional dynamic ∆-hedging. We look at static hedges that are

portfolios involving plain vanilla options constructed in such cunning ways that no dynamic

trading is necessary to achieve replication of the barrier option. (It is not obvious that this

is possible at all. The last decade’s literature shows that it is.) It has been argued, and the

sheer presence of the word “static” suggests it, that the use of options as hedge instruments

reduces sensitivity to model risk. However, if you inspect the derivations of the static hedge

portfolios, you’ll see that they hinge very strongly on something, typically a Black/Scholes

model assumption; the razor’s edge of the title.
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Søren Lolle, and Peter Ritchken
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‡Department of Applied Mathematics and Statistics, Institute for Mathematical Sciences, Univer-

sitetsparken 5, University of Copenhagen, DK-2100, Denmark. Email: rolf@math.ku.dk
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We carry out a simulation study of the performance of hedge strategies, static and dynamic,

Black/Scholes-based or in some way market data adjusted (what the trader of the title would

do), against different classes of non-Black/Scholes models. We find that static hedges are

relatively more model risk sensitive than ∆-hedges, that they may very well outperform

these anyway, that simple adjustments to static may help considerably (and that they

may not) and that the model risk sensitivity is fairly robust across commonly used models

producing similar prices of plain vanilla options.

The rest of the paper is organized as follows. In Section 2 we briefly summarize the literature

on pricing and statically hedging barrier options. Section 3 describes the experimental

design and the Black/Scholes benchmark case. Section 4 is a simulation study of hedge

performance against the (smile-generating) models constant elasticity of variance, Heston’s

stochastic volatility, Merton’s jump diffusion, and the infinite jump intensity model Variance

Gamma. Section 5 concludes. (In case you are wondering: If we had a definitive answer to

the question in the paper’s title, we would have put it in there.)

2 Barrier Options and Static Hedges

First, consider a model where the interest rate is constant (r) and the stock-price dynamics

under the (bank-account denominated) equivalent martingale measure Q are

dS(t) = (r − d)S(t)dt + σ(S(t), t)S(t)dW Q, (1)

where d is a constant dividend yield. We always refer to this asset as “the stock”, but by

putting r = d we can model futures prices, and if we use d=“the foreign short rate”, then we

have an arbitrage-free exchange rate model. This semi-flexible form of volatility preserves

completeness of the model. It includes the Black-Scholes (B/S) model (σ(x, t) = σ), the

constant elasticity of variance (CEV) model (σ(x, t) = σxα−1) as well as the local volatility

models originally suggested in Dupire (1994) where the functional form of σ is inferred

directly from a double continuum over strikes and expiry-dates of observed option prices.

The price of a knock-out option (strictly speaking: provided it is still alive) is of the form

π(t) = F (S(t), t) where the function F solves the partial differential equation (PDE)1

Ft +
1

2
x2σ2(x, t)Fxx + (r − d)xFx = rF on the alive region

F (B, t) = R for t < T (rebate at the barrier)

F (x, T ) = g(x) (pay-off at expiry),

1The short way to prove this to say “obviously, we must have price = rebate at the barrier, and away

from it, we can use the standard Black/Scholes hedge argument”, see Wilmott (1998) for instance. A more

rigorous/probabilistic approach starts with the martingale formulation in Equation (2), and then studies its

connection to boundary value problems, see Øksendal (1995, Chapter 9).
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Figure 1: The BVPs for down-and-out (left) and up-and-out call options

and the option can be replicated by a ∆-hedging strategy that holds

∆(t) = Fx(S(t), t)

units of stock time t and is kept self-financing via the bank-account.

In more complicated models (with stochastic volatility or jumps) arbitrage-free knock-out

claim prices can still be found from the martingale relation

π(t) = E
Q
t (exp(−r(τ − t))Pay-off(τ)), (2)

where τ is the minimum of expiry and the first hitting time to the barrier. Analytical rep-

resentations of the price become more complicated such as PDEs with multi-dimensional

space variables or non-local terms.

We will look at two cases that capture the essence of pricing, hedging and model risk

problems for barrier options: The down-and-out call and the up-and-out call, both with

zero rebates. Closed-form expressions for B/S model prices of these two barrier options2

were given already in Merton (1973), so they are as old as the B/S formula itself. In Figure

1 the boundary value problems (BVPs) are illustrated. Note that the problem for the up-

2It is fairly easy to handle any other piecewise linear pay-off function, any combination of spot, strike

and barrier, as well as knock-in versions. With some further sleight of hand rebates, look-backs and double

barriers can be handled.
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and-out call has a discontinuity at the point (B, T ), and that spills over into unpleasant (or

outright nasty, when it comes to ”greeks”) behavior in the general vicinity of the barrier.

