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ABSTRACT

In this paper we consider a multivariate generalized autoregressive conditional het-
eroskedastic (GARCH) class of models where the eigenvalues of the conditional covari-
ance matrix are time-varying. The proposed dynamics of the eigenvalues is based on
applying the general theory of dynamic conditional score models as proposed by Creal,
Koopman and Lucas (2013) and Harvey (2013). We denote the obtained GARCH model
with dynamic conditional eigenvalues (and constant conditional eigenvectors) as the A-
GARCH model. We provide new results on asymptotic theory for the Gaussian QMLE,
and for testing of reduced rank of the (G)ARCH loading matrices of the time-varying
eigenvalues. The theory is applied to US data, where we find that the eigenvalue struc-

ture can be reduced similar to testing for the number in factors in volatility models.
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1 Introduction

In this paper we consider p-dimensional multivariate generalized autoregressive conditional
heteroskedastic (GARCH) models where the eigenvalues (A1, ..., A,) of the conditional co-
variance matrix of the p-dimensional vector X; (of returns) are modelled as time-varying.
The proposed dynamics of the eigenvalues (A1, ..., Apt) is based on utilizing the general the-
ory of dynamic conditional score models for time-varying parameters as proposed by Creal,
Koopman and Lucas (2013) and Harvey (2013). We denote the obtained GARCH model with
dynamic conditional eigenvalues (and constant conditional eigenvectors) as the A-GARCH
model.

We consider in detail the cases where (the returns) X; are assumed to be multivariate
conditionally Gaussian and Student’s ¢,-distributed respectively, which constitute the condi-
tional distributions most widely applied in empirical modelling of time-varying covariances.
By definition, both specifications imply a rich and general dynamic structure for the evolu-
tion of the eigenvalues. Specifically, in the conditional Gaussian case, the resulting dynamics
of the eigenvalues of the A-GARCH model is an extended version of the generalized orthog-
onal GARCH (GO-GARCH) model of van der Weide (2002). Here the A-GARCH model
extends the GO-GARCH as the spill-over effects are allowed more degrees of flexibility, sim-
ilar to the extended version of the constant conditional correlation (ECCC) GARCH model
in Jeantheau (1998) which generalizes the CCC-GARCH model of Bollerslev (1990). On the
other hand, in the conditionally t-distributed case, the dynamics of the A-GARCH model
generalizes and extends the univariate $-t-GARCH model of Harvey (2013) and Harvey and
Chakravarty (2008) to the multivariate case, where the “ARCH” effects are time-varying,
while the “GARCH?” effects remain constant. One may note that the score approach is also
used for considering time-varying correlations — as opposed to time-varying eigenvalues —
in Creal, Koopman and Lucas (2011), where the DCC-GARCH model of Engle (2002) is
considered under the assumption of a conditional ¢-distribution of returns Xj.

As demonstrated in the empirical illustration, the dynamic specification in the A-GARCH
class allows one to impose hypotheses on the inter-action between linear combinations of
the eigenvalues. In particular, for the returns on three major US bank shares, we find
that while we reject constancy of all (three) eigenvalues, there is one linear combination of
the eigenvalues which appear constant. Equivalently, the implied reduced rank structure
of the (G)ARCH loading matrices, indicates that there are two linear combinations of the
eigenvalues which drive the conditional volatility of X;. Thus we are able to disentangle
time-varying linear combinations of the eigenvalues, or factors, from time-invariant factors

which drive the dynamics of the conditional covariance, see also Lanne and Saikkonen (2007)



and Dovonon and Renault (2013).

In terms of inference and asymptotic theory, we provide a full asymptotic theory for the
Gaussian-based quasi maximum likelihood estimator (QMLE) of the (vector) parameter of
the A-GARCH model. We provide conditions for strict stationarity, ergodicity, and finite
moments of X;, and present primitive sufficient condition for consistency and asymptotic
normality of the QMLE relying on only finite second-order moments of X;. Simulations indi-
cate that while sufficient, second-order moments may not even be necessary as the estimator
is well-behaved even when relaxing the condition of finite unconditional variance, similar to
results in the univariate analysis of GARCH models, see also Jensen and Rahbek (2004).
The asymptotic results are new, and while the arguments applied for establishing limiting
distributions are based on classic likelihood expansions, a novel result on identification is
given, which is needed for establishing consistency of the QMLE estimator.

Moreover, testing reduced rank in the context of multivariate GARCH models is non-
standard as it involves non-identified parameters under the hypothesis — see Pedersen and
Rahbek (2019) for a discussion of the univariate case — and we discuss the general theory ap-
plicable for our empirical illustration. In particular, we derive the limiting distribution of the
sup likelihood ratio (supLR) test statistic for the case of zero rows, and hence reduced rank,
of the (G)ARCH loading matrices, while we for the more general case propose a bootstrap
based approach, see also Cavaliere, Nielsen, Pedersen and Rahbek (2019).

Existing theory for the classic (non-extended) multivariate GO-GARCH model typically
rely on two (or, three) step estimators. For the multiple step estimators, essentially, in a
first step the unconditional covariance matrix is estimated, which is then kept fixed in the
next estimation step(s), where the remaining dynamic GARCH parameters are estimated,
see Fan, Wang and Yao (2008) and Boswijk and van der Weide (2011) and the references
therein. In contrast, we consider here joint one-step estimation of all parameters, which in
particular requires the mentioned identification result as the unconditional covariance, and
hence eigenvectors, are not fixed in a first estimation step. In terms of asymptotic theory
for two, or multiple, step estimators in other multivariate GARCH type models, Pedersen
and Rahbek (2014) discuss this in terms of covariance targeting for the BEKK-GARCH
model, while Francq, Horvath and Zakoian (2014) discuss variance targeting for the ECCC-
GARCH model. Lanne and Saikkonen (2007) consider one-step estimation of their factor
GO-GARCH model. By noting that the model has a BEKK-type representation, they argue
that the MLE (for the identified parameters) is consistent and asymptotically normal by
referring to the theory for BEKK models derived by Comte and Lieberman (2003). We
emphasize that this theory rely on the assumption of finite higher-order moments of X,

(specifically, E||X;||® < oo) which is typically needed for showing asymptotic normality of



the MLE for BEKK models, see also Hafner and Preminger (2009a), Avarucci, Beutner and
Zaffaroni (2013), and Pedersen and Rahbek (2014). In contrast, we show that the QMLE for
the A-GARCH model is asymptotically normal under mild second order moment conditions
on X;.

The paper is structured as follows. Section 2 defines the A-GARCH model for the case
of conditional Gaussianity and conditional Student’s ¢ distributed returns. In Section 3, the
stochastic properties of the A-GARCH process is discussed, and asymptotic theory for the
QMLE is given. In Section 4 testing of reduced rank ARCH and GARCH loading matrices is
discussed and Section 5 contains an empirical example with US data. The Appendix contains
mathematical proofs (Appendix A), details on hypothesis testing (Appendices B and C), and
a short simulation study on the finite sample properties of the QMLE (Appendix D).

1.1 Notation

Some notation used throughout the paper. For p € N, I, denotes the (p x p) identity matrix
and 0,5, denotes a n x p matrix of zeros (and 0, = 0,,x1). For a p-dimensional vector z,
diag(z) =diag((z;)?_,) is a diagonal matrix with = on the diagonal. Furthermore, denote by
p(A) the spectral radius of any square matrix A. We use || - || to denote the Euclidean matrix
norm. Moreover, A ® B denotes the Hadamard product, while A ® B denotes the Kronecker
product of A and B of suitable dimensions. We set A2 = A® A and A%? = (A® A). Finally,
let 2, 2 and % denote convergence in probability, in distribution and weakly respectively.

Unless stated otherwise, all limits are taken as the sample size T" — oo.

2 Score Driven Conditional Eigenvalues | A-GARCH

We consider a class of multivariate conditionally heteroskedastic models where the eigenvalues
of the conditional covariance matrix are allowed to be time-varying, where we apply the
approach of Creal, Koopman and Lucas (2011) and Harvey (2013) to arrive at dynamic
specifications of the time-varying eigenvalues under different distributional assumptions on
the innovations.

Let X; be a p-dimensional vector of observed variables (returns, say), X; € RP for
t = 1,....,T. Define the information at time ¢, F; as the o -algebra generated by the past
variables, F; = o(X; : i < t), and let f(X;|F;_1) denote the conditional density of X,
given F; ;1. Assume with no loss of generality that the conditional mean E (X;|F;_1) is zero,
E (X;|F;—1) = 0, and that the conditional distribution of X;, or f(X;|F;_1), can be char-

acterized in terms of the time-varying conditional covariance matrix ; = E(X;X;|F;_1) in



additional to (constant) distributional shape parameters.

The conditional covariance matrix €2, is stated in terms of time-varying conditional eigen-
values (\;;)}_, and corresponding p—dimensional constant conditional eigenvectors (v;);_;.
That is,

Qt = VAt V,,

with V' = (vq,...,v,) and Ay :diag(()\ijt)’.’ 1). By definition the eigenvectors are orthogonal,

1=

such that V'V = V'V’ = [,, while \;; > 0 (almost surely) for i = 1, ...,p and for all t. With
)\t — ()\Lt, ceey )\p,t)/

the vector of eigenvalues, we note that f(X;|F;_1) may be indexed by );, and we write
henceforth

f(Xt|ft71) - f(Xt’)\t)-

The dynamics of the time-varying eigenvalues ), is given by the score updating equation, see
Creal et al. (2011),
/\t =W+ ASt_l + B)\t—h (1)

where W is a p-dimensional vector of constants and A and B are general (p X p) coefficient
matrices. The p-dimensional (score) vector s; is defined as the score of the log-density
log f (-|\¢) with respect to \;, up to an appropriate scaling. That is, the score contribution

in the dynamics is given by,
dlog f(X¢|A\)

N @

with S; an appropriate scaling matrix, which here in line with existing literature on score

5¢ = Sy

driven models is set to the inverse of the (conditional) Fisher information matrix, i.e.

) .

Below we consider the implied A-GARCH models when f (-|\;) is assumed to be one of the

two dominating densities in the multivariate GARCH literature; the multivariate Gaussian

s _ (g 8logf(Xt\)\t)8logf(Xt|)\t)
! O\ O,

and Student’s ¢ respectively. These yield fundamentally different dynamics of the eigenvalues

as clear from the next.



2.1 Conditional Gaussian Distribution

Consider the case of conditional normality of X;, such that the conditional density f (X;|\;)
is given by,
F(Xi|A) = (2m) P2 det ()2 exp (X[, X, /2) .

Using the definitions in (1)—(3), give upon tedious calculations that the implied dynamics of

A¢ can be represented in a multivariate GARCH-type form,
M=W+AV'X, ) + B\,

where W is a p-dimensional vector, A = A and B = B — A, and where we restrict the (p X p)
matrices A and B to have non-negative entries.

Note that, for each 7, the time-varying positive eigenvalue \;; is allowed to depend on
all of the orthogonal linear combinations v;X; 1, where COV(U;-Xt,l, UZXt,llft,l) =0 (and
hence Cov(v}Xt_l, v;Xt_l) = 0) for all j # k. In addition, our proposed A-GARCH model
allows A; ; to depend on all entries of \;_;. In that sense the Gaussian score-driven eigenvalue
model is a generalization the GO-GARCH models considered by Fan et al. (2008) and Boswijk
and van der Weide (2011). Finally, we stress that our proposed parametrizations appeal to

estimating all model parameters simultaneously, and not as is common in two, or more steps.

