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Exotic Options: Proofs Without Formulas∗

Abstract

We review how reflection results can be used to give simple proofs of price formulas

and derivations of static hedge portfolios for barrier and lookback options in the Black-

Scholes model.

1 Introduction

One way to view this paper is as a survey of static hedging results for first generation

exotic options: Single-barrier, double-barrier, and lookback options. But there is also a

pedagogical point. We use the Black-Scholes model throughout, so pricing formulas are

well-known, but this approach yields self-contained and considerably simpler proofs than

the long, tedious, and often omitted (hence the title of the paper) ones in many articles and

text-books. The driving force behind static hedging results is the decomposition of exotic

options into plain vanilla products, (possibly many) piecewise linear functions of powers of

Geometric Brownian motion. This makes the implementation easier to structure and less

prone to coding-errors, and since the formulas are closed-form, this weighs heavily compared

to raw numerical efficiency.

The rest of the paper is organized as follows. In Section 2 we formulate and prove a reflection

theorem that we will draw heavily on. Section 3 shows how the reflection theorem gives price

formulas for zero-rebate single-barrier options, finds the (often useful) joint distribution of

(Geometric) Brownian motion and its minimum as a special case, and shows that static

hedges are an easy by-product. The last three sections deal with extensions where closed-

∗Rolf Poulsen (rolf@math.ku.dk), Department of Applied Mathematics and Statistics, Institute for

Mathematical Sciences, Universitetsparken 5, University of Copenhagen, DK-2100, Denmark. This version:

September 18, 2004

1



form solutions and static hedges can still be found with minimal calculations: Section 4

reviews rebates, Section 5 looks at lookbacks, and Section 6 describes double barriers.

2 A reflection theorem in the Black-Scholes model

We consider the Black-Scholes model with constant short term interest rate r and a risky

asset whose price is a Geometric Brownian motion,

dS(t) = µS(t)dt + σS(t)dW Q(t),

under the equivalent martingale measure Q. Using µ = r gives the classic model for a

non-dividend paying stock, µ = r − d models a stock with dividend yield d, µ = 0 models

forwards/futures, and in a currency model µ is the difference between the domestic and the

foreign interest rate.

Put

p = 1 − 2µ

σ2
,

and consider a simple claim with a pay-off at time T specified by a pay-off function g (a

’g-claim’ for short). Its arbitrage-free time-t price is

πg(t) = e−r(T−t)E
Q
t (g(S(T ))) = e−r(T−t)f(S(t), t),

where of course f(S(t), t) = E
Q
t (g(S(T ))), and the Markov property of S ensures that this

is non-deceptive notation. Let H > 0 be a constant and define a new function ĝ by

ĝ(x) = (x/H)p g
(
H2/x

)
.

We call this the reflection of g through H. (Putting g(x) = x, and making log/log plots of

g and ĝ for different p’s gives some explanation for term ’reflection’; but generally it’s just

a word.)

The next theorem shows that g- and the ĝ-claims are very closely connected and it is the

main source of the subsequent results in the paper.

Reflection theorem Let the set-up be as above and consider a simple claim with pay-off

function ĝ. The arbitrage-free time-t price of this ĝ-claim is

πbg(t) = e−r(T−t)(S(t)/H)pf(H2/S(t), t). (1)
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Proof Using the Ito formula (or the well-known form of Geometric Brownian motion) on

the process Z defined by

Z(t) =

(
S(t)

H

)p

tells us that

dZ(t) = pσZ(t)dW Q(t),

so Z(t)/Z(0) is a positive, mean-1 Q-martingale. Here the exact form of p is needed. The

result would not hold if σ were time-dependent or stochastic. (That is, unless it happens

that µ = 0, as is the case in Andreasen (2001).) This means that

dQZ

dQ
=

Z(T )

Z(0)

defines a probability measure QZ ∼ Q. Now use the abstract Bayes formula for conditional

means (Karatzas & Shreve (1992, Lemma 3.5.3)) to write the price of the ĝ-claim as

πbg(t) = e−r(T−t)E
Q
t

((
S(T )

H

)p

g

(
H2

S(T )

))
= e−r(T−t)

(
S(t)

H

)p

E
QZ

t

(
g

(
H2

S(T )

))
.

