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Abstract

In this paper we consider a multivariate generalized autoregressive conditional het-

eroskedastic (GARCH) class of models where the eigenvalues of the conditional covari-

ance matrix are time-varying. The proposed dynamics of the eigenvalues is based on

applying the general theory of dynamic conditional score models as proposed by Creal,

Koopman and Lucas (2013) and Harvey (2013). We denote the obtained GARCH model

with dynamic conditional eigenvalues (and constant conditional eigenvectors) as the λ-

GARCH model. We provide new results on asymptotic theory for the Gaussian QMLE,

and for testing of reduced rank of the (G)ARCH loading matrices of the time-varying

eigenvalues. The theory is applied to US data, where we find that the eigenvalue struc-

ture can be reduced similar to testing for the number in factors in volatility models.
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1 Introduction

In this paper we consider p-dimensional multivariate generalized autoregressive conditional

heteroskedastic (GARCH) models where the eigenvalues (λ1t, ..., λpt) of the conditional co-

variance matrix of the p-dimensional vector Xt (of returns) are modelled as time-varying.

The proposed dynamics of the eigenvalues (λ1t, ..., λpt) is based on utilizing the general the-

ory of dynamic conditional score models for time-varying parameters as proposed by Creal,

Koopman and Lucas (2013) and Harvey (2013). We denote the obtained GARCH model with

dynamic conditional eigenvalues (and constant conditional eigenvectors) as the λ-GARCH

model.

We consider in detail the cases where (the returns) Xt are assumed to be multivariate

conditionally Gaussian and Student’s tv-distributed respectively, which constitute the condi-

tional distributions most widely applied in empirical modelling of time-varying covariances.

By definition, both specifications imply a rich and general dynamic structure for the evolu-

tion of the eigenvalues. Specifically, in the conditional Gaussian case, the resulting dynamics

of the eigenvalues of the λ-GARCH model is an extended version of the generalized orthog-

onal GARCH (GO-GARCH) model of van der Weide (2002). Here the λ-GARCH model

extends the GO-GARCH as the spill-over effects are allowed more degrees of flexibility, sim-

ilar to the extended version of the constant conditional correlation (ECCC) GARCH model

in Jeantheau (1998) which generalizes the CCC-GARCH model of Bollerslev (1990). On the

other hand, in the conditionally t-distributed case, the dynamics of the λ-GARCH model

generalizes and extends the univariate β-t-GARCH model of Harvey (2013) and Harvey and

Chakravarty (2008) to the multivariate case, where the “ARCH” effects are time-varying,

while the “GARCH”effects remain constant. One may note that the score approach is also

used for considering time-varying correlations — as opposed to time-varying eigenvalues —

in Creal, Koopman and Lucas (2011), where the DCC-GARCH model of Engle (2002) is

considered under the assumption of a conditional t-distribution of returns Xt.

As demonstrated in the empirical illustration, the dynamic specification in the λ-GARCH

class allows one to impose hypotheses on the inter-action between linear combinations of

the eigenvalues. In particular, for the returns on three major US bank shares, we find

that while we reject constancy of all (three) eigenvalues, there is one linear combination of

the eigenvalues which appear constant. Equivalently, the implied reduced rank structure

of the (G)ARCH loading matrices, indicates that there are two linear combinations of the

eigenvalues which drive the conditional volatility of Xt. Thus we are able to disentangle

time-varying linear combinations of the eigenvalues, or factors, from time-invariant factors

which drive the dynamics of the conditional covariance, see also Lanne and Saikkonen (2007)
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and Dovonon and Renault (2013).

In terms of inference and asymptotic theory, we provide a full asymptotic theory for the

Gaussian-based quasi maximum likelihood estimator (QMLE) of the (vector) parameter of

the λ-GARCH model. We provide conditions for strict stationarity, ergodicity, and finite

moments of Xt, and present primitive suffi cient condition for consistency and asymptotic

normality of the QMLE relying on only finite second-order moments of Xt. Simulations indi-

cate that while suffi cient, second-order moments may not even be necessary as the estimator

is well-behaved even when relaxing the condition of finite unconditional variance, similar to

results in the univariate analysis of GARCH models, see also Jensen and Rahbek (2004).

The asymptotic results are new, and while the arguments applied for establishing limiting

distributions are based on classic likelihood expansions, a novel result on identification is

given, which is needed for establishing consistency of the QMLE estimator.

Moreover, testing reduced rank in the context of multivariate GARCH models is non-

standard as it involves non-identified parameters under the hypothesis —see Pedersen and

Rahbek (2019) for a discussion of the univariate case —and we discuss the general theory ap-

plicable for our empirical illustration. In particular, we derive the limiting distribution of the

sup likelihood ratio (supLR) test statistic for the case of zero rows, and hence reduced rank,

of the (G)ARCH loading matrices, while we for the more general case propose a bootstrap

based approach, see also Cavaliere, Nielsen, Pedersen and Rahbek (2019).

Existing theory for the classic (non-extended) multivariate GO-GARCH model typically

rely on two (or, three) step estimators. For the multiple step estimators, essentially, in a

first step the unconditional covariance matrix is estimated, which is then kept fixed in the

next estimation step(s), where the remaining dynamic GARCH parameters are estimated,

see Fan, Wang and Yao (2008) and Boswijk and van der Weide (2011) and the references

therein. In contrast, we consider here joint one-step estimation of all parameters, which in

particular requires the mentioned identification result as the unconditional covariance, and

hence eigenvectors, are not fixed in a first estimation step. In terms of asymptotic theory

for two, or multiple, step estimators in other multivariate GARCH type models, Pedersen

and Rahbek (2014) discuss this in terms of covariance targeting for the BEKK-GARCH

model, while Francq, Horvath and Zakoïan (2014) discuss variance targeting for the ECCC-

GARCH model. Lanne and Saikkonen (2007) consider one-step estimation of their factor

GO-GARCH model. By noting that the model has a BEKK-type representation, they argue

that the MLE (for the identified parameters) is consistent and asymptotically normal by

referring to the theory for BEKK models derived by Comte and Lieberman (2003). We

emphasize that this theory rely on the assumption of finite higher-order moments of Xt

(specifically, E‖Xt‖8 < ∞) which is typically needed for showing asymptotic normality of
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the MLE for BEKK models, see also Hafner and Preminger (2009a), Avarucci, Beutner and

Zaffaroni (2013), and Pedersen and Rahbek (2014). In contrast, we show that the QMLE for

the λ-GARCH model is asymptotically normal under mild second order moment conditions

on Xt.

The paper is structured as follows. Section 2 defines the λ-GARCH model for the case

of conditional Gaussianity and conditional Student’s t distributed returns. In Section 3, the

stochastic properties of the λ-GARCH process is discussed, and asymptotic theory for the

QMLE is given. In Section 4 testing of reduced rank ARCH and GARCH loading matrices is

discussed and Section 5 contains an empirical example with US data. The Appendix contains

mathematical proofs (Appendix A), details on hypothesis testing (Appendices B and C), and

a short simulation study on the finite sample properties of the QMLE (Appendix D).

1.1 Notation

Some notation used throughout the paper. For p ∈ N, Ip denotes the (p× p) identity matrix
and 0n×p denotes a n × p matrix of zeros (and 0n = 0n×1). For a p-dimensional vector x,

diag(x) =diag((xi)
p
i=1) is a diagonal matrix with x on the diagonal. Furthermore, denote by

ρ(A) the spectral radius of any square matrix A. We use || · || to denote the Euclidean matrix
norm. Moreover, A�B denotes the Hadamard product, while A⊗B denotes the Kronecker

product of A and B of suitable dimensions. We set A�2 = A�A and A⊗2 = (A⊗A). Finally,

let
p→, d→ and w→ denote convergence in probability, in distribution and weakly respectively.

Unless stated otherwise, all limits are taken as the sample size T →∞.

2 Score Driven Conditional Eigenvalues | λ-GARCH
We consider a class of multivariate conditionally heteroskedastic models where the eigenvalues

of the conditional covariance matrix are allowed to be time-varying, where we apply the

approach of Creal, Koopman and Lucas (2011) and Harvey (2013) to arrive at dynamic

specifications of the time-varying eigenvalues under different distributional assumptions on

the innovations.

Let Xt be a p-dimensional vector of observed variables (returns, say), Xt ∈ Rp for
t = 1, ...., T . Define the information at time t, Ft as the σ -algebra generated by the past
variables, Ft = σ(Xi : i ≤ t), and let f(Xt|Ft−1) denote the conditional density of Xt

given Ft−1. Assume with no loss of generality that the conditional mean E (Xt|Ft−1) is zero,

E (Xt|Ft−1) = 0, and that the conditional distribution of Xt, or f(Xt|Ft−1), can be char-

acterized in terms of the time-varying conditional covariance matrix Ωt = E(XtXt|Ft−1) in
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additional to (constant) distributional shape parameters.

The conditional covariance matrix Ωt is stated in terms of time-varying conditional eigen-

values (λi,t)
p
i=1 and corresponding p−dimensional constant conditional eigenvectors (vi)

p
i=1.

That is,

Ωt = V ΛtV
′,

with V = (v1, ..., vp) and Λt =diag
(
(λi,t)

p
i=1

)
. By definition the eigenvectors are orthogonal,

such that V ′V = V V ′ = Ip, while λi,t > 0 (almost surely) for i = 1, ..., p and for all t. With

λt = (λ1,t, . . . , λp,t)
′

the vector of eigenvalues, we note that f(Xt|Ft−1) may be indexed by λt, and we write

henceforth

f(Xt|Ft−1) = f(Xt|λt).

The dynamics of the time-varying eigenvalues λt is given by the score updating equation, see

Creal et al. (2011),

λt = W +Ast−1 + Bλt−1, (1)

where W is a p-dimensional vector of constants and A and B are general (p× p) coeffi cient
matrices. The p-dimensional (score) vector st is defined as the score of the log-density

log f (·|λt) with respect to λt, up to an appropriate scaling. That is, the score contribution
in the dynamics is given by,

st = St
∂ log f(Xt|λt)

∂λt
, (2)

with St an appropriate scaling matrix, which here in line with existing literature on score

driven models is set to the inverse of the (conditional) Fisher information matrix, i.e.

St =

(
E

[
∂ log f(Xt|λt)

∂λt

∂ log f(Xt|λt)
∂λ′t

∣∣∣∣Ft−1

])−1

. (3)

Below we consider the implied λ-GARCHmodels when f (·|λt) is assumed to be one of the
two dominating densities in the multivariate GARCH literature; the multivariate Gaussian

and Student’s t respectively. These yield fundamentally different dynamics of the eigenvalues

as clear from the next.
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2.1 Conditional Gaussian Distribution

Consider the case of conditional normality of Xt, such that the conditional density f (Xt|λt)
is given by,

f(Xt|λt) = (2π)−p/2 det(Ωt)
−1/2 exp

(
−X ′tΩ−1

t Xt/2
)
.

Using the definitions in (1)—(3), give upon tedious calculations that the implied dynamics of

λt can be represented in a multivariate GARCH-type form,

λt = W + A (V ′Xt−1)
�2

+Bλt−1,

whereW is a p-dimensional vector, A = A and B = B −A, and where we restrict the (p×p)
matrices A and B to have non-negative entries.

Note that, for each i, the time-varying positive eigenvalue λi,t is allowed to depend on

all of the orthogonal linear combinations v′jXt−1, where Cov
(
v′jXt−1, v

′
kXt−1|Ft−1

)
= 0 (and

hence Cov
(
v′jXt−1, v

′
kXt−1

)
= 0) for all j 6= k. In addition, our proposed λ-GARCH model

allows λi,t to depend on all entries of λt−1. In that sense the Gaussian score-driven eigenvalue

model is a generalization the GO-GARCHmodels considered by Fan et al. (2008) and Boswijk

and van der Weide (2011). Finally, we stress that our proposed parametrizations appeal to

estimating all model parameters simultaneously, and not as is common in two, or more steps.

Specifically, Boswijk and van der Weide (2011) consider the GO-GARCH model

Xt = V Λ
1/2
t ηt, ηt ∼ i.i.d.(0, Ip),

with Λt =diag
(
(λi,t)

p
i=1

)
satisfying1, with Bd a (p× p) diagonal matrix,

λt = (I − A−Bd) + A (V ′Xt−1)
�2

+Bdλt−1. (4)

Moreover, Boswijk and van der Weide (2011) assume that the matrix V = (V1, . . . , Vp) is

non-singular with polar decomposition

V = CR,

such that C is positive definite and R is orthogonal. Lanne and Saikkonen (2007) considered

an identical model, but with the additional restriction that some row in A and (the diagonal)

Bd is zero, and hence allowing for constant conditional eigenvalues λi,t. We discuss in Section

4 testing for reduced rank of A and B in the λ-GARCH model, for which the zero row

1To be precise, the authors only state that λit is "assumed to follow a GARCH-type structure" [p.119],
but the following specification is the one considered in their empirical application.
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restriction is a special case. The model in Boswijk and van der Weide (2011) is closely

related to the model considered by Fan et al. (2008) who, identically to our approach, let

V be orthogonal but with Λt defined by (4) such that the condition that E (XtX
′
t) = Ip (or,

equivalently, standardized returns) is imposed.

2.2 Conditional Student’s t-Distribution

Consider here the case where the conditional distribution of Xt is a standardized Student’s

t distribution with ν > 2 degrees of freedom. In this case the conditional density is given by

f(Xt|λt) =
Γ
(
ν+p

2

)
Γ
(
ν
2

) [(ν − 2)π]p/2 det (Ωt)
1/2

[
1 +

X ′tΩ
−1
t Xt

ν − 2

]−(ν+p)/2

,

where Γ(·) is the Gamma function. In line with the Gaussian case in Section 2.1, the bivariate
case of the Student’s score dynamics can be represented as

λt = W + At(V
′Xt−1)�2 +Bλt−1.

Here W is as before while

At =
2wt

(κ2 − γ2)
A
(

κ −γ λ1,t−1

λ2,t−1

−γ λ2,t−1

λ1,t−1
κ

)
and B =

[
B−

(
ν + 4

ν − 2

)
A
]
,

with κ = 3 (v + 2) / (v + 4) − 1, γ = (v + 2) / (v + 4) − 1. Moreover, the time-varying

“weights”wt of the ARCH-loadings are given by

wt =
1 + 2/ν

1 + ν−1[y2
1,t−1/λ1,t−1 + y2

2,t−1/λ2,t−1 − 2]
,

with (y1,t, y2,t) = X ′tV .

We note that, similar to the Gaussian case, one may view the dynamics of λt as GARCH-

type dynamics where the "GARCH" coeffi cients B —as for the Gaussian case —are constant,

while the "ARCH" coeffi cients, At, are time-varying and stochastic. Note that one obtains

the Gaussian case by setting ν−1 = 0. Also, note that for the one-dimensional case, p = 1,

we obtain the Beta-t-GARCH considered in Harvey (2013, Ch.4.7). While the bivariate

(and univariate) case has a somewhat simple structure, the general case of p > 2 has a less

transparent representation. Specifically, following Creal et al. (2011,Theorem 1), the score
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and scaling matrix are given respectively by

∂ log f(Xt|Ft−1)

∂λt
=

1

2
Ψ′t(V Λ−1

t V ′)⊗2
[
wtX

⊗2
t − V ⊗2vec(Λt)

]
,

St =
1

4
Ψ′t(V Λ

−1/2
t V ′)⊗2 [gG− vec(Ip)vec(Ip)′] (V Λ

−1/2
t V ′)⊗2Ψt,

where Ψt = V ⊗2∂vec(Λt)/∂λ
′
t, wt = (v+p)/(v−2+X ′tV Λ−1

t V Xt), and g = (v+p)/(v+2+p).

Moreover, G = E[(ztz
′
t)
⊗2] with zt ∼ N(0, Ip).