Specifically, Boswijk and van der Weide (2011) consider the GO-GARCH model
X, = VA, n,~iid(0,1,),
with A, =diag((\;)}_,) satisfying!, with By a (p x p) diagonal matrix,
M= —-A-B)+AV'X_1)> + Bih_1. (4)

Moreover, Boswijk and van der Weide (2011) assume that the matrix V = (V4,...,V,) is

non-singular with polar decomposition
V =CR,

such that C' is positive definite and R is orthogonal. Lanne and Saikkonen (2007) considered
an identical model, but with the additional restriction that some row in A and (the diagonal)
B, is zero, and hence allowing for constant conditional eigenvalues \; ;. We discuss in Section
4 testing for reduced rank of A and B in the A-GARCH model, for which the zero row

!To be precise, the authors only state that \;; is "assumed to follow a GARCH-type structure" [p.119],
but the following specification is the one considered in their empirical application.



restriction is a special case. The model in Boswijk and van der Weide (2011) is closely
related to the model considered by Fan et al. (2008) who, identically to our approach, let
V' be orthogonal but with A; defined by (4) such that the condition that F (X, X]) = I, (or,

equivalently, standardized returns) is imposed.

2.2 Conditional Student’s ¢t-Distribution

Consider here the case where the conditional distribution of X; is a standardized Student’s

t distribution with v > 2 degrees of freedom. In this case the conditional density is given by

f(Xilh) = Li) (v — 2)m )" det ()2 {1

r(s)

where I'(+) is the Gamma function. In line with the Gaussian case in Section 2.1, the bivariate

?

thQtht:| —(v+p)/2
+ - = @@
v—2

case of the Student’s score dynamics can be represented as
N=W+A,V'X,_1)®? + BX\_1.

Here W is as before while

Alt—1
2wy K b vy [p (v+4
A = (/€2—’}/2>A< Nt h > and B = {B (1/—2) A] ,

_JYA1¢71

with kK = 3(v+2)/(v+4) -1, 7 = (v+2)/(v+4) — 1. Moreover, the time-varying
“weights” w; of the ARCH-loadings are given by

B 14+2/v
1+ Vﬁl[y%,t—l//\l,tfl + 1/5715—1/)‘271‘/*1 —2]’

Wy

with (y14,y24) = X[V

We note that, similar to the Gaussian case, one may view the dynamics of \; as GARCH-
type dynamics where the "GARCH" coefficients B — as for the Gaussian case — are constant,
while the "ARCH" coefficients, A;, are time-varying and stochastic. Note that one obtains
the Gaussian case by setting v~ = 0. Also, note that for the one-dimensional case, p = 1,
we obtain the Beta-t--GARCH considered in Harvey (2013, Ch.4.7). While the bivariate
(and univariate) case has a somewhat simple structure, the general case of p > 2 has a less

transparent representation. Specifically, following Creal et al. (2011, Theorem 1), the score



and scaling matrix are given respectively by

ab&%TVFQ:%%wmeWWwX?—Vmwd&ﬂ7
t

L :
Si = UV V)P gG — vee(T)vee(,)] (VA V)0,

where U, = V®20vec(A,) /0N, wy, = (v+p)/(v—2+X/VA;'VX,),and g = (v+p)/(v+2+Dp).
Moreover, G = E|[(z:2;)®?] with 2z ~ N(0, I,,).

3 Properties and Estimation of the \-GARCH Model

In the remainder of the paper we focus on the Gaussian case in Section 2.1, and study quasi-
likelihood inference. In particular, we provide sufficient conditions for strict stationarity and
state primitive conditions for strong consistency and asymptotic normality of the one-step
quasi-maximum likelihood estimator (QMLE) for all parameters.

The A-GARCH model may be summarized as,

X, = VAPn, A =diag (\)0,), VV=VV' =1, (5)
A= Mgy Ap) =W+ AV X,21)9% + BAy, (6)
with 7, 1.i.d(0,1,). The parameters of the model are given by the p-dimensional vector
W = (wi,...,w,) with strictly positive entries, w; > 0 for i = 1,2,...,p and the (p x p)

.....

Additionally, the constant conditional eigenvectors V' are parametrized by ¢, which is a

p(p—1)/2-dimensional vector ¢ = (¢1, ..., ¢, 1),)"- More specifically, for the case of p = 3,
cos(dyy)  sin(¢yy) 0 cos(dyz) 0 sin(¢y3) 1 0 0
V(¢) = | —sin(¢y2) cos(¢yy) 0 0 1 0 0 cos(gg)  sin(gys) |
0 0 1 —sin(¢y3) 0 cos(¢ys) 0 —sin(gy3) cos(eys)

while for the general case the (p X p) dimensional V' matrix is defined in terms of so-called
rotation matrices R (i,j) = (R(i,7)y); 1., 25 applied in van der Weide (2002) for the
GO-GARCH model. That is, V = Hf;ll P R(i,j), where

j=it+1

R(i,j),=1ifk#4d,j, R(i,j),=0ifk#1and k #i,j,

R(i,j); =R (i7j)jj = cos(¢;;), and R (Za])z] =R (Za])ﬂ = sin(¢;;).

8



For the estimation, or statistical analysis, we assume the 7, are Gaussian distributed, while
this assumption is relaxed when studying the probabilistic properties of X; as well as the

asymptotic properties of the resulting Gaussian-based quasi likelihood estimators (QMLEs).

3.1 Stochastic properties

For the stochastic properties of X; satisfying equations (5)-(6), we note that V’'X, satisfies

the stochastic recursion,
VX, = A, with Ay = W + A(V'X,_1)®? + BA_1, (7)

such that the rich literature on stochastic recursions can be applied in order to state conditions
for strict stationarity and ergodicity as well as conditions for finite moments of X;. To see

this, rewrite the dynamics of \; in (7) as the stochastic recurrence equation,
A=W+ 1N (8)
where ®; are i.i.d. random matrices,
¢, = A diag ((W?,t)le) + B, (9)

with @, and )\; independent. By Francq and Zakoian (2019, Theorem 10.6 and Corollary
10.2) and Pedersen (2017, Lemmas B.5 and B.6) we immediately have the following result.

Theorem 3.1. The process (X; : t € Z) obeying (5)-(6) is strictly stationary and ergodic if
and only if £ < 0, where & is the top Lyapunov coefficient of (P, : t € Z) defined by

= Jim ot E(log | [ ] @4, (10)
t=1

with ®; defined in (9). The strictly stationary and ergodic process has E||X;||® < oo for
some s > 0. Moreover, for k € N, E||X||** < oo if and only if {p(E(HF*)) < 1 and
Elln,|[** < oo}

Remark 1. Notice that a necessary and sufficient condition for finite second order moments,
E||X?|| < oo, of the strictly stationarity and ergodic process (X; : t € Z) is that p(A+ B) <
1. In this case, the unconditional variance of the process is E (X, X]) = E () = E(VAV') =
V (diag{(I, — A— B)"'W})V".



3.2 Quasi-Maximum Likelihood Estimation

The parameters of the A-GARCH model in (5)-(6) are given by,
0 = (W' vec(A), vec(B), ¢,
with parameter space O,
O=0,x0,4x0p X6y

Here Oy = [wr,wyl? for some 0 < wy, < wy < 00, O4 := [0, ozU]p2 for some 0 < apy < oo,
©p C RY such that SUD, ()0, A(B) < 1, and O, = [0, 7/2]PTDP/2. We make the following

standard assumption:
Assumption 3.1. The true value of the parameter vector 8y € © and © is compact.

Given a realization (X; : t = 0,1,...,7T) of the A-GARCH process in (5)-(6), the Gaussian

quasi-maximum likelihood estimator (QMLE), O, for 0 is defined as
Or = arg minLr(6),

where the log-Gaussian likelihood function is given by,

Lo(6) = Z W(6),  1(6) = log det(€(8)) + X,07 1 (6)X,. (11)
Q(0) = V(IO MOV (),  A(0) = diag(A(0)), (12)
A(0) =W (0) + A(0) (V(0) X,_1)®* + B () A1 (0), t=1,....T, (13)

with \g(6) = Ao fixed and with strictly positive entries. Throughout we make the following
assumption about the data generating process (X; : t € Z) where Ay = A (6y) and similarly

for the remaining true parameter values.

Assumption 3.2. Assume that £, < 0, where £ is defined in (10), such that the process
(X :t € Z) is stationary and ergodic with E|| X¢||* < oo for some s > 0.

Lastly, in order to show that the QMLE is strongly consistent, we make the following

identification assumptions.

Assumption 3.3. Assume for the i.i.d.(0,1,) sequence (0, : t € Z) that n;, and n;, are
independent for all © # j, i,j = 1,...,p. Moreover, assume that 77?7t is non-degenerate for

1=1,...,p.

10



Assumption 3.4. Assume that the (p x 2p) dimensional matriz [Ag, Bo] has full rank p.
Moreover, with z € C and § € O, assume that the polynomials A () z and I, — B (0) = satisfy
that (I, — B(0) 2)"YA(0) z = (I, — Byz) ' Aoz implies 0 = 0.

Assumption 3.5. With 0, the true value of 0, and for any 0 € ©, let V = VoV where
V =V(0) and Vo = V(o). Assume that for some j € {1,...,p}, Vi; # 0. Moreover, with
A; and A;q the jth row of A(0) and Ay, and

% () = (A (VX = Ajo (Vi X)) (14)

assume that ~y, (j) conditional on F]' | = o{n,,s <t} is degenerate implies that V. = Vj.

Finally, assume that

V =V implies that ¢ = ¢,,. (15)

Assumptions 3.3 and 3.4 are standard and in line with existing literature on two-step
estimators as well as theory for ECCC-GARCH type models as in Francq and Zakoian (2019).
Assumption 3.5 is new and specifically ensures that the rotation parameters ¢ are identified.

For the case where ¢, € int©4 we have the following result:

Lemma 1. With 6, € int© and n, i.i.d.N, (0,1,), then (14) holds. If ¢, € intOy, then (15)
holds.

Remark 2. For our choice of parametrization of V', we note that the first column of V' is given
by Vir, ..., Vp1), where Vi3 = Hf:_ll cos ¢, and Vi = — f:_f cos ¢, ;sing; 1, j =2,...,p.
Note that for any ¢ € Oy there exits a j such that Vj; # 0. Moreover, for any j, Vi1 # 0 on
int®,. Hence, Vi; = > 1 VoiVin # 0 on Oy if ¢ € intOy.

We have the following result on strong consistency of the QMLE:
Theorem 3.2 (Consistency). Under Assumptions 8.1-3.5, 07 — 0y almost surely.

In order to show that the QMLE is asymptotically Gaussian, we make some additional

assumptions.
Assumption 3.6. The true value of the parameter vector 6, € int©.

Assumption 3.7. The data-generating process satisfies that E||n,||* < oo and E||X;||*T <

oo for some € > 0.

Assumption 3.8. The matrix Ay has a row with a unique entry.

11



The assumptions that 0 is an interior point and that 7, has finite fourth-order moments
are standard. The assumption of finite second-order moments of X; is used to show that the
expectation of the third-order partial derivatives of the log-likelihood contribution is finite on
a (suitable) neighborhood around 6 in the proof of Lemma A.5 in Appendix A.5. Specifically,

the third-order derivatives contain terms essentially of the form

Noti@hsag (OXesn(0) A BN O0)iny
Xi(0) Xt 6) |

(16)

where 7, , denotes the sth entry of the noise 7,, A;;(f) is the sth entry of \(f) in (13),
and }\s,t,i(e) = 0Xs+(60)/00;. Any power of the first factor has finite expectation on the
neighborhood, whereas for the case where g # s, it is not obvious that the second factor has
finite expectation for 6 # 6y. On the other hand, it is straightforward to show that the fraction
is (up to a scaling constant) bounded (uniformly on the neighborhood) by || A;(6o)]|||7,||* which
has finite expectation provided that E|X;[|> < co. By Hoélder’s inequality it then follows
that (16) has finite expectation if F||X,||** < co. Simulations in Appendix D indicate that,
while sufficient, the condition may not be needed in order for the QMLE to be asymptotically
normal.

