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Abstract

This paper establishes mild probability-theoretical conditions under which ob-
servations of space-averaged speed and occupancy in some area concentrate with
low scatter around a well-defined curve. These conditions are validated against em-
pirical data from Stockholm and Geneva. No equilibrating process is required to be
in operation.

Keywords: Congestion; Macroscopic Fundamental diagram.

1 Introduction

Traffic flow theory is concerned with fundamental indicators such as speed, occupancy (or
density), and flow. Speed, flow and occupancy at a point on a road are related through
an identity whereby the flow, measured as the number of vehicles passing a point per time
unit, is equal to the speed, in distance per time unit, multiplied by occupancy, which is
the number of vehicles per unit of road length. The fundamental diagram of traffic flow,
due to Greenshields (1935), provides another relationship between these three variables.
It may be expressed as a relationship between flow and occupancy, according to which
flow increases with the occupancy up to the capacity of the road and then decreases to
zero due to congestion. The fundamental diagram may equivalently be expressed as a
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decreasing relationship between speed and occupancy, or as a backward-bending two-
valued relationship between speed and flow.1

The macroscopic fundamental diagram (MFD) is similar to the fundamental diagram,
but rather than referring to a point on a road, it relates space-averages of speed, flow
and occupancy for some wider area. According to this theory, an MFD should have a
well-defined maximum and be invariant to changes in demand over the day and between
days. The MFD was first investigated by Godfrey (1969), and has recently generated
a lot of excitement due to its promise that the complications of traffic networks can be
ignored for many purposes. With the MFD, traffic in large urban areas can be modeled
dynamically at an aggregate level.

Early work investigated the macroscopic characteristics of traffic flow based on data
from lightly congested real-world networks Godfrey (1969); Ardekani and Herman (1987);
Olszewski et al. (1995), while other contributions have used simulation data with artifi-
cial routing rules and static demand Mahmassani et al. (1987); Williams et al. (1987);
Mahmassani and Peeta (1993). However, the existence of an invariant MFD for a real
congested urban network was not demonstrated mainly due to the difficulty in obtaining
sufficient traffic data for a large network.

With the help of the recent rapid development of intelligent transportation systems, it
has become possible to obtain traffic data for urban networks at a large scale. Geroliminis
and Daganzo (2008) analyzed the relation between the average flow and average occupancy
of Yokohama (Japan) with data collected from both loop detectors and GPS equipped
taxis, and found that the data revealed a well-defined MFD. More specifically, they plotted
the average flow against the average occupancy with data points representing different
points in time. Data points were found to be concentrated with low scatter around a
well-defined function that relates each level of the average occupancy to a single value for
the average flow.

In response to the empirical MFD literature, a theoretical literature is emerging that
explores the implications of the existence of an MFD for the regulation of urban congestion
through, e.g., metering and gating (Keyvan-Ekbatani et al., 2012; Ramezani et al., 2015),
pricing (Fosgerau, 2015; Simoni et al., 2015; Daganzo and Lehe, 2015), route guidance
(Hajiahmadi et al., 2013; Xiong et al., 2016), and provision of road and transit capacity
(Geroliminis et al., 2014; Loder et al., 2017).

To ascertain the universality of a well-defined urban MFD, Daganzo and Geroliminis
(2008) and Helbing (2009) have developed analytical theories. These studies build on
the assumption of a mechanism that equilibrates traffic density across space. Daganzo

1In traffic engineering, congested conditions are said to occur when the occupancy is above the capacity
level. In transportation economics, the term congestion refers to the phenomenon that the speed decreases
below the free-flow speed due to high occupancy. The economists use the term hypercongestion for
the situation where the occupancy is above the critical level and an increase in speed is (somewhat
paradoxically) associated with an increase in flow. This paper uses the terminology from engineering.
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and Geroliminis (2008) formulate sufficient regularity conditions for the existence of a
well-defined MFD, requiring a slowly varying and distributed demand, a network with
redundancy (many route options), a homogeneous network of links with similar funda-
mental diagrams, and links whose fundamental diagrams are not significantly influenced
by varying route choices. These conditions imply that density and speed will be evenly
distributed in the network.

