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A PRIMER ON BOOTSTRAP TESTING OF HYPOTHESES IN
TIME SERIES MODELS: WITH AN APPLICATION TO

DOUBLE AUTOREGRESSIVE MODELS

Giuseppe Cavaliere∗ and Anders Rahbek‡

Abstract

In this paper we discuss the general application of the bootstrap as a tool for
statistical inference in econometric time series models. We do this by consider-
ing the implementation of bootstrap inference in the class of double-autoregressive
[DAR] models discussed in Ling (2004). DAR models are particularly interesting
to illustrate implementation of the bootstrap to time series: first, standard asymp-
totic inference is usually diffi cult to implement due to the presence of nuisance
parameters under the null hypothesis; second, inference involves testing whether
one or more parameters are on the boundary of the parameter space; third, under
the alternative hypothesis, fourth or even second order moments may not exist.
In most of these cases, the bootstrap is not considered an appropriate tool for
inference. Conversely, and taking testing (non-) stationarity to illustrate, we show
that although a standard bootstrap based on unrestricted parameter estimation
is invalid, a correct implementation of a bootstrap based on restricted parameter
estimation (restricted bootstrap) is first-order valid; that is, it is able to replicate,
under the null hypothesis, the correct limiting null distribution. Importantly, we
also show that the behaviour of this bootstrap under the alternative hypothesis
may be different because of possible lack of finite second-order moments of the
bootstrap innovations. This features makes —for some parameter configurations —
the restricted bootstrap unable to replicate the null asymptotic distribution when
the null is false. We show that this drawback can be fixed by using a new ‘hybrid’
bootstrap, where the parameter estimates used to construct the bootstrap data are
obtained with the null imposed, while the bootstrap innovations are sampled with
replacement from the unrestricted residuals. We show that this bootstrap, novel
in this framework, mimics the correct asymptotic null distribution, irrespetively of
the null to be true or false. Throughout the paper, we use a number of examples
from the bootstrap time series literature to illustrate the importance of properly
defining and analyzing the bootstrap generating process and associated bootstrap
statistics.
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1 Introduction

Outcomes of various bootstrap schemes applied to econometric time series models are
routinely reported in the literature. This is generally done in cases where (i) the limiting
distribution of the reference estimator or test statistics depends on a (possibly infinite-
dimensional) vector of unknown nuisance parameters; (ii) critical values or standard
errors can be obtained by simulations only; (iii) the asymptotic approximation to the
distribution of the reference estimator or test statistics is poor. The increasing compu-
tational power available to researchers coupled with the fact that the implementation of
bootstrap algorithms is typically straightforward, makes the bootstrap one of the most
popular inference tools in the econometric analysis of time series data; see, inter alia,
Davidson and MacKinnon (2006) and MacKinnon (2009).

Despite its many appealing features, the application of the bootstrap to time series
models requires a detailed analysis of its asymptotic properties. This is necessary in
order to establish asymptotic validity of the bootstrap, at least up to first order. Taking
hypothesis testing to illustrate —as we do throughout this paper —a proper statistical
analysis of any bootstrap test would necessarily involve two main, interconnected steps.
First, it requires to determine whether, conditionally on the original data, the bootstrap
correctly mimics the null asymptotic distribution of the reference test statistics under
the null hypothesis. This step is generally more involved than the asymptotic analysis
of the original test statistics, as the conditional distribution of the bootstrap statistic
given the data is a random element in the space of distribution functions. Hence,
specific probability tools are required. In general, further high level conditions over
those required for asymptotic inference are necessary and, consequently, any application
of the bootstrap which is not backed up by a proper analysis of these conditions must
be taken with caution.

The second step, which is often neglected in applications of the bootstrap, is the
statistical analysis of the properties of the test under the alternative hypothesis, i.e.
consistency of the bootstrap test. This step is more involved than assessing bootstrap
validity under the null. Essentially, diffi culties may arise because it requires to analyze
the asymptotic behaviour of the estimators used to generate the bootstrap data when
the null is false: in particular when estimators restricted by the null hypothesis are
considered. More specifically, under the alternative hypothesis it is important to check
whether the estimators restricted by the (false) null hypothesis do not converge to
pseudo-true values that ruin the large sample features of the bootstrap sample.

In this paper we aim at discussing the two aforementioned steps by considering a
novel application of the bootstrap to econometric time series models. Specifically, we
consider bootstrap inference in the class of double-autoregressive [DAR] models, see
e.g. Borkovec and Klüppelberg (2001), Ling (2004, 2007a) and Chen, Li and Ling
(2013). The DAR is a time series model with an autoregressive structure both in
the conditional mean and in the conditional variance. The conditional mean has the
classic autoregressive formulation, i.e. it is linear in the lagged level of the process.
The conditional variance, in contrast to the classic ARCH-type or AR—ARCH type
specifications (Ling and Li, 1998; Ling and MacAleer, 2003; Lange, Jensen and Rahbek,
2006; Ling, 2007b; Nielsen and Rahbek, 2014) where it is linear in the squared lagged
innovations, is also linear in the lagged level of the process. In this sense, it allows the
levels of the process to affect both the conditional mean and conditional variance, as
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expected e.g. in the econometric modelling of interest rates1 as in Nielsen and Rahbek
(2014). In the framework of the DAR model, we consider as leading testing application
the bootstrap implementation of the likelihood-ratio [LR] test for reduction to random
walk. In essence, this can be viewed as a (non-)stationarity test within the DAR model.
Previous studies of this testing problem are given in Ling (2004), who focus on the score
test, and in Kluppenberg et al. (2001), who consider a LR testing approach.

DAR models and the associated (non-)stationarity testing problem are particularly
interesting to illustrate implementation of the bootstrap to time series, for several rea-
sons. First, standard asymptotic inference is usually diffi cult to implement, due to the
presence of nuisance parameters under the null hypothesis. The asymptotic distribu-
tion of the test statistics, for instance, depends on nuisance parameters (such as the
kurtosis of the innovations) which makes it hard to construct tables of critical values.
Second, the autoregressive parameter entering the conditional variance equation is —
in order to guarantee non-negativity of the conditional variance — usually restricted
to be non-negative. As a consequence, inference must deal with possible parameters
on the boundary of the parameter space, a situation where the bootstrap is usually
regarded as invalid (see, e.g. Andrews, 2000, Cavaliere, Nielsen and Rahbek, 2016).
Third, under strict stationarity, second order moments may not exist. Hence, under-
standing the properties of the bootstrap under the alternative hypothesis, which would
require re-sampling from an infinite variance process, may be cumbersome, if not even
impossible (seminal results about the possible invalidity of the bootstrap when second
order moments may not exist are given in Athreya, 1987, and Knight, 1988; for time
series models see also Cavaliere, Nielsen and Rahbek, 2018, and the references therein).

In the following of the paper we show that, as expected in the aforementioned
cases, classic bootstrap hypothesis testing, based on generating the bootstrap data
using estimators (and residuals) obtained without imposing the null hypothesis (as
suggested in Hall, 1992), is not valid. Despite this fact, we also show that the problem
of (non-)stationarity testing in a DAR model can be successfully solved by a proper
implementation of the bootstrap. More specifically, we initially show that the bootstrap
based on restricted parameter estimation (the so-called ‘restricted bootstrap’) is first-
order valid under the null hypothesis; that is, it is able to replicate the correct limiting
null distribution when the null hypothesis is true. However, we also show that the
behaviour of this bootstrap under the alternative hypothesis may be different because
of possible lack of finite second-order moments of the bootstrap innovations. This
features makes —for some parameter configurations —the restricted bootstrap unable
to replicate the null asymptotic distribution when the null is false. This is a typical
instance where validity of the bootstrap under the null does not imply its validity under
the alternative.

We next show that this drawback can be fixed by using a new ‘hybrid’bootstrap,
where the parameter estimates used to construct the bootstrap data are obtained with
the null imposed, while the bootstrap innovations are sampled with replacement from
the unrestricted residuals. This simple modification of the bootstrap algorithm, which
is novel in this framework, mimics the correct asymptotic null distribution also under
the alternative.

1The Cox-Ingersoll-Ross (CIR) Model is a classic example of a level-dependent heteroskedasticity
model.
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We use a Monte Carlo experiment to analyze the finite sample properties of the
different bootstrap algorithms. We show substantial gains in terms accuracy of the
empirical rejection probabilities under the null hypothesis, while under the alternative
we show that our bootstrap has power very close to the (pointwise) size-adjusted power
of the (infeasible) asymptotic test.

Throughout the paper, we use a number of examples from the bootstrap (time
series) literature to illustrate the importance of properly defining the bootstrap gener-
ating process and associated bootstrap statistic, as well as the need of looking at the
appropriate bootstrap statistic on the base of a rigorous, case-by-case analysis of its
theoretical properties, both under the null and under the alternative hypothesis.

1.1 Structure of the paper

The structure of the paper is the following. In section 2 we introduce the reference
DAR model and the testing problem we consider throughout the paper. In section 3 we
introduce the main bootstrap approaches and discuss their validity under the null hy-
pothesis. Section 4 focuses on the behaviour of the bootstrap test under the alternative
hypothesis. Here we also introduce and discusse the hybrid bootstrap scheme. Results
from a small Monte Carlo study on the finite sample behaviour of the asymptotic and
bootstrap tests are reported in section 5. We consider some extensions of the model
and of the tests considered in section 6. Section 7 concludes. All mathematical proofs
are reported in the appendix.

1.2 Notation

The following notation is used throughout. With x := y (y =: x) we mean that x is
defined by y (y defined by x). For any q ∈ R (R denoting the set of real numbers),
q+ := max{0, q} and bqc denotes the integer part of q. The set of non-negative real
numbers is denoted by R+. The space of m× 1 vectors of càdlàg functions on the unit
interval [0, 1] is denoted by Dm. With Xn →w X and X = wlimXn we mean that Xn

converges weakly to X. Also, d= denotes equality in distribution. We use P ∗, E∗ and V ∗

respectively to denote probability, expectation and variance, conditional on the original

sample. With w∗→p we denote weak convergence in probability; that is, X∗n
w∗→p X means

that, as the sample size n diverges, the cdf G∗n of Xn, conditional on the original data,
converges in probability to the cdf G of X, at all continuity points of G. For a given
sequence X∗n computed from the bootstrap data, X∗n − X = o∗p(1), in probability, or

X∗n
p∗→p X, means that for any ε > 0, P ∗(||X∗n −X|| > ε) →p 0, as n → ∞. Similarly,

X∗n = O∗p (1), in probability, means that, for every ε > 0, there exists a constant M > 0
such that, for all large n, P (P ∗(||X∗n|| > M) < ε) is arbitrarily close to one. Unless
otherwise specified, integrals are between 0 and 1.

2 (Non-)stationarity in a DAR model

In this section we present the leading DAR model and the associated (non-)stationary
testing problem which we discuss throughout the paper. We introduce the main assump-
tions in Section 2.1, discuss estimation in Section 2.2 and the key testing procedure in
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section 2.3. Bootstrap inference and hypothesis testing is be discussed in section 3.

2.1 Model and assumptions

Consider the double-autogressive [DAR] model (Ling, 2004), as defined through the
recursion

∆xt = πxt−1 + εt, εt := σtzt, σ2
t := ω + αx2

t−1 (1)

where the zt’s is an i.i.d. random variables with zero mean and unit variance, and with a
continuous, strictly positive density with respect to the Lebesgue measure2. The initial
value, denoted by x0, is independent of the future zt’s and will be considered fixed in
the statistical analysis. As is customary for this class of models, it is also assumed that3

ξ := Ez3
t = 0, and κ := Ez4

t − 1 <∞. In this model, the mean of xt conditional on the
σ-field generated by {x0, z1, ..., zt−1}, say It−1, equals (1 +π)xt−1 while the conditional
variance is given by σ2

t := ω + αx2
t−1 and hence is level-dependent. In this respect, it

differs from the standard AR-ARCH model (see e.g. Lange, Rahbek and Jensen, 2011),
where the conditional variance σ2

t depends on ε
2
t−1 rather than on x

2
t−1 (see also Nielsen

and Rahbek, 2014, for a discussion of the multivariate DAR). Clearly, the model reduces
to a standard autoregression with i.i.d. innovation when α = 0, and to the ARCH model
when π = −1, which implies xt = (ω + αx2

t−1)1/2zt. In the DAR model, a suffi cient
condition for σ2

t to be positive a.s. is given by the usual non-negativity constraint
α ≥ 0, which we assume to hold throughout. A necessary and suffi cient condition for
Ex2

t <∞ is (1 + π)2+α < 1; moreover, provided E log
∣∣1 + π + α1/2zt

∣∣ < 0, the process
can be given an initial distribution such that it is strictly stationary and geometrically
ergodic if some mild regularity conditions on the density function of zt also hold. A
key feature of the model is that the classical autoregressive unit root condition, π = 0,
does not imply that the process is non-stationary. More specifically, π = 0 implies
non-stationarity only if α = 0; see Figure 1 in Ling (2004). We discuss the issue of
testing for non-stationarity in Section 2.3 below.

In the following we assume that the parameter space for the true value, denoted as
θ0, is given by Θ0 := ΘS ∪ΘN , where ΘS := {θ := (π, α, ω)′ : E log

∣∣1 + π + α1/2zt
∣∣ < 0

with α ≥ 0 and ω > 0} and ΘN := {θ := (0, 0, ω)′ : ω > 0}. That is, we assume
that either the process is strictly stationary (the true parameter is in ΘS), or that the
process is non-stationary and, specifically, reduces to a standard random walk with
i.i.d. increments (the true parameter is in ΘN ). In both cases it is assumed that the
innnovations zt have finite fourth order moments.

2.2 Estimation

As in Ling (2004) and in Klüppenberg et al. (2002), we consider quasi maximum
likelihood [QML] estimation based on the auxiliary assumption of Gaussian innova-
tions. The results given here are employed in sections 3 and 4 in order to estab-
lish the properties of the bootstrap test. We further assume that the user-chosen
optimization set employed for maximization of the likelihood function is given by

2The assumption of a continuous and positive density with respect to the Lebesgue measure can be
relaxed.

3 In Section 6, we consider ζ 6= 0.
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T := {θ := (π, α, ω)′ : −πL ≤ π ≤ πU , 0 ≤ α ≤ αU , ωL ≤ ω ≤ ωU}, with πL, πU , αU , ωL
and ωU positive constants and ωL < ωU . In practice, estimation is performed imposing
the non-negativity restriction α ≥ 0 while leaving π unrestricted (and ω positive).

For a time series {x1, ..., xn}, and with x0 fixed in the statistical analysis, the
Gaussian QMLE is given by

θ̂n := arg max
θ∈T

Ln (θ) , Ln (θ) :=

n∑
t=1

lt (θ)

where

lt (θ) := −1

2
log σ2

t (θ)− 1

2

(
∆xt − πxt−1

σt (θ)

)2

, σ2
t (θ) := ω + αx2

t−1, t = 1, ..., n.

