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Introduction 

 

The worldwide increase in equity prices in the 1990s has been widely linked to permanent 

productivity-growth effects and the significant generation of intangible assets during the information 

and communication technology (ICT) revolution.2 It has been extensively argued that the 

acceleration in productivity in the 1990s increased firms’ current and expected real cash flows and 

therefore contributed to an increase in the value of firms.3 Hall (2000, 2001a) argued that the share 

market run-up in the 1990s was justified by the increasing value of intangible assets consisting of “e-

capital” that has increased the expected cash flow of firms. Greenwood and Jovanovic (1999) and 

Hobijn and Jovanovic (2001) argue that the rise in the stock market from the 1980s onwards was 

linked to the rise of Information Technology (IT) based firms. However, the questions whether the 

increase in equity prices in the 1990s can be attributed to increasing growth in intangible and 

tangible capital productivity, and whether a sustainable higher capital productivity growth rate can be 

expected in the future, have gone almost unexplored.4

 

This paper introduces and tests a Tobin’s q model of the interaction between capital productivity 

shocks and equity prices to gauge the short and long term effects of the ICT revolution on equity 

prices. Section 2 introduces some of the measurement issues and Section 3 develops a general 

equilibrium model to show that innovations have only temporary effects on capital productivity and 

hence on equity prices. In fact, changes in equity prices will precede the impact of the shock to 

productivity if equity markets react in a forward-looking way to news of innovations. Furthermore, 

productivity shocks lead to higher tangible and intangible capital stock in the long run, but equity 

prices revert back to a long-run equilibrium. It is suggested that the analysis is of considerable 

relevance given the growing prevalence of intangible as opposed to tangible capital in the New 

Economy. Using historical data for real equity returns, tangible and intangible capital stock for 11 

OECD countries, we test the predictions of the model in Section 4, with considerable support being 

offered to its predictions.  

 

                                                 
2 Other factors that have been suggested as important factors behind the increase in stock prices in the 1990s include a 
decrease in the risk premium, higher international liquidity, baby boomers, the disinflation, and irrational exuberance 
(IMF, 2000, Shiller, 2000). 
3 See Business Week, 2003, Campbell and Shiller, 2001, Economist, 2001, Greenwood and Jovanovic, 1999, Hobijn and 
Jovanovic, 2001, IMF, 2000, Jovanovic and Rousseau, 2003, Keon, 1998, Laitner and Stolyarov, 2003. 
4 An exception is the model of Datta and Dixon (2002) where it is shown that innovations increase profits of incumbents 
and share prices, but that entry of new firms drive profits back to zero. As discussed below the model of Datta and Dixon 
(2002) is quite different from the model presented in this paper. 
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2. Innovations, capital productivities and share returns  

 

The New Economy brought with it expectations of productivity-induced increases in the growth in 

cash flow per share among share investors and several economists. Two closely related arguments 

have been used to account for the ICT-induced rise in equity prices in the second half of the 1990s 

which appears to have resumed in 2003. Some argue that the ICT revolution, or more generally the 

New Economy, has brought productivity growth rates up to a sustainable higher level, thus resulting 

in higher growth in expected earnings per share. Others have argued that the New Economy has 

created sufficient intangible wealth to merit the higher share prices in the late 1990s (Hall, 2000, 

2001a, McGrattan and Prescott, 2001). These two arguments are closely related, because the value of 

the capital stock equals the discounted value of earnings in general equilibrium. This section 

examines these arguments and discusses the data issues relating to the measurement of intangibles. 

 

2.1 The New Economy and productivity 

 

Considering the productivity growth effects on share prices of the New Economy, the main 

international organisations and researchers have attributed a large part of the increase in equity prices 

in the 1990s to accelerations in actual and expected labour productivity and potential output.5 The 

problem with this line of reasoning is that labour productivity and potential output are severely 

biased proxies for firms’ cash flow. The relevant productivity measure for firms’ cash flow is the 

marginal productivity of capital, which has moved in a direction which was historically quite 

different from the growth in labour productivity and potential output. To see the consequences of 

using labour productivity and potential output as measures of earnings per unit of capital, consider 

the Cobb-Douglas production function, 1Y BL Kα α−= , where B represents total factor productivity 

(TFP), Y is aggregate value-added output, K is capital services and L is labour services. The growth 

in marginal productivities of labour and capital are given by: 

 
 ln( / ) (1 ) ln( / ) lnY L K L Bα∆ = − ∆ + ∆ ,     (1) 
 
 ln( / ) ln( / ) lnY K K L Bα∆ = − ∆ + ∆ .      (2) 
                                                 
5 For example, in the IMF’s World Economic Outlook (2000) and in Kennedy et al (1998) of the OECD, the growth in 
potential output is used as a proxy for expected dividend growth in a version of Gordon’s growth model of equity 
valuation. Elsewhere, IMF (2000) suggests that labour productivity growth is the relevant measure of dividend growth. 
Similarly, a series of articles in the Economist and Business Week have argued that labour productivity is the relevant 
productivity measure for share prices (see for instance, Business Week, 2003, and Economist, 2001). Finally, Campbell 
and Shiller (2001) suggest that many analysts attribute the equity price boom in the 1990s partly to the accelerating 
labour productivity in the same period. 
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Comparing these equations, it is evident that TFP growth enhances growth in both capital and labour 

productivities. Capital deepening, however, increases the marginal productivity of labour but lowers 

the marginal productivity of capital and therefore explains why the real interest rate/return on equity 

tends towards a constant mean in the long run, while real wages show a continuous rise in the long 

run. Historically, capital deepening has counterbalanced total factor productivity growth to such an 

extent that tangible capital productivity has tended to decline only slightly in the OECD countries.  

 

The K/L ratio has increased geometrically by 3.5% annually in the OECD countries used in this 

study over the period from 1960 to 2001 (see notes to Figure 1 below), whereas TFP has increased 

by 1.5% only on average, when α is set to 0.7; thus suggesting a strong growth in labour productivity 

but a slight decline in capital productivity. The bias from using the growth in potential output as a 

proxy for the growth in capital productivity is even larger than using labour productivity. The bias is 

given by . The bias was 34% over the period from 1980 to 1992 and 

22% from 1993 to 2001 for the countries used in this study. From these numbers it is evident that 

share valuation based on growth in labour productivity or in potential output, severely overestimates 

the value of shares and is overly sensitive to fluctuations in labour productivity and potential output 

growth rates. 

)ln()/ln(ln KKYY ∆=∆−∆

 

2.2 Some estimates of capital productivity and the New Economy 

 

The estimates above are based on the tangible capital stock. However, several economists have 

argued that tangible capital stock is too narrow a concept of capital and that the creation of 

intangibles has been a vital part of the new economy (see for instance Brynjolfsson et al, 2002). 

Patent applications and R&D expenditures are probably the most accepted measures of the 

innovative activity, including the creation of intangibles during the ICT revolution.6 Hall (2001b) 

argues that the increase in the market value of firms in the 1990s are related to intellectual property 

and, to a much lesser extent, to advertising and R&D and writes that “much of the increase of firms 

in the past decades appears to be related to the development of successful differentiated products, 

protected to some extent from competition by intellectual property rights relating to technology and 

brand names” (p 1189). That the New Economy is well indicated by patent data is well documented. 

During the 1990s, for instance, ICT patent applications in the OECD countries grew at an annual rate 

                                                 
6 See for instance Griliches (1990) and Grupp (1998) for discussions of the merits in using patenting and R&D data as 
indicators of the innovative activity.  
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of 9% in the OECD countries, which is almost 50% higher than the growth rate of total patent 

applications (OECD, 2003). Furthermore, about a third of all OECD patent applications were ICT-

related (OECD, 2003).  

 

To get a picture of the historical paths of the marginal productivities of tangible and intangible 

capital stock, Figure 1 displays the unweighted average of the three Y/K ratios for the 11 countries 

that are used in this study. These 11 countries are listed in the notes to Figure 1 and are referred to 

the G11 countries as shorthand. The three ratios are the productivities of the tangible capital stock, 

R&D capital stock, and patent capital stock. We use the Cobb-Douglas productivity assumption 

under which the marginal productivity of capital type i is given by (1-αi)Y/Ki, which varies 

proportionally to Y/Ki, where (1-α)i is the share of income going to capital type Ki, (1 ) 1iα α− = −∑ . 

US data on R&D expenditure are used over the period from 1953 to 1965 since R&D data are not 

available for other countries before 1965. The patent capital stock is measured as patents applied for 

by residents and non-residents.7 The capital data are constructed using the perpetual-inventory 

method as detailed in the data appendix.  

 

otes. The figures are computed as an unweighted average for the following 11 countries: Australia, Canada, Denmark, 
nce, Germany, Italy, Japan, the Netherlands, Sweden, the UK and the US. The output-R&D capital stock ratio is 

                                                

Figure1: Output-Capital Ratios, G11
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divided by five and is spliced to the US data before 1965. The output-patent capital stock ratio is measured in millions of 
USD in 1995 prices at 1996 purchasing power parity. See the data appendix for data sources. 
 

 
7 Patent applications are almost always used in economic analysis as opposed to patents granted, because applications 
measure most precisely the timing of the innovation relevant for share price expectations and because the time lag 
between the lodgement of the application and the time at which the patent is granted, vary substantially over time. See 
Griliches (1994) for discussion of these issues.  
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The figure shows that tangible capital productivity has been declining over the past century, while 

ommon for all three indicators is the property that capital productivities have not been increasing in 

 can be argued that the productivity effects of the Second Industrial Revolution, which started 

 

ital 

to 

r the 

 

                                                

R&D capital productivity has been diminishing over the past 50 years, but at a declining rate. The 

marked decline in R&D productivity in the 1950s up to the mid 1960s is likely to represent a 

transitional path in R&D capital towards its steady state. R&D expenditures in the US increased from 

1.3% to 2.8 % of GDP over the period from 1953 to 1963, and subsequently fluctuated around the 

1963 level. Patent capital stock productivity has also decreased strongly in the latter part of the 19th 

century, but it appears that it has stabilised in the 20th century at the equivalent of 0.8 million USD at 

1995 constant prices per patent.8  

 

C

the long run, which implies earnings per unit of capital have not been increasing over the past 

century.9 Coupled with the fact that labour productivities have been growing at a steady rate of 2-3% 

in the G11 countries over the past 130 years, this result underlines the point made above, namely that 

growth in labour productivity is a misleading proxy for growth in earnings per unit of capital. This is 

particularly true over the past two decades where the returns to R&D effort and patenting have also 

been declining. 

 

It

around 1870, are quite instructive for projecting the earnings effects of the ICT revolution.10 The

great inventions in the latter part of the 19th century such as the invention of electricity and the 

internal combustion machine, led in fact to declining and not increasing tangible and patent cap

productivities as seen from Figure 1. A strong reduction in patent capital stock productivity can 

particularly be identified over the period from 1885 to 1913, which suggests diminishing returns 

the patent capital stock. Thereafter patent capital stock and tangible capital stock productivities 

stabilised at a constant mean up to 1960, which covers a period in which the great inventions 

diffused (Gordon, 2000, Perez, 2002). The decrease in tangible capital stock productivities ove

period from 1885 to 1913 is associated with a strong increase in the tangible and patent capital stock

 
8 One potential problem associated with the use of patenting capital stock productivities for long run analysis is that the 
real value of patents may have changed over time. However, there is no clear evidence that this has occurred (see 
Griliches, 1994). 
9 Earlier data suggest that the patent capital stock and tangible capital stock productivities for the UK and the US were 
declining before 1870. Very little data are available for other countries before 1870. 
10 The exact dating of the Second Industrial Revolution differs among economists. Greenwood and Jovanovic (1999), for 
instance, date it to the period from 1890 to 1930, whereas Perez (2002) refers to the period after 1875 as the Third 
Industrial Revolution. 
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over the same period, and at least some of the tangible stock capital accumulation was associated 

with the high inventive activity in that period. Tangible capital accumulation is often associated w

technological advances or embodied technological progress as shown by Hulten (1975) and 

advocated by Gordon (2003). Accordingly, the capital accumulation process during the Seco

Industrial Revolution was associated with declining tangible capital productivity and, therefore, 

diminishing returns to capital. 

 

ith 

nd 

he lessons from the Second Industrial Revolution suggest that the declining capital productivities 

t 

art 

 

.3 The New Economy, share prices and intangibles 

 number of economists have argued that the rising share prices in the 1990s in the OECD countries 

ed a 

 

all (2000, 2001a) defines intangibles as technical and organizational know-how that have been 

ot 

 

T

which are identified in Figure 1 over the past two decades, may well continue into the near future bu

at a declining rate as the diffusion process advances. The diffusion process is likely to be shorter than 

the experience from the first two industrial revolutions. Gordon (2000), for instance, argues that the 

reorganisation and the development of new systems as a consequence of the New Economy have 

been substantially easier than the implementation of the innovations which occurred in the latter p

of the 19th century. Almost all workplaces have computers today, whereas for example it took several 

decades to switch factories from centralised steam-driven power to decentralised electro motors in 

the last century. Hence, the delayed benefits of the New Economy may not be as large as thought by

many investors. 