Subsequently, Geroliminis and Sun (2011a) used data from Yokohama and found that
a well-defined MFD may exist even if density is not uniformly distributed among links.
On the other hand, analysis for a freeway network in Minnesota showed that the spatial
distribution of vehicle densities in the network is a key component affecting the scatter
of an MFD and its shape. Geroliminis and Sun (2011b) showed that the freeway network
not only has curves with high scatter, but also exhibits hysteresis phenomena. Thus,
higher network flows are observed in the onset and lower in the offset of congestion,
for the same average network density, which leads to a two-valued relationship from
average density to average flow. Geroliminis and Sun (2011a) found that in the Yokohama
network, unlike the freeway network, the density distribution among links is invariant over
time conditional on the average network density. The authors concluded that this is an
important property for the existence of an MFD.

Several studies have further investigated the network and behavioral conditions un-
der which a well-defined MFD does and does not emerge. Daganzo et al. (2011) use
idealized networks and simulations to study bifurcations in aggregate flow-density rela-
tionships. Gayah and Daganzo (2011) extend this work to explain the phenomenon of
clockwise hysteresis loops observed in some MFDs through network dynamics and insta-
bility. Mazloumian et al. (2010) use simulation without equilibration to show that spatial
heterogeneity in density can lead to wide variation in average network flow at constant
average density. Along similar lines, Knoop et al. (2013) and Knoop and Hoogendoorn
(2013) propose and investigate a two-dimensional generalization of the MFD, relating the
average flow to both the average density and the (spatial) heterogeneity of density. Thus,
spatial heterogeneity of density may preclude the existence of a single-valued MFD.

This paper establishes conditions that ensure that an MFD emerges, even in the
absence of an equilibration effect. First, we impose mild conditions on the statistical
dependency of traffic variables across space which are sufficient to ensure the convergence
of the space-averages of traffic variables to fixed values at any point in time. Second, we
show that the space-averages of speed/flow are time-invariant conditional on the average
occupancy, provided that the spatial distribution of the speed/flow is the same conditional
on each value of the average occupancy. That is, if we consider a time slice and pool the
speed from different locations into one distribution, then we require that this distribution
is the same whenever the average occupancy is the same. This allows for traffic patterns
that may be different at different times of day, as long as the pooled distribution is
constant conditional on the number of vehicles in motion. Weather and other factors
can also affect the pattern, but are not included in our analysis due to limitations of the
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available data.

The fact that an MFD may emerge without equilibration also means that the existence
of an equilibration process cannot be inferred from the observation that an MFD exists.
In other words, merely observing a stable relationship between space-averages of speed or
flow versus occupancy is not sufficient to infer the existence of a robust relationship that
can be used for traffic control. This insight is consistent with the suggestion by Ji and
Geroliminis (2012) that clustering should be applied to identify regions where an MFD
could be applied.

The paper is organized as follows: Section 2 explains the assumptions of our model
and their validity, and presents our main result regarding the existence of the MFD.
Section 3 validates the model assumptions using a small simulation exercise and then
using empirical data from Stockholm and the Geneva region. Section 4 concludes the
paper. Proofs are given in the Appendix.

2 The model and the main result

We consider a road network partitioned into an infinite number of segments i ∈ N. The
assumption that there are infinitely many segments is a mathematical idealization that
allows us to use certain asymptotic results. We observe traffic variables at each segment
and at each time t in a set T .

Indexing of the road segments should begin in the center, and the index should increase
as we go away from the center. It does not matter that we use a one-dimensional index
over two-dimensional space: in practice it is possible to spiral out from the center. The
sequence of indexing is important since some of our assumptions require almost no positive
local correlation for traffic variables away from the center (with higher index). A city with
multiple congested areas can be included as long as there are sub-urban regions (higher
index) with no significant positive local correlation.

Let oti be a positive random variable denoting the occupancy on segment i ∈ N at
time t ∈ T . For every segment i, there is a local speed-occupancy function vi : R+ → R+

and a local flow-occupancy function qi : R+ → R+. The local speed-occupancy function
is non-increasing, i.e., speed decreases or remains constant as the occupancy increases.

We assume that local occupancies, speeds and flows are uniformly bounded. This is
clearly a realistic assumption as actual occupancies, speeds and flows are bounded physi-
cally. A uniformly bounded sequence converges in mean, which ensures that the average

expected occupancy lim
n→∞

1
n

n∑
i=1

E(oti) exists and similarly for speed and flow. Denote the
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limiting values

ôt = lim
n→∞

1

n

n∑
i=1

E
(
oti
)
, v̂t = lim

n→∞

1

n

n∑
i=1

E
(
vti
)
, q̂t = lim

n→∞

1

n

n∑
i=1

E
(
qti
)

We recall two convergence concepts for sequences of random variables.

