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Abstract

This paper proposes the Knightian Uncertainty Hypothesis (KUH), a new approach to

macroeconomics and finance theory. KUH rests on a novel mathematical framework that

characterizes both measurable and Knightian uncertainty about economic outcomes. Rely-

ing on this framework and Muth’s pathbreaking hypothesis, KUH represents participants’

forecasts to be consistent with both uncertainties. KUH thus enables models of aggre-

gate outcomes that 1) are premised on market participants’ rationality, and 2) accord a

role to both fundamental and psychological (and other non-fundamental) factors in driving

outcomes. The paper also suggests how a KUH model’s quantitative predictions can be

confronted with time-series data.



1 Introduction and Overview

In his classic book Risk, Uncertainty, and Profit, Frank Knight introduced a distinction be-

tween measurable uncertainty, which he called “risk,” and “true uncertainty,” which cannot

“by any method be reduced to an objective, quantitatively determined probability” (Knight,

1921, p. 321). Knight argued that “true uncertainty” arises from change that cannot be

fully foreseen with probabilistic rules and whose consequences for market outcomes, and

thus payoffs from market participants’ decisions, cannot be fully comprehended – even in

hindsight. For Knight, recognizing such unforeseeable change is the key to understanding

profit-seeking activity in real-world markets.

The rational expectations hypothesis (REH) and behavioral finance are widely consid-

ered to have been the milestones in the development of models of aggregate outcomes,

resulting from market participants’ decisions, since the 1970s.1 Although they differ in

essential respects, the REH and behavioral-finance approaches share a key feature: their

models specify aggregate outcomes with a stochastic process.2 By design, these mod-

els assume that economists do not face Knightian uncertainty. By contrast, the Knightian

uncertainty hypothesis (KUH) proposed here enables economists to build models that ac-

knowledge their own Knightian uncertainty stemming from unforeseeable change in the

process driving outcomes.

Recognizing uncertainty that cannot be represented with standard probabilistic mea-

sures of risk is increasingly viewed as crucial to remedying shortcomings of macroeco-

nomic and finance theory. For example, in his Nobel lecture, Hansen (2013, p. 399,

emphasis added) argues that REH models “miss something essential: uncertainty [aris-

ing from] ambiguity about which is the correct model” of the process driving aggregate

outcomes.

Following a pioneering contribution by Hansen and Sargent (2008), a number of recent

papers build macroeconomic models that recognize ambiguity on the part of market par-

ticipants. Although such models relate aggregate outcomes to participants’ demand and

supply decisions, they represent these outcomes with a stochastic process. They typically

do not relate ambiguity to unforeseeable change in the processes driving outcomes.

1Lucas’s (1972a,b) early contributions are usually cited as pioneering the application of REH to macroeco-

nomic theory. For authoritative surveys of the behavioral-finance approach, see Shleifer (2000) and Barberis

and Thaler (2003).
2Akerlof and Shiller (2009) is a notable exception in behavioral-finance literature. They rely on a narrative

mode of analysis, and thus ipso facto avoid formalizing behavioral findings with models specifying aggregate

outcomes with a stochastic process.
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In a significant departure from this literature, Ilut and Schneider (2014) open the New

Keynesian (NK) model to unforeseeable change in the process driving the model’s ex-

ogenous variable – total factor productivity (TFP). However, Ilut and Schneider constrain

precisely – with a probabilistic rule – their model’s representation of participants’ forecasts

of TFP and how these forecasts drive aggregate outcomes (for example, hours worked and

the inflation rate). As a result, they represent how aggregate outcomes unfold over time

with a stochastic process, thereby assuming that, unlike participants, economists do not

face ambiguity about the process driving these outcomes.

In this paper, we propose a new approach to building models of aggregate outcomes that

removes this incongruity from macroeconomic and finance theory. Our approach, which

we call the Knightian Uncertainty Hypothesis (KUH), recognizes that, like market partici-

pants, economists also face Knightian uncertainty and the ambiguity that such uncertainty

engenders.

Like REH and behavioral finance, a KUH model represents the process driving out-

comes at a point in time with a stochastic process. However, in contrast to these ap-

proaches, KUH rests on a novel mathematical framework that formalizes both measur-

able and Knightian uncertainty about the process driving aggregate outcomes. By assum-

ing that, over time, a macroeconomic model’s coefficients undergo unforeseeable change,

KUH opens economists’ models to Knightian uncertainty.3

By design, therefore, a KUH model does not represent outcomes with a stochastic

process, which rules out reliance on the standard (conditional) expectation to define the

model’s predictions of future outcomes. Instead, KUH’s characterization of Knightian un-

certainty enables us to define a hitherto unavailable conception of prediction applicable

to outcomes that undergo unforeseeable change. To ensure consistency between its mod-

els’ characterization of both kinds of uncertainties and their representation of participants’

forecasts, KUH relies on Muth’s (1961) pathbreaking hypothesis.

