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Abstract

In parimutuel betting markets, it has been observed that proportionally too many
bets are placed on longshots, late bets are more informative than early bets, and a
sizeable fraction of bets are placed early. We propose an explanation for these facts
based on equilibrium incentives of privately informed rational bettors, who profit
from betting against bettors with recreational motives. We show that small rational
bettors who act on private information have an incentive to wait until the last minute,
and then bet without access to the information of the others. Once the distribution of
bets is revealed, the longshot is recognized to be less likely to win than was originally
thought. When acting on common information instead, bettors have an incentive to
place early bets in order to preempt others from exploiting the same information.
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1. Introduction

According to the market efficiency hypothesis, the price of a financial asset is an unbiased

estimate of its fundamental value, reflecting all the information available to the market. It

has proven difficult to perform direct tests of this hypothesis, due to the lack of exogenous

measures of fundamental values of the assets traded in regular financial markets.1 Re-

searchers have turned to betting markets, where fundamental values are both observable

and typically exogenous, and have found a number of puzzling empirical facts. In this

paper, we propose a theoretical explanation for these regularities.

Our analysis is based on the institutional features of parimutuel betting markets.2 These

are mutual markets, in which the total money bet on all outcomes (net of the track take)3

is shared proportionally among those who bet on the winning outcome. Typically, bets are

placed in real time, resulting in provisional odds that are publicly displayed and updated

at regular intervals until post time, when betting is closed. Since the payments are made

exclusively on the basis of the final distribution of bets, individual bettors do not know

with certainty the odds they face.4

In the context of a horse race, market efficiency predicates that the final distribution of

parimutuel bets is directly proportional to the market’s assessment of the horses’ chances

of winning. This is because the gross expected payoff of a bet on a horse is equal to the

ratio of its probability of winning to the proportion of bets placed on that horse. The

expected payoffs on the different horses are equalized when the fraction of money bet on

each of them is equal to the probability that the horse wins.

Starting with Griffith (1949), horse race betting data have been used to test this propo-

sition. The proportion of money bet on a horse has been shown to track closely its em-

1In regular financial markets, it is typically impossible to observe the fundamental values of traded
assets. In addition, the performance variables used as proxies of value are not exogenous, being themselves
affected by market prices.

2Since its introduction in the nineteenth century, parimutuel betting has become the most common
wagering system at racing tracks throughout the world. Parimutuel betting is commonly adopted at
horse and greyhound racing tracks, as well as for soccer, basketball, jai alai, and other games. As further
discussed in Section 6, the parimutuel structure has been recently used in financial markets to allow traders
to hedge risk related to economic statistics, such as employment, retail sales, and industrial production.

3The track take includes taxes and other charges for the expenses of running the race and the betting
scheme.

4It is worth contrasting parimutuel betting with the alternative scheme of “fixed odds” betting (cf.
Dowie 1976). In fixed odds betting, bookmakers accept bets at specific, but changing, odds throughout
the betting period. In this case, the return to any individual bet is therefore not affected by the bets
placed subsequently. In the UK, parimutuel and fixed odds betting coexist.
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pirical chance of winning, in support of the market efficiency hypothesis. However, three

somewhat puzzling regularities have emerged:

1. Horses with short odds (i.e., favorites) tend to win even more frequently than indi-

cated by the final market odds, while horses with long odds (i.e., longshots) win less

frequently (see e.g., Thaler and Ziemba 1988). This is known as the favorite-longshot

bias.

2. Late bets tend to contain more information about the horses’ finishing order than

earlier bets (Asch, Malkiel and Quandt 1982). This is the phenomenon of late in-

formed betting.

3. A large amount of money is placed just before post time, but sizeable amounts are

placed much earlier (Camerer 1998).5 If more information becomes available later,

why are so many bets placed well before post time? This is the puzzle of early betting.

In this paper, we formulate a simple theoretical model that sheds light on these facts.

The model posits an exogenous initial distribution of bets placed by outsiders, so that the

rational insiders can earn non-negative returns despite the presence of a positive track

take. Each insider has some private information, modeled as an informative signal about

the outcome of the race. These informational assumptions are similar to those made in

the market microstructure literature, and applied to fixed odds betting by Shin (1991 and

1992). We focus instead on parimutuel betting, and manage to obtain a tractable model

by assuming that private information is a continuous variable, as is commonly done in

auction theory. Koessler and Ziegelmeyer (2002) is the only other paper in the literature

that analyzes parimutuel betting under asymmetric information.6

Our explanation of the favorite-longshot bias is based on the informational content of

the distribution of bets. We argue that the presence of private information introduces

a systematic wedge between the final distribution of bets and the market’s beliefs. To

5In Camerer’s data set roughly half of the money is placed in the three minutes before post time, and
half (often well) before then.

6In Koessler and Ziegelmeyer’s model, bettors have binary signals and bet sequentially with exogenous
order. We instead analyze simultaneous betting, derive the favorite-longshot bias, and offer insights about
the forces driving the endogenous timing of bets. See also Feeney and King (2001) for the characterization
of the equilibria in a sequential parimutuel game with complete information and exogenous order.
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understand this, suppose for the moment that some privately informed insiders bet simul-

taneously at post time. When many (few) insiders end up betting on the same outcome,

which now becomes more of a favorite (longshot), it means that many (few) had private

information in favor of this outcome. If individual bettors knew that many bets would

have been placed on that outcome, they would have been even more likely to bet on that

outcome. But the final distribution of bets is not known when betting, so that this infer-

ence can only be made after betting is closed. Intuitively, a disproportionately low (high)

fraction of bets are placed on favorites (longshots), because these bets were placed with-

out knowing the final odds (Proposition 2). Despite its simplicity, this explanation of the

favorite-longshot bias has not been proposed before.7

We argue that the timing of bets is driven by two opposite forces. On the one hand,

there is an incentive to wait in order to hide one’s private information and possibly see

that of others. On the other hand, there is an incentive to bet early in order to prevent

others from exploiting the market power stemming from the public information shared

with other strategic bettors.

Our explanation of the second regularity is based on private information. We show

that when the inside are “small”, in the sense that they are price takers, this first effect

dominates and bets are simultaneously placed at post time. This outcome (Proposition 5)

formalizes a prevailing intuition, initially formulated by Asch, Malkiel and Quandt (1982).

Our explanation of the third regularity is based on market power. To understand this,

consider a small number of bettors who share the same information about the horses’

winning chances, and so are not concerned about revealing this information. Due to the

parimutuel structure, the payoff per dollar bet on a profitable horse is a decreasing function

of the total bets placed on that horse. Bettors are effectively competing in a market with a

downward sloping demand curve, with the final price determined by the final distribution

of bets. This market power channel introduces an incentive to bet early, in order to

prevent competitors from unfavorably changing the odds against them (Proposition 6).

This strategic incentive to place early bets is based on the simple fact that parimutuel

betting is a Cournot game, and appears not have been noticed before.