We note that the moment requirement is stronger than for the theory for the Gaussian-
based QMLE for the ECCC-GARCH model (Francq and Zakotan, 2012) and the factor-
GARCH (Hafner and Preminger, 2009b), where only E||X;||¢ < oo for some € > 0 is needed.
On the other hand, it is milder than the requirements of finite sixth- or eighth-order moments
assumed by Hafner and Preminger (2009a) and Comte and Lieberman (2003) for the VEC
and BEKK class of models, respectively.

Assumption 3.8 is used in the proof of Lemma A.4 in order to show that the expectation
of the Hessian, i.e. the probability limit of T~10%L(6,)/0006', is invertible. Typically in the
literature, the proof of invertibility relies on showing that there exists no non-zero v € R%

such that for all ¢
7/ a)‘t(ef))

06

In much of the existing literature on multivariate GARCH models, e.g. Comte and Lieber-
man (2003) on BEKK models and Francq and Zakoian (2012) ECCC models, such a property
is typically verified by exploiting that, under (17), v/0X;(6y)/00 is linear in (VjX;_1)®? and
At—1(0p) and that 6, is identified. In our model, we do not have linearity as v'0\:(6y)/00

contains terms with partial derivatives with respect to the entries of ¢. This leads to addi-

= 0px1 almost surely. (17)

tional considerations about invertibility of J, and we make the additional Assumption 3.8,

see the proof of Lemma A.4 for details.

12



We have the following result:

Theorem 3.3 (Asymptotic normality). Under Assumptions 3.1-3.8,
VT (67 — 60) % N0, J'sJ 7Y,

where J is an invertible matriz defined in (A.26) and ¥ is a non-negative definite matriz
defined in (A.11) in the Appendiz.

A small simulation study in Appendix D illustrates that the finite-sample distribution of
the QMLE is well-approximated by a normal distribution, and moreover indicate that the
sufficient moment conditions can be relaxed.

Next, we consider hypothesis testing in the A-GARCH model motivated by the idea that
a few conditional time-varying linear combinations of \; are driving the volatility of the X,

process.

4 Reduced Rank of A and B

Consider the A-GARCH model in (5)-(6) on the form,
MN=W+AV'X, 1)?% + B

A relevant hypothesis to test is if there are no spillovers between the eigenvalues, that is if the
matrices A and B are diagonal, similar to testing for no volatility spillovers in ECCC-GARCH
models as considered by Pedersen (2017). We here take another direction and consider testing
of the hypothesis that one or more linear combinations of \; are constant. A special case of
this is to test if one or more conditional eigenvalues are constant, similar to the test for a
constant factor in the factor GO-GARCH model by Lanne and Saikkonen (2007).

The hypothesis of (p — ¢) constant conditional linear combinations of A\; may be parame-

trized as the hypothesis H, of reduced rank ¢ < p of A and B,
H,: A=~vd’ and B =13 (18)

Here v, and [ are (p X ¢) dimensional matrices, such that A and B have non-negative
entries. An immediate implication is indeed that the (p — ¢) combinations .\, are constant,
where 7, is (p X p — ¢q) dimensional and .y = 0 with rank of (,.) equal to p. That is, the
hypothesis is equivalent to (p — ¢) constant conditional eigenvalue relations 7.\, while the

remaining ¢ relations, 7' \; are time-varying.
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In terms of testing — apart from standard identification issues related to the reduced
rank as well-known from testing reduced rank in e.g. cointegrated vector autoregressive
processes, see e.g. Cavaliere, Rahbek and Taylor (2012) — this raises the issue of non-identified
parameters under H, as addressed in Andrews (2001) for univariate GARCH models, see
also Pedersen and Rahbek (2019) for GARCH models with exogenous covariates. In the
A-GARCH case the non-identified parameters appear in the GARCH loadings matrix B,
and hence across equations which requires arguments different from the univariate cases
mentioned.

To illustrate, we start out by considering in Section 4.1 a p = 3 dimensional model with
7 in (18) known which reduces the testing problem to that of a zero row in A and B. Next,
in Section 4.2, we discuss testing of H, that is, extend the discussion to include an unknown
v matrix (and general dimension p). In the empirical illustration in Section 5 we consider

implementation of both cases.

4.1 Testing with v known

Consider the case of a p = 3 dimensional system with

, (100
7 010/

This is a special case of Hq, as with the (3 x 2) matrices o and 3 given by

Q11 21 511 521
o = 12 (X929 and 6 = 612 522 5
13 (g3 513 523
one can write A and B as
11 (g (g3 511 512 513
A= ’70/ = Qg1 (igg  (X23 and B = 761 = 621 622 623
0 0 0 0 0 0

We denote this hypothesis by H;. Observe, that under H; the loading matrices A and B
indeed have reduced rank (less than or equal to) ¢ = 2, as induced by a zero row. Note also
under HJ, v, = (0,0,1) such that v/\, = Ag is constant, while the remaining two linear

combinations in 7'\, = (A, Ay)’ are time-varying.

Remark 3. The case of testing for a zero row in A and B, or Hg, 18 similar to testing the
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hypothesis of weak exogeneity known from cointegration analysis, see Harbo et al. (1998).

In terms of testing H;, it follows that (345 in (the unrestricted) B is not identified analogous
to testing of conditional homoskedasticity in GARCH models, see Andrews (2001). Moreover,

for the two remaining eigenvalues \;; and Ay, under H;,

3 3
Ajg = wi+ Z Qi (VZ-Ithl)GQ + Z BjiNit—1
i=1

=1
3 2
= (wj + Bjaws) + Zaji (V/ X)) + Zﬁji)\itq, J=12.
=1 =1

Hence, in addition to (45, we also see that the parameters 3,5 and (3,5 are non-identified
under the null in the GARCH loadings matrix B. To address this, we proceed as in Pedersen
and Rahbek (2019), and test the observationally equivalent hypothesis H} which is given by

Hy: asz=0fori=1,23 and 8;; =0 for j = 1,2. (19)

The idea is to apply a sup likelihood ratio (supLR) test, where the supremum is taken over
the non-identified parameters (3, 395 and [s5.

To distinguish the non-identfied parameters from the identified, partition the parameters

. 3 3 3 3
as (¢,0"), with 0§ = ((Wi)i:u(aij)i,j:l 5 (ﬁij)i:1?273 j:1’27(¢i)i:1)l and 6 = (B;3);—;- The
parameter space is given by the product © X Og,,, where © and Oy,, are compact. Lastly,

consider the parameter space for § as restricted by H3, i.e.
©"={0€0O:a3 =0fori=1,23and f;; =0 for j =1,2}.
The test relies on estimating ¢ restricted and unrestricted for a given § € Ogyp, i.e. let
fr5 = argmax Ly (A,0) and 075 = argmax Ly (6,0), for 6§ € Ogp. (20)
R 0ce
The supLR statistic is given by

sup LRr(H3) = sup Lr (éT,(g,(S) — sup Lp <9T75,5> ) (21)

Under regularity conditions given in Appendix B the statistic converges in distribution to a
limiting distribution L,
sup LRy (H3) % L, (22)

with £ given by (B.41). Also in Appendix B the implementation of the asymptotic test is
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discussed which is applied in Section 5.

Remark 4. The key conditions for (22) as given in Appendiz B are: (i) that éT’g and éTﬁ
are consistent for 0y for any § € Oy, (1) that the score as a process indexed by § converges
weakly to a Gaussian process, and (i) that the Hessian matriz is invertible uniformly on Ogyp.
The conditions (i) and (iii) rely on finding conditions such that 0y is identified, whereas (ii)
typically relies on showing that the score obeys a functional CLT. The latter may be shown
to hold if the score process converges in finite-dimensional distribution to a Gaussian vector,
and that the score process is tight, see e.g. Pedersen and Rahbek (2019, proof of Lemma A.3).
In line with Pedersen and Rahbek (2019), one may need stronger moment conditions than
the ones in Assumption 3.7 in order to prove tightness. Likewise, due to the fact that 0y is a
boundary point of ©, it may require higher-order moments of X, in order so show that ratios
of the type (16) have finite expectation, similar to Francq and Zakoian (2009) and Pedersen

(2017) where finite sizth-order moments are imposed.

4.2 The general case of reduced rank A and B matrices

Next consider the general case H, of reduced rank ¢ in the p-dimensional A-GARCH model
with general v, @ and S matrices.

Observe initially that with the “ARCH” part of the restrictions in H, imposed, A = va/,
and with 5 = v (7/7) " it holds by definition that

VA =AW+ o/ (VX 1) + 7' Byy Aca + 7 Byadeda,

Yxe = VW 4+ Y.ByY M1 + By Ao h—1.

Next, for 4.\; to be constant, 7. B~y = 0 is needed, in which case the second equation reduces

to
Fxe =W 4+ 7.By Ao -1,

which, similar to the H} example, implies that the (p — q)2 parameters 7., B~, are not identi-
fied. Moreover, as 7.\, are constant, also 7'B7y, are not identified in the equation for ¥’'\;.
Collecting terms, as (,7,.) is of full rank p by definition, it holds that the parameters in 0
given by

6=DBy. (px(p—0q)

are not identified under the null. One may therefore consider a sup-based testing approach
keeping d fixed, and, in principle, a supLR test statistic similar to (21) can be computed.

However, the fact that v is unknown means that a reparametrization is needed to ensure
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identification as well as variational independence of the remaining parameters of the model.
In addition, the regularity conditions for convergence in distribution of supLR statistic are
beyond the scope of this paper, and we instead propose to apply a bootstrap based test. The

details of the bootstrap are given in Appendix C and is illustrated in the next Section 5.

5 An Empirical Illustration

In this section we provide an empirical illustration of the A-GARCH model, and test nullity
of rows, as well as reduced rank of the A-GARCH loading matrices. We use daily return
data for three financial equities? from the S&P 500 Index with sample period January 3rd
2006 to January 2nd 2018. The log-returns are shown in Figure 5. Initial inspection of the
data reveals that the unconditional densities are heavy-tailed and the data is characterized
by ARCH effects. The log-returns appear to exhibit volatility clustering during the same

periods, and hence may share a common factor (or eigenvalue) driving their volatility.

[Figures 4 and 5 here]

Table 1 contains the parameter estimates of the trivariate A-GARCH model. A few of the
parameter estimates in the unrestricted model are on the boundary of the parameter space,
indicating that the distribution of the associated estimators may not be Gaussian, but rather
follow a half-normal type distribution. The residuals of the unrestricted model and their
densities are given in Figure 6. The densities of the residuals are slightly heavy-tailed, and
unreported misspecification test indicate no ARCH-effects and no residual autocorrelation.

The estimated conditional eigenvalues process \; is highly persistent as p(flT + BT) ~
0.997. Thus A, and hence X, exhibit near-IGARCH-type behavior, similar to standard
univariate and multivariate GARCH models. The high degree of persistence is likely to be
caused by the almost explosive spike in volatility during the financial crisis of 2008-2009, as
can be seen in Figure 7. We note that A3 on average explains 85% of the variation in the
dataset, and inspecting the corresponding eigenvector reveals that this can be interpreted
as a “market factor", with each asset have a (normalized) weight of roughly 30% in the
rotated return. The two remaining eigenvalues individually explain 6 — 8% of the variation
on average, and their corresponding rotated returns are long-short portfolios of the data.
Importantly, while the two smaller eigenvalues are of lesser importance compared to the
“market eigenvalue", they are not constant, and all rotated returns have inherited ARCH

effects, as can be seen from Figure 8.