3 Properties and Estimation of the λ-GARCH Model

In the remainder of the paper we focus on the Gaussian case in Section 2.1, and study quasi-

likelihood inference. In particular, we provide suffi cient conditions for strict stationarity and

state primitive conditions for strong consistency and asymptotic normality of the one-step

quasi-maximum likelihood estimator (QMLE) for all parameters.

The λ-GARCH model may be summarized as,

Xt = V Λ
1/2
t ηt, Λt = diag

(
(λi,t)

p
i=1

)
, V ′V = V V ′ = Ip, (5)

λt = (λ1,t, . . . , λp,t)
′ = W + A(V ′Xt−1)�2 +Bλt−1, (6)

with ηt i.i.d(0, Ip). The parameters of the model are given by the p-dimensional vector

W = (ω1, ..., ωp)
′ with strictly positive entries, ωi > 0 for i = 1, 2, ..., p and the (p × p)

matrices A = (αij)i,j=1,...,p and B =
(
βij
)
i,j=1,..,p

with non-negative entries, αij,βij ≥ 0.

Additionally, the constant conditional eigenvectors V are parametrized by φ, which is a

p(p−1)/2-dimensional vector φ = (φ12, . . . , φ(p−1)p)
′. More specifically, for the case of p = 3,

V (φ) =

 cos(φ12) sin(φ12) 0

− sin(φ12) cos(φ12) 0

0 0 1


 cos(φ13) 0 sin(φ13)

0 1 0

− sin(φ13) 0 cos(φ13)


1 0 0

0 cos(φ23) sin(φ23)

0 − sin(φ23) cos(φ23)

 ,

while for the general case the (p× p) dimensional V matrix is defined in terms of so-called

rotation matrices R (i, j) = (R (i, j)kl)k,l=1,...,p as applied in van der Weide (2002) for the

GO-GARCH model. That is, V =
∏p−1

i=1

∏p
j=i+1 R (i, j) , where

R (i, j)kk = 1 if k 6= i, j, R (i, j)kl = 0 if k 6= l and k 6= i, j,

R (i, j)ii = R (i, j)jj = cos(φij), and R (i, j)ij = −R (i, j)ji = sin(φij).
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For the estimation, or statistical analysis, we assume the ηt are Gaussian distributed, while

this assumption is relaxed when studying the probabilistic properties of Xt as well as the

asymptotic properties of the resulting Gaussian-based quasi likelihood estimators (QMLEs).

3.1 Stochastic properties

For the stochastic properties of Xt satisfying equations (5)-(6), we note that V ′Xt satisfies

the stochastic recursion,

V ′Xt = Λ
1/2
t ηt, with λt = W + A (V ′Xt−1)

�2
+Bλt−1, (7)

such that the rich literature on stochastic recursions can be applied in order to state conditions

for strict stationarity and ergodicity as well as conditions for finite moments of Xt. To see

this, rewrite the dynamics of λt in (7) as the stochastic recurrence equation,

λt = W + Φt−1λt−1 (8)

where Φt are i.i.d. random matrices,

Φt = A diag
(
(η2
i,t)

p
i=1

)
+B, (9)

with Φt and λt independent. By Francq and Zakoïan (2019, Theorem 10.6 and Corollary

10.2) and Pedersen (2017, Lemmas B.5 and B.6) we immediately have the following result.

Theorem 3.1. The process (Xt : t ∈ Z) obeying (5)-(6) is strictly stationary and ergodic if

and only if ξ < 0, where ξ is the top Lyapunov coeffi cient of (Φt : t ∈ Z) defined by

ξ = lim
n→∞

n−1E(log ||
n∏
t=1

Φt||), (10)

with Φt defined in (9). The strictly stationary and ergodic process has E‖Xt‖s < ∞ for

some s > 0. Moreover, for k ∈ N, E||Xt||2k < ∞ if and only if {ρ(E(H⊗kt )) < 1 and

E||ηt||2k <∞}.

Remark 1. Notice that a necessary and suffi cient condition for finite second order moments,
E||X�2

t || <∞, of the strictly stationarity and ergodic process (Xt : t ∈ Z) is that ρ(A+B) <

1. In this case, the unconditional variance of the process is E (XtX
′
t) = E (Ωt) = E(V ΛtV

′) =

V (diag {(Ip − A−B)−1W})V ′.
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3.2 Quasi-Maximum Likelihood Estimation

The parameters of the λ-GARCH model in (5)-(6) are given by,

θ = (W ′, vec(A)′, vec(B)′, φ′)′,

with parameter space Θ,

Θ = Θω ×ΘA ×ΘB ×Θφ.

Here ΘW = [ωL, ωU ]p for some 0 < ωL < ωU < ∞, ΘA := [0, αU ]p
2
for some 0 < αU < ∞,

ΘB ⊂ Rp
2

+ such that supvec(B)∈ΘB
ρ(B) < 1, and Θφ = [0, π/2](p+1)p/2. We make the following

standard assumption:

Assumption 3.1. The true value of the parameter vector θ0 ∈ Θ and Θ is compact.

Given a realization (Xt : t = 0, 1, . . . , T ) of the λ-GARCH process in (5)-(6), the Gaussian

quasi-maximum likelihood estimator (QMLE), θ̂T , for θ is defined as

θ̂T = arg min
θ∈Θ

LT (θ),

where the log-Gaussian likelihood function is given by,

LT (θ) =
T∑
t=1

lt(θ), lt(θ) = log det(Ωt(θ)) +X ′tΩ
−1
t (θ)Xt, (11)

Ωt(θ) = V (θ)Λt(θ)V (θ)′, Λt(θ) = diag(λt(θ)), (12)

λt(θ) = W (θ) + A (θ) (V (θ)′Xt−1)�2 +B (θ)λt−1(θ), t = 1, . . . , T, (13)

with λ0(θ) = λ̄0 fixed and with strictly positive entries. Throughout we make the following

assumption about the data generating process (Xt : t ∈ Z) where A0 = A (θ0) and similarly

for the remaining true parameter values.

Assumption 3.2. Assume that ξ0 < 0, where ξ is defined in (10), such that the process

(Xt : t ∈ Z) is stationary and ergodic with E‖Xt‖s <∞ for some s > 0.

Lastly, in order to show that the QMLE is strongly consistent, we make the following

identification assumptions.

Assumption 3.3. Assume for the i.i.d.(0, Ip) sequence (ηt : t ∈ Z) that ηit and ηjt are

independent for all i 6= j, i, j = 1, ..., p. Moreover, assume that η2
i,t is non-degenerate for

i = 1, . . . , p.
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Assumption 3.4. Assume that the (p× 2p) dimensional matrix [A0, B0] has full rank p.

Moreover, with z ∈ C and θ ∈ Θ, assume that the polynomials A (θ) z and Ip−B (θ) z satisfy

that (Ip −B (θ) z)−1A (θ) z = (Ip −B0z)−1A0z implies θ = θ0.

Assumption 3.5. With θ0 the true value of θ, and for any θ ∈ Θ, let Ṽ = V ′0V where

V = V (θ) and V0 = V (θ0). Assume that for some j ∈ {1, . . . , p}, Ṽjj 6= 0. Moreover, with

Aj and Aj,0 the jth row of A (θ) and A0, and

γt (j) =
(
Aj(V

′Xt)
�2 − Aj,0(V ′0Xt)

�2
)
, (14)

assume that γt (j) conditional on Fηt−1 = σ {ηs, s < t} is degenerate implies that V = V0.

Finally, assume that

V = V0 implies that φ = φ0. (15)

Assumptions 3.3 and 3.4 are standard and in line with existing literature on two-step

estimators as well as theory for ECCC-GARCH type models as in Francq and Zakoïan (2019).

Assumption 3.5 is new and specifically ensures that the rotation parameters φ are identified.

For the case where φ0 ∈ intΘφ we have the following result:

Lemma 1. With θ0 ∈ intΘ and ηt i.i.d.Np (0, Ip), then (14) holds. If φ0 ∈ intΘφ, then (15)

holds.

Remark 2. For our choice of parametrization of V , we note that the first column of V is given
by (V11, . . . , Vp1)′, where V11 =

∏p−1
i=1 cosφi and Vj1 = −

∏p−j
i=1 cosφp−i sinφj−1, j = 2, . . . , p.

Note that for any φ ∈ Θφ there exits a j such that Vj1 6= 0. Moreover, for any j, Vj1 6= 0 on

intΘφ. Hence, Ṽ11 =
∑p

j=1 V0,j1Vj1 6= 0 on Θφ if φ0 ∈ intΘφ.

We have the following result on strong consistency of the QMLE:

Theorem 3.2 (Consistency). Under Assumptions 3.1-3.5, θ̂T → θ0 almost surely.

In order to show that the QMLE is asymptotically Gaussian, we make some additional

assumptions.

Assumption 3.6. The true value of the parameter vector θ0 ∈ intΘ.

Assumption 3.7. The data-generating process satisfies that E‖ηt‖4 < ∞ and E‖Xt‖2+ε <

∞ for some ε > 0.

Assumption 3.8. The matrix A0 has a row with a unique entry.
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The assumptions that θ0 is an interior point and that ηt has finite fourth-order moments

are standard. The assumption of finite second-order moments of Xt is used to show that the

expectation of the third-order partial derivatives of the log-likelihood contribution is finite on

a (suitable) neighborhood around θ0 in the proof of Lemma A.5 in Appendix A.5. Specifically,

the third-order derivatives contain terms essentially of the form

λ̇s,t,i(θ)λ̇s,t,j(θ)λ̇s,t,k(θ)

λ3
s,t(θ)

×
λ

1/2
g,t (θ0)λ

1/2
h,t (θ0)ηh,tηg,t
λs,t(θ)

, (16)

where ηs,t denotes the sth entry of the noise ηt, λs,t(θ) is the sth entry of λt(θ) in (13),

and λ̇s,t,i(θ) = ∂λs,t(θ)/∂θi. Any power of the first factor has finite expectation on the

neighborhood, whereas for the case where g 6= s, it is not obvious that the second factor has

finite expectation for θ 6= θ0. On the other hand, it is straightforward to show that the fraction

is (up to a scaling constant) bounded (uniformly on the neighborhood) by ‖λt(θ0)‖‖ηt‖2 which

has finite expectation provided that E‖Xt‖2 < ∞. By Hölder’s inequality it then follows
that (16) has finite expectation if E‖Xt‖2+ε <∞. Simulations in Appendix D indicate that,
while suffi cient, the condition may not be needed in order for the QMLE to be asymptotically

normal.

We note that the moment requirement is stronger than for the theory for the Gaussian-

based QMLE for the ECCC-GARCH model (Francq and Zakoïan, 2012) and the factor-

GARCH (Hafner and Preminger, 2009b), where only E‖Xt‖ε <∞ for some ε > 0 is needed.

On the other hand, it is milder than the requirements of finite sixth- or eighth-order moments

assumed by Hafner and Preminger (2009a) and Comte and Lieberman (2003) for the VEC

and BEKK class of models, respectively.

Assumption 3.8 is used in the proof of Lemma A.4 in order to show that the expectation

of the Hessian, i.e. the probability limit of T−1∂2LT (θ0)/∂θ∂θ′, is invertible. Typically in the

literature, the proof of invertibility relies on showing that there exists no non-zero γ ∈ Rdθ
such that for all t

γ′
∂λt(θ0)

∂θ
= 0p×1 almost surely. (17)

In much of the existing literature on multivariate GARCHmodels, e.g. Comte and Lieber-

man (2003) on BEKK models and Francq and Zakoïan (2012) ECCC models, such a property

is typically verified by exploiting that, under (17), γ′∂λt(θ0)/∂θ is linear in (V ′0Xt−1)�2 and

λt−1(θ0) and that θ0 is identified. In our model, we do not have linearity as γ′∂λt(θ0)/∂θ

contains terms with partial derivatives with respect to the entries of φ. This leads to addi-

tional considerations about invertibility of J , and we make the additional Assumption 3.8,

see the proof of Lemma A.4 for details.
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We have the following result:

Theorem 3.3 (Asymptotic normality). Under Assumptions 3.1-3.8,

√
T (θ̂T − θ0)

d→ N(0, J−1ΣJ−1),

where J is an invertible matrix defined in (A.26) and Σ is a non-negative definite matrix

defined in (A.11) in the Appendix.

A small simulation study in Appendix D illustrates that the finite-sample distribution of

the QMLE is well-approximated by a normal distribution, and moreover indicate that the

suffi cient moment conditions can be relaxed.

Next, we consider hypothesis testing in the λ-GARCH model motivated by the idea that

a few conditional time-varying linear combinations of λt are driving the volatility of the Xt

process.

4 Reduced Rank of A and B

Consider the λ-GARCH model in (5)-(6) on the form,

λt = W + A(V ′Xt−1)�2 +Bλt−1.

A relevant hypothesis to test is if there are no spillovers between the eigenvalues, that is if the

matrices A and B are diagonal, similar to testing for no volatility spillovers in ECCC-GARCH

models as considered by Pedersen (2017). We here take another direction and consider testing

of the hypothesis that one or more linear combinations of λt are constant. A special case of

this is to test if one or more conditional eigenvalues are constant, similar to the test for a

constant factor in the factor GO-GARCH model by Lanne and Saikkonen (2007).

The hypothesis of (p− q) constant conditional linear combinations of λt may be parame-
trized as the hypothesis Hq of reduced rank q < p of A and B,

Hq : A = γα′ and B = γβ′. (18)

Here γ, α and β are (p× q) dimensional matrices, such that A and B have non-negative

entries. An immediate implication is indeed that the (p− q) combinations γ′cλt are constant,
where γc is (p× p− q) dimensional and γ′cγ = 0 with rank of (γ, γc) equal to p. That is, the

hypothesis is equivalent to (p− q) constant conditional eigenvalue relations γ′cλt, while the
remaining q relations, γ′λt are time-varying.

13



In terms of testing — apart from standard identification issues related to the reduced

rank as well-known from testing reduced rank in e.g. cointegrated vector autoregressive

processes, see e.g. Cavaliere, Rahbek and Taylor (2012) —this raises the issue of non-identified

parameters under Hq as addressed in Andrews (2001) for univariate GARCH models, see

also Pedersen and Rahbek (2019) for GARCH models with exogenous covariates. In the

λ-GARCH case the non-identified parameters appear in the GARCH loadings matrix B,

and hence across equations which requires arguments different from the univariate cases

mentioned.

To illustrate, we start out by considering in Section 4.1 a p = 3 dimensional model with

γ in (18) known which reduces the testing problem to that of a zero row in A and B. Next,

in Section 4.2, we discuss testing of Hq, that is, extend the discussion to include an unknown

γ matrix (and general dimension p). In the empirical illustration in Section 5 we consider

implementation of both cases.

4.1 Testing with γ known

Consider the case of a p = 3 dimensional system with

γ′ =

(
1 0 0

0 1 0

)
.

This is a special case of H2, as with the (3× 2) matrices α and β given by

α =

 α11 α21

α12 α22

α13 α23

 and β =

 β11 β21

β12 β22

β13 β23

 ,
one can write A and B as

A = γα′ =

 α11 α12 α13

α21 α22 α23

0 0 0

 and B = γβ′ =

 β11 β12 β13

β21 β22 β23

0 0 0

 .

We denote this hypothesis by H†2. Observe, that under H
†
2 the loading matrices A and B

indeed have reduced rank (less than or equal to) q = 2, as induced by a zero row. Note also

under H†2, γc = (0, 0, 1)′ such that γ′cλt = λ3t is constant, while the remaining two linear

combinations in γ′λt = (λ1t, λ2t)
′ are time-varying.

Remark 3. The case of testing for a zero row in A and B, or H†2, is similar to testing the
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hypothesis of weak exogeneity known from cointegration analysis, see Harbo et al. (1998).