2.1 Static Hedging with Calendar-Spreads

This section describes the workings of the static hedging technique first suggested in Der-

man, Ergener & Kani (1995). When reading the section it is important to keep in mind the

BVP formulation of the barrier pricing problem, or more specifically Figure 1.

We want to construct a portfolio from plain vanilla options such that its value at expiry and

along the barrier is equal to that of the barrier option, which is trivially known exactly there.

This can be done with (different-expiry, strike=barrier) plain vanilla options. Consider

the down-and-out call3 and suppose we have access to strike-B puts with expiry dates

t1, . . . , tn = T . Let Put(x, s|y; t) denote the time-s price of a strike-y expiry-t put when the

stock price at time s is x (and similarly for calls). We assume this function is known; it

could be the B/S-formula. Consider the following portfolio:

• 1 strike-K expiry-T call (referred to as the underlying option).

• αn strike-B expiry-T puts (referred to as auxiliary options), where

αn ∗ Put(B, tn−1|B;T ) + Call(B, tn−1|K;T ) = 0 ⇒ αn = −Call(B, tn−1|K;T )

Put(B, tn−1|B;T )
.

If S(tn−1) = B, this portfolio has tn−1-value 0. If we hold the portfolio to T , and the

stock-price ends above the barrier, then it pays off exactly as the call.

• αn−1 strike-B expiry-tn−1 puts, where

αn−1 ∗ Put(B, tn−2|B; tn−1) + αn ∗ Put(B, tn−2|B;T ) + Call(B, tn−2|K;T ) = 0

If S(tn−2) = B, this portfolio has tn−2-value 0. If we hold the portfolio to tn−1 then its

value if Stn−1 = B is also 0 because the αn−1 expiry-tn−1 strike-B puts are worthless.

And if we hold it to T , then it pays off exactly as the call if S(T ) ≥ B.

• And so on: Buy αi strike-B expiry-ti puts, where

αi ∗ Put(B, ti−1|B; ti) +

n∑

j=i+1

αj ∗ Put(B, ti−1|B; tj) + Call(B, ti−1|K;T ) = 0

The time-0 price of this portfolio is Call(S(0), 0|K;T )+
∑n

i=1
αiPut(S(0), 0|B; ti). Suppose

we buy it and liquidate it either the first time the stock price crosses the barrier B or, if

3For an up-and-out call simply substitute “call” for “put” for the auxiliary options
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that doesn’t happen, at time T . Should the stock-price stay above B, we get the regular call

payoff. The only way a continuous stock-price process can cross the barrier is by actually

hitting it, in which case we receive a payoff that is close to 0 when the spacing between the

put expiry-dates is small. In other words, we are close to having replicated the down-and-out

call.

In the algorithm above we can use auxiliary options with any strike beyond the barrier; the

barrier as strike-level was only considered for ease of exposition. By further noting that

nothing prevents us from using several strikes for each expiry-date extensions are obtained.

The value of the portfolio may be forced to be 0 between the ti-expiry-dates. If strikes are

more easily available than expiry-dates this is useful. In a stochastic volatility models, as

suggested and studied in Fink (2003), we don’t know what the volatility is when the barrier

is hit, so we may want to make the replicating portfolio’s value 0 for several volatility-levels.

Yet another approach is to make the portfolio’s value 0 at different stock-price levels. In

models with continuous sample-paths this would serve little purpose, but in for instance

jump diffusion models it could be very useful. This, as well as other generalizations, is

suggested in Andersen, Andreasen & Eliezer (2002).

2.2 Adjusted Pay-offs and Static Hedging with Strike-Spreads

In a series of papers Peter Carr has developed an elegant technique for constructing static

hedges; see Carr & Chou (1997a), Carr, Ellis & Gupta (1998).

The key is the existence of an expiry-T simple claim4 that is equivalent to the barrier option

in the sense that their values coincide at expiry and along the barrier, and thus in the entire

alive region. This simple claim’s pay-off function can be written down directly in terms of

characteristics of the barrier option. The pay-off function g in the BVP formulation must

be adjusted by a suitably reflected version of itself. What is “suitable” depends on strike,

barrier and model parameters. In the Black/Scholes model the adjusted payoffs for the

down-and-out and up-and-out calls (ie. g(x) = (x − K)+) look like this:

hDO(x) =

{
g(x) if x > B

−( x
B

)pg(B2

x
) if x ≤ B

and hUO(x) =

{
−( x

B
)pg(B2

x
) if x > B

g(x) if x ≤ B
,

where we have put p = 1 − 2(r − d)/σ2.