Muth (1961) argued that market participants are “rational” in the dictionary sense: they

have some understanding – albeit imperfect – of the process driving outcomes, and they

make use of this understanding in pursuing their objectives, typically profit-seeking.4 Im-

3An overwhelming majority of REH and behavioral-finance models constrain their specifications – the

set of variables that they include and their coefficients – to be unchanging over time. Whenever these models

recognize that the process underpinning outcomes undergoes change, they represent such change with a prob-

abilistic rule, such as Markov switching, determining completely how the model’s specifications unfold over

time. For a seminal development of models representing change with probabilitic rules and an authoritative

recent review, see Hamilton (1988, 2008). .
4According to the Merriam-Webster Dictionary, an individual is “rational [if he] has a latent or active
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portantly, Muth advanced the seminal hypothesis that an economist can represent partic-

ipants’ diverse understandings of the process driving aggregate outcomes with his own

mathematical model of this process. Consequently, Muth proposed that an economist

specify participants’ forecasts of outcomes by constraining them to be consistent with his

model’s predictions of these outcomes.

Muth emphasized that his hypothesis “does not assert that the scratch work of entrepre-

neurs resembles [an economic model’s] system of equations in any way.” (1961, p. 317,

emphasis in the original). However, he believed that, although boldly abstract, his hypoth-

esis offered a “sensible” way to acknowledge participants’ rationality – that their forecasts

are related to their understanding of “the way the economy works” – in economic models

(1961, p. 315).5 After all, the very meaning of model building is that it formalizes an

economist’s hypothesis about the process driving aggregate outcomes and how they actu-

ally unfold over time.

Invoking this hypothesis, Lucas argued in the early 1970s that representing market par-

ticipants’ forecasts of aggregate outcomes to be inconsistent with the model’s predictions

of them presumes ex ante that participants will ignore forecast errors, thereby foregoing

profit opportunities time and again over an indefinite future. As Lucas recounts in his No-

bel lecture (1995, p. 255), the implication that inconsistent models presume participants’

irrationality played a crucial role in persuading macroeconomists to embrace REH.6

REH implements Muth’s hypothesis in models representing outcomes with a stochastic

process. Although doing so eliminates irrationality, it also fully constrains an REH model’s

representation of participants’ forecasts. Thus, once an economist assumes that market par-

ticipants are rational and that he does not face Knightian uncertainty, he can no longer ac-

cord participants’ forecasts an autonomous role in driving aggregate outcomes. As Sargent

put it in his interview with Evans and Honkapohja (2005, p. 566): “in rational expectations

power to make logical inferences and draw conclusions that enable [him] to understand the world about him

and relate such knowledge to the attainment of ends.”
5Muth explicitly contrasted his hypothesis with Simon’s (1959) “bounded rationality” approach. Bounded

rationality assumes that, faced with insuperable obstacles to understanding the structure of the economy,

participants rely on forecasting rules – for example, adaptive expectations – that are not explicitly related

to “the way the economy works.” Muth (1961, p.316) stressed that his “hypothesis is based on exactly the

opposite point of view: that dynamic economic models do not assume enough rationality” on the part of

market participants.
6Lucas (1995, p. 255 and 2001, p.13) emphasized that macroeconomic models of the 1960s, which relied

on adaptive expectations, were based on a “glaring” inconsistency, and thus were “the wrong theory” of time-

series regularities. For an extensive discussion of this revolutionary development in macroeconomic theory,

see Frydman and Phelps (2013). For a formal illustration of Lucas’ point and further discussion of how his

arguments apply to behavioral-finance models, see Sections 5 and 8.1.
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models, people’s beliefs are among the outcomes of our [economists’] theorizing. They are

not inputs” to an economist’s model.

As in REH models, applying Muth’s hypothesis in a KUH model constrains the model’s

representation of participants’ forecasts in terms of the model’s coefficients and moments

of its stochastic innovations. However, because a KUH model recognizes that an econo-

mist faces Knightian uncertainty, imposing consistency within the model does not fully

constrain its representations of forecasts. The KUH approach thereby uncovers the key

implication of Knightian uncertainty for building macroeconomic models: an economist

faces ambiguity about how rational participants forecast outcomes and make decisions.7

By recognizing this ambiguity, KUH opens a way to build macroeconomic models that

accord participants’ diverse forecasts an autonomous role in driving aggregate outcomes,

without presuming that participants are irrational.8 In this sense, the KUH approach en-

ables economists to realize the vision that motivated Phelps’s (1970, p. 22) pioneering

micro-foundations approach: because market participants “maximize relative to their” own

imperfect and diverse understandings of how the economy works, their forecasts play an

autonomous role in driving aggregate outcomes, such as the inflation and unemployment

rates. By ruling out such a role for participants’ forecasts, the REH approach preempted

this vision.9

Moreover, reliance on models that represent outcomes with a stochastic process has

rendered the REH and behavioral finance approaches irreconcilable on logical grounds.