Definition 1. A sequence {Xi} of random variables on a sample space Ω is said to
converge almost surely to a random variable X defined on Ω if Pr(ω ∈ Ω | lim

i→∞
Xi(ω) =

X(ω)) = 1.

Definition 2. A sequence {Xi} of random variables on a sample space Ω is said to
converge in probability to a random variable X defined on Ω if lim

i→∞
Pr(ω ∈ Ω | |Xi(ω)−

X(ω)| > ε) = 0 ∀ ε > 0.

Almost sure convergence implies convergence in probability, but the converse is not
true. Sections 2.1 and 2.2 establish sufficient conditions for convergence in probability
and almost surely, respectively, of the space-mean values of the traffic variables.

2.1 Assumptions for convergence in probability

2.1.1 Asymptotic boundedness and distant convergence

We introduce concepts of asymptotic boundedness and distant convergence relevant for
a two-dimensional array aij of real numbers. The concept of distant convergence is a
contribution of this paper.

Definition 3. An array aij is said to be asymptotically bounded by 0 if there exists a
non-negative sequence q(i)→ 0 such that for all i, k ≥ 1: ai,i+k < q(i).

Definition 4. An array aij is said to be distant convergent to a if for every ε > 0 there
exists N so that if |i− j| > N , then |aij − a| < ε.

Further, it is important to note that asymptotically boundedness by 0 is not the same
as distant convergence to 0. Definition 3 says that aij is asymptotically bounded by 0 if
lim
i→∞

aij = 0, whereas aij is distant convergent to 0 if lim
|i−j|→∞

aij = 0 by definition 4. The

asymptotically bounded property implies convergence with respect to the first index only,
and the distant convergent property implies convergence with the difference of the two
indices. The following lemmas are proven in the Appendix:
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Lemma 1. Let {Xi}i∈N be a sequence of random variables with uniformly bounded means

µi and covariances σij that are asymptotically bounded by 0. Then, 1
n

n∑
i=1

Xi converges in

probability to lim
n→∞

1
n

n∑
i=1

µi.

Lemma 2. Let {Xi}i∈N be a sequence of random variables with uniformly bounded means

µi and covariances σij that are distant convergent to 0. Then, 1
n

n∑
i=1

Xi converges in prob-

ability to lim
n→∞

1
n

n∑
i=1

µi.

2.1.2 Application to the model

We will use the following assumptions.

Assumption 1. One of the following holds:

1. For every t ∈ T , Cov(oti, o
t
j), Cov(vi(o

t
i), vj(o

t
j)), and Cov(qi(o

t
i), qj(o

t
j)) are asymp-

totically bounded by 0.

2. For every t ∈ T , Cov(oti, o
t
j), Cov(vi(o

t
i), vj(o

t
j)), and Cov(qi(o

t
i), qj(o

t
j)) are distant

convergent to 0.

Assumption 1.1 requires that the covariance between the occupancy of adjacent streets
decreases with an increase in index. Assumption 1.2 holds when the covariance between
the occupancy of segments decreases with increasing distance between two streets, i.e.,
the occupancy on adjacent segments may have higher covariance whereas occupancy on
distant segments will have smaller covariance. The same assumption is also introduced
for speed and flow.

Using Lemma 1 and 2, Assumption 1 guarantees the convergence in probability of
the space-averaged occupancy, speed and flow. This means that spatial averages have a
limiting value and the probability that spatial averages deviate by some fixed amount from
their limiting values becomes arbitrarily small as the number of observations increases in
the spatial dimension.

2.2 Assumptions for almost sure convergence

2.2.1 Asymptotically almost negative association (AANA)

Chandra and Ghosal (1996a,b) introduced the following dependence concept, which allows
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for local positive correlation while still being sufficient for obtaining the convergence
results that we will state below.

Definition 5. A sequence {Xi}i∈N of random variables defined on a fixed probability
space (Ω,A,P) is called asymptotically almost negatively associated (AANA) if there is a
nonnegative sequence q(i)→ 0 such that for all i, k ≥ 1,

Cov(f(Xi), g(Xi+1, · · · , Xi+k)) ≤ q(i)(V ar(f(Xi))V ar(g(Xi+1, · · · , Xi+k)))
1
2 (2.1)

for all coordinate-wise non-increasing continuous functions f and g such that the right-
hand side of eq. (2.1) is finite.

Thus, an AANA sequence {Xi} may have positive local correlations but the correla-
tions must become small as i increases. The sequence q(i) in the definition of AANA is
called the mixing coefficient. We note that AANA implies asymptotic boundedness of the
covariance. It is thus a strictly stronger assumption.