The paper proceeds as follows. After formulating the model in Section 2, in Section 3

7Our companion paper (Ottaviani and Sørensen 2004) contains an additional analysis of this informa-
tional explanation. See Section 3.2 for a discussion of the other explanations proposed in the literature on
the favorite-longshot bias.
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we focus on the simple case of simultaneous betting in the last period. After showing that

the model predicts the favorite-longshot bias, we obtain testable results on how its extent

depends on the amount of pre-existing bets, the level of the track take, and ratio of the

size of the population of informed to uninformed bettors. We then endogenize the timing,

by allowing the bettors to decide when to place their bets. In general, bets not only reveal

information to other bettors but also affect odds. We analyze these two effects in isolation

by considering two versions of the model in turn. Section 4 considers a continuum of

small informed bettors, who in equilibrium postpone their bets to the end. In contrast,

Section 5 shows that early betting results when bettors affect the market odds, but are

not concerned about revealing information. We conclude in Section 6 by discussing the

predictions of our theory and some avenues for future research. The proofs are collected

in the Appendix.

2. Model

We present a stylized model of parimutuel betting on the outcome of a race between two

horses, A and B. The winning horse is identified with the state, x ∈ {A,B}. Time is
discrete and betting is open in a commonly known finite window of time, with periods

denoted by t = 0, 1, . . . , T .8 Betting opens at t = 1 and closes at t = T (post time). A

publicly observable tote board displays in any period the cumulative amounts bet until

then on each horse.

At the race track, some bets are placed for recreational purposes based on idiosyncratic

preferences for particular horses, while others are motivated by profit maximization. Even

though in reality individual bettors could be motivated by a combination of recreation (pri-

vate value) and profits (common value), for convenience our model separates recreational

from profit-maximizing bettors. In this way, we depart from the literature on preferences

for risk taking, and can conveniently allow for the presence of private information.9

The amount of exogenously given bets placed on outcome x at time t = 0 by unmodeled

outsiders is denoted by n (x). The outsiders play a role similar to liquidity (or noise) traders

8Typically, betting is open for a period before the beginning of the race. The provisional odds are
publicly displayed on a board at regular intervals until betting is closed and the race starts. For example,
the UK’s Tote updates the display every 30 seconds. The assumption of discrete time is technically
convenient, but is not essential for our results.

9A similar approach is commonly adopted in market microstructure models, where liquidity traders
are separated from informed arbitrageurs.
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in models of financial markets. For simplicity, we assume that the outsiders’ bets are not

random.

There is a continuum [0, I] of rational bettors (or insiders).10 These bettors have private

information (see Section 2.1), are risk neutral, and maximize their expected return.11 Each

bettor faces an identical wealth constraint, being able to bet an amount normalized to 1.

Bettors decide if, when, and whether to bet on x = A or x = B. Note that the presence

of the outsiders allows the insiders to derive positive expected payoff from betting. The

total amount bet by insiders on outcome x is denoted by m (x).

We assume that bets cannot be cancelled once they are made.12 The total amount bet

by insiders and outsiders is placed in a pool, from which a proportional track take τ is

taken. The remaining money is then evenly distributed to the winning bets. If x is the

winner, each unit bet on outcome x yields

(1− τ)

PB
y=A (n (y) +m (y))

n (x) +m (x)
.

Since each bettor is small, these payoffs are not affected by any individual’s bet. This price

taking assumption is the essential feature of our continuum population assumption.13 The

insiders know the exact amounts n (A) and n (B) and the other parameters of the model.

2.1. Information

Private information is believed to be pervasive in horse betting (see e.g., Crafts 1985). It

is modeled as follows. The insiders are assumed to share a common prior belief q = Pr (A)

that horse A is the winner, possibly formed after the observation of a common signal. At

t = 0, before betting begins, each bettor i is assumed to privately observe a signal si.

Conditionally on state x, these signals are assumed to be identically and independently

distributed with probability density function (p.d.f.) f (s|x).
10See Watanabe (1997) for an alternative model of parimutuel betting with a continuum of bettors. In

his model, the bettors’ heterogeneous beliefs are assumed to be common knowledge. In our model instead,
beliefs reflect information about the state.
11Payoffs are not discounted, since betting takes place within a short time frame.
12Typically, patrons are not allowed to cancel their bet after leaving the seller’s window. More generally,

there are serious limitations on the right to cancel a bet, unless it is due to a mistake. These limitations
are set in order to prevent manipulation and preserve integrity of the wagering process. See e.g., Canada
Department of Justice (1991), paragraph 57, and Delaware Harness Racing Commission (1992), rule
9.4.1.3.
13With a continuum of bettors, each of them takes the price as given. See our companion paper

Ottaviani and Sørensen (2004) for an analysis of simultaneous betting with a finite number of insiders.
We also depart from the price taking assumption in Section 5 when studying the effect of market power.
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Upon observation of signal s, the prior belief q is updated according to Bayes’ rule into

the posterior belief p = Pr (A|s) = qf (s|A) / (qf (s|A) + (1− q) f (s|B)). This transfor-
mation of s into p determines the conditional distributions of p given x from the corre-

sponding distributions of s given x. The posterior belief p is then distributed according to

the cumulative probability distribution function (c.d.f.) G on [0, 1]. By the law of iterated

expectations, G must satisfy q = E[p] =
R 1
0
p dG (p).14

The conditional distributions of p given x play a central role in our analysis. These

p.d.f.s are given by g (p|A) = pg (p) /q and g (p|B) = (1− p) g (p) / (1− q), since Bayes’

rule yields p = qg (p|A) /g (p) and 1 − p = (1− q) g (p|B) /g (p). The monotonicity in
p of the likelihood ratio g (p|A) /g (p|B) = (p/ (1− p)) ((1− q) /q) reflects the property

that higher beliefs in outcome A are relatively more likely when outcome A is true. This

monotonicity implies that G (p|A) first-order stochastically dominates G (p|B), so that
G (p|A) < G (p|B) for all p ∈ (0, 1).
Throughout, we assume that G is continuous with p.d.f. g,15 and has full support equal

to the beliefs set [0, 1].16 Some results are derived under the additional assumption that the

posterior distribution is symmetric, i.e. that G (p|A) = 1−G (1− p|B), so that the chance
of posterior p conditional on state A is equal to the chance of posterior 1− p conditional

on state B.

Our results are conveniently illustrated by the linear signal example with conditional

p.d.f. f (s|x = 1) = 2s and f (s|x = −1) = 2 (1− s) for s ∈ [0, 1], and corresponding c.d.f.
F (s|x = 1) = s2 and F (s|x = −1) = 1 − (1− s)2. This signal structure can be derived

from a binary signal with uniformly distributed precision. With fair prior q = 1/2, we

have p = s so that G (p|A) = p2 and G (p|B) = 2p− p2.

3. Betting in the Last Period

We aim to prove that insiders postpone their bets until the last period, and to character-

ize the amounts of final insider bets on the two horses. In this section, we analyze the

14While the conditional distributions of the signal is our primitive, there is no loss of generality in
making assumptions directly on G. Any posterior belief distribution with q = E [p] can be derived from
the assumption that the distribution of the signal s is the same as the distribution of the posterior p.
15In the presence of discontinuities in the posterior belief distribution, equilibria might involve mixed

strategies. Our results can be extended to allow for these discontinuities.
16This implies that there exist arbitrarily informative signal realizations, so that we conveniently obtain

an interior equilibrium.
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simultaneous betting game that takes place in the last period. In Section 4, we then solve

the full dynamic game by using a backwards induction argument.