In terms of testing H†2, it follows that β33 in (the unrestricted) B is not identified analogous

to testing of conditional homoskedasticity in GARCHmodels, see Andrews (2001). Moreover,

for the two remaining eigenvalues λ1t and λ2t under H
†
2,

λjt = ω1 +

3∑
i=1

αji (V
′
iXt−1)

�2
+

3∑
i=1

βjiλit−1

=
(
ωj + βj3ω3

)
+

3∑
i=1

αji (V
′
iXt−1)

�2
+

2∑
i=1

βjiλit−1, j = 1, 2.

Hence, in addition to β33, we also see that the parameters β13 and β23 are non-identified

under the null in the GARCH loadings matrix B. To address this, we proceed as in Pedersen

and Rahbek (2019), and test the observationally equivalent hypothesis H∗2 which is given by

H∗2 : α3i = 0 for i = 1, 2, 3 and β3j = 0 for j = 1, 2. (19)

The idea is to apply a sup likelihood ratio (supLR) test, where the supremum is taken over

the non-identified parameters β13, β23 and β33.

To distinguish the non-identfied parameters from the identified, partition the parameters

as (θ′, δ′)′, with θ = ((ωi)
3
i=1 , (αij)

3
i,j=1 ,

(
βij
)
i=1,2,3 j=1,2

, (φi)
3
i=1)′ and δ = (βi3)3

i=1. The

parameter space is given by the product Θ × Θsup, where Θ and Θsup are compact. Lastly,

consider the parameter space for θ as restricted by H∗2, i.e.

Θ∗ = {θ ∈ Θ : α3i = 0 for i = 1, 2, 3 and β3j = 0 for j = 1, 2}.

The test relies on estimating θ restricted and unrestricted for a given δ ∈ Θsup, i.e. let

θ̃T,δ = arg max
θ∈Θ∗

LT (θ, δ) and θ̂T,δ = arg max
θ∈Θ

LT (θ, δ) , for δ ∈ Θsup. (20)

The supLR statistic is given by

supLRT (H∗2) = sup
δ∈Θsup

LT

(
θ̂T,δ, δ

)
− sup

δ∈Θsup

LT

(
θ̃T,δ, δ

)
. (21)

Under regularity conditions given in Appendix B the statistic converges in distribution to a

limiting distribution L,
supLRT (H∗2)

d→ L, (22)

with L given by (B.41). Also in Appendix B the implementation of the asymptotic test is
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discussed which is applied in Section 5.

Remark 4. The key conditions for (22) as given in Appendix B are: (i) that θ̃T,δ and θ̂T,δ
are consistent for θ0 for any δ ∈ Θsup, (ii) that the score as a process indexed by δ converges

weakly to a Gaussian process, and (iii) that the Hessian matrix is invertible uniformly on Θsup.

The conditions (i) and (iii) rely on finding conditions such that θ0 is identified, whereas (ii)

typically relies on showing that the score obeys a functional CLT. The latter may be shown

to hold if the score process converges in finite-dimensional distribution to a Gaussian vector,

and that the score process is tight, see e.g. Pedersen and Rahbek (2019, proof of Lemma A.3).

In line with Pedersen and Rahbek (2019), one may need stronger moment conditions than

the ones in Assumption 3.7 in order to prove tightness. Likewise, due to the fact that θ0 is a

boundary point of Θ, it may require higher-order moments of Xt in order so show that ratios

of the type (16) have finite expectation, similar to Francq and Zakoïan (2009) and Pedersen

(2017) where finite sixth-order moments are imposed.

4.2 The general case of reduced rank A and B matrices

Next consider the general case Hq of reduced rank q in the p-dimensional λ -GARCH model

with general γ, α and β matrices.

Observe initially that with the “ARCH”part of the restrictions in Hq imposed, A = γα′,

and with γ̄ = γ (γ′γ)−1 it holds by definition that

γ̄′λt = γ̄′W + α′(V ′Xt−1)�2 + γ̄′Bγγ̄′λt−1 + γ̄′Bγcγ̄
′
cλt−1,

γ̄′cλt = γ̄′cW + γ̄′cBγγ̄
′λt−1 + γ̄′cBγcγ̄

′
cλt−1.

Next, for γ̄′cλt to be constant, γ̄
′
cBγ = 0 is needed, in which case the second equation reduces

to

γ̄′cλt = γ̄′cW + γ̄′cBγcγ̄
′
cλt−1,

which, similar to the H∗2 example, implies that the (p− q)2 parameters γ̄′cBγc are not identi-

fied. Moreover, as γ̄′cλt are constant, also γ̄
′Bγc are not identified in the equation for γ̄

′λt.

Collecting terms, as (γ, γc) is of full rank p by definition, it holds that the parameters in δ

given by

δ = Bγc (p× (p− q))

are not identified under the null. One may therefore consider a sup-based testing approach

keeping δ fixed, and, in principle, a supLR test statistic similar to (21) can be computed.

However, the fact that γ is unknown means that a reparametrization is needed to ensure
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identification as well as variational independence of the remaining parameters of the model.

In addition, the regularity conditions for convergence in distribution of supLR statistic are

beyond the scope of this paper, and we instead propose to apply a bootstrap based test. The

details of the bootstrap are given in Appendix C and is illustrated in the next Section 5.

5 An Empirical Illustration

In this section we provide an empirical illustration of the λ-GARCH model, and test nullity

of rows, as well as reduced rank of the λ-GARCH loading matrices. We use daily return

data for three financial equities2 from the S&P 500 Index with sample period January 3rd

2006 to January 2nd 2018. The log-returns are shown in Figure 5. Initial inspection of the

data reveals that the unconditional densities are heavy-tailed and the data is characterized

by ARCH effects. The log-returns appear to exhibit volatility clustering during the same

periods, and hence may share a common factor (or eigenvalue) driving their volatility.

[Figures 4 and 5 here]

Table 1 contains the parameter estimates of the trivariate λ-GARCH model. A few of the

parameter estimates in the unrestricted model are on the boundary of the parameter space,

indicating that the distribution of the associated estimators may not be Gaussian, but rather

follow a half-normal type distribution. The residuals of the unrestricted model and their

densities are given in Figure 6. The densities of the residuals are slightly heavy-tailed, and

unreported misspecification test indicate no ARCH-effects and no residual autocorrelation.

The estimated conditional eigenvalues process λt is highly persistent as ρ(ÂT + B̂T ) ≈
0.997. Thus λt, and hence Xt, exhibit near-IGARCH-type behavior, similar to standard

univariate and multivariate GARCH models. The high degree of persistence is likely to be

caused by the almost explosive spike in volatility during the financial crisis of 2008-2009, as

can be seen in Figure 7. We note that λ3t on average explains 85% of the variation in the

dataset, and inspecting the corresponding eigenvector reveals that this can be interpreted

as a “market factor", with each asset have a (normalized) weight of roughly 30% in the

rotated return. The two remaining eigenvalues individually explain 6 − 8% of the variation

on average, and their corresponding rotated returns are long-short portfolios of the data.

Importantly, while the two smaller eigenvalues are of lesser importance compared to the

“market eigenvalue", they are not constant, and all rotated returns have inherited ARCH

effects, as can be seen from Figure 8.

2Bank of America corp. (BAC), JPMorgan Chase & co. (JPM), and Wells Fargo (WFC).
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[Table 1 here]

Consider next hypothesis of a zero row in A and B, that is H∗2 in (19). As mentioned in the

previous section, the hypothesis is tested using a supLR test and critical values are obtained

by simulations, see Appendix B.1 for details.3 Based on the supLR statistic of 1963.16 and

the associated critical value of 738.35 (both given in Table 1), we reject the hypothesis of

a zero row. Intuitively, this seems sensible: under the hypothesis one of the eigenvalues is

constant, and the associated rotated return homoskedastic. As already noted, this is not the

case as all three rotated returns in the unrestricted model clearly have ARCH-effects (see

Figure 8).

[Figure 6 here]

The second hypothesis that we test the less restrictive assumption of reduced rank r = 2

of the matrices A and B, that is H2 in (18). Under H2 all eigenvalues are allowed to remain

time-varying, while p−r = 1 linear combination of these is constant. To ensure identification

of γ, α and β under H2, the upper (2× 2) block of γ is set to I2, while the last row of γ is

freely varying. We obtain critical values by the bootstrap algorithm in Appendix C, see also

Cavaliere et al. (2019). The critical value is obtained from B = 399 bootstrap replications.

The LR statistic is 3.0 and the associated bootstrapped 95% critical value is 18.56 such that

H2 is not rejected.4 From the estimated parameters for the reduced rank model (reported

in tables 2 and 3), the estimated parameters, eigenvalues, and conditional covariances for

unrestricted model and reduced rank model are non-distinguishable, and based on the AIC

and BIC, the reduced rank model is in fact preferable to the unrestricted model.

[Table 2 here]

[Table 3 here]

From this empirical illustration we make the following notes: First, the λ—GARCH model

performs well for the series studied, and the estimated time-varying eigenvalues and eigen-

vectors are easy to interpret, reflecting market conditions at a given time. Second, despite

3For each entry of the non-identified parameter vector δ = (B13, B23, B33)′ we use k = 20 equi-distant
points between 0 and 0.99 (both points included), leading to a grid of 203 = 8000 points for δ. Steps 1-3 of
the algorithm for the asymptotic distribution of the test only draws from grid points in which: i) the Hessian
matrix is invertible, as determined by the reciprocal condition number, and ii) the log-likelihood value is
close to the maximum likelihood value. That is, for i = 1, . . . ,dim∆, we only use a given grid point if rcond
(Ĵδi) > 10−12 and LT (θ, δi) + 5 ≥ supδi∈∆ LT (θ, δi) both hold. We use M = 10000 Monte Carlo draws to
determine the critical value.

4We also test the hypothesis that the rank of A and B is q = 1. This test is strongly rejected, with a LR
test of 140.89 and a bootstrapped critical value of 30.57.
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the fact that the three equities are all in the same sector and have a shared source of the

majority of variation in a “market”eigenvalue, we cannot restrict one of the lesser important

eigenvalues to be constant without a significant loss of explanatory power. Third, we note

the usefulness of the reduced rank structure in conditional covariance matrices. The finding

that the parameter matrices A and B are reduced rank is novel, and it may have interesting

implications for the applications of models for the conditional covariance matrices, as it is

a coherent way of imposing a structure and reduce the dimensionality of the model without

losing explanatory power.
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APPENDIX

A Mathematical Proofs

A.1 Notation and definitions

Throughout, we let % ∈ (0, 1) denote a generic constant, and K is a generic positive constant

or positive F−1-measurable random variable. Moreover, let Yt(θ) := V (θ)′Xt denote the

orthogonalized returns. In light of Assumption 3.2, we consider the ergodic version of the

log-likelihood contributions. That is, for any t ∈ Z and θ ∈ Θ,

l?t (θ) = log det(Ω?
t (θ)) +X ′tΩ

?−1
t (θ)Xt, (A.1)

Ω?
t (θ) = V (θ)Λ?

t (θ)V (θ)′, Λ?
t (θ) = diag(λ?t (θ)), (A.2)

λ?t (θ) = W + A(V (θ)′Xt−1)�2 +Bλ?t−1(θ). (A.3)

For derivatives,

Ḃi =
∂B(θ)

∂θi
, B̈i,j =

∂2Bt(θ)

∂θi∂θj
,
...
Bi,j,k =

∂3B(θ)

∂θi∂θj∂θk
, i, j, k ∈ {1, . . . , dθ},

denote the partial derivatives of some scalar, vector, or matrix B(θ) as a function of θ ∈ Θ

with dθ the dimension of θ.

Furthermore we let Ω?
t = Ω?

t (θ0), that is Ω?
t evaluated at the true parameter values, θ0.

The same holds for other quantities which depending on θ0, e.g. Yt = Yt(θ0), Λ?
t = Λ?

t (θ0),

and λ?t = λ?t (θ0)

A.2 Proof of Theorem 3.2

It suffi ces to verify conditions A1-A5 of Francq and Zakoïan (2019, Theorem 10.7). With

Ω?
t (θ) defined in (A.2), we immediately notice that Assumption 3.2 implies thatE[‖Ω?

t (θ0)‖]s <
∞ for some s > 0 (condition A3). Moreover, recall that ρ(B) < 1 on Θ, and define the func-

tion λ : (Rp)∞ × Θ → Rp, with (x0, x−1, . . .) a sequence of vectors in Rp and θ ∈ Θ, given

by

λ(x0, x−1, . . . ; θ) =
∞∑
i=0

Bi
[
W + A(V (θ)′x−i)

�2
]
.

We note that for any sequence (x0, x−1, . . .), λ(x0, x−1, . . . ; ·) is continuous on Θ (condition

A5). It remains to show the following three points.
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(i) With Ωt(θ) and Ω?
t (θ) defined in (12) and (A.2), respectively, supθ∈Θ ‖Ω−1

t (θ)‖ ≤ K and

supθ∈Θ ‖Ω?−1
t (θ)‖ ≤ K almost surely.

(ii) supθ∈Θ ‖Ωt(θ)− Ω?
t (θ)‖ ≤ K%t almost surely.

(iii) For θ ∈ Θ, Ω?
t (θ) = Ω?

t (θ0) almost surely ⇒ θ = θ0.

Proof of (i): Note that supθ∈Θ ‖Ω−1
t (θ)‖ ≤ supθ∈Θ ‖V ‖2‖Λ−1

t (θ)‖ ≤ K
√
pω−2

L ≤ K. Likewise,

supθ∈Θ ‖Ω?−1
t (θ)‖ ≤ K.

Proof of (ii): With λt(θ) and λ?t (θ) defined in (13) and (A.3), respectively, using that

supθ∈Θ ρ(B) < 1, we have that

sup
θ∈Θ
‖Ωt(θ)− Ω?

t (θ)‖ = sup
θ∈Θ
‖λt(θ)− λ?t (θ)‖ = sup

θ∈Θ
‖Bt(λ̄0 − λ?0(θ))‖ ≤ %tK.

Proof of (iii): For θ ∈ Θ, suppose that Ω?
t (θ) = Ω?

t (θ0) a.s., such that with Ṽ := V (φ0)′V (φ)

it holds that

Ṽ Λ?
t (θ) = Λ?

t (θ0)Ṽ a.s.

Suppressing dependency on t this is,
Ṽ11Λ?

11(θ) Ṽ12Λ?
22(θ) . . . Ṽ1pΛ

?
pp(θ)

Ṽ21Λ?
11(θ) Ṽ22Λ?

22(θ)
...

. . .

Ṽp1Λ?
11(θ) Ṽp2Λ?

22(θ) ṼppΛ
?
pp(θ)

 =


Ṽ11Λ?

11(θ0) Ṽ12Λ?
11(θ0) . . . Ṽ1pΛ

?
11(θ0)

Ṽ21Λ?
22(θ0) Ṽ22Λ?

22(θ0)
...

. . .

Ṽp1Λ?
pp(θ0) Ṽp2Λ?

pp(θ0) ṼppΛ
?
pp(θ0)

 a.s.

By Assumption 3.5, there exists a j such that Ṽjj 6= 0. Hence, for this j,

Λ?
jj(θ) = Λ?

jj(θ0) a.s.

if and only if,

ωj + Aj(V
′Xt−1)�2 +Bjλ

?
t−1(θ) = ω0,j + A0,j(V

′
0Xt−1)�2 +B0,jλ

?
t−1(θ0) a.s.

if and only if,

ω1 − ω0,j +Bjλ
?
t−1(θ)−B0,jλ

?
t−1(θ0) = A0,j(V

′
0Xt−1)�2 − Aj(V ′Xt−1)�2 a.s. (A.4)

Noting that the left-hand-side of (A.4) is Fηt−2-measurable, we have that A0,j(V
′

0Xt−j)
�2 −

Aj(V
′Xt−j)

�2| Fηt−2 is degenerate, which by Assumption 3.5 implies that V = V0, and more-

over, by Assumption 3.5, φ = φ0. Since V = V0, we have, by Assumptions 3.3 and 3.4
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and arguments given by Francq and Zakoïan (2019, p.308), that (W ′, vec(A)′, vec(B)′) =

(W ′
0, vec(A0)′, vec(B0)′). We conclude that point 3 holds.