The following example is relevant for our model.

Example 1. Let {Yi}∞i=1 be independent identically distributed standard normal random

variables. For any non-negative integer p, define Xi = (1 + a2i + a2i+1 + · · ·+ a2i+p)
− 1

2 (Yi +
aiYi+1 + · · · + ai+pYi+p+1) with ai > 0 and ai → 0 as i → ∞. Then {Xi}∞i=1 is AANA.
(Proof is given in the Appendix.)

In Example 1, Xi can be considered as occupancies at various locations in a road
network. Subscript i indexes road segments, beginning from inside a congested city cen-
ter. Then the example describes a case where occupancies are positively correlated with
occupancies of p neighboring road segments and where the correlations decrease as we go
away from the congested region of the city.

The following Lemma, proved by Yuan and An (2009), states that the AANA property
is invariant under monotonic transformations of the random variables in an AANA se-
quence. This is extremely useful since it means that the AANA property carries over from
local occupancies to local speeds through monotone local speed-occupancy relationships.

Lemma 3. Let {Xi} be a sequence of AANA random variables with mixing coefficient
q(i), and let f1, f2, · · · be all nondecreasing (or nonincreasing) functions, then {fi(Xi)} is
also a sequence of AANA random variables with mixing coefficient q(i).

Using AANA sequences of random variables enables us to use the following theorem,
which was established by Wang et al. (2010).

Theorem 1. Let {Xi, i ≥ 1} be a sequence of AANA random variables with mixing
coefficient satisfying

∑∞
i=1 q

2(i) < ∞. Denote Qn = max
1≤i≤n

E(Xi)
2 for n ≥ 1 and Q0 = 0.

Then lim
n→∞

1
n

n∑
i=1

(Xi − E(Xi)) = 0 almost surely if
∞∑
n=1

Qn

n2 <∞.
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Theorem 1 establishes that the average of a sequence of random variables converges to
the average of the expected value of the random variables under weak conditions that allow
these variables to be dependent. In particular, the random variables may be positively
correlated locally.

2.2.2 Application to the model

Assuming asymptotically almost negative association between the occupancies on different
segments enables us to derive stronger results for the space-averaged speed and occupancy.

Assumption 2. For every t, the sequence {oti}i∈N is AANA with mixing coefficient sat-

isfying
∞∑
i=1

q2(i) <∞.

Assumption 2 allows us to establish almost sure convergence of space-averaged occu-
pancy and speed as stated in the following lemma:

Lemma 4. Under Assumption 2, at any time t ∈ T , space-averaged occupancy ōnt =
1
n

n∑
i=1

oti and space-averaged speed v̄nt = 1
n

n∑
i=1

vi(o
t
i) converge almost surely.

2.3 Distributions of speed and flow

Lemma 1, 2 and 4 show that empirical averages of speed or flow against occupancy will
be close to their expected values, where the meaning of closeness depends on whether
we have convergence in probability or convergence almost surely. It may still happen,
however, that the average speed or average flow converge on different values for the same
value of the average occupancy at different times of day. A further assumption is required
to guarantee that the limiting values are the same across times in the set T where the
limiting value for the average occupancy is constant. The assumption that we will make is
the weakest we can find that achieves this purpose. Importantly, it allows the distribution
across space to vary over time. Thus, we do not require that the distribution of traffic
variables at a location i is independent of time: it is sufficient to put a restriction on the
distribution of speeds and flows, pooling them across space.

Let Tô be the set of times t where ôt = ô.

Assumption 3. For all ô, for all s ≥ 0, lim
n→∞

1
n

n∑
i=1

1{vti≤s} and lim
n→∞

1
n

n∑
i=1

1{qti≤s} are

constant a.s. independent of t ∈ Tô.

Assumption 3 implies that the distribution of speed and flow is independent of time,
and depends only on the space-averaged occupancy.
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Using data from Yokohama, Geroliminis and Sun (2011a) compare the distribution of
occupancies across space at different times, conditional on the average occupancy. They
find distributions that are highly dispersed. Nevertheless, they look quite stable and this
evidence seems to be in good agreement with the present Assumption 3.

2.4 Emergence of a well-defined MFD

We can thus state our main result:

Theorem 2. Under Assumptions 1 and 3, the limiting value for the space-averaged flow
and speed is unique given the limiting value for space-averaged occupancy. In other words,
ôt1 = ôt2 = ô implies that v̂t1 = v̂t2 and q̂t1 = q̂t2.