For the purpose of this section, bets committed by insiders before period t = T are

considered part of the outside bets n (A) , n (B). The population size I refers to the

continuum of insiders who did not bet before the last period, and G is the c.d.f. of their

posterior beliefs. We maintain the assumption that G has full support.17

In Section 3.1 we show that there exists a unique equilibrium in period T , and fully

characterize the equilibrium strategies. In Section 3.2 we show that the equilibrium ex-

hibits the favorite-longshot bias, and in Section 3.3 we derive some testable comparative

statics results.

3.1. Equilibrium

In a Bayes-Nash equilibrium, every rational bettor best replies to a correctly predicted

fraction of the insiders who bet on each outcome in each state. Denote by m (y|x) the
amount bet by the insiders on outcome y when state x is true. If state x is true, the gross

payoff to a bets on outcome x is

W (x|x) = (1− τ)
n (A) + n (B) +m (A|x) +m (B|x)

n (x) +m (x|x) > 0. (3.1)

Consider the decision problem of a bettor with belief p. The expected return from a unit

bet on outcomeA is pW (A|A)−1. The expected payoff for a bet onB is (1− p)W (B|B)−
1, and for not betting is 0. It then follows immediately that there exist thresholds p̂B, p̂A ∈
[0, 1] such that the bettor optimally bets on B when p < p̂B, abstains when p̂B < p < p̂A,

and bets on A when p > p̂A.

If the winning probability of horse A implied by the pre-existing bet is not too extreme

compared to the track take, in the unique equilibrium insiders bet on both outcomes.

Proposition 1 Assume that

0 ≤ τ < min

½
n (A)

n (A) + n (B)
,

n (B)

n (A) + n (B)

¾
. (3.2)

There exists a unique Bayes-Nash equilibrium of the last-period game. Every insider bets

on B when p < p̂B, abstains when p̂B < p < p̂A, and bets on A when p > p̂A, where

17We argue below that the case in which G is no longer unbounded (0 < G (p) < 1 for all p ∈ (0, 1))
results in a rather trivial last-period game.
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Figure 3.1: This illustrates the determination of equilibrium in the linear signal example
introduced in Section 2, with q = 1/2, n (A) = n (B) = I, and τ = .15. The solid line
represents the set of (p̂B, p̂A) solving (3.3), while the dashed line represents the solutions
to (3.4). Both curves are downward sloping, and the solid line crosses from below the
dashed line at the equilibrium values of (p̂B, p̂A).

the thresholds 0 < p̂B < p̂A < 1 constitute the unique solution to the two indifference

conditions

p̂A =
1

1− τ

n (A) + I (1−G (p̂A|A))
n (A) + n (B) + I (1−G (p̂A|A)) + IG (p̂B|A) (3.3)

and

p̂B = 1− 1

1− τ

n (B) + IG (p̂B|B)
n (A) + n (B) + I (1−G (p̂A|B)) + IG (p̂B|B) . (3.4)

Proof. See the Appendix. ¤

Note that when the pre-existing bets heavily favor outcome A or the track take is

very large, the gross expected payoff of a bet on A is W (A|A) < 1 regardless of how

many insiders bet on B. If so, no bets are then placed on outcome A in equilibrium.

Condition (3.2) rules out such situations.

Equation (3.3) is derived from the indifference condition p̂AW (A|A) = 1 by using

m (A|A) = I (1−G (p̂A|A)) and m (B|A) = IG (p̂B|A). As seen in Figure 3.1, this results
in an inverse relationship between p̂A and p̂B. To see why this is the case, suppose by

contradiction that instead p̂A and p̂B were to both rise, so that fewer insiders bet on A,

and more insiders bet on B. Ceteris paribus, such a change makes it more attractive to

bet on A, so that W (A|A) rises. But p̂A is determined by the indifference among betting
on A and not betting, so a rise in W (A|A) implies a fall in p̂A, in contradiction with the
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initial supposition. Similarly, the indifference condition (1− p̂B)W (B|B) = 1 results in
the downward sloping relationship (3.4). The proof of the proposition establishes that

these curves cross precisely once, as illustrated in Figure 3.1.

3.2. Favorite-Longshot Bias

The market odds ratio for horse x is defined as the net return to a bet on x if x wins,

i.e. W (x|x)− 1. The implied market probability for horse x is (1− τ) /W (x|x), equal to
the fraction of bets placed on it. According to a simple formulation of the market effi-

ciency hypothesis, this market probability should aggregate market beliefs into an unbiased

estimator of the horse’s true probability of winning.

In order to test this proposition, empirical investigations of horse-race betting have

typically proceeded by pooling data from many races. The outcomes of the races to which

horses participate are used to estimate their empirical probability of winning depending

on their market odds. The oft-observed favorite-longshot bias reveals that the greater

the implied market probability of horse x, the greater the empirical average return to a

dollar bet on x. Market probabilities thus understate the winning chances of favorites,

and overstate the winning chances of longshots.

In accordance with this empirical approach, we compute the market implied probability

for horse x in our equilibrium and relate it to its true chance of winning, conditional

on the information contained in the resulting distribution of bets. Since higher private

beliefs are more frequent when the true outcome is A (i.e., G (p|B) > G (p|A) for all
0 < p < 1), in equilibrium each individual bets more frequently on outcome x in state

x. Therefore, in aggregate we have m (A|A) > m (A|B) and m (B|B) > m (B|A). This
implies that horse x has a higher market probability (i.e., is more favored) when state x

is true, and that the amounts (m (A|x) ,m (B|x)) bet by the insiders fully reveal x. Upon
observation of (m (A|x) ,m (B|x)), outcome x is revealed to be true with probability one.
The implied market probabilities, on the other hand, are never so extreme, since we always

have 1− τ < W (x|x) <∞ and therefore (1− τ) /W (x|x) ∈ (0, 1). We conclude that the
equilibrium outcome of our model exhibits the favorite-longshot bias.

Proposition 2 In the unique Bayes-Nash equilibrium of the last-period game, there is

an extreme favorite-longshot bias. The insiders’ bets (m (A|x) ,m (B|x)) reveal the true

9



winner, and although horse x is more of a favorite (m (x|x) > m (x|¬x)) when it wins, the
market implied probability for the winner is less than one.

In this model, the favorite-longshot bias takes an extreme form due to the fact that there

is a continuum of bettors, so that the law of large numbers applies and the final distribution

of bets is deterministic. But the logic of the result is much more general, as shown in our

companion paper Ottaviani and Sørensen (2004). In that paper, we investigate more

generally the conditions for the occurrence of the favorite-longshot bias in the last round

of betting in a model with a finite number of players. We show that the sign and extent

of the favorite-longshot bias depends on the interaction of noise and information.18 As

the number of bettors increases, the realized market odds contain more information and

less noise. For any fixed market odds, the posterior odds are then more extreme and so

the favorite-longshot bias is more pronounced. In the model with a continuum of insiders

presented in this paper instead, noise is absent so that the favorite-longshot bias always

arises. This happens more generally with a large enough number of bettors.