A.3 Proof of Theorem 3.3

Using that θ0 ∈ intΘ, with Θ compact, and l?t (θ) defined in (A.1) is three times continuously

differentiable (almost surely), it suffi ces to verify the following conditions (see e.g. Francq

and Zakoïan, 2012):

(Asymptotic normality of the score) With l?t (θ) defined in (A.1),

1√
T

T∑
t=1

∂l?t (θ0)

∂θ

D→ N(0,Σ), (A.5)

with

Σ := E

[
∂l?t (θ0)

∂θ

∂l?t (θ0)

∂θ′

]
nonnegative definite. (A.6)

(Hessian) With l?t (θ) defined in (A.1),

1

T

T∑
t=1

∂2l?t (θ0)

∂θ∂θ′
p→ E

[
∂2l?t (θ0)

∂θ∂θ′

]
=: J, (A.7)

with J invertible.

(Expectation of Third Order Derivative) With l?t (θ) defined in (A.1) for some neigh-
borhood N(θ0) ⊂ Θ around θ0,

E

[
max

i,j,k=1,...,dθ
sup

θ∈N(θ0)

∣∣∣∣ ∂3l?t (θ)

∂θi∂θj∂θj

∣∣∣∣
]
<∞.

(Initial Values) With lt(θ) defined in (11) and l?t (θ) defined in (A.1), for some neighborhood
N(θ0) around θ0, ∥∥∥∥∥

T∑
t=1

(
∂lt(θ0)

∂θ
− ∂l?t (θ0)

∂θ

)∥∥∥∥∥ = op(T
1/2),

and

sup
θ∈N(θ0)

∥∥∥∥∥
T∑
t=1

(
∂2lt(θ)

∂θ∂θ′
− ∂2l?t (θ)

∂θ∂θ′

)∥∥∥∥∥ = op(T ).

Proof of Asymptotic Normality: From Lemma A.1 we have that E[∂l?t (θ0)/∂θ|Ft−1] = 0 and

E[‖∂l?t (θ0)/∂θ‖] < ∞. By a CLT for stationary and ergodic martingale differences (e.g.
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Brown, 1971), we conclude that (A.5) holds. The matrix Σ in (A.6) is nonnegative definite

by construction.

Proof of Hessian: From Lemma A.4, we have that E[‖∂2l?t (θ0)/∂θ∂θ′‖] <∞. By the Ergodic
Theorem, we conclude that (A.7) holds. Moreover, Lemma A.4 states that the matrix J is

invertible.

Proof of Third Derivative: This property holds by Lemma A.5.

Proof of Initial Value: This holds by arguments similar to the ones given in Francq and

Zakoïan (2019, pp.308).

A.4 Proof of Lemma 1

We start out by proving that (15) holds. Recall that φ contains p(p − 1)/2 parameters.

Due to the structure of V and since φ0 ∈ intΘφ = (0, π/2)p(p−1)/2, it suffi ces to consider the

p(p − 1)/2 entries of V and V0 below their diagonals. Consider initially the case for p = 3,

where (φ1, φ2, φ3)′ ≡ (φ1,2, φ1,3, φ2,3)′ and

V =

 cosφ1 cosφ2 cosφ3 sinφ1 − cosφ1 sinφ2 sinφ3 sinφ1 sinφ3 + cosφ1 cosφ3 sinφ2

− cosφ2 sinφ1 cosφ1 cosφ3 + sinφ1 sinφ2 sinφ3 cosφ1 sinφ3 − cosφ3 sinφ1 sinφ2

− sinφ2 − cosφ2 sinφ3 cosφ2 cosφ3


Starting from the last element of the first column of V ,

V3,1(φ0) = V3,1(φ) =⇒ − sinφ0,2 = − sinφ2 =⇒ φ0,2 = φ2.

Next, notice that

V2,1(φ0) = V2,1(φ) =⇒ − sinφ0,1 cos(φ0,2) = − sinφ1 cos(φ2) =⇒ φ0,1 = φ1

V3,2(φ0) = V3,2(φ) =⇒ − sinφ0,3 cos(φ0,2) = − sinφ3 cos(φ2) =⇒ φ0,3 = φ3,

and hence V = V0 ⇒ φ = φ0. This argument can be extended to arbitrary p ≥ 2. In partic-

ular, with (φ1, φ2, . . . , φp−1, φp, . . . , φp(p−1)/2)′ ≡ (φ1,2, φ1,3, . . . , φ1,p, φ2,3, . . . , φ(p−1),p)
′ we have

that Vp,1(θ0) = Vp,1(θ) =⇒ − sinφ0,p−1 = − sinφp−1 =⇒ φ0,p−1 = φp−1 for φ ∈ intΘφ.

We also note that for any p ≥ 2, the first column and last row of V are given respectively

by

Vj,1 = − sinφj−1

p−j∏
i=1

cosφp−i, j = 2, . . . , p− 1,
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Vp,j = − sinφp(p−1)/2−(p−j)(p−j−1)/2

p−1∏
i=p−j+1

cosφp(p−1)/2−i(i−1)/2, j = 2, . . . , p− 1.

This gives the (recursive) identification of 2p−3 parameters (φp−1, φj−1, φp(p−1)/2−(p−j)(p−j−1)/2 :

j = 2, . . . , p−1). The remaining parameters can be shown to be identified by considering next

Vp−1,2 and moving row-wise up and column-wise right through elements Vj,2 for j = p−2, . . . , 3

and Vp−1,j for j = 3, . . . , p − 2, which yields identification of another 2(p − 3) − 1 parame-

ters. Similar arguments may be repeated for Vp−2,3 and so forth, until all elements below the

diagonal have been covered. Hence, we have that V = V0 ⇒ φ = φ0.

Next, we show that (14) holds. Suppose that for some j ∈ {1, . . . , p},

Aj(V
′Xt)

�2 − Aj,0(V ′0Xt)
�2|Fηt−1 is degenerate. (A.8)

Note that V ′0Xt = V ′0V0Λ
1/2
t (θ0)ηt = Λ

1/2
t (θ0)ηt =: M0ηt and V

′Xt = V
′
V0Λ

1/2
t (θ0)ηt =: Mηt

with M0 and M Fηt−1-measurable matrices. If ηt ∼ N(0, Ip), then conditional on Fηt−1,

Y =

[
Y1

Y2

]
:=

[
M0ηt

Mηt

]
∼ N(0,Σ)

with

Σ =

[
Σ11 Σ12

Σ21 Σ22

]
=

[
M0M

′
0 M0M

′

MM ′
0 MM ′

]
.

Let κ = Σ12Σ−1
22 . Then Y1|2 := Y1 − κY2 and Y2 are conditionally independent, since (condi-

tional on Fηt−1) [
Y1|2

Y2

]
∼ N(0, Σ̃)

with

Σ̃ =

[
Ip −κ
0 Ip

][
Σ11 Σ12

Σ12 Σ22

][
Ip −κ
0 Ip

]′

=

[
Σ11 − Σ12Σ−1

22 Σ21 0

0 Σ22

]
.

Note that Y1|2|Fηt−1 (and hence (Y1|2)�2|Fηt−1) is non-degenerate if and only if M 6= M0 if and

only if V 6= V0. Hence (A.8) is equivalent to

A0,j(Y1 − Y1|2 + Y1|2)�2 − Aj(Y2)�2|Fηt−1 is degenerate
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if and only if

A0,j(κY2 + Y1|2)�2 − Aj(Y2)�2 |Fηt−1 is degenerate

if and only if

A0,j(Y1|2)�2 + A0,j(κY2)�2 + 2A0,j(κY2 � Y1|2)− Aj(Y2)�2|Fηt−1 is degenerate

Since Y1|2 and Y2 are Fηt−1-conditionally independent and all entries of A0,j are strictly pos-

itive, as θ0 is an interior point of Θ, we can only have that A0,j(Y1|2)�2 + A0,j(κY2)�2 +

2A0,j(κY2 � Y1|2)− Aj(Y2)�2|Ft−1 is degenerate if Y1|2|Fηt−1 is degenerate, which contradicts

V 6= V0.

A.5 Auxiliary Lemmas

Lemma A.1. With l?t (θ) defined in (A.1), under Assumptions 3.1-3.8, it holds that

E

[
∂l?t (θ0)

∂θ

∣∣∣∣Ft−1

]
= 0 almost surely, (A.9)

E

[∥∥∥∥∂l?t (θ0)

∂θ

∥∥∥∥2
]
<∞, and (A.10)

Σ = E

[
∂l?t (θ0)

∂θ

∂l?t (θ0)

∂θ′

]
. (A.11)

Proof of Lemma A.1: With Yt(θ) = V (φ)′Xt, for i = 1, . . . , dθ, we have from Lemma A.2

that

∂l?t (θ)

∂θi
= tr

{
Λ?−1
t (θ)Λ̇?

t,i(θ)
[
Ip − Λ?−1

t (θ)Yt(θ)Y
′
t (θ)

]}
+ 2Ẏ ′t,i(θ)Λ

?−1
t (θ)Yt(θ),

with λ̇t,i(θ) := ∂λ?t (θ)/∂θi and Ẏt,i(θ) := ∂Yt(θ)/∂θi. Evaluating at θ0, we have

∂l?t (θ0)

∂θi
= tr

{
Λ?−1
t Λ̇?

t,i [Ip − ηtη′t]
}

+ 2Ẏ ′t,iΛ
?−1
t Yt

=: M1,t,i +M2,t,i. (A.12)

Suppose initially thatM1,t,i andM2,t,i are integrable such that their conditional expectations

exist - this will indeed be verified below. We have immediately that

E[M1,t,i|Ft−1] = 0 almost surely, (A.13)
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since Λ?−1
t (θ0)Λ̇?

t,i is Ft−1 measurable and E[ηtη
′
t|Ft−1] = E[ηtη

′
t] = Ip. Turning to M2,t note

that

V (θ)V ′(θ) = Ip,

which implies that
∂V (θ)

∂θi
V ′(θ) + V (θ)

∂V ′(θ)

∂θi
= 0.

With Si(θ) := (∂V (θ)/∂θi)V
′(θ), we have that

∂V (θ)

∂θi
= Si(θ)V (θ),

where S ′i(θ) = −Si(θ), and, hence, Si(θ) is a skew-symmetric matrix satisfying

tr(Si(θ)) = 0. (A.14)

For θ = θ0 we then have

M2,t,i = 2Ẏ ′t,iΛ
?−1
t Yt = 2X ′tSiV Λ?−1

t V ′Xt = 2tr{SiΩ?−1
t XtX

′
t},

using E[XtX
′
t|Ft−1] = Ω?

t and (A.14),

E[Mt,2,i|Ft−1] = 2tr{Si} = 0 almost surely. (A.15)

Combining (A.12), (A.13), and (A.15), we conclude that (A.9) holds. Turning to (A.10), we

note that it suffi ces to show that E[(∂l?t (θ0)/∂θi)
2] < ∞ for all i, which in light of (A.12)

and the Cauchy-Schwarz inequality holds if E[M2
1,t,i] <∞ and E[M2

2,t,i] <∞. We have that,
almost surely,

E
[
M2

1,t,i|Ft−1

]
= E

[
tr2
{

Λ?−1
t Λ̇?

t,i [Ip − ηtη′t]
}
|Ft−1

]
=

p∑
q=1

(
E[η4

q,t]− 1
)

[Λ?−1
t Λ̇?

t,i]
2
qq,

where we note that E[η4
q,t] <∞, q = 1, . . . , p, by Assumption 3.6. Hence,

E[M2
1,t,i] =

p∑
q=1

(
E[η4

q,t]− 1
)
E
[
[Λ?−1

t Λ̇?
t,i]

2
qq

]
,

and by Lemma A.6, we have that E[M2
1,t,i] < ∞, i = 1, . . . , dθ. Turning to the variance of
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M2,t,i, note that with S̃i = V S ′iV
′,

M2
2,t,i = 4X ′tSiV Λ?−1

t V ′XtX
′
tSiV Λ?−1

t V ′Xt

= 4tr
(
SiΩ

?−1
t XtX

′
tSiΩ

?−1
t XtX

′
t

)
= 4tr(S̃ ′iΛ

?−1
t YtY

′
t S̃
′
iΛ

?−1
t YtY

′
t )

≤ K‖Λ?−1
t YtY

′
t ‖2 = K

(
Y ′t YtY

′
t Λ

?−2
t Yt

)
= K

(
p∑
i=1

y2
it

)(
p∑
i=1

y2
it

λ?2it

)
. (A.16)

We note that (A.16) consists of terms of the form

y2
ity

2
jt

λ?2it
= η2

itη
2
jt

λ?jt
λ?it
.

Using Assumption 3.7 and that for θ0 ∈ intΘ,

λ?k,t
λ?l,t

=
ω0,k +

∑p
i=1 α0,kiy

2
i,t−1 +

∑p
i=1 β0,kiλ

?
i,t−1

ω0,l +
∑p

i=1 α0,liy2
i,t−1 +

∑p
i=1 β0,liλ

?
i,t−1

≤ ω0,k

ω0,l

+

p∑
i=1

α0,ki

α0,li

+

p∑
i=1

β0,ki

β0,li

≤ K, (A.17)

we have that η2
itη

2
jtλ

?
jt/λ

?
it is integrable for any i, j, and we conclude that E[M2

2,t,i] < ∞ for

any i.

Lemma A.2. With l?t (θ) defined in (A.1),

∂l?t (θ)

∂θi
= tr

{
Λ?−1
t (θ)Λ̇?

t,i(θ)
[
Ip − Λ?−1

t (θ)Yt(θ)Y
′
t (θ)

]}
+ 2Ẏ ′t,i(θ)Λ

?−1
t (θ)Yt(θ), i = 1, . . . , dθ,

with

λ̇
?

t,i :=
∂λ?t (θ)

∂θi
and Ẏt,i :=

∂Yt(θ)

∂θi
.

Proof of Lemma A.2: We have that,

∂l?t (θ)

∂θi
=
∂ log |Λ?

t (θ)|
∂θi

+
∂Y ′t (θ)Λ

?
t (θ)

−1Yt(θ)

∂θi
.

Consider now,
∂ log |Λ?

t (θ)|
∂θi

= tr{Λ?−1
t (θ)Λ̇?

t,i(θ)}.

Next, consider Y ′t (θ)Λ
?−1
t (θ)Yt(θ) = tr{Yt(θ)Y ′t (θ)Λ?−1

t (θ)}. Since Yt(θ)Yt(θ)′ is symmetric
and Λ?−1

t (θ) is diagonal we find

∂tr{Yt(θ)Y ′t (θ)Λ?−1
t (θ)}

∂θi
= 2Ẏ ′t,i(θ)Λ

?−1
t (θ)Yt(θ)− tr

{
Yt(θ)Y

′
t (θ)Λ

?−1
t (θ)Λ̇?

t,i(θ)Λ
?−1
t (θ)

}
.
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Hence, the score with respect to θi is

∂l?t (θ)

∂θi
= tr{Λ?−1

t (θ)Λ̇?
t,i(θ)} − tr

{
Yt(θ)Y

′
t (θ)Λ

?−1
t (θ)Λ̇?

t,i(θ)Λ
?−1
t (θ)

}
+ 2Ẏ ′t,i(θ)Λ

?−1
t (θ)Yt(θ)

= tr
{

Λ?−1
t (θ)Λ̇?

t,i(θ)
[
Ip − Λ?−1

t (θ)Yt(θ)Y
′
t (θ)

]}
+ 2Ẏ ′t,i(θ)Λ

?−1
t (θ)Yt(θ).