The raison d’être of behavioral finance is that psychological and other non-fundamental

7Analogously to its role in REH models, Muth’s hypothesis enables economists to make use of calibration

in confronting a KUH model with time-series data. However, because a KUH model does not fully constrain

the relationship between parameters characterizing participants’ preferences and/or technology and model-

implied coefficients of aggregate outcomes, microeconomic estimates of such parameters cannot be used

to calibrate the model. This implication of Knightian uncertainty underscores the importance of Hansen

and Heckman’s (1996, p. 90) argument that the calibration methodology should be based on an "explicit

econometric framework." We provide an illustration of how this can be done in a KUH model in Section 9

and Appendix B.
8Diversity refers to differences in how market participants interpret the relationship between time-t infor-

mation and future outcomes, though the KUH approach also allows for heterogeneity of information about

fundamental factors to which market participants have access. In this sense, the diversity in our KUH pro-

totype model arises from recognizing that an economist faces Knightain uncertainty. We assume here that

participants have access to the same information about fundamentals, such as corporate earnings or produc-

tivity, and leave for future research the development of a KUH intertemporal model that allows for both

diversity and informational asymmetry.
9For an early discussion of how REH supplanted the core idea of the micro-foundations research program

– that according autonomy to participants’ forecasts is the key to understanding movements of aggregate

outcomes – see Frydman and Phelps (1983). For a comparison of the Phelps micro-foundations approach

with recently proposed post-REH representations of participants’ forecasts, see Frydman and Phelps (2013).
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factors exert an autonomous influence on participants’ forecasts. However, in order to

accord these forecasts an autonomous role in a model representing aggregate outcomes

with a stochastic process, an economist must rely on inconsistent models.

Thus, once an economist hypothesizes that a stochastic process can represent how out-

comes unfold over time, he can follow either the REH or the behavioral-finance approach.

However, he cannot build models that synthesize the core ideas underpinning each of these

approaches.10

KUH reveals a novel way to build models that rest on a synthesis of Muth’s hypoth-

esis – the core idea underpinning the REH approach – and the compelling evidence that

non-fundamental factors, such as market sentiment, exert an autonomous influence on par-

ticipants’ forecasts, especially in asset markets.11 As in REH models, imposing consistency

within a KUH model relates participants’ forecasts of aggregate outcomes to fundamentals.

Remarkably, Muth’s hypothesis also plays a central role in representing the influence of

psychological and other non-fundamental factors on how participants’ forecast outcomes

in terms of fundamentals.12

In developing KUH, we build on the ideas that motivated Frydman and Goldberg’s

(2007, 2013a,b) attempt to formulate an approach – which they called Imperfect Knowl-

edge Economics (IKE) – that recognizes the importance for macroeconomic theory of un-

foreseeable change in the process driving aggregate outcomes. Lacking the appropriate

mathematical framework to characterize Knightian uncertainty in this process, Frydman

and Goldberg could not rely on Muth’s hypothesis to represent participants’ forecasts. Con-

sequently, they could not develop a coherent approach to building intertemporal models that

recognizes that economists as well as market participants face Knightian uncertainty about

the process driving outcomes. KUH offers such an approach.

Opening macroeconomics and finance models to unforeseeable change poses consider-

able challenges in terms of testing their predictions. The development of a methodology

for testing models that recognize that econometricians, like everyone else, face Knightian

10In a notable recent book, Gennaioli and Shleifer (2018) provide a behavioral-finance account of the 2008

financial crisis, thereby advancing an argument that the profession should abandon REH models due to their

inability to represent the autonomous effect of participants’ forecast errors on economic outcomes.
11For an authoritative review of empirical evidence on the role of market sentiment in driving stock prices,

see Barberis et al. (1998).
12We follow convention in referring to "fundamentals" as exogenous variables that an economist includes

in his specifications of his model’s endogenous variables. We call "non-fundamentals" the psychological as

well as fundamental factors that influence only participants’ forecasts of aggregate outcomes, for example

the stock price and the inflation rate. For further examples and discussion, see Remark 6 in Section 8.
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uncertainty is an important topic for future research. However, in Section 9 and Appen-

dix B, we illustrate how existing econometric methods, particularly econometrically-based

calibration, as advocated by Hansen and Heckman (1996), can be adapted to confront the

KUH prototype intertemporal model’s predictions with time-series data on earnings, divi-

dends, and stock prices of companies included in the S&P 500 index, as well as indicators

of market sentiment extracted from the narrative market reports.13

The plan of the paper is as follows. Sections 2-4 explain and formally present the

mathematical framework that underpins the KUH approach. We characterize Knightian

uncertainty in a prototype intertemporal model and define the predictions of the model’s

exogenous and endogenous variables. Relying on these predictions, Sections 5-6 show how

KUH applies Muth’s hypothesis to represent, in terms of fundamental factors, participants’

forecasts and aggregate outcomes under Knightian uncertainty. In Section 7, we show how

a KUH model represents the autonomous role played by market participants’ forecasts in

driving outcomes. Section 8 provides two formal examples of how a KUH model rep-

resents the autonomous influence of market sentiment on participants’ forecasts without

presuming that participants forego profit opportunities. In Section 9, we sketch how the

existing econometric methodology, including calibration, can be adapted to confront KUH

models with time-series data, and we illustrate this methodology in assessing the adequacy

of the predictions of a simple model for stock prices. Section 10 concludes the paper. Ap-

pendix A contains mathematical proofs of the theorems and lemmas presented in the paper.