 

2

 

A

reflected increasing values of intangibles that have been created as a by-product of investment in ICT 

products, R&D, advertisement, and new brand names. Hall (2000, 2001a) and McGrattan and 

Prescott (2001) estimated the value of intangibles indirectly, whereas Nakamura (2001) provid

direct measure of the value of intangibles. A key question is whether these estimates can justify the 

value of shares in 2000 and at the end of 2003, and hence the expectations of higher earnings growth

which has been induced by the ICT revolution. 

 

H

created by graduates using computers and software and names it e-capital. Since intangibles cann

be measured using this definition, Hall (2000) estimated the value of intangibles by subtracting the 

value of physical stock from the value of the stock market and found the value of e-capital to exceed
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the value of tangible capital stock for US corporations in 1999.11 However, for Hall’s measure of 

intangible to be correct, share prices should reflect earnings expectations in an efficient share market. 

Basing the fundamental value of shares on analysts’ earnings forecasts, Bond and Cummins (2000) 

found that share prices increased substantially more than their value based on analysts earning 

forecasts during the 1990s. This suggests analysts’ estimates of intangibles to be well below market’s 

estimates but in line with managers’ expectations since the estimates of Bond and Cummins (2000) 

also show a strong relationship between investment and the value of shares based on analysts earning 

forecasts. Coupled with the finding that Tobin’s q does not provide incremental information on the 

investment function when analysts’ earnings expectations are allowed for in their regression analysis, 

these results suggest that analysts and managers believed in a much lower increase in the value of 

intangibles during the 1990s than the share market. 

 

McGrattan and Prescott (2001) estimate the value of intangibles in the US corporate sector to be 80% 

of the value of their tangible capital stock over the period from 1987 to 2000, which is up from 40% 

over the period from 1955 to 1962. Their method is based on the equilibrium conditions that equate 

the after-tax returns for all assets, that is, the after-tax profits per unit of intangible and tangible 

capital stock in the corporate sector equals profits per unit of tangible capital stock in the non-

corporate sector (including imputed services to consumer durables and government capital). Thus, 

their method rests on the highly restrictive assumptions that the equity risk premium is the same in 

the two sectors and that the value of intangibles is zero in the non-corporate sector. Both restrictions 

bias the estimations of intangible capital upwards and McGrattan and Prescott (2001) also admit that 

the estimates of intangible capital stock are on the high side. Similarly Hansen et al. (2004) argue 

that assumption of no intangible capital stock in the non-corporate sector is a “seemingly hard to 

defend restriction” (p 8). 

 

Based on the predictions of a standard growth model, Nakamura (2001) estimated the value of the 

intangible capital stock of US corporations to be USD 6.25 trillion in 2000, which exceeds the figure 

estimated by Hall (2000). Nakamura (2001) assumes that the steady state value of the intangible 

capital stock equals investment in intangibles divided by their depreciation rates under the 

assumption of no labour augmenting technological progress and no growth in employment. The 

following items were included in his estimates of intangible investment; 1) expenditures to R&D 

($181 bn in 2000); 2) software investment ($183 bn); 3) expenditures on advertising ($233 bn); 4) 

                                                 
11 Hall’s method has been met with strong criticism (see for instance, Cummins, 2000, and Lamont, 2000).   
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artistic expenditures ($50 bn); 5) innovative expenditures by financial corporations ($50 bn); and 6) 

items unaccounted for ($303 bn).12 Dividing this sum of $1 trillion by a depreciation rate of 16% he 

finds the steady state stock of intangibles of $6.25 trillion.  

 

The estimates of Nakamura rest on the assumptions of zero Harrod-neutral technological progress, 

zero growth in the labour force, a depreciation rate of 16%, zero adjustment cost associated with 

investment in intangibles, and the absence of externalities associated with the investment in 

intangibles. The zero-externality assumption has been questioned by Smithers and Wright (2000) and 

Gordon (2003), who argue that intangible investment that increases the value of an individual firm 

need not add to the aggregate value of firms because some of intangible investments are undertaken 

to gain market shares. Smithers and Wright (2000) argue that advertisement, for instance, is an 

intangible investment in customers by the individual firm, but, at the same time, lowers the customer 

capital of competing firms and is hence unlikely to significantly affect the aggregate value of the 

intangible capital stock. Similarly, Gordon (2000) argues that a large fraction of the ICT investment 

that has been generated by individual firms as a by-product of the New Economy has involved taking 

profits and customers away from other companies in a zero-sum game. R&D expenditures, however, 

have been found to add almost fully to the aggregate value of intangibles (Megna and Klock, 1993).  

 

Since intangibles are by their very nature immeasurable but created from expenditures on factors of 

production, the growth in expenditures on items from which they are assumed to have been 

generated, will give an indication of the potential growth in their importance. Brynjolfsson et al. 

(2002), for instance, argue that investment in computers and communication equipment lead to 

investment in unmeasured complementary intangibles such as organizational restructuring and 

business process design. Thus, the ratio of the capital stock of the factors of production that are 

assumed to generate the intangibles, and tangible capital stock will give an indication of the growth 

of the potential importance of intangible relative to tangible capital during the ICT revolution. 

                                                 
12 Two other estimates are presented by Nakamura (2001).  They are not discussed here to preserve space. 
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Figure 2. Ratio of R&D and ICT capital stock to Tangible 
Capital Stock, USA
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Notes: ICT capital stock is the sum of the stock of computer, software, and communication capital stock and tangibles is measured as 

total fixed capital stock excluding the land, consumer durable goods and inventories. See data appendix for data sources. 

 

Figure 2 presents the ratio of the combined R&D and ICT capital stock to the tangible capital stock 

for the US economy since 1953, the first year for which data on R&D expenditures are available. The 

ICT capital stock is computed as the sum of computer, software, and communication capital stock 

using the data in Jorgenson (2001).13 The ratio of the R&D and ICT capital stock to the tangible 

capital stock has increased from approximately 15% in the beginning of the 1950s to 32% in 2001. 

More importantly, the growth in the ratio in the 1990s did not exceed the growth in the 1980s and 

particularly not the growth in the 1960s. Furthermore, and not shown in the graph, the real value of 

the R&D and ICT capital stock almost doubled in the 1960s, 1980s and 1990s, and increased by 

about 50% in the 1970s. Under the assumption that the shadow price of R&D and ICT capital stocks 

are constant over time, as maintained by Cummins (2003) and Brynjolfsson et al (2002), the real 

value of intangibles should have increased by the same rate. The growth path in Figure 2 is 

incompatible with the growth path in share prices.  

 

Finally, provided that the share market run-up in the 1990s was associated with the creation of 

intangibles, intangibles should also have been produced at previous industrial revolutions and in 

Japan during the 1990s. Gordon (2003) argues that the organisational restructuring associated with 

the investment in the new capital during the Second Industrial Revolution, was much higher than the 

adjustment costs associated with the implementation of ICT products. Judging from Figure 1 the 

intangibles generated during the Second Industrial Revolution did not materialise in higher earnings 

                                                 
13 Note that computer hardware and communication equipment are also components of the tangible capital stock. 
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per unit of capital. Similarly, the Japanese share market has been declining since 1990 although R&D 

and ICT capital services, based on the figures of Colecchia and Schreyer (2002), increased 

substantially more than in the US in both absolute values and relative to tangible capital stock. 

 

For the US, Smithers and Wright (2000) find that Tobin’s q based on tangibles has tended towards a 

constant mean over the past century. If previous clusters of innovations have been associated with 

significant investment in intangibles, then their estimates of Tobin’s q would have decreased over 

time because they have omitted intangibles in the denominator. However, this has not been the case, 

which suggests that creation of intangibles cannot have been a significant part of past technology 

revolutions. The possibility that more intangibles have been created during the ICT revolution than 

previous industrial revolutions cannot be excluded. However, very little, if any, evidence to support 

this hypothesis has been produced thus far. 

 

In summary, the evidence in this sub-section points towards several ambiguities that have been 

associated with the estimated value of intangibles. If the share market run-up in the 1990s should be 

justified by the growth in intangibles, we should have observed time-series and cross section 

evidence that was consistent with a positive relationship between share prices and various proxies of 

intangibles. Thus far, very little evidence on this account has been produced. 

 

3 A model of equity prices and innovations  

 

This section establishes a model to explain the main results in the previous section, namely that the 

capital productivities that drive returns to capital have not increased over the past 130 years and that 

previous technology epochs appear not to have had long term effects on earnings per unit of capital. 

Under plausible assumptions, the model in this section suggests that technological innovations have 

only temporary effects on real dividends and equity prices. The model allows for a two-way 

relationship between the equity return and the capital stock. The capital stock influences the returns 

to capital and therefore equity prices, whereas the real equity price determines the desired capital 

stock. Both exogenous and endogenous discount factors are considered. The model is based on the 

analytical framework developed by Abel (1982), Abel and Blanchard (1983), Hayashi (1982), Kiley 

(2000), Romer (2001), and Summers (1981), and allows for productivity-enhancing technological 

innovations in the investment-good producing sector. 

 

3.1 Exogenous discount rate 
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The ICT revolution has two effects on real corporate cash flow. First, the real price of computers and 

ICT equipment decreases relative to economy-wide output prices and this hence enhances profits for 

any positive level of investment, because the effective acquisition price of fixed capital has declined. 

Relative prices of computers, for instance, have fallen substantially over the past two decades. 

Similar price developments have been observed in previous technological revolutions (see for 

instance Jovanovic and Rousseau, 2003). This will be referred to as embodied technological 

progress. Second, the ICT revolution increases the marginal productivity of the existing capital stock 

due to positive spill-over effects of the technological innovations. These spill-over effects may affect 

the output of firms that have undertaken the investment in computers and ICT technology, as well as 

that of firms that have undertaken certain investment projects in the past, such as establishment of 

internet connections, and firms purchasing intermediate inputs that contain new technologies. The 

latter mechanism has been stressed by the endogenous growth model of Grossman and Helpman 

(1991), and has been validated empirically by several papers following the seminal paper of Coe and 

Helpman (1995). 

 

Incorporating spill-over into the profit function of the representative firm, we arrive at the following 

equation for total real profits: 

 
 , (3) ( , , , , ) ( ) ( )T I H R I T H H R R T I

t t t t t t t t t t t t tF K K L L I I w L w L C I C IθΠ = − − − − − − t

H

 
where KT and KI are capital stock of tangibles and intangibles, respectively, IT and II are investment 

in tangibles and intangibles, respectively, C is the adjustment cost of investment, which, for notional 

simplicity, is assumed to be the same for tangibles and intangibles, θ is the spill-over effect from 

investment in intangibles and is assumed neutral, wR is the real product wage of R&D workers, wH is 

the real product wage of non-R&D workers, LH is the employment of non-R&D workers, and LR is 

the employment of R&D workers. Full employment is assumed to prevail so that RL L L= + . Spill-

over effects are assumed to enhance profits per unit of capital, /MPK 0θ∂ ∂ > , where MPK is the 

marginal productivity of capital. Taxes are assumed absent and the interest rate is assumed to be 

fixed and determined from abroad.14 The assumption of a fixed discount factor is relaxed below. 

R&D workers are defined broadly to encompass workers that are involved in R&D, implementation 

and usage of ICT products, and other activities that relate to investment in intangibles. 

 

                                                 
14 The effects of taxes on share prices are analysed in Summers (1981) and McGrattan and Prescott (2003). 
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The optimisation problem of the firm is to maximize its present value: 

 

0
max ( , , , , )rt T I R R T I

t t t t t t t tt
V e F K K L L L I I− − ( ) ( ) ( )H R R R T I

t t t t t t tw L L w L C I C I dt⎤− − − − − ⎦θ
∞ −

=
⎡= −⎣∫

T
t

 (4) 

st. 
 ,          (5) /T T T T

t t tK I Kφ δ= −&

/I I I I
t t tK I Kφ δ= −& I

t ,          (6) 
 

where r is the real interest rate or the real required returns to equity, Tδ  is the depreciation rate for 

the tangible capital stock, Iδ  is the depreciation rate for the intangible capital stock, Iφ  and Tφ  are 

real prices of investment in intangibles and tangibles, respectively, , where P/T T
t t tP Pφ = O T is the 

price of investment in tangibles and PO reflects output prices, /I I
t t tP Pφ = O , while PI is the price of 

R&D equipment, or, more generally, intangibles, and a dot over a variable signifies the time-

derivative. 