?Bank of America corp. (BAC), JPMorgan Chase & co. (JPM), and Wells Fargo (WFC).
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[Table 1 here]

Consider next hypothesis of a zero row in A and B, that is H} in (19). As mentioned in the
previous section, the hypothesis is tested using a supLR test and critical values are obtained
by simulations, see Appendix B.1 for details.® Based on the supLR statistic of 1963.16 and
the associated critical value of 738.35 (both given in Table 1), we reject the hypothesis of
a zero row. Intuitively, this seems sensible: under the hypothesis one of the eigenvalues is
constant, and the associated rotated return homoskedastic. As already noted, this is not the
case as all three rotated returns in the unrestricted model clearly have ARCH-effects (see

Figure 8).

[Figure 6 here]

The second hypothesis that we test the less restrictive assumption of reduced rank r = 2
of the matrices A and B, that is Hy in (18). Under H, all eigenvalues are allowed to remain
time-varying, while p—r = 1 linear combination of these is constant. To ensure identification
of 7, and  under Hy, the upper (2 x 2) block of « is set to I, while the last row of v is
freely varying. We obtain critical values by the bootstrap algorithm in Appendix C, see also
Cavaliere et al. (2019). The critical value is obtained from B = 399 bootstrap replications.
The LR statistic is 3.0 and the associated bootstrapped 95% critical value is 18.56 such that
H, is not rejected. From the estimated parameters for the reduced rank model (reported
in tables 2 and 3), the estimated parameters, eigenvalues, and conditional covariances for
unrestricted model and reduced rank model are non-distinguishable, and based on the AIC

and BIC, the reduced rank model is in fact preferable to the unrestricted model.

[Table 2 here]
[Table 3 here]

From this empirical illustration we make the following notes: First, the A-GARCH model
performs well for the series studied, and the estimated time-varying eigenvalues and eigen-

vectors are easy to interpret, reflecting market conditions at a given time. Second, despite

3For each entry of the non-identified parameter vector § = (B3, Bas, Bs3)' we use k = 20 equi-distant
points between 0 and 0.99 (both points included), leading to a grid of 203 = 8000 points for §. Steps 1-3 of
the algorithm for the asymptotic distribution of the test only draws from grid points in which: i) the Hessian
matrix is invertible, as determined by the reciprocal condition number, and i) the log-likelihood value is
close to the maximum likelihood value. That is, for s = 1,...,dimA, we only use a given grid point if rcond
(Js5,) > 10712 and Lp(6,68;) +5 > sups,ea L7 (6,6;) both hold. We use M = 10000 Monte Carlo draws to
determine the critical value.

4We also test the hypothesis that the rank of A and B is ¢ = 1. This test is strongly rejected, with a LR
test of 140.89 and a bootstrapped critical value of 30.57.
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the fact that the three equities are all in the same sector and have a shared source of the
majority of variation in a “market” eigenvalue, we cannot restrict one of the lesser important
eigenvalues to be constant without a significant loss of explanatory power. Third, we note
the usefulness of the reduced rank structure in conditional covariance matrices. The finding
that the parameter matrices A and B are reduced rank is novel, and it may have interesting
implications for the applications of models for the conditional covariance matrices, as it is
a coherent way of imposing a structure and reduce the dimensionality of the model without

losing explanatory power.
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APPENDIX

A Mathematical Proofs

A.1 Notation and definitions

Throughout, we let ¢ € (0, 1) denote a generic constant, and K is a generic positive constant
or positive F_j-measurable random variable. Moreover, let Y;(0) := V(0)'X,; denote the
orthogonalized returns. In light of Assumption 3.2, we consider the ergodic version of the
log-likelihood contributions. That is, for any ¢t € Z and 6 € O,

I3(0) = logdet(2(0)) + X/ 1(0)X,, (A.1)
Q(0) = V(O)AT(0)V(0),  Aj(0) = diag(A[(0)), (A.2)
A(0) = W + A(V(0) X,-1)®% + BAY_,(0). (A.3)
For derivatives,
. 9B(H) - O*Bi(60) ... D*B(0) .
B; = Bi=——= = 1,...
) 892 ) i, 892803 5 Bz,j,k 89189]89;6’ Z,j,k € { ) >d9}a

denote the partial derivatives of some scalar, vector, or matrix B(f) as a function of § € ©
with dy the dimension of 6.

Furthermore we let Qf = Q7 (), that is QF evaluated at the true parameter values, 6.
The same holds for other quantities which depending on 6y, e.g. Y; = Y;(0o), A7 = A (6o),
and \; = A/ (6p)

A.2 Proof of Theorem 3.2

It suffices to verify conditions A1-A5 of Francq and Zakoian (2019, Theorem 10.7). With
27 (0) defined in (A.2), we immediately notice that Assumption 3.2 implies that E[||Q}(0y)]|]® <
oo for some s > 0 (condition A3). Moreover, recall that p(B) < 1 on ©, and define the func-
tion A : (RP)® x © — RP, with (x,z_1,...) a sequence of vectors in R” and § € ©, given
by
Mo, 2_1,...30) =D B [W+ A(V(0)z_;)®?] .
=0
We note that for any sequence (xg,z_1,...), A(zo,2_1,...;-) is continuous on O (condition

Ab). It remains to show the following three points.
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(i) With Q,(0) and () defined in (12) and (A.2), respectively, supycg ||€2; '(0)| < K and
supgeo || (0)]| < K almost surely.

(ii) supgpeg [|€:(0) — ()] < Koo' almost surely.
(iii) For 6 € ©, Q;(6) = Q2 (0y) almost surely = 6 = 6.

Proof of (i): Note that sup,ee ||, (0)]| < supgeo |VI?IA; ()] < Ky/pw;? < K. Likewise,
supaco 12 1(6)]] < K.

Proof of (ii): With A\(0) and A;(#) defined in (13) and (A.3), respectively, using that
Supgee P(B) < 1, we have that

sup [|€2,(0) — Q7 (0) ]| = sup [|A:(0) = AF(0)|] = sup || B (Ao = A5(0))]| < oK.
0cO 0cOe 0cO

Proof of (iii): For € ©, suppose that Q7(8) = Q () a.s., such that with V := V(¢,)'V ()
it holds that
VAL (0) = A (6)V as.

Suppressing dependency on t this is,

VAL (0) VigAs(0) ... VipAs,(0) Vit (6o) ViaAi(6o) .. VipAfi(6o)

VarAf; (0) Vo A3, (6) | VaiAs,(6o)  VazAZy(6o)

VaAji(0) VipAs(0)  Vipy, (0) Viihs,(00) Vies,(00) — VipAy,(6o)
By Assumption 3.5, there exists a j such that f/jj # 0. Hence, for this j,

A% (0) = A% (0o) as.
if and only if,
wj+ Aj(V'X21)® + BN (0) = woy + Ao (Vo Xim1)®? + BoAi_1(6o) as.
if and only if,
w1 — CUOJ + B]A:_l((g) — BO,J)‘:—I(HO) == AOVj(‘/b/Xt_l)GQ — Aj(V,Xt_1)®2 a.s. (A4)

Noting that the left-hand-side of (A.4) is F,' ,-measurable, we have that Ag;(VyX;_;)®? —
A (V' X, ;)9% F[, is degenerate, which by Assumption 3.5 implies that V' = 1}, and more-
over, by Assumption 3.5, ¢ = ¢,. Since V =V}, we have, by Assumptions 3.3 and 3.4

23

a.s.



and arguments given by Francq and Zakoian (2019, p.308), that (W’ vec(A)’, vec(B)") =
(W4, vec(Ap)', vec(By)'). We conclude that point 3 holds.

A.3 Proof of Theorem 3.3

Using that 0 € int®, with © compact, and [} () defined in (A.1) is three times continuously
differentiable (almost surely), it suffices to verify the following conditions (see e.g. Francq
and Zakotan, 2012):

(Asymptotic normality of the score) With [;(¢) defined in (A.1),

1 aly( 6
7T Z 0) N(0,%), (A.5)
with D1 (60) D12 (6o)
‘ 0 0 . :
Y= [ 50 50 ] nonnegative definite. (A.6)
(Hessian) With [7(#) defined in (A.1),
021 (0o) >, O*l:(00)]
_Z 9000’ [ 9000’ } = (A7)

with J invertible.

(Expectation of Third Order Derivative) With [;(#) defined in (A.1) for some neigh-
borhood N (6y) C © around 6y,
] <o

(Initial Values) With [,(f) defined in (11) and [;(€) defined in (A.1), for some neighborhood
N(6y) around 6,

D31x(0)

FE P 2 S
90:00,00,

~ max  sup
Z7J7k:1 7777 d9 QGN(QO

i Oli(0) az o (T7%)
90
t=1
nd
. — (L) 3*(0)
DN (o0) 2600 aeae’

Proof of Asymptotic Normality: From Lemma A.1 we have that E[0l(6,)/00|F;—1] = 0 and
EI||0lx(00)/00||] < oo. By a CLT for stationary and ergodic martingale differences (e.g.
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Brown, 1971), we conclude that (A.5) holds. The matrix ¥ in (A.6) is nonnegative definite
by construction.

Proof of Hessian: From Lemma A.4, we have that E[||0%}(6,)/0000'||] < co. By the Ergodic
Theorem, we conclude that (A.7) holds. Moreover, Lemma A.4 states that the matrix J is
invertible.

Proof of Third Derivative: This property holds by Lemma A.5.

Proof of Initial Value: This holds by arguments similar to the ones given in Francq and
Zakoian (2019, pp.308).

A.4 Proof of Lemma 1

We start out by proving that (15) holds. Recall that ¢ contains p(p — 1)/2 parameters.
Due to the structure of V and since @, € int®, = (0, 7/2)PP~1)/2 it suffices to consider the
p(p — 1)/2 entries of V' and V; below their diagonals. Consider 1n1t1ally the case for p = 3,

where (¢, ¢y, ¢3)' = (¢1,2a ®13 ¢2,3)/ and

COS (1 COS )y COS ()4 SIN (1 — COS Py SIn P, Sin @5 Sin P Sin P4 + cos P, cos P4 sin P,
V = | —cos¢ysing; cos @, cos ps + sin ¢, sin ¢, sin 5 cos ¢, sin g5 — cos ¢4 sin ¢, sin ¢,

—sin ¢, — COS (g Sin @ COS Dy COS (g

Starting from the last element of the first column of V/,

Va1(dg) = V31(¢) = —sin ¢0,2 = —singy, = ¢py = Ps.

Next, notice that

Va1(¢) = Vau(¢) = —sindy; cos(gy,) = —sing,; cos(¢y) = ¢y = ¢,

V32(0y) = V32(¢) = —sin Po.3 COS(%,z) = —sin ¢z cos(¢y) = Po3 = P3,

and hence V' = V) = ¢ = ¢,. This argument can be extended to arbitrary p > 2. In partic-

ular, with (¢y, ¢y, @15 Pps- - -, Oppyj2) = (P12 G135+ D1y Pags - -+ Dpo1),) We have
that V,,1(00) = Vp1(0) = —singy, ; = —sing, ;, = ¢y, = ¢, for ¢ € intO,.