Girsanov’s theorem (Karatzas & Shreve (1992, Theorem 3.5.1)) tells us that

dW QZ

(t) = dW Q(t) − pσdt

defines a QZ -Brownian motion. Put Y (t) = H2/S(t). Then the Ito formula and the

definition of W QZ

gives us that (again, the particular form of p is needed)

dY (t) = µY (t)dt + σY (t)
(
−dW QZ

(t)
)

,

which means the law of Y under QZ is the same as the law of S under Q. Therefore

E
QZ

t (g(Y (T ))) = f(Y (t), t) = f(H2/S(t), t),

and the result follows. �

Reflection principles/results date a long way back in the literature on physics, partial differ-

ential equations and stochastic processes, and with Joshi (2003, Theorem 10.2) the formula

above can be regarded as finance text-book result. Despite that, it is probably fair to at-

tribute the formula, and certainly the demonstration of its usefulness for option pricing, to
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Peter Carr, see Carr & Chou (1997a) and Carr, Ellis & Gupta (1998). The proof given

here differs from Carr’s original one by having more abstract probability and less (partial)

integrations, and is thus more in the vein of Andreasen (2001). What you prefer is a matter

of taste, but in a teaching context, it can make a nice example of how general concepts

(Markov, Ito, measure-change, Girsanov) can lead a concrete formula.

3 Zero-rebate barrier options: Prices and static hedges

Price formulas for single-barrier zero-rebate options were given in Merton (1973) (where a

footnote covers non-zero rebates), so they are as old as the Black-Scholes formula itself. This

explains why, in the words of Pelsser (2000), ’most derivatives firms view “single barrier”

options nowadays more like vanilla than exotic options’.

But let us show how the reflection theorem makes the pricing very easy and has some

interesting ’spin-offs’. To do this consider a zero-rebate knock-out version of a v-claim

with barrier B; ’the barrier option’ in the following. (We look only at knock-out options;

knock-in options are handled by parity.) Such an option has the pay-off

v(S(T ))1m(T )>B (down-and-out case) or v(S(T ))1M(T )<B (up-and-out case),

where m(T ) = minu≤T S(u) and M(T ) = maxu≤T S(u) denote the running minimum and

maximum. The two cases are treated completely similarly, so let us focus on down-and-out

options. As input to the reflection theorem we use the g-function defined by

g(x) = v(x)1x>B

(which is not the pay-off of the barrier option) and B in the place of H. With ĝ denoting

the reflection of g through B as defined in Section 2, we can look at the simple claim with

pay-off function h = g − ĝ; the ’adjusted pay-off’ in the language of Carr and Chou. Note

that h(x) = g(x) = v(x) if x > B and Equation (1) tells us that the time-t price of the

h-claim is

πh(t) = e−r(T−t)
(
f(S(t), t) − (S(t)/B)pf(B2/S(t), t)

)
. (2)

In particular, we see that if S(t) = B, then the h-claim has a price of 0. Suppose now that

we buy the h-claim, sell it again if the stock price hits the barrier, and if this doesn’t happen,

simply hold it until expiry. If the stock price stays above the barrier, we receive g(S(T ))
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at expiry, otherwise we get 0. In other words, exactly the same as the barrier option, so

we can read off its price directly from Equation (2). This result is of course only useful if

the g-claim itself has been priced, ie. we know the f -function. But in the case of calls or

puts we easily establish the formulas from (for instance) Björk (1998, Chapter 13.2-3). In

some cases, one has to be a little careful, because the g-function is not the regular pay-off

function for the option, v, but rather its truncated-at-B version. But if v is piecewise linear,

then so is g, and although the f -function becomes more complicated, we never leave the

realm of plain vanilla options. Specifically for a down-and-out put g(x) = (K − x)+1x>B ,

which is the pay-off from a portfolio containing 1 strike-K put, −1 strike-B puts and B−K

(pay-off under) strike-B digital options.