We have noted that AANA implies asymptotic boundedness by 0. Then the stronger
Assumption 2 for occupancies together with Assumption 3 ensures Theorem 2 as well as
the stronger almost sure convergence result of Lemma 4.

Theorem 2 ensures unique limiting values for v̂t and q̂t for all t ∈ Tô. Extending this
to all values of ô implies that a scatter plot of space-averages of speed or flow against
occupancy will converge to a single-valued function. This hence establishes the existence
of a well-defined MFD.

3 Model validation

We have established mathematical conditions that are sufficient to ensure the emergence
of an MFD. Assumption 3 is in agreement with the result in Geroliminis and Sun (2011a)
that if the spatial distribution of link density is the same for two different time intervals
with the same number of vehicles in the network, then these two time intervals should
have the same average flows. In this section, we will provide further checks on the validity
of this assumption by confronting some testable implications of these conditions with
simulated and empirical evidence.

3.1 Simulated data

We consider a network with 300 road segments. Each segment has a piece-wise linear
speed-occupancy relationship in which the speed decreases linearly from 1 to 0.75 between
0 and a randomly chosen occupancy level between 3 and 4; after this point speed linearly
decreases to 0 at the occupancy level of 6. The local speed-occupancy function (Figure 1)
is thus piece-wise linear and concave. The local flow is computed as the product of speed
and occupancy.
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Figure 1: Example speed occupancy curve.

Segment occupancies are generated by drawing 301 normal random variables Yi with
mean randomly assigned between 3 and 4 and variance 1. We take a sequence ai = 1/i,
which converges to 0. Then the occupancy on the ith segment is given by Xi = Yi +
1
i
Yi+1. This makes the occupancies AANA random variables (cf. Example 1). Further-

more, speed-occupancy is a monotonically decreasing function, and therefore speed is also
AANA.

We replicate this 10,000 times with different means for occupancies (varying between 0
and 7) to obtain simulations over a range of values for the average occupancy. This leads
to the speed-occupancy, flow-occupancy, and flow-speed scatter plots shown in Figure 2.
We notice that a well-defined MFD emerges. This illustrates the basic insight underlying
this paper, namely that the averages of random speeds, occupancies and flows converge
to well-defined values under weak conditions, even when there is no process to equilibrate
speeds across space, and even when local speed-occupancy relationships vary completely
at random.

Figure 2: MFD for simulated data. Left-most picture represent the relation between speed
and occupancy, middle picture represents flow and occupancy, and right-most picture
represents flow and speed.
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3.2 Stockholm taxi data

Our first empirical test of the model assumptions utilizes GPS traces from taxis in Stock-
holm. The data are used to estimate the distribution of speed across space and time.
We can then test our assumptions related to speed, but we do not attempt to estimate
occupancy or flow since the distribution of taxis in space and time may be quite different
from that of the overall traffic.

We focus on the network on Södermalm island, which covers about 2 × 5 km2 and is
shown in Figure 3. The data consist of location reports with coordinates and timestamps
from a fleet of about 1500 taxis. When active, each taxi reports its location once every 1-2
minutes. The data source is described in more detail in Rahmani et al. (2010); Jenelius
et al. (2017). We use observations from weekdays between September 29 and October 10,
2014 and all hours of the day are used.

Figure 3: The network and region of Södermalm, Stockholm used in the model validation.

For each pair of consecutive reports from the same taxi, the speed is computed based
on the Euclidean distance between the locations and the time difference between the
timestamps. The speed observations are filtered to discard very low or high values that
represent of stopped, waiting and parking vehicles. After filtering, the data set contains
113,823 speed observations. Each speed observation is then spatially associated with the
mid-point between the start and end locations of the pair.

3.2.1 Test of distant convergent speed assumption

To study the relation between distance and the covariance of speed, the region is spatially
discretized in a square grid with 0.25 km distance between grid points. The speed obser-
vations are binned spatially according to the nearest grid point, and temporally according
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to 15-minute clock-time intervals and days. There are 119 grid points covering the region,
96 clock-time intervals and 10 days, generating in total 114,240 time-space bins. The local
average speed is computed for each bin based on the total distance and time travelled
according to Edie’s definitions (Edie, 1965). For each grid point and clock-time interval
the mean value across days is subtracted from the average speed to remove the effect of
varying speeds during the day. Since the taxis do not cover the whole network at all
times, values are missing for 61% of the bins.