The final step towards static replication is then to match the adjusted pay-off function by a

portfolio of plain vanilla puts or calls with different strikes. For a general p, the h ·-functions

4A simple claim is a contract that pays off at time T in a way that depends only on S(T ). In other words

it is characterized by a pay-off function g : R 7→ R.
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Figure 2: Adjusted pay-off functions for down-and-out call (left) and up-and-out call (right).

The dotted lines show the approximations achieved using, respectively, 3 and 11 auxiliary

options, as in the simulation experiments.

are not piecewise linear,5 for up-and-out call it isn’t even continuous as seen in Figure 2,

so the perfect static hedge portfolio involves a continuum of options, which is of course a

problem in practice, but one we largely ignore, or rather learn to live with.

More advanced option structures (partial barrier, double barrier, lookback) are treated in

Carr & Chou (1997b). Less is known about generalizations that go beyond the B/S model.

Andreasen (2001) and Carr & Lee (2003) give results for stochastic volatility models, but

they appear practical only in the case 0-drift case, i.e. when r = d.

5We call the region where this happens the adjustment region. For the down-and-out call it is ]0; B2/K],

for the up-and-out call it is ]B; B2/K].
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Quantity Symbol Numerical value

Initial stock-price S(0) 100

Interest rate r 0.06

Dividend yield d 0.02

B/S-volatility σ 0.20

Carr/Chou-p p = 1 − 2(r − d)/σ2 -1

Strike of underlying call B 110

Expiry of underlying call T 1

Down-and-out barrier BUO 90

Up-and-out barrier BDO 140

∆-hedging time step ∆t 2/252

No. simulated paths N 10,000

CEV model

Variance elasticity α 0.5

CEV-volatility σCEV 2.0472

Heston model

Mean reversion of variance κ 1.301

Long term variance level θSV 0.044 (=0.20972)

Volatility of variance η 0.105

Correlation (stock, variance) ρ -0.608

Merton model

Jump intensity λ 1.158

Mean jump size γ -0.135

Jump size variance δ 4.7 × 10−6

Volatility of diffusion part σJD 0.148

Variance Gamma model

Q-drift of diffusion part θV G -0.514

Q-volatility of diffusion part σV G 0.174

Q-variance rate of gamma part ν 0.048

Table 1: Parameter values. The parameters of the Heston, the Merton and the Variance

Gamma models are determined by calibration to the 1-year volatility skew from the CEV

model as shown in Figure 3.
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3 Experimental Design and the Benchmark Case

The rest of the paper compares variants of hedging strategies by simulation experiments,

the overall design of which is like this:

• Specify the true model. Besides the benchmark B/S model, we look at CEV, Heston’s

stochastic volatility, Merton’s jump diffusion and a Variance Gamma model. Table 1

summarizes parameter symbols, values and interpretations.

• Suggest a variety of possible hedging strategies. Which and how many varies from

model to model.

• Simulate stock-price paths from the true model. These paths run from time 0 to time

τ , which is either expiry or the first time the barrier is hit; whichever comes first.

Except for a brief – but we feel informative – digression at the end of this section, all

simulations are done under the equivalent martingale measure Q.

• Since the focus of the paper is model risk, the expiry-dates or strikes of auxiliary

options used for the static hedges are chosen uniformly over the life of the barrier

option or the adjustment area of modified pay-off function.

• The dynamic strategies are adjusted along the stock-price path. At each trading date

we adjust our stock-position such that we hold exactly the number of stocks that the

continuous-time ∆-hedge strategy prescribes. The strategy is kept self-financing by

trading in the bank-account (ie. borrowing or lending).

• At time τ all strategies are liquidated and we record the discounted hedge error or

the Profit/Loss (P/L), by which we mean

εj
i = exp(−rτi)

(
Value of hedge portfolioj(τi) − Value of barrier option(τi)

)
,

for the j’th hedge strategy and the i’th stock-price path. To calculate this value for

hedges involving options we need a efficient way of calculating prices of plain vanilla

puts and calls in the true model; a closed-form solution being preferred of course. For

many strategies we don’t actually need to be able to price the barrier option in the

true (and presumably complicated) model.

• Repeat this for many stock-price paths; say N of them. Record discounted hedge

errors and estimate their distributional characteristics.
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BLACK-SCHOLES MODEL

Hedge method Barrier option type

down-and-out call up-and-out call

cost mean std. dev. cost mean std. dev.

Pure ∆ 4.8523 0.1% 10.1% 2.277 -0.7% 94.9%

Mixed ∆ 4.8523 -0.1% 2.0% 2.277 -0.7% 93.5%

str-static 4.7666 -1.8% 1.9% 2.662 16.4% 52.3%

cal-static 4.7856 -1.4% 1.4% 2.481 9.0% 62.8%

Table 2: Hedging barrier options with a correct model. All moments are given relative to

the true barrier option prices. These are equal to the costs of the ∆-hedging strategies.