Lemma A.3. With l?t (θ) defined in (A.1), for i, j = 1, . . . , dθ,

∂2l?t (θ)

∂θi∂θj
= −tr

(
Λ?−1
t (θ)Λ̇?

t,j(θ)Λ
?−1
t (θ)Λ̇t,i(θ)

)
+ tr

(
Λ?−1
t (θ)Λ̈?

t,i,j(θ)
)

+ tr
(

Λ?−1
t (θ)Λ̇?

t,j(θ)Λ
?−1
t (θ)Λ̇?

t,i(θ)Λ
?−1
t (θ)Yt(θ)Y

′
t (θ)

)
− tr

(
Λ?−1
t (θ)Λ̈?

t,i,j(θ)Λ
?−1
t (θ)Yt(θ)Y

′
t (θ)

)
+ tr

(
Λ?−1
t (θ)Λ̇?

t,i(θ)Λ
?−1
t (θ)Λ̇?

t,j(θ)Λ
?−1
t (θ)Yt(θ)Y

′
t (θ)

)
− 2tr

(
S̃ ′j(θ)(θ)Λ

?−1
t (θ)Λ̇?

t,i(θ)Λ
?−1
t (θ)Yt(θ)Y

′
t (θ)

)
+ 2tr

(
(Ṡi,j(θ) + Si(θ)Sj(θ))Ω

?−1
t (θ)XtX

′
t

)
+ 2tr

(
V ′(θ)

(
Ṡi,j(θ) + Si(θ)Sj(θ)

)
V (θ)Λ?−1

t (θ)Yt(θ)Y
′
t (θ)

)
− 2tr

(
S̃i(θ)Λ

?−1
t (θ)Λ̇?

t,j(θ)Λ
?−1
t (θ)Yt(θ)Y

′
t (θ)

)
+ 2tr

(
S̃ ′i(θ)Λ

?−1
t (θ)S̃j(θ)Yt(θ)Y

′
t (θ)

)
,

(A.18)

where Si(θ) and S̃i(θ) are skew-symmetric matrices given by,

Si(θ) =
∂V (θ)

∂θi
V ′(θ), (A.19)

S̃ ′i(θ) = V ′(θ)Si(θ)V (θ) = −V ′(θ)S ′i(θ)V (θ) = −S̃i(θ). (A.20)

Proof of Lemma A.3: Throughout the proof, we suppress the dependence on θ. From the

proof of Lemma A.2 we have that

∂2l?t (θ)

∂θi∂θj
=
∂tr(Λ?−1

t Λ̇?
t,i)

∂θj
−
∂tr(Λ?−1

t Λ̇?
t,iΛ

?−1
t YtY

′
t )

∂θj
+ 2

∂Ẏ ′t,iΛ
?−1
t Yt

∂θj

= N1,t −N2,t + 2N3,t.

Where the first term, N1,t, is

∂tr(Λ?−1
t Λ̇?

t,i)

∂θj
= −tr

(
Λ?−1
t Λ̇?

t,jΛ
?−1
t Λ̇?

t,i

)
+ tr

(
Λ?−1
t Λ̈?

t,i,j

)
. (A.21)
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The second term, N2,t, is

∂tr(Λ?−1
t Λ̇?

t,iΛ
?−1
t YtY

′
t )

∂θj
= tr

(
∂Λ?−1

t Λ̇?
t,i

∂θj
Λ?−1
t YtY

′
t + Λ?−1

t Λ̇?
t,i

∂Λ?−1
t YtY

′
t

∂θj

)

= −tr
(

Λ?−1
t Λ̇?

t,jΛ
?−1
t Λ̇?

t,iΛ
?−1
t YtY

′
t

)
+ tr

(
Λ?−1
t Λ̈?

t,i,jΛ
?−1
t YtY

′
t

)
+ tr

(
Λ?−1
t Λ̇?

t,iΛ
?−1
t

(
Ẏt,jY

′
t + YtẎ

′
t,j

))
− tr

(
Λ?−1
t Λ̇?

t,iΛ
?−1
t Λ̇?

t,jΛ
?−1
t YtY

′
t

)
= −tr

(
Λ?−1
t Λ̇?

t,jΛ
?−1
t Λ̇?

t,iΛ
?−1
t YtY

′
t

)
+ tr

(
Λ?−1
t Λ̈?

t,i,jΛ
?−1
t YtY

′
t

)
− tr

(
Λ?−1
t Λ̇?

t,iΛ
?−1
t Λ̇?

t,jΛ
?−1
t YtY

′
t

)
+ tr

(
Λ?−1
t Λ̇?

t,iΛ
?−1
t Ẏt,jY

′
t

)
+ tr

(
Λ?−1
t Λ̇?

t,iΛ
?−1
t YtẎ

′
t,j

)
Noting that Dt,i := Λ?−1

t Λ̇?
t,iΛ

?−1
t is symmetric and that Ẏt,i = V ′S ′iXt with Si defined in

(A.19),

tr
(
Dt,iẎt,jY

′
t

)
= tr

(
Λ?−1
t Λ̇?

t,iΛ
?−1
t V ′S ′jXtX

′
tV
)

= tr
(

Λ?−1
t Λ̇?

t,iΛ
?−1
t V ′S ′jV YtY

′
t

)
= tr

(
S̃ ′jΛ

?−1
t Λ̇?

t,iΛ
?−1
t YtY

′
t

)
,

with S̃j = V ′SjV defined in (A.20). Hence, the second term of the Hessian, N2,t, is

∂tr(Λ?−1
t Λ̇?

t,iΛ
?−1
t YtY

′
t )

∂θj
= −tr

(
Λ?−1
t Λ̇?

t,jΛ
?−1
t Λ̇?

t,iΛ
?−1
t YtY

′
t

)
+ tr

(
Λ?−1
t Λ̈?

t,i,jΛ
?−1
t YtY

′
t

)
−tr

(
Λ?−1
t Λ̇?

t,iΛ
?−1
t Λ̇?

t,jΛ
?−1
t YtY

′
t

)
+ 2tr

(
S̃ ′jΛ

?−1
t Λ̇?

t,iΛ
?−1
t YtY

′
t

)
. (A.22)

The third term, N3,t, is

∂Ẏ ′t,iΛ
?−1
t Yt

∂θj
=
∂Ẏ ′t,i
∂θj

Λ?−1
t Yt + Ẏ ′t,i

∂Λ?−1
t

∂θj
Yt + Ẏ ′t,iΛ

?−1
t

∂Yt
∂θj

= Ÿ ′t,i,jΛ
?−1
t Yt − Ẏ ′t,iΛ?−1

t Λ̇?
t,jΛ

?−1
t Yt + Ẏ ′t,iΛ

?−1
t Ẏt,j,

where Ÿ ′t,i,j is,

Ÿ ′t,i,j = X ′t
∂SiV

∂θj
= X ′t

(
Ṡi,j + SiSj

)
V,
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where Ṡi,j = ∂Si/∂θj. Hence, the first term of N3,t is,

Ÿ ′t,i,jΛ
?−1
t Yt = X ′t

(
Ṡi,j + SiSj

)
V Λ?−1

t V ′Xt

= X ′tV V
′
(
Ṡi,j + SiSj

)
V Λ?−1

t V ′Xt

= tr
(
V ′
(
Ṡi,j + SiSj

)
V Λ?−1

t YtY
′
t

)
The second term of N3,t is

Ẏ ′t,iΛ
?−1
t Λ̇?

t,jΛ
?−1
t Yt = X ′tV V

′SiV Λ?−1
t Λ̇?

t,jΛ
?−1
t V ′Xt = tr

(
S̃iΛ

?−1
t Λ̇?

t,jΛ
?−1
t YtY

′
t

)
And the final term is

Ẏ ′t,iΛ
?−1
t Ẏt,j = X ′tSiV Λ?−1

t V ′S ′jXt = X ′tV V
′SiV Λ?−1

t V ′S ′jV V
′Xt = tr

(
S̃ ′iΛ

?−1
t S̃jYtY

′
t

)
.

That is, N3,t is

∂Ẏ ′t,iΛ
?−1
t Yt

∂θj
= tr

(
V ′
(
Ṡi,j + SiSj

)
V Λ?−1

t YtY
′
t

)
−tr

(
S̃iΛ

?−1
t Λ̇?

t,jΛ
?−1
t YtY

′
t

)
+tr

(
S̃ ′iΛ

?−1
t S̃jYtY

′
t

)
(A.23)

Using (A.21)-(A.23),

∂2l?t (θ)

∂θi∂θj
= −tr

(
Λ?−1
t Λ̇?

t,jΛ
?−1
t Λ̇t,i

)
+ tr

(
Λ?−1
t Λ̈?

t,i,j

)
+ tr

(
Λ?−1
t Λ̇?

t,jΛ
?−1
t Λ̇?

t,iΛ
?−1
t YtY

′
t

)
− tr

(
Λ?−1
t Λ̈?

t,i,jΛ
?−1
t YtY

′
t

)
+ tr

(
Λ?−1
t Λ̇?

t,iΛ
?−1
t Λ̇?

t,jΛ
?−1
t YtY

′
t

)
− 2tr

(
S̃ ′jΛ

?−1
t Λ̇?

t,iΛ
?−1
t YtY

′
t

)
+ 2tr

(
(Ṡi,j + SiSj)Ω

?−1
t XtX

′
t

)
+ 2tr

(
V ′
(
Ṡi,j + SiSj

)
V Λ?−1

t YtY
′
t

)
− 2tr

(
S̃iΛ

?−1
t Λ̇?

t,jΛ
?−1
t YtY

′
t

)
+ 2tr

(
S̃ ′iΛ

?−1
t S̃jYtY

′
t

)
Lemma A.4. With l?t (θ) defined in (A.1), under Assumptions 3.1-3.8, for i, j = 1, . . . , dθ,

E

[
∂2l?t (θ0)

∂θi∂θj

∣∣∣∣Ft−1

]
= tr

(
Λ?−1
t Λ̇?

t,iΛ
?−1
t Λ̇?

t,j

)
+ 2tr (SiSj) + 2tr

(
S̃ ′iΛ

?−1
t S̃jΛ

?
t

)
,(A.24)

E

[∥∥∥∥∂2l?t (θ0)

∂θ∂θ′

∥∥∥∥] < ∞, (A.25)
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and

J = E

[
∂2l?t (θ0)

∂θ∂θ′

]
is invertible. (A.26)

Proof of Lemma A.4: Using the expression for ∂2l?t (θ)/∂θi∂θj from Lemma A.3, we immedi-

ately have that

E

[
∂2l?t (θ0)

∂θi∂θj

∣∣∣∣Ft−1

]
= tr

(
Λ?−1
t Λ̇?

t,iΛ
?−1
t Λ̇?

t,j

)
+ 2tr

(
Ṡi,j

)
+ 2tr (SiSj)

+ 2tr
(
S̃jΛ

?−1
t Λ̇?

t,i

)
− 2tr

(
S̃iΛ

?−1
t Λ̇?

t,j

)
+ 2tr

(
S̃ ′iΛ

?−1
t S̃jΛ

?
t

)
.

This expression can be simplified further as both Ṡi,j, tr
(
S̃jΛ

?−1
t Λ̇?

t,i

)
and tr

(
S̃iΛ

?−1
t Λ̇?

t,j

)
are

skew-symmetric, and hence tr(Ṡi,j) = tr
(
S̃jΛ

?−1
t Λ̇?

t,i

)
= tr

(
S̃iΛ

?−1
t Λ̇?

t,j

)
= 0, and we obtain

(A.24).

Turning to (A.25), we consider each term in (A.24). Notice thatE
[
|tr
(

Λ?−1
t Λ̇?

t,iΛ
?−1
t Λ̇?

t,j

)
|
]
<

∞ by Lemma A.6. Trivially, tr(SiSj) is bounded, since Θ is compact and Si is continuous in

φ. Lastly, consider tr
(
S̃ ′iΛ

?−1
t S̃jΛ

?
t

)
,

S̃ ′iΛ
?−1
t S̃jΛ

?
t =

0 −s̃i,12 . . . −s̃i,1p
s̃i,12 0 . . . −s̃i,2p
...

...
. . .

...

s̃i,1p s̃i,2p . . . 0



λ1,t 0 . . . 0

0 λ2,t . . . 0
...

...
. . .

...

0 0 . . . λp,t




0 s̃j,12 . . . s̃j,1p

−s̃j,12 0 . . . s̃j,2p
...

...
. . .

...

−s̃j,1p −s̃j,2p . . . 0




1
λ1,t

0 . . . 0

0 1
λ2,t

. . . 0
...

...
. . .

...

0 0 . . . 1
λp,t

 ,

which has the trace,

tr
(
S̃ ′iΛ

?−1
t S̃jΛ

?
t

)
=

p−1∑
k=1

p∑
l=k+1

s̃i,kls̃j,kl

(
λ?k,t
λ?l,t

+
λ?l,t
λ?k,t

)
,

which is bounded in light of (A.17). We conclude that (A.25) holds.

By standard arguments, see e.g. Comte and Lieberman (2003) or Bardet and Wintenberger

(2009), it suffi ces to show that there exists no γ = (γ1, ..., γdθ)
′ ∈ Rdθ \ {0dθ×0}, such that

dθ∑
i=1

γivec

(
∂Ω?

t

∂θi

)
= 0p2×1 a.s., (A.27)

where we have suppressed the dependence on θ0. For simplicity, we consider the case p = 2

and emphasize that the arguments can, tediously, be extended to arbitrary dimension p. For
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the case p = 2, dθ = 11 such that θ = (ω1, ω2, α11, α21, α12, α22, β11, β21, β12, β22, φ)′, and we

seek to show that there exists no γ = (γ1, ..., γ11)′ ∈ R11 \ {011}, such that

11∑
i=1

γivec

(
∂Ω?

t

∂θi

)
= 04 a.s. (A.28)

We have that

Ω?
t =

(
λ?1,t cos2 φ+ λ?2,t sin2 φ

(
λ?2,t − λ?1,t

)
cosφ sinφ(

λ?2,t − λ?1,t
)

cosφ sinφ λ?2,t cos2 φ+ λ?1,t sin2 φ

)
,

such that for i = 1, . . . , 10,

∂Ω?
t

∂θi
= V

∂Λ?
t

∂θi
V ′ =

(
cosφ sinφ

− sinφ cosφ

)(
∂λ?1,t
∂θi

0

0
∂λ?2,t
∂θi

)(
cosφ − sinφ

sinφ cosφ

)

=

(
∂λ?1,t
∂θi

cos2 φ+
∂λ?2,t
∂θi

sin2 φ (
∂λ?2,t
∂θi
− ∂λ?1,t

∂θi
) cosφ sinφ

(
∂λ?2,t
∂θi
− ∂λ?1,t

∂θi
) cosφ sinφ

∂λ?2,t
∂θi

cos2 φ+
∂λ?1,t
∂θi

sin2 φ

)
, (A.29)

and for i = 11

∂Ω?
t

∂θi
=
∂Ω?

t

∂φ
=

(
∂Ω?t,11

∂φ

∂Ω?t,12

∂φ
∂Ω?t,12

∂φ

∂Ω?t,22

∂φ

)
,

∂Ω?
t,11

∂φ
= cos2 φ

∂λ?1,t
∂φ

+ sin2 φ
∂λ?2,t
∂φ

+ (λ?2,t − λ?1,t) sin 2φ

∂Ω?
t,12

∂φ
= (λ?2,t − λ?1,t) cos 2φ+

(
∂λ?2,t
∂φ
−
∂λ?1,t
∂φ

)
cosφ sinφ

∂Ω?
t,22

∂φ
= sin2 φ

∂λ?1,t
∂φ

+ cos2 φ
∂λ?2,t
∂φ

+ (λ?1,t − λ?2,t) sin 2φ,

where

∂λ?t
∂w1

=
∞∑
j=0

Bj

(
1

0

)
,
∂λ?t
∂w2

=
∞∑
j=0

Bj

(
0

1

)
,
∂λ?t
∂α11

=
∞∑
j=0

Bj

(
y2

1,t−j−1

0

)
,

∂λ?t
∂α12

=
∞∑
j=0

Bj

(
y2

2,t−j−1

0

)
,
∂λ?t
∂α21

=
∞∑
j=0

Bj

(
0

y2
1,t−j−1

)
,
∂λ?t
∂α22

=
∞∑
j=0

Bj

(
0

y2
2,t−j−1

)
,

∂λ?t
∂βnm

=

∞∑
j=0

(
∂Bj

∂βnm

)((
w1

w2

)
+

(
α11 α12

α21 α22

)(
y2

1,t−j−1

y2
2,t−j−1

))
.
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and

∂λ?t
∂φ

=
∞∑
j=0

BjA

(
∂
∂φ
y2

1,t−j−1

∂
∂φ
y2

2,t−j−1

)
= 2

∞∑
j=0

BjA

(
−y1,t−j−1y2,t−j−1

y1,t−j−1y2,t−j−1

)