For each pair of grid points, the covariance of local speeds across all clock-time intervals
and days is estimated, taking missing values into account. Kernel regression is then used
to estimate the mean covariance of local speeds as a function of the Euclidean distance
between the grid points. A Gaussian kernel with bandwidth 0.25 km is used, and a 95%
confidence interval is estimated with bootstrapping.

The speed covariance shows large variability between grid points, which is partly
an effect of the noisy nature of the taxi data. Still, the average covariance decays with
distance, and the confidence interval shows that it is not statistically significantly positive
for distances beyond 0.75 km (Figure 4). This supports the assumption that the covariance
of speed is distant convergent to 0 (Assumption 2.2).

Figure 4: Covariance of local speed vs. distance for Södermalm, Stockholm based on
binning of taxi data. Solid line: Covariance function estimated with kernel regression.
Dashed line: Bootstrap 95% confidence interval.
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3.3 Geneva loop-detector data

To further validate our assumptions, we study loop-detector data for the city of Geneva.2

The Geneva network is shown in Figure 5. The data consists of occupancy, flow and speed
measured by 254 detectors during September, 2014. These detectors are not physical
detectors, but aggregated measurements used by the DGT (the transport authority La
Direction Générale des Transports). The DGT typically aggregates different loops at the
same level on different lanes into ”one counting point”.

Figure 5: The network and region of Geneva city used in the model validation.

The measurements are recorded every 3 minute and 20 seconds, and some of the
detectors work only during daytime. There is a known bug in the flow measurements:
During certain time intervals the sampling period is much shorter (about 1 min instead
of 3 min 20 s): this bug results in normal occupancy and speed measurement but flows
are 3 times smaller than expected.

Occupancy is measured as the number of cars on a street, whereas the speed and the

2We are thankful to Nikolas Geroliminis, EPFL Switzerland for providing us with access to the data.
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flow are measured in kilometers per hour and number of cars passing per hour, respectively.
The macroscopic fundamental diagram observed from the data is shown in Figure 6. We
can notice two curves (flow), one of which is due to the measurement error in the flow.
This error is also observed when we test Assumption 3.

Figure 6: MFD for Geneva city. Left most picture represent the relation between speed
and occupancy, middle picture represents flow and occupancy and the right most picture
represents speed and flow relationship for the month of September 2014

3.3.1 Test of distant convergent speed, occupancy and flow

To study the relation between distance and the covariance of speed, we calculate the
spatial distance between detectors. For each detector and clock-time interval the mean
value across days is subtracted from the average speed to remove the effect of varying
speeds during the day. For each pair of detectors, the covariance of speed, flow and
occupancy is calculated, taking missing values in account. In Figure 7, we show the
covariance function estimated with the kernel regression, and the shaded region shows
the 95% confidence interval.

Figure 7: Covariances against distance for traffic variables: speed(left), flow(center) and
occupancy(right).

We notice that covariance function decays with distance for all variables. Figure 7
helps us conclude that covariances are distant convergent to 0.
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3.3.2 Test of conditionally invariant speed and occupancy distributions

We divide the average occupancy in different intervals of length 1 (car) and see the
empirical cumulative distribution function for speed and flow when the average occupancy
lies in that interval. The range of average occupancy is (0, 26) and we round these values
to integers. We present the results at average occupancy level 2, 9, 15, 19, though we
have checked for every rounded occupancy level. We choose these intervals based on the
frequency table of the average occupancy, and display the results where the frequency of
average occupancy has significant change.

Figure 8 shows that the distribution of speeds across the city of Geneva overlap at
given average occupancy level. Furthermore, Figure 6 shows a very small variability in
the speed-occupancy diagram. We also observe that at higher average occupancy, the
overlapping of the speed distribution is clearly represented by the diagram, and therefore
we have almost no variability in the occupancy-speed curve.

Figure 8: Distribution of speeds at average occupancy 2, 9, 15, 19 respectively.
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Figure 9 shows the distribution of flows across the city overlapping at a given aver-
age occupancy with few exceptions. We notice that flows have high variability in the
distribution at lower occupancy levels (ō = 2, 9 in the figure), but it overlaps at higher
occupancy levels. The higher variability in the empirical CDF at lower frequency is due
to the measurement error in the flow.

Figure 9: Distribution of flows at average occupancy 2, 9, 15, 19 respectively.