 

Embodied technological progress is represented by the ( , )I Tφ φ -terms that reflect the current state of 

the technology for producing tangible and intangible investment goods (Greenwood et al, 1997). The 

terms determine the amount of computers, machinery, software, information technology equipment, 

and communication equipment that can be purchased for one unit of output. They thus play an 

important role in capturing effects of technological revolutions that are usually characterised by 

reductions in prices of investment goods (Perez, 2002, Gordon, 2003, Jovanovic and Rousseau, 

2003). Using hedonic pricing, Jorgenson (2001) shows that the real prices of computers and other 

ICT equipment have decreased substantially over the past few decades.  

 

The firm’s adjustment cost functions are assumed to have the usual convexity properties, but the 

interpretation of adjustment costs is broader than the conventional interpretation whereby adjustment 

costs consist of temporary production cut backs, waiting time and installation costs. We follow the 

interpretation of Cummins (2003) and Brynjolfsson et al. (2002) whereby the adjustment costs 

associated with computer investment, for instance, include unmeasured intangibles such as training 

costs, costs associated with restructuring of the organisation, business process redesign and 

reallocation of decision rights. Based on the method of Wildasin (1984), Brynjolfsson et al. (2002) 

find that the value of intangibles that have been created jointly with investment in computers in the 

US to be most likely higher than the computer expenditures. Basing the value of firms on analysts’ 
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earnings expectations, Cummins (2003) obtained somewhat lower estimates but still found that 

investment in ICT hardware has created intangibles.15

 

The current-value Hamiltonian is given by: 

 

  ( , , , , ) ( ) ( ) ( )T I R R T I H R R R T I
t t t t t t t t t t t t t t tJ F K K L L L I I w L L w L C I C Iθ= − − − − − − − −

⎤⎦
&

                                                

 
      (7) / /T T T T T T I I I I I I

t t t t t t t t t tq I K K q I K Kφ δ φ δ⎡ ⎤ ⎡+ − − + − −⎣ ⎦ ⎣
&

 

where  is the shadow price for the constraint given by Equation (5), and  is the shadow price 

for the constraint given by Equation (6).  

Tq Iq

 

The shadow prices of tangibles and intangibles are allowed to differ. This means that each dollar 

invested in tangibles and intangibles increases the value of the firm by qT and qI dollars, respectively. 

The question is whether the shadow prices of tangibles and intangibles differ in practice. Supposing 

that ICT capital is complementary with unmeasured intangible assets such as organizational capital 

and other intangibles, the investment in ICT capital would increase the value of the firm by the value 

of the investment plus the increase in the value of organizational capital and business processes. In 

other words, by investing in another unit of ICT capital the firm can make better use of its 

organizational resources and the value of the firm will consequently increase more then the cost of 

the ICT investment. While shadow prices of different investment objects may differ in the short run 

they will not differ in perfectly competitive steady state equilibria because market forces will bring 

the value of various investments into equality. 

 

The firm’s adjustment cost functions are assumed to have the usual convexity properties, but the 

interpretation of adjustment costs is broader than the conventional interpretation where adjustment 

costs consist of temporary production cut backs, waiting time and installation costs. We follow the 

interpretation of Cummins (2003) and Brynjolfsson et al (2002) where the adjustment costs 

associated with computer investment, for instance, include unmeasured intangibles such as training 

costs, costs associated with restructuring of the organisation, business process redesign and 

reallocation of decision rights. Based on the method of Wildasin (1984), Brynjolfsson et al (2002) 

 
15 One serious problem associated with these studies based on firm data is that it is implicitly assumed that the firm 
effects equal the general equilibrium effects and, therefore, that share prices of individual firms reflect feedback effects 
from other companies on profits. We would, therefore, expect aggregate estimates to be lower. 
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estimate the intangibles that have been created jointly with investment in computers in the US are 

likely to be higher than the computer expenditures. Basing the value of firms on analysts’ earnings 

expectations, Cummins (2003) obtained somewhat lower estimates but still found that investment in 

ICT hardware has created intangibles.16

 

Under the assumption of perfect competition in the goods market, equation (5) yields the first order 

conditions for optimality as follows: 

 
'( )T T T

t t tC I qφ φ+ = T
t ,  '( )I I I I

t t tC I qφ φ t+ = ,      (8) 

( )T T T
T t tMPK r q qδ= + − & ,  ( )I I I

I t tMPK r q qδ= + − & ,    (9) 

 ,   lim 0rt T T
t tt

e q K−

→∞
= lim 0rt I I

t tt
e q K−

→∞
= , 

 
where '

TT K
MPK F=  and '

II K
MPK F= . Equation (8) is the investment function that links investment 

to the real shadow price of new capital goods. In equilibrium, the shadow price of additions to the 

capital stock equals the marginal cost of investment on the left hand side. Since the adjustment 

function is convex there is a positive relationship between investment and real share prices modified 

by relative prices of investment goods. Shadow prices of new capital goods and the real value of 

equity only differ to the extent that relative prices of investment goods differ from the numeraire of 

one. 

 

Equations (8) and (9) yield the following the simultaneous first-order differential equation system: 

 
 ( )/T T TK h q φ=& 1−

)

         (10) 

( ) ( ,T T T T
Tq q r MPK Kδ θ= ⋅ + −& ,       (11) 

          (12) ( / 1I I IK g q φ=& )−

)( ) ( ,I I I I
Iq q r MPK Kδ θ= ⋅ + −& ,       (13) 

 
where , , , ' ', 0h g > ' ', 0T IK K

MPK MPK < ' 0MPKθ >
'

TT K
MPK F=  and '

II K
MPK F= . Equations (10) 

and (12) are the investment functions and show the dynamic adjustment of capital stock to 

                                                 
16 One problem associated with these studies based on firm data is that it is implicitly assumed that the firm effects equal 
the general equilibrium effects and, therefore, that share prices of individual firms reflect feedback effects from other 
companies on profits.  
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innovations in q and φ . Equations (11) and (13) show the dynamic adjustment of equity prices to 

innovations in the required return to equity and spill-over effects from innovations. 

 

The long-run effects of technology innovations on share prices can be derived from the steady-state 

multipliers, which are given as follows: 

 

 0
T Idq dq

d dθ θ
= =           (14) 

1
T I

T I

dq dq
d dφ φ

= = ,         (15) 

 
The results given by (14) show that technological innovations, which are not embodied in new 

capital, do not have long-term effects on share prices. The results given by (15) show that the value 

of shares in the steady state is a declining function of embodied technological progress that lowers 

φ , regardless of whether the companies predominantly employ intangible or tangible capital. This 

result applies only for incumbents who do not benefit from the investment at a lower price. 

Companies that take advantage of the more advanced or cheaper equipment do not experience a 

reduction in profits per unit of capital and hence lower share prices, because the lower acquisition 

costs have counterbalanced the lower sales prices. The results that embodied technological progress 

lowers share prices of incumbents is consistent with the finding of Hobijn and Jovanovic (2001) and 

Greenwood and Jovanovic (1999) that new capital destroys old capital, and only firms that do not 

implement the new technology experience a reduction in their share prices. 

 

The following results furthermore suggest that long-term spill-over effects of embodied 

technological progress between tangibles and intangibles are absent: 

 

 0
T I

I T

dK dK
d dφ φ

= = , 0
I T

T I

dq dq
d dφ φ

= = .      (16) 

 
Finally, any technological innovation increases the steady state intangible or tangible capital stock:  
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These results are consistent with the fact that the ICT revolution has been associated with strong 

increases in investment, particularly investment in ICT equipment. The recent decline in the growth 

in ICT investment in the OECD countries (OECD, 2003) suggests that the pace of ICT-induced 

technological progress is declining. 

 

Turning to the dynamic effects of technology shocks on share prices and the capital stock, the system 

(10)-(13) can be decomposed into two independent equation systems, that is, equations (10) and (11) 

can be treated separately from Equations (12) and (13). Since the results are the same we need not 

distinguish between tangibles and intangibles in the phase diagram exposition. Figure 3 shows the 

dynamics of the capital stock and equity values. The 0=q&  curve is negatively sloped because the 

marginal productivity of capital is a decreasing function of capital stock. The EE-line defines a stable 

manifold and the UU-line defines an explosive path. The explosive path is ruled out by the 

transversality condition. 

 
Figure 3: The dynamics of share prices and investment 
 Figure 3.1     Figure 3.2 
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associated with the new technology enhance the marginal productivity of the existing capital stock.17 

The diagram shows that capital stock unambiguously increases whereas equity prices of firms that 

adopt the new technology are unaltered in the new long-run equilibrium, because the reduction in the 

relative price of capital has created a wedge between the shadow price of capital and equity prices. In 

other words, the lower acquisition price of capital stock for the firms that invest in the new capital 

counterbalances the lower shadow price of capital. Incumbents that do not adapt the new technology, 

however, will experience a fall in their share prices because share prices will follow share prices of 

companies that adapt the new technology.  

 
The dynamic path of the system following an unanticipated technology shock is as follows. On 

impact, a perfect foresight equity market jumps to the point A where it joins the stable manifold to 

capitalise on temporary higher earnings. Since Tobin’s q exceeds one, investment will be positive 

and the capital stock starts increasing. The speed of adjustment towards the new equilibrium 

depends, among other things, on the shape of the adjustment cost function. Since the return to capital 

is constant, equity owners experience a capital loss along the path from A to E1 to counterbalance the 

temporary higher return to capital. Equity prices stabilise in the new long-run equilibrium, E1. The 

increasing profit that follows from the lower cost of investment is counterbalanced by the lower 

marginal productivity of capital in the new equilibrium.  

 

For a myopic share market that values shares based on current earnings, such as Gordon’s growth 

model, share prices jump to the point D and moves along the 1 0q =&  curve towards the new steady 

state equilibrium. If the technology shock is expected we get the same steady state outcome as in the 

unanticipated case, however, the dynamics becomes different. Share prices jump from E0 to B in 

Figure 3.1 when news arrives about an anticipated technology innovation. The system then slowly 

moves towards the point C and arrives at the point C when the technology innovation emerges. 

Thereafter the system moves along the stable saddle path towards the final equilibrium at E1. 

 

Share prices need not jump on impact but may fall for both incumbents and new firms. If the 

embodiment effect is large and the spill-over effects small, then we get the dynamic path displayed in 

Figure 3.2. For the perfect foresight share market an unanticipated technology shock leads to a drop 

in share prices to the point A on impact where the economy joins the stable manifold. An anticipated 

technology shock leads to the result of Hobijn and Jovanovic (2001) and Greenwood and Jovanovic 

                                                 
17 More correctly the slope of the  curve becomes flatter by the technology shock. It is treated as a shift here for 0q =&
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(1999), where it is argued that the forthcoming ICT revolution was already anticipated in the 

beginning of the 1970s and, consequently, put downward pressure on real share prices in the 1970s.18 

In this case the share prices fall to the point B when news about the forthcoming ICT revolution 

arrives. The result that the ICT revolution has no lasting effects on share prices, however, is 

inconsistent with the hypotheses of Hobijn and Jovanovic (2001) and Greenwood and Jovanovic 

(1999). 

 

The prediction of the model that productivity innovations have only temporary effects on share 

prices is consistent with the theoretical result reached by Datta and Dixon (2002). There is, however, 

one difference between their model and the model presented here. Their model predicts that 

incumbents gains from the innovations and not the new firms. In our model share prices of 

incumbents that do not adapt the new technology suffer from the technological innovations due to a 

creative destruction process. The evidence suggests that share prices of incumbents do not rise as 

much as share prices of new and innovative firms in periods of technological acceleration 

(Greenwood and Jovanovic, 1999). 

 

3.2 Endogenous discount rate  

 

The discount rate is made endogenous in this sub-section to allow for the possible impact of 

intertemporal utility maximization by rational consumers who perceive productivity shocks. 

Intuitively, it can be argued that consumers who expect higher future income move consumption 

forward, which puts upward pressure on the discount rate. Kiley (2000), for instance, shows that 

share prices drop on impact in response to positive productivity innovations because of the adverse 

interest rate effects. In terms of the phase diagram exposition above, the interest rate effect steepens 

the  curve and it becomes ambiguous whether the productivity effect is sufficiently strong to 

flatten the  curve on impact. The analytical framework with an endogenous discount factor is 

relegated to the appendix and is based on the Abel and Blanchard (1983) framework. A simple two-

dimensional phase diagram cannot be used here. However, since this paper focuses on the long-run 

effects on share prices of the new economy it is sufficient to consider the steady-state multipliers.  