= 2

∞∑
j=0

Bj

(
(α12 − α11)

(α22 − α21)

)
y1,t−j−1y2,t−j−1

= 2
∞∑
j=0

(
(Bj)11(α12 − α11) + (Bj)12(α22 − α21)

(Bj)21(α12 − α11) + (Bj)22(α22 − α21)

)
y1,t−j−1y2,t−j−1

Hence, the first row of (A.28) has the form

C0 +
∞∑
j=0

(
C1,jy

2
1,t−j−1 + C2,jy

2
2,t−j−1

)

+ γ112 cos2 φ

( ∞∑
j=0

(
(Bj)11(α12 − α11) + (Bj)12(α22 − α21)

)
y1,t−j−1y2,t−j−1

)

+ γ112 sin2 φ

( ∞∑
j=0

(
(Bj)21(α12 − α11) + (Bj)22(α22 − α21)

)
y1,t−j−1y2,t−j−1

)

= 0 almost surely,

where the constants C1, C2,j, C3,j may depend on γ1, . . . , γ10. Suppose that γ11 6= 0. By

Assumption 3.3 we have that y1,t−j−1y2,t−j−1 is non-degenerate and linearly independent of

y2
1,t−j−1 and y

2
2,t−j−1, so it must hold that

γ112 cos2 φ

( ∞∑
j=0

(
(Bj)11(α12 − α11) + (Bj)12(α22 − α21)

)
y1,t−j−1y2,t−j−1

)

+γ112 sin2 φ

( ∞∑
j=0

(
(Bj)21(α12 − α11) + (Bj)22(α22 − α21)

)
y1,t−j−1y2,t−j−1

)

= 0 almost surely.

This implies that

γ112
(
cos2 φ(α12 − α11) + sin2 φ(α22 − α21)

)
y1,t−1y2,t−1|Fηt−2 is degenerate
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which is the case if and only if

cos2 φ(α12 − α11) + sin2 φ(α22 − α21) = 0. (A.30)

The same reasoning applied to the second and third rows of (A.28) yields that

γ112 cosφ sinφ ((α22 − α21)− (α12 − α11)) y1,t−j−1y2,t−j−1|Fηt−2 is degenerate

and hence, using that cosφ and sinφ are non-zero on intΘ, that

(α22 − α21)− (α12 − α11) = 0⇔ (α22 − α21) = (α12 − α11). (A.31)

Combining (A.30) and (A.31), we have that α12 = α11 and α22 = α21, which is ruled out by

Assumption 3.8, and we conclude that (A.28) only holds whenever γ11 = 0. Hence (A.28)

has the form
10∑
i=1

γivec

(
∂Ω?

t

∂θi

)
= (V ⊗ V )

10∑
i=1

γivec

(
∂Λ?

t

∂θi

)
= 04 a.s.,

which, using that V has full rank, implies that

10∑
i=1

γivec

(
∂Λ?

t

∂θi

)
= 04 a.s.

The non-zero rows of vec(∂Λ?
t/∂θ)i, i = 1, . . . , 10, are

∂λ?t
∂θi

=
∞∑
j=0

∂Bj

∂θi

(
∂W

∂θi
+
∂A

∂θi
(V ′Xt−1−j)

�2

)
,

and by arguments similar to the ones given in Francq and Zakoïan (2019, pp. 311-312),

it follows that there exist no non-zero γ such that (A.28) holds. We conclude that J is

invertible.

Lemma A.5. With l?t (θ) defined in (A.1), suppose that Assumptions 3.1-3.8 hold. Then
there exists a neighborhood around θ0, N(θ0) ⊂ Θ, such that

max
h,i,j=1,...,dθ

E

[
sup

θ∈N(θ0)

∣∣∣∣ ∂3l?t (θ)

∂θi∂θj∂θk

∣∣∣∣
]
<∞.

Proof of Lemma A.5: Throughout, we exploit that θ0 ∈ intΘ such that N(θ0) satisfies

that all entries of A and B are bounded away from zero on N(θ0). In the following, for

some real-valued random variable ft(θ) depending on θ ∈ N(θ0), we write ft(θ) ∈ LN(θ0) if
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E[supθ∈N(θ0) |ft(θ)|] <∞ and we say that ft (θ) belongs to LN(θ0).

Consider the (i, j, k)’th element of the array of third derivatives of the log-likelihood

function, which is obtained by taking the derivative of the (i, j)th element of the Hessian in

(A.18) with respect to some parameter θk:

∂3l?t (θ)

∂θi∂θj∂θk
= − ∂

∂θk
tr
(

Λ?−1
t (θ)Λ̇?

t,j(θ)Λ
?−1
t (θ)Λ̇?

t,i(θ)
)

(#1)

+
∂

∂θk
tr
(

Λ?−1
t (θ)Λ̈?

t,i,j(θ)
)

(#2)

+
∂

∂θk
tr
(

Λ?−1
t (θ)Λ̇?

t,j(θ)Λ
?−1
t (θ)Λ̇?

t,i(θ)Λ
?−1
t (θ)Yt(θ)Y

′
t (θ)

)
(#3)

− ∂

∂θk
tr
(

Λ?−1
t (θ)Λ̈?

t,i,j(θ)Λ
?−1
t (θ)Yt(θ)Y

′
t (θ)

)
(#4)

+
∂

∂θk
tr
(

Λ?−1
t (θ)Λ̇?

t,i(θ)Λ
?−1
t (θ)Λ̇?

t,j(θ)Λ
?−1
t (θ)Yt(θ)Y

′
t (θ)

)
(#5)

− 2
∂

∂θk
tr
(
S̃ ′j(θ)Λ

?−1
t (θ)Λ̇?

t,i(θ)Λ
?−1
t (θ)Yt(θ)Y

′
t (θ)

)
(#6)

+ 2
∂

∂θk
tr
(
V ′(θ)

(
Ṡi,j(θ) + Si(θ)Sj(θ)

)
V (θ)Λ?−1

t (θ)Yt(θ)Y
′
t (θ)

)
(#7)

− 2
∂

∂θk
tr
(
S̃i(θ)Λ

?−1
t (θ)Λ̇?

t,j(θ)Λ
?−1
t (θ)Yt(θ)Y

′
t (θ)

)
(#8)

+ 2
∂

∂θk
tr
(
S̃ ′i(θ)Λ

?−1
t (θ)S̃j(θ)Yt(θ)Y

′
t (θ)

)
. (#9)

In the following, we consider each partial derivative in turn, and show that all terms belong

to LN(θ0).

Term #1 The partial derivative is,

∂

∂θk
tr
(

Λ?−1
t (θ)Λ̇?

t,j(θ)Λ
?−1
t (θ)Λ̇t,i

)
= −2tr

(
Λ?−1
t (θ)Λ̇?

t,j(θ)Λ
?−1
t (θ)Λ̇?

t,k(θ)Λ
?−1
t (θ)Λ̇?

t,i(θ)
)

+ tr
(

Λ?−1
t (θ)Λ̇?

t,j(θ)Λ
?−1
t (θ)Λ̈?

t,i,k(θ)
)

+ tr
(

Λ?−1
t (θ)Λ̈?

t,j,k(θ)Λ
?−1
t (θ)Λ̇?

t,i(θ)
)
. (A.32)

Noting that tr{Λ?−1
t (θ)Λ̇?

t,j(θ)Λ
?−1
t (θ)Λ̈?

t,i,k(θ)} =
∑p

s=1 λ̇
?

s,t,i(θ)λ̈
?

s,t,i,j(θ)/λ
?2
s,t(θ), we con-

clude that the second term in (A.32) belongs to LN(θ0). The same argument applies to

the other terms in (A.32).
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Term #2 The second term is,

∂

∂θk
tr
(

Λ?−1
t (θ)Λ̈t,i,j(θ)

)
= −tr

(
Λ?−1
t (θ)Λ̇t,k(θ)Λ

?−1
t (θ)Λ̈t,i,j(θ)

)
+tr

(
Λ?−1
t (θ)

...
Λt,i,j,k(θ)

)
,

and we apply arguments similar to the ones given with respect to Term # 1 in order

to conclude that Term #2 belongs to LN(θ0).

Terms #3 and #5 Terms #3 and #5 are the same up to indexing, and we here show that
#3 has finite expectation uniformly on N(θ0).

∂

∂θk
tr
(

Λ?−1
t (θ)Λ̇?

t,j(θ)Λ
?−1
t (θ)Λ̇?

t,i(θ)Λ
?−1
t (θ)Yt(θ)Y

′
t (θ)

)
=

− 3tr
(

Λ?−1
t (θ)Λ̇?

t,k(θ)Λ
?−1
t (θ)Λ̇?

t,j(θ)Λ
?−1
t (θ)Λ̇?

t,i(θ)Λ
?−1
t (θ)Yt(θ)Y

′
t (θ)

)
+ tr

(
Λ?−1
t (θ)Λ̈?

t,j,k(θ)Λ
?−1
t (θ)Λ̇?

t,i(θ)Λ
?−1
t (θ)Yt(θ)Y

′
t (θ)

)
+ tr

(
Λ?−1
t (θ)Λ̇?

t,j(θ)Λ
?−1
t (θ)Λ̈?

t,i,k(θ)Λ
?−1
t (θ)Yt(θ)Y

′
t (θ)

)
+ 2tr

(
Λ?−1
t (θ)Λ̇?

t,j(θ)Λ
?−1
t (θ)Λ̇?

t,i(θ)Λ
?−1
t (θ)Yt(θ)Ẏ

′
t,k(θ)

)
. (A.33)

Note that the first term in (A.33) we may use that Yt(θ) = V ′(θ)Xt, where Xt =

V Λ
?1/2
t ηt (with V = V (θ0) and Λ

?1/2
t = Λ

?1/2
t (θ0)), such that

tr
(

Λ?−1
t (θ)Λ̇?

t,k(θ)Λ
?−1
t (θ)Λ̇?

t,j(θ)Λ
?−1
t (θ)Λ̇?

t,i(θ)Λ
?−1
t (θ)V ′(θ)V Λ

?1/2
t ηtη

′
tΛ

?1/2
t V ′V (θ)

)
=

vec(V ′(θ)V )′(Λ
?1/2
t ηtη

′
tΛ

?1/2
t ⊗ Λ?−1

t (θ)Λ̇?
t,k(θ)Λ

?−1
t (θ)Λ̇?

t,j(θ)Λ
?−1
t (θ)Λ̇?

t,i(θ)Λ
?−1
t (θ))

× vec(V ′V (θ)). (A.34)

Since vec(V ′(θ)V ) consist of rotations based on trigonometric functions, it is bounded

onN(θ0). Next, note that the quantity Λ
?1/2
t ηtη

′
tΛ

?1/2
t ⊗Λ?−1

t (θ)Λ̇?
t,kΛ

?−1
t (θ)Λ̇?

t,jΛ
?−1
t (θ)Λ̇?

t,iΛ
?−1
t

entering (A.34) is a symmetric p2 × p2 matrix, with p× p blocks, Qg,h, g, h = 1, . . . , p,

each of which are diagonal,

Qg,h = diag

(
λ
?1/2
g,t ηg,tλ

?1/2
h,t ηh,t

λ̇
?

s,t,i(θ)λ̇
?

s,t,j(θ)λ̇
?

s,t,k(θ)

λ?4s,t(θ)

)
,

for s = 1, . . . , p, where λ̇
?

s,t,i(θ)λ̇
?

s,t,j(θ)λ̇
?

s,t,k(θ)/λ
?3
s,t(θ) has finite rth moment for any

r > 0 by Lemma A.6. Notice however that such property does not appear to apply to
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λ
?1/2
g,t ηg,tλ

?1/2
h,t ηh,t/λ

?
s,t(θ) for g = h 6= s as the numerator and denominator are evaluated

in θ0 and θ respectively. Instead we note that supθ∈N(θ0) |λ
?1/2
g,t ηg,tλ

?1/2
h,t ηh,t/λ

?
s,t(θ)| ≤

K‖ηt‖2‖λt(θ0)‖, and use Assumption 3.7, Lemma A.6, and Hölder’s inequality in order
to ensure that any entry of Qg,h belongs to LN(θ0). The three other parts of Term #3

can be shown to belong to LN(θ0) using similar arguments. To illustrate, consider

tr
(

Λ?−1
t (θ)Λ̇?

t,j(θ)Λ
?−1
t (θ)Λ̇?

t,i(θ)Λ
?−1
t (θ)Yt(θ)Ẏ

′
t,k(θ)

)
=

tr
(

Λ?−1
t (θ)Λ̇?

t,j(θ)Λ
?−1
t (θ)Λ̇?

t,i(θ)Λ
?−1
t (θ)V ′(θ)V Λ

?1/2
t ηtη

′
tΛ

?1/2
t V ′Sk(θ)V (θ)

)
=

vec(V ′(θ)S ′k(θ)V )(Λ
?1/2
t ηtη

′
tΛ

?1/2
t ⊗ Λ?−1

t (θ)Λ̇?
t,j(θ)Λ

?−1
t (θ)Λ̇?

t,i(θ)Λ
?−1
t (θ))vec(V ′(θ)V ),

which belongs to LN(θ0), applying the same arguments as for (A.34).

Term #4 The derivative is,

∂

∂θk
tr
(

Λ?−1
t (θ)Λ̈?

t,i,j(θ)Λ
?−1
t (θ)Yt(θ)Y

′
t (θ)

)
= −2tr

(
Λ?−1
t (θ)Λ̇?

t,k(θ)Λ
?−1
t (θ)Λ̈?

t,i,j(θ)Λ
?−1
t (θ)Yt(θ)Y

′
t (θ)

)
+ tr

(
Λ?−1
t (θ)

...
Λ
?
t,i,j,k(θ)Λ

?−1
t (θ)Yt(θ)Y

′
t (θ)

)
+ 2tr

(
Λ?−1
t (θ)Λ̈?

t,i,j(θ)Λ
?−1
t (θ)Yt(θ)Ẏ

′
t,k

)
,

and it belongs to LN(θ0), applying the same arguments as used for Terms #1 and #3.

Terms #6 and #8 These terms are the same up to indexing. The partial derivative in
Term #6 is,

∂

∂θk
tr
(
S̃ ′j(θ)Λ

?−1
t (θ)Λ̇?

t,i(θ)Λ
?−1
t (θ)Yt(θ)Y

′
t (θ)

)
= tr

(
˙̃S ′j,k(θ)Λ

?−1
t (θ)Λ̇?

t,i(θ)Λ
?−1
t (θ)Yt(θ)Y

′
t (θ)

)
−tr

(
S̃ ′j(θ)Λ

?−1
t (θ)Λ̇?

t,k(θ)Λ
?−1
t (θ)Λ̇?

t,i(θ)Λ
?−1
t (θ)Yt(θ)Y

′
t (θ)

)
+tr

(
S̃ ′j(θ)Λ

?−1
t (θ)Λ̈?

t,i,k(θ)Λ
?−1
t (θ)Yt(θ)Y

′
t (θ)

)
−tr

(
S̃ ′j(θ)Λ

?−1
t (θ)Λ̇?

t,i(θ)Λ
?−1
t (θ)Λ̇?

t,k(θ)Λ
?−1
t (θ)Yt(θ)Y

′
t (θ)

)
+tr

(
S̃ ′j(θ)Λ

?−1
t (θ)Λ̇?

t,i(θ)Λ
?−1
t (θ)

(
Ẏt,kYt(θ)

′ + Yt(θ)Ẏ
′
t,k

))
,
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and, again, this can be shown to belong to LN(θ0) as Terms # 1, # 3 and # 4.