Theory for the QMLE under the strict stationarity assumption, i.e. when the true
parameter θ0 is in ΘS , is provided in Ling (2004) under the assumption that α0 is not
on the boundary (specifically, it is required that α0 ∈ [αL, αU ] with αL > 0), hence
not covering the case where α0 may be zero, that is, on the boundary. By employing
non-standard arguments as e.g. in Andrews (1999, 2001), see also Cavaliere, Nielsen
and Rahbek (2017), we generalize Ling (2004, Theorem 1) as follows:

Theorem 1 Suppose that {xt} is generated as in (1) with ξ = 0 and κ <∞, and that
the true parameter vector θ0 ∈ ΘS . Then, as n → ∞, θ̂n = (π̂n, α̂n, ω̂n)′ is consistent,
i.e. θ̂n →p θ0 = (π0, α0, ω0)′. The asymptotic distribution of θ̂n is given by

n1/2(θ̂n − θ0)→w ζ = (ζπ, ζγ)′ ,

with ζπ
d
= N

(
0, σ2

π

)
, σ2

π := 1/E
(
x2
t−1/σ

2
t

)
. Moreover, ζπ is independent of the bivariate

random vector ζγ := (ζα, ζω)′, where:

(i) for α0 > 0, ζγ
d
= N (0,Ωγγ) with Ωγγ given in the Appendix, eq.(A.22);

(ii) for α0 = 0, then, with % := Ex2
t ,

ζα = max
(
0, ζ0

α

)
, and ζω = ζ0

ω − %max
(
0, ζ0

α

)
,

where ζ0
α
d
= N

(
0, σ2

α

)
and ζ0

ω
d
= N

(
0, σ2

ω

)
are independent, σ2

α = σ2
ω/δ, σω =

√
κω0 and

δ = E
(
x4
t

)
−
(
E
(
x2
t

))2.
With respect to Ling (2004), the asymptotic distribution is no longer Gaussian when

α0 = 0 due to the restriction that α ≥ 0. As a result, the asymptotic distribution of
(n1/2 times) α̂n is ‘half-normal’, i.e. of the form ζ+ := max (0, ζ) with ζ Gaussian. For
the case of α0 > 0, the asymptotic distribution of ζ is as in Ling (2004, Theorem 1).
Note that asymptotic normality and consistency at the n1/2-rate is established even in
cases where E(∆xt)

2 = +∞, due to the structure of the score of the likelihood function,
see Appendix A.2 (and Jensen and Rahbek (2004) for similar arguments in the pure
(G)ARCH case).

Remark 2.1 Note that the results in Theorem 1 can be generalized to the case of
ξ 6= 0. In this case however, see Appendix Appendix A.2, ζπ and ζγ are dependent with
covariance matrix Cov (ζπ, ζγ) = ξΩπγ 6= 0, with Ωπγ given in Appendix A.2, eq.(A.16).
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As it will appear clear from the discussions about the bootstrap tests, we also need to
understand the properties of the estimator under non-stationarity. These are provided
in the following theorem.

Theorem 2 Suppose that {xt} is generated as in (1) with ξ = 0 and κ < ∞ and that
the true parameter vector θ0 ∈ ΘN , i.e. π0 = 0 and α0 = 0. Then, as n→∞, θ̂n →p θ0.
Moreover,

diag(n, n3/2n1/2)(θ̂n − θ0)→w λ = (λπ, λα, λω)′ ,

where, with B and W independent standard Brownian motions,

λπ :=

∫
BdB/

(∫
B2
udu

)
, λα := (λ0

α)+ = max
(
0, λ0

α

)
,

for

λ0
α :=

√
κ

(∫
B2dW −

∫
B2
uduW1

)
/

(∫
B4
udu− (

∫
B2
udu)2

)
.

Moreover, λω = λ0
ω − (

∫
B2du)λα, where λ0

ω
d
= σωW1 and σω :=

√
κω0.

Remark 2.2 With respect to the (strict) stationary case, we observe that the rate of
convergence of the estimator varies across parameters. In particular, π̂n converges at
the rate of n, similar to the standard autoregressive case with a unit roots, while the
volatility parameter, α̂n, converges at the faster rate of n3/2. The estimator of the
intercept term in the variance equation has the usual stationary, n1/2, rate.

Remark 2.3 While λ in Theorem 2 clearly is non-Gaussian, and thus different from
the stationary case with α0 = 0 in Theorem 1, one can immediately observe some sim-
ilarities: (i) in the expression for λπ, the term (

∫
B2
udu)−1 corresponds to the variance

σ2
π of ζπ; (ii) in λ

0
α, the term

√
κ(
∫
B4
udu− (

∫
B2
udu)2)−1 corresponds to σ2

a = σ2
ω/δ in

ζ0
α; (iii) finally, in the expression for λω, while λ

0
ω

d
= ζ0

ω, the loading
∫
B2du corresponds

to the % term in ξω.

Remark 2.4 Similar to the case of Theorem 1, also Theorem 2 can be modified to the
asymmetric case of ξ 6= 0, see the discussion in Section 6.

2.3 Testing (non)stationarity

Suppose that the econometrician is interested in testing whether {xt} is non-stationary,
against the alternative of (strict) stationarity. In a pure AR—ARCH framework, the
(unit root) null hypothesis corresponds to π = 0 in eq. (1). However, the DAR process
can be strictly stationary even if π = 0, provided α > 0 and E log |1 + α1/2zt| < 0;
hence, testing nullity of π is not alone suffi cient to assess the (non-stationarity) of xt.
Rather, as discussed in Ling (2004), one may test the pure random walk hypothesis, as
given by H0 : π = 0, α = 0, against the alternative H1 : π 6= 0, α ≥ 0. The likelihood
ratio test can easily be computed in the usual way as

LRn := −2(Ln(θ̃n)− Ln(θ̂n)) (2)
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where θ̃n := (0, 0, ω̃n)′, ω̃n := n−1
∑n

t=1 (∆xt)
2 , denotes the restricted estimator of

θ, i.e. θ̃n := arg maxθ∈T0 Ln (θ) where T0 := {θ := (0, 0, ω)′ : ωL ≤ ω ≤ ωU}. Now,
the asymptotics in the previous Theorem 1 obviously breaks down when θ0 ∈ ΘN , see
Theorem 2. In this case, Klüppelberg et al. (2002) establish the following result for the
LR test statistic in (2).

Theorem 3 Suppose that {xt} is generated as in (1) with Ez4
t <∞ and that the true

parameter vector θ0 ∈ ΘN , i.e. π0 = 0 and α0 = 0. Then, as n→∞, LRn→wLR∞ (κ),
where

LR∞ (κ) =
κ

2

(
max

(
0,

∫
B2
uduW1 −

∫
B2
udWu

(
∫
B4
udu− (

∫
B2
udu)2)1/2

))2

(3)

+
(
∫
BudBu)2∫
B2
udu

where B and W are as in Theorem 2.

Some remarks follow.

Remark 2.5 Notice that since B and W are independent, conditionally on B, we have
in particular that

W1

∫
B2
udu−

∫
B2
udWu

(
∫
B4
udu− (

∫
B2
udu)2)1/2

d
=
N
(
0,
∫

(B2
u − (

∫
B2
udu))2du

)
(
∫

(B2
u − (

∫
B2
udu))2du)1/2

d
= N (0, 1) .

This implies that the first term in (3) is distributed as κ2 (max(0, N (0, 1)))2, i.e. as the
half-χ2

1 distribution. Moreover, it is independent of the second term , (
∫
B2du)−1(

∫
BdB)2,

which is a squared Dickey-Fuller distribution. Should the condition ξ = 0 fail to hold,
both the half χ2

1 property and the independence of the two terms in (3) would no longer
hold true; see also Section 6.

Remark 2.6 The distribution in (3) is non-pivotal, since it depends on κ. A consistent
estimator of this quantity can be constructed by using the unrestricted residuals, as
κ̂n := n−1

∑m
t=1(1 − ẑ2

t )2, where ẑt := ε̂t/σ̂t for ε̂t := ∆xt − π̂nxt−1, σ̂2
t := ω̂n +

α̂nx
2
t−1. An estimator κ̃n which imposes the null hypothesis may be constructed using

the restricted residuals, z̃t := ω̃
−1/2
n ∆xt. However, this estimator overestimates κ when

the null hypothesis does not hold, hence reducing the power of an asymptotic test based
on LR∞(κ̃n). �

3 Bootstrapping the asymptotic distribution under
the null hypothesis

3.1 Preliminaries and bootstrap algorithms

The classical requirement of any bootstrap implementation is consistent estimation of
the asymptotic null distribution of the reference test statistic when the null hypothesis
is true. Specifically, and taking the LRn test statistic to illustrate, consider a bootstrap
analog, say LR∗n, which is a function of the original sample and of a vector of bootstrap
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innovations, say η∗1, ...η
∗
m, defined jointly with the original data on a possibly expanded

probability space. With G∗n (·) := P ∗ (LR∗n ≤ x) := P (LR∗n ≤ x|{xt}) denoting the
conditional distribution of LR∗n given the original data, this requires that, under the null
hypothesis, G∗n (·) →p G∞ (·), where G∞ denotes the cdf of LR∞ (κ), the asymptotic
distribution of LRn under the null; see eq. (3). This is the well-known concept of

‘weak convergence, in probability’, denoted as LR∗n
w∗→p LR∞ (or, LR∞ (κ)) as used

repeatedly to emphasize the dependence on the nuisance parameter κ). If, additionally,
G∞ (·) is continuous, then by Polya’s theorem proximity of G∗n (·) to G∞ (·) holds in the
sup norm,

sup
x∈R
|G∗n (x)−G∞ (x) | →p 0,

and the bootstrap p-value, given by

p∗n := 1−G∗n (LRn) ,

is asymptotically uniformly distributed, i.e. p∗n →w U [0, 1]. This allows to construct a
bootstrap test with the correct asymptotic size at any nominal significance level.

Two main approaches can be given in order to define the bootstrap statistic LR∗n.
The first, the ‘restricted bootstrap’, is based on estimation of the original model with the
null hypothesis imposed; i.e. with π = α = 0. In this case, the bootstrap statistic mimics
the original test statistic and tests the restriction π = α = 0 on the bootstrap data. The
second, the ‘unrestricted bootstrap’, uses the unrestricted parameter estimates π̂n, α̂n
to generate the bootstrap data and the bootstrap statistic is based on testing π = π̂n
and α = α̂n on the bootstrap data; see e.g. Hall (1992). We introduce the restricted
bootstrap first.

Restricted (i.i.d.) Bootstrap:

(i) Estimate model (1) using Gaussian QML under the null hypothesis, yielding the
estimates θ̃n := (0, 0, ω̃n)′, together with the corresponding restricted QML resid-
uals, ε̃t := ∆xt and z̃t := ω̃

−1/2
n ε̃t, as defined above;

(ii) Standardize the residuals as

z̃s,t : =
z̃t − n−1

∑n
t=1 z̃t

(n−1
∑n

t=1(z̃t − n−1
∑n

t=1 z̃t)
2)1/2

and construct the bootstrap innovations using the i.i.d. bootstrap re-sampling
scheme; i.e., z∗t := z̃s,η∗t , where η

∗
t , t = 1, ..., n is an i.i.d. sequence of discrete

uniform distributions on {1, 2, ..., n};

(iii) Construct the bootstrap sample {x∗t } from the recursion

∆x∗t = ε∗t , ε∗t := σ∗t z
∗
t , σ∗t

2 = ω̃n, t = 1, . . . , n, (4)

with the n bootstrap errors z∗t generated in Step (ii) and with initial values x
∗
0 =

x0.

(iv) Using the bootstrap sample, {x∗t }, compute the bootstrap test statistic LR∗n.
Define the corresponding p-value as p∗n := 1−G∗n (LRn) with G∗n(·) denoting the
conditional (on the original data) cumulative density function (cdf) of LR∗n.

9



(v) The restricted bootstrap test of H0 at level ζ rejects if p∗n ≤ ζ.

There are many variants of the restricted bootstrap, as exemplified in the following
remarks.

Remark 3.1 In the definition above, the length of the bootstrap sample equals the
length of the original sample, n. A different sample size, say m < n, could be used in
order to form the bootstrap sample. This is the so-called ‘m out of n’bootstrap, which
(under proper conditions onm as n increases, such asm−1+mn−1 → 0) has been proved
to be asymptotically valid in certain cases where bootstraps based on n observations
fail; see Politis, Romano and Wolf (1999) and the references therein. However, for
the ‘m out of n’bootstrap, while mathematically appealing in the derivations of the
asymptotic theory, the choice ofm is ‘delicate’(see Davison, Hinkley and Young, 2003),
and, moreover, in general it does not deliver satisfactory finite sample results.

Remark 3.2 The bootstrap shocks in Step 2 are based on i.i.d. re-sampling (i.e., with
replacement) from the standardized residuals. Different bootstrap schemes could in
principle be used. For instance, the so-called wild bootstrap (Wu, 1986; Liu, 1988;
Mammen, 1993) generates the bootstrap innovations as the (conditionally) indepen-
dent sequence z∗t := z̃s,tw

∗
t where w

∗
t is i.i.d.(0,1) with bounded fourth order moments.

Alternatively, re-sampling without replacement of the z̃s,t’s could be employed, leading
to the permuted bootstrap sample z∗t = z̃s,π∗(t), t = 1, ..., n, where {π∗(1), ..., π∗(n)}
is a (uniformly distributed) random permutation of {1, ..., n} (Cavaliere, Georgiev and
Taylor, 2016; Cavaliere, Nielsen and Rahbek, 2018). Finally, a fully parametric boot-
strap could be obtained by generating z∗t as i.i.d. from any pre-specified zero mean,
unit variance, distribution.

Remark 3.3 In practice, the cdf G∗n required in Step (iv) of Algorithm 1 can only
be approximated through numerical simulation. As is standard, this requires gener-
ating B (conditionally) independent bootstrap statistics, LR∗n:b, b = 1, . . . , B, com-
puted as above. The approximated bootstrap p-value for LRn, is then computed as
p̃∗n := B−1

∑B
b=1 I(LR∗n:b > LRn), and is such that p̃∗n

a.s.→ p∗n as B →∞. For the choice
of B, see, inter alia, Andrews and Buchinsky (2000) and Davidson and MacKinnon
(2000). �

The key feature of the restricted bootstrap is that the parameter estimates used in
constructing the bootstrap sample data are obtained under the restriction of the null
hypothesis, H0. As discussed for instance in Hall (1992), in the statistics literature it
is often the case that in bootstrap implementations parameters are estimated without
imposing the null hypothesis, and to subsequently calculate a bootstrap test statistic
for the hypothesis θ = θ̂n, that is, the hypothesis that θ equals the unrestricted esti-
mate. Formally, this corresponds to the unrestricted bootstrap, as defined through the
following steps.

Unrestricted (i.i.d.) Bootstrap:

(i) Estimate model (1) using Gaussian QML without imposing the null hypothesis,
yielding the estimates θ̂n := (π̂n, α̂n, ω̂n)′, together with the corresponding unre-
stricted QML residuals, ε̂t := ∆xt − π̂nxt−1 and ẑt := (ω̂n + α̂nx

2
t−1)−1/2ε̂t, as

defined above;

10



(ii) Standardize the residuals as

ẑs,t : =
ẑt − n−1

∑n
t=1 ẑt

(n−1
∑n

t=1(ẑt − n−1
∑n

t=1 ẑt)
2)1/2

and construct the bootstrap innovations using the i.i.d. bootstrap re-sampling
scheme; i.e., z∗t := ẑs,η∗t , where η

∗
t , t = 1, ..., n is an i.i.d. sequence of discrete

uniform distributions on {1, 2, ..., n};

(iii) Construct the bootstrap sample {x∗t } from the recursion

∆x∗t = π̂nx
∗
t−1 + ε∗t , ε∗t := σ∗t z

∗
t , σ∗t

2 = ω̂n + α̂n(x∗t−1)2, t = 1, . . . , n,

with the n bootstrap errors z∗t generated in step (ii) and with initial values x
∗
0 = x0.

(iv) Using the bootstrap sample, {x∗t }, compute the bootstrap test statistic LR∗n for
the (auxiliary) null hypothesis π = π̂n, α = α̂n. Define the corresponding p-value
as p∗n := 1−G∗n (LRn) with G∗n(·) denoting the conditional (on the original data)
cumulative distribution function (cdf) of LR∗n.