0q =&

0 0q =&

 

The change in the steady state equilibrium share price of a technology innovation is given by:  

                                                                                                                                                                    
expositional simplicity. 
18 One problem associated with their hypothesis is that there is scant evidence that a forthcoming ICT revolution was 
expected in early 1970s. 
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where h(i/k) is a convex investment adjustment cost function, h’ > 0 and h’’ > 0 and lower case 

letters signify that the variables are measured in per labour terms. These expressions show that 

embodied technological progress unambiguously lowers share prices of incumbents and that the 

effect on share prices of spill-over effects of technological innovations in the steady state is zero. 

These results are similar to the results with exogenous discount rate, which is not surprising given 

that the discount rate only affects the position of the 0=q&  curve. This in turn has no influence on 

share prices in steady state equilibrium as shown analytically in the previous sub-section. 

 

The impact effects on share prices are also derived in the appendix. It is shown that the sign of 

/dq dθ  is unambiguously positive whereas the sign of /dq dφ  is ambiguous, which are similar to 

the result in the model with the exogenous discount rate. Coupled with the results that technology 

innovations have no long-term effects on share prices it can be concluded that the principal results 

obtained from the model with an exogenous discount rate continue to hold with an endogenous 

discount rate. 

 

3.3 Implications of model for relative prices and quantities 

The model implies that the ratio of tangible and intangible capital is inversely related to their relative 

prices in steady state. Under the Cobb-Douglas technology assumption the model has the following 

steady state property: 
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where Tα  and Iα  are the output elasticities of tangible and intangible capital, respectively, and 
I T

T I

r
r
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+
Ψ = ⋅

+
 is constant under the assumption of exogenous discount factor or if the depreciation 

rates of tangibles and intangibles are the same. Under the maintained condition of constant Ψ  this 

equation implies that a shift in the relative prices is exactly offset by changes in relative capital 

stocks. In other words embodied technological progress that only affects tangibles increases the ratio 

of tangible and intangible capital stock and vice versa.  



 21

 

Given the unavailability of price series of patents and R&D expenditures it is difficult to check 

whether the path of the relative capital ratios can be explained by the path in relative prices. 

Furthermore, the deflators for investment in national accounts do not adequately take into account 

the price-reducing effects of embodied technological progress (Greenwood et al., 1997). One of the 

few attempts to construct a price index of investment in machinery and equipment based on hedonic 

pricing has been done by Robert Gordon over the period from 1949 to 1983 for the US. Hedonic 

pricing has first recently been used to construct investment deflators in national accounts in the US.  

 

Keeping the difficulties associated with the construction of price deflators for tangible and intangible 

stock in mind we now investigate whether there has been a potential shift in the steady state 

relationship between R&D capital and tangible capital, as predicted by the model, over the past 45 

years for the US. Consider the following two ratios: 
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where WR&D is hourly labour costs of R&D workers and prR&D is productivity of R&D workers, 

which we measure as economy-wide real output divided by employed R&D workers multiplied by 

average annual hours worked for the whole workforce. Data are not readily available for other 

countries than the US. The price deflator for R&D stock implicit in the numerator for X is derived 

under the assumption of Cobb-Douglass technology and that firms set prices as a constant mark-up 

over marginal cost.  

 

Figure 4 displays X and Y over time. The figure suggests that both X and Y, since the mid 1960s, 

have fluctuated about a constant level, which are consistent with the predictions of the model. The 

initial increase in the ratio of R&D and tangible capital stock is likely to reflect a convergence in 

R&D capital stock towards its steady state as discussed in Section 2. The excess demand for R&D 

workers in the late 1950s and the beginning of the 1960 may have been contributing to the initial 

increase in the price of R&D relative to prices of intangibles. 
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Figure 4. Relative R&D Prices and Capital
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The figure shows the path in the ratio between R&D Stock and total tangible capital stock and the 
ratio between R&D prices and prices of investment goods in total for the US. The price of R&D is 
computed as the cost per scientist and engineer deflated by R&D productivity, which is measured as 
economy-wide GDP divided by R&D employment multiplied by annual average hours worked for 
the total labour force. Data sources: Historical Statistics of the United States, Statistical Abstract of 
the United States, and National Science Foundation. 
 

4 Empirical results  

 

The implications of the model outlined above are tested in this section. Patent applications and R&D 

expenditures are used to measure the innovative activity as discussed in Section 2. The Cobb-

Douglas technology assumption is adopted throughout the empirical section so that capital 

productivities, Y/K, vary proportionally with the marginal productivity of the capital stock, 

(1 ) /Y Kα− ⋅ . Key aspects of the model in Section 3 are (1) that capital productivity shocks are only 

temporary and therefore have only temporary effects on equity prices; and (2) productivity shocks 

lead to higher tangible and intangible capital stocks in the long run, which drive capital productivity 

back to its base level. These allow us to derive the following testable hypotheses: 

 

Hypothesis 1. Share markets predict intangible and tangible capital productivity. This follows from 

the fact that share markets react instantaneously to news of innovations, which owing to adjustment 

costs are only embodied later in capital.  

 

Hypothesis 2. The response of intangible and tangible capital productivity to share prices is 

temporary and soon reversed, consistent with the dynamic path in share prices analysed in the phase 

diagrams in the previous section. 
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Our main focus is on R&D and patent capital, although we also present results relevant for assessing 

these hypotheses for tangible capital. The consistency of results across different measures of capital 

is an important robustness check for our results. The hypotheses are tested using a combination of 

Granger causality, VAR and panel estimation methodologies. A preliminary to estimation is testing 

for unit roots, since variables entering a Granger Causality or VAR system should normally be 

stationary. 

 

The results of Dickey-Fuller tests for the period 1965-99 over which we have data for R&D capital 

are shown in Table 1. They indicate that the second difference of the log of prices and the first 

difference of the log of productivity and of the log of real share prices are stationary. Real long term 

interest rates and the dividend yield are borderline stationary. Share market volatility (the standard 

deviation of monthly share price changes, deflated by the CPI) and real equity returns are 

consistently stationary in levels19. The deviation of GDP from a Hodrick-Prescott (HP) filter, 

justification for which is discussed below, is also stationary in levels by construction. 

 

Whereas most of these results are as expected, note that real long term interest rates and dividend 

yields would generally be expected to be stationary in levels and the price level stationary in 

differences. The short sample may explain why these results are not obtained – we choose to retain 

the conventional variables – i.e. the level of the real long rate and dividend yields (where used) and 

the first difference of the log CPI - on the basis that the fact that these variables are difference 

stationary implies stationarity in variance. This is consistent with them being I(0) about a trend or 

drifting I(0) variables, which can still be bounded over a longer-term sample (as shown by long-

sample unit root tests reported in Davis and Madsen (2001)). 

 
 
Table 1: ADF Unit root tests (1965-99, annual data) 
 
 US DE CA UK FR IT JP DK AU NE SE Panel 
                                                 
19 In Section 4.3 we use the I(1) counterpart of real equity returns, which is the the real accumulated  share index 
(dividends reinvested). 
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RLR -2.6 -2.3 -1.6 -2.4 -1.3 -2.1 -2.6 -1.9 -1.4 -1.9 -1.7 -2.0 
∆RLR -4.6 -4.5 -4.2 -5.3 -4.0 -5.1 -6.4 -5.5 -5.5 -5.5 -6.1 -5.2 
VOL -5.2 -3.2 -4.1 -3.3 -3.1 -4.0 -2.7 -3.7 -3.9 -4.8 -3.5 -3.8 
EQR -4.5 -5.0 -5.6 -6.2 -5.1 -4.3 -5.2 -4.7 -5.8 -4.2 -3.9 -5.0 
∆LRSP -4.4 -5.2 -5.2 -4.9 -4.2 -4.2 -5.0 -4.7 -4.9 -4.1 -4.1 -4.6 
LYD -4.6 -4.0 -3.6 -3.8 -3.4 -4.7 -3.1 -4.1 -3.3 -3.0 -4.2 -3.8 
∆LCPI -2.6 -2.6 -1.8 -2.0 -1.4 -1.5 -2.0 -1.3 -1.4 -1.7 -1.5 -1.8 
∆∆LCPI -5.0 -3.5 -4.3 -4.8 -3.6 -4.2 -6.1 -5.3 -5.0 -4.6 -5.5 -4.7 
∆LRDKP -4.2 -1.5 -2.5 -4.1 -2.0 -1.9 -3.5 -2.4 -3.0 -2.8 -2.8 -2.8 
∆LTKP -5.3 -4.2 -4.0 -3.9 -3.8 -5.2 -3.7 -2.8 -4.1 -5.0 -5.4 -4.3 
∆LTFPRD -3.7 -3.8 -3.3 -4.0 -2.0 -5.3 -2.7 -5.9 -4.4 -2.6 -3.2 -3.7 
∆LPATKP -4.2 -3.1 -2.8 -4.3 -1.7 -1.9 -3.5 -0.8 -3.2 -1.9 -2.1 -2.7 
DY -1.0 -1.8 -1.2 -3.6 -1.9 -2.7 -2.3 -2.9 -1.9 -2.6 -1.8 -2.2 
Key: RLR = real long interest rate, EQR = real total return on equity, CPI = consumer price index, 
VOL = real share price volatility, TFPRD = total factor productivity including R&D, TKP = tangible 
capital productivity, RDKP = R&D capital productivity, PATKP=patent capital productivity, YD = 
deviation of GDP growth from the Hodrick-Prescott filter, DY=dividend yield, KP=tangible capital 
productivity. A ∆ before the variable name indicates first difference, an L stands for log. 
Approximate critical values 10%: -2.6; 5%: -2.9; 1%: -3.6. Country code: DE = Germany, CA = 
Canada, FR = France, IT = Italy, JP = Japan, DK = Denmark, AU = Australia, NE = the Netherlands, 
and SE = Sweden. Panel: panel unit root following method of Im, Pesaran and Shin (1995). 
 

4.1 Granger causality tests 

 

For testing of Hypothesis 1, we initially undertook Granger causality tests on the relationship 

between the real return on equity and the marginal productivity of R&D and patent capital. Real 

returns to equity were computed as the proportional change in the real share index less inflation plus 

the dividend-price ratio. The Granger causality test assesses whether there is a consistent pattern of 

shifts in one variable preceding the other. Such tests do not give any proof on causality, but 

nevertheless where causal mechanisms based e.g. on expectations can be suggested, as outlined 

above, then a positive result gives grounds for further investigation.  

 

Granger causality can only be a starting point in empirical investigation. Notably, there are a number 

of additional influences on real equity prices, so a multivariate regression approach needs to be 

adopted before reaching any conclusions. On the other hand VAR analysis as undertaken below has 

some disadvantages, such as the problem of recursive ordering etc., that are not present in the 

Granger analysis and it is therefore an invaluable complement to the VAR analysis. 

 

Following appropriate tests of lag length, tests were undertaken with two lags and data from 1965 to 

1999, with the log of productivity differenced to ensure stationarity. As shown in the first two 



 25

columns of Table 2 below, the broad conclusion is that we can reject the hypothesis that the equity 

return does not Granger-cause R&D productivity growth, for the vast majority of countries. On the 

other hand, realised R&D productivity growth does not precede equity returns. This is wholly in line 

with our theory as set out in the phase diagram (Figure 3). News of a technical innovation that 

increases the productivity of R&D capital gives rise to higher equity returns, which stimulate actual 

increases in R&D productivity via investment. This is consistent with the forward-looking nature of 

equity markets. 

 

A similar test for patent capital productivity returned very similar results, as shown in the last two 

columns of Table 2, suggesting that equity returns also anticipate the outcome of R&D investment in 

terms of patents. All countries showed Granger causality from equity returns to patent capital 

productivity, while only Australia, Germany and the Netherlands showed a two-way Granger 

causation. 

 
Table 2: Granger causality tests for equity returns and R&D and patent capital productivity 
growth (F-test and P-value) 1965-99. 
 Equity return does 

not Granger cause 
∆LRDKP 

∆LRDKP does not 
Granger cause 
equity return 

Equity return 
does not 
Granger cause 
∆LPATKP 

∆LPATKP 
does not 
Granger cause 
equity return 

Australia 4.3 (0.02)** 0.82 (0.45) 3.7 (0.04)* 2.7 (0.09)* 
Canada 6.6 (0.0)** 0.53 (0.6) 5.7 (0.01)** 0.3 (0.7) 
Germany 4.8 (0.02)** 1.0 (0.4) 3.7 (0.04)** 4.7 (0.02)** 
Denmark 3.0 (0.06)* 0.3 (0.7) 3.0 (0.06)* 1.2 (0.3) 
France 2.1 (0.14) 0.3 (0.73) 3.1 (0.06)* 0.78 (0.46) 
Italy 0.7 (0.5) 1.3 (0.3) 2.9 (0.07)* 0.01 (0.9) 
Japan 5.2 (0.01)** 1.8 (0.19) 5.5 (0.01)** 1.8 (0.18) 
Netherlands 8.2 (0.0)** 2.9 (0.07) 6.6 (0.0)** 9.2 (0.0)** 
Sweden 4.7 (0.01)** 0.7 (0.52) 3.7 (0.04)** 1.4 (0.25) 
UK 3.4 (0.05)** 1.4 (0.27) 2.8 (0.08)* 1.4 (0.27) 
US 9.2 (0.0)** 0.5 (0.6) 7.8 (0.0)** 1.0 (0.4) 
Key: See Table 1. ** indicates rejection of the hypothesis at 5% and * at 10% level. 