The result hinges on the fact that in a Bayes-Nash equilibrium, each insider does

not know the total amount wagered by the other insiders. In a rational expectations

equilibrium (REE), it is assumed instead that bettors can adjust their actions until they

are satisfied with their bet, given their knowledge of the aggregate distribution of bets.19

Notice that an REE must be perfectly revealing in this setting,20 so that in the REE all

insiders bet on the winner and we have m (A|A) = m (B|B) = N .21 In our Bayes-Nash

equilibrium, some insiders bet instead on the longshot, and not enough insiders bet on

the favorite. As a result, the market implied probabilities are driven less towards the

truth than in the REE. We conclude that our Bayes-Nash equilibrium results in a stronger

18In the presence of a few bettors with little private information, posterior odds are close to prior odds,
even with extreme market odds, so that deviations of market odds from prior odds are mostly due to the
noise contained in the signal. In that case, the market odds tend to be more extreme than the posterior
odds, resulting in a reverse favorite-longshot bias. This explains why the reverse favorite-longshot bias is
observed in lotto games, in which there is no private information.
19But in reality the aggregate amounts bet are observable only after all bets have been placed. REE

models are not well suited to studying the performance of the trading structures of markets, because they
assume that traders have more information than is actually available to them.
20To see this, note that in an REE bettors also employ threshold strategies. If the state were not

revealed, a positive fraction of them would bet on either horse (as above), and the amounts would then
reveal the true outcome.
21Note that the insiders cannot completely remove the favorite-longshot bias even in the REE, due to

their limited wealth. See Manski (2004) for an REE model of the Iowa Electronic Market, in which a
deviation from the efficient market hypothesis arises due to limited wealth of traders.
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favorite-longshot bias than the corresponding REE.

Potters and Wit (1996) have formulated the closest antecedent to our informational

explanation for the favorite-longshot bias in parimutuel markets. In their as well as in our

model, the favorite-longshot bias arises as a deviation from the rational expectations equi-

librium. In Potters and Wit’s model, the privately informed bettors are given the chance

to adjust their bets at the final market odds, but they ignore the information contained in

the bets.22 In our model instead, bettors fully understand the informational link, but are

not allowed to adjust their bets after observing the final market odds. If the market closes

immediately after the informed bets are placed, the market’s tâtonnement process cannot

incorporate this private information and reach a rational expectations equilibrium.

The extensive literature on the favorite-longshot bias contains a number of alternative

explanations.23 These explanations can be broadly classified into two groups, depending

on whether they are based on the preferences of bettors or on the market microstructure.

In the first group, Griffith (1949) suggested that individuals subjectively ascribe too large

probabilities to rare events, while Weitzman (1965) and Ali (1977) hypothesized that

individual bettors are risk loving, and so are willing to give up a larger expected payoff

when assuming a greater risk (longer odds).

The explanations based on the market rules apply to either parimutuel or fixed odds

betting. For the specific case of parimutuel markets, Isaacs (1953) noted that an informed

monopolist bettor would not bet until the marginal bet has zero value, while Hurley and

McDonough (1995) argued that a sizeable track take and the inability to place negative

bets limits the amount of arbitrage by bettors with superior information, and so tends to

result in relatively too few bets placed on the favorites. For fixed odds betting markets,

Shin (1991 and 1992) explained the favorite-longshot bias as the response of an uninformed

bookmaker to private information possessed by insider bettors. While Shin argues that

a monopolistic bookmaker sets odds with a favorite-longshot bias in order to limit the

subsequent losses to the better informed insiders, we derive the similar bias in a parimutuel

market as the result of bets placed simultaneously.24

22Ali’s (1977) Theorem 2 also features bettors with diverse beliefs who ignore others’ information.
23For a more extensive review of these explanations, see the surveys by Hausch and Ziemba (1995),

Sauer (1998), and Jullien and Salanié (2002).
24See Ottaviani and Sørensen (2004) for a comparison of the favorite longshot-bias arising in parimutuel

and fixed-odds markets.
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3.3. Comparative Statics

An increase in the track take directly makes rational betting less attractive, thereby causing

the equilibrium thresholds to become more extreme.

Proposition 3 Assuming that (3.2) holds, a marginal increase τ implies that p̂A strictly

increases and p̂B strictly decreases, and thatW (A|A) andW (B|B) both strictly decrease.

Proof. See the Appendix. ¤

In a symmetric setting, we can derive a further comparative statics result. If the

number of insiders increases (holding the outsider amounts n (A) , n (B) fixed), their bets

have a greater impact on the market odds, tending in itself to make informed betting

less attractive for individuals with a given signal. The equilibrium must have more ex-

treme thresholds. More extreme indifference thresholds imply that the winner’s odds ratio

W (x|x) − 1 is lower, and thus the favorite-longshot bias is reduced. However, even as I
grows arbitrarily large, the unique equilibrium remains interior, implying thatW (x|x) > 1.
The market implied probability (1− τ) /W (x|x) can thus never exceed 1 − τ , since the

track take prevents the informed population from fully correcting the odds resulting from

the outsiders.

Proposition 4 Assume that the distribution of private posterior beliefs is symmetric,

that the initial bets are symmetric n (A) = n (B) ≡ n > 0, and that 0 < τ < 1/2. The

unique equilibrium of Proposition 1 satisfies p̂A = 1− p̂B ∈ (1/2, 1). The threshold p̂A is

increasing in τ and decreasing in n/I. The market odds become more extreme and the

favorite-longshot bias is reduced when either n/I or τ is decreased.

Proof. See the Appendix. ¤

The symmetric setting has the appealing property that the initial market belief in out-

come A, n (A) / (n (B) + n (A)), is equal to the prior belief q = 1/2. A priori, then, the

market odds are correct, and there is no scope for betting on the basis of public informa-

tion alone. Nevertheless, privately informed individuals can profit from betting. In the

symmetric model we have m (A|B) = m (B|A) < m (B|B) = m (A|A), so the final im-
plied market probabilities satisfy (n+m (A|A)) / (n+ n+m (B|A) +m (A|A)) > 1/2 >

(n+m (A|B)) / (n+ n+m (B|B) +m (A|B)). When the market’s implied probability of
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an outcome exceeds 1/2, but remains well below 1, the true (and empirical) probability of

the outcome is 1. The favorite-longshot bias is evident.

Example. In the linear signal example with fair prior (q = 1/2), balanced pre-existing

bets (n (A) = n (B) ≡ n), and track take τ ≤ 1/2, the unique symmetric-policy Nash

equilibrium has an explicit expression, with cutoff belief

p̂A =
(1− τ) (1 + n/I)−

q
(1 + n/I)

¡
τ 2 + (1− τ)2 n/I

¢
(1− 2τ) ∈ [1/2, 1) .

4. Late Betting with Private Information

Having characterized the equilibrium in the last period, we now turn to the analysis of the

full dynamic game, in which insiders can bet in any period between t = 1 and t = T . A

behavior strategy for a bettor with a given privately observed signal specifies how much

remaining wealth to bet on either horse if any, after each publicly observed history. A

perfect Bayesian equilibrium specifies a behavior strategy for each bettor, such that every

bettor’s strategy is optimal given the other bettors’ strategies. Perfection requires that

the continuation strategies should again constitute a perfect Bayesian equilibrium of the

remaining game after any publicly observed tote board history, given rationally updated

beliefs.

Proposition 5 Assume that (3.2) holds. Then:

(i) In all perfect Bayesian equilibria, the total amounts bet by the insiders are equal to

those implied by Proposition 1.

(ii) There exists a perfect Bayesian equilibrium in which all betting is postponed to

the last period.