(v) The unrestricted bootstrap test of H0 at level ζ rejects if p∗n ≤ ζ.

The logic behind the unrestricted bootstrap is to avoid potential power losses that
the restricted bootstrap test may experience because of incorrectly imposing a false
null hypothesis when the null does not hold. There are, however, many cases where the
unrestricted bootstrap fails to mimic the asymptotic distribution, whereas the restricted
bootstrap does not. Among those, two cases are extremely relevant for the testing
problem considered here. The first is the case of bootstrapping when data have unit
roots —as it happens in the DAR model when π = 0. The second is the case where a
parameter lies on the boundary of the parameter space —which again appears in our
testing problem as α = 0 is a boundary point under the maintained hypothesis that
α ≥ 0. We briefly discuss these two examples in the following.

Example 1 (Unit roots and unrestricted bootstrap ) As in Basawa et al. (1991),
consider the first order autoregression with a unit root,

∆xt = πxt−1 + εt, π = 0,

εt i.i.d.N(0, ω), x0 = 1 and t = 1, ..., n. Let Jc denote an Ornstein-Uhlenbeck process
with mean reversion parameter c (such that c = 0 corresponds to a standard Brown-
ian Motion) and set τ (c) :=

∫
JcdJc/

∫
J2
c du. The QMLE of π is the least squares

estimator, π̂n =
∑n

t=1 ∆xtxt−1/
∑n

t=1 x
2
t−1, which satisfies

τn := nπ̂n →w τ∞ := τ (0) (5)

see Phillips (1987) and the references therein. Now, consider a (fully parametric) un-
restricted bootstrap, based on the recursion

∆x∗t = π̂nx
∗
t−1 + ε∗t , (6)
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initialized at x∗0 = x0, and ε∗t i.i.d. N(0, 1) (t = 1, ..., n) With π̂∗n the bootstrap (least
squares) estimator, π̂∗n =

∑n
t=1 ∆x∗tx

∗
t−1/

∑n
t=1(x∗t−1)2, the bootstrap analog of τn is

defined as τ∗n := nπ̂n. Unfortunately, despite π̂n is superconsistent, τ∗n fails to mimic
the asymptotic distribution in (5). Essentially, because nπ̂n = Op (1) rather than op (1),
the bootstrap sample (normalized by the usual rate n−1/2) behaves, in large samples, as
an Ornstein-Uhlenbeck process with random drift parameter, rather than as a Brownian
motion. To see why, replace π̂n in (6) by a sequence πn such that n · πn → v. Then,
by Chan and Wei (1987, Theorem 1) we have that (conditionally on the original data),
τ∗n := n(π̂∗n − π̂n) is asymptotically distributed as τ (v) (see Basawa et al., 1991). In
our case, τn := nπ̂n →w τ∞ and, as a result, the bootstrap statistic has a random
distribution function, even for n → ∞, given by τ (τ∞). More specifically, it can be
proved that

P ∗ (τ∗n ≤ x) = P (τ∗n ≤ x|τn) = P (n(π̂∗n − π̂n) ≤ x|τn)

→w P

(∫
Jτ∞dJτ∞/

∫
J2
τ∞du ≤ x

∣∣∣∣ τ∞) .
That is, the limiting distribution can be written in terms of an Ornstein-Uhlenbeck
process with a random drift, distributed as τ∞, i.e. as a Dickey-Fuller distribution.
Similar arguments are applied in Cavaliere, Nielsen and Rahbek (2015), see also the
next section, and in terms of aymptotically random bootstrap measures in Cavaliere and
Georgiev (2018).

Example 2 (Unit roots and the restricted bootstrap) Despite the unrestricted
bootstrap fails to mimic the unit root distribution, the restricted bootstrap does not; see
Cavaliere and Taylor (2008, 2009a) and Cavaliere, Rahbek and Taylor (2012) for the
multivariate case. Specifically, by imposing the unit root on the bootstrap sample, i.e.
by setting

∆x∗t = ε∗t ,

where ε∗t are i.i.d. N(0, 1) and t = 1, ..., n, it is guaranteed that τ∗n := nπ̂∗n
w∗→p τ (0), in

probability.
Alternatively, it follows by standard arguments, that one may use an ‘m out of n’

version of the unrestricted bootstrap which, by considering samples of size m = o(n)

ensures that mπ̂n = op (1) as m → ∞, which is suffi cient for τ∗m := mπ̂∗m
w∗→p τ (0),

in probability. However, as already emphasized, while the asymptotic arguments are
mathematically appealing, in practice the ‘m out of n’ bootstrap in this case does not
have adequate finite sample properties.

Example 3 (Boundary problems and the unrestricted bootstrap) The stan-
dard unrestricted bootstrap is also known to fail when (some of) the parameters lie on
the boundary of the parameter space. Consider, as in Cavaliere, Nielsen and Rahbek
(2017), see also Andrews (2000), the Gaussian ARCH model,

xt =
√
ω + αx2

t−1zt,

with zt i.i.d. N(0,1). Moreover, the optimization set is given by Tα = {α : α ∈ [0, αU ]},
α0 ∈ ΘSα, with ΘSα =

{
α : E log

(
αz2

t

)
< 0
}
, while ω is kept fixed for simplicity here.
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We consider here testing α0 = 0 by the likelihood ratio statistic, LRn. As in Theorem
3 for the DAR, the MLE α̂n satisfies for α0 > 0,

√
n(α̂n − α0)→w

κ
δ ζ, ζ ∼ N (0, 1) ,

δ = V
(
x2
t

)
, and the associated LR statistic for α = α0 is asymptotically χ2

1 (times
κ
2 ).

In constrast, if α0 = 0,
√
n(α̂n − α0)→w α∞ = max{0, ζ},

and the associated LR statistic for α = 0 has asymptotic distribution given by,

LRn →w
κ
2 ζ

21 (ζ ≥ 0) = κ
2 max {0, ζ}2 .

Now, consider instead the (parametric) unrestricted bootstrap sample, as given by

x∗t =
√
ω + α̂nx∗2t−1z

∗
t , with z

∗
t i.i.d. N (0, 1) (independent of the original data), and

the associated bootstrap statistic, LR∗n, for the (bootstrap) hypothesis that α equals the
bootstrap true value, α̂n. With ζ∗ ∼ N (0, 1) and independent of ζ, we conjecture from
the theory in Cavaliere, Nielsen, Pedersen and Rahbek (2018) that, conditionally on the
original data, the asymptotic distribution of the LR∗n statistic has a random limit,

κ
2 (ζ + α∗)2 1 (ζ + α∗ ≥ 0)

∣∣∣ α∗,
where α∗ is a function of α∞ given above. Thus, as expected the unrestricted bootstrap
fails to mimic the null asymptotic distribution. �

3.2 Bootstrap validity of the DAR model

Testing the pure random walk hypothesis in the DAR framework features the compli-
cations discussed in the previous Examples 1 and 3. First, since the null hypothesis
implies a unit root in the data, a bootstrap which does not impose the unit root on
the bootstrap sample is likely to fail to be first-order valid. Second, since the null hy-
pothesis implies a parameter (α) on the boundary of the parameter space, a bootstrap
which does not account for this feature may display a random limiting distribution.
The unrestricted bootstrap is neither imposing the unit root nor restricting α to be on
the boundary of the parameter space; hence, it fails to be first-order valid. Conversely,
under mild conditions the restricted bootstrap is able to replicate the correct null lim-
iting distribution of the LR test when the null hypothesis holds true. This is proved in
the next theorem.

Theorem 4 Under the conditions of Theorem 3, provided Ez8
t < ∞, as n → ∞ the

restricted bootstrap LR statistic satisfies:

LR∗n
w∗→p LR∞ (κ) .

The logic behind the proof of bootstrap validity under the null hypothesis is the
following. When the restricted bootstrap is employed, the sample bootstrap is generated
as

∆x∗t = ε∗t = ω̂nz
∗
t .
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Conditionally on the original data, the bootstrap score, see Appendix A, depends on
the vector

(
z∗i , z

∗2
t − 1

)
, which needs satisfying a (bootstrap) functional central limit

theorem of the form,

Z∗n (·) := n−1/2∑bn·c
i=1

(
z∗i , z

∗2
t − 1

) w∗→p

(
B∗,
√
κW ∗

)
(7)

with B∗ and W ∗ two independent standard Brownian motions. It is therefore crucial
to control what conditions are needed for (7) to hold, given that z∗t is a zero mean
(conditionally) i.i.d. sample from the centered standardized residuals, z̃s,t. This requires
checking whether the (conditional) variance of Z∗n (·) converges to diag(1, κ) and whether
the Lindeberg condition holds. As shown in the Appendix, these requirements hold
provided zt has bounded eight order moments.

It is worth emphasizing that for the DAR model, the limiting distribution of the
LRn test statistic for reduction to pure random walk feaures a nuisance parameter,
namely the constant κ. This makes the testing problem based on asymptotic inference
convoluted, since the practitioner needs first to estimate κ using a proper (consistent)
estimator, say κ̂, and then using Monte Carlo methods to simulate the quantiles of
limiting distribution LR∞ (κ̂). The bootstrap allows to circumvent this problem, as it
replicate the correct limiting distribution without the need of plug-in methods. This
is an example of a classic application of the bootstrap to time series data, where it is
used to retrieve quantiles from an asymptotic distribution which depends on a (possibly
infinite dimensional) vector of nuisance parameters, see the following example.

Example 4 (Non-stationary volatility) A classic instance of a limiting distribu-
tion depending on nuisance parameter is the case of ‘non-stationary’volatility. In this
case, in the simplest form the innovations of an econometric model can be represented
as εt = σtzt, where zt is an i.i.d. finite variance sequence and σt = h (t/n), where h is a
bounded function satisfying some regularity conditions (e.g., it is càdlàg; see Cavaliere,
2004, Cavaliere, Rahbek and Taylor, 2014, and Boswijk et al., 2017). In this case, the
partial sum process associated to εt delivers the following result

Sn(·) :=
1

n1/2

bn·c∑
t=1

εt
w→M (·) :=

∫ ·
0
h (u) dB (s) ,

where B is a Brownian motion. In this specific case, M is a continuous-time martin-
gale with covariance kernel given by Cov (M (s) ,M (s′)) =

∫ min{s,s′}
0 h (u)2 du. Limit

distributions of estimators and test statistics usually depend on such covariance ker-
nel, which is unknown in practice. Although consistent estimators could be constructed
(see e.g. Cavaliere and Taylor, 2007), the bootstrap can in general automatically repli-
cate the limiting functional M . That is, consider a vector of residuals ε̂t satisfying
n−1

∑n
t=1(ε̂2

t − ε2
t ) = op (1), and construct the bootstrap errors using the ‘wild’bootstrap

as
ε∗t := ε̂tw

∗
t , t = 1, ..., n,

where the wt’s are i.i.d. N(0, 1). Then, it holds, as n→∞, see Boswijk et al. (2017)
and the references therein,

S∗n(·) :=
1

n1/2

bn·c∑
t=1

ε∗t
w∗→p M (·) (8)
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and hence the wild bootstrap replicates the same limiting distribution of the original
functional Sn. �

4 The behaviour of the bootstrap under the
alternative hypothesis

4.1 Preliminaries and bootstrap consistency

The analysis of the large sample properties of the bootstrap test statistic under the al-
ternative hypothesis is a key requirement for a correct implementation of the bootstrap.
Unfortunately, as it will be exemplified later in this section, this step is in general more
involved than just proving validity under the null hypothesis.

Ideally, one would aim that, under the alternative hypothesis, LR∗n is (asymptoti-
cally) distributed as the LRn limit under the null. This would require that, as n→∞,

LR∗n
w∗→p LR∞ (κ) (9)

also when H0 does not hold.
This immediately implies that the (bootstrap) test is consistent: if LRn diverges to

+∞ under the alternative hypothesis then, with G∗n denoting the cdf of LR
∗
n conditional

on the original data, it holds that the bootstrap p-value satisfies p∗n := 1−G∗n(LRn)→p

0. Moreover, in large samples a test based on the (conditional) quantiles of LR∗n would
have power approximately equal to the size-adjusted power of the (asymptotic) test
based on the quantiles of LR∞.

In fact, a weaker result that implies bootstrap consistency can be used in case (9)
does not hold. Specifically, a suffi cient condition for the bootstrap p-value to shrink
to zero under the alternative is (again, provided LRn → ∞ under the alternative
hypothesis)

LR∗n = O∗p(1), in probability, (10)

or the even weaker result that

LR∗n = o∗p(LRn), in probability. (11)

In the first case, the bootstrap test statistic is bounded in probability, which implies
consistency of the test at the usual rate. In the second case, both the bootstrap and the
original test statistics diverge to +∞; however, the fact that the conditional quantiles
of LR∗n diverge at a slower rate implies bootstrap consistency.

Two simple examples are now given.

Example 5 (ARCH | Boundary and restricted bootstrap) In Example 3, un-
restricted bootstrap based testing for H0 : α = 0 was discussed in the ARCH model given
by,

xt = σtzt, σ2
t = ω + αx2

t−1, θ = (α, ω)′ .

Recall furthermore that the likelihood ratio statistic LRn has the asymptotic limiting
distribution as given by,

LR∞ (κ) =
κ

2
(ζ+)2 =

κ

2
ζ2 max{0, ζ},
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with ζ a N (0, 1) random variable. Consider here the restricted bootstrap based on i.i.d.
resampling of the (standardized) restricted residuals proposed in Cavaliere, Nielsen and
Rahbek (2017), hereafter. With θ̃n := (ω̃n, 0)′ denoting the restricted (QML) estimator,
the bootstrap data are given by

x∗t :=
√
ω̃nz

∗
t , (12)

with z∗t sampled with replacement from the standardized residuals from restricted es-
timation, given by z̃st := (z̃t − z̃n)/(n−1

∑n
t=1(z̃t − z̃n)2)1/2, z̃n := n−1

∑n
t=1z̃t, with

z̃t := xt/
√
ω̃n. The bootstrap shocks {z∗t : t ≤ n} are an i.i.d. sample from z̃st ,

t = 1, ..., n, such that, conditionally on the original data, E∗ (z∗t ) = 0 and V ∗ (z∗t ) = 1.
Cavaliere, Nielsen and Rahbek (2017, Theorem 1) show that under the null hypothesis,
the bootstrap QLR statistic, say LR∗n, satisfies

LR∗n
w∗→p LR∞ (κ) , (13)

hence mimicking the correct asymptotic null distribution. However, if the null hypoth-
esis does not hold, result (13) may no longer hold. Essentially, the reason is that the
unrestricted estimator ω̃n equals n−1

∑n
t=1 x

2
t , which may even diverge under the stated

assumptions. For instance, while under the null hypothesis xt = ω1/2zt, which implies
that also {xt : t ≥ 1} has finite fourth order moments, under the alternative hypothesis
xt may have infinite fourth order moments. If, additionally, it is assumed that xt has
finite fourth order moments, such that κ† := E(x4

t )/(E(x2
t ))

2 − 1 < ∞, by Theorem 1
in Cavaliere, Nielsen and Rahbek (2017) it follows that under the alternative,

LR∗n
w∗→p LR∞(κ†),

such that LR∗n = O∗p (1), in probability. Hence, while as shown in Example 3 the unre-
stricted bootstrap is invalid, the restricted is.

Finally, note that when α0 6= 0 the constant κ† > κ, hence implying a potential
power loss of the bootstrap test with respect to the asymptotic test.