Appendix B describes the data and presents the details of our calibration methodology and

econometric specifications, as well as graphs and tables of the results.

2 Characterizing Knightian Uncertainty

Macroeconomic and finance models are intertemporal in the sense that they assume that

aggregate outcomes, such as the inflation rate and the stock price, are driven at each point

in time by market participants’ forecasts of these outcomes’ future values. Regardless of

the context, in order for the intertemporal representation of an aggregate outcome to gener-

ate implications for time-series data, an economist must represent participants’ forecasts in

terms of some exogenous variables – for example, corporate earnings in a present-value

13Shiller (2017) has argued that narrative market reports contain relevant information for building formal

macroeconomics and finance models and confronting them with quantitative empirical evidence. Section 8

and Appendix B.4 illustrate the particular importance of Shiller’s arguments for building mathematical mod-

els of outcomes under Knightian uncertainty, which, by definition, cannot be represented with a stochastic

process.
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model of stock prices or total factor productivity in a New Keynesian macroeconomic

model.14

In order to present how the KUH approach formalizes both risk and Knightian uncer-

tainty, we consider a variable, denoted by xt, which we refer to as corporate earnings in the

following. We formalize “risk” in the process driving earnings with a standard stochastic

specification at a point in time. Importantly, we formalize the Knightian uncertainty faced

by an economist by allowing the specification of the process driving earnings to undergo

change at times and in ways that cannot be represented ex ante with a probabilistic rule

such as Markov switching.

To focus on the key features of KUH’s mathematical framework, we employ a partic-

ularly simple specification of the earnings process. We assume that log-earnings follow a

random walk with time-varying drift coefficients:

∆ log xt = µt + εx,t, (1)

for t = 1, 2, . . ., and where {µt}t=1,2,... is a sequence of deterministic constants and εx,t are

independent over time with mean zero and variance σ2x.

The conditional moments of the probability distribution of the stochastic innovation

εx,t, particularly its variance, represents (probabilistic) risk. Recognizing that an econo-

mist faces Knightian uncertainty about the process driving earnings, KUH does not specify

a stochastic process for how the drift coefficient, µt, unfolds over time. Instead, KUH hy-

pothesizes that such change can be characterized with ex ante conditions that constrain the

values of µt to unfold between upper and lower bounds.15

Specifically, at any time t, we constrain the coefficients,
{
µt+k

}
k=1,2,...

, to take any

value within time-varying intervals, which depend on these coefficients’ values at t or ear-

lier. We denote these intervals as follows:

µt+k ∈ I
µ
t:t+k =

[
Lµt:t+k, U

µ
t:t+k

]
, (2)

where [L,U ] indicates an interval with lower and upper bounds given by L and U . We write

that µt+k ∈ I
µ
t:t+k to indicate that µt+k lies within this interval, when viewed from time t.

We refer to the constraints, such as in (2), as Knightian uncertainty (KU) constraints. A

14See Section 3, for futher discussion and references to these models.
15Although the KUH approach bounds the extent of change in the model’s coefficients, it is compatible

with large-scale unforeseeable change in how the models’ variables unfold over time.
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KUH model relies on such constraints to characterize Knightian uncertainty in the processes

driving its exogenous and endogenous variables. In order to explicate how the KU con-

straint in (2) enables us to specify such characterizations for earnings, we first note that the

specification in (1) implies that earnings at time t+ k are given by:

xt+k = xt exp(
k∑
j=1

εx,t+j) exp(
k∑
j=1

µt+j). (3)

When viewed from time t, the representations in (3) specifies earnings at any future time

t + k, xt+k, in terms of (i) earnings at time t, xt, (ii) the sequence of i.i.d. stochastic inno-

vations, {εx,t+j}, j = 1, 2, . . . , k, and, (iii) the sequence of deterministic drift coefficients{
µt+j

}
j=1,2,...,k

, which undergo unforeseeable change between t and t+ k. Thus, the prob-

ability distribution of the future xt+k, conditional on the time-t realization of earnings, xt

and given the time-t values of the drift coefficient µt, is not defined in a KUH model.

However, the KU constraint in (2) on the future values of the drift coefficients enable

us to specify at each point in time t, the probability measure, Pt, of the end-points of the

stochastic intervals within which xt+k lies, conditional on xt and given the value of µt.

The following theorem specifies this probability measure in terms of the sequence of i.i.d.

stochastic innovations, {εx,t+j}j=1,2,...,k:

Theorem 1 The KU constraint in (2) on the future values of the coefficients
{
µt+j

}
, with

1 ≤ j ≤ k, implies that future earnings lie within the stochastic interval, Ixt:t+k, when

viewed from time t:

xt+k ∈ Ixt:t+k =
[
Lxt:t+k, U

x
t:t+k

]
. (4)

where the end-points of the interval Ixt:t+k in (4) are given by

Lxt:t+k =xt exp(
k∑
j=1

εx,t+j) exp(
k∑
j=1

Lµt:t+j), (5)

Ux
t:t+k =xt exp(

k∑
j=1

εx,t+j) exp(
k∑
j=1

Uµ
t:t+j). (6)

This specifies the probability distribution in terms of {εx,t+j}j=1,2,..,k conditional on xt and

for the given time-t value of µt.