Static hedging

Any simple claim, particularly the h-claim, can be statically hedged by a portfolio of plain

vanilla puts and calls (an idea/observation dating back to Breeden & Litzenberger (1978)),

so we can devise static hedges for the barrier option. We simply buy puts and calls at time

0 such that the pay-off function is matched at expiry. Note, however, that for a general

p, the h-function is not piecewise linear, so the static hedge portfolio involves a continuum

of options. In fact, h could be discontinuous at the barrier level; we saw this happen for

down-and-out put. Then matching the pay-off becomes problematic in practice. Further,

the hedge strictly only semi-static, because it must be unwound (the portfolio of puts and

calls sold) if the barrier is hit.

If we assume that µ = 0 and consider a call option, v(x) = (x − K)+, then we find that

ĝ(x) = (x/B)(B2/x − K)+ = (K/B)(B2/K − x)+,

which is the pay-off of K/B puts with strike B2/K. So the knock-out call can be hedged

by buying the plain vanilla call and shorting K/B strike-B2/K puts. This result, a version

of the put/call-symmetry, was a starting point static hedging, see Bowie & Carr (1994) and

Carr et al. (1998). The ideas have been extended in Carr & Chou (1997a) and Carr &

Chou (1997b) (the results of which we look at in Sections 5 and 6). A different approach

to static hedging based on partial differential equations and calender spreads is presented

in Derman, Ergener & Kani (1995), and has since been considered in for instance Chou

& Georgiev (1998) (where the two approaches are connected) and Andersen, Andreasen &
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Eliezer (2002) (extensions and connection).

Example: Geometric Brownian motion and its minimum

As a special case consider the pay-off function v(x) = 1x≥K , put g(x) = v(x)1x>B for some

B, where 0 ≤ B ≤ min(K,S(0)) (so actually, v = g). Then clearly

f(x, t) = Φ

(
ln(x/K) + (µ − σ2/2)(T − t)

σ
√

T − t

)
.

Let πh denote the price of the associated h-claim option. On the one hand

erT πh(0) = EQ(1S(T )≥K1m(T )>B) = Q(S(T ) ≥ K,m(T ) > B),

where m(T ) = minu≤T S(u). On the other hand Equation (2) tells us that

erT πh(0) = Φ




ln
(

S(0)
K

)
+ (µ − σ2/2)T

σ
√

T


 −

(
S(0)

B

)p

Φ




ln
(

B2

S(0)K

)
+ (µ − σ2/2)T

σ
√

T


 .

Combining these two equations and viewing the right hand side as a function of K and

B, determines the joint distribution of Geometric Brownian motion and its minimum. The

joint density, say φS,m is obtained by differentiating wrt. K and B. Because the logarithm

is monotone, we immediately get the distribution of Brownian motion with drift and its

minimum, and by symmetry the distribution of Brownian motion and its maximum, see

Musiela & Rutkowski (1997, Appendix B.3) or Hunt & Kennedy (2000, Section 2.4.1) for

formulas. (Note that we have not determined the joint distribution of the 3-dimensional

variable (m(T ), S(T ),M(T )), but only two of its 2-dimensional marginals. The simultane-

ous distribution is considerably more complicated, but can be found using the analysis in

Section 6.) Putting K = B gives (1−) the distribution function for the minimum of Geo-

metric Brownian motion. With τ = inf{u|S(u) = B} denoting the first hitting time to the

level B we have that Q(τ ≤ x) = 1 − Q(τ > x) = 1 − Q(m(x) > B), and by differentiating

(wrt. x) we get the first hitting time density.

With the joint density at hand, the density of the minimum conditional on S(T ) = x is sim-

ply φS,m(x, y)/φS(x). This can also be interpreted as the minimum of a Brownian bridge,

and can be quite useful for efficient computations, see Beaglehole, Dybvig & Zhou (1997)

and Metwally & Atiya (2002).
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4 Barrier options with rebates: Prices and static hedges

Using the distribution functions/densities just found, price formulas for barrier options with

rebates (as in given in Rubinstein & Reiner (1991) or Haug (1997, Section 2.10.1)) can be

derived by direct but sometimes cumbersome calculations. However, using the idea of Carr

& Picron (1999), the formulas can be derived without any need for new calculations. This

way also makes it clear how to statically hedge the options.