Example 6 (Hypothesis testing on the cointegrating vectors) Consider a p-
dimensional VAR process with r co-integrating relations, as given by

∆xt = πxt−1 + εt, π = αβ′ (t = 1, ..., n), (14)

with {εt} independent and identically distributed (i.i.d.) with mean zero and full-rank
variance matrix Ω, and where the initial values x1−k, ..., x0 are fixed in the statistical
analysis. Furthermore, assume that the so-called ‘I(1, r) conditions’holds; that is, (a)
the characteristic polynomial associated with (14) has p − r roots equal to 1 and all
other roots outside the unit circle, and (b) α and β have full column rank r. Under
these conditions xt is I(1) with co-integration rank r, such that the co-integrating rela-
tions β′xt are stationary. We want to test the null hypothesis H0 : β = τ , where τ a
known p× r matrix of full column rank r. To this aim, it is customary to consider the
LR test of Johansen (1996), which rejects H0 when the associated LR statistic LRn is
large. Under the null, LRn is asymptotically χ2

p(p−r), see Johansen (1996), while under
the alternative LRn diverges, see Cavaliere, Nielsen and Rahbek (2015, Remark 3.4).
Hence, the asymptotic LR test is consistent. Now, consider a restricted bootstrap for
H0, as initially proposed in Fachin (2000), Gredenhoff and Jacobson (2001) and later
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discussed in Fachin and Omzigt (2006). This bootstrap requires estimation of (14) un-
der H0 and then use the corresponding (restricted) estimates α̃n and τ to generate the
bootstrap sample as

∆x∗t = α̃nτ
′x∗t−1 + ε∗t , (15)

where the bootstrap shocks ε∗t are obtained by re-sampling (after re-centering) from the
corresponding restricted residuals, ε̃t := ∆xt − α̃nτ

′xt−1. Under H0, consistency of
α̃n implies, along with a bootstrap (functional) CLT for {ε∗t }, that the bootstrap LR
statistic, say LR∗n, satisfies

LR∗n
w∗→p χ

2
p(p−r).

Hence, the bootstrap mimics the correct asymptotic distribution under the null. How-
ever, as proved in Cavaliere et al. (2015), the same result does not hold when H0 is
false. Intuitively, this is the case because when H0 is false, τ ′Xt−1 is no longer station-
ary, and hence the restricted estimators α̃n, τ, Γ̃i are based on the unbalanced regression
of ∆xt (stationary) on τ ′xt−1 (non-stationary in p − r∗ directions , with r∗ < r) and
lags of ∆xt (stationary). This implies that α̃nτ ′, properly normalized, does not con-
verge to a constant but, rather, to a stochastic matrix of reduced rank r∗ (see Cavaliere,
Nielsen and Rahbek, 2015, Proposition 1). As a consequence, the bootstrap estimator
of β is no longer mixed Gaussian (as it is under the null hypothesis) and the statistic
LR∗n has a random limiting distribution which differs from the target χ2 distribution.
However, it still holds that LR∗n = O∗p (1), in probability, as in (10), hence implying that
the bootstrap test is consistent.

Example 7 (Bootstrap financial bubbles) Phillips, Wu and Yu (2011) consider
testing for an explosive bubble regime, based on the supremum of a set of recursive right-
tailed DF test statistics, τn. While Harvey, Leybourne, Sollis, and Taylor (2016) show
that the restricted (Wild) bootstrap statistic τ∗n mimics the right limiting distribution
under the null hypothesis, this result does not hold under the alternative; neither does
it hold that τ∗n = O∗p(1), in probability. Rather, Harvey et al. (2016) show that τ∗n =

O∗p
(
n1/2

)
, in probability and hence both the original and the bootstrap statistics diverge

to +∞. But since the bootstrap statistic diverges at a polynomial rate n1/2 while the
original statistic diverges at the exponential rate n1/2 (1 + δ1)n(τ2−τ1), see Theorem 3
in Harvey et al. (2016), the bound in (11) applies and the bootstrap test rejects with
probability tending to one as n diverges. �

4.2 On consistency of the boostrap for the DAR model

Despite the restricted bootstrap correctly estimates the null asymptotic distribution
under the null hypothesis, its performance under the alternative is not at all straight-
forward to establish. This is because, under the alternative hypothesis of strict station-
arity, the retricted residuals z̃t are no longer close enough to the true innovations, zt,
and do not share the same properties in terms of moments. Consequently, the boot-
strap score and information may have different asymptotic properties with respect to
their sample analogs. Intuitively, this happens because while under the null hypothesis,
z̃t ≈ zt, under the alternative hypothesis z̃t = ω̃

−1/2
n ∆xt, where xt may not possess

finite fourth order moments (take, for instance, the case where α + (1 + π)2 = 1 with
π 6= 0, such that xt is strictly stationary and ergodic but Ex2

t = +∞).
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More precisely, recall that a first requirement for the asymptotic result in Theo-
rem 4 is to assess whether the bootstrap functional CLT [FCLT] in (7) holds, with
z∗t (conditionally on the original data) i.i.d. from the centered standardized residuals,
z̃s,t := (n−1

∑n
t=1(z̃t − n−1

∑n
t=1 z̃t)

2
)−1/2(z̃t − n−1

∑n
t=1 z̃t). In term of z∗t , conditions

for
n−1/2∑[n·]

i=1z
∗
i
w∗→p B

∗ (·)

with B∗ a standard Brownian motion, are: (i) E∗z∗i = 0, (ii) E∗(z∗i )2 = 1
n

∑n
t=1(z̃st )

2 →p

1, and a Lindeberg condition (similar results are required for n−1/2
∑[n·]

i=1(z∗2t −1)). While
(i) and (ii) are trivially satisfied, from e.g. Lemma B.1 in Cavaliere et al. (2016) it
follows that the Lindeberg condition holds provided ∆xt has bounded kurtosis. Specif-
ically, if E(∆xt)

4 <∞, then

κ̂zs := E∗((z∗t )2 − 1)2 → κ† :=
E(∆xt)

4

(E(∆xt)2)2
− 1 <∞ (16)

and the Lindeberg condition holds. A suffi cient condition for this is

(1 + π)4 + (κ+ 1)α2 + 6 (1 + π)2 α2 < 1 (17)

such that, in the case special case where π = −1 (pure ARCH(1) process) and under
Gaussianity, we get the well-known condition α < 1√

κ+1
= 1√

3
. Hence, the following

Theorem can be established.

Theorem 5 Let the conditions of Theorem 3 hold, and consider the retricted bootstrap
test statistic, LR∗n. Then, under H1, if additionally (17) holds, then as n→∞:

LR∗n
w∗→p LR∞(κ†)

where κ† > κ, with κ† defined in (16).

This theorem proves that even in the case of bounded fourth order moments of
∆xt, under the alternative hypothesis the bootstrap does not mimic the asymptotic
distribution given in Theorem 3. Rather, it is shifted to the right: as n get large, the
bootstrap critical values are therefore expected to be shifted to the right with respect
to the critical values from the true null distribution LR∞

(
κ†
)
. However, since LR∗n

remains of order O∗p (1), in probability, the bootstrap test is consistent.
We now turn to the case where the moment condition on ∆xt fails. Establishing the

limiting ditribution in this case is extremely complicated, in particular because under
lack of moments (in particular, second order moments), the bootstrap CLT no longer
holds. Specifically, it is well known from Athreya (1987) and Knight (1989) that in this
case the bootstrap delivers a random limiting distribution, as reported in the following
example.

Example 8 (Bootstrap of the sample mean under infinite variance) Suppose
that the xt’s form an i.i.d. sequence in the domain of attraction of a Stable law with
tail index denoted by ν ∈ (0, 2). In this case it is well known that there are sequences an
and bn such that Sn := a−1

n

∑n
t=1(xt − bn)→w S (ν), a Stable random variable with tail

index ν. Its i.i.d. bootstrap analog is given by S∗n := a−1
n

∑n
t=1(x∗t − E∗x∗t ), where the
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x∗t’s are (conditionally on the original data) i.i.d. from {x1, ..., xn}. Bootstrap validity
would require that, in probability, S∗n

w∗→ S (ν). However, this is not the case. As shown
by Knight (1989), because of the lack of finite second order moments the large extremes
in the original sample does not ‘wash away’and, consequently, the cdf of the bootstrap
statistic depends on the original data also asymptotically. Specifically, the following rep-
resentation can be given to the cdf of S∗n conditionally on the original data (see Knight,
1989)

P ∗ (S∗n ≤ x)→w P
(∑∞

i=1
δiZi (M∗i − 1) ≤ x

∣∣∣ δ1, δ2, ..., Z1, Z2, ...
)

(18)

where the δi’s are i.i.d. random signs (with P (δi = 1) = p ∈ (0, 1)); for all i = 1, 2, ...,

Zi := (e1 + ...+ ei)
1/ν where the ei’s form a sequence of i.i.d. exponential random vari-

ables (independent of the δi’s) with mean 1; finally theM∗i ’s are i.i.d. Poisson with mean
1. Due to its dependence on the δi’s and the Zi’s, the distribution on the right hand side
of (18) is a random cdf, which is clearly different from the cdf of a S (ν) random variable.
Moreover, should the bootstrap being based on the standardized residuals, i.e. based on
S̃∗n := n−1/2s

−1/2
n

∑n
t=1(x∗t − E∗x∗t ), with sn := E∗(x∗t − E∗x∗t )2 = n−1

∑n
t=1(xt − x̄n)2,

it is straightforward that Knight’s result extend to the following

P ∗(S̃∗n ≤ x)→w P
(∑∞

i=1
δiZi (M∗i − 1) ≤ x(

∑∞

i=1
Z2
i )
∣∣∣ δ1, δ2, ..., Z1, Z2, ...

)
which implies that S̃n = O∗p (1), in probability. That is, althought the CLT does not hold
on S̃n, it is still of order O∗p (1) in probability. Extensions to other bootstraps and to
(stationary and non-stationary) time series models are provided in Cavaliere, Georgiev
and Taylor (2013, 2016, 2018) and extended to non-causal time series in Cavaliere,
Nielsen and Rahbek (2018). �

In particular, as in the previous example it is reasonable to conjecture that the
term n−1/2

∑n
t=1z

∗
t is of order O

∗
p (1), in probability. Hence, the central limit theorem

does not hold on z∗t ; however, its sum is still of order n1/2. This would suggest that
the bootstrap LR statistic may have a random limiting distribution which, however, is
bounded in probability.

4.3 A hybrid bootstrap

We here propose a bootstrap method which is able to mimic the null asymptotic distri-
bution even if the null is false. This is simply a hybrid bootstrap, where we combine the
use of the restricted parameter estimators (typically employed for the restricted boot-
strap) with the use of the unrestricted residuals (typically employed for the unrestricted
bootstrap). The hybrid bootstrap test statistic is defined through the following steps.

Hybrid (i.i.d.) Bootstrap:

(i) Estimate model (1) using Gaussian QML under the null hypothesis, yielding the
estimates θ̃n := (0, 0, ω̃n)′; similarly, also estimate model (1) using Gaussian QML
without imposing the null hypothesis, yielding the estimates θ̂n := (π̂n, α̂n, ω̂n)′,
together with the corresponding unrestricted QML residuals, ε̂t := ∆xt − π̂nxt−1

and ẑt := (ω̂n + α̂nx
2
t−1)−1/2ε̂t, as defined above;
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(ii) Standardize the unrestricted residuals as

ẑs,t : =
ẑt − n−1

∑n
t=1 ẑt

(n−1
∑n

t=1(ẑt − n−1
∑n

t=1 ẑt)
2)1/2

and construct the bootstrap innovations using the i.i.d. bootstrap re-sampling
scheme; i.e., z∗t := ẑs,η∗t , where η

∗
t , t = 1, ..., n is an i.i.d. sequence of discrete

uniform distributions on {1, 2, ..., n};

(iii)-(v) As Steps (iii)-(v) of the restricted bootstrap.

This bootstrap is simple to implement and —with respect to the standard restricted
bootstrap —it only requires unrestricted estimation of the model on the original data.
Since this step is done one time only, implementation of this bootstrap is not more time
consuming than the two bootstrap described earlier.

The crucial features of this bootstrap is that, due to the use of the unrestricted
residuals, a bootstrap invariance principle for (z∗t , z

∗2
t − 1) holds irrespectively of the

null hypothesis to be true or not. Hence, the issue of possible lack of (fourth order)
moments for z∗t described in the previous Section 4.2 does not arise when this boot-
strap is implemented. Moreover, the use of the restricted parameter estimates in the
construction of the bootstrap sample allows to avoid possible randomness of the limiting
bootstrap measures due to unit roots and a parameter on the boundary under the null
hypothesis. We have the following theorem.

Theorem 6 Let the conditions of Theorem 3 holds, and consider the hybrid bootstrap
test statistic, LR∗n. Then, both under H0 and H1, as n→∞:

LR∗n
w∗→p LR∞ (κ)

Remark 4.1 In principle, under the null hypothesis it is well expected that the re-
stricted bootstrap delivers better size control than the hybrid version discussed here.
This is a well-known property of bootstrap tests for a unit root; see e.g. Cavaliere and
Taylor (2008, 2009b) and Palm et al. (2008) and the references therein. The amount
of size accuracy which is lost by bootstrapping unrestricted residuals instead of plain
restricted residuals is usually negligible. However, how the DAR structure affects these
finite-sample properties of these two bootstrap schemes cannot be inferred from the
proofs of (first-order) bootstrap validity. In the next section we aim at sheding some
light on this issue by means of Monte Carlo simulation.

5 Simulations

In this section we compare the finite sample properties of the LR test for the pure
random walk null hypothesis with its (asymptotically valid) bootstrap analogs: the
restricted bootstrap LR test and the hybrid bootstrap test of section 4.3. By considering
a detailed simulation study based on the DAR model, see (1), we aim at analyzing the
finite-sample performance our the various bootstrap schemes across different choices of
the bootstrap true values and different distributions of the innovations, both under the
null and under the alternative hypothesis of (strict) stationarity.

20



The section is organized as follows. First, in Section 5.1 we describe (i) the model;
(ii) the null hypothesis; (iii) the reference LR test and associated bootstrap test sta-
tistics. Finally, we describe the design of the Monte Carlo experiment. The empirical
rejection probabilities [ERP] of the tests under the null hypothesis are investigated in
Section 5.2. Section 5.3 is devoted to the analysis of the behaviour of the test when
the null hypothesis is false. Here we investigate both raw and (pointwise) size-adjusted
ERPs under the alternative hypothesis.

5.1 Monte Carlo design

We consider the DAR data generating process of (1),

∆xt = πxt−1 + εt, εt = σtzt, σ2
t = ω + αx2

t−1, zt ∼ i.i.d.(0, 1), (t = 1, ..., n) (19)

for different choices of the distributions of the innovations zt (in all cases, we consider
distributions satisfying κ <∞. The sample is initialized at x0 = 0. The parameters are
collected in the vector θ := (π, α, ω)′ and, when necessary, the true values are denoted
by the subscript ‘0’.

We consider three cases for the distribution of the innovations:

(E1) zt is a zero mean, unit variance Gaussian random variable;

(E2) zt is a standardized Student t random variable with ν degrees of freedom, i.e. zt is
distributed as t (ν) /

√
ν(ν − 2), where t (ν) denoting a t random variable with ν ∈ R+

degrees of freedom;

(E3) zt is a symmetric, standardized χ2(1) random variable, i.e. zt is distributed as
S(χ2

k − k)/
√

2k, with χ2
k denoting a χ

2 random variable with k ∈ N degrees of freedom
and S is a Rademacher random variable (i.e., a two-point distribution with P (S = 1) =
P (S = −1) = 1/2).