 

A potential criticism of such results is that the Granger causality could simply be from equity returns 

to GDP growth which is a component of these measured productivity growth figures. This would be 

consistent with the leading indictor property of share prices which is often detected in empirical 

work. But as shown in Table 3 there is no Granger-causality relation between equity returns and 

labour productivity growth, over the same data period, which is inconsistent with this suggestion. 

The only case where Granger causality is accepted is for an inverse relation in Germany and the 
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Netherlands. This set of results also lends support to the hypothesis that it is not labour productivity 

that drives equity returns, contrary to the suggestions of some of the works cited in Sections 1 and 2. 

 

Table 3: Granger causality tests for equity returns and labour productivity (F-test and P-
value) 1965-99 
 Equity return does not Granger 

cause ∆LLP 
∆LLP does not Granger cause 
equity return 

Australia 0.02 (0.98) 1.8 (0.19) 
Canada 2.2 (0.12) 0.14 (0.87) 
Germany 0.9 (0.4) 3.6 (0.04)** 
Denmark 0.34 (0.7) 2.1 (0.15) 
France 0.66 (0.52) 0.42 (0.66) 
Italy 1.7 (0.2) 0.56 (0.58) 
Japan 0.66 (0.52) 0.76 (0.47) 
Netherlands 2.3 (0.12) 5.6 (0.0)** 
Sweden 2.0 (0.14) 1.0 (0.37) 
UK 1.5 (0.22) 0.4 (0.7) 
US 1.1 (0.35) 0.09 (0.91) 
Key: See Table 1, ∆LLP is difference of log of labour productivity. ** indicates rejection of the 
hypothesis at 5% and * at 10% level. 
 

To compare and contrast with the results for patent and R&D productivity, we present a similar set of 

estimates featuring tangible capital productivity and the same additional variables. In this case we 

test the corresponding hypotheses to those set out above as drawn from Section 3. As was the case 

for R&D and patent capital productivity, the results for Granger causality in Table 4 are unequivocal 

in suggesting that equity returns Granger-cause capital productivity growth but the opposite is not the 

case. Only in Denmark and Italy are conventional significance levels not attained, and even there the 

result is far closer to rejection of the null than for a causal role for capital productivity. 
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Table 4: Granger causality tests for equity returns and tangible capital productivity growth (F-
test and P-value) 1965-99 
 EQR does not Granger cause 

∆LKP 
∆LKP does not Granger cause 
EQR 

Australia 3.39 (0.047)** 1.88 (0.17) 
Canada 5.61 (0.0089)** 0.32 (0.73) 
Germany 7.62 (0.002)** 0.01 (0.91) 
Denmark 2.05 (0.15) 0.47 (0.63) 
France 2.81 (0.08)* 0.63 (0.54) 
Italy 1.69 (0.2) 0.44 (0.65) 
Japan 4.03 (0.03)** 1.18 (0.32) 
Netherlands 12.8 (0.0001)** 0.43 (0.66) 
Sweden 9.49 (0.0006)** 0.70 (0.50) 
UK 4.16 (0.03)** 1.19 (0.32) 
US 9.06 (0.0008)** 0.65 (0.53) 
** indicates rejection of the hypothesis at 5% and * at 10% level.  

 

4.2 VAR estimates 

 

To cast further light on Hypothesis 1 and also to address Hypothesis 2 we proceeded to wider 

estimation using multiple variables. The aim is to provide some quantitative estimates of the 

relationship between R&D or patent capital productivity growth and equity returns in the presence of 

related variables determining this nexus. This enables us to assess inter alia whether Granger 

causality results from omitted variables. 

 

There is a voluminous literature on the determination of equity returns and their predictability which 

provides relevant background to our choice of variables. A helpful starting point for considering 

equity price determination is in terms of the Gordon valuation model, as employed recently for 

example by Harasy and Roulet (2000), Jagannathan et al (2001) and Nasseh and Strauss (2003). This 

highlights expected dividend growth, g, as well as real long term interest rates, rr, and the risk 

premium, pr, as key determinants of share valuations, V: 

 

Vo = (D0(1+g) + Pt+1)/(1+(rrt+1+prt+1))       (20) 

Vo = Dt+1/(1+ (rrt+1+prt+1)) + Dt+2/(1+(rrt+2+prt+2))2 + Dt+3/(1+(rrt+3+prt+3))3   (21) 

Vo = Dt+1/((rr + pr) – g)         (22) 

 

Equation (20) shows that the value of a share depends on the dividend and the future price. The 

latter, as shown in equation (21) depends on future dividends suitably discounted. As shown in 
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equation (22), if dividend growth, the interest rate and the risk premium are expected to be constant, 

a series of discounted dividends can be simplified to an expression in dividend growth, the real 

interest rate, the risk premium and the level of dividends20. Equation (22) also follows from the 

theoretical framework in the previous section. 

 

Equations (20) to (22) highlight that the real bond rate, expected dividends, and the equity risk 

premium are key determinants of share prices and will be included in the estimated models in this 

section. However, in contrast to the traditional valuation models based on the Gordon approach, it 

can be shown in the general equilibrium approach, as used in the previous section, that changes in 

these variables have only temporary effects on share prices.  

 

We include capital productivity growth as a proxy for expected dividend growth.21 Meanwhile, real 

share price volatility will be employed as a proxy for investor uncertainty and the risk premium. In 

addition to the variables highlighted in the Gordon framework, measures of inflation are commonly 

considered to affect real equity returns. As noted by Fama (1981), expected inflation may be 

negatively correlated with shocks to future economic growth and thus affect share prices. 

Furthermore, finance theory suggests that in markets with risk averse agents, stock returns would 

vary with the state of the business cycle (Balvers et al, 1990). 

 

The dividend yield is often thought to be a proxy for time variation in expected returns, see for 

example Campbell et al (1997). In this context, there is a very large literature which seeks to assess 

the forecasting power of the dividend yield over equity returns. Work by Fama (1990) and Schwert 

(1990) suggested that there was a strong and stable predictive power to the dividend yield, implying 

it should be included in regressions including the equity return (see also Campbell and Shiller, 1989, 

Fama and French, 1988, and the survey by Cochrane, 1997). On the other hand, in an international 

study, Canova and De Nicolo (1995) showed that the dividend yield’s predictive power was limited 

to the UK and US, while more recent work by Goyal and Welch (2002) and Ang and Bekaert (2001) 

suggests that the predictive power of dividend yields in the US broke down in the 1990s. Robertson 

and Wright (2003) show that the predictability can be restored in the US by adjustments to dividends 

to include all cashflows to shareholders. Unfortunately, data are not available for such an exercise on 

                                                 
20 As noted by Harasy and Roulet (2000) the discount factor is in principle the weighted sum of future short rates, but 
following the expectations theory of the term structure it may justifiably be replaced by the long rate. 
21 Dividend growth equals the returns on new investment multiplied by the retention ratio. Assuming that the retention 
ratio is approximately constant in the estimates it will be absorbed by the coefficient of capital productivity growth. 
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a multicountry basis. In a similar vein, McDonald and Power (1995) adopt the approach of replacing 

dividends with earnings, which are found to give superior predictors. 

 

A general approach to equity return prediction is given by Pesaran and Timmermann (1995, 2000) 

who sought to simulate investors’ search in real time for a model to forecast future stock returns in 

the UK. They found that key determinants include the dividend yield, the short rate, inflation, 

monetary growth, changes in oil prices and growth in industrial production as a cyclical variable. 

 

In the context of the above discussion, and following the standard theory of equity price 

determination with Gordon’s growth model, in our VAR we add to real equity returns and the log 

difference of R&D or patent capital productivity, the real long bond yield and real equity price 

volatility as a proxy for the equity risk premium, where real bond yield is estimated as the 

redemption yield on long government bonds minus the actual rate of consumer price inflation. These 

represent the discount factors applied to projected future dividends as proxied by the measure of 

capital productivity. Finally, we added the difference between the change in the log of GDP and the 

HP filtered GDP to allow for cyclical and effects on share prices, as well as the log difference of 

consumer prices given the observed sensitivity of real equity returns to inflation. We omit the 

dividend yield from our main approach given the breakdown of its predictive power in the 1990s and 

lack of power in countries other than the US and UK. However, we test whether its inclusion changes 

our results in a variant below. 

 

A standard VAR system is the reduced form of a linear dynamic simultaneous equation model in 

which all variables are treated as endogenous. Each variable is regressed on lagged values of itself 

and on lagged values of all other variables in the information set. As noted by Canova and De Nicolo 

(1995), VARs can approximate arbitrarily well the joint unconditional distribution of variables of 

interest in the relation between stock returns and intangible capital productivity while standard OLS 

estimates cannot. To test our hypotheses we need to orthogonalise the estimated reduced form VAR 

model to identify the effect of shocks to the innovations of the variables in the VAR. The standard 

Choleski decomposition is used to identify the responses in VAR models. Identification then uses the 

Sims’s triangular ordering. A well-known problem with the Sims triangular ordering is that it is 

arbitrary, and requires a justification for the ordering chosen. The presence of common shocks and 

co-movements among the variables makes the decision on ordering a crucial one. 
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As regards the recursive ordering, following Canova and De Nicolo (1995) and Nasseh and Strauss 

(2000), exogenous shocks that are largely technology driven will first affect R&D capital 

productivity, patent capital productivity and then output via investment. Shocks which are related to 

fiscal policy will affect output but not capital productivity. Hence for both kinds of shock the logic is 

for productivity to precede output in the recursive ordering. Stock returns, in line with the present 

value model, respond according to the effect of these shocks on expected future cash flow. As 

discussed, stock prices may also respond to changes in inflation, long-term real rates and real share 

price volatility, which may all also be affected by technological factors feeding through R&D capital 

productivity and other shocks. Hence, we order the variables with R&D or patent productivity first, 

followed by the output deviation from the HP filtered trend, the change in inflation, the change in 

long rates and real equity price volatility before real equity returns themselves. Real equity returns 

are thus constrained to only feed back on the other variables with a lag. Note that this need not 

exclude a marked leading indicator property of share prices and unpredictability of returns, if the 

data suggest it. We also tested for sensitivity by reversing the ordering for the US, as reported in the 

tables, which did not substantively change the results, and for patent capital productivity for a long 

data set since 1871 for the US only. 

 

We began with tests for lag length, using the sequential modified LR test statistic, the final prediction 

error, the Akaike information criterion, the Schwarz information criterion and the Hannan-Quinn 

information criterion. In France, the Netherlands and the US the tests were unambiguous in selecting 

two as the appropriate lag length. In all other countries all but the Schwarz criterion lead to this 

conclusion. Accordingly, we selected two lags as appropriate in all cases. 

 

Block exogeneity tests (Table 5) reveal that capital productivity measures are always endogenous to 

the VAR, while the other variables are less commonly endogenous across all the countries in our 

sample. Equity returns in particular are commonly exogenous, with the exceptions of the US (since 

1965), UK, Netherlands, Italy (R&D), Germany (patent) and Sweden (patent). Interestingly, all 

variables are endogenous for the US and UK, with the exception of volatility for the US and equity 

returns since 1871. Exogeneity to domestic variables may indicate that there is a role for foreign 

variables in the smaller countries or where equity markets are less active. This is tested in the 

variants below. 
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Table 5: Block exogeneity tests using data over the period 1965 to 1999 
 
 VAR with R and D capital productivity VAR with patent capital productivity 
Year  ∆LR-

DKP 
LYD ∆LCPI VOL RLR EQR ∆LPA-

TKP 
LYD ∆LCPI VOL RLR EQR 

Australia  *  *  *  *  *  * 
Canada      *      * 
Germany  *  *  *  *  * *  
Denmark   * * * *   * * * * 
France  * * *  *  * * * * * 
Italy  *   *    *  * * 
Japan    *  *  *  *  * 
Nether-
lands 

   * *     *   

Sweden  *    *       
UK             
US    *      *   
US since 
1871 

na na Na na na na      * 

Key: See Table 1. Exogenous at * 5% or ** 10%.  
 