To this end assume that r ≥ 0, let a be a constant and look at

X(t) = e−rtSa(t) = Sa(0) exp
(
(a(µ − σ2/2) − r)t + aσW (t)

)
.

If a solves

a(µ − σ2/2) − r = −a2σ2/2,

then X is a martingale. This quadratic equation has the two roots

a+/− =
p

2
±

√
p2

4
+

2r

σ2
,

where as earlier p = 1 − 2µ/σ2. The roots are both real, and a+ is strictly positive, a−

negative (strictly so, unless in the trivial case where r = µ = 0).

Let us now look specifically at a down-and-out option that pays the rebate R when the

barrier is hit. (The up-and-out case is treated similarly, except some inequalities must be

reversed because α− < 0. Cases where the rebate is paid at expiry are easily dealt with.)

Remembering that we have already priced the zero-rebate version, what has to be calculated

is REQ(e−rτ1τ<T ), where τ = inf{u|S(u) = B}. Optional stopping (Karatzas & Shreve

(1992, Theorem 1.3.22)) with the bounded stopping time τ ∧ T gives us that

Sa+(0) = X(0) = EQ(Xτ∧T ) = EQ(e−rτBa+1τ<T ) + EQ(e−rT Sa+(T )1infu≤T S(u)>B)),

meaning that (because a+ > 0 we can rewrite the indicator function)

REQ(e−rτ1τ<T ) =
R

Ba+

(
Sa+(0) − e−rTEQ(Sa+(T )1infu≤T Sa+(u)>Ba+ )

)
.

The last term looks new, but isn’t. Note first that Sa+ is itself a Geometric Brownian motion

with drift-rate r (follows immediately because e−rtSa+(t) is a martingale) and volatility

a+σ. Second, note that the last term is (minus) the price of a strike-0 call with transformed
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barrier Ba+ and rebate 0 written on the transformed process Sa+ . Therefore its price can

be found from the zero-rebate down-and-out call with

σ  a+σ, µ r, S(0) Sa+(0), K = 0, and B  Ba+ .

So the rebate-R barrier-B call corresponds a long position in the rebate-0 call, R/B a+ units

of the a+-security, and R/Ba+ units short in the strike-0, rebate-0 barrier-Ba+ call on the

a+-security. Each of these 3 components can be statically hedged by plain vanilla puts and

calls.

5 Lookback options: Prices and somewhat static hedges

Barrier option pay-offs depend on the maximum or minimum of the underlying, but only

through indicator-functions. Lookback options have pay-offs that depend more explicitly

on the extreme value. For instance a lookback call-option pays S(T ) − m(T ) at time T ,

where as before m denotes the running minimum. This makes the pricing and hedging

more difficult, not least so because we have to be careful when determining the price at a

time-point after initiation, where it will depend non-trivially on both the current stock price

and the extremum to date. Equipped with the joint distribution of S and the extremum,

price formulas can be found by what Björk (1998, Section 13.5) describes as ’a series of

elementary, but extremely tedious, partial integrations’ (and that’s just for time-0 prices).

But as shown in Carr & Chou (1997b, Section 8), there is an easier way that uses the pre-

vious ideas in this paper. To keep the analysis simple, we now look at a contract that pays

m(T ) at time T , and because there is no real loss of generality in this, we refer to it as the

lookback option.

As a stepping-stone, we need to consider so-called 1-touch digital options. These are con-

tracts that pay 1 at time T if the underlying touches a barrier B during the life of the

option. In a diffusion setting the terms ’1’ and ’touch’ are somewhat superfluous, because

touching and crossing is the same thing, and if the underlying touches once, it does so

infinitely often. Words aside, the pay-off is (in the relevant down-case)

1m(T )≤B ,
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and that depends on m(T ) in exactly the indicator-function way, that allows us to price

and statically hedge the contract using previous results. In particular, the 1-touch digital

is equivalent to a simple claim with pay-off function

hOTD(x;B) =





0 for x > B

1 + (x/B)p for x ≤ B

(The 1-touch digital is an in-option, so we first find the adjusted pay-off of the out-version,

and then use in/out-parity, which simply amounts to subtracting from 1.)