Notice that for the (unimodal) distribution in E2, the moment of order m exists
provideed ν > m; moreover, for ν > 4 the fourth-order moment (which appears in the
asymptotic distribution of the LR test of Section 2.3) is given by 3(ν−2)

ν−4 . For k ≥ 2,
under E3 the distributions of the innovations is bimodal with modes at ±(k − 2)+;
moreover, all moments exist and in particular the fourth-order moment is given by
12/k+ 3. In the simulations, we force the t and the symmetric χ2 distributions to have
the same fourth-order moments, which requires setting k = 2 (ν − 4); specifically, we
set ν = 5.5 and k = 3, which corresponds to κ = 6. In all cases, ξ = 0.

The null hypothesis is the pure random walk hypothesis H0 : π = α = 0, see Section
2.1. We focus in particular on alternatives of the form π < 0 and α = 0 (no unit
root in the mean equation and no conditional heteroskedasticity) and on alternatives
of the form π = 0 and α > 0 (conditionally heteroskedastic strictly stationary with a
unit root in the mean equation). In order to investigate local power, we consider these
alternatives under Pitman drifts. Precisely, we first consider the sequence of (near unit
root) local (pitman) alternatives

H
(π)
1 : π = cπn

−1, α = 0 (20)

with cπ < 0 fixed. For n fixed, this alternative lies in the region of the parameter
space where the process is strictly stationary, conditionally homoskedastic and with

21



finite fourth order moments. Moreover, we also consider the sequence of local (pitman)
alternatives

H
(α)
1 : π = 0, α = cαn

−3/2 (21)

with cα < 0 fixed. For n fixed, even if π = 0 (such that the mean equation has a unit
root, i.e. ∆xt = εt) this alternative lies in the region of the parameter space where the
process displays (volatility-induced) strictly stationary, is conditionally heteroskedastic,
but does not possess finite second order moments. The rate in (21) implies that the
(normalized) score associated to the DAR Gaussian likelihood does not diverges under
the alternative, and still makes xt of order n1/2.

Restricted and unrestricted estimation and associated LR tests are based on the
Gaussian likelihood associated to (19), with x0 considered fixed in the statistical analy-
sis. Maximization of the likelihood function imposes the non-negativity constraints
α ≥ 0 and ω > 0.4 The (asymptotic) LR test is based on asymptotic critical values
obtained numerically by discretizing the distribution in (3) over 100,000 steps and using
100,000 Monte Carlo repetitions (these do not substantially differ from those reported
in Table 1 of Kluppelberg et al., 2002) under the assumption that κ = 2 and ξ = 0;
hence, the asymptotic case is not expected to be correctly sized, even in large samples,
when the actual distribution of zt departs from the Gaussian distribution.

We consider the two (asymptotically valid) bootstrap schemes introduced earlier
in the paper. First, the plain restricted bootstrap of section 3.1, which is based on
resampling the residuals from restricted estimation and impose the null hypothesis on
the bootstrap generating process. Second, the hybrid bootstrap scheme, which employs
the residuals from unrestricted parameter estimation but still imposes the null on the
bootstrap sample.

Throughout, we use 10, 000 Monte Carlo replications and use B = 399 bootstrap
repetitions. Sample of size n ∈ {50, 100, 200, 500} are considered throughout. All tests
are run at the nominal 1%, 5% and 10% significance levels.

5.2 Empirical rejection probabilities under the null

Table 1 reports the empirical rejection probabilities (as estimated on the 10, 000 Monte
Carlo replications) under the null hypothesis, H0 : α = π = 0, for the three distributions
for the innovations.

[Table 1 about here]

The following points can be made out of the analysis.
For the leading case of Gaussian errors, the asymptotic LR test tends to be under-

sized for samples of size n ∈ {50, 100, 200}. For n = 500, the ERPs are closer to the
nominal level, although at the 10% level the test appears to be slightly oversized. In
contrast, both the restricted bootstrap and the hybrid bootstrap tests show excellent
size control for samples of n ∈ {50, 100, 200}, with ERPs very close to the corresponding

4All computations are performed in Matlab R2018b using the ‘fmincon’ constrained optimization
routine. Code is available upon request.
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nominal levels. The bootstrap tests do not seem to dominate the asymptotic test in
terms of size when n = 500.

For t-distributed errors, the asymptotic LR test is significantly oversized. This is
expected, since this test is implicitly based on the (false) assumption that the errors
are Gaussian. The bootstrap tests show very good size control, with the restricted
bootstrap being slightly more accurate than the hybrid bootstrap, as expected; see the
discussion in section 3.1.

For the bimodal χ2-type errors, the asymptotic tests is again substantially unreli-
able. For instance, when the nominal level is 1% and n = 500, the ERP equals 5.5%.
The bootstrap seems to fix this problem very well, again with ERPs very close to the
corresponding nominal levels at all the sample sizes considered. Again, the restricted
bootstrap seems to marginally outperform the hybrid bootstrap.

In summary, the performance of the bootstrap tests is largely satisfactory. Not only
the bootstrap allows to circumvent the non-pivotality of the asymptotic test, whose
distribution depends on the unknown parameter κ, but it also delivers an excellent
control of the ERP when the null hypothesis holds true.

5.3 Empirical rejection probabilities under local alternatives

We now turn to the inspection of the ERPs of the (asymptotic and bootstrap) tests
when the null hypothesis does not hold. To this aim, we first consider alternatives
satisfying π < 0 and α = 0 (pure homoskedastic autoregressions) in Section 5.3.1.
Alternatives satisfying π = 0 and α > 0 (heteroskedastic processes with a unit root in
the mean equation) are considered in Section 5.3.2. Throughout this section we present
both raw ERPs and (pointwise) size-adjusted rejection probabilities. To compute the
latter, as suggested in Cavaliere et al. (2015) for each given point in the parameter
space, we first perform the simulation under the null and record the nominal level that
would have given an ERP equal to the desired significance level. Next, we use this
adjusted nominal level in the simulations under the alternative hypothesis. Let, for
instance, p∗n denote the p-value of the bootstrap test, and let p0 (η) := P (p∗n ≤ η|H0),
with η denoting the choosen significance level. Then, the size-adjusted bootstrap test
at the 100η% level corresponds to rejecting H0 when p∗n ≤ η̃, where η̃ is such that
p (η̃) := P (p∗n ≤ η̃|H0) = η.

5.3.1 Pure autoregressive alternatives

In Figure 1 we report the size-adjusted power of the asymptotic test as well as of the
two bootstrap tests, under the assumption of Gaussian shocks. We set −π ∈ [0, 0.2]
and α = 0 (with π = 0 clearly corresponding to the null hypothesis), for samples of
sizes n = 50 and n = 100.

[Figure 1]

From the inspection of Figure 1 it is clear that the bootstrap tests are not outperformed,
in terms of size-adjusted ERPs, by the power function of the LR test. In this respect,
implementation of the bootstrap does not entail a power loss relatively to the asymptotic
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tests, as predicted by the theory. If anything, the restricted bootstrap, at the smallest
nominal levels, seems to be slightly more powerful than the asymptotic test. While this
fact may appear surprising and may depend on the chosen Monte Carlo design, similar
evidence has already been documented in the literature (see, Davidson and MacKinnon,
2002, Figure 14). Moreover, in terms of theory there is no result that prevents this from
happening (see, e.g, Davidson and Mackinnon, 2006). In general, there are no significant
power gains from implementing the hybrid bootstrap over the plain restricted bootstrap
—however, in the next section we provide a case where this actually is not the case.

We now turn to the analysis of the local power of the tests under this alternative.
Here we consider samples of size n ∈ {50, 100, 200, 500} and all the three distributions
described earlier. The local power functions for the alternative π = cn−1 and α = 0
are reported in Table 2 for c = −10. For completeness, we also report the raw ERPs in
Table 3. Obviously, these ERPs are affected by the deviations of the actual size of the
tests from the corresponding nominal levels, see Table 1.

[Tables 2 and 3 about here]

For Gaussian errors, the results are in line with those represented in Figure 1. The
two bootstrap tests are not outperformed by the (size-adjusted) asymptotic LR test.
Interestingly, at the smallest sample sizes the restricted bootstrap experiences some
power gains over the other two tests. For samples of size 500, there are no discernible
differences between the three tests.

For t-distributed errors, at nominal significance levels of 10% the restricted boot-
strap test behaves very similarly to the asymptotic test. At smaller nominal levels,
however, there seems to be some power gains stemming from the implementation of the
restricted bootstrap test. The hybrid bootstrap seems somehow less powerful than the
restricted bootstrap. A similar pattern can be observed for the case of symmetrically
χ2-distributed errors. Here, again, the restricted bootstrap test seems to be preferrable.

Interestingly, although the LR test is asymptotically valid for all the alternatives
considered here, its (local) power function seem to be affected by deviations of the errors’
distribution from the Gaussian distribution used to construct the (pseudo) likelihood
function.

In summary, the restricted bootstrap tests display power which is not inferior (some-
times even superior) to the power of the corresponding asymptotic test. Moreover,
implementation of the hybrid bootstrap does not seem to provide power gains.

5.3.2 Heteroskedastic, unit root alternatives

Results for alternatives satisfying π = 0 and α > 0 (strictly stationary heteroskedastic
DAR with a unit root in the mean equation) are reported in Figure 2. Here we let
α ∈ [0, 0.2] (with α = 0 corresponding to the null hypothesis) and, again, we consider
samples of size n = 50 and n = 100. As for the previous case, the bootstrap tests do
not display substantial differences in terms of power from the asymptotic test. The only
exception is for the 1% nominal level and n = 50: here, while the hybrid bootstrap has
the same power function of the asymptotic test, the restricted bootstrap shows a power
loss with respect to the asymptotic test. This is somehow expected from the discussion
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in Section 4.2: under the alternative considered here, which implies that the data are
generated by a strictly stationary, infinite variance process, the restricted bootstrap
is based on resampling residuals which, even in large samples, do not possess finite
second order moment (and therefore the bootstrap CLT may not apply). Hence, while
the bootstrap statistic may in fact be of O∗p(1), in probability, it does not replicate the
same distribution of the asymptotic test. From the results in Figure 2 it seems that this
is indeed the case — the distribution of the restricted bootstrap statistic is shifted to
the left (at least in terms of the first percentile) with respect to the distribution of the
hybrid bootstrap test. For larger sample sizes or more liberal nominal levels, however,
this does not seem to be an issue, as the power functions of the two bootstrap tests and
of the asymptotic tests do not significantly differ.

[Figure 2 about here]

We now turn to the local power analysis. As for the previous alternative, we consider
samples of size n ∈ {50, 100, 200, 500} and all the three distributions described earlier.
The local power functions for the alternative π = 0 and α = cn−3/2 are reported for
c = 10 in Table 4; the corresponding raw ERPs are reported in 5.

[Tables 4 and 5 about here]

In terms of this local power analysis, the hybrid bootstrap seems to be slightly
preferrable to the restricted bootstrap in terms of power for the smallest sample sizes,
especially for the case of Gaussian errors. For the cases of t-distributed errors and of
symmetric χ2 distributed errors, the difference between the two bootstrap seems to be
marginal.

In summary, the bootstrap tests display power which is generally not inferior (and
sometimes superior) to the power of the corresponding asymptotic test. The implemen-
tation of the restricted bootstrap seems to provide the best performance not only in
terms of size, but also in terms of size adjusted power. The hybrid bootstrap may pro-
vide some power gains when the first differenced process do not possess finite variance,
but such power gains do not make this bootstrap preferrable to the plain, restricted
bootstrap.

6 Extension to asymmetric innovations

One of the assumptions in Ling (2004) and that we have assumed so far is that the
third order moment of the innovations, ξ = Ez3

t , equals zero. This condition ensures
that the two Brownian motions characterizing the asymptotic distribution in (3) are
independent.

If this moment condition fails to hold, the limiting distribution of LRn can no
longer be expressed as the (weighted) sum of a squared Dickey-Fuller and a half-χ2

1
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independent random variables, see Remark 2.6. More precisely in Theorem 3, as shown
in Klüppelberg et al (2002, Theorem 3.1), the second term in the expression for the
LR∞ (κ) in (3) for general ξ is given by:

1
2 max

(
0,

[
ξ

∫
B2dB +

√
κ− ξ2

∫
B2dW −

∫
B2du

{
ξB1 +

√
κ− ξ2W1

}])2

(22)

×
[∫

B4
udu−

(∫
B2
udu

)2
]−1

where, as before, B and W are independent standard Brownian motions.
Interestingly, the bootstrap may take care of this non-pivotality and we can establish

the following result.

Theorem 7 The results of Theorem 4 and Theorem 6 hold independently of whether
ξ = 0 or not.

For the restricted bootstrap, where the z∗t ’s are based on the restricted (standard-
ized) residuals z̃s,t, a key insight is the following. It holds that the bootstrap (condi-
tional) third order moment ξ∗n, is given by,

ξ∗n = E∗
(
z∗3t
)

=
1

n

n∑
t=1

z̃3
t ,

such that, under suitable moment restrictions on the {zt} sequence, ξ∗n →p ξ. This
implies, under some additional algebra, that Z∗n (·) of (7) satisfies in this more general
setting,

Z∗n (·) := n−1/2∑[n·]
i=1

(
z∗t , z

∗2
t − 1

)′ w∗→p

(
1 0

ξ
√
κ− ξ2

)(
B∗·
W ·∗

)
,

see Appendix A.5.1, eq.(A.40). Hence, the bootstrap mimics the asymptotic distribu-
tional properties of the original statistics even if ξ 6= 0.

7 Conclusions

In this paper we have discussed several issues which may arise in the implementation
of the bootstrap hypothesis testing to time series econometric models. Essentially,
these are related to the assessment of bootstrap validity under the null hypothesis (i.e.,
establishing that the bootstrap mimics the correct limiting distribution of the original
test statistic under the null hypothesis) as well as to the behaviour of the bootstrap
statistic under the alternative hypothesis.

Our discussion has focused on the double-autoregressive, or DAR, model, where
the time series properties of the data —such as strict strationarity or the existence of
moments —are determined through a very delicate balance between the parameters of
conditional mean and the conditional variance equations.

Focusing on tests of the null hypothesis of non-stationarity, i.e. reduction to the
pure random walk, we have initially shown that —due to the possible presence of unit
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roots and of parameters on the boundary of the parameter space a classic —unrestricted
bootstrap fails to mimic the null distribution under the null. Conversely, the restricted
bootstrap works, irrespectively of a parameter of the conditional variance equation being
on the boundary of the parameter space under the null hypothesis.

Next, we have discussed the possible issues which may arise under the alternative.
Here, the crucial issue is that, under the alternative, the data may have have infinite
variance. Hence, the restricted bootstrap, based on re-sampling the residuals with the
null imposed, may in fact be based on re-sampling an infinite variance sequence. As
a consequence, the bootstrap statistic may have a random limiting distribution which
may lead to a lack of power over the infeasible size-adjusted asymptotic test. This
observation is the basis of our next suggestion, which is a hybrid implementation of
the bootstrap where the parameters used to generate the bootstrap sample are based
on restricted estimation while the residuals used to construct the bootstrap shocks are
based on unrestricted estimation.

Although most of our analysis is based on the DAR model, most of these issues are
common to the great majority of econometric models. Hence, a thorough investigation
of the properties of the bootstrap under the null and under the alternative are always
required before its practical implementation.