The specification in (5)-(6) of the end-points of the stochastic intervals within which

xt+k lies, when viewed from time t, specifies a family of the time-t conditional probability
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distributions, one of which represents earnings at t+ k, according to the model. However,

recognizing that an economist faces Knightian uncertainty, KUH does not specify at time

t which of these distributions represents xt+k. Because this ambiguity about the correct

representation of the processes driving a KUH model’s variables arises from unforeseeable

change in these processes, we refer to the specifications of the stochastic intervals in (5)-(6)

as time-t Knightian uncertainty (KU) characterization of xt+k.

2.1 Knightian Uncertainty Constraints

The KU characterization in (5)-(6) depends on the specifications of the KU constraints that

an economist chooses ex ante to represent the extent of unforeseeable change in the drift

coefficient
{
µt+j

}
j=1,2,...,k

. As with any economic model, an economist would constrain

change in a KUH model’s coefficients on the basis of empirical relevance, conceptual plau-

sibility, and tractability.

We consider a simple ex ante condition constraining the coefficients, µt+1, to take any

value within intervals the bounds of which depend on the values of µt. We state this condi-

tion, which we refer to as the Knightian uncertainty (KU) constraint, as follows:

Assumption 1 Given the value µt, µt+1 can take any value within the interval given by:

µt+1 ∈ I
µ
t:t+1 = [Lµt:t+1, U

µ
t:t+1] = [µ− + ρµ

(
µt − µ−

)
, µ+ + ρµ

(
µt − µ+

)
], (7)

where µ− < µ+, 0 ≤ ρµ < 1 and the initial condition is µ− ≤ µ1 ≤ µ+.

Assumption 1 neither imposes conditions on exactly how µt will unfold over time nor

specifies a probabilistic rule to determine which value the coefficient µt+1 will take within

the interval Iµt:t+1. However, the condition (7) specifies the end-points of this interval in

terms of the lower and upper bounds, µ− and µ+, respectively, and an autoregressive para-

meter, ρµ.

The key implication of the KU constraint in (7) is that, when viewed from time t,

Knightian uncertainty about µt at any future t+k is characterized by the set of exogenously

fixed constants, (µ−, µ+, ρµ), which we refer to as Knightian uncertainty (KU) parameters.

We state this property as a lemma:

Lemma 1 The KU constraint (7) implies that, viewed from time t, for j ≥ 1,

µt+j ∈ I
µ
t:t+j = [Lµt:t+j, U

µ
t:t+j], (8)

Lµt:t+j =µ− + ρjµ
(
µt − µ−

)
, and Uµ

t:t+j = µ+ + ρjµ
(
µt − µ+

)
, (9)

9



and that the end-points of the intervals satisfy the following intertemporal monotonicity

property:

Lµt:t+j+1 ≤ Lµt+1:t+j+1 and Uµ
t:t+j+1 ≥ Uµ

t+1:t+j+1. (10)

Assumption 1 formalizes the idea that, when viewed from time t, Knightian uncertainty

about the future values of µt+j increases with the time horizon j. That is, for 0 < ρµ < 1,

the size of the interval Iµt:t+j within which µt+j lies, when viewed from time t, widens with

the increase in horizon j. In this sense, Knightian uncertainty about the future values of

µt+j increases with the time horizon.16 However, as j → ∞, Knightian uncertainty about

µt+j converges to
[
µ−, µ+

]
.17

By assuming that the evolution of the drift parameter depends on its history, and that

ascertaining its range of possible values becomes increasingly difficult at a more distant

horizon, the constraint in (8) provides a plausible and tractable way to characterize Knight-

ian uncertainty in a variety of economic contexts. Because this constraint is specified in

terms of a parsimonious set of parameters, a calibration methodology can be used to assess

its relevance, thereby confronting a KUH model with time-series data.18

Section 9 presents an example of a quantitative calibration of our prototype model of

the stock price on the basis of data for earnings, dividends, and stock prices of companies

included in the S&P 500 Index. The results indicate that µ− < 0 and µ+ > 0, that is, µt

could take both positive and negative values. Moreover, the empirical value of ρµ satisfies,

0 < ρµ < 1, which supports the idea, formalized by (8) that, viewed from time t, the extent

of Knightian uncertainty increases with the time horizon j.19

In the next section, we show how the KU constraint in (8) underpins KUH’s character-

ization of Knightian uncertainty in the process driving earnings.