Term #7 For simplicity, define S̄i,j(θ) := V ′(θ)
(
Ṡi,j(θ) + Si(θ)Sj(θ)

)
V (θ)

∂

∂θk
tr
(
S̄ij(θ)Λ

?−1
t (θ)Yt(θ)Y

′
t (θ)

)
= tr

(
˙̄Si,j,k(θ)Λ

?−1
t (θ)Yt(θ)Y

′
t (θ)

)
− tr

(
S̄i,j(θ)Λ

?−1
t (θ)Λ̇?

t,k(θ)Λ
?−1
t (θ)Yt(θ)Y

′
t (θ)

)
+ tr

(
S̄i,j(θ)Λ

?−1
t (θ)

(
Ẏt,k(θ)Yt(θ) + Yt(θ)Ẏ

′
t,k(θ)

))
,

which belongs to LN(θ0) by the same arguments as for Terms #1, #3, #4 and #6.

Term #9 Note that

∂

∂θk
tr
(
S̃ ′i(θ)Λ

?−1
t (θ)S̃j(θ)Yt(θ)Y

′
t (θ)

)
= tr

(
˙̃S ′i,k(θ)Λ

?−1
t (θ)S̃j(θ)Yt(θ)Y

′
t (θ)

)
− tr

(
S̃ ′i(θ)Λ

?−1
t (θ)Λ̇?

t,k(θ)Λ
?−1
t (θ)S̃j(θ)Yt(θ)Y

′
t (θ)

)
+ tr

(
S̃ ′j(θ)Λ

?−1
t (θ) ˙̃Sj,k(θ)Yt(θ)Y

′
t (θ)

)
+ tr

(
S̃ ′i(θ)Λ

?
t (θ)S̃j(θ)

(
Ẏt,k(θ)Y

′
t (θ) + Yt(θ)Ẏ

′
t,k(θ)

))
.

This term also belong to LN(θ0) per the arguments used above.

Lemma A.6. With λ?t (θ) defined in (A.3), let λ
?
h,t(θ) denote its hth entry. For i, j, k =

1, . . . , dθ, let

λ̇
?

h,t,i(θ) =
∂λ?h,t
∂θi

, λ̈
?

h,t,i,j(θ) =
∂2λ?h,t
∂θi∂θj

, and
...
λ
?

h,t,i,j(θ) =
∂3λ?h,t

∂θi∂θj∂θk
.

Under Assumptions 3.1-3.8, for any r > 0, i, j, k = 1, . . . , dθ, and h = 1, . . . , p there exists a

neighborhood N(θ0) ⊂ Θ of θ0 such that

E

[
sup

θ∈N(θ0)

∣∣∣∣∣ λ̇
?

h,t,i(θ)

λ?h,t(θ)

∣∣∣∣∣
r]
<∞, E

[
sup

θ∈N(θ0)

∣∣∣∣∣ λ̈
?

h,t,i,j(θ)

λ?h,t(θ)

∣∣∣∣∣
r]
<∞, and E

[
sup

θ∈N(θ0)

∣∣∣∣∣
...
λ
?

h,t,i,j,k(θ)

λ?h,t(θ)

∣∣∣∣∣
r]
<∞.

Proof of Lemma A.6: Throughout, we exploit that θ0 ∈ intΘ such that N(θ0) satisfies that

all entries of A and B are bounded away from zero on N(θ0). We start out by considering the
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first-order derivatives λ̇
?

h,t,i(θ)/λ
?
h,t(θ). With Yt = V (θ)′Xt, and suppressing the dependence

on θ,

λ?t =

∞∑
j=1

Bj−1W︸ ︷︷ ︸
:=C

(j−1)
1

+Bj−1A︸ ︷︷ ︸
:=C

(j−1)
2

Y �2
t−j

 =

∞∑
j=1

(
C

(j−1)
1 + C

(j−1)
2 Y �2

t−j

)
,

which has derivatives

∂λ?t
∂ωi

=

∞∑
j=1

Ċ
(j−1)
1,i , Ċ

(j−1)
1,i = Bj−1∂W

∂ωi
,

∂λ?t
∂αi

=
∞∑
j=1

Ċ
(j−1)
2,i Y �2

t−j, Ċ
(j−1)
2,i = Bj−1 ∂A

∂αi
,

∂λ?t
∂βi

=
∞∑
j=1

Ċ
(j−1)
3,i (W + AY �2

t−j), Ċ
(j−1)
3,i =

∂Bj−1

∂βi
=

j−1∑
k=1

Bk−1 ∂B

∂βi
Bj−1−k,

∂λ?t
∂φi

= 2
∞∑
j=1

C
(j−1)
2 (Yt−j � S̃iYt−j), (A.35)

where ωi, αi, βi, φi denote arbitrary entries of, respectively, W , A, B, φ, and where S̃i is

defined in (A.20).

We now verify that supθ∈N(θ0) |λ̇
?

s,t/λ
?
s,t|r < ∞ has finite expectation by considering

ωi, αi, βi and φi in (i)—(iv) below.

(i) Consider first θi = ωi. Here

∂λ?s,t/∂ωi

λ?s,t
=

∑∞
j=1[Ċ

(j−1)
1,i ]s∑∞

j=1

(
[C

(j−1)
1 ]s+

∑p
h=1[C

(j−1)
2 ]s,hy

2
h,t−j

) ≤
∞∑
j=1

[Ċ
(j−1)
1,i ]s

ωL
≤

∞∑
j=1

%j−1

ωL
≤ K,

where we have used that λ?s,t ≥ ωL and supθ∈Θ ρ(B) < 1.

(ii) Next, consider θi = αi. Since ∂λ
?
t/∂αi =

∑∞
j=1 Ċ

(j−1)
2,i Y �2

t−j, with Ċ
(j−1)
2,i = Bj−1∂A/∂αi.

Here ∂A/∂αi is a matrix of zeros except for a 1 in the place of αi in A. We can therefore

use that, elementwise,

αi
∂λ?t
∂αi
≤ λ?t .

Hence, for s = 1, . . . , p, ∣∣∣∣∂λ?s,t/∂αiλ?s,t

∣∣∣∣ ≤ K.
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(iii) Next, consider θi = βi. Let C̄t−j = W + AY �2
t−j, and notice that

∂λ?t
∂βi

=

∞∑
j=1

(
j∑

k=1

Bk−1 ∂B

∂βi
Bj−kC̄t−j

)
,

where ∂B/∂βi is a matrix of zeros, apart a one in the same place as βi in B. We can

therefore apply the inequality, (with βi > 0 uniformly on N(θ0)),

βi
∂λ?t
∂βi
≤

∞∑
j=1

jBjC̄t−j,

which elementwise corresponds to,

βi
∂λ?s,t
∂βi

≤
∞∑
j=1

j

p∑
h=1

[Bj]s,h[C̄t−j]h.

Recall furthermore that,

λ?s,t ≥ ωL +

p∑
h=1

[Bj]s,h[C̄t−j]h,

with ωL = mins=1,...,p infθ∈N(θ0) ws > 0. Lastly, we use the inequality x/(1 + x) ≤ xk for

all x ≥ 0 and k ∈ (0, 1), such that,

βi
∂λ?s,t/∂βi

λ?s,t
≤

∑∞
j=1 j

∑p
h=1[Bj ]s,h[C̄t−j ]s

ωL+
∑p
h=1[Bj ]s,h[C̄t−j ]s

≤
∞∑
j=1

p∑
h=1

j
(

[Bj ]sh[C̄t−j ]h
ωL

)k

=
∞∑
j=1

p∑
h=1

j[Bj]ksh

(
[C̄t−j ]h
ωL

)k
≤ K

∞∑
j=1

j%j
p∑

h=1

(
[C̄t−j ]h
ωL

)k
Using that supθ∈Θ ρ(B) < 1, for any r > 0, we can choose k > 0 suffi ciently small, such

that E[supθ∈N(θ0) |(∂λ?s,t/∂βi)/λs,t|r] < ∞, where we have used Assumption 3.2 that
‖Xt‖ has some finite (potentially fractional) moment.

(iv) Finally, consider θi = φi. The partial derivative ∂λ
?
t/∂φi in (A.35) contains the matrix

product S̃iYt−n, where the jth row of S̃iYt−n is

[
S̃iYt−n

]
j

= −
j−1∑
k=1

s̃i,kjyk,t−n +

p∑
k=j+1

s̃i,jkyk,t−n.
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Hence, [
Yt−n � S̃iYt−n

]
j

= yj,t−1

(
−

j−1∑
k=1

s̃i,kjyk,t−n +

p∑
k=j+1

s̃i,jkyk,t−n

)
,

and we have that

|[Yt−n � S̃iYt−n]s| ≤ K

(
s−1∑
k=1

|ys,t−n||yk,t−n|+
p∑

h=s+1

|ys,t−n||yh,t−n|
)

≤ pK‖Yt−n‖2,

where we have used the simple inequality that a2 + b2 ≥ |ab| for a, b ∈ R. Hence, for
s = 1, . . . , p,

∂λ?s,t
∂φi

≤ pK
∞∑
j=1

p∑
h=1

[C
(j−1)
2 ]s,h‖Yt−j‖2.

Note that on N(θ0), elementwise,

C
(j−1)
2 = Bj−1A ≤ αUB

j−1(ιp, . . . , ιp),

where ιp is a p-dimensional column vector of ones. Then, with [Bj−1]s the sth row of

[Bj−1],
∑p

h=1[C
(j−1)
2 ]s,h ≤ pαU [Bj−1]sιp, and we have that∣∣∣∣∂λ?s,t∂φi

∣∣∣∣ ≤ Kp2αU

∞∑
j=1

[Bj−1]sιp‖Yt−j‖2. (A.36)

Moreover, since the entries of A are bounded away from zero on N(θ0), the entries are

also bounded away from some (small) constant αL > 0, and we have that [C
(j−1)
2 ]s,h ≥

αL[Bj−1]sιp for h, s = 1, . . . , p. Hence for any j ≥ 1, and s = 1, . . . , p,

λ?s,t =
∞∑
j=1

[Bj−1]sW +
∞∑
j=1

p∑
h=1

[C
(j−1)
2 ]s,hy

2
h,t−j ≥ ω̄ +

∞∑
j=1

p∑
h=1

αL[Bj−1]sιpy
2
h,t−j

= ω̄ + αL

∞∑
j=1

[Bj−1]sιp‖Yt−j‖2 ≥ ω̄ + αL[Bj−1]sιp‖Yt−j‖2, (A.37)

where ω̄ = mins=1,...,p infθ∈N(θ0)

∑∞
j=1[Bj−1]sW > 0. Combining (A.36) and (A.37), we
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have that for s = 1, . . . , p and k ∈ (0, 1)

∣∣∣∂λ?s,t/∂φiλ?s,t

∣∣∣ ≤ Kp2αU

∞∑
j=1

[Bj−1]sιp‖Yt−j‖2
ω̄+αL[Bj−1]sιp‖Yt−j‖2

= Kp2αU
αL

∞∑
j=1

[Bj−1]sιp‖Yt−j‖2
ω̄/αL+[Bj−1]sιp‖Yt−j‖2

≤ Kp2αU
αL

∞∑
j=1

(
[Bj−1]sιp‖Yt−j‖2

ω̄/αL

)k

≤ Kp2αU
αL

∞∑
j=1

%j−1
(
‖Yt−j‖2
ω̄/αL

)k
,

and we may again choose k > 0 suffi ciently small such thatE[supθ∈N(θ0) |(∂λ?s,t/∂φi)/λ?s,t|r] <
∞. The integrability of supθ∈N(θ0) |λ̈

?

h,t,i,j(θ)/λ
?
h,t(θ)|r and supθ∈N(θ0) |

...
λ
?

h,t,i,j,k(θ)/λ
?
h,t(θ)|r

are shown to hold by similar arguments.

B Testing for Nullity of Rows

In this Section we first consider suffi cient regularity conditions under which the asymptotic

distribution of the (sup) likelihood ratio statistic for the hypothesis H∗2 in (19) can be derived.

In Section B.2, the implementation of the test is discussed.

B.1 Zero-rows in A and B

Recall from Section 4.1 that when testing the hypothesis H∗2 in (19) that (θ, δ) ∈ Θ × Θsup,

where δ = (B13, B23, B33)′ denotes the unidentified parameters, while θ ∈ Θ denotes the

remaining dθ = 21 parameters. As in Appendix A.1, consider the stationary and ergodic

version of the log-quasi-likelihood contributions given by,

l?t (θ, δ) = log det(Ω?
t (θ, δ)) +X ′tΩ

?−1
t (θ, δ)Xt,

Ω?
t (θ, δ) = V (θ)Λ?

t (θ, δ)V (θ)′, Λ?
t (θ, δ) = diag(λ?t (θ, δ)),

λ?t (θ, δ) = W + A(V (θ)′Xt−1)�2 +Bλ?t−1(θ, δ).

The limiting distribution of the supLR statistic in (21) can be derived under the following

conditions, see Andrews (2001) for details and Pedersen and Rahbek (2019) for an application

44



to GARCH-X models.

(i) With θ̃T,δ and θ̂T,δ defined in (20), assume that θ̃T,δ, θ̂T,δ
p→ θ0.

(ii) Assume that T−1/2
∑T

t=1 ∂l
?
t (θ, ·)/∂θ

w→ G·, where G· is a mean zero dθ dimensional

Gaussian process with kernel

Σδ1δ2 = E(
∂l?t (θ0,δ1)

∂θ

∂l?t (θ0,δ1)

∂θ′ ), for δ1, δ2 ∈ Θsup. (B.38)

(iii) For any δ ∈ Θsup, T−1∂2l?t (θ0, δ)/∂θ∂θ
′ p→ Jδ, where

Jδ = E(
∂2l?t (θ0,δ)

∂θ∂θ′ ), (B.39)

with Jδ invertible uniformly on Θsup.

(iv) The sets Θ− θ0 and Θ∗ − θ0 are locally equal to some convex cones C and C∗, respec-

tively.1

(v) There exists a neighborhood N(θ0) of θ0 such that

sup
δ∈Θsup

∥∥∥∥∥T−1/2

T∑
t=1

(
∂lt(θ0,δ)

∂θ
− ∂l?t (θ0,δ)

∂θ

)∥∥∥∥∥ p→ 0,

and

sup
δ∈Θsup,θ∈N(θ0)∩Θ

∥∥∥∥∥T−1

T∑
t=1

(
∂2lt(θ,δ)
∂θ∂θ′ −

∂2l?t (θ,δ)

∂θ∂θ′

)∥∥∥∥∥ p→ 0.

(vi) For any fixed δ ∈ Θsup, and any deterministic scalar sequence (εT : T = 1, 2, ...) with

εT → 0,

sup
θ∈Θ:‖θ−θ0‖≤εT

∥∥∥∥∥T−1

T∑
t=1

(
∂2l?t (θ,δ)

∂θ∂θ′ −
∂2l?t (θ0,δ)

∂θ∂θ′

)∥∥∥∥∥ p→ 0.