Both static hedges use (1+3) options in the down and out case and (1+11) options in the

up and out case.

3.1 The Black/Scholes Model

The rest of this section deals with the B/S model; our specific choice of parameters is

shown in Table 1. We compare four hedging strategies for the two barrier options. It

should surprise no-one that we look at standard ∆-hedging, the cal-hedge (the calendar-

spreads), and the str-hedge (the strike-spreads). But we include a fourth strategy called

“mixed ∆-hedging”. Here the idea is to buy the plain vanilla option underlying the barrier

option (always a strike-110 call), and then ∆-hedge the residual, ie. “barrier - plain vanilla”.

Since a large part of the hedge error for discrete ∆-hedging is due simply to the “kink” in

the plain vanilla call’s pay-off function, we expect this to be an improvement over standard

∆-hedging, and feel that this is the strategy static hedges should rightfully be compared to.

The down-and-out call

The second to fourth columns in Table 2 show descriptive statistics for hedge error in the case

where we’re trying to hedge a down-and-out call. Under the equivalent martingale measure

Q the discounted value process for any self-financing trading strategy – continuously as

well as discretely adjusted – is martingale.6 Therefore the difference between the cost of

the hedging strategy and true price of the barrier option equals the mean of the discounted

hedge error and can’t really be used as an indication of hedge quality, it merely reflects

the difference between the true barrier price and our initial outlay; but it’s a convenient

“check-sum”. So when we talk about “accuracy” of the hedge in the following we mean

6It doesn’t matter that τ is stochastic; it’s a stopping time bounded by T , so we can use the optional

stopping theorem.
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standard deviation. This choice is parsimonious, but not the only possible one; for the sake

of brevity we have left out risk measures such as short-fall probability or semi-variance that

could be relevant, in particularly in light of the drift-dependence discussion at the end of

this section, and the fact that in practice the hedger would typically be short the barrier

option.

We first notice a large accuracy improvement as we go from pure to mixed ∆-hedging; the

hedge error standard deviation drops from about 10% of the barrier option price to around

2%. This confirms that much of the inaccuracy in discrete hedging stems not form the

barrier, but from the “ordinary” kink in the pay-off function at the strike. We also see that

– for either type of static hedge – it takes only 3 options (in addition to the plain-vanilla

(T,K)-call) to achieve a hedge that is comparable (slightly better) than what is achieved

by a mixed ∆-hedge that is adjusted every second day.

The up-and-out call

Table 2 also shows hedge performance for an up-and-out call in the B/S model. The most

notable change from the down-and-out hedging is the much higher standard deviations;

these now range from 50% to 100% of the true barrier price, even after raising the number

of options in the static portfolios to 11. Its discontinuity makes this option hard to hedge.

There is a world of difference between the stock-price finishing just over and just under the

barrier (for the down-and-out call, it is o-t-m when it knocks out, and we probably weren’t

going to make much money on it anyway). Another way of saying this is that the ∆ of the

option is unbounded in the (B, T )-region. We see that there is no improvement from mixed

∆-hedging. Looking at pay-off functions, this isn’t surprising. Adding the regular call does

nothing to remove the discontinuity and the kink isn’t removed, it’s just shifted (from K

to B).

Drift Digression

Table 3 shows hedge errors when the stock-price is simulated with a different drift than

it’s risk-neutral one (r − d); you can think of these as different P-drifts (also known as

real-world, statistical or physical drifts). Girsanov’s theorem tells us the that with perfect

(ie. continuous in time or space) hedging, the P-drift does not matter. With a discrete set

of hedge points/options, this is no longer true. But for plain vanilla options, the drift has

very little effect on the standard deviation of the hedge error under any of the equivalent

measures in play. For discontinuous barrier options, barrier hits are very critical; that’s

where the errors are coming from. The drift strongly affects the probability of the barrier

being hit. Thus the standard deviations of discrete hedges are quite dependent on the P-

drift. The less likely a barrier hit is, the better. This is important information for practical

hedging: If you are a bank, and you’re selling barrier options, you’d sell them at a price

10



Barrier option Hedge type Drift shift

- 0.05 0.0 + 0.05

mean std. dev. mean std. dev. mean std. dev.