The key outputs of a VAR for the purposes of our current exercise are the variance decomposition 

and impulse responses. There may be effects in the whole system that are hidden from individual 

equations. With a model of this sort, there is a large amount of output generated by this exercise: six 

equations, subject to six different shocks, give 36 solutions. Therefore, only a few key results are 

presented. Given the focus of the work on real equity returns and R&D capital or patent capital 

productivity growth, we report only the variance decomposition of real equity returns to shocks in 

the innovations to productivity growth, and of productivity growth to real equity returns, together 

with the impulse response of productivity growth to equity returns because theses are the focus 

variables of the study.  

 

For R&D capital, the variance decompositions show the degree to which the variance of the 

“independent variables” explains the forecast variance of the target variable in the VAR system. 

Table 6 shows that equity returns help explain a significant proportion of R&D productivity growth 

in Canada, Italy, Japan and the US, suggesting forward looking behaviour by equity holders in 

response to expected increases in productivity growth. The US is similar with the ordering reversed. 

The opposite result is found for Sweden and Japan. This may of course relate to the fact that Sweden 

is a small country whose markets are subject to strong international influences. Also the Japanese 

market has been severely depressed for a decade in the 1990s despite a highly innovative 

environment.  
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Results for patents are very similar to those for R&D with significant proportion of patent capital 

productivity growth explained in Canada, Japan, the Netherlands and the US, and the opposite in 

Australia, Germany and the Netherlands. For the US when we extended the sample back to 1871 we 

found a very similar result for variance decomposition, with share prices predicting patent 

productivity also over this long sample, but not vice versa. 

 
Table 6: Variance decompositions for real equity returns and R&D capital productivity growth 
(percent of forecast variance accounted for by variance in each variable) 1965-99. 
  ∆LRDKP on EQR EQR on ∆LRDKP ∆LPATKP on EQR EQR on ∆LPATKP

Years 4 4 4 4 
Australia 15 10* 20** 8 
Canada 8 20** 2 19** 
Germany 16 2 16* 3 
Denmark 22** 8 11 4 
France 5 10 7 8 
Italy 6 5 16 8 
Japan 25* 25** 14 24** 
Netherlands 17 5 19* 11** 
Sweden 13 24** 9 7 
UK 16 2 12 0 
US 3 15** 4 14* 
Memo: US with 
ordering reversed 

3 26** 3 26** 

US since 1871   3 20** 
Key: See Tables 1 and 4.** indicates rejection of the null hypothesis at 5% and * at 10% level.  

 

Turning to impulse responses, as shown in Tables 7 and 8, a remarkable result emerges for effects of 

shocks to share prices on intangible capital productivity, in that a rise in real equity returns tends to 

raise capital productivity in year 2 but then depress it markedly in succeeding years. This is 

consistent with the valuation ratio effect as highlighted in the theory section, whereby high equity 

returns in response to a technical innovation prompt increasing R&D investment and patent 

applications, which given diminishing marginal productivity of intangible capital leads to lower 

capital productivity but permanently higher capital stock. For both R&D and patent capital 

productivity, the pattern is common to all countries and is significant at least in part of the cycle in 

Australia, Canada, Denmark (R&D), Japan, the Netherlands, Sweden, the UK (R&D) and the United 

States. Note that the long period sample for the US from 1871 gives significant responses throughout 
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the five year period. In all cases the response returns to a level insignificantly different from zero in 

5-10 years. 

 

We repeated the impulse responses with the Pesaran and Shin (1998) generalised response approach. 

Technically, it constructs an orthogonal set of innovations that does not depend on the VAR 

ordering. The generalized impulse responses from an innovation to the j-th variable are derived by 

applying a variable specific Cholesky factor computed with the j-th variable at the top of the 

Cholesky ordering. This is not our preferred method as we consider that there are good economic 

reasons for the ordering we have chosen. However, the results are very similar in terms of the profile 

of the response, although the lags in years 3-5 are less commonly significant as seen from the lower 

part of Table 7. Again, the results are repeated for patent capital productivity (Table 8), with the long 

data sample for the US again having a significant response throughout. 

 
Table 7: Impulse response functions for effect of change in real equity returns on change in 
R&D capital productivity (percent responses to 1 standard deviation shocks in real equity 
returns) 1965-99 
Year  1 2 3 4 5 
Australia 0 0.0003 -0.006** 0.002 0.001 
Canada 0 0.005* -0.007 -0.006 0.002 
Germany 0 0.002 -0.002 0.000 0.003 
Denmark 0 0.004 -0.005* 0.000 0.003 
France 0 0.003 -0.003 -0.003 -0.001 
Italy 0 0.005 -0.003 -0.004 0.005 
Japan 0 0.007* -0.006* -0.009* -0.003 
Netherlands 0 0.004** -0.002 -0.003 -0.001 
Sweden 0 0.009** 0.0002 -0.008 -0.006 
UK 0 0.002 -0.0003 -0.002 -0.004** 
US 0 0.006** -0.004* -0.006* -0.001 
Unweighted average 0 0.0027 -0.0024 -0.0027 0.0002 
Memo: with Pesaran – 
Shin Generalised IR 

     

Australia 0.002 0.001 -0.01** 0.002 0.001 
Canada -0.003 0.007* -0.008 -0.006 0.002 
Germany -0.008* 0.003 -0.003 -0.003 -0.001 
Denmark 0.006 0.006 -0.01** -0.003 0.000 
France -0.002 0.004 -0.002 0.000 0.001 
Italy 0.0002 0.004 -0.002 -0.003 0.005 
Japan 0.001 0.006 -0.006 -0.008 -0.003 
Netherlands -0.005 0.01** 0.001 -0.003 -0.002 
Sweden -0.003 0.009** 0.003 -0.005 -0.005 
UK -0.002 0.005* -0.0004 -0.002 -0.0006 
US -0.002 0.007** -0.005 -0.008 0.002 
Unweighted average -0.0007 0.004 -0.0025 -0.0035 -0.00005 
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Table 8: Impulse response functions for effect of change in real equity returns on change in 
patent capital productivity with starting values (percent responses to 1 standard deviation 
shocks in real equity returns) 1965-99 
Year  1 2 3 4 5 
Australia 0 0 -0.007** -0.001 -0.001 
Canada 0 0.006** -0.008* -0.007* -0.001 
Germany 0 0.003 -0.002 -0.002 0.004 
Denmark 0 0.002 -0.012 -0.004 -0.002 
France 0 0.003 -0.003 -0.003 -0.000 
Italy 0 0.002 -0.006 -0.005 0.000 
Japan 0 0.01** -0.004 -0.01 -0.005 
Netherlands 0 0.003 -0.006* -0.008* -0.003 
Sweden 0 0.003 0.001 -0.007** -0.006** 
UK 0 0.000 -0.000 -0.001 0.003 
US 0 0.006** -0.004* -0.006* -0.002 
Unweighted average 0 0.002 -0.00371 -0.00371 -0.0007 
US from 1871 0 0.016** -0.011** -0.011** -0.007* 
Memo: with Pesaran 
Generalised IR 

     

Australia 0.002 -0.001 -0.01** -0.003 -0.002 
Canada 0.001 0.006* -0.009 -0.008 -0.001 
Germany -0.006 0.004 0.000 -0.000 0.003 
Denmark 0.009 0.008 -0.009 -0.001 0.002 
France -0.003 0.002 -0.005 -0.003 -0.000 
Italy -0.004 0.0001 -0.009 -0.009 -0.004 
Japan 0.004 0.011** -0.005 -0.009 -0.005 
Netherlands -0.007 0.001 -0.012* -0.014 -0.007 
Sweden 0.001 0.003 -0.002 -0.010** -0.009** 
UK -0.005 0.002 -0.002 -0.004 -0.003 
US -0.001 0.008** -0.005 -0.008 -0.002 
Unweighted average -0.0008 0.0024 -0.0051 -0.006 -0.002 
US from 1871 0.004 0.017** -0.013** -0.013** -0.01** 
Key: See Table 1.** significant at 5%, * significant at 10% level. 

 

We ran three variants on the VAR to test for robustness in the case of alternative regressors and the 

results are shown in Table 9. One was to include the difference of log GDP instead of its detrended 

counterpart (marked ∆LGDP instead of LYD). The second was to split the equity return into the rise 

in share prices and the dividend yield, thus allowing the latter a separate effect. The third was to 

allow for foreign influence via the foreign equity yield. The experiments were performed for the US, 

Japan and the UK and for R&D capital productivity. In all cases the pattern of the impulse response 

of productivity to share returns or share prices is the same, with an initial rise followed by a reversal. 

In most cases, at least one of the annual responses is significantly different from zero. 



 35

 

Table 9: Variants on the basic VAR – impulse responses for R&D capital productivity (1965-
99) 
Years:   2 3 4 5 

US 0.005** -0.004** -0.002 0.002 
UK 0.003 0.002 0.000 -0.003 

(1) ∆LGDP instead of LYD  
Response to equity returns 

JP 0.008** -0.003 -0.005* 0.003 
US 0.002 0.001 -0.003**  
UK 0.001 0.001 -0.002 -0.002 

(2) Split equity return 
Response to difference of log equity 
prices JP 0.001 0.000 -0.005** -0.003 

US 0.002 -0.001 -0.002 -0.001 
UK 0.002 0.000 -0.001 -0.004** 

(3) Including USEQR as exogenous 
(UKEQR for US) 
Response to equity returns JP 0.007** -0.005 -0.008** -0.005 
Key: See Table 1 
 

Following the same modelling strategy as above, Table 10 shows that the variance decomposition 

results for tangible capital productivity which suggest that equity returns explain the variance of 

capital productivity growth significantly in Canada, France, Italy, Japan, the Netherlands and the US. 

Again this is more countries than for R&D capital productivity. Only in Australia and the UK is the 

opposite the case.  

Table 10: Variance decompositions and impulse response functions for effect of change in real 
share prices on change in tangible capital productivity (percentage responses to 1 standard 
deviation shocks in real share prices) 1965-99 
 Variance 

decomposition 
(after 4 years) 

Impulse response (years) 

 ∆LKP 
on 
EQR 

EQR 
on 
∆LKP 

1 2 3 4 5 

Australia 20** 6 0 0.0006 -0.0041* 0.0025 0.0026 
Canada 5 23** 0 0.0051 -0.0099** -0.0053 0.0019 
Germany 10 2 0 0.0017 -0.0022 -0.0007 0.0033 
Denmark 6 8 0 0.0013 -0.0058** 0.0004 0.0015 
France 6 16** 0 0.0031** -0.0030* -0.0014 -0.0007 
Italy 6 14** 0 0.0043 -0.0052 -0.0039 0.0035 
Japan 16 21** 0 0.0044 -0.0082* -0.0069 -0.0010 
Netherlands 9 16** 0 0.0072** -0.0016 -0.0041 0.0007 
Sweden 9 22** 0 0.006** -0.0013 -0.0073* -0.0042 
UK 22** 1 0 0.0018 -0.0003 -0.0013 -0.0024 
US 6 20** 0 0.0045** -0.0060** -0.0051* -0.0002 
Memo: Unweighted 
average 

  0 0.0027 -0.0021 -0.0023 0.0005 

Memo: US with 
ordering reversed 

3 31** -0.1 0.0069** -0.0062* -0.0063 0.0022 
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Key: See Table 1. ** indicates rejection of the hypothesis at 5% and * at 10% level. 
 
A particularly relevant result for the model in Section 3 was again the impulse response from share 

prices to productivity, which for a number of countries shows a dynamic pattern as predicted by the 

phase diagrams, with an initial rise soon reversed, with a zero net effect. The results displayed in 

Table 10 give strong support for the predictions of the model that is outlined in Section 3, namely an 

increase in capital productivity growth following increasing share prices which is followed by a 

decline in capital productivity as the share-price-induced investment pushes capital marginal 

productivities down. 

 

4.3 Cointegration tests 

 

The VARs above by construction do not allow for a long run effect of equity returns on productivity 

growth, since we use stationary series. A simple assessment of whether there could be long run 

positive effects, as is implicit in the literature on the New Economy, is to test for cointegration 

between the underlying non stationary series, the log of the real accumulated share index (dividends 

reinvested) and the log of intangible capital productivity. A time-trend is included in the estimates to 

allow for constant required returns.  