There are further issues which have not been touched in this paper but may as well
be important to establish bootstrap validity. For instance, in our testing example the
parameters of the model are (up to an intercept) all restricted by the null hypothesis.
In most cases, however, where the null hypothesis restricts only a subset of the parame-
ters. For instance, when testing hypothesis of the cointegration rank in a VAR model,
estimation with the wrong rank imposed may lead to a bootstrap sample which is not
I(1), see the discussion in Cavaliere et al. (2012). Another case is testing if a parame-
ter is on the boundary of the parameter space when the remaining parameters might
be on the boundary as well (see Cavaliere, Nielsen, Pedersen and Rahbek, 2018). In
this case the limiting distribution of the bootstrap statistic depends on the asymptotic
properties of the estimators used to generate the bootstrap data. In both examples,
establishing bootstrap validity requires to determine to what pseudo-true values such
estimators converge to, at what speed, and what are the implications on the properties
of the bootstrap sample.
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A Mathematical Appendix

A.1 Introduction

This appendix contains the proofs of the theory for the bootstrap implementation in
the DAR model for testing the null of non-stationarity, that is H0 : π = α = 0.

In Appendix A.2 and A.3, we first establish new asymptotic (non-bootstrap) results
for the QMLE θ̂n := (π̂n, α̂n, ω̂n)′ under both stationarity as well as under the null
H0 of non-stationarity, see Theorem 1 and Theorem 2, respectively. Appendix A.3
additionally provides asymptotic theory for the LRn statistic under H0, see Theorem 3.
The asymptotic results for the QMLE, as well as LRn, are then applied in Appendix
A.5, where asymptotic results for the (restricted and hybrid) bootstrap variants LR∗n
of LRn are derived.

As to the general (nonstandard) likelihood theory, recall that the parameter (or,
optimization) set for the DAR model is given by

T := {θ = (π, α, ω)′ : π ∈ [−πL, πU ] , α ∈ [0, αU ] and ω ∈ [ωL, ωU ]},

and, for estimation with the null hypothesis imposed, by T0 := {θ = (π, α, ω)′ : π =
α = 0 and ω ∈ [ωL, ωU ]}. As α ≥ 0, inference and testing is nonstandard and we apply
theory from Andrews (1999, 2001) which treat estimation and testing under inequality
constraints (and more general boundary issues), see also Vu and Zhou (1997), Klüp-
pelberg et al. (2002) and Cavaliere, Nielsen and Rahbek (2017). Thus, the asymptotic
distributions of the QMLE θ̂n and the associated LRn statistic follow by verifying regu-
larity conditions for (i) the parameter spaces T and T0; (ii) consistency of θ̂n; and, (iii)
convergence of the score, information and third derivative of the log-likelihood function.
For the bootstrap asymptotic theory, we verify the analogous regularity conditions for
the bootstrap log-likelihood quantities, applying convergence (weakly, and in probabil-
ity) conditional on the data, see e.g. Cavaliere, Nielsen and Rahbek (2015, 2017) and
Cavaliere, Rahbek and Taylor (2012).

As to (i), consider first the stationary case, where the true parameter θ0 ∈ ΘS , with
θ0 = (π0, α0, ω0)′ . In this case, T − θ0, in the sense of Andrews (1999, 2001), is locally
equal to the cone(s),

Λ (A) = R×A× R, (A.1)

31



where A = R if α0 > 0, and A = R+ if α0 = 0, such that Assumption 52∗(b) in Andrews
(1999) holds with BT = n1/2. For the non-stationary case, where θ0 ∈ ΘN , then T − θ0

and T0 − θ0 are locally equal to the cones Λ := Λ (R+) and

Λ0 := {0} × {0} × R, (A.2)

respectively. That is, with BT := Gn := diag
(
n, n3/2, n1/2

)
in the non-stationary case,

Assumption 52∗(b) in Andrews (1999) holds.
With respect to (ii), the regularity conditions verified under (iii) imply, with proba-

bility tending to one, that θ̂n →p θ0. As to (iii), note that we verify suitable bounds on
the third-order log-likelihood derivative(s), rather than, as is standard, establish uni-
form convergence of the information (that is, the second order log-likelihood derivative);
see Jensen and Rahbek (2004, Lemma 1) and Kristensen and Rahbek (2010, Lemmas 11
and 12) for general asymptotic likelihood theory in the stationary and non-stationary
cases respectively.

Finally note that while the results quoted in Theorems 1 and 2, and Theorem 3, are
for the case of the nuisance (asymmetry) parameter ξ = 0, the results are derived in
the next under the general assumption of ξ 6= 0 as needed for the discussion in Section
6 where we extend the asymptotic (and bootstrap) theory to address also the nuisance
parameter ξ (in addition to κ).

A.2 QMLE under stationarity —Proof of Theorem 1

In this section we derive the asymptotic theory for the QMLE θ̂n = (π̂n, α̂n, ω̂n)′ in
Theorem 1 for the stationary case where θ0 ∈ ΘS . We verify conditions (A.1)—(A.3)
in Jensen and Rahbek (2004, Lemma 1) [JR hereafter] which imply, with probability
tending to one, that θ̂n →p θ0. Conditions (A.1) and (A.2), that is convergence of
the score and information, are detailed below, while condition (A.3) for the third order
derivative follows as for the proof of establishing condition (C.ii) in Section A.6 for the
non-stationary case.

A.2.1 Score and observed information

In terms of the log-likelihood function Ln (θ) =
∑n

t=1 lt (θ), define the score quantities,

Sn (θ) =
n∑
t=1

st =
n∑
t=1

∂lt (θ) /∂θ and Sn = Sn (θ)|θ=θ0 . (A.3)

Likewise, the observed information is given by

In (θ) =

n∑
t=1

it =

n∑
t=1

(−∂lt (θ) /∂θ∂θ′) and In = In (θ)|θ=θ0 . (A.4)

The terms in score Sn (θ) are given by

s′t = (sπt , s
α
t , s

ω
t ) (A.5)

=
(
εtxt−1/σ

2
t ,

1
2

(
ε2
t /σ

2
t − 1

)
x2
t−1/σ

2
t ,

1
2

(
ε2
t /σ

2
t − 1

)
/σ2

t

)
.
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At the the true value θ0, the score is (the sum of) a martingale differences (MGD)
sequence,

s′t,0 := s′t
∣∣
θ=θ0

=
(
ztvt−1,

1
2

(
z2
t − 1

)
v2
t−1,

1
2

(
z2
t − 1

)
/σ2

t

)
, (A.6)

with vt−1 := xt−1/σt.
The terms it of the observed information are given by

it =

 iππt iπαt iπωt
iαπt iααt iαωt
iπωt iαωt iωωt

 (A.7)

=

 v2
t−1 (εt/σt) v

3
t−1 εtvt−1/σ

3
t

εt/σ
2
t v

3
t−1

(
ε2
t /σ

2
t − 1/2

)
v4
t−1

(
ε2
t /σ

2
t − 1/2

)
v2
t−1/σ

2
t

εtvt−1/σ
3
t

(
ε2
t /σ

2
t − 1/2

)
v2
t−1/σ

2
t

(
ε2
t /σ

2
t − 1/2

)
/σ4

t


which at the true value θ0 reduces to

it,0 := it|θ=θ0 =

 v2
t−1 ztv

3
t−1 ztvt−1/σ

2
t

ztv
3
t−1

(
z2
t − 1/2

)
v4
t−1

(
z2
t − 1/2

)
v2
t−1/σ

2
t

ztvt−1/σ
2
t

(
z2
t − 1/2

)
v2
t−1/σ

2
t

(
z2
t − 1/2

)
/σ4

t

 . (A.8)

A.2.2 Asymptotics for the Score and the Hessian —Proofs of
Conditions (A.1) and (A.2) in JR

Note initially that, by κ < ∞, standard application of central limit theory for i.i.d.
variables gives

n−1/2
n∑
t=1

(
zt, z

2
t − 1

) w→ V , Var (V ) =

(
1 ξ
ξ κ

)
. (A.9)

Next, the MGD representation of the score st,0,

s′t,0 =
(
zt, z

2
t − 1

)( vt−1 0 0
0 1

2v
2
t−1

1
2σ2t

)
,

together with (A.9), implies by standard arguments that condition (A.1) holds, i.e.:

n−1/2Sn (θ0) = n−1/2
n∑
t=1

st,0
w→ S∞ :=

(
Sπ,S ′γ

)′
, Sγ := (Sα,Sω)′ .

Here S∞ is Gaussian with covariance matrix

ΩS :=

(
ΩS,ππ Ω′S,γπ
ΩS,γπ ΩS,γγ

)
, (A.10)

where

ΩS,ππ = E
(
x2
t−1/σ

2
t

)
, Ω′S,γπ =

(
ξ
2E
(
x3
t−1/σ

3
t

) ξ
2E
(
xt−1/σ

3
t

) )
and

ΩS,γγ =
κ

4

(
E
(
x4
t−1/σ

4
t

)
E
(
x2
t−1/σ

4
t

)
E
(
x2
t−1/σ

4
t

)
E
(
1/σ4

t

) )
.
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Note that on the one hand for α0 > 0, it follows that E
(
x4
t−1/σ

4
t

)
< ∞ under sta-

tionarity of xt as in JR. If, on the other hand, α0 = 0, then Ex4
t < ∞ is implied by

κ <∞. Moreover, for α0 = 0 and denoting ΩS under α0 = 0 by Ω0
S , the covariance ΩS

simplifies to the following

Ω0
S,ππ =

1

ω0
E
(
x2
t−1

)
, Ω0′
S,γπ = ( ξ

2ω
3/2
0

E
(
x3
t−1

)
, 0) and (A.11)

Ω0
S,γγ =

κ

4ω2
0

(
E
(
x4
t−1

)
E
(
x2
t−1

)
E
(
x2
t−1

)
1

)
.

As to condition (A.2) for the observed information, it follows by the same arguments
used for the score, that by standard application of the law of large numbers,

n−1In (θ0) = n−1
n∑
t=1

it,0
p→ I∞ =

(
Iππ 0
0 Iγγ

)
=

(
ΩS,ππ 0

0 2
κΩS,γγ

)
. (A.12)

A.2.3 Asymptotics for the QMLE

Define first the tri-variate Gaussian variable, Z :=
(
Zπ,Z ′γ

)′ with Zγ := (Za,Zω)′ and

Z := I−1
∞ S∞

d
= N (0,ΩZ) , where ΩZ = I−1

∞ ΩSI−1
∞ . (A.13)

For α0 ≥ 0, ΩS is given by (A.10), while from (A.12) it follows that

I−1
∞ =

(
I−1
ππ 0
0 I−1

γγ

)
=

(
Ω−1
S,ππ 0

0 κ
2 Ω−1

S,γγ

)
. (A.14)

Hence,

ΩZ = I−1
∞ ΩSI−1

∞ =

(
ΩZ,ππ Ω′Z,γπ
ΩZ,γπ ΩZ,γγ

)
, (A.15)

where
ΩZ,ππ = Ω−1

S,ππ, ΩZ,γγ = κ
2 Ω−1

S,γγ

and

ΩZ,γπ = ξ
δΩZ,ππ

 E( 1
σ4t

)E(
x3t−1
σ3t

)− E(
x2t−1
σ4t

)E(xt−1
σ3t

)

E(
x4t−1
σ4t

)E(xt−1
σ3t

)− E(
x2t−1
σ4t

)E(
x3t−1
σ3t

)

 , (A.16)

with δ = E(
x4t−1
σ4t

)E( 1
σ3t

)− (E(
x2t−1
σ4t

))2.

Now, with θ̂n := arg maxθ∈T
∑
lt by Andrews (1999, Theorem 3),

n1/2(θ̂n − θ0)
w→ arg inf

λ∈Λ(A)
‖λ−Z‖2I∞ , (A.17)

where A = R if α0 > 0 and A = R+ if α0 = 0, see (A.1).
In the case of α0 > 0, it follows that for Λ (R), with Z defined in (A.13),

n1/2(θ̂n − θ0)
w→ Z =

(
Zπ,Z ′γ

)′ .
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Consider now the the case of α0 = 0. For Λ (R+), use the block-diagonality of I∞ to
rewrite the quadratic form on the right hand side of (A.17) as

arg inf
λ∈Λ(R+)

‖λ−Z‖2I∞ = (Zπ, (arg inf
λ∈R+×R

‖λ−Zγ‖2Iγγ )′)′

where Zγ = I−1
γγ Sγ has covariance ΩZ,γγ = I−1

γγ = κ
2 Ω−1
S,γγ , see (A.15).

Next, diagonalization of Iγγ is obtained by using the matrix M ,

M :=

(
1 −%
0 1

)
, % := Ex2

t ,

such that Iγγ is diagonalized by post- (and pre-multiplying) with M (M ′). That is,

Iγγ = MIγγM ′ =
1

2ω2
0

(
δ0 0
0 1

)
, (A.18)

with δ0 := E
(
x4
t−1

)
−
(
E
(
x2
t−1

))2. Define next,
Zγ := (Zα, Zω)′ :=

(
M ′
)−1Zγ = (IγγM)−1 Sγ ,

which by definition, using the identity ΩS,γγ = κ
2Iγγ , has covariance

κ

2

(
MIγγM ′

)−1
=

(
κω2

0/δ 0
0 κω2

0

)
.

Finally, note that Λ (R+) is invariant under transformation with the transpose of M−1.
That is, for any (x, y)′ ∈ Λ (R+),(

M ′
)−1

(x, y)′ = (x, y − %x) ∈ Λ
(
R+
)
.

Collecting terms,

inf
λ∈R+×R

‖λ−Zγ‖2Iγγ = inf
η=(ηα,ηω)′∈R+×R

‖η − Zγ‖2Iγγ (A.19)

= 1
2ω20

inf
η∈R+×R

{(ηα − Zα)2 δ0 + (ηω − Zω)2}.

It follows that

arg inf
η∈R+×R

{(ηα − Zα)2 δ0 + (ηω − Zω)2} = (max (0, Zα) , Zω)′ ,

such that by (A.19), and using that by definition, λ = M ′η,

arg inf
λ∈R+×R

‖λ−Zγ‖2Iγγ = M ′ (max (0, Zα) , Zω)′ (A.20)

= (max (0, Zα) , Zω − %max (0, Zα)) .

Here, Zα and Zω are independent Gaussian distributed with

Zα
d
= N

(
0, κω2

0/δ
)
and Zω

d
= N

(
0, κω2

0

)
(A.21)

This establishes Theorem 1.
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Remark A.1 Note that if ξ = 0, the covariance of Z, see (A.15) becomes block-
diagonal,

ΩZ =

(
ΩZ,ππ 0

0 ΩZ,γγ

)
. (A.22)

Remark A.2 The above also reduces to Ling (2004, Theorem 1) for the case of α0 > 0

and ξ = 0.

A.3 QMLE and LR test under non-stationarity —Theorem 2 and
Theorem 3

We proceed in the following by establishing regularity conditions under which the as-
ymptotic distribution of the QMLE and the likelihood ratio test can be derived for
the non-stationary case where θ0 ∈ ΘN . Specifically, we verify the following regularity
conditions (C.i)-(C.ii) in terms of the log-likelihood function, Ln (θ), and its derivatives.

Condition (C.i). With Gn =diag(gn,i)i=1,2,3, where

(g1,n, g2,n, g3,n) = (n, n3/2, n1/2),

it holds that (
G−1
n Sn (θ0) , G−1

n In (θ0)G−1
n

) w→ (S∞, I∞) . (A.23)

Condition (C.ii). With θ := (θ1, θ2, θ3)′ = (π, α, ω)′, and i, j, k = 1, 2, 3,

sup
θ∈Nn(θ0)

∥∥∥n1/2
(
∂3Ln (θ) /∂θi∂θj∂θk

)
/ (gi,ngj,ngk,n)

∥∥∥ = Op (1) (A.24)

where the supremum is over a the sequence of neigborhoods given by,

Nn (θ0) =
{
θ : g2

1,nπ
2 + g2

2,nα
2 + g2

3,n (ω − ω0)2 < ε/n
}
.