We also note that for any p > 2, the first column and last row of V' are given respectively
by

Vii = —Sinqzﬁj,chosqbp,i, 17=2,...,p—1,

=1
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p—1
Vo = =S Gpiya-iog-vz 1] €08 ppvyomionyer G=2p— 1.
t=p—j+1
This gives the (recursive) identification of 2p—3 parameters (¢,_1, ®;_1, Ppp—1)/2— (p—j)(p—j—1)/2 :
j=2,...,p—1). The remaining parameters can be shown to be identified by considering next
Vp—1,2 and moving row-wise up and column-wise right through elements V; , for j = p—2,...,3
and V,_q; for j = 3,...,p — 2, which yields identification of another 2(p — 3) — 1 parame-
ters. Similar arguments may be repeated for V,,_, 3 and so forth, until all elements below the
diagonal have been covered. Hence, we have that V =V = ¢ = ¢,.
Next, we show that (14) holds. Suppose that for some j € {1,...,p},

A; (VX)) — Ajo(Vy X,)®%|F], is degenerate. (A.8)

Note that VX, = VIVoA?(00)n, = A2 (00)n, =: Mon, and V' X, = V' VoA *(80)n, =: Mn,
with My and M F;' ;-measurable matrices. If , ~ N(0, I,), then conditional on F" ,,

Y1
Ys

Y =

': [Mom

Mm] ~ N(0,3)

with
3N =

Su S| (MM MM
Sor S| | MM, MM'|

Let x = 21222’21. Then Y5 := Y7 — kY5 and Y5 are conditionally independent, since (condi-

tional on F/ ;)

with

M
Il

1, x| [Su Sl [, —&]
0 L | |22 Bn| |0 I,
Y — Y19¥n Y 0

0 Yoo |

Note that Yip|F/"; (and hence (Yi2)®?|F;" ;) is non-degenerate if and only if M # M if and
only if V' # Vj. Hence (A.8) is equivalent to

Ao (Y1 — Yip + Yipp)®? — A;(Y2)®?|F/ | is degenerate
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if and only if
Apj(KYs + Yi2)®% — A;(Y2)®? | FL, is degenerate

if and only if
Ao (Yip)®* + Ao (kY2)®? + 24 (kY2 © Yijp) — A4 (Y2)®?|F | is degenerate

Since Y3, and Y are F}' ;-conditionally independent and all entries of Ag; are strictly pos-
itive, as 6 is an interior point of ©, we can only have that Ag;(Yip)®? + Ao (kY2)®? +
240 ;(kYs ® Yip) — A;(Y2)®?|F_y is degenerate if Yip|F," | is degenerate, which contradicts
V # V.

A.5 Auxiliary Lemmas

Lemma A.1. With I}(0) defined in (A.1), under Assumptions 3.1-3.8, it holds that

E {alta(go) Fi—1| = 0 almost surely, (A.9)
E 0 (00) | < 00, and (A.10)
00 ’ '
. [96:(8o) Ol (6o)
E_E[ s | (A.11)

Proof of Lemma A.1: With Y;(0) = V(¢)'X;, for i = 1,...,dp, we have from Lemma A.2
that

ol (0)
00,

= tr {ATHOAL0) [1, — AT OYUOY](0)] |+ 2¥/,(0)A; O)Vi(0),

with A,;(6) := OX;(0)/90; and Y, ;(0) := 0Y;(h)/06;. Evaluating at 6y, we have

917 (6o)
00,

— tr {At*_lA:,i [, — 77#7;]} + 2}'/;’71./\;—1}@
= Ml,t,i + MQ’tﬂ;. (A12)

Suppose initially that M; ,,; and Ms,, are integrable such that their conditional expectations

exist - this will indeed be verified below. We have immediately that

E[M, ;| Fi—1] = 0 almost surely, (A.13)
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since A:_l(GO)A;i is F;_1 measurable and E[n,n;|Fi—1] = E[n,n;] = I,. Turning to M, ,; note
that
V(OV'(0) = I,

which implies that

v (0) av'(9)

/ —
20, ——V'(0) +V(0) 20, 0.
With S;(0) := (0V(0)/00;)V'(0), we have that
ov(e)
DD~ siov ),
where S(f) = —S;(#), and, hence, S;(#) is a skew-symmetric matrix satisfying
tr(S;(0)) = 0. (A.14)

For 0 = 8, we then have
May; =2V ,A1Y, = 2X[S;,VAT VX, = 260 { S0 X X}
using E[ X, X[|F;_1] = QF and (A.14),
E[M; 2| Fi—1] = 2tr{S;} = 0 almost surely. (A.15)

Combining (A.12), (A.13), and (A.15), we conclude that (A.9) holds. Turning to (A.10), we
note that it suffices to show that E[(0IF(0y)/00;)?] < oo for all i, which in light of (A.12)
and the Cauchy-Schwarz inequality holds if E[M7, ;] < co and E[M3, ;] < co. We have that,

almost surely,

B [M2|Fa] = B [0 (A4 1, nmtJ}rﬂ_l}:fw[nqt]—l) A2,

where we note that E[nf;t] <oo,q=1,...,p, by Assumption 3.6. Hence,

p

M12tz Z nqt - 1 [[ATIAZ@-EJ )
q=1
and by Lemma A.6, we have that E[M?,;] < oo, i =1,...,ds. Turning to the variance of

28



M i, note that with S*Z = VSV,

M22,t,z' = 4X£S¢VA:_1V’XtXt’SiVA:—IV/Xt

= 4t (S, X XS X X)) = 4er(SIAT LY SIASTYLY)

p p 2
< K|A7'WY/|P = K (YY) A7) = K (Z y) ( L ) . (A.16)
=1

*2
i=1 At

We note that (A.16) consists of terms of the form

Using Assumption 3.7 and that for 6y € int©,

* p 2 p * p
Akt _ Wok Tt > i Qo kiYi—1 T D it Bo,ki/\i,tq < Wok n Z QQ ki

p
Tkt n Bo ki
x P 2 P * =
/\l,t Wo,l + Zi:l 01y 1 T Zi:l BO,ZiAi,t—l Wour T Qo

1 o

< K, (A.17)

we have that 7773 A7, /), is integrable for any i, j, and we conclude that E[M3,;] < oo for

any 1.

Lemma A.2. With [;(0) defined in (A.1),

al* 9 A / e *— .
O N OA0) [~ AT OYOY O]} + DLONTONO), =1 d,
ith
v N ON()
W Tag M T o,

Proof of Lemma A.2: We have that,

Ol;(9) _ Olog|A;(9)]  OY/(B)A;(6)'Yi(6)
a0, a0, a0

Consider now,
dlog |AF(6)|
06,
Next, consider Y/(0)A;*(0)Y:(0) = tr{Y:(0)Y/(0)A;(A)}. Since Y;(0)Y;(#) is symmetric
and A;1(#) is diagonal we find

= tr{A7 1 (0)A7,(0)}.

otr{Y, (0)Y/ (0)A;(0)}
00;

= 2, ()N (O)Y0) — tr { Vi)Y (0 O)A7, (00N (0)}
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Hence, the score with respect to 6; is

agé,e) = tr{A7 N (0)A7,(0)} — tr {Yt(H)Yt'(Q)Aj‘l(Q)A;Z.(H)A;—l(e)} +2V7,(0)AF 1 (0)Yi(0)

= tr { A1 (O)A7,(0) [1, — A7 (O)(0)Y/(0)] } + 277, (0)A; " (0)Y;(6).
Lemma A.3. With If(0) defined in (A.1), fori,j=1,...,dy,

S, =~ (AHOM O O4,0) + o (87 O)12,0)

+ tr (AN O)AL (A OO (9)Yi(0)/(6) )
— tr (AT O, ONT OO (0)) + tr (ATHOALOAT O)AL ()M O)0)Y/(0))
=207 (SO OAT OALONTHOYO)Y,9)) + 2t ((S:5(0) + Si(6)S;0) 4 (0) X, X))
+2tr (V'(0) (8:5(0) + $:(6)8,(0) ) V(O)A; (0¥ (0)Y{ (9))

—2tr (SO O OAT OV (0)) + 2t (SOATHO) S (0)Y(0)Y/(0))

(A.18)

where S;(0) and S;(0) are skew-symmetric matrices given by,
Si(0) = agH(f> V'(9), (A.19)
Si(8) = V(0)Si(0)V(0) = —V'(0)Si(O)V(6) = —Si(0). (A.20)

Proof of Lemma A.3: Throughout the proof, we suppress the dependence on 6. From the
proof of Lemma A.2 we have that

i) _ ou i) e AT | VLAY,
69286)] N 80] 09] 69]

= Nyy — Noy + 2N3;.
Where the first term, Ny, is

Atr(AF AL i elin s
—gg -t (At 1Ay A Am) +tr <At AW). (A.21)
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The second term, Ny, is

Otr(AXTAX AT, Y ONTTAx, .
( t tit t t) —tr ( t t’ZA:_lY;Y;/—FA:_lA;i

aA:fIYQYQI
6, 06

a6,
= —tr (A7 ATTALATYYY) o (AR AT YY)

ot (A7 AL AT (Vg Y ) ) — b (AT TALATAL AT
— —tr (A7 A AT AL AT ) e (AR AT

= (A7 AL AT A AT ) b (ATAG AT YY) + e (ATAL AT

Noting that D;; := Af’lA;iAt*’lis symmetric and that Ym = V'S!X; with S; defined in
(A.19),

tr (Dt,m,jyg) — tr (A;—lA;iA;—IV/S;XtXt’V)

tr (A;—lA;iA;—lv'sgvnY;)

tr (S;.Aflj\;iAfIYtKQ ,
with S; = V'S;V defined in (A.20). Hence, the second term of the Hessian, Ny, is

otr(A; AL ALY
90;

— —tr (A7 TA AT AL AT ) b (ARG AT YY)

t,i,7
—tr <A§‘1A;iA§‘1A;jA§‘1§Q1§’) + 2tr <§}A§‘1A;i/&§‘1¥;}§’> . (A.22)

The third term, N3, is

oY, AT, oYY, QAL :
tvagt. F = 3;’, AY + Yy, 8;- Y+ Yt/,iAffl
J J J

oY,
a0,

= VLAY = VAT AT VAT Y,

3,5

where Y;’ i 18,
3 oSV

— X (S] + Sisj) v,
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where S” = 0S5,/060;. Hence, the first term of N3, is,
VLAY = X (S0 + 88 ) VATVIX,
= XV (S5 + 8:85) VATIVIX,

= tr (V' (855 + i) VAT, )

The second term of N3, is

Y/ NTIAL AT, = XIVVISVATAL A TTVIX, =t <§iAf’1A;jAt*’1Y;§Q’>

And the final term is

VI ey = XISVATIVISIX, = XIVVISVATVISVVIX, = tr (SiA71 5%

That is, N3, is

OV A,

=t (V’ (SJ + Sz-s]) VA;—IYtY,Q tr (ﬁiAI‘lA;jAt*‘liﬁYt’)thr (S;A:—léjmf;)
J
(A.23)
Using (A.21)-(A.23),
212(0)

o000, ~ (A7 Az Ay A + b (A1 ) -t (A A AT AL AT YY)

oty <A§’1At*7i,jA§’1Yth/> +tr (At**lA;iAflA;jAle;Yt’) ~%tr (S;.Aj*lAt*,iAlet}Q’)

2w (85 + Si8,)90 7 XX ) 2t (V/ (85 + 8085 ) VAT ) = 20 (S A7, A7)
+2tr (S;A;*Sjyty;)

Lemma A.4. With If(0) defined in (A.1), under Assumptions 3.1-3.8, fori,j =1,...,dy,

o [21:00)
00,00

d

f“] = i (ATALATTAL ) + 20 (SiS)) + 20 (SIS ) L (A.24)
0212 (6y)
2600/

] 00, (A.25)
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and

D21x(6o)
006"

Proof of Lemma A.J: Using the expression for §%[7(6)/06;00; from Lemma A.3, we immedi-
ately have that

[ 2% (%)
00,00,

J=FE [ ] is invertible. (A.26)

ftl] — tr (A;*lA;JA;*lA;j) 4 2tr (sj) +2tr (SS))
+2tr (S*jAt**lA;i) oty (S’iA:’lA;j> 4 2tr (S’ZfAflngt*) .