 
Table 11: Results of trace test for cointegration of log of productivity and log of accumulated 
real share prices (trend included in cointegrating equation). 
Number of cointegrating vectors 
 1965-99 Long term data 

(from) 
 Log R&D 

Productivity 
Log Patent 
productivity 

Log Patent 
productivity 

Australia None None 2 (1885) 
Canada None None None (1918) 
Germany None 1 None (1886) 
Denmark None None 1 (1918)** 
France None None None (1874) 
Italy None None None (1904) 
Japan None None None (1917) 
Netherlands 1* None None (1923) 
Sweden 1* 1* 2 (1904) 
UK None None None (1926) 
US None 1 None (1874) 
Note: * only time trend is significant in cointegrating relationship, ** negative sign on share prices. 
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As shown in Table 11, the trace test indicates that in the vast majority of cases, there is no 

cointegration detectable between share prices and intangible capital productivity. This indicates that 

there is no long run impact of shocks to productivity on cumulated equity returns. It also means that 

the stationary VAR is the appropriate modelling methodology. In the few cases where some evidence 

of cointegration was found, we tended to find the impulse response in the corresponding vector-error 

correction model to show that consistent with the model, productivity responds negatively to a shock 

to share prices in the long term, after an initial boost. We also assessed results with a wider range of 

cointegrating variables including the log of the CPI and GDP. Although there were more cases of 

cointegration, it still accounted for less than half of the countries. 

 

A further cointegration test relevant for the model is to assess whether there is a long run relationship 

between capital productivity and real R&D expenditures and patents. This gives a view as to whether 

the trend in capital productivity is related with permanent growth in expenditures, which would be 

contrary to the predictions of the model. Again, as shown in Table 12, the majority of cases show 

either no cointegration or only the time trend as significant. These results reinforce the finding above 

that there are no long-run effects of productivity innovations on equity returns (indicating earnings 

per unit of patent or R&D capital). 

 

Table 12: Results of trace test for cointegration of log of productivity and log of patent count 
and of R and D expenditures (Trend included in cointegrating equation) 
Number of cointegrating vectors  
 1965-99 Long term data 

(from) 
 Log R&D 

Expenditures
Log Patent 
count 

Log Patent 
count 

Australia None None 1 (1878) 
Canada None None None (1918) 
Germany 2* 1 None (1886) 
Denmark None 1 1 (1918) 
France 2* None None (1921) 
Italy 2 1 None (1909) 
Japan 2 None None (1916) 
Netherlands 2 1 None (1922) 
Sweden 1* 1 1 (1904) 
UK None None 1 (1874) 
US None None None (1874) 
Note: * only time trend is significant in cointegrating relationship. 
 

4.4 Panel data estimates 
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As a further check on the model, panel data estimates are undertaken to gain efficiency by increasing 

the number of observations and by exploiting the contemporaneous correlation between the error 

terms. Furthermore, in addition to lagged variables contemporaneous regressors are included in the 

estimates in this subsection, which enables us to trace the dynamic path of share prices and capital 

productivity as predicted by the model in Section 3. Again, we are interested in testing whether the 

result of short-term causality from equity to capital productivity is maintained in this framework. The 

seemingly unrelated regression method (SUR) is used, given possible simultaneous cross-country 

effects from international shocks such as wars, technology shocks, changing exchange rate regime, 

worldwide monetary and fiscal shocks, and commodity price shocks. Moreover, the estimates are 

weighted by cross-country variances to alleviate the potential effects of cross-country 

heteroscedasticity on the parameter estimates. All of the explanatory variables considered in the 

previous sub-sections are included in the estimates. Two lags of each variable are included in the 

estimates because further lags were insignificant. Country dummies were initially included in all 

estimates, but, except in one case, deleted because they were insignificant. Consumer price inflation 

was omitted from the patent and the R&D capital productivity equations, without affecting the 

results, because it created positive serial correlation in the residuals. 

 

The model for patent capital productivity growth was estimated over the period from 1925 to 1999 

and the model for R&D capital productivity growth was estimated over 1968-99 for all 11 countries 

considered in the paper. Instruments are used for all contemporaneous variables to deal with 

simultaneity. The current value of the dividend yield is not included in the share returns equations, 

and current GDP growth is not included in the capital productivity equations because of parts in 

common with the dependent variable. The instruments are listed in the notes to Table 12.  

 

The estimation results are shown in Table 13. The diagnostic tests are based on “within” individual 

OLS residuals in order to remove the fixed country effects. The diagnostic tests do not indicate the 

presence of first-order serial correlation and the Breusch-Pagan LM tests for an off-diagonal 

covariance matrix strongly reject the null hypothesis of no cross-country correlation between the 

error terms, which suggests substantial efficiency gains from the SUR estimation method. Despite 

the potential efficiency gains from using the SUR method in the shorter period (1968-1999) the 

degrees of freedom to estimate the covariance terms are quite limited; thus potentially rendering the 

parameter estimates unreliable. However, since the SUR/IV estimates were almost identical to the 

OLS/IV method only the SUR/IV estimates are shown in the estimates below.  
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The null hypothesis of cross-country coefficient constancy cannot be rejected at any conventional 

significance level, as indicated by the F-tests. It follows that the coefficient estimates, which are 

restricted to be the same across countries, are unbiased. Leamer’s (1978, p. 114) formula is used to 

calculate the critical F-values of diffuse priors, which takes into account that the likelihood of 

rejecting the null hypothesis grows with the sample size. The critical values are presented in Table 

13. 

Table 13: Pooled time series and cross section estimates 

Estimation period 1925-1999 1968-1999 
 ∆Log patent 

productivity 
Share returns ∆  Log R&D 

productivity 
Share returns 

EQR  0.17(3.87)  0.07(6.28)  
EQR(-1) -0.02(1.83) 0.01(0.01) 0.04(5.20) 0.32(0.99) 
EQR(-2) -0.01(0.10) -0.07(2.26) 0.00(0.65) -0.32(3.08) 
LYD  -4.63(3.66)  -11.4(2.06) 
LYD(-1) -1.62(7.03) 3.04(2.78) -0.55(5.43) 0.05(5.48) 
LYD(-2)  0.18(1.41) 0.41(0.65) -0.12(0.64) 0.12(0.10) 
DY(-1) -0.00(1.76) 0.02(3.47) -0.00(2.12) 0.05(5.49) 
DY(-2)  0.00(1.20) 0.00(0.32) 0.00(1.99) -0.02(2.08) 
LR -0.11(0.97) -0.01(1.23) -0.87(6.15) -0.15(1.16) 
LR(-1) 0.10(1.04) 0.02(1.81) 0.63(6.48) 0.12(1.30) 
LR(-2) -0.01(1.48) -0.01(1.49) -0.10(2.49) -0.00(0.10) 
∆LCPR  0.43(1.06)  -0.17(2.93) 
∆LCPR(-1)  0.01(3.39)  0.22(2.23) 
∆LCPR(-2)  -0.03(1.82)  -0.24(2.26) 
∆LPATKP  2.22(5.32)  0.71(1.57) 
∆LPATKP(-1)  0.98(9.29) -1.60(3.46) 0.87(8.91) -0.54(0.53) 
∆LPATKP(-2)  -0.00(0.01) -0.57(1.15) 0.02(0.25) 0.08(0.08) 
VOL -2.69(4.27) 0.67(0.18) -0.02(0.04) -1.26(1.85) 
VOL(-1)  1.28(4.11) -0.35(0.19) 0.00(0.01) -0.45(1.10) 
VOL(-2) -0.01(1.99) 0.18(1.55) 0.00(0.02) 0.40(1.42) 
DSWE     0.11(3.64) 
Wald(3)  0.04  0.21 
R2(mom) 0.42 0.18 0.88 0.45 
F 1.78(187,627) 2.05(209,605) 1.10(176,154) 1.33(209,121) 
Leamer 12.70 13.73 19.34 23.13 
DW(M) 2.18 2.03 2.27 2.09 

2 (55)χ  360.74 448.93 112.6 183.56 
Notes: Absolute t-statistics are given in parentheses. Constants are included in the estimates and a 1946 dummy for Japan 
in the estimates in the second column, but not shown. R2 = Buse’s raw moment R-squared. DW(M) = modified Durbin-
Watson test for first order serial correlation in fixed effect panel data models (see Bhargava et al., 1982). F(i,j) = F-test 
for cross-country coefficient constancy, and is distributed as F(i,j) under the null hypothesis of coefficient constancy. 
Leamer = Leamer’s critical value for the F-test for coefficient constancy across countries. Wald(3) = Wald test for no 
sustained effect of the growth of patent capital productivity on share returns (differences sum to zero), and is distributed 
as  under the null hypothesis of no sustained effect.  = Breusch-Pagan test for off-diagonal covariance 
matrix, and is distributed as  under the null of zero off-diagonal coefficients. A 1946 dummy variable is used for 
Japan. A 1925 dummy variable is included in the auxiliary instrument variable regressions for Germany. D

2 (3)χ 2 (55)χ
2 (55)χ

SWE = constant 
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dummy for Sweden. The following instruments are used for EQR, LYD, LCPR, LPATKP, and VOL: Two period logs of 
M1 deflated by consumer prices, real accumulated share index, real GDP and two lags of the dependent variable. 
 

The estimates of the patent capital productivity growth model are shown in the first column of Table 

13. The results are consistent with the predictions of the model. Patent capital productivity increases 

in response to an increase in the equity return, as markets rise in anticipation, but the long effect is 

muted by a lagged negative response. Patent capital productivity growth is significantly negatively 

related to the one-period lagged value of GDP, which suggests that cyclical upturns are associated 

with declining patent capital productivity because of diminishing returns to investment in patents.  

 

The results of regressing equity returns against patent capital productivity growth are presented in the 

second column of the table. Real share returns are shown to increase in response to an increase in 

patent capital productivity on impact but the increase is reversed after two years following the 

dynamic path in the phase diagram. This length of adjustment is consistent with economic intuition 

that most of the fixed capital stock is adjusted to its desired level within the first three years. 

Inclusion of the contemporaneous variable may help explain the contrast with the Granger causality 

result. We also find that the sum of difference terms on patent capital productivity sum to zero so 

there is no sustained effect on equity returns from a shock to patents. The null hypothesis of no long-

run effects on share returns of changes in patent capital productivity cannot be rejected at any 

conventional significance level as indicated by the Wald test in the table. The dividend yield has a 

predictive power on equity returns, which is consistent with the results of Ang and Bekaert (2001) 

who found an effect emerged in cross-country pooled data.  

 

Turning to the estimates of the models containing R&D capital productivity the principal results 

from the long historical estimates remain almost unaltered (columns 3 and 4 in Table 13). The 

estimation results in the third column in Table 13 show that share returns significantly predict R&D 

productivity, which is consistent with the predictions of our model. R&D capital productivity has a 

positive, although statistically insignificant, effect on share returns on impact but the null hypothesis 

of no sustained effect on share returns of R&D capital productivity growth can again not be rejected 

at any conventional significance level. The one-period-lag of dividend yield again has a significant 

positive effect on share returns. 

 

Our cointegration shown in Table 11 above suggested that levels terms were not cointegrated and 

this is reflected in our main results cited in Table 13. As a variant, we did attempt to augment the 
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panel models for equity returns with error correction terms to test for long run effects. For patent 

productivity, an error-correction term generated by regressing the log of the real accumulated share 

index on log of patent capital productivity, fixed effect dummies, and individual-country time trends, 

was not significant with a coefficient of -0.00(0.50). The coefficient of patent capital productivity 

was itself almost zero in the cointegration estimates. We consider this the more relevant result given 

the long time series. However, we note that for the error-correction term for equity returns using 

R&D capital productivity was significant at -0.6(6.91), but on the other hand, the R&D capital 

productivity term was negative in the cointegration relationship. This indicates that the cointegration 

is not generated by a genuine long run relationship between the accumulated index and capital 

productivity, but that the accumulated share index gravitates towards a log time trend.  

 

As a further variant, the models were augmented with time-dummies. Many of the estimated 

coefficients of the time-dummies were statistically significant, but none of the results above were 

overturned. Share returns were regressed on current and lagged values of growth in patent counts 

divided by either real GDP or population to investigate the short-un and the long-run reaction in the 

share returns to innovations. However, none of the estimated coefficients were significant at any 

conventional significance level. As a final sensitivity check on the models the models were re-

estimated with the interest rate, dividend yield and share volatility measured in first differences and 

the log CPI in second differences, following the predictions of most models of share valuation that 

the level of, as opposed to the growth rate of, shares is negatively related to share volatility and the 

real bond rate. However, the estimates were little changed by this transformation and none of the 

central predictions of the model were overturned in these estimates. Hence the results are not 

reported in detail. 