4 Concluding remarks

The paper has established conditions that ensure that an MFD emerges in the limit as one
increases the size of the traffic region in the analysis. The paper has shown that the law of
large number applies in the case of traffic networks, even in the presence of positive spatial
correlation, and ensures the emergence of an (unstable) MFD. The additional requirement
that the spatial distribution of the speed/flow is the same conditional on each value of
the average occupancy ensures a well-defined MFD. We have confirmed using empirical
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data that the correlation of speed across space decreases with distance, as required by
the theory. In practice, this means that we would expect an MFD to emerge when the
number of measurement locations and the size of the traffic region is sufficiently large.
This occurs without any assumption of any equilibrating process. In particular, it is not
required that speeds tend to be equal across space specially when the region of study is
large.

The results have important implications for the use of an MFD for traffic control. For
a drastic illustration, we can think of a city consisting of two independent parts with no
connecting roads between them. Let us say that the conditions for the emergence of an
MFD are satisfied in both parts and that these MFDs are different. Then, as this paper
shows, an MFD will also emerge for the averages covering both parts of the city due to
the assumed independence. If we now reduce traffic in one part of the city, the MFD
for the whole city that would then be dominated by the MFD of the other part. Then
the averaged MFD would change as a result of the reduction in traffic. This shows that
metering would affect the observed shape of the MFD and that the MFD therefore does
not predict the effect of metering. This example is a stark case in which an MFD emerges
in a way that clearly contradicts the intuition behind the MFD.

The findings here imply that merely observing a stable relationship between space-
averages of speed or flow versus occupancy is not sufficient to infer the existence of a robust
relationship that can be used for traffic control. It seems that some kind of equilibrating
mechanism is required, as assumed by the papers mentioned in Introduction. This raises
the question of how the existence and strength of such an equilibrating mechanism can
be validated with empirical data. This is an important topic for future research.

A Proofs

We refer to Yuan and An (2009) and Wang et al. (2010) for proofs of Lemma 3 and
Theorem 1, respectively.

Proof of Lemma 1. Define X̄n = 1
n

n∑
i=1

Xi and denote also σ = maxi V ar(Xi), µ̄n =

1
n

n∑
i=1

µi, and µ̄ = limn→∞
1
n

n∑
i=1

µi. Then E(X̄n) = µ̄n.

Given some ε > 0, use the asymptotical bound on the covariances to choose k such
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that q(i) < ε for all i > k. Then

V ar(X̄n) =
1

n2

n∑
i=1

V ar(Xi) +
2

n2

n∑
i=1

n∑
j=i+1

σij

≤ σ

n
+

2

n

n∑
i=1

q(i)

≤ σ

n
+

2

n
(kmax

i≤k
q(i) + nε)

≤ σ

n
+

2kmax
i≤k

q(i)

n
+ 2ε,

which means that V ar(X̄n) ≤ 3ε for sufficiently large n. By Chebychev’s inequality we
then have

Prob(|X̄n − E(X̄n)| ≥ a) ≤ V ar(X̄n)

a2
≤ 3ε

a2

for sufficiently large n. Then also

Prob(|X̄n − µ̄| ≥ a) ≤ Prob(|X̄n − µ̄n| ≥ a− |µ̄n − µ̄|) ≤
3ε

(a− |µ̄n − µ̄|)2

for sufficiently large n. Since this is true for all ε > 0, we conclude that Prob(|X̄n−µ̄| ≥ a)
tends to zero as n tends to infinity. This is the required result that X̄n converges in
probability to µ̄. �

Proof of Lemma 2. Define X̄n = 1
n

n∑
i=1

Xi. Then E(X̄n) = 1
n

n∑
i=1

E(Xi). Denote

σ = max
i
V ar(Xi), and δ = max

i,j
Cov(Xi, Xj), µ̄n = 1

n

n∑
i=1

µi, and µ̄ = 1
n

∞∑
i=1

µi.

V ar(X̄n) =
1

n2

n∑
i=1

V ar(Xi) +
1

n2

∑
1≤i 6=j≤n

Cov(Xi, Xj)

=
1

n2

n∑
i=1

V ar(Xi) +
1

n2

n∑
i=1

∑
0<|i−j|≤k

Cov(Xi, Xj) +
1

n2

n∑
i=1

∑
|i−j|>k

Cov(Xi, Xj).