D/O call Pure ∆ 0.2% 15.3% 0.0% 14.8% -0.8% 15.9%

Mixed ∆ -0.2% 3.3% 0.2% 3.1% -0.2% 2.9%

str-static -2.1% 1.9% -1.6% 1.9% -1.4% 1.9%

cal-static -1.4% 1.4% -1.4% 1.6% -1.2% 1.4%

U/O call Pure ∆ -0.4% 89.6% -4.0% 80.4% -10.1% 123.0%

Mixed ∆ -0.4% 95.3% -0.9% 87.0% -9.7% 127.4%

str-static 7.9% 36.9% 13.2% 45.2% 21.1% 60.6%

cal-static 4.4% 39.5% 6.6% 50.5% -12.7% 81.2%

Table 3: Means and standard deviations of discounted hedge error for stock-prices simulated

with drifts different to the risk-neutral one. Specifically, the stock-price is simulated with

drift-rate = r − d+drift shift.

of the form “price of theoretically perfect hedge” + “compensation because of residual

risk”. The last term depends in some way on the hedge error standard deviation, so with

knowledge of the direction of your trade and a good view of what the real-world drift is,

you can quote “better prices”. But it is a double-edged sword: If you get the drift wrong,

then things get worse. So for the rest of the paper, we simulate with a drift rate of r − d;

or put differently we simulate under Q.7

4 Misspecification

A direct way to see that option markets do not behave as the Black/Scholes analysis tells

us is to look at the implied volatilities across strikes and see that this curve is not flat. In

this section we look at four Black/Scholes extensions that are qualitatively quite different,

but parametrically similar in the sense that they all produce implied volatilities that match

the skew-curve in Figure 3.

4.1 The CEV Model

In the proportional volatility notation of Equation (1) the CEV model has σ(x, t) = σxα−1.

When α is less than 1 volatility increases when the stock-price falls, which makes sense

7In incomplete models there is the further subtlety that the change of measure from P to Q changes other

parameters than just the drift.
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Figure 3: The skew of 1-year implied volatilities. The skew was first generated by the

CEV model and all subsequent models (Heston, Merton, Variance Gamma) then calibrated

to it. Differences are not visible to the naked eye, and all parameter values are given in

Table 1. The 4 indicates the strike-110, expiry-1 call. The solid triangles show the options

used in the str-hedge hedge of the D/O call and the solid square is the 1-year option

strike-at-barrier in the cal- hedge.

economically when thinking of stocks as options on firm value. The model can explain

part of the volatility smile, namely why o-t-m puts have higher implied volatilities than

a-t-m puts; see Figure 3. However, it makes o-t-m calls have lower implied volatilities than

a-t-m options, so it is sort of a “half-tricky pony”, but in some markets it does quite well

empirically. Also, the model is a minimal extension of B/S, so if things break down here,

then the red lights should go on. And there are closed-form solutions for plain vanilla

options in the CEV model, see Cox (1996).

As for hedge strategies, more choices have to be made.

Dynamic hedge strategies

The naive ∆-hedger just uses the ∆ for option from the B/S-model. To make this work a

volatility has to be plugged in. We assume he uses the implied volatility of the (K,T )-call;

20% percent just as before in the pure B/S world. We also consider a correct ∆-hedger;

he uses ∆ calculated correctly in the CEV model. For general α, we have no closed-form

solutions for barrier option prices, so we calculate ∆ using a numerical PDE-method. We

only have to solve a single PDE once (on a fine grid) and then store the results. Then rest

12



is done by table look-up.8

Calendar-spreads

One way to do it is exactly as in the true B/S model with the (K,T )-implied volatility

as σ. But for the CEV model we can, almost as easily, do it correctly by applying the

true CEV option pricing formula along the boundary when we construct the replication

portfolio. Note that this does not require knowledge of barrier option prices in the CEV

model.

Strike-spreads

Again, the first idea simply is to use the hedge portfolio from the B/S model with the

(K,T )-implied volatility playing the role of σ.

Corrections can be made following this line of reasoning: When we construct the str-

replicating portfolio and sell short options with strikes in the “adjustment area” of the

pay-off function, our model tells us that they trade at the B/S price. But the market

immediately tells us that they don’t; they trade at some other price given by the volatility

smile/skew. In other words, the astute trader sees a (large) discrepancy between the value

of (the components of) his hedge portfolio and the value of the barrier option in the B/S

model. Two ways to adjust the portfolio of auxiliary options, say w, seem natural.

First, w could be scaled by a factor β such that the price of the str-portfolio matches the

B/S model’s barrier option price, i.e.9

β =
B/S model’s barrier option price − market price of underlying plain vanilla option∑

i∼strikes wi × market price of auxiliary option i
.

(3)

This we call uniform scaling.

But not all options are equally mispriced relative to the Black/Scholes model. Adjustments

should reflect that. So suppose the traded amount of auxiliary option i set such that the

revenue we get from shorting it is what we would get in the true B/S model, i.e. use the

smile-scaled portfolio weights

ŵi =
B/S model’s price of auxiliary option i

market price of auxiliary option i
× wi. (4)

Both adjustments are general; we just have to know market prices of the hedge instruments.