2.2 Parametric Characterization of Knightian Uncertainty in Earn-

ings

The moments of the stochastic innovation εx,t in the specification of the earnings process

in (1) characterize measurable uncertainty in this process at a point in time. The KU pa-

16For ρµ = 0, the interval also reduces to Iµt:t+j =
[
µ−, µ+

]
for all j, thereby characterizing Knightian

uncertainty about future µt+j to be the same for all time horizons j.
17For ρµ = 1, the constraint in (8) reduces to µt+j = µt+j−1 for all t and j, thereby assuming that an

economist does not face Knightian uncertainty about the earnings process.
18For a pioneering argument in favor of representing outcomes in terms of a parsimonious set of exogenous

parameters to facilitate the use of calibration methodology, see Prescott (1986).
19The econometric calibration of the model in Section 9 indicates that ρµ is roughly 0.7, and hence that

KU increases (decreases) fast to µ+ (µ−).
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rameters (µ−, µ+, ρµ) play a role analogous to such moments in characterizing Knightian

uncertainty in how the process driving earnings unfolds over time. The following lemma

presents such a parametric characterization of KU in the earnings process:

Lemma 2 The KU constraint in (8) on the bounds within which µt+j , j = 1, 2, . . . , k,

lie specifies the end-points of the stochastic interval, in (4), within which xt+k lies, when

viewed from time-t, in terms of xt, µt and a set of exogenously fixed KU parameters

(µ−, µ+, ρµ):

Lxt:t+k =xt exp(
k∑
j=1

εx,t+j) exp(
k∑
j=1

(µ− + ρjµ
(
µt − µ−

)
)), (11)

Ux
t:t+k =xt exp(

k∑
j=1

εx,t+j) exp(
k∑
j=1

(µ+ + ρjµ
(
µt − µ+

)
)). (12)

3 A Simple Prototype Intertemporal Model

The time-t KU characterization of exogenous variables, such as earnings, in (11) and (12),

enables economists to characterize Knightian uncertainty of endogenous variables in mod-

els of a wide range of aggregate outcomes. In order to present the key features of how

the KUH approach can be used to build macroeconomics and finance models, we con-

sider a simple intertemporal model for one aggregate outcome: the stock price. The model

assumes that participants bid this price to the level that satisfies the following relationship:

pt = γ (Ft (dt+1) + Ft (pt+1)) , (13)

where pt is the stock price, dt denotes dividends, Ft (·) stands for the time-t values of the

market’s (an aggregate of its participants’) forecasts of dividends and stock prices at time

t+ 1, and γ is a discount factor, which is assumed to be constant.20

Shiller (1981, p. 424) points out that the intertemporal representation of the stock price

in (13) can be interpreted as a no-arbitrage condition, because this representation follows

from equating the market’s forecast of the one-period holding return from buying a stock

at time t and selling it at time t + 1 with the one-period rate of interest. He relies on

(13) in his pathbreaking argument that the REH-based present-value model for the stock

20Using a prototype model based on (13) to exposit the KUH approach is analogous to Barberis et al.’s

(1998) reliance on a model assuming risk-neutrality and a constant discount rate to represent their approach

to behavioral finance.
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price is inconsistent with time-series data.21 Although, for the sake of concreteness, we

refer to the representation in (13) as “a no-arbitrage condition” and to the variables pt and

dt as the “the stock price” and “dividends,” our objective in this paper is not to present a

fully developed KUH model of the stock price that would enable us to reexamine Shiller’s

findings regarding the adequacy of the present-value model under Knightian uncertainty.

We set the discount factor to a constant and make other simplifying assumptions to

expound KUH’s potential for building consistent intertemporal models under Knightian

uncertainty and deriving their predictions for time-series data.22 Moreover, notwithstanding

the simplifying assumptions underpinning the representation of the stock price in (13),

this intertemporal specification captures the key feature of the models that are typically

used in other contexts in macroeconomics and finance theory. For example, analogously

to the representation in (13), the New Keynesian (NK) model relates the inflation rate to

participants’ forecasts of its future values.23

4 Knightian Uncertainty Expectation

The no-arbitrage condition (13) relates the stock price at time t to an aggregate of mar-

ket participants’ forecasts of dividends and stock prices in future periods. KUH relies

on Muth’s (1961) hypothesis to constrain the specification of participants’ forecasts to be

consistent with the model’s prediction of these outcomes. In order to implement Muth’s

hypothesis in a KUH model based on the representation in (13), we must define the model’s

predictions of dividends and prices under Knightian uncertainty.

Because KUH opens an economist’s model to unforeseeable change, the model does not

represent outcomes with a stochastic process, which renders the standard (conditional) ex-

pectation undefined. Instead, we rely on KUH’s characterization of Knightian uncertainty

in the model’s exogenous variables, such as earnings, to define the model’s predictions of

dividends and prices.