This expression can be simplified further as both S; ;, tr <5}~Af‘1/\;i> and tr <S’iA:_1A;j> are

skew-symmetric, and hence tr(5; ;) = tr (gj_/\fl/‘\t*» = tr (S,-A:_IAI’» = 0, and we obtain
(A.24).

Turning to (A.25), we consider each term in (A.24). Notice that £ [\tr (A:_lA;iA:_lA,ﬁJ ]] <
oo by Lemma A.6. Trivially, tr(S;S;) is bounded, since © is compact and S, is continuous in

¢. Lastly, consider tr (ggAflngf),

~ ~ ~ ~ 1
0 _Si,l2 e _Si,lp )\Lt 0 . O 0 8]'712 e Sj,]_p A1t O
~ ~ ~ ~ 1
Si712 0 A —87;721) 0 /\27,5 e 0 —Sj712 0 ce Sj,?p 0 —>\2 ;
Sitp  Sizp ... O 0 0 ... Ay \=5j1p —5jop ... O 0 0

which has the trace,

p—1 p * *
Sv/A*—ISv AF) = ~ ~ Ak,t Al,t

tr ( S; 0 oA —E SiktSikl { Yx + )
k=1 l=k+1 L kit

which is bounded in light of (A.17). We conclude that (A.25) holds.
By standard arguments, see e.g. Comte and Lieberman (2003) or Bardet and Wintenberger
(2009), it suffices to show that there exists no v = (74, ...,74,)" € R% \ {04,x0}, such that

de

89;)
Z%vec ( = 0,241 a.s., (A.27)
i=1 00;

where we have suppressed the dependence on 6y. For simplicity, we consider the case p = 2

and emphasize that the arguments can, tediously, be extended to arbitrary dimension p. For
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the case p = 2, dyp = 11 such that 0 = (w1, ws, @11, a1, A12, Q22, B11, Ba1, Bias Baa, @), and we
seek to show that there exists no v = (74, ...,711) € R* \ {01}, such that

11

Q*
Z%vec (%Ht) =0, a.s. (A.28)
i=1 !

We have that
O — Afgcos? ¢+ N5 sin’ ¢ (A5, — A7) cos ¢dsin ¢
! ()\Qt /\T,t) cospsing  Aj, cos? ¢ + A sin? ¢

such that for i =1,...,10,

o2y oA} cos¢ sing 6>\1 £ 0 cos¢ —sing
=V Vi= . N}
00, 00, —sing cos¢ O 2 sing cos¢

90
OAY a)‘*t 8)‘*t 1
(GiteosP o+ Gatsin? g (Tt — O )05 psin g (A.29)
Lo i?;ncosabsm T eost o+ it sn'
and for 1 = 11
o0, o
00" 90* 11 12
50, ~ 00 ( A e ) |
i 0o O¢
o0* a)\* . o\, % * .
0;11 = cos® ¢ aqﬁt + sin? 8;; + (A3 — Al4)sin2¢
90 . X oNs, 0N .
2 = 0~ M cos20-+ 52— T8 cospimo
o0 N 0N, VN
a;22 — sin® ¢ 3¢t 1 cog? a;t + (/\Lt — )\Z’t) sin 2¢,
where

0N} - < OB’ > wy 11 Q2 Yii i
- = + =] .
86nm jz; 86nm ((w2> <0521 a22> < yg,t—j—l
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and

%yitﬂel ) _ 2§:BJA < Y1 t—j—1Y24—j5-1 )
§=0

d ,2
26Y2,t—j—1 Yit—j—1Y2,t—j—-1

(0412 - 0411)
YNt—j—1Y2,t—j—1
(0422 - 0421)

=2 i <<Bjj)11(a12 ) all) i (B]:>12(Oé22 - a21)> Yi,t—j—1Y2,t—5—1

=0 (B?)a1(a12 — a11) + (B7)22(va2 — aan)

Hence, the first row of (A.28) has the form

Co + Z (Cl,jyit—j—l - CQJyg’t—j—l)

=0

+ 1208’ ¢ (Z ((Bj)u(au —on1) 4 (BY)12(am — 0421)) Yit—j—1Y2,—j-1
=0

+ 711 25in° ¢ (Z ((B)a1(an2 — a11) + (B7)aa(0vz2 — 21)) Y1,4—j—1924-j-1
=0

=0 almost surely,

where the constants C;, Cy;, Cs; may depend on 7,,...,7;,. Suppose that v;; # 0. By
Assumption 3.3 we have that y;;;_1y2,—;j_1 is non-degenerate and linearly independent of

Y, jq and y3, ; , so it must hold that

71,2 cos® ¢ (Z ((Bj)n(om — a1) + (B?)1a(an — Oé21)) yl,tjlyQ,tjl)

=0
+y125in° ¢ (Z ((Bj)21(0412 —an) + (B)g(am — 0421)) yl,tj1y2,tj1>
j=0

= 0 almost surely.

This implies that

Y112 (0082 a1y — aqy) + sin® ¢y — 0421)) Y14-1Y2.4-1|F;" 5 is degenerate
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which is the case if and only if
cos® (g — aqy) + sin? @(agy — agy) = 0. (A.30)
The same reasoning applied to the second and third rows of (A.28) yields that
Y112 cos psin @ ((ae — @o1) — (12 — 1)) Yr4—j—1Y2.1—j—1]|F; 5 is degenerate
and hence, using that cos ¢ and sin ¢ are non-zero on int®, that
(0422 - CY21) - (0412 - 0411) =0« (0422 - 0421) = (CY12 - 0411)- (A-31)

Combining (A.30) and (A.31), we have that a5 = a1 and age = agy, which is ruled out by
Assumption 3.8, and we conclude that (A.28) only holds whenever v;; = 0. Hence (A.28)

has the form
10 10 IAF
;%VGC ( ) =(VeV) nyivec ( 89%> =04 as.,

which, using that V' has full rank, implies that

10

m;)
Z v;vec ( =04 a.s.
— 00;

The non-zero rows of vec(0A;/00);, i =1,...,10, are

o0
00,

oN i OB’ (aw DA

20, 20, +

/ 02
a6, aei(v Xic1) )

Jj=0

and by arguments similar to the ones given in Francq and Zakoian (2019, pp. 311-312),
it follows that there exist no non-zero v such that (A.28) holds. We conclude that J is

invertible.

Lemma A.5. With [}(0) defined in (A.1), suppose that Assumptions 3.1-3.8 hold. Then
there exists a neighborhood around 0y, N(0y) C O, such that

| <=

Proof of Lemma A.5: Throughout, we exploit that f, € int® such that N(6,) satisfies

that all entries of A and B are bounded away from zero on N (). In the following, for

%1 (0)
00:00,00,

‘max LK

sup
0eN(6o)

some real-valued random variable f;(#) depending on 6 € N(6y), we write fi(0) € Ly, if
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E[supgen(g,) |f:(0)]] < oo and we say that f; (6) belongs to Ly g,).-
Consider the (i, j, k)’th element of the array of third derivatives of the log-likelihood
function, which is obtained by taking the derivative of the (i, j)th element of the Hessian in

(A.18) with respect to some parameter 6:

o =~ gt (A ORL 0N @1, 0) (#1)
s (A OR,0)) (#2)
st (A ORL 0N ORLOAT OV 0) (#3)
— ot (A O] 0A OY0)/0) (#4)
+ a%tr (A OAL O O ON O)Vi0)Y/(0)) (#5)

ot (30N O OAT OV 0)) (+#6)
+28—0ktr< ( 0) + S:(6)S, (e)) V(O)ATL(9)Y, (0)Y’(6’)> (#7)
— 2 (SU0A OALOA OO/ 0) (#3)
2 (S04 05,0V 0)) (#9)

In the following, we consider each partial derivative in turn, and show that all terms belong

to L:N(HO)~

Term #1 The partial derivative is,

el CONORROISI DN

= 2t (A7 OA3,ON OAL O O)47,(6))

+tr (A7 A O O)R7,,0)) + tr (AT OR L ON T OAL0)) . (A32)

Noting that tr{A; (6 A1 (6)A;(B)A1,.(6)} = S0, AL 0a(0)K. 115 ()/A3(6), we con-

clude that the second term in (A.32) belongs to Ly(g,). The same argument applies to
the other terms in (A.32).
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Term #2 The second term is,

otr (A0 R015(0)) = —tr (A ORWOAT Oy 0)) +1r (A7 O Krs0)

and we apply arguments similar to the ones given with respect to Term # 1 in order

to conclude that Term #2 belongs to Lyg,)-

Terms #3 and #5 Terms #3 and #5 are the same up to indexing, and we here show that
#3 has finite expectation uniformly on N(6,).

0 *—1 A * *—1 A * *—1 ! _
gt (AT OA, O OA O OYOY(0)) =

= 3t (A7 O)A0A O)A7 (0N OAL O (O)V0)Y/(0))
+ tr (AU OA7, L (0ATHOALOATOY0)Y(9))
+tr (A OAL ()M O)A7, (0N (O)Y(0)Y(9))

+ 20 (AU O)AL 0N OALOAT OVUOL(0)) (A.33)

Note that the first term in (A.33) we may use that Y;(0) = V'(0)X;, where X; =
VA:l/znt (with V =V (6y) and Afl/z = At*l/2(90)), such that

tr (A7 O)AT (007 (O)A7 ()N (OO OV (O)V A 7 *V'V(8)) =

vec(V!(O)V) (A7 AT Y @ ATTHO)A L (0)A () AT, ()M () A7, (0)AT(6)

x vec(V'V(0)). (A.34)

Since vec(V'(0)V') consist of rotations based on trigonometric functions, it is bounded

on N(6p). Next, note that the quantity A:lﬂnth:l/Q@Afl ((9)1'\;,61\,5*’1 (Q)At*’jAfl (G)AXiAfl
entering (A.34) is a symmetric p? x p? matrix, with p x p blocks, Q,p, g,h =1,...,p,

each of which are diagonal,

e (e o D@ (0030400
Qqn = diag (Ag}/ 27]g,t)‘h,1t/2nh,t - Aff(e) N 7
s,t

for s = 1,...,p, where )\:“(9))\:”(9))\;k(@)/)\ﬁ(ﬁ) has finite rth moment for any
r > 0 by Lemma A.6. Notice however that such property does not appear to apply to
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)\th/ 2779t ,*th/ th +/X54(0) for g = h # s as the numerator and denominator are evaluated

in 6y and 0 respectlvely. Instead we note that suppe (g, \)\glt/277gt thmnht/)\ [(0)] <
K||n,|I2|A\(60)]], and use Assumption 3.7, Lemma A.6, and Holder’s inequality in order
to ensure that any entry of (), belongs to Lyg,). The three other parts of Term #3

can be shown to belong to Ly, using similar arguments. To illustrate, consider

tr (AT O)A7, (AT OALOATO)Yi(0)Y{,4(0)) =

tr (AT OAL(OATT OAL DA OV OV AT P AT VIS0V (0)) =
vec(V'(0)St(0)V) (A; A7 @ AT O)AT; (O)A; ™ ()A,(0) A7 (6) Jvec(V'(O)V),
which belongs to Ly,), applying the same arguments as for (A.34).