(iii) If the thresholds of Proposition 1 satisfy p̂B ≤ q ≤ p̂A, this equilibrium is unique.

Proof. See the Appendix. ¤

Proposition 5 concords with Asch, Malkiel and Quandt’s (1982) empirical finding that

late changes in odds predict the finishing order very well. As they argued informally,

“bettors who have inside information would prefer to bet late in the period so as to

minimize the time that the signal is available to the general public.” Our theory suggests
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that both the favorite-longshot bias and late informed betting can be ascribed to the

presence of private information.25

The proof of (i) also establishes that no information can be revealed by early bets

on the equilibrium path. Notice that condition p̂B ≤ q ≤ p̂A required for result (iii) is

always satisfied when the model is symmetric, by Proposition 4. If this condition fails,

say p̂A < q, then early betting could take place by insiders with private beliefs p ∈ [p1, p2]
where p̂A < p1 < q < p2 and G (p2|A) − G (p1|A) = G (p2|B) − G (p1|B). Such bets do
not reveal any information, and are of no consequence for the final distribution of bets,

according to (i).

Our analysis of the timing game employs some simplifying assumptions. First, the proof

of the proposition is somewhat facilitated by the continuum population assumption, in that

a single player’s deviation cannot be observed at all. However, the logic of this late timing

result is much stronger. If an early bettor on horse A signals favorable information for this

horse, then later bettors will find horse A more attractive and horse B less attractive. But

from (3.1), the early bettor’s return is decreasing in m (A|A) and increasing in m (B|A),
so he does not desire later bettors to follow his lead in this fashion.26 The incentive of

informed traders to postpone their bet to the last minute is thus driven by the fact that

in parimutuel betting all trades are executed at the same final price.27

Second, we have assumed that the tote board is updated after each period, so that at

time t the total amounts wagered at times 1, . . . , t− 1 is publicly known. In reality, there
might be a slight delay in the tote board. With a delay of τ > 1 periods, our prediction

is that informed betting takes place within the last τ betting rounds, when betting is

essentially simultaneous.

Third, we have assumed that the post time T is certain and commonly known. In

reality, there might be some uncertainty about T , and this may drive the insiders to

start betting somewhat before the actual closing time. Other bettors would then be able

25Alternatively, late informed betting could be due by the fact that more information becomes publicly
available during the betting period for exogenous reasons. However, an explanation based on public
information would not be able to account for the presence of the favorite longshot bias.
26Moreover, postponing the bet gives the option of learning from the other insiders’ bets (although this

cannot happen in the equilibrium of our model). Generally speaking, the uncertainty about the final bet
distribution decreases over time, so it is safer to bet later.
27The National Thoroughbred Racing Association (2004) is concerned that last-minute betting is facil-

itated by new methods of off-track betting, and that last-minute odds changes drive away a significant
number of bettors.
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to react to this information, resulting in an outcome closer to the rational expectations

equilibrium. Again, the tote board delay helps to hide the bets for τ periods, making

it less imperative that bets are placed at the very last moment. Notice, also, that the

informed bettors would not start betting until when they believe there is a positive chance

of market closure. Indeed, a sizeable fraction of bets are placed slightly before betting is

closed.

5. Early Betting with Market Power

As we have seen in the previous section, individual bettors have an incentive to bet late if

they have private information. That incentive is similar to the one that operates in auc-

tions with fixed deadlines (see e.g., Roth and Ockenfels 2002) and in pre-opening markets

(Biais, Hillion and Spatt 1999 and Medrano and Vives 2001). In this section, we show

that parimutuel payoffs introduce an additional incentive that operates in the opposite

direction.

In order to isolate this new incentive, we turn to study a finite number of large bettors

who are able to place bets of arbitrary non-negative size. A bettor who can make a sizable

bet faces an adverse movement in the odds, and should consider this effect when deciding

how much to bet. This market power channel introduces an incentive to bet early, before

other bettors place their bet to one’s detriment.

Following Hurley and McDonough (1995), assume that there is a finite number I of

rational bettors who share the same information about the state. In our setup of Section 2,

this is the degenerate case of no (or completely uninformative) private signals, so that

p = q = Pr (x = A) always. The amounts bet by others cannot then reveal any information.

Assume that the common prior belief, the track take and pre-existing bets are such

that q (1− τ) > n (A) / (n (A) + n (B)), i.e. the pre-existing market probability is so far

below the prior that it is profitable to bet on A. If bettors i = 1, . . . , I place the amounts

m1, . . . ,mI on outcome A, bettor i’s payoff is

Ui (mi) = q (1− τ)
n (A) + n (B) +

PI
i=1mi

n (A) +
PI

i=1mi

mi −mi.

This game is a special version of Cournot’s model of quantity competition. To see this,

interpret the amount mi as the quantity produced at constant marginal unit cost by firm
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i. Let the market’s inverse demand curve be equal to

p (m) = q (1− τ)
n (A) + n (B) +m

n (A) +m
, (5.1)

wherem is the aggregate quantity. Bettors suffer inframarginal losses from increasing their

own bets and so cease betting before the price for the last unit bet is equal to the marginal

cost.

With simultaneous competition with I < ∞, the market implied probability for out-
come A, (n (A) +m) / (n (A) + n (B) +m), is lower than q (1− τ), which would result in

zero profits. This is for the usual reason that demand is above marginal cost (p (m) > 1).

In turn it is lower than q, so although we assume that the rational bettors are placing their

money on this horse (in this sense a favorite), the true probability of its winning is greater

than the market implied probability. This finding is again in line with the favorite-longshot

bias (see also Isaacs 1953).

The I bettors play a dynamic Cournot game. As is well known, in the two-player

Stackelberg game, the leader would bet a larger amount and earn greater profits than the

follower. By increasing the bet size beyond the static Cournot outcome, the leader pushes

the follower to reply with a smaller amount. When the timing is endogenous, one would

intuitively expect the insiders to place their bets as soon as possible, in order to profit

from the early mover’s advantage.

Following Hamilton and Slutsky (1990), we consider an “extended game with action

commitment”, according to which each bettor first commits to the one period in which

to bet, and in that period decides how much to bet as a function of the betting history

until then. At period t, it can be observed how much was bet by whom in all previous

periods 1, . . . , t− 1, excluding the current period t. In our setting, this timing assumption
incorporates the fact that the tote board can be observed, in addition to three less appeal-

ing properties: (i) each bettor can bet only once, (ii) each bettor cannot change the bet

timing in reaction to others’ bets as the game proceeds, and (iii) each bettor can observe

precisely the set of bettors who have already bet and are therefore no longer active. The

following result is proved by applying Matsumura’s (1999) Proposition 3:

Proposition 6 With I informed bettors, there are two possible subgame perfect equilib-

rium outcomes. In the first equilibrium, all bettors bet at t = 1, when they play the static

Cournot outcome. In the second kind, all but one bettor place bets at t = 1.
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Proof. See the Appendix. ¤

In every equilibrium, all (but at most one) bettors place simultaneous bets in the first

period, immediately after receiving their public information.28 Intuitively, market power

gives an incentive to move early, in order to capture a good share of the money on the

table. This can explain why a sizeable fraction of bets are placed well before betting is

closed – our third puzzle.