By Andrews (2001, Theorem 4), under conditions (i)-(vi) and H∗2,

supLRT (H∗2)
d→ sup

δ∈Θsup

{λ′δJδλδ} − sup
δ∈Θsup

{λ∗′δ Jδλ∗δ} , (B.40)

1The set Θ − θ0 is locally equal to C if there exists a ε > 0 such that {Θ − θ0} ∩H(0, ε) = C ∩H(0, ε)
where H(0, ε) ⊂ Rdim θ is an open cube centered at zero and with side length 2ε.
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where

λδ = arg inf
η∈C

{
(η − Zδ)′ Jδ (η − Zδ)

}
,

λ∗δ = arg inf
η∈C∗

{
(η − Zδ)′ Jδ (η − Zδ)

}
and Zδ = J−1

δ Gδ which is Ndθ

(
0, J−1

δ Σ
δδ
J−1
δ

)
distributed. By definition, the limiting distrib-

ution in (B.40) depends on the cones C and C∗, and hence implicitly on the location of the

nuisance parameters, see e.g. Cavaliere et al. (2019) for a general discussion. In line with

Francq and Zakoïan (2009) and Pedersen (2017) we make the additional assumption that

the nuisance parameters are in the interior. To do so, without loss of generality, order the

parameters in θ as

θ = (θ′1, θ
′
2)′,

with θ1 = (α31, α32, α33, β31, β32)′ of dimension dθ1 = 5, and with θ2 containing the remaining

dθ2 = 16 (nuisance) parameters in W,A and B.

(vii) Assume that θ2,0 ∈ intΘ2 and Θ = Θ1 ×Θ2, with θ1 ∈ Θ1 and θ2 ∈ Θ2.

Under the additional assumptions in (vii), C = Rdθ1+ ×Rdθ2 and C∗ = {0dθ1}×R
dθ2 , which

implies that

supLRT (H∗2)
d→ sup

δ∈Θsup

{
λ′δ
(
KJ−1

δ K ′
)−1

λδ

}
, (B.41)

where K is given by Kθ = θ1 and

λδ = arg inf
η∈R

dθ1
+

{
(η − Zδ)′

(
KJ−1

δ K ′
)−1

(η − Zδ)
}
. (B.42)

and with Zδ = KJ−1
δ Gδ such that Zδ is a dθ1 dimensional Gaussian process.

B.2 Implementation:

One may obtain a critical value for the supLR test by relying on the following steps, see also

Andrews (2001) and Pedersen (2017). By definition, δ is dδ = 3 dimensional and we choose

k different values for each entry of δ, such that we have a discrete grid ∆ with d∆ = kdδ

different values of δ.

Initialization For given δ, δ1, δ2 ∈ ∆ estimate Jδ and Σδ1δ2 as

Ĵδ =
1

T

T∑
t=1

∂2lt(θ̂T,δ ,δ)

∂θ∂θ′ , and Σ̂δ1δ2 =
1

T

T∑
t=1

∂lt(θ̂T,δ1 ,δ1)

∂θ

∂lt(θ̂T,δ2 ,δ2)

∂θ′ .
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Step 1 Draw a realization of (Zδ : δ ∈ ∆) as

(Zδ1 , ..., Zδd∆ ) = Ndθ1×d∆
(0,


Σ̂Z
δ1δ1

Σ̂Z
δ1δ2

. . . Σ̂Z
δ1δd∆

Σ̂Z
δ2δ1

Σ̂Z
δ2δ2

...
. . .

...

Σ̂Z
δd∆δ1

. . . . . . Σ̂Z
δ
d∆

δ
d∆

),

where Σ̂Z
δiδj

= KĴ−1
δi

Σ̂δiδj Ĵ
−1
δj
K
′
for i, j = 1, 2, ..., d∆.

Step 2 For i = 1, 2, .., , d∆, compute the dθ1 dimensional λδi by solving the constrained

minimization problem in (B.42), with Zδ and Jδ replaced with Zδi and Ĵδi , respectively.

Next, compute

µ = max
δ∈∆

{
λ′δ

(
KĴ−1

δ K ′
)−1

λδ

}
.

Step 3 A critical value for a test with nominal size a is found by repeating Steps 1 and 2
M times and computing the empirical (1− a)-percentile of (µi)i=1,2,...,M .

C Bootstrap Algorithm for Testing Reduced Rank

Following Cavaliere et al. (2017) and Cavaliere et al. (2019), we apply a restricted recursive

bootstrap to obtain critical values for the likelihood ratio statistic, LRT (H2), where the

null hypothesis of reduced rank is imposed on the bootstrap data generating process. The

recursive bootstrap scheme applied is standard in the context of GARCH models, see e.g.

Hidalgo and Zaffaroni (2007) or Jeong (2017). The bootstrap algorithm is as follows:

Initialization Estimate the model parameters with H2. That is, the likelihood function in

(11) is maximized with A = γα′ and B = γβ′ where the (3× 2) matrices γ, α and

β have non-negative entries. With θ̃T denoting the obtained restricted estimator, for

t = 1, ..., T compute the centered and standardized residuals,

η̂ct = Σ̂−1/2
η

(
η̂t −

1

T

T∑
t=1

η̂t

)
,

where Σ̂η is the sample covariance matrix of η̂t, and

η̂t = Λ
−1/2
t (θ̃T )V (θ̃T )′Xt.
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Step 1 Using the estimated parameter vector under the null hypothesis, θ̃T , generate the
bootstrap process X∗t as follows:

X∗t = V (θ̃T )Λ
∗1/2
t (θ̃T )η∗t , Λ∗t (θ̃T ) = diag(λ∗t (θ̃T ))

λ∗t (θ̃T ) = W (θ̃T ) + A(θ̃T )(V (θ̃T )′X∗t−1)�2 +B(θ̃T )λ∗t−1(θ̃T ),

for t = 1, ..., T . Here the bootstrap innovations, η∗t , are drawn uniformly from η̂ct with

replacement, and the initial values are X∗0 = X0 and λ
∗
0 = W

(
θ̃T

)
.

Step 2 With the bootstrap log-likelihood function L∗T (θ) given by,

L∗T (θ) =

T∑
t=1

l∗t (θ), l∗t (θ) = log det(Ω∗t (θ)) +X∗′t Ω∗−1
t (θ)X∗t ,

Ω∗t (θ) = V (θ)Λ∗t (θ)V (θ)′, Λ∗t (θ) = diag(λ∗t (θ)),

λ∗t (θ) = W + A(V (θ)′X∗t−1)�2 +Bλ∗t−1(θ),

this is maximized unrestricted and under the hypothesis in order to obtain the bootstrap

estimators θ̂
∗
T and θ̃

∗
T . Compute next the bootstrap LR statistic,

LR∗T (H2) = 2(L∗T (θ̂
∗
T )− L∗T (θ̃

∗
T )).

Step 3 A critical value for a test with nominal size a is found by repeating Steps 1 and 2 B
times and computing the empirical (1− a)-percentile of (LR∗T (b) : b = 1, . . . , B).

Remark 5. Note that the bootstrap distribution approximates the LRT (H2) statistic for the

case where, under H2, nuisance parameters are assumed to be in the interior of the parameter

space. To allow nuisance parameters on the boundary of the parameter space, one may

alternatively apply the shrinkage-based bootstrap proposed by Cavaliere et al. (2019).

D Monte Carlo

In this section, we investigate the finite sample properties of the QMLE discussed in Section

3.2. The asymptotic distribution theory for the QMLE is presented in Theorem 3.3 for the

general model with A and B general (p× p) dimensional matrices. For the simulations in
Cases (i)-(iii) below, we consider the case of B diagonal (or even zero) as detailed in order
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to keep the discussion simple. The emphasis of the simulations is on the suffi cient regularity

condition of finite second order moments of Xt in Theorem 3.3, which we conjecture is

not necessary. In addition, we investigate the necessity of the rotation parameters in φ being

restricted to the interval [0, π/2], which is suffi cient for identification. The simulations indeed

indicate that the conditions of finite second order moments and the restrictions on φ are not

necessary.

D.1 Case (i): Asymptotic Conditions Satisfied

[Figure 1 here]

In Case (i), the bivariate λ-GARCH model is considered, where

Xt = V Λ
1/2
t ηt, ηt i.i.d.N(0, I2), Λt = diag(λt), λt = W + AY �2

t−1 +Bλt−1, (D.43)

and B is assumed to be diagonal2. For the data-generating process (dgp), set φ0 = 0.70 ∈
[0, π/2], W0 = (0.50, 0.75)′ and

A0 =

(
0.10 0.06

0.05 0.01

)
, B0 =

(
0.85 0.00

0.00 0.77

)
,

such that ρ(A0 +B0) = 0.98 < 1. By Theorem 3.1 (setting k = 1), the stationary solution of

the process has finite second order moments, and the conditions of Theorem 3.3 are satisfied.

We simulateN = 1000 realizations the process with T = 10000 observations, and estimate

φ, W, A, B by QMLE. Figure 1 contains kernel density estimates of the centered and scaled

estimates of φ, W1, A11, and B11. The solid line is the estimated density, and the dashed line

is the normal density. As expected Figure 1 confirms asymptotic normality.

D.2 Case (ii): Lack of Second Order Moments

[Figure 2 here]

Consider again the model in (D.43) with A and B diagonal. For the dgp φ0 is as before,

W0 = (0.1, 0.1)′

A0 =

(
0.12 0.00

0.00 0.10

)
, B0 =

(
0.88 0.00

0.00 0.84

)
,

2The theory in Theorem 3.3 is straightforward to modify to the case of A and B diagonal.

49



such that ρ(A0 + B0) = 1. Hence, by definition, the stationary solution does not have finite

second-order moments which violates the suffi ent condition in Theorem 3.3. Figure 2 contains

kernel density estimates of the centered and scaled estimates of φ, W1, A11, and B11. Despite

the fact that the suffi cient condition for asymptotic normality is violated, the estimates seem

to fit a normal distribution, indicating that the requirement of finite second order moments

in Theorem 3.3 is not a necessary condition.

D.3 Case (iii): The Rotation Parameter φ

[Figure 3 here]

Consider here the trivariate λ-GARCH,

Xt = V ′Λ
1/2
t ηt, ηt i.i.d. N(0, I3), Λt = diag(λt), λt = W + AY �2

t−1 +Bλt−1,

with B = 03×3 and with the parameter space for φ = (φ1, φ2, φ3)′ is extended such that

φi ∈ [−π/2, π/2]. For the dgp set

φ0 =

 0.47

1.45

−1.30

 , W0 =

0.45

1.50

0.95

 , A0 =

0.25 0.05 0.09

0.03 0.35 0.06

0.07 0.12 0.3

 , B0 = 03×3,

such that φ0,3 /∈ [0, π/2]. Figure 3 contains standardized densities of φ̂1, φ̂2, and φ̂3. Lemma 1

restricts φi to be in the interval [0, π/2], as both the sine and cosine functions are monotonic

in this interval. If the parameters φ are not uniquely identified, we expect to see one of two

things: One, if the parameters are not uniquely identified, we would expect the estimated

densities to be multi-modal or not centered around zero. Figure 3 again indicates that the

condition can be relaxed.
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Tables

Table 1: Estimation results - unrestricted model

Rank W A B φ V
0.108
(0.318)

0.127
(0.533)

0.140
(1.008)

0.010
(0.013)

9.4× 10−6

(2.942)
0.088
(1.558)

0.047
(0.212)

0.321
(1.732)

0.711
(1.337)

−0.240
(1.008)

0.661
(1.085)

q = 3 0.094
(0.041)

0.137
(0.174)

0.110
(0.163)

0.005
(0.035)

5.8× 10−6

(2.303)
0.027
(1.488)

0.031
(0.139)

0.723
(1.525)

−0.236
(0.957)

0.804
(0.633)

0.546
(0.530)

0.033
(0.454)

0.081
(0.884)

0.164
(1.164)

0.068
(0.024)

0.018
(0.719)

5.4× 10−5

(3.224)
0.912
(0.044)

0.813
(2.362)

−0.662
(1.143)

−0.545
(0.585)

0.515
(1.952)

Log-likelihood -14939.63 Factor model Reduced rank model
AIC 29927.26 LR test 1963.16 LR test 3.00
BIC 30071.58 95%-CV 738.35 95%-CV 18.56

The model with rank q = 3 is the unrestricted model. Standard errors are reported below the point estimates. We use the

delta-method to obtain standard errors for the eigenvectors, V . The acronyms AIC and BIC are shorthand for the Aikike

Information Criterium and the Bayesian Information Criterium. The LR test for the factor model is the supLR test where the

critical value is approximated in a simulation. The LR test for the reduced rank model is a standard LR test, where the

critical value is approximated using a restricted bootstrap.

Table 2: Estimation results - reduced rank model

Rank W A B φ V
0.109
(0.069)

0.158
(0.199)

0.009
(0.002)

0.155
(0.236)

3.6× 10−6

(0.182)
0.043
(0.066)

0.115
(0.333)

0.328
(0.191)

0.715
(0.073)

0.660
(0.026)

0.233
(0.153)

q=2 0.034
(0.041)

0.080
(0.408)

0.068
(0.012)

0.155
(0.595)

3.4× 10−4

(0.151)
0.914
(0.074)

5.5× 10−5

(0.287)
0.715
(0.192)

−0.243
(0.177)

0.547
(0.028)

−0.801
(0.072)

0.089
(0.033)

0.108
(0.052)

0.006
(0.005)

0.106
(0.078)

2.5× 10−6

(0.124)
0.030
(0.013)

0.079
(0.289)

−0.752
(0.151)

−0.656
(0.145)

0.516
(0.007)

0.551
(0.170)

Log-likelihood -14941.13
AIC 29922.26
BIC 30042.53

The reduced rank model is denoted q = 2. Standard errors are reported below the point estimates. We use the delta-method

to obtain standard errors for A and B and for the eigenvectors, V . The acronyms AIC and BIC are shorthand for the Aikike

Information Criterium and the Bayesian Information Criterium.

Table 3: Estimated parameters - reduced rank matrices

Rank α′ β′ γ′

q=2 0.158
(0.199)

0.080
(0.408)

0.009
(0.002)

3.6× 10−6

(0.182)
3.4× 10−4

(0.151)
0.043
(0.066)

1 0 0.685
(0.538)

0.068
(0.012)

0.155
(0.236)

0.155
(0.595)

0.914
(0.074)

0.115
(0.333)

5.5× 10−5

(0.287)
0 1 1.4× 10−6

(0.014)

Parameter estimated for the matrices α, β and γ. Recall that A = γα′ and B = γβ′ for q < p. Standard errors are reported

below the point estimates.
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T 1 / 2 ( φ̂ − φ 0 ) N(s=1.74)

5.0 2.5 0.0 2.5 5.0 7.5

0.05

0.10

0.15

0.20

0.25 T 1 / 2 ( φ̂ − φ 0 ) N(s=1.74) T 1 / 2 ( ω̂ 1 − ω 1 ,0 ) N(s=9.51)

40 20 0 20 40

0.01

0.02

0.03

0.04

0.05 T 1 / 2 ( ω̂ 1 − ω 1 ,0 ) N(s=9.51)

T 1 / 2 ( α̂ 1 1 − α 1 1 ,0 ) N(s=0.675)

2 1 0 1 2 3

0.2

0.4

0.6 T 1 / 2 ( α̂ 1 1 − α 1 1 ,0 ) N(s=0.675) T 1 / 2 ( β̂ 1 1 − β 1 1 , 0 ) N(s=0.923)

4 3 2 1 0 1 2 3

0.1

0.2

0.3

0.4

T 1 / 2 ( β̂ 1 1 − β 1 1 , 0 ) N(s=0.923)

Figure 1: Densities of estimated parameters when the DGP has finite second order moments.
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Figure 2: Densities of estimated parameters when the DGP does not have finite second order
moments.
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Figure 3: Densities of estimated parameters when we extend the parameter space of the
rotation parameters.
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Figure 4:

BAC US Equity

2010 2015

25

0

25
BAC US Equity JPM US Equity

2010 2015

20

0

20 JPM US Equity WFC US Equity

2010 2015

25

0

25 WFC US Equity

Figure 5: Log-returns
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Figure 6: Estimated residuals
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Figure 7: Estimated conditional eigenvalues
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Figure 8: Estimated rotated returns
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