21However, the subsequent literature uncovered evidence that the discount factor is not constant, leading

proponents of REH to question Shiller’s interpretation of his findings as a decisive rejection of the REH

present-value models. For an insightful and authoritative survey of this evidence, viewed through the lens of

REH models, see Cochrane (2011).
22Developing a KUH model of asset prices that would allow for a time-varying discount factor and relax

other simplifying assumptions of the prototype model is left for future research.
23See Clarida et al. (1999) for formal examples, an extensive review of the NK models, and further refer-

ences. For a classic treatment of the New Keynesian approach to monetary theory and policy, see Woodford

(2003).
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4.1 Characterizing Knightian Uncertainty in the Relationship Between

Dividends and Earnings

As in REH models, in order to derive the model-implied relationship between the stock

price and earnings, we first relate dividends to earnings. Here, we specify a linear relation-

ship between dividends dt and earnings xt, according to which the impact of earnings on

dividends is given by a sequence of time-varying deterministic coefficients {bt}t=1,2,...,

dt = btxt + εd,t, (14)

where εd,t are independent over time with mean zero and variance σ2d. Moreover, we allow

bt to undergo unforeseeable change, but, analogously to (2), we constrain the coefficients

{bt}t=1,2,..., to take any value within time-varying intervals:

Ibt:t+k =
[
Lbt:t+k, U

b
t:t+k

]
. (15)

Analogously to the argument leading to the Theorem 1’s characterization of KU in the

earnings process, the specifications in (1) and (14) imply that dividends at time t + k are

given by:

dt+k = xtbt+k exp(
k∑
j=1

εx,t+j) exp(
k∑
j=1

µt+j) + εd,t+k. (16)

When viewed from time t, the representation in (16) specifies dividends at any future time

t + k, dt+k, in terms of (i) earnings at time t, xt, (ii) the sequence of i.i.d. stochastic

innovations,{εx,t+j} , j = 1, 2, . . . , k, and εd,t+k, and, (iii) the time-varying coefficients

(
{
µt+j

}
j=1,2,...,k

, bt+k), which undergo unforeseeable change between t and t+k.24 Thus,

the probability distribution of the future dt+k, conditional on the time-t realization of earn-

ings, xt and given the time-t values of the model’s coefficients (µt, bt), is not defined in a

KUH model.

However, the KU constraints, in (2) and (15), on the future values of the model’s coeffi-

cients enable us to specify at each point in time t, the probability measure, Pt, and the cor-

responding expectation, Et, of the end-points of the stochastic intervals, conditional on xt

and given the values of µt and bt. The following corollary to Theorem 1 specifies this prob-

24This contrasts with the KUH model’s REH and behavioral-finance counterparts, which, conditional on

(µt, bt), would specify future values of these coefficients,
({
µt+j

}
j=1,2,...,k

, bt+k

)
precisely – to be either

unchanging over time or changing according to a probabilistic rule, such as, for example, Markov switching.
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ability measure in terms of the sequence of i.i.d. stochastic innovations, {εx,t+j}j=1,2,...,k
and εd,t+k.

Corollary 1 The KU constraints in (2) and (15) on the future values of the coefficients

{µt+j}, j = 1, 2, ..., k, and bt+k imply that future dividends lie within the stochastic inter-

val, Idt:t+k, when viewed from time t, in terms of (µt, bt),

dt+k ∈ Idt:t+k =
[
Ldt:t+k, U

d
t:t+k

]
, (17)

where the end-points of the interval Idt:t+k in (17) are given by

Ldt:t+k =xtL
b
t:t+k exp(

k∑
j=1

εx,t+j) exp(
k∑
j=1

Lµt:t+j) + εd,t+k, (18)

Ud
t:t+k =xtU

b
t:t+k exp(

k∑
j=1

εx,t+j) exp(
k∑
j=1

Uµ
t:t+j) + εd,t+k. (19)

This specifies the probability distribution in terms of {εx,t+j}j=1,2,..,k conditional on xt and

for the given time-t values of µt and bt.

4.2 Parametric Characterization of Knightian Uncertainty in Divi-

dends

The specifications in (18) and (19) show that the stochastic interval within which dt+k lies

depends on the particular specification of the KU constraint that an economist chooses ex

ante to bound the coefficients bt+k and µt+k. Although in some contexts, an economist

may characterize unforeseeable change in the relationship between the two variables with

different ex ante conditions than those characterizing such change in µt, here we specify

the KU constraint for bt+k analogously to the constraint in (7) bounding the drift of the

earnings process:

Assumption 2 Given the value bt, bt+1 can take any value within the interval given by

bt+1 ∈ Ibt:t+1 = [Lbt:t+1, U
b
t:t+1] = [b− + ρb (bt − b−) , b+ + ρb (bt − b+)] , (20)

where b− < b+, 0 ≤ ρb < 1 and the initial condition is b− ≤ b1 ≤ b+.

Analogously to Lemma 1, the following lemma specifies the KU constraint for bt+j , for

j ≥ 1.
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Lemma 3 The KU constraint (20) implies that viewed from time t, for j ≥ 1,

bt+j ∈ Ibt:t+j =
[
Lbt:t+j, U

b
t:t+j

]
, (21)

Lbt:t+j = b− + ρjb (bt − b−) , and U b
t:t+j = b+ + ρjb (bt − b+) , (22)

and that the end-points of the intervals satisfy the following intertemporal monotonicity

property:

Lbt:t+j+1 ≤ Lbt+1:t+j+1 and U b
t:t+j+1 ≥ U b

t+1:t+j+1, (23)

where b+ > b− and 0 ≤ ρjb < 0.