 

5 Conclusions 

 

This paper has presented a model of technological innovations and share prices, which has the 

implication that technology-induced productivity advances will only have temporary effects on share 

prices, since an increased capital stock in the presence of diminishing returns drives capital 

productivity back to its original level. The results of an empirical investigation are strongly 

consistent with the model, using two different measures of intangible capital, namely capitalised 

R&D expenditures and capitalised patent applications. It is also striking that comparable results do 

not emerge for labour productivity, suggesting also that we are not merely capturing the tendency for 

equity markets to predict the cycle. It is worth noting that our dataset ends in 1999 and hence we are 
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not taking into account recent falls in share prices in our estimation. On the other hand, those 

declines in share prices observed from the peak of the bull market in early 2000 to the end of 2002, 

are wholly consistent with the predictions of the model. Initial rises in share prices owing to the 

innovations fell back once the capital stock had built up and the level of capital productivity returned 

to baseline. 

 

Data Appendix 

Intangibles. Intangibles are measured as R&D and patent capital stock. To construct R&D capital 
stock we deflate R&D expenditures by the economy-wide GDP deflator and use the perpetual-
inventory method with a 5% depreciation rate. The initial R&D capital stock is set to R&D 
expenditure in 1965 divided by the depreciation rate plus the average geometric growth rate in R&D 
over the whole data period. The perpetual-inventory method applied to the number patent 
applications at the 5% depreciation rate for patent capital stock. The initial patent capital stock it set 
equal to the number of patent applications at the initial year divided by the depreciation rate plus the 
average geometric growth rate in number of patents over the whole data method. R&D. OECD, 
Science and Technology Indicators, Paris. For USA the R&D expenditures are from Department of 
Commerce, 1975, Historical Statistics of the United States: Colonial Times to 1970, Washington 
DC: Bureau of the Census. GDP deflators. OECD, National Accounts, Vol. 2, Paris, (NA). 
Consumer prices. IMF, International Financial Statistics (IFS). Interest rates. IFS.  Share 
returns. See Madsen (2003). Tangible capital stock. See Madsen (2003). Monthly share prices. 
IFS. Total factor productivity. Real GDP divided by capital stock to the power of 0.33 times hours 
worked to the power of 0.66. Hours worked. Economy-wide employment times weekly hours 
worked. See Madsen (2005) for sources. Dividends. Madsen (2003). Share prices. Madsen (2003). 
M1. UK. Forrest Capie and Alan Webber, 1985, A Monetary History of the United Kingdom, 1870-
1982, Boston: George Allen & Unwin. Italy. M Fratianni and F Spinelli, 1997, A Monetary History 
of Italy, Cambridge: Cambridge University Press. Australia. W Vamplew (ed), 1987, Australians: 
Historical Statistics, Fairfax. Denmark. H C Johansen, 1985, Dansk Historisk Statistik, 1814-1980, 
København: Gyldendal.  USA. Department of Commerce, 1975, Historical Statistics of the United 
States: Colonial Times to 1970, Bureau of the Census: Washington DC.. Canada, Japan, Sweden, 
France, Germany, and the Netherlands. The sum of deposits and notes and coins in circulation from 
Mitchell, op cit. The data are updated using IMF, International Financial Statistics. GDP. NA has 
been used from 1950 to 2002. The following sources were used before then. Canada. T Liesner, 
1989, One Hundred Years of Economic Statistics, Oxford: The Economist. USA. T Liesner, op cit. 
Japan. Tables A1 and A2, K. Ohkawa, M. Shinchara and L. Meissner, 1979, Patterns of Japanese 
Economic Development: A Quantitative Appraisal, Yale University Press: New Haven. Australia. W 
Vamplew (ed), 1987, Australians: Historical Statistics, Fairfax, Syme & Weldon Associates: 
Broadway, N.S.W. Denmark. Hansen op cit. France. T Liesner, op cit. Germany. T Liesner, op cit. 
Italy. Manufacturing value-added price deflator, Table 5, G Fua, 1965, Notes on Italian Economic 
Growth 1861-1964, Milano: Mvlta Pavcis. Netherlands. C A Van Bochove and T A Huitker, 1987, 
Main National Accounting Series, 1900-1986, Occasional Papers No. NA-017, Central Bureau of 
Statistics, the Netherlands. Sweden. Ö Johansson, 1967, The Gross Domestic Product of Sweden and 
its Composition 1861-1955, Stockholm: Almqvist and Wiksell. UK. T Liesner, op cit. 
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Appendix: Endogenous discount rate 

 

This section extends the model of Abel and Blanchard (1983) to allow for embodied technological 

progress and technological spill-over effects. Since the system presented in Section 3 is totally 

decomposable between intangibles and tangibles, tangibles and intangibles are merged in this 

appendix to simplify the exposition, without affecting the results. All non-pricing variables in the 

model are measured in per capita terms. 

 

 

Firms 

The optimization problem of the firm facing an interest rate that varies over time is: 
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where the number of workers are normalised to one following Abel and Blanchard. Here h(i/k) 
shows convex adjustment costs of investment, k is the capital stock per worker, and i is investment 
per worker. 

The optimality conditions are given by: 
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where q is the shadow price of one extra unit of investment and x = i/k. 
 
 
Consumers. The representative consumer has the preferences ordered by: 
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where π is per capita dividends, B is the per capita value of bonds, and c is per capita consumption. 
Net investment is assumed to be financed out of bonds so that the change in bonds equals the change 
in net investment.  

The optimality conditions for the representative consumer are given by: 
 
 '( )tU c tλ=           (A3) 
 ( )t trλ ρ= −& λ

tq

          (A4) 
 
where λ is the shadow price of one extra unit of consumption. 
 
General equilibrium 
 
Defining t ty λ= ⋅  it follows that 
 
 [ ]'( ) 1 ( ) '( )t t t t ty U c h x x h xφ= ⋅ + + ⋅ t

x ⎤⎦

,       (A5) 
and 
 .     (A6) 2( ) '( ) ( , ) '( )t t t t t t ty y U c MPK k x hρ δ θ⎡= + ⋅ − +⎣&

 
Per capita output equals per capita consumption plus per capita investment in goods market 
equilibrium: 
 
 ( , ) ( )t t t t t tF k c i i h xθ = + + ⋅ .        (A7) 
 
Eliminating ct in (A5) using (A7), differentiating (A5) with respect to time and eliminating  using 
(A6) yields the following first-order differential equation: 

ty&

 

 [ ]2''( )2 '( ) ''( ) 1 ( ) '( )
'( )

U ch x x h x h x x h x k x
U c

φ
⎡ ⎤

+ ⋅ − + + ⋅ =⎢ ⎥
⎣ ⎦

&      

 [ ] 2( ) 1 ( ) '( ) '( ) ( ,h x x h x x h x MPK k )ρ δ φ θ⎡ ⎤+ + + ⋅ − −⎣ ⎦  

 [ ] 1''( ) 1 ( ) '( ) ( , ) ( ( ))
'( )

U c h x x h x MPK k x h x k
U c

φ θ −⎡− + + ⋅ − ⋅ +⎣
&φ ⎤⎦ ,   (A8) 

 
where MPK is the marginal productivity of capital. Together with the following capital constraint 
Equation (8A) defines a simultaneous first-order differential equation system: 
 
 1k k x φ δ−⎡= ⋅ −⎣

& ⎤⎦ .         (A9) 
 
This equation system have the two endogenous variables x and k. Share prices are determined in this 
system by x and are recovered below using (A2).   
 
 
Steady state multipliers 

The steady state multipliers, , are as follows: 0K x= =& &
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[ ]' 2 ''( ) 2 '( ) ( ) 2 '( ) ''( )
0 1

K dkMPK x h x xh x h x x h x
dx

ρ δ⎡ ⎤+ − + + ⋅ ⎡ ⎤
⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦
 

[ ] '( ) 1 ( ) '( )
0

dh x x h x MPK
d

θ φρ δ
θδ

⎡ ⎤+ + + ⋅ − ⎡ ⎤
= ⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦
 

 

Thus we get the SS multipliers 

 

 D= '
kMPK <0 

 

which is unambiguously negative. 

 

 
'

'

1k

k

MPKdx
d MPKφ δ δ

= = >0         (A10) 

 

Total differentiating Equation (A2) yields the influence on share prices: 

 

 [ ] [ ]1 ( ) '( ) 1 '( ) '( ) ''( )t t t tdq d h x x h x h x dx dx h x x h x dxφ φ= + + ⋅ + + + ⋅ + ⋅ .  (A11) 

Hence it follows that the change in the share price is a positive function of the change in x since the 
capital adjustment function is convex: 
 

 
[ ]2 '( ) ''( )

t
t

t

dqdx
h x xh xφ

=
+

 

 
The change in the steady state equilibrium of share prices as a result of embodied technological 
change is given by:  
 

[ ]1 1 2 '( ) ''( ) 0dq dx dq dq h x xh x
d d dx dx

δ δ φ
φ φ

− −= = = ⋅ + > , 

 
which means that embodied technological progress lowers the share prices of incumbents. This result 

is similar to the result with exogenous discount rate. The effect on share prices of spill-over-effects 

of technological innovations is:  

 0dx
dθ

= ,   

thus 
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 0dq
dθ

= ,   

 

which implies that share prices are unaffected by the spill-over effects.  

 

The capital stock multipliers become: 

 
2

'

( )[1 ( ) '( )] [ ''( ) 2 '( ) ( )(2 '( ) ''( ))]

k

dk h x xh x x h x xh x h x x h x
d MPK

ρ δ δ ρ δ
φ

+ + + − + − + + ⋅
=  

 
which sign is indeterminate and, therefore, implies that the change in k is indeterminate as a result of 
embodied technological progress. This result is intuitive because the adverse interest rate effect pulls 
the  schedule to the left and, therefore, counteracts the simulative effects on capital stock of 
the technological progress. 

0 0q =&

 Finally, the spill-over effects of technological innovations on the per capita capital stock are 
positive: 
 

 
'

'
k

MPKdK
d MPK

θ

θ
= −  > 0, 

 

which implies that k increases as a result of embodied technological progress. 

 
Dynamics 
 
Linearizing the system around their steady states [Equations (A8) and (A9)] yields: 
 

'

1

( )[2 '( ) ''( )]
0

kx x xx h x xh x MPK
k k

ρφ δφ
φ− k

−⎡ ⎤+ − + −⎡ ⎤ ⎡ ⎤
= ⎢⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎣ ⎦

&
& ⎥    (A11) 

 
The system is stable since the determinant is positive, ' 1 0kD MPK φ−= − > .  
 The equation system forms the solution as follows: 
 

 1
1 2

2 2

t t 1x yx x
c e c e

x yk k
µ ξ− ⎡ ⎤ ⎡ ⎤⎡ ⎤

= +⎢ ⎥ ⎢ ⎥⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦
,       

 
where 0µ <  (stable root) and 0ξ >  (unstable root). Ruling out the unstable root we get: 
 

1
1

2

t xx x
c e

xk k
µ− ⎡ ⎤⎡ ⎤

= ⎢ ⎥⎢ ⎥−⎣ ⎦ ⎣ ⎦
.         (A12) 

 
Given the eigenvalue of µ, the eigenvector x can be derived from the following system: 
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'

1 1
1

2 2

( )[2 '( ) ''( )]
0

k x xx h x xh x MPK
x x

ρφ δφ
µ

φ−

⎡ ⎤+ − + − ⎡ ⎤ ⎡
=⎢ ⎥

⎤
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣⎣ ⎦ ⎦

. 

 
A possible solution, which satisfies this equation system, is  
 
 1x µ=     
 2x aσ= .   
 
Inserting this into (A12) yields: 
 

 1 1
tx x

c e
k k

µ µ
φ−

−⎡ ⎤ ⎡
=⎢ ⎥ ⎢−⎣ ⎦ ⎣

⎤
⎥
⎦

. 

 
This equation system yields the following linear relationship: 
 
 ( ) ( )x x kµφ− = − k .         
 
From this equation it follows that the impact on share prices of unanticipated embodied technological 
progress is given by: 
 

 dq dq dx dx dk dq dx dk
d dx d d d dx d d

µφ µφ
φ φ φ φ φ φ

⎡ ⎤ ⎡ ⎤
= = − = −⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
[ ]2 '( ) ''( )h x xh xφ + .   

 
Given that the sign of /dk dφ  is indeterminate, share prices may jump or drop on impact. If /dk dφ  
is positive share prices unambiguously jump in response to unanticipated technological progress.  
 The impact effect on share prices of spill-over effects of technological progress is 
unambiguously positive: 
 

 dq dq dx dx dk dq dx dk
d dx d d d dx d d

µφ µφ
θ θ θ θ θ θ

⎡ ⎤ ⎡ ⎤
= = − = −⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
[ ]2 '( ) ''( )h x xh xφ +  > 0. 

 
These results are similar to the case of an exogenous discount factor. 
 

 