8Lo, Yuen & Hui (2001) give a series expansion in the “α = 1/2”-case that we used to cross-check the

numerical PDE solution.
9The hedge volatility in our examples is chosen exactly such that the B/S model and market prices of

the second term in the numerator in Equation (3) are equal.
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CEV MODEL

Hedge method Barrier option type

down-and-out call up-and-out call

cost mean std. dev. cost mean std. dev.

Pure ∆; B/S-based 4.8523 1.7% 10.3% 2.277 -14.1% 126%

Pure ∆; CEV-based 4.7700 -0.1% 10.1% 2.651 0.5% 120%

Mixed ∆; B/S-based 4.8523 1.6% 4.3% 2.277 1.6% 129%

Mixed ∆; CEV-based 4.7700 0.0% 2.8% 2.651 0.7% 122%

str-static 3.9405 -17.3% 14.0% 2.942 9.0% 36%

Uniformly scaled str-static 4.8523 1.7% 6.2% 2.277 -15% 55%

Smile-scaled str-static 4.5742 -4.1% 0.8% 2.620 -4.0% 26%

cal-static; B/S-based 4.6837 -1.7% 1.8% 3.184 20.1% 75%

cal-static; CEV-based 4.7011 -1.4% 1.5% 2.884 8.8% 65%

Table 4: Hedging the down-/up-and-out calls with a possibly misspecified model. All

moments are given relative to the true barrier option prices. These are 4.7700 for the down-

and-out call, and 2.651 for the up-and-out call. The initial prices of the hedge portfolios are

given in the “cost” columns. This information is largely superfluous, but very convenient

for debugging and replication purposes. The static hedges use the same (1+3) and (1+11),

respectively, options as in Table 2. B/S-based strategies use the implied volatility of a the

underling plain vanilla call as “hedge volatility”.

In Table 4 we report the results of the nine strategies for hedging down-and-out and up-

and-out calls in the CEV model. Looking at the down-and-call first, we see that when ∆-

hedging with the stock, the gain from using the CEV model is barely visible; the standard

deviations of the discounted hedge errors (for short, we simply call this the error in the

following) are 10.3% and 10.1% of the true price. When options are incorporated in the

replicating portfolio the effects of using a misspecified or naively applied model are evident.

When going from B/S to CEV the error drops from 4.3% to 2.8% for the mixed-∆ portfolio,

and that involves only one option, namely the underlying. For the strike-spread hedges the

error reduction is even more dramatic, from 14% (naive) to 6.0% (uniform scaling) to 0.8%

(smile-scaled). The effect on calendar-spread hedges is lower (a drop from 1.8% to 1.5%),

but still considerable in relative terms. The reason the strike-spread hedges benefit the most

from adjustments is that while the calendar-spread hedges use strikes along the barrier, the

strike-spread hedges involve options with strikes well beyond the barrier and thus deep

o-t-m (see Figure 3) and “most mispriced” by B/S.
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Turning to the discontinuous barrier option, ie. the up-and-out call, we first notice that it

is still much harder to hedge, no matter if we use static or dynamic hedging. At hedge

frequencies that it does not seem possible to go beyond in practice, the error is of the same

order of magnitude as the barrier option’s price itself. Again, the effects on dynamic hedges

are low (errors range between 120% and 130%; as in the B/S-case mixed-∆ doesn’t help

here), although larger than for the down-and-out call. The static hedges clearly outperform

the dynamic ones, and in this case the strike-spreads (25% - 50% errors) hold the advantage

over calendar-spreads (65% - 75% errors). The effects from adjustments are clearly seen.

Calendar-spreads with the true CEV model and smile-scaling (misspecification correction

reflecting different degrees of “non-B/S’ness”) causes errors to drop about 10%-points, but

the uniform scaling increases the error (from 36% to 55%). There is a large difference

between the price of the barrier option in the true CEV model (2.651) and the B/S-price

(2.227), which is what the uniformly scaled portfolio’s price matches, and that causes the

uniform adjustment to “overshoot”.

4.2 Stochastic Volatility

In virtually all financial markets, price change variances display considerable variation over

time. A model that captures this is the Heston (1993) model,

dS(t) = (r − d)S(t)dt +
√

v(t)S(t)dW Q
1

(5)

dv(t) = κ(θSV − v(t))dt + η
√

v(t)(ρdW Q
1

+
√

1 − ρ2dW Q
2

).

Here volatility, or more precisely local variance, is modeled by a Cox/Ingersoll/Ross-type

process, so it is random, mean-reverting, and may be correlated with price movements

themselves (something that is strongly supported empirically in stock markets).

Simulation by a discretization scheme is straightforward. We use an Euler scheme with

reflecting boundary at 0 for the variance process. Call prices can be expressed in closed

form up to the integration of a known function. If the correlation is non-zero we know of no

closed-form barrier option formula, but the zero correlation case is treated in Lipton (2001).