6. Conclusion

In this paper, we have proposed explanations for both the timing of informative bets

and the favorite-longshot bias in parimutuel markets. Our explanations are based on the

equilibrium incentives of some rational bettors, who derive positive expected profits due

to the presence of outsiders.

We have identified a scenario with many small bettors in which all informed bets

are placed at the end of the betting period, but our insight applies provided that some

informed bets are placed simultaneously at the end. We have shown that small bettors

have an incentive to delay betting in order to hide their private information. As a result,

the final market odds do not reflect the beliefs of the market but rather tend to be less

extreme than the posterior belief based on the information revealed by the final distribution

of bets. Essentially, it is unfair to use the final market odds to evaluate the rationality of

the bettors, because these odds are not known when the bets are placed. We have also

pointed out that large bettors have a tempering incentive to bet early on the basis of public

information, in order to prevent other bettors from acting on the same information.29

Our theoretical findings are compatible with experimental results recently obtained

by Plott, Wit and Yang (2003) in laboratory parimutuel markets. Their experimental

subjects were endowed with limited budgets and given private signals informative about

the likelihood of the different outcomes. Subjects could place bets up to their budget before

the random termination of the markets. Compared to our model, the presence of a random

termination time gives bettors an additional incentive to move early in order to reduce the

termination risk. Although Bayes’ rule was explained to the experimental subjects, not

28It can be shown that there is an equilibrium in which all bettors play the static Cournot outcome in
the first period, even when the timing assumptions of Matsumura are relaxed.
29The analysis of the interplay of these two opposing incentives is an interesting topic for future research.
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all profitable bets were made and some favorite-longshot bias was observed. According to

the logic of our theory, the market odds were not equalized to the posterior odds because

some of the informed bettors possibly postponed placing their limited budget, gambling

that the termination would happen later.

Our findings call for further empirical work in the area, in which controls are added

for the market rules. The cross-country and cross-market variation in the extent of the

favorite-longshot bias points to the relevance of the market rules in determining the be-

havior of participants on the supply and demand side. In this direction, our compan-

ion paper (Ottaviani and Sørensen 2004) compares the equilibria resulting in fixed odds

and parimutuel markets and shows that the comparative statics of the resulting favorite-

longshot bias depends crucially on the market structure. Persistent differences in the ob-

served biases could be attributed to varying degrees of market participation, informational

asymmetry, and degrees of randomness in the post time.30

Our analysis has implications for the design of parimutuel hedging markets.31 As

stressed by Economides and Lange (2001), the parimutuel system is particularly apt for

trading contingent claims.32 A major advantage of these markets is that the intermediary

managing the parimutuel market is not exposed to any risk. On the flip side, market

participants are subject to risk on the terms of trade and might have incentives to delay

their orders. If traders are small and have private information, as seems reasonable, they

might trade late and place orders mostly on the basis of their limited information, without

access to information revealed by other market participants.33 A thorough investigation

of the implications for the design of prediction markets is left to future research.34

In conclusion, the market structure plays a key role for the aggregation of private

30Interesting selection issues arise when different betting schemes (fixed odd and parimutuel) coexist
and compete to attract bets, as in the UK. As also suggested by Gabriel and Marsden (1990) and Bruce
and Johnson (2000), bettors might have different incentives to place their bets on the parimutuel system
rather than with the bookmakers, depending on the quality of their information.
31Since October 2002, Deutsche Bank and Goldman Sachs have been hosting Parimutuel Derivative Call

Auctions of options on economic statistics. See Baron and Lange (2003) for a report on the performance
of these markets.
32While in betting markets these outsiders often have recreational motives, in hedging markets their

role could be played by market participants with private values from hedging certain risks.
33Trade will instead be early if it is based on common information and individual traders have market

power. But note that these conditions are rather undesirable for the other market participants.
34The Iowa electronic market seems to offer a promising hybrid. There, the intermediary bears no risk,

and yet the possibility of trading at continuously changing prices should give the right incentives to react
early to private information.
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information into prices.35 Our analysis suggests that parimutuel markets are not conducive

to strong market efficiency, due to the incentive of privately informed traders to postpone

their trades. In regular financial markets (e.g., as modeled in Kyle’s 1985 continuous

auction model), every order to buy asset A tends to increase the price of A, thereby eroding

the profitability of later buy orders for A. Competition among insiders would then drive

them to trade as early as possible (Holden and Subrahmanyam 1992). The incentives

to reveal information crucially depend on the market structure and might explain the

long-term performance of different trading institutions.36

35See Wolfers and Zitzewitz (2004) for a broad introduction to the informational content of market-
generated forecasts.
36In a traditional price-taking market, a rational expectations equilibrium need not reflect all available

information, if there is randomness in the noise demand (see e.g., Hellwig 1980).
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Appendix: Proofs

Proof of Proposition 1. Given a set of strategies of the continuum of opponents,

every agent can calculate the deterministic amounts m (y|x), and can thus calculate
W (x|x) > 0. Now U (A|p) = pW (A|A) − 1 is strictly increasing in p, U (0|p) = 0 is

constant, and U (B|p) = (1− p)W (B|B) is strictly decreasing. It follows that every in-
dividual has the same optimal response, characterized by thresholds p̂A and p̂B. Since

U (A|0) = U (B|1) = −1 < 0 = U (0|p) we have immediately that p̂A > 0 and p̂B < 1.

Due to the threshold rule, the amounts bet are m (A|A) = I (1−G (p̂A|A)), m (A|B) =
I (1−G (p̂A|B)), m (B|A) = IG (p̂B|A), and m (B|B) = IG (p̂B|B). Now, if p̂A = 1, then
W (A|A) = (1− τ) (n (A) + n (B) +m (B|A)) /n (A) ≥ (1− τ) (n (A) + n (B)) /n (A) > 1

by assumption, so U (A|1) > U (0|1), contradicting optimality of the threshold p̂A = 1.

Thus p̂A < 1, and a similar argument establishes p̂B > 0.

We now show p̂B < p̂A. Suppose to the contrary that p̂B = p̂A. Indifference yields

p̂AW (A|A) = (1− p̂A)W (B|B), solved by p̂A = W (B|B) / (W (A|A) +W (B|B)) ∈
(0, 1). Since abstention is not preferred, p̂AW (A|A) ≥ 1, or equivalently 1 ≥ 1/W (A|A)+
1/W (B|B). This is 1− τ ≥ (n (A) +m (A|A)) / (n (A) + n (B) +m (A|A) +m (B|A)) +
(n (B) +m (B|B)) / (n (A) + n (B) +m (A|B) +m (B|B)). We now show that this fails
since the right-hand side strictly exceeds 1, which is equivalent to m (A|A)m (B|B) −
m (B|A)m (A|B) > n (A) (m (B|A)−m (B|B)) + n (B) (m (A|B)−m (A|A)). This in-
equality follows since the left-hand side is positive and the right-hand side negative, by

m (A|A) > m (A|B) > 0 and m (B|B) > m (B|A) > 0. These facts follow from the

expressions for m (y|x) and the property that G (p̂A|A) < G (p̂A|B).
We now have 0 < p̂B < p̂A < 1, and optimality of the threshold rule implies the

indifference conditions U (A|p̂A) = 0 and U (B|p̂B) = 0. Simple algebra results in the

conditions (3.3) and (3.4). Rewrite (3.3) as

G (p̂B|A) = n (A)