From the definition of distant convergence, for all ε > 0, there exist k such that
|Cov(Xi, Xj)| < ε for all i, j such that |i − j| > k. Note that k does not depend on n.
Therefore,

V ar(X̄n) ≤ σ

n
+

k

n2

n∑
i=1

max
0<|i−j|≤k

Cov(Xi, Xj) +
1

n2

n∑
i=1

∑
|i−j|>k)

ε

≤ σ

n
+
k

n
δ + ε

≤ 3ε.
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By Chebychev’s inequality we then have

Prob(|X̄n − E(X̄n)| ≥ a) ≤ V ar(X̄n)

a2
≤ 3ε

a2

for sufficiently large n. Then also

Prob(|X̄n − µ̄| ≥ a) ≤ Prob(|X̄n − µ̄n| ≥ a− |µ̄n − µ̄|) ≤
3ε

(a− |µ̄n − µ̄|)2

for sufficiently large n. Since this is true for all ε > 0, we conclude that Prob(|X̄n−µ̄| ≥ a)
tends to zero as n tends to infinity. This is the required result that X̄n converges in
probability to µ̄. �

Proof of Lemma 4. The conditions of Theorem 1 are satisfied since occupancies and

speeds are uniformly bounded. Then we have lim
n→∞

1
n

n∑
i=1

(oit − E(oit)) = 0 almost surely.

Since∣∣∣∣∣ 1n
n∑

i=1

oit − lim
n→∞

1

n

n∑
i=1

E(oit)

∣∣∣∣∣ <
∣∣∣∣∣ 1n

n∑
i=1

oit −
1

n

n∑
i=1

E(oit)

∣∣∣∣∣+
∣∣∣∣∣ 1n

n∑
i=1

E(oit)− lim
n→∞

1

n

n∑
i=1

E(oit)

∣∣∣∣∣
and both right-hand side terms tend to zero almost surely, we find that

lim
n→∞

1

n

n∑
i=1

oit = lim
n→∞

1

n

n∑
i=1

E(oit)

almost surely.

By Lemma 3, speeds are also AANA with mixing coefficient q(i). Then the conclusion
for the space-averaged speed follows in the same way as for the space-averaged occupancy.
�

Proof of Theorem 2 . From Assumption 3, limn→∞
1
n

∑n
i=1 1{vti≤s} is constant a.s. for

all s, and independent of t ∈ Tô. We denote the limiting function by V (s). Then

V (s) = E

(
lim
n→∞

1

n

n∑
i=1

1{vti≤s}

)
= lim

n→∞

1

n

n∑
i=1

P
(
vti ≤ s

)
by dominated convergence, noting that 1

n

∑n
i=1 1{vti≤s} ≤ 1.
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That v̂t is independent of t follows, again using dominated convergence, since

v̂t = lim
n→∞

1

n

n∑
i=1

E(vti) = lim
n→∞

1

n

n∑
i=1

∞∫
0

P (vti > s))ds

=

∞∫
0

lim
n→∞

1

n

n∑
i=1

P (vi > s)ds

=

∞∫
0

(1− V (s))ds,

which is independent of t by assumption.

The proof for q̂t is similar. �

Proof of Example 1. We shall show that the correlation coefficient between U = f(Xi)
and V = g(Xi+1, · · · , Xi+k) is dominated in absolute value by a sequence bi converging to
0. It is sufficient to prove this under the additional hypothesis E(U) = 0 = E(V ),E(U2) =
1 = E(V 2). Then,

|(Cov(U, V ))| ≤ Cov(U,E(U | Xi+1, · · · , Xi+k)

= E(E(U | Xi+1, · · · , Xi+k))2

≤ E(E(U | Yi+1, · · · , Yi+k+p+1))
2

= E(E(U | Yi+1, · · · , Yi+p+1))
2

= E

(
E

(
U | Zi+1 =

(aiYi+1 + · · ·+ ai+pYi+p+1)

(a2i + a2i+1 + · · ·+ a2i+p)
1
2

))2

(A.1)

Clearly, Zi+1 is a standard normal random variable. Let ψi(x, z) be the conditional
density of Xi given Zi+1 and φ(x) be the density of standard normal random variable.
Using the fact E(U) = 0, we have

E(E(U | Zi+1))
2 =

∞∫
−∞

 ∞∫
−∞

f(x)

(
ψi(x, z)

φ(x)
− 1

)
φ(x)dx

2

φ(z)dz

By using Cauchy-Schwartz inequality, the integral is at most

∞∫
−∞

∞∫
−∞

(
ψi(x, z)

φ(x)
− 1

)2

φ(x)dxφ(z)dz = a2i + a2i+1 + · · ·+ a2i+p = b2i

Moreover, if ai → 0 then bi → 0. And
∞∑
i=1

a2i <∞ implies
∞∑
i=1

b2i <∞. �
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