In this model ∆-hedging is “impossible, but not hard”. Perfect dynamic hedging with the

stock and bank-account is no longer possible, but there is no difficulty in creating operational

∆-hedge strategies by plugging in
√

v(t) or some implied volatility.

So the immediate hedge strategies we consider are the pure and mixed ∆-hedging strategies,

the pure, the uniform and smile-scaled str-hedges and the cal-hedge all implemented using

implied (K,T )-volatility where needed.10

We consider two further versions of the cal-hedges. First, we use a hedge volatility equal

to the square root of the expected local variance conditional on the underlying being at the

10Plugging in
p

v(t) in the dynamic strategies is easily done and matters little.

15



HESTON MODEL

Hedge method Barrier option type

down-and-out call up-and-out call

cost mean std. dev. cost mean std. dev.

Pure ∆ 4.8381 2.0% 15.4% 2.2828 -19.0% 85.9%

Mixed ∆ 4.8381 0.9% 4.5% 2.2828 -19.6% 93.2%

str-static 4.1206 -11.1% 13.3% 2.9955 9.1% 38.0%

Uniformly scaled str-static 4.8381 1.7% 2.5% 2.2769 -14.9% 58.7%

Smile-scaled str-static 4.7527 -0.1% 1.3% 2.6664 -1.7% 19.3%

cal-static 4.7866 0.1% 2.9% 3.0926 11.0% 57.4%

cal-static with conditional vol. 4.8142 0.6% 3.2% 2.8969 4.3% 49.1%

cal-static with Fink’s extension 4.6166 -4.1% 3.1% 2.8239 2.1% 31.6%

Table 5: Hedging the down-/up-and-out calls with a misspecified model under the Heston

model. All moments are given relative to the true barrier option prices. These are 4.8245

for the down-and-out call, and 2.7579 for the up-and-out call. The Fink extension uses 5

strikes beyond and thus hedges 5 volatility levels chosen symmetrically around the implied

volatility of the strike-110 call.

barrier. This can be calculated in the spirit of Dupire (1994) or Derman & Kani (1998)

from the formula

EQ(v(t)|S(t) = B) = 2
∂T Call + (r − d)B∂KCall + rCall

B2∂2
KKCall

, (6)

where we use the notation of Section 2.1 and all the functions on the right hand side must

be evaluated at (S(0), 0|B, t).

Second, we employ the extension suggested in Fink (2003), where for each expiry-date, 5

different options with strikes beyond the barrier (we use strike-steps sizes of 5) is used to cre-

ate a portfolio whose value is 0 for 5 possible possible levels of
√

v(t) (chosen symmetrically

around the (K,T )-volatility implied volatility).

In Table 5 we report the results of the eight hedge strategies. The picture is virtually the

same as that from the CEV-analysis in the Table 4: Static hedges outperform ∆-hedges,

static hedges are more sensitive the misspecification (too simple corrections may make things

worse), and discontinuous options are hard to hedge. Further, we see that all the cal-hedges

behave in the same way for the down-and-out call (the easy case). For up-and-out call it

helps the cal-hedge to use the expected conditional volatility along the barrier (but still

only one auxiliary option for each expiry); the error goes from 57% to 49%. It helps even
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MERTON JUMP DIFFUSION MODEL

Hedge method Barrier option type

down-and-out call up-and-out call

cost mean std. dev. cost mean std. dev.

Pure ∆ 4.8564 2.6% 31.6% 2.2752 -20.2% 132.8%

Mixed ∆ 4.8564 -1.5% 6.1% 2.2752 -20.9% 150.0%

str-static 4.1378 -9.7% 11.2% 2.9942 5.1% 29.7%

Uniformly scaled str-static 4.8564 0.2% 2.5% 2.2769 -17.1% 66.1%

Smile-Scaled str-static 4.7705 -1.0% 2.3% 2.6612 -5.6% 31.1%

cal-static; B/S 4.7777 -1.0% 2.9% 3.0145 5.4% 54.1%

Table 6: Hedging the down-/up-and-out calls with a misspecified model under Merton’s

jump-diffusion. All moments are given relative to the true barrier option prices. These are

5.1590 for the down-and-out call, and 2.8685 for the up-and-out call.

more (error of 32%) to use the correction suggested by Fink, where several strikes are used

for each auxiliary option expiry-date such that the hedge portfolio’s value is 0 for different
√

vt-levels. Anything else would be strange, since this is a “theoretically perfect hedge”,

and with the use of extra strikes, it could be said to have an unfair advantage in comparison

to the other cal-hedges.