I (1− τ) p̂A
− n (A) + n (B)

I
+

µ
1

(1− τ) p̂A
− 1
¶
(1−G (p̂A|A)) . (6.1)

The right-hand side is a continuous function of p̂A ∈ (0, 1). It tends to infinity as p̂A
tends to 0 and is equal to n (A) / (I (1− τ)) − (n (A) + n (B)) /I < 0 at p̂A = 1 by

assumption (3.2). Moreover, its derivative is− (n (A) + I (1−G (p̂A|A))) / (I (1− τ) p̂2A)−
(1/ ((1− τ) p̂A)− 1) g (p̂A|A) < 0. It follows that for every p̂B ∈ [0, 1] there is a unique
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solution p̂A ∈ (0, 1) to equation (3.3). Thus equation (3.3) defines an implicit function in
the space (p̂B, p̂A) ∈ [0, 1]2. By the implicit function theorem, this function is downward
sloping with

dp̂A
dp̂B

¯̄̄̄
(3.3)

= − g (p̂B|A)
n(A)+I(1−G(p̂A|A))

I(1−τ)p̂2A
+
³

1
(1−τ)p̂A − 1

´
g (p̂A|A)

< 0.

Likewise, for every p̂A ∈ [0, 1] there is a unique solution p̂B ∈ (0, 1) to (3.4), and the set of
solutions defines a downward sloping curve in the space of (p̂B, p̂A) ∈ [0, 1]2 with

dp̂B
dp̂A

¯̄̄̄
(3.4)

= − g (p̂A|B)
n(B)+IG(p̂B |B)
I(1−τ)(1−p̂B)2 +

³
1

(1−τ)(1−p̂B) − 1
´
g (p̂B|B)

< 0.

Existence follows from the fact that the curve defined by (3.3) traverses continuously

from the left side {0} × (0, 1) ⊆ [0, 1]2 to the right side {1} × (0, 1) ⊆ [0, 1]2 of the

[0, 1]2 square, while the curve defined by (3.4) traverses continuously from the bottom

(0, 1)× {0} ⊆ [0, 1]2 to the top (0, 1)× {1} ⊆ [0, 1]2. See Figure 3.1.
Uniqueness follows from the fact that the (3.4)-curve is steeper than the (3.3)-curve

wherever they cross. Namely,

dp̂A
dp̂B

¯̄̄̄
(3.3)

dp̂B
dp̂A

¯̄̄̄
(3.4)

< 1.

This inequality is equivalent to

1 <
h
n(A)+I(1−G(p̂A|A))
I(1−τ)p̂2Ag(p̂A|B)

+ 1−(1−τ)p̂A
(1−τ)p̂A

g(p̂A|A)
g(p̂A|B)

i h
n(B)+IG(p̂B |B)

I(1−τ)(1−p̂B)2g(p̂B |A) +
1−(1−τ)(1−p̂B)
(1−τ)(1−p̂B)

g(p̂B |B)
g(p̂B |A)

i
,

where all the terms are positive. The inequality therefore holds since

1− (1− τ) p̂A
(1− τ) p̂A

g (p̂A|A)
g (p̂A|B)

1− (1− τ) (1− p̂B)

(1− τ) (1− p̂B)

g (p̂B|B)
g (p̂B|A)

=
1− (1− τ) p̂A
(1− τ) p̂A

p̂A
1− p̂A

1− (1− τ) (1− p̂B)

(1− τ) (1− p̂B)

1− p̂B
1− (1− p̂B)

≥ 1

where we used g (p|A) /g (p|B) = (p/ (1− p)) ((1− q) /q), p̂A ≥ (1− τ) p̂A, and 1− p̂B ≥
(1− τ) (1− p̂B). ¤

Proof of Proposition 3. As shown in the proof of Proposition 1 and illustrated in

Figure 3.1, the equilibrium is determined by the thresholds (p̂B, p̂A) ∈ (0, 1)2 at which the
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two downward sloping curves defined by (3.3) and (3.4) intersect. We have also noticed

that the (3.4)-curve is steeper than the (3.3)-curve at the intersection.

Consider the effect of an increase in τ on the equilibrium. For any p̂A ∈ (0, 1), the right-
hand side of (6.1) is strictly increased. Thus, the left-hand side must strictly increase, in

order to equilibrate. Thus, the (3.3)-curve shifts outwards: for any p̂A, the corresponding

p̂B is strictly greater. Similarly, the (3.4)-curve shifts inwards: for any p̂B, the correspond-

ing p̂A is strictly smaller. Since the steeper curve shifts inwards, and the flatter curve shifts

outwards, we can conclude that the unique equilibrium must shift to the north-west in the

(p̂B, p̂A)-space. Thus, p̂B strictly decreases, and p̂A strictly increases. Since the indifference

conditions p̂AW (A|A) = 1 = (1− p̂B)W (B|B) continue to hold after the change, we can
also conclude that W (A|A) and W (B|B) both strictly decrease. ¤

Proof of Proposition 4. Using the assumptions, it is easy to verify that if the pair

(p̂B, p̂A) solves (3.3) and (3.4), then (1− p̂A, p̂B) also solves. Since the solution is unique

by Proposition 1, the equilibrium must satisfy p̂A = 1 − p̂B. Given this, condition (3.4)

reduces to condition (3.3), and either condition can be rewritten as

(1− τ) p̂A =
n/I + 1−G (p̂A|A)

2B/I + 1−G (p̂AA) + 1−G (p̂A|B) . (6.2)

The right-hand side of (6.2) is continuous in p̂A. At 1/2 it strictly exceeds the left-hand

side, while the opposite is true at 1. Thus the unique solution belongs to (1/2, 1).

The left-hand side of (6.2) is strictly increasing in p̂A, while, at any solution, the

right-hand side is a weakly decreasing function of p̂A. To see the latter claim, take the

logarithm of the right-hand side, differentiate and use symmetry of G to arrive at the

desired inequality
n/I + 1−G (p̂A|A)
n/I + 1−G (p̂A|B) ≤

g (p̂A|A)
g (p̂A|B) =

p̂A
1− p̂A

,

i.e.,

p̂A ≥ n/I + 1−G (p̂A|A)
2B/I + 1−G (p̂A|A) + 1−G (p̂A|B) ,

which is implied by (6.2).

An increase in τ has a negative direct effect on the left-hand side of (6.2), so it results

in an increase in p̂A. In turn, the market odds on the right-hand side is decreased. An

increase in n/I reduces the right-hand side, so p̂A falls. Since the left-hand side falls, the

market odds ratio on the right-hand side also falls. ¤
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Proof of Proposition 5. (i) First, we show that in equilibrium no information about x

can be revealed by the observable history of past bets before T . Namely, the insiders’ bets

placed in any period t < T must satisfy m (A|A) = m (A|B) and m (B|A) = m (B|B).
Otherwise, the true state x would be fully revealed in the following period t + 1 and all

the remaining bettors would bet on x, either until there are no more insiders or until

W (x|x) = 1. Every bettor at t with an interior belief p ∈ (0, 1) is therefore strictly better
off postponing the bet – for the bet is on the wrong outcome giving a loss of −1, or
the bet returns the same as when postponing. But such a profitable deviation contradicts

equilibrium.