Term #4 The derivative is,

L. (A* L(0) A

901, tu(9>Afl<0)iﬁ(9)n’(9))

= —atr (A O)ALOAT O, (N O)VU0O)Y/(0))
1 (A OV R0 04 (O)Y(0)Y,(6))
+ 20 (A O)A7,,(0)A T OY(0)Y7))

and it belongs to Ly(g,), applying the same arguments as used for Terms #1 and #3.

Terms #6 and #8 These terms are the same up to indexing. The partial derivative in

Term #6 is,

0

357 (SOAT OALOAT OO 6)

= tr (S, O OALOAT O)Vi0)Y/(0))

—tr (S5(0)A; 1 O)ALOAT OAL ()N (O)V(0)Y/ ()
e (S0 O)A7, (0N (O)Y(0)Y(9))

—tr (S04 OAL O (047,04 (O)Y:(0)Y/(0))

+tr (S*;-(H)At*‘l(H)A;i(G)Af‘l(@) (Yt,kYt(@)’ + Yt(f))Yt’,k)) :
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and, again, this can be shown to belong to Lyg,) as Terms # 1, # 3 and # 4.

Term #7 For simplicity, define S;;(0) := V'(0) (Si,j(e) + si(e)sj(e)) V(0)

ot (SO0 OVOY®) = tr (0N OY0)Y0))
—tr (S, ON T OO (O)Yi0)/(6))
+tr (Si5(0)A71(0) (VirOYil0) + Vi(0)V4(0)) )

which belongs to Lyg,) by the same arguments as for Terms #1, #3, #4 and #6.
Term #9 Note that

This term also belong to Ly(,) per the arguments used above.

Lemma A.6. With \[(0) defined in (A.3), let X}, () denote its hth entry. For i,j,k =
1,...,d9, let

* 2 *
. Ny N,

ey 83,\2 .
)‘h,t,i(9> = 8—&’ h,t,i,j(g) = ma and )‘h,t,i,j(e) 7

~ 00,00,00),
Under Assumptions 3.1-3.8, for anyr >0, 1,5,k =1,...,dy, and h = 1,.
neighborhood N (0y) C © of 0y such that

T

Mori(0)
X, (0)

.., p there exists a
N @) [
) 717]7k
— < 0.
At (0)

Proof of Lemma A.6: Throughout, we exploit that 0y € int© such that N () satisfies that

all entries of A and B are bounded away from zero on N (y). We start out by considering the

E

—C)
X, (0)

sup

<oo, F
0eN (6o)

sup
0eN(0p)

sup
0eN(0p)

]<oo, and FE
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first-order derivatives )\2“(9) /Ah4(0). With Y, = V(6)'X;, and suppressing the dependence
on 0,

=) | BTWABTAYE | =) (ij—l) " Oéj‘l)yﬁﬁ) 7
=L\ ==Y =g j=1

which has derivatives

0N _ N~ £(G-1) _ -1 OW
i g Cri Cyy " =B ER
N i=1)y 02 ~(5—1) 194
do; ZC v G =P
ON! ) n_ OB S 0B
_ CJZ W+AY®2 C(JZ _ BF12" pi-1-k,
B, Z ’ 2 > 9B, ; 9B,
N .
2308 (a3

where w;, oy, 3;, ¢, denote arbitrary entries of, respectively, W, A, B, ¢, and where S; is
defined in (A.20).

We now verify that supgey g, |)\St/)\ /" < oo has finite expectation by considering
w;, v, B; and ¢; in (i)—(iv) below.

(i) Consider first §; = w;. Here

* S o 00
8)‘5,15/8"‘}1' B ;?11[0& 1)]3 < Z [C& s < Z ot < K
AL (Y VA O Vonsd, ) T e wr T e T

where we have used that \]; > wy and supgcg p(B) < 1.

(ii) Next, consider ¢; = a;. Since 0N} /da; = Y 77, C’éjl VY22 with C’(J Y = BI710A /0.

t—y3°
Here 0A/Oq; is a matrix of zeros except for a 1 in the place of a; in A. We can therefore

use that, elementwise,

8/\;k
< )\*
YD, 'Oy

Hence, for s =1,...,p,
ON; /O
— | =K
)\s,t
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(iii) Next, consider §; = 3;. Let C;_; = W + AY;Q?, and notice that

6)\* i (Z Bk~ 1 B] kCt ]> 7

where 0B/0[3, is a matrix of zeros, apart a one in the same place as (5, in B. We can

therefore apply the inequality, (with 3; > 0 uniformly on N (6,)),

N =
Blﬁ_ﬁt- < Z]B]Ct—j7
7 ]:1

which elementwise corresponds to,

Recall furthermore that,

p
Aot > wr + Z[Bj]s,h[ét—j]hv
h=1

,,,,,

all z >0 and k € (O, 1), Such that,

oo p
8>‘;,t/8181 Z] 1]2 BJ].S }L[Ct ]]S [BJ sh[Ct ]]h
/Bi A;,t S wL+Zh 1[B] s,h Ct j Z Z] (
j=1 h=1

co P
— ik ([Cejl [Ce—j]
S () < S Y (%)
j=1 h=1 J=1

Using that supgeg p(B) < 1, for any r > 0, we can choose k > 0 sufficiently small, such
that E[suppen(g,) [(OA;,/08;)/Astl"] < 0o, where we have used Assumption 3.2 that
|| X¢|| has some finite (potentially fractional) moment.

(iv) Finally, consider 6; = ¢,. The partial derivative O\;/0¢, in (A.35) contains the matrix
product S'Z-Y;,n, where the jth row of S'Z-Y;,n is

7j—1
[Szift—n] = Zsz kjYkt—n + Z 5 JkYkt—n-
J k=1 k=j+1
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Hence,

.

1 p
|:Y;7n ®© SzY;ffn] = Yjt-1 <_ gi,kjyk,tfn + Z gi,jkyk,tn) )
J

1 k=j+1

e
Il

and we have that

|[Y2—n®gz}/¥—n]s| S (Z |yst n||ykt n|+ Z |yst n||yht n|)

h=s+1

< pK|Yi|?

where we have used the simple inequality that a® + 0* > |ab| for a,b € R. Hence, for

s=1,...,p,
m;t S

j=1 h=1

1y

ToallYe s
'L

Note that on N(6y), elementwise,

Céj_l) =B A< apB iy, 1),

where 1, is a p-dimensional column vector of ones. Then, with [B?~!], the sth row of

(B, 525,105 < pou[ By, and we have that
Nt| < geran SB[V, A
5| S Kre 3B g llYins . (A.36)
) 7=1

Moreover, since the entries of A are bounded away from zero on N(6y), the entries are
also bounded away from some (small) constant «; > 0, and we have that [C’Q(j 71)]57;1 >

ar[B' s, for hys =1,...,p. Hence for any j > 1,and s =1,...,p,

o0 [e'e) p o0 p
Ny o= D BN AY SO ok 2o+ Y Y anB T i,
j=1 j=1 h=1 j=1 h=1
= wtag z:[Bj_l]sLJD”Yt—j||2 > W+ O‘L[Bj_l}stHYt—jHa (A.37)
j=1

where & = ming=; __, infpen() 2. 04 [B’~'|sW > 0. Combining (A.36) and (A.37), we

-----
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have that for s =1,...,pand k € (0,1)

N} (B s tpl|Ye 5112
) < KouSS et
‘ ASt - Kp Qv tar[BI7 s [Ye—j1?
o0
P ar, w/ar+[BI= sup|[Ye—j|?
7j=1
0 ) k
< Kp2O‘_U§: B stpllVesl®
=~ o w/e,
Jj=1
k
< 2aU Q] Y2 ]H
= E : Twfan

and we may again choose k > 0 sufficiently small such that F[supg. N(80) y [(ONS/00;) ] Ne4IT] <
oco. The integrability of suppe n(gy) (A 1.5 (0) /A0 (0)]" and supge v g, ’)\h,t,z‘,g;k( )/ A1 (0 )|

are shown to hold by similar arguments.

B Testing for Nullity of Rows

In this Section we first consider sufficient regularity conditions under which the asymptotic
distribution of the (sup) likelihood ratio statistic for the hypothesis H} in (19) can be derived.

In Section B.2, the implementation of the test is discussed.

B.1 Zero-rows in A and B

Recall from Section 4.1 that when testing the hypothesis Hj in (19) that (6,6) € © X Ogyp,
where § = (B3, Bas, Bs3)' denotes the unidentified parameters, while § € © denotes the
remaining dy = 21 parameters. As in Appendix A.1, consider the stationary and ergodic

version of the log-quasi-likelihood contributions given by,
I5(6,6) = log det(Q(0,9)) + X, (0, 0) X,
Q07(0,0) = V(0)AT(0,0)V(0)',  A7(0,0) = diag(A[(0,0)),

MN(0,8) =W + AV(0) X,_1)®* + BX_,(0,6).

The limiting distribution of the supLR statistic in (21) can be derived under the following
conditions, see Andrews (2001) for details and Pedersen and Rahbek (2019) for an application
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to GARCH-X models.

(i) With §T75 and 9T,5 defined in (20), assume that éT,(g, 9T75 2 8.

(i) Assume that T-Y23"T 9Ix(0,-)/00 = G., where G. is a mean zero dy dimensional

Gaussian process with kernel

5,6, = BTGV ALY - for 51,65 € Ogup. (B.38)

iii) For any 0 € Ogp, 1~ 0, — Js, where
iii) F § € Ouup, T10%11(0,6)/0000" 2> J5, wh

D21* (60,6
Js = B(Zilo0)), (B.39)

with Js invertible uniformly on Ogyyp.

(iv) The sets © — 0y and ©* — 6§, are locally equal to some convex cones C' and C*, respec-

tively.!

(v) There exists a neighborhood N (6) of 8y such that

T
_ A* (00,6 p
sup ||T 1/22 : <8lt59000»5) _ t((%o )) 20,
5EOgup -
and
T
-1 021,(0,6) 9215 (6.9) P
sup T E :( 9000’ 9000 — 0.
5E€Oup,0EN (00)NO p—

(vi) For any fixed § € Og,p, and any deterministic scalar sequence (ep : 7' = 1,2, ...) with

er — 0,

sup 20.

0€B:||0—0o||<er

t=1

T
71 025 (0,8) 9215 (0,5)
E : 9600’ 9600’

By Andrews (2001, Theorem 4), under conditions (i)-(vi) and H3,

sup LRy (H3) % sup {N;JsAst — sup {AZJsA}, (B.40)

E(’)sup €Osup

IThe set © — 6 is locally equal to C if there exists a € > 0 such that {© — 0y} N H(0,¢) = C N H(0,¢)
where H(0,¢) C RY™% is an open cube centered at zero and with side length 2¢.
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where
_ . . !/ o
As = arg%gg{(n Zs)' Js (n— Zs)}
)\; = arg niencf* {(77 — Zg)l J5 (’I] — Z(g)}

and Zs = J; 'G5 which is Ny, (0, J;'S,,J;") distributed. By definition, the limiting distrib-
ution in (B.40) depends on the cones C' and C*, and hence implicitly on the location of the
nuisance parameters, see e.g. Cavaliere et al. (2019) for a general discussion. In line with
Francq and Zakoian (2009) and Pedersen (2017) we make the additional assumption that
the nuisance parameters are in the interior. To do so, without loss of generality, order the
parameters in 0 as
0 = (61,65)"
with 67 = (a1, ase, ass, 31, F32)’ of dimension dy, = 5, and with 05 containing the remaining

dg, = 16 (nuisance) parameters in W, A and B.
(vii) Assume that 05 € int@2 and © = ©1 X Oy, with 0; € ©; and 6, € O,.