4.3 Jumps

Merton’s jump diffusion

First, we consider the classical Merton (1976) model where stock returns are hit by the

Poisson arrivals of (displaced) lognormal jumps

dS(t) = (r − d − λk)S(t)dt + σJDS(t)dW Q + (Jt − 1)S(t)dq,

log Jt ∼ N(γ, δ),

dq ∼ Poisson(λ),

k = EQ[Jt − 1].

Simulating the process is easy and call prices can be written as (infinite) sums of Black/Scholes

prices. Prices for barrier options have to be found numerically, and there are several ways

to do this. Since we only need the true price as a benchmark, we just use simulation.

Models with random jump sizes are (grossly) incomplete, so perfect ∆-hedging is not possi-

ble; qualitatively it is “more impossible” here than in stochastic volatility models. However,

the same operational dynamic hedge strategies are considered, that is the pure and mixed
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VARIANCE GAMMA MODEL

Hedge method Barrier option type

down-and-out call up-and-out call

cost mean std. dev. cost mean std. dev.

Pure ∆ 4.8531 2.3% 29.8% 2.2766 -25.1% 150.5%

Mixed ∆ 4.8531 -1.3% 5.1% 2.2766 -25.2% 165.8%

str-static 4.1296 -9.5% 11.2% 2.9957 4.1% 32.2%

Uniformly scaled str-static 4.8523 0.3% 2.5% 2.2769 -17.0% 69.5%

Smile-Scaled str-static 4.7673 -0.9% 2.3% 2.6622 -6.5% 41.6%

cal-static 4.7752 -1.0% 2.8% 3.0182 4.8% 56.5%

Table 7: Hedging the down-/up-and-out calls with a misspecified model under the Variance

Gamma model. All moments are given relative to the true barrier option prices. These are

5.1692 for the down-and-out call, and 2.9430 for the up-and-out call.

∆ strategies. For the static hedges we use the both the pure and the smile-scaled strike-

spread hedges and the calendar-spread using implied (K,T )-volatilities in the Black-Scholes

formula.

Variance Gamma

Merton’s jump diffusion has few but large jumps. There are other ways jumps can occur.

The Variance Gamma model from Madan, Carr & Chang (1998) is a pure jump process with

many small jumps but infinite arrival rate. With γ(·;α, β) denoting a Gamma process, ie.

the Levy process whose increments over unit intervals follow a Gamma(α, β)-distribution,

the basic Variance Gamma model can be written like this:

X (t; θV G, σV G, ν) = θV Gγ(t; 1, ν) + σV GW Q(γ(t; 1, ν)),

S(t) = S(0) exp ((r − d + ω)t + X (t; θV G, σV G, ν)) ,

ω =
1

ν
ln

(
1 − θV Gν − σ2

V Gν

2

)
.

The model can be thought of as a Black/Scholes model that runs after a different, stochas-

tic clock that captures varying trading activity over time. This and related models have

recently become popular because to their ability to match both the dynamics of the under-

lying and option market prices. Simulation is fairly straight-forward, see e.g. Glasserman

(2003), and call prices can be expressed with special functions (modified Bessel, degener-

ate hypergeometric) or found by integration of B/S prices, see e.g. Joshi (2003). We use

simulation to find the true prices of the barrier options.
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Tables 6 and 7 show the performance of the hedge strategies for jump diffusion and Variance

Gamma models. The general picture is much the same as for the CEV and Heston model

analyses. That in itself is interesting, but let us just comment on the new effects. First, in

both jump models, the hedge quality for adjusted static hedges of the down-and-out call is

surprisingly high (errors between 2% and 3%). We are quite far from the B/S-world, and

it’s not hard to imagine that jumps could cause havoc for barrier options. And sometimes

they do, because for the discontinuous barrier option, the corrections to the str-hedges do

not help, but rather tend to make matters worse. Earlier we found that uniform scaling

might be too simple, but in this case taking account of different degrees of misspecification

through smile-scaling also has an adverse effect (less so in the jump diffusion model; that

is probably because jumps are predominantly negative, so knock-out is usually caused by

diffusion), which makes the construction of other jump-adjustments a clear topic for further

research, but one we will not pursue here.

5 Conclusion

Barrier option hedge portfolios that involve plain vanilla options offer improvements over

ordinary ∆-hedging. That’s well known. A thorough analysis of model risk does not alter

that conclusion. Although barrier options and jump models are a tricky combination, the

likeness of Tables 4 to 7 indicates a reassuring robustness across the most commonly used

Black/Scholes alternatives, However, these static hedges are relatively more model risk

sensitive. That is wise to remember, especially if you are the trader from the title of the

paper, because then your competitors probably also do static hedging, and (as traders are

confident people) the sensitivity result is really a positive one, because it means that there

is an edge for you. And since the academic literature offers little constructive advice beyond

Black/Scholes there are wide perspectives for both sides.
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