We have therefore established that the gamemust proceed deterministically until period

T , since the amounts bet by the insiders are independent of the true state. When the game

reaches period T , the prior belief is still q. Now, the total amounts placed by insiders before

and at time T must satisfy the characterization of the simultaneous equilibrium given in

Proposition 1. For individual rationality in the last period again implies that there are

thresholds p̌B, p̌A, such that individuals who did not bet before the final period will bet

on B if p < p̌B, bet on A if p > p̌A, and otherwise abstain. Anyone who bet on horse

B before time T must also have p ≤ p̌B, for the game proceeded deterministically, and

at belief p̌B there is zero expected return to the bet on B. Likewise, early bettors on A

must have p ≥ p̌A. But then we have established that the equilibrium must be in common

threshold strategies, and Proposition 1 characterized the only such equilibrium.

(ii) The following strategy profile constitutes such a perfect Bayesian equilibrium. After

any history, all remaining bettors postpone their betting to the last period and play then

the simultaneous Bayes-Nash equilibrium. The first observation of early insider bets makes

beliefs shift to certainty that the most-bet horse is the winner; as long as both horses have

received equal amount of insider bets, beliefs are unchanged.

To show that this is an equilibrium, consider any public history at time t < T . No

individual player ever loses from postponing to the last period, for an earlier bet from

the marginal player is too small to influence the beliefs of others through the tote board.

Thus, the behavior of all other players is unaffected.

(iii) Suppose that bettors with private beliefs in the positive-measure set K ⊆ [0, 1] bet
on horse A at some period t < T . Since these bettors should eventually bet as proved in (i),

thenK ⊆ [p̂A, 1]. In addition, these bets cannot reveal any information, so thatm (A|B) =
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I Pr (K|B) = I Pr (K|A) = m (A|A). But this equality is impossible, unless q belongs to
the convex hull of K. To see this note that if p̂A ≥ q, we have Pr (K|B) = R

K
g (p|B) dp =R

K
((1−p) /p) (q/ (1−q)) g (p|A) dp < ((1−p̂A) /p̂A) (q/ (1−q))

R
K
g (p|A) dp ≤ Pr (K|A),

leading to a contradiction. Likewise, there cannot be a positive measure of betting on

horse B. ¤

Proof of Proposition 6. This follows directly from Proposition 3 of Matsumura (1999),

once we verify the three conditions about two-stage betting games with exogenous timing

and arbitrary pre-existing bets. To analyze this two-stage game, suppose that I1 bettors

are leaders while I2 are followers. Let m1 (x) and m2 (x) denote the total amounts bet by

the leaders and followers, respectively. The three conditions are:

1. There exists a pure strategy equilibrium and the equilibrium is unique.

2. If the number of followers is one, this follower strictly prefers the Cournot outcome

to the follower’s outcome.

3. If the number of leaders is one, this leader strictly prefers the leader’s outcome to

the Cournot outcome.

The verification of these conditions involves straightforward computations available on

request from the authors.
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Omitted Details for Proof of Proposition 6
Not Intended for Publication

Here we verify Matsumura’s three conditions.

(1) Consider the simultaneous game of the followers. We concentrate on the case

where q (1− τ) > (n (A) +m1) / (n (A) + n (B) +m1), for otherwise the leaders have bet

irrationally too much. It is standard to show that there is a unique equilibrium of this

simultaneous Cournot game. All followers bet the same amount m2/I2, determined by the

first order condition

q (1− τ)
h
n(A)+n(B)+m1+m2

n(A)+m1+m2 − n(B)m2/I2
(n(A)+m1+m2)2

i
= 1. (6.3)

In equilibrium, q (1− τ) > (n (A) +m1 +m2) / (n (A) + n (B) +m1 +m2) so that all bet-

tors earn a positive profit.

The leaders play a simultaneous betting game, taking into account howm2 will respond

tom1. In equilibrium, all bets belong to the open range (0,M), whereM is the competitive

amount defined by q (1− τ) = (n (A) +M) / (n (A) + n (B) +M). The necessary first

order condition for an arbitrary leader’s amount m1
i is then

q (1− τ)

·
n(A)+n(B)+m1+m2

n(A)+m1+m2 − n(B)m1
i

(n(A)+m1+m2)2

µ
1 + dm2

dm1

¯̄̄
(6.3)

¶¸
= 1.

Notice the implication that 1+dm2/dm1|(6.3) > 0, since otherwise the left-hand side would
exceed q (1− τ) (n (A) + n (B) +m1 +m2) / (n (A) +m1 +m2) which strictly exceeds 1

when betting is profitable. Thus, holdingm1 fixed, the left-hand side is a strictly decreasing

function of m1
i . It follows that all leaders optimally respond with the same quantity

m1
i = m1/I1, so that the first order condition reduces to

q (1− τ)

·
n(A)+n(B)+m1+m2

n(A)+m1+m2 − n(B)m1/I1
(n(A)+m1+m2)2

µ
1 + dm2

dm1

¯̄̄
(6.3)

¶¸
= 1. (6.4)

It is now straightforward, if tedious, to verify that there is a unique solution (m1,m2) to

equations (6.3) and (6.4). Matsumura’s first condition is satisfied.

(2) The equilibrium amount mC of the simultaneous Cournot game with I players is

the solution in m2 of equation (6.3) with m1 = 0, i.e.

q (1− τ)

·
1 +

n(B)(n(A)+ I−1
I

mC)
(n(A)+mC)2

¸
= 1. (6.5)
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When there is one follower, denote by mL the total amount bet by the n− 1 leaders, and
mF the amount of the follower. From (6.3),

q (1− τ)

·
1 +

n(B)(n(A)+mL)
(n(A)+mL+mF )2

¸
= 1, (6.6)

and from (6.4),

q (1− τ)

"
1 +

n(B)

µ
n(A)+mF+ I−2

I−1m
L− 1

I−1m
L dmF

dmL

¯̄̄
(6.6)

¶
(n(A)+mL+mF )2

#
= 1. (6.7)

In this Cournot setting any bettor is better off in equilibrium if and only if the remaining

players reduce their total amount. Thus, (2) follows once we verify that mL > I−1
I
mC. If

mF < mL/ (I − 1), then using (6.5) and (6.6),

n(A)+mL

(a−1+ I
I−1m

L)
2 <

n(A)+mL

(n(A)+mL+mF )2
=

n(A)+ I−1
I

mC

(n(A)+mC)2

and it follows that mL > I−1
I
mC as desired. We therefore prove mF < mL/ (I − 1).

Equations (6.7) and (6.6) imply that mF =
³
1 + dmF/dmL

¯̄
(6.6)

´
mL/ (I − 1) so we need

only verify dmF/dmL|(6.6) < 0. But this follows directly from (6.6).

(3) Note that the leader is weakly better off than in the Cournot game, since the leader

could choose to bet the same amount as in the Cournot game. To verify that the leader

is strictly better off, it is enough to verify the leader changes decision. If not, the others

would still produce a total of I−1
I
mC. The leader’s first order condition, derived from (6.4),

would then be

q (1− τ)

"
1 +

n(B)

µ
n(A)+ I−1

I
mC− dm2

dm1

¯̄̄
(6.3)

mC

I

¶
(n(A)+mC)2

#
= 1,

in contradiction with (6.5). ¤
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