Under the additional assumptions in (vii), C' = Rflfl x R%: and C* = {04y, } x R%: | which
implies that

supLRT(HZ)iésgp {Ag (KngK’)_l)\(;}, (B.41)
€0Osup

where K is given by K6 = 6, and

A = arg inf {(77 — Zs) (KJ7UK) ™ (- Z(;)} . (B.42)

01
n6R+

and with Zs = KJy 1G5 such that Zs is a dp, dimensional Gaussian process.

B.2 Implementation:

One may obtain a critical value for the supLLR test by relying on the following steps, see also
Andrews (2001) and Pedersen (2017). By definition, § is ds = 3 dimensional and we choose
k different values for each entry of §, such that we have a discrete grid A with da = k%

different values of §.

Initialization For given 0,091,092 € A estimate Js and ¥s,5, as

1 = 020,(6 1 = 00,0 ;
7 021 (0r,5,0) < Olt(07,5,,01) Olt(01,5,,02)
Js = Z aoay» and X5, = T Z 0 T

t=1 t=1
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Step 1 Draw a realization of (Z5: 6 € A) as

Y4 Y4 7
25151 25152 Z(SlédA
iz iz :
- 0201 0202
(Z517"'7Z5dA> - ngldi<07 )7
32 U 3 4
Sap 01 RN

where XA](;Z“;J_ = Kj(ilf](;i(;jjgle' fori,j =1,2,...,da.

Step 2 For @« = 1,2,..,,da, compute the dy, dimensional A5, by solving the constrained
minimization problem in (B.42), with Zs and J; replaced with Zs, and j(;z., respectively.

Next, compute
. -1
= X (KJ7UKY) g
H r(lsnean{ s s 8
Step 3 A critical value for a test with nominal size a is found by repeating Steps 1 and 2

-----

C Bootstrap Algorithm for Testing Reduced Rank

Following Cavaliere et al. (2017) and Cavaliere et al. (2019), we apply a restricted recursive
bootstrap to obtain critical values for the likelihood ratio statistic, LRy (Hs), where the
null hypothesis of reduced rank is imposed on the bootstrap data generating process. The
recursive bootstrap scheme applied is standard in the context of GARCH models, see e.g.
Hidalgo and Zaffaroni (2007) or Jeong (2017). The bootstrap algorithm is as follows:

Initialization Estimate the model parameters with Hy. That is, the likelihood function in
(11) is maximized with A = va/ and B = ~/3’ where the (3 x 2) matrices v, @ and
[ have non-negative entries. With O denoting the obtained restricted estimator, for

t=1,...,T compute the centered and standardized residuals,
1 T
N ST A ~
nt - 277 <nt T Znt) )
t=1
where fln is the sample covariance matrix of 7),, and

i = AP (Br)V (Br) X,
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Step 1 Using the estimated parameter vector under the null hypothesis, Or, generate the

bootstrap process X, as follows:

X; = V@A), Aj(Br) = diag(; (0r))

X(Or) = W(br)+ A(Or)(V(07) X[ )®* + B(Or) A, (0),

for t =1,...,T. Here the bootstrap innovations, n}, are drawn uniformly from 7); with
replacement, and the initial values are Xj = Xy and A\j =W (§T>

Step 2 With the bootstrap log-likelihood function L}.(6) given by,

T
Li(8) = Y 1;(0).  17(6) = logdet(€;(6)) + X;'Q; 1 (0) X,
t=1

Q) = V(O)A(O)V(0),  AL(0) = diag(A(0)),

A (0) =W + A(V(0)' X7 1) + BAL,(9),

this is maximized unrestricted and under the hypothesis in order to obtain the bootstrap

estimators @; and é; Compute next the bootstrap LR statistic,

~%

LRy (Hy) = 2(Li(07) — L (07)).

Step 3 A critical value for a test with nominal size a is found by repeating Steps 1 and 2 B

times and computing the empirical (1 — a)-percentile of (LR} (b) : b=1,...,B).

Remark 5. Note that the bootstrap distribution approximates the LRy (Hy) statistic for the
case where, under Hy, nuisance parameters are assumed to be in the interior of the parameter
space. To allow nuisance parameters on the boundary of the parameter space, one may

alternatively apply the shrinkage-based bootstrap proposed by Cavaliere et al. (2019).

D Monte Carlo

In this section, we investigate the finite sample properties of the QMLE discussed in Section
3.2. The asymptotic distribution theory for the QMLE is presented in Theorem 3.3 for the
general model with A and B general (p X p) dimensional matrices. For the simulations in

Cases (i)-(iii) below, we consider the case of B diagonal (or even zero) as detailed in order
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to keep the discussion simple. The emphasis of the simulations is on the sufficient regularity
condition of finite second order moments of X; in Theorem 3.3, which we conjecture is
not necessary. In addition, we investigate the necessity of the rotation parameters in ¢ being
restricted to the interval [0, 7/2], which is sufficient for identification. The simulations indeed
indicate that the conditions of finite second order moments and the restrictions on ¢ are not

necessary.

D.1 Case (i): Asymptotic Conditions Satisfied

[Figure 1 here]

In Case (i), the bivariate A-GARCH model is considered, where
X, =VAN?n,, n,iid N, L), A =diag(\), A=W+AY22+ B\ 1, (D.43)

and B is assumed to be diagonal®. For the data-generating process (dgp), set ¢, = 0.70 €
[0,7/2], Wy = (0.50,0.75)" and

0.10 0.06 0.85 0.00
AO - ) BO = )
0.05 0.01 0.00 0.77
such that p(Ag+ By) = 0.98 < 1. By Theorem 3.1 (setting k£ = 1), the stationary solution of
the process has finite second order moments, and the conditions of Theorem 3.3 are satisfied.
We simulate N = 1000 realizations the process with 7" = 10000 observations, and estimate
o, W, A, B by QMLE. Figure 1 contains kernel density estimates of the centered and scaled

estimates of ¢, Wy, A1, and By;. The solid line is the estimated density, and the dashed line

is the normal density. As expected Figure 1 confirms asymptotic normality.

D.2 Case (ii): Lack of Second Order Moments

[Figure 2 here]

Consider again the model in (D.43) with A and B diagonal. For the dgp ¢, is as before,

Wy = (0.1,0.1)
0.12 0.00 0.88 0.00
AOZ ) BOZ )
0.00 0.10 0.00 0.84

2The theory in Theorem 3.3 is straightforward to modify to the case of A and B diagonal.
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such that p(Ap + By) = 1. Hence, by definition, the stationary solution does not have finite
second-order moments which violates the suffient condition in Theorem 3.3. Figure 2 contains
kernel density estimates of the centered and scaled estimates of ¢, Wi, A1, and By;. Despite
the fact that the sufficient condition for asymptotic normality is violated, the estimates seem
to fit a normal distribution, indicating that the requirement of finite second order moments

in Theorem 3.3 is not a necessary condition.
D.3 Case (iii): The Rotation Parameter ¢
[Figure 3 here]
Consider here the trivariate A-GARCH,
X, =V'N?n,, m,idd N, I3), A, =diag(\), =W+ AY,22 + B\,

with B = 03,3 and with the parameter space for ¢ = (¢, ¢y, ¢3) is extended such that
¢; € [—m/2,7/2]. For the dgp set

0.47 0.45 0.25 0.05 0.09
¢o=1 145 |, Wo=1[150|, Ay= (003 035 0.06]|, By= 033,
—1.30 0.95 0.07 0.12 0.3

such that ¢ 3 ¢ [0,7/2]. Figure 3 contains standardized densities of by, by, and ¢5. Lemma 1
restricts ¢, to be in the interval [0, 7/2], as both the sine and cosine functions are monotonic
in this interval. If the parameters ¢ are not uniquely identified, we expect to see one of two
things: One, if the parameters are not uniquely identified, we would expect the estimated
densities to be multi-modal or not centered around zero. Figure 3 again indicates that the

condition can be relaxed.
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Tables

Table 1: Estimation results - unrestricted model

Rank w A B 10} \%
0.108 0.127 0.140 0.010 9.4 x 108 0.088 0.047 0.321 0.711 —0.240 0.661
(0.318) (0.533)  (1.008)  (0.013) (2.942) (1.558) (0.212) (1.732) (1.337) (1.008) (1.085)
qg=3 0.094 0.137 0.110 0.005 5.8 x 106 0.027 0.031 0.723 —0.236 0.804 0.546
(0.041) (0.174)  (0.163)  (0.035) (2.303) (1.488) (0.139) (1.525) (0.957) (0.633)  (0.530)
0.033 0.081 0.164 0.068 0.018 5.4 x 107> 0.912 0.813 —0.662 —0.545  0.515
(0.454) (0.884)  (1.164)  (0.024) (0.719) (3.224) (0.044) (2.362) (1.143) (0.585) (1.952)
Log-likelihood -14939.63 Factor model Reduced rank model
AIC 29927.26 LR test 1963.16 LR test 3.00
BIC 30071.58 95%-CV 738.35 95%-CV 18.56
The model with rank ¢ = 3 is the unrestricted model. Standard errors are reported below the point estimates. We use the
delta-method to obtain standard errors for the eigenvectors, V. The acronyms AIC and BIC are shorthand for the Aikike
Information Criterium and the Bayesian Information Criterium. The LR test for the factor model is the supLR test where the
critical value is approximated in a simulation. The LR test for the reduced rank model is a standard LR test, where the
critical value is approximated using a restricted bootstrap.
Table 2: Estimation results - reduced rank model
Rank w A B 103 \%
0.109 0.158 0.009 0.155 3.6 x 10~ 0.043 0.115 0.328 0.715 0.660 0.233
(0.069) (0.199)  (0.002)  (0.236) (0.182) (0.066) (0.333) (0.191) (0.073) (0.026) (0.153)
q=2 0.034 0.080 0.068 0.155 3.4 x 104 0914 55x 1075 0.715 —0.243 0.547 —0.801
(0.041) (0.408) (0.012) (0.595) (0.151) (0.074) (0.287) (0.192) (0.177) (0.028) (0.072)
0.089 0.108 0.006 0.106 2.5 x 10~ 0.030 0.079 —0.752 —0.656  0.516 0.551
(0.033) (0.052) (0.005) (0.078) (0.124) (0.013) (0.289) (0.151) (0.145) (0.007) (0.170)
Log-likelihood -14941.13
AIC 29922.26
BIC 30042.53

The reduced rank model is denoted ¢ = 2. Standard errors are reported below the point estimates. We use the delta-method

to obtain standard errors for A and B and for the eigenvectors, V. The acronyms AIC and BIC are shorthand for the Aikike

Information Criterium and the Bayesian Information Criterium.

Table 3: Estimated parameters - reduced rank matrices

’

/

Rank o B’ v
q=2 0.080  0.009 36x107% 34x10°% 0.043 1 0 0.685
(0.199) (0.408) (0.002) (0.182) (0.151) (0.066) (0.538)
0.155  0.155 0.914 0.115 5.5 x 10~° 0 1 14x10°6
(0.012) (0.236) (0.595) (0.074) (0.333) (0.287) (0.014)

Parameter estimated for the matrices o, 8 and 7. Recall that A = va’ and B = v3’ for ¢ < p. Standard errors are reported

below the point estimates.
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Figure 1: Densities of estimated parameters when the DGP has finite second order moments.
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Figure 2: Densities of estimated parameters when the DGP does not have finite second order
moments.
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Figure 3: Densities of estimated parameters when we extend the parameter space of the
rotation parameters.

23



Figure 4:
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Figure 5: Log-returns
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Figure 6: Estimated residuals
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Figure 7: Estimated conditional eigenvalues
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