Conditions (C.i) and (C.ii) are from Kristensen and Rahbek (2010, Lemma 11 and
Lemma 12) where general asymptotic theory is presented for (non-)stationary variables.
With the parameter spaces T and T0 satisfying (i), that is, shifted they are locally equal
to Λ and Λ0, it follows as in Klüppelberg et al. (2002, Lemma B.1), see also Vu and
Zhou (1997) and Andrews (2001), that with

Z := I−1
∞ S∞,

then the LRn statistic converges in distribution:

LRn →w LR∞ (κ) = inf
λ∈Λ0

‖λ−Z‖2I∞ − inf
λ∈Λ
‖λ−Z‖2I∞ . (A.25)

Likewise, as in Andrews (1999, Theorem 3), under (C.i)-(C.ii) it follows that

Gn(θ̂n − θ0)→w arg inf
λ∈Λ
‖λ−Z‖2I∞ . (A.26)
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A.3.1 Preliminaries

Note initially, that under the null hypothesis H0, Sn (θ0) =
∑n

t=1 st,0, see (A.3), where
with θ0 ∈ ΘN ,

st,0 = (vt−1zt,
1
2v

2
t−1

(
z2
t − 1

)
, 1

2ω0

(
z2
t − 1

)
)′, with vt :=

t∑
i=1

zi.

Standard application of the invariance principle implies convergence to the Brownian
motion Vu, u ∈ (0, 1):

n−1/2

bn·c∑
t=1

(
zt, z

2
t − 1

)′ w→ V := (V1, V2)′ , E(V1V
′

1) =

(
1 ξ
ξ κ

)
. (A.27)

Define next the matrix

Q =

(
1 0

−ξ/
√
κ− ξ2 1/

√
κ− ξ2

)
, with Q−1 =

(
1 0

ξ
√
κ− ξ2

)
, (A.28)

and use it to define the bivariate standard Brownian motion (B,W )′:

(B,W )′ := QV = (V1, (V2 − ξV1)/
√
κ− ξ2)′. (A.29)

It then follows that

n−1/2

bn·c∑
t=1

Q
(
zt, z

2
t − 1

)′ w→ (B·,W·)
′ . (A.30)

A.3.2 Score —Condition (C.i)

Consider next the score Sn (θ0), normalized by Gn where

G−1
n = diag

(
n−1, n−3/2, n−1/2

)
. (A.31)

It follows, with

G−1
n Sn (θ0) =

1

n1/2

n∑
 n−1/2

∑t−1
i=1 zt 0

0
(
n−1/2

∑t−1
i=1 zt

)2
/2

0 1
2ω0


(zt, z2

t − 1
)′
,

that

G−1
n Sn (θ0)

w→ S∞ (ξ) =
(
Sπ,S ′γ

)′
= (Sα,Sα,Sω)′ (A.32)

=

(∫
BdB, ξ2

∫
B2dB +

√
κ−ξ2
2

∫
B2dW, ξ

2ω0
B1 +

√
κ−ξ2
2ω0

W1

)′
.
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A.3.3 Information —Condition (C.i)

Under H0, it follows by standard arguments that (jointly with the score) the information
In (θ0) =

∑n
1 it,0 converges weakly

G−1
n In (θ0)G−1

n
w→ I∞ =

(
Iππ 0
0 Iγγ

)
, (A.33)

with

Iγγ =
1

2

( ∫
B4du 1

ω0

∫
B2du

1
ω0

∫
B2du 1

ω20

)
, and Iππ =

∫
B2du.

Also observe that by, definition,

I−1
∞ =

(
I−1
ππ 0
0 I−1

γγ

)
, I−1

γγ =
2

δ

(
1 −ω0

∫
B2du

−ω0

∫
B2du ω2

0

∫
B4du

)
(A.34)

with δ =
∫
B4du−

(∫
B2du

)2.
A.3.4 Third order derivatives —Condition (C.ii)

It follows that (C.ii) holds by the considerations in Appendix A.6 below.

A.4 QMLE —Proof of Theorem 2

By (A.26) we have,

Gn(θ̂n − θ0)
w→ arg inf

λ∈Λ
‖λ−Z‖2I∞ =: (λπ, λα, λω)′ ,

with Z given by (A.35). As before, by block-diagonality of I∞ in (A.34) and the
definition of Z in (A.35),

λπ = Zπ =

∫
BdB/

∫
B2du.

For λγ = (λα, λω)′ use that by definition of Zγ := (Zα, Zω)′ defined in (A.37), we have

inf
λγ∈R+×R

‖λγ −Zγ‖2Iγγ = inf
η∈R+×R

‖η − Zγ‖2Iγγ .

In terms of η = (ηα, ηω)′ we find

arg inf
η∈R+×R

‖η − Zγ‖2Iγγ = arg inf
η=(ηα,ηω)′∈R+×R

(
(ηα − Zα)2 + (ηω − Zω)2

)
= (max (0, Zα) , Zω)′ .

Finally, use the identity λγ = (λα, λω)′ = M ′η to see that

λγ = M ′ (max (0, Zα) , Zω)′ = (max (0, Zα) , Zω − (ω0

∫
B2du) max (0, Zα))′.

Collecting terms, and setting ξ = 0, ends the proof of Theorem 2.

38



A.4.1 LRn convergence —Proof of Theorem 3

From (A.25),

LRn
w→ LR∞ (κ) = inf

λ∈Λ0
‖λ−Z‖2I∞ − inf

λ∈Λ
‖λ−Z‖2I∞ ,

where Z := (Zπ,Zα,Zω)′ =
(
Zπ,Z ′γ

)′
= I−1

∞ S∞ satisfies Zπ =
∫
BdB/

∫
B2du,

Zα = 1
δ ((ξ

∫
B2dB +

√
κ− ξ2

∫
B2dW )−

∫
B2du(ξB1 +

√
κ− ξ2W1)), (A.35)

and

Zω = ω0
δ (

∫
B4du(ξB1 +

√
κ− ξ2W1)−

∫
B2du(ξ

∫
B2dB +

√
κ− ξ2

∫
B2dW )).

By the block-diagonality of I∞ in (A.34), we may write LR∞ (κ) as

LR∞ (κ) = Z2
πIππ + inf

λ∈{0}×R
‖λ−Zγ‖2Iγγ − inf

λ∈R+×R
‖λ−Zγ‖2Iγγ

Diagonalization of Iγγ can next be obtained by using the matrix M defined as

M :=

(
1 −ω0

∫
B2du

0 1

)
,

such that

Iγγ := MIγγM ′ = 1
2

(
δ 0
0 1

ω20

)
. (A.36)

Next, note that Zγ = I−1
γγ Sγ , and hence we can define Zγ := (Zα, Zω)′, where

Zγ =
(
M ′
)−1Zγ =

(
IγγM ′

)−1 Sγ . (A.37)

By definition,

IγγM ′ = 1
2

(
δ 1

ω0

∫
B2du

0 1
ω20

)
and hence

Zγ =

(
δ−1((ξ

∫
B2dB +

√
κ− ξ2

∫
B2dW )−

∫
B2({duξB1 +

√
κ− ξ2W1))

ω0(ξB1 +
√
κ− ξW1)

)
Finally, the cones R+ ×R and {0} ×R are invariant to multiplication by (M ′)−1, such
that we get, using the identity (A.36),

inf
λ∈R+×R

‖λ−Zγ‖2Iγγ = inf
λ∈R+×R

(λ−Zγ)′ Iγγ (λ−Zγ) (A.38)

= inf
λ∈R+×R

(λ− Zγ)′
(
MIγγM ′

)
(λ− Zγ)

= δ
2 inf
λ∈R+

(λ− Zα)2 + inf
λ∈R

(λ− Zω)2 /
(
2ω2

0

)
= δ

2Z
2
αI (Zα < 0) .
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Here, by definition,

Zα = δ−1((ξ

∫
B2dB +

√
κ− ξ2

∫
B2dW )−

∫
B2du(ξB1 +

√
κ− ξ2W1)). (A.39)

Collecting terms we find

LR∞ (κ) = Z2
πIππ +

δ

2
Z2
α1 (Zα < 0)

= (

∫
BdB)2/

∫
B2du+

δ

2
Z2
α1 (Zα < 0) ,

and setting ξ = 0 ends the proof of Theorem 3.

A.5 Bootstrap —Proof of Theorem 4

We verify here the equivalent of the conditions (C.i) and (C.ii) for the bootstrap from
which the bootstrap results are derived.

A.5.1 Bootstrap score and information

It follows that the bootstrap score is given by

s∗t,0 =
(
v∗t−1z

∗
t ,

1
2v
∗2
t−1

(
z∗2t − 1

)
, 1

2ω̃n

(
z∗2t − 1

))′
, with v∗t =

t∑
i=1

z∗i .

The bootstrap invariance principle (cf. Cavaliere, Rahbek and Taylor, 2012) implies
the main result of convergence to the Brownian motion V ∗, as stated in the following
Lemma.

Lemma A.1 Assume that E(z8
t ) <∞. Then, as n→∞,

n−1/2

bn·c∑
t=1

(
z∗t , z

∗2
t − 1

)′ w∗→p V
∗
· = (V ∗1·, V

∗
2·)
′ , E(V ∗1 V

∗′
1 ) =

(
1 ξ

ξ κ

)
.

Proof. By definition, z∗t is re-sampled with replacement from z̃s,t,

z̃s,t=
z̃t − n−1

∑n
t=1 z̃t

(n−1
∑n

t=1(z̃t − n−1
∑n

t=1 z̃t)
2)1/2

,

where, under H0,
z̃t = ω̃−1/2

n ∆xt = ω̃−1/2
n ω

1/2
0 zt.

With m∗t :=
(
z∗t , z

∗2
t − 1

)′ consider, for any λ ∈ R2, λ 6= 0,

λ′m∗t = λ1z
∗
t + λ2

(
z∗2t − 1

)
.

Again, conditional on data, λ′m∗t is i.i.d., and hence as in Swensen (2003, eq. (10),
proof of Theorem 1) it suffi ces to establish

E∗
(
λ′m∗t

)2 p→ E
(
λ′mt

)2 , and E∗
(
λ′m∗t

)4 p→ E
(
λ′mt

)4
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where mt =
(
zt, z

2
t − 1

)′, which by standard arguments holds if Ez8
t < ∞. This ends

the proof of Lemma A.1. �

Next, with Q∗ = Q in (A.28), construct the bivariate standard Brownian motion
(B∗,W ∗)′ as

(B∗,W ∗)′ = Q∗V ∗ = (V ∗1 , (V
∗

2 − ξV ∗1 ) /
√
κ− ξ2)′,

such that

n−1/2

bn·c∑
t=1

Q∗
(
z∗t , z

∗2
t − 1

)′ w∗→p (B∗· ,W
∗
· )′ . (A.40)

Then, the following lemma follows.

Lemma A.2 If Ez8
t < ∞, and with Gn defined in (A.31), then the bootstrap score

sasfisties,

G−1
n S∗n

w∗→p S∗∞,

where S∗∞ = (S∗π,S∗α,S∗ω)′ with,

S∗′∞ = (

∫
B∗dB∗, ξ2

∫
B∗2dB∗ −

√
κ−ξ2
2

∫
B∗2dW ∗, ξ

2ω0
B∗1 −

√
κ−ξ2
2ω0

W ∗1 ).

We also have the following result on the information.

Lemma A.3 Under the conditions of Lemma A.2 it follows that the bootstrap informa-
tion converges jointly with the score as follows:

G−1
n

(
n∑
1

i∗t,0

)
G−1
n

w∗→p I∗∞ =

(
I∗ππ 0

0 I∗γγ

)
, with

I∗γγ =
1

2

( ∫
B∗4du 1

ω0

∫
B∗2du

1
ω0

∫
B∗2du 1

ω20

)
,

and I∗ππ =
∫
B∗2du.

Finally, condition (C.ii) is shown in Appendix A.6 to hold also for the bootstrap
case.

A.5.2 Bootstrap LR∗n statistic

Observe that by definition

I∗−1
∞ =

(
I∗−1
ππ 0
0 I∗−1

γγ

)
, I∗−1

γγ =
2

δ∗

(
1 −ω0

∫
B∗2du

−ω0

∫
B∗2du ω2

0

∫
B∗4du

)
,

with δ∗ =
[∫

B∗4du−
(∫
B∗2

)2]. We define Z∗= (Z∗π,Z∗α,Z∗ω)′ = I∗−1
∞ S∗∞ (ξ), where

Z∗π =

∫
B∗dB∗/

∫
B∗2du (A.41)

Z∗π = 1
δ∗ ({ξ

∫
B∗2dB∗ +

√
κ− ξ2

∫
B∗2dW} −

∫
B∗2du{ξB∗1 +

√
κ− ξ2W1})
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Z∗ω = −ω0
δ∗ (

∫
B∗2du{ξ

∫
B∗2dB∗ +

√
κ− ξ2

∫
B∗2dW}

+

∫
B∗4du{ξB∗1 +

√
κ− ξ2W1})

It follows that, as for the LRn statistic under H0, LR
∗
n
w∗→p LR∗∞ (κ), where,

LR∗∞ (κ)= (Z∗π)2 I∗ππ +
δ∗

2
Z∗2α 1 (Z∗α > 0)

= (

∫
B∗dB∗)2/

∫
B∗2du+

δ∗

2
Z∗2α 1 (Z∗α > 0) ,

with

Z∗α = δ
∗−1({ξ

∫
B∗2dB∗ +

√
κ− ξ2

∫
B∗2dW ∗} (A.42)

−
∫
B∗2du{ξB∗1 +

√
κ− ξ2W ∗1 }).

which ends the proof of Theorem 4 using LR∗∞ (κ)
d
= LR∞ (κ).

A.5.3 Bootstrap —Proof of Theorem 6 and Theorem 7

The proof of Theorem 6 follows by replicating the proof of Theorem 4, as Lemma A.1
also applies to the case where the bootstrap innovations z∗t are resampled from

ẑs,t=
ẑt − n−1

∑n
t=1 ẑt

(n−1
∑n

t=1(ẑt − n−1
∑n

t=1 ẑt)
2)1/2

, (A.43)

where the unrestricted residuals are given by

ẑt = (∆xt − π̂nxt−1) /
(
ω̂n + α̂nx

2
t−1

)1/2
.

The proof of Theorem 7 holds trivially as all arguments used to establish Theorems 4
and 6 allow ξ 6= 0.