Next note that

m(T ) = m(t) −
∫ m(t)

0
1m(T )≤BdB, (3)

so when viewed from time t, receiving the pay-off m(T ) is equivalent to receiving

hm(S(T ),m(t)) = m(t)−
∫ m(t)

0
hOTD(S(T );B)dB = m(t)−

∫ m(t)

min(m(t),S(T ))
(1+(S(T )/B)p)dB.

The last term is just an integral of a power function (two, if you’re pedantic), and when

p 6= 1 we get

hm(S(T );m(t)) =





m(t) for S(T ) > m(t)

2−p
1−pS(T ) + (m(t))1−p

p−1 (S(T ))p for S(T) ≤ m(t)

Viewed from time t — remember that m(t) is known then (but not before) — this pay-off

is that of a portfolio of digital options and two types of gap options, the last of which is

written on the transformed stock-price Sp. This is easily priced.

In case µ = 0, which corresponds r = 0 in no-dividend stock models (standard literature,

such as Conze & Wiswanathan (1991), covers this case only in a limiting sense; understand-

ably so), we have p = 1, and the hm-function involves a term of the form S(T ) ln S(T ). One

completion of the square when valuing this brings us back gap options on Brownian motion

which is well-known territory, see Hunt & Kennedy (2000, Appendix 3) for instance. The

resulting formula does appear different though; it involves the normal density function.

Equation (3) shows that the lookback option can be statically hedged by a portfolio with (a

continuum of) 1-touch digitals. Each 1-touch digital can be statically hedged by puts and

calls. There is a small complication though: The static hedge portfolio of a given 1-touch

digital must be liquidated when its barrier is hit. This means that liquidation takes place

every time the minimum changes. And that happens almost certainly on an uncountable set

of measure 0. But at least we have found a hedge portfolio, the usual (stock, bank-account)
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hedge portfolio whose existence is ensured by martingale representation is quite tricky to

find, see Bermin (2000).

6 Double-barrier options

A double-barrier (knock-out) version of a v-claim pays

v(S(T ))1m(T )>L,M(T )<U at time T,

where as before M and m are, respectively, the running maximum and minimum.

Inspired by the single-barrier analysis let us look at

g0(x) = v(x)1L<x<U .

To price the double-barrier option an immediate idea is to apply the reflection theorem

twice to g0; once with the role of H played by L, once with U as H. This will not quite

work, though, because the U -reflected claim will make a non-zero contribution (that varies

with time to expiry) along the L-barrier, where the g0 and the L-reflected claims net out.

Therefore the combined portfolio does not have value 0 along the L-barrier (and likewise

for the U -barrier). But it is a step in the right direction, because the U -reflected claim only

pays off above U , so its price when S(t) = L(< U) is typically small. To finish the job (ie.

find a price formula and a static hedge) Carr & Chou (1997b, Section 6) has another trick:

A series of reflections. (The same idea is used, although not with static hedging in mind, by

Hui, Lo & Yuen (2000), and people with experience with partial differential equations will

see it as nothing other than probabilistic sugar-coating of the age-old method of images.)

Specifically, let us split the positive real line into the regions shown in Figure 1, ie.

regioni =





[(
U
L

)i−1
U ;

(
U
L

)i
U

]
for i > 0,

[L;U ] for i = 0,
[(

U
L

)i
L;

(
U
L

)i+1
L

]
for i < 0.

Reflection of g0 through L gives a claim with pay-off function

ĝ0(x) =
(x

L

)p
g0

(
L2

x

)
=

(x

L

)p
v

(
L2

x

)
1L<L2/x<U

=
(x

L

)p
v

(
L2

x

)
1region −1

(x) := −g−1(x).
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U3/L2

region2 region3

L2/U

region−1
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-

�

-

�

-

�

Figure 1: The reflection regions and the connections.

By the reflection theorem

πg−1(t) = −e−r(T−t)

(
S(t)

L

)p

f0

(
L2

S(t)
, t

)
:= −e−r(T−t)f−1(S(t), t),

so as we want, the g0- and the g−1-claim net out when S(t) = L. To remove the g−1-

contribution along the U -barrier, we reflect its pay-off through U , ie. look at

ĝ−1(x) =
( x

U

)p
g−1

(
U2

x

)
=

( x

U

)p
(

U2/x

L

)p

v

(
L2

U2/x

)
1L2/U<U2/x<L

=

(
U

L

)p

v

(
x

L2

U2

)
1region

2
(x) := −g2(x).

The reflection theorem tells us that

πg2(t) = −e−r(T−t)

(
S(t)

U

)p

f−1

(
U2

S(t)
, t

)
= e−r(T−t)

(
U

L

)p

f0

(
S(t)

L2

U2
, t

)
,

which exactly equals −πg−1 when S(t) = U . We now reflect g2 through L ( g−3), g−3

through U , and so on. A pattern quickly emerges:

πgi(t) =





(
U
L

)jp
f0

(
S(t)

(
L
U

)2j
, t

)
for j = 0, 2, 4, . . .

−
(

S(t)
U

)p (
L
U

)jp
f0

((
U2

S(t)

) (
U
L

)2j
, t

)
for i = −1,−3,−5, . . .

We can repeat the procedure starting with a reflection of g0 through U . This analysis is

similar up to some changes of signs on indices and barriers.

This leads to a price formula in terms of an infinite sum (
∑∞

−∞) that only involves f0

evaluated at appropriate points. This is the best we can realistically hope for given the
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L U KI-price CC-price

Nterms

0 1 2 3

500 1500 66.1289 66.1289 66.1289 66.1289 66.1289

800 1200 22.0820 22.1128 22.0820 22.0820 22.0820

900 1100 1.78676 3.01120 1.78693 1.78676 1.78676

950 1050 0.00057 0.24683 0.07458 0.00207 0.00057

Table 1: Prices of double-barrier knock-out calls. KI-price denotes the true price (calculated

from the formula in the Kunitomo-Ikeda paper with 8 terms), CC-price is the price calcu-

lated using the algorithm described in this paper (’CC’ is for ’Carr-Chou’). The parameters

(besides those indicated above) are the same as those used by Pelsser: S(t) = K = 1000,

T − t = 1
2 , r = µ = 0.05, and σ = 0.2.

results in the literature, Kunitomo & Ikeda (1992) and Pelsser (2000) for instance. The

formula is most easily conveyed in pseudo-code form (to get the pay-off function of the

simple claim needed for static replication put t = T , ie. call the function with T=0). The

algorithm for a double knockout call is given below, but to change to a different option type

(put, digital) all that has to be altered is the definition of f0.

DoubleBarrier=function(S , T , L, U , T, r , mu , sigma,Nterms=5){

p=1-2*mu/sigma^2

f0=function(y){

f0<-BSCall(y,K,T,r,mu,sigma)-BSCall(y,U,[same])-(U-K)*BSDigital(y,U,[same])

}

Price=0

for (j in -Nterms:Nterms){

EvenTerm=(U/L)^(j*p)*f0((L/U)^(2*j)*S)

OddTerm=-(S/U)^p*(L/U)^(j*p)*f0((U/L)^(2*j)*(U^2/S))

Price=Price+EvenTerm+OddTerm

}

DoubleBarrier=Price

}

Table 1 shows numerical results for the implementation of the algorithm. Only a few terms

are needed in the −∞ to +∞ summation to obtain very precise result. The closer L and
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U are, the closer the option is to expiry, the closer S(t) is to a boundary, the more terms

are needed.