A.6 On the third order derivatives —Condition (C.ii)

A.6.1 Non-bootstrap case

With c and (ci)
3
i=1 generic constants, it follows that (C.ii) holds as follows:

∂3Ln (θ) /∂π3 = 0

g−3
1,n∂

3Ln (θ) /∂π2∂α = n−3
n∑
t=1

x4
t−1

σ4
t

≤ cn−3
n∑
t=1

x4
t−1 = Op (1)

n1/2g−2
1,ng

−1
3,n∂

3Ln (θ) /∂π2∂ω = n−2
n∑
t=1

x2
t−1

σ4
t

≤ cn−2
n∑
t=1

x2
t−1 = Op (1)

∣∣∣n1/2g−3
2,n∂

3Ln (θ) /∂α3
∣∣∣ =

∣∣∣∣∣n−4
n∑
t=1

[3
ε2
t

σ2
t

− 1]

(
x6
t−1

σ6
t

)∣∣∣∣∣
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≤ c1n
−4

n∑
t=1

x6
t−1

(
z2
t − 1

)
+ c2n

−4
n∑
t=1

x6
t−1 = Op (1)

∣∣∣n1/2g−2
2,ng

−1
3,n∂

3Ln (θ) /∂α2∂ω
∣∣∣ =

∣∣∣∣∣n−3
n∑
t=1

[3
ε2
t

σ2
t

− 1]

(
x4
t−1

σ6
t

)∣∣∣∣∣
≤ c1n

−3
n∑
t=1

x4
t−1

(
z2
t − 1

)
+ c2n

−3
n∑
t=1

x4
t−1 = Op (1)

∣∣∣n1/2g−2
2,ng

−1
1,n∂

3Ln (θ) /∂α2∂π
∣∣∣ =

∣∣∣∣∣n−7/2
n∑
t=1

2
εtx

5
t−1

σ6
t

∣∣∣∣∣
≤ c1n

−7/2
n∑
t=1

(|zt| − E |zt|)
∣∣x5
t−1

∣∣+ c2n
−7/2

n∑
t=1

∣∣x5
t−1

∣∣ = Op (1)

∣∣∣n1/2g−3
3,n∂

3Ln (θ) /∂ω3
∣∣∣ =

∣∣∣∣∣n−1
n∑
t=1

[3
ε2
t

σ2
t

− 1]

(
1

σ6
t

)∣∣∣∣∣
≤ c1n

−1
n∑
t=1

[z2
t − 1] + c2 = Op (1)

∣∣∣n1/2g−1
1,ng

−2
3,n∂

3Ln (θ) /∂ω2∂π
∣∣∣ =

∣∣∣∣∣n−3/2
n∑
t=1

2
εtxt−1

σ6
t

∣∣∣∣∣
≤ c1n

−3/2
n∑
t=1

(|zt| − E |zt|) |xt−1|+ c2n
−3/2

n∑
t=1

|xt−1| = Op (1)

∣∣∣n1/2g−2
3,ng

−1
2,n∂

3Ln (θ) /∂ω2∂α
∣∣∣ =

∣∣∣∣∣n−2
n∑
t=1

[3
ε2
tx

2
t−1

σ2
t

− 1]

(
1

σ6
t

)∣∣∣∣∣
≤ c1n

−2
n∑
t=1

[z2
t − 1]x2

t−1 + c2n
−2

n∑
t=1

(
x2
t−1 + 1

)
= Op (1) .

∣∣∣n1/2g−1
3,ng

−1
2,ng

−1
1,n∂

3Ln (θ) /∂π∂ω∂α
∣∣∣ =

∣∣∣∣∣n−5/2
n∑
t=1

2
εtx

3
t−1

σ6
t

∣∣∣∣∣
≤ c1n

−5/2
n∑
t=1

(|zt| − E |zt|)
∣∣x3
t−1

∣∣+ c2n
−5/2

n∑
t=1

∣∣x3
t−1

∣∣ = Op (1)

Remark A.3 Note that we here used that an invariance principle applies to the term,∑[n·]
t=1 (|zt| − E |zt|) normalized by n−1/2.

A.6.2 Bootstrap case

With c and (ci)
3
i=1 generic constants, it follows that (C.ii) holds for the bootstrap by

replicating the arguments in Appendix A.6. That is, we have:

∂3L∗n (θ) /∂π3 = 0
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g−3
1,n∂

3L∗n (θ) /∂π2∂α = n−3
n∑
t=1

x∗4t−1

σ∗4t
≤ cn−3

n∑
t=1

x∗4t−1 = O∗p (1)

n1/2g−2
1,ng

−1
3,n∂

3L∗n (θ) /∂π2∂ω = n−2
n∑
t=1

x∗2t−1

σ∗4t
≤ cn−2

n∑
t=1

x∗2t−1 = O∗p (1)

∣∣∣n1/2g−3
2,n∂

3L∗n (θ) /∂α3
∣∣∣ =

∣∣∣∣∣n−4
n∑
t=1

[3
ε∗2t
σ∗2t
− 1]

(
x∗6t−1

σ∗6t

)∣∣∣∣∣
≤ c1n

−4
n∑
t=1

x∗6t−1

(
z∗2t − 1

)
+ c2n

−4
n∑
t=1

x∗6t−1 = O∗p (1)

∣∣∣n1/2g−2
2,ng

−1
3,n∂

3L∗n (θ) /∂α2∂ω
∣∣∣ =

∣∣∣∣∣n−3
n∑
t=1

[3
ε∗2t
σ∗2t
− 1]

(
x∗4t−1

σ6
t

)∣∣∣∣∣
≤ c1n

−3
n∑
t=1

x∗4t−1

(
z∗2t − 1

)
+ c2n

−3
n∑
t=1

x∗4t−1 = O∗p (1)

∣∣∣n1/2g−2
2,ng

−1
1,n∂

3L∗n (θ) /∂α2∂π
∣∣∣ =

∣∣∣∣∣n−7/2
n∑
t=1

2
ε∗tx
∗5
t−1

σ∗6t

∣∣∣∣∣ ≤
≤ c1n

−7/2
n∑
t=1

(|z∗t | − E∗ |z∗t |)
∣∣x∗5t−1

∣∣+ c2n
−7/2

n∑
t=1

∣∣x∗5t−1

∣∣ = O∗p (1)

∣∣∣n1/2g−3
3,n∂

3L∗n (θ) /∂ω3
∣∣∣ =

∣∣∣∣∣n−1
n∑
t=1

[3
ε∗2t
σ∗2t
− 1]

(
1

σ∗6t

)∣∣∣∣∣
≤ c1n

−1
n∑
t=1

[z∗2t − 1] + c2 = O∗p (1)

∣∣∣n1/2g−1
1,ng

−2
3,n∂

3L∗n (θ) /∂ω2∂π
∣∣∣ =

∣∣∣∣∣n−3/2
n∑
t=1

2
ε∗tx
∗
t−1

σ∗6t

∣∣∣∣∣
≤ c1n

−3/2
n∑
t=1

(|z∗t | − E∗|z∗t |)
∣∣x∗t−1

∣∣+ c2n
−3/2

n∑
t=1

∣∣x∗t−1

∣∣ = O∗p (1)

∣∣∣n1/2g−2
3,ng

−1
2,n∂

3L∗n (θ) /∂ω2∂α
∣∣∣ =

∣∣∣∣∣n−2
n∑
t=1

[3
ε∗2t x

∗2
t−1

σ∗2t
− 1]

(
1

σ∗6t

)∣∣∣∣∣
≤ c1n

−2
n∑
t=1

[z∗2t − 1]x∗2t−1 + c2n
−2

n∑
t=1

x∗2t−1 + c3 = O∗p (1) .

∣∣∣n1/2g−1
3,ng

−1
2,ng

−1
1,n∂

3L∗n (θ) /∂π∂ω∂α
∣∣∣ =

∣∣∣∣∣n−5/2
n∑
t=1

2
ε∗tx
∗3
t−1

σ∗6t

∣∣∣∣∣
≤ c1n

−5/2
n∑
t=1

(|z∗t | − E∗|z∗t |)
∣∣x∗t−1

∣∣3 + c2n
−5/2

n∑
t=1

∣∣x∗t−1

∣∣3 = O∗p (1)
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Remark A.4 We have here used that a Bootstrap invariance principle holds for the
term, n−1/2

∑[nu]
1 (|z∗t | − E∗ |z∗t |) , under the conditions in Lemma A.1.
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Table 1: Size of the asymptotic and bootstrap tests

Asymp. Test Restr. BS Hybrid BS

n 1% 5% 10% 1% 5% 10% 1% 5% 10%

zt ∼ N 50 0.6 4.0 9.0 1.0 4.7 9.8 1.0 5.0 10.1

100 0.5 3.9 8.8 0.9 4.7 9.6 1.0 4.9 10.0

200 0.6 4.2 9.2 1.0 4.8 9.8 1.0 5.1 9.9

500 0.8 4.9 10.5 1.1 5.7 10.8 1.1 5.8 10.9

zt ∼ t 50 2.1 6.5 11.7 0.8 4.4 9.7 1.8 5.9 10.7

100 2.8 7.8 13.6 0.9 5.0 10.3 2.0 6.3 11.2

200 3.2 8.1 14.1 0.9 4.9 9.8 1.8 5.8 10.5

500 3.9 9.9 16.4 0.9 5.2 10.5 1.4 5.9 10.9

zt ∼ χ2 50 2.7 7.6 13.2 0.9 4.7 9.8 2.4 6.8 11.8

100 3.8 9.8 15.3 0.9 5.0 10.8 2.3 7.4 11.9

200 4.6 11.2 16.9 1.0 5.2 10.8 2.1 6.8 11.7

500 5.5 12.5 19.2 1.2 5.6 11.0 1.8 6.5 11.5
Notes: The parameter setting under the null is π = 0, α = 0 and ω = 1. The innovation
process (zt) is drawn, respectively, from standard normal distribution, standardized t
distribution with degree of freedom 5.5, and standardized symmetric χ2 distribution
with degree of freedom 3. The results are obtained from 10000 Monte Carlo simulation
iterations each of which evaluated using 399 bootstrap samples.
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Table 2: Size-adjusted power of the asymptotic and bootstrap tests under the local
alternative π = cn−1, α = 0.

Asymp. Test Restr. BS Hybrid BS

n 1% 5% 10% 1% 5% 10% 1% 5% 10%

zt ∼ N 50 22.0 61.6 81.2 24.9 63.1 82.1 21.9 61.3 80.5

100 21.9 60.3 81.0 24.2 62.3 81.0 24.6 60.8 80.3

200 21.6 58.8 78.8 23.7 59.5 78.9 20.3 58.0 79.0

500 20.0 55.0 77.2 20.3 54.8 76.3 20.4 54.4 76.1

zt ∼ t 50 7.3 45.0 72.9 17.5 53.7 72.8 9.2 41.5 67.9

100 4.5 35.7 66.0 14.6 44.0 65.5 7.8 34.8 61.5

200 2.9 33.0 63.7 11.3 38.6 62.3 6.1 33.1 59.9

500 2.6 26.7 58.2 8.3 33.4 57.4 5.5 28.9 55.2

zt ∼ χ2 50 4.6 36.2 66.5 15.5 44.6 66.9 5.5 32.0 57.4

100 4.0 26.2 55.9 11.5 36.5 57.2 7.0 25.9 50.3

200 2.5 21.8 49.6 7.9 30.6 53.0 4.2 22.6 46.6

500 1.8 18.5 44.7 4.4 22.7 46.8 2.7 20.4 43.2
Notes: The parameter setting is c = −10, and ω = 1. See also notes to Table 1.

Table 3: Raw power of the asymptotic and bootstrap tests under the local alternative
π = cn−1, α = 0.

Asymp. Test Restr. BS Hybrid BS

n 1% 5% 10% 1% 5% 10% 1% 5% 10%

zt ∼ N 50 16.2 54.5 78.2 21.2 60.0 80.7 21.9 59.9 80.5

100 15.4 53.4 77.6 20.5 59.4 79.7 21.1 59.2 79.5

200 15.7 53.6 76.8 20.3 57.9 78.2 20.3 58.0 78.2

500 16.4 54.7 78.5 20.3 57.7 78.5 20.4 57.8 78.5

zt ∼ t 50 17.9 55.2 78.3 14.4 49.4 71.3 15.5 47.6 69.6

100 18.2 54.5 78.4 11.9 42.7 66.3 12.9 42.3 65.2

200 18.6 54.3 77.7 9.3 37.3 61.5 10.1 37.1 60.9

500 20.0 57.7 79.7 6.5 33.4 58.2 7.4 33.5 58.0

zt ∼ χ2 50 17.4 54.0 78.3 12.8 43.4 66.0 14.8 42.0 63.4

100 18.6 54.8 78.5 9.5 36.5 60.4 11.4 35.8 59.1

200 19.7 56.0 79.8 6.2 30.6 55.3 7.8 30.8 54.9

500 21.8 57.4 79.6 4.4 25.2 50.1 5.3 25.4 49.7
Notes: The parameter setting is c = −10 and ω = 1. See also notes to Table 1.



Table 4: Size-adjusted power of the asymptotic and bootstrap tests under the local
alternative π = 0, α = cn−3/2.

Asymp. Test Restr. BS Hybrid BS

n 1% 5% 10% 1% 5% 10% 1% 5% 10%

zt ∼ N 50 24.3 39.6 50.3 21.5 38.2 50.0 24.5 40.2 50.6

100 29.1 43.7 54.6 27.8 43.6 54.6 30.3 44.4 55.0

200 32.4 46.9 56.9 31.9 46.6 57.0 31.4 46.6 57.4

500 34.8 48.6 59.1 34.3 48.3 58.6 35.0 48.8 58.7

zt ∼ t 50 17.0 32.3 43.2 16.3 33.0 43.5 17.9 32.1 43.5

100 18.8 34.7 45.1 20.6 35.4 45.4 20.1 34.0 45.0

200 20.3 37.7 48.2 23.9 38.7 48.2 21.7 37.3 48.0

500 22.7 38.2 48.7 26.1 39.7 49.0 24.7 38.5 48.5

zt ∼ χ2 50 15.8 30.6 40.5 15.6 30.8 41.1 14.6 29.9 40.2

100 18.4 31.9 41.4 18.8 33.2 42.2 19.4 31.6 41.3

200 19.0 34.1 43.4 20.8 35.2 44.3 19.8 33.1 42.8

500 21.1 35.9 45.9 22.3 36.3 46.2 20.5 36.1 45.4
Notes: The parameter setting is c = 10 and ω = 1. See also notes to Table 1.

Table 5: Raw power of the asymptotic and bootstrap tests under the local alternative
π = 0, α = cn−3/2.

Asymp. Test Restr. BS Hybrid BS

n 1% 5% 10% 1% 5% 10% 1% 5% 10%

zt ∼ N 50 21.7 36.4 48.4 19.6 36.8 49.1 24.5 39.6 50.6

100 25.9 41.2 52.6 25.9 42.4 53.7 28.9 43.8 54.6

200 29.4 44.6 55.9 30.1 45.8 56.5 31.4 46.6 56.8

500 33.4 48.5 59.8 34.3 49.8 59.8 35.0 50.1 60.0

zt ∼ t 50 23.0 35.9 46.2 14.7 30.8 42.5 21.6 34.7 44.2

100 27.6 40.8 50.3 18.8 34.8 45.8 24.1 37.1 46.7

200 31.6 44.9 54.3 22.2 38.1 47.9 25.6 39.1 48.4

500 35.6 48.5 57.8 24.4 39.7 49.4 26.6 40.6 49.7

zt ∼ χ2 50 23.5 36.1 45.2 14.1 30.3 40.6 21.9 34.0 42.3

100 28.8 41.2 50.1 17.1 33.2 43.5 22.9 35.8 44.5

200 33.1 45.1 53.3 19.2 35.2 45.1 23.5 36.8 45.8

500 37.3 49.9 58.0 22.3 37.7 47.5 24.8 38.5 48.1
Notes: The parameter setting is c = 10 and ω = 1. See also notes to Table 1.



Figure 1: Size-adjusted power of the asymptotic and bootstrap LR tests under the
alternative π < 0, α = 0 for different values of −π. Upper panel: n = 50; lower panel:
n = 100. Nominal levels 1% (left panels), 5% (central panels) and 10% (right panels)

Figure 2: Size-adjusted power of the asymptotic and bootstrap LR tests under the
alternative π = 0, α > 0 for different values of α. Upper panel: n = 50; lower panel:
n = 100. Nominal levels 1% (left panels), 5% (central panels) and 10% (right panels)
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