Several extensions follow by handwaving. Exponentially curved boundaries are treated by

viewing the options as written on processes with transformed drifts. (The two series of

reflections are independent, so the curvatures don’t have to be the same.) Transformation

also establishes results for regular Brownian motion, for instance its probability of staying

within a strip. Non-zero rebates at hit, say RL and RU , can be handled using a portfolio

(ba+
, ba−

) of the two stationary securities from Section 4 chosen such that

ba+
Ua+ + ba−

Ua− = RU and ba+
La+ + ba−

La− = RL.

References

Andersen, L., Andreasen, J. & Eliezer, D. (2002), ‘Static replication of barrier options:

some general results’, Journal of Computational Finance 5, 1–25.

Andreasen, J. (2001), ‘Behind the Mirror’, Risk Magazine 14(November).

Beaglehole, D. R., Dybvig, P. & Zhou, G. (1997), ‘Going to Extremes: Correcting Simulation

Bias in Exotic Option Valuation’, Financial Analysts Journal 53, 62–68.

Bermin, H.-P. (2000), ‘Hedging lookback and partial lookback options using Malliavan

calculus’, Applied Mathematical Finance 7, 75–100.

Björk, T. (1998), Arbitrage Theory in Continuous Time, Oxford.

Bowie, J. & Carr, P. (1994), ‘Static Simplicity’, Risk Magazine 7(August).

Breeden, D. & Litzenberger, R. (1978), ‘Prices of state-contingent claims implicit in option

prices’, Journal of Business 51, 621–651.

Carr, P. & Chou, A. (1997a), ‘Breaking Barriers’, Risk Magazine 10(September).

Carr, P. & Chou, A. (1997b), Hedging Complex Barrier Options. Working Paper. Available

from http://www.math.nyu.edu/research/carrp/.

Carr, P., Ellis, K. & Gupta, V. (1998), ‘Static Hedging of Exotic Options’, Journal of

Finance 53, 1165–1190.

13



Carr, P. & Picron, J. (1999), ‘Static Hedging of Timing Risk’, Journal of Derivatives 6(3

(Spring)), 57–70.

Chou, A. & Georgiev, G. (1998), ‘A uniform approach to static hedging’, Journal of Risk

1.

Conze, A. & Wiswanathan (1991), ‘Path Dependent Options: The Case of Lookback Op-

tions’, Journal of Finance 46, 1893–1907.

Derman, E., Ergener, D. & Kani, I. (1995), ‘Static Options Replication’, Journal of Deriva-

tives 2, 78–95.

Haug, E. G. (1997), The Complete Guide to Option Pricing Formulas, McGraw-Hill.

Hui, C. H., Lo, C. F. & Yuen, P. H. (2000), ‘ Comment on Prcing double barrier options

using Laplace transforms by Antoon Pelsser’, Finance and Stochastics 4, 105–107.

Hunt, P. J. & Kennedy, J. E. (2000), Financial Derivatives in Theory and Practice, Wiley.

Joshi, M. S. (2003), The Concepts and Practice of Mathematical Finance, Cambridge.

Karatzas, I. & Shreve, S. (1992), Brownian Motion and Stochastic Calculus, 2 edn, Springer-

Verlag.

Kunitomo, N. & Ikeda, M. (1992), ‘Pricing Options with Curved Boundaries’, Mathematical

Finance 2, 275–298. (Minor correction p. 459, vol. 10 of same journal.).

Merton, R. (1973), ‘The theory of rational option pricing’, Bell Journal of Economics and

Management Science 4, 141–183.

Metwally, S. A. K. & Atiya, A. F. (2002), ‘Using Brownian Bridge for Fast Simulation of

Jump-Diffusion Processes and Barrier Options’, Journal of Derivatives 10, 43–54.

Musiela, M. & Rutkowski, M. (1997), Martingale Methods in Financial Modelling, 2. edn,

Springer-Verlag.

Pelsser, A. (2000), ‘Prcing double barrier options using Laplace transforms’, Finance and

Stochastics 4(1), 95–104.

Rubinstein, M. & Reiner, E. (1991), ‘Breaking Down the Barriers’, Risk Magazine 4(Septem-

ber).

14