If b_ > 0, then Assumption 2 formalizes the qualitative regularity that earnings have a

non-negative impact on dividends at all points in time. Although the condition (21) does

not specify a particular value that bt+j will take at t + j, this condition does constrain the

value of bt+j to lie within the interval, Ibt:t+j , when viewed from time t.25 The following

lemma states the implication of this constraint for the parametric specification of Knightian

uncertainty in the dividend process:

Lemma 4 Lemmas 2 and 3 specify the end-points of the stochastic interval, in (17) within

which dt+k lies, when viewed from time-t, in terms of µt, bt and a set of exogenously fixed

parameters (µ−, µ+, ρµ, b−, b+, ρb) :

Ldt:t+k =xtL
b
t:t+k exp(

k∑
j=1

εx,t+j) exp(
k∑
j=1

Lµt:t+j) + εd,t+k, (24)

Ud
t:t+k =xtU

b
t:t+k exp(

k∑
j=1

εx,t+j) exp(
k∑
j=1

Uµ
t:t+j) + εd,t+k, (25)

where Lbt:t+k, U
b
t:t+k, L

µ
t:t+j, and Uµ

t:t+j are given in (22) and (8) respectively.

4.3 Knightian Uncertainty Expectation of Dividends

Lemma 4 shows how the KU characterization of xt+k, in (11) and (12) enables us to char-

acterize the Knightian uncertainty in dt+k. The model-implied representations, in (24) and

(25), of the limits of the stochastic interval within which dt+k lies, when viewed from time

t, specify a family of the time-t conditional probability distributions. Although one of these

25As its counterpart for µt+j in (8), the KU constraint in (21) seems plausible in representing a time-

varying relationship between dividends and earnings. In Section 9, we provide some empirical support for

this condition on the basis of data for companies included in the S&P 500 stock index.
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distributions represents dividends at t + k, a KUH model, recognizing that an economist

faces Knightian uncertainty, does not specify at time twhich of them represents the process

that will actually drive dt+k. Thus, the (standard) time-t conditional expectation of dt+k is

undefined in the model.

However, the KU characterization of dt+k in Lemma 4 enables us to specify the interval

within which the future value of dt+k is expected to lie, when viewed from time t. We refer

to this interval as the Knightian uncertainty expectation (KE) of dt+k and formally define

this as the Et expectation of the end-points of the interval Idt:t+k, in (24) and (25), within

which dt+k is expected to lie, conditional on xt and for the given values of µt and bt:

KEt (dt+k) =
[
Et
(
Ldt:t+k

)
, Et

(
Ud
t:t+k

)]
. (26)

Computing Et of the end-points in (24) and (25) we find that,

KEt (dt+k) = xtv
k
[
ldt:t+k, u

d
t:t+k

]
, (27)

where v = E exp (εx,t) and

ldt:t+k =
(
b− + ρkb (bt − b−)

)
exp(

k∑
j=1

(µ− + ρjµ
(
µt − µ−

)
)), (28)

udt:t+k =
(
b+ + ρkb (bt − b+)

)
exp(

k∑
j=1

(µ+ + ρjµ
(
µt − µ+

)
)). (29)

The interval KEt (dt+k) in (27) represents the time-t prediction of the range of values

within which dividends are expected to lie at t + k in terms of xt, µt, bt,, the set of exoge-

nously fixed KU parameters, (µ−, µ+, ρµ, b−, b+, ρb), and the moments of the innovation,

εx,t.

Note that if we consider the conditional expectation of dt given xt there is no role for

Knightian uncertainty in how dividends unfold over time. But we can formally define the

Knightian expectation as the point (a degenerate interval) given by,

KEt (dt) = Et (dt) = btxt.

4.3.1 Iterated Knightian Uncertainty Expectations

The analysis of the implications of the no-arbitrage condition in (13), involves iterations of

KE, such asKEt (KEt+1(dt+2)). This involves two (or more) iterations. First, as discussed
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above,KEt+1(dt+2) is computed asEt+1 of the end-points of the stochastic interval implied

by the KU constraints for dt+2, when viewed from time t+1. The end-points of the resulting

interval,KEt+1(dt+2), depend on the time t+1 values of bt+1 and µt+1, as well as earnings,

xt+1; thus, the conditional expectation Et of these end-points is not well defined at time

t. However, applying the KU constraints again, as well as iterating xt+1, enables us to

express these end-points in terms of bt and µt (and xt). This renders Et of the end-points of

KEt+1(dt+2), and thus KEt (KEt+1(dt+2)), well-defined. The following theorem derives

such iterated Knightian expectations and shows that the constraints for bt+j and µt+j , in

(22) and (9), imply that the analog of the law of iterated expectations holds under Knightian

uncertainty expectations.

Theorem 2 WithKEt (dt+k) defined in (26), it follows for k ≥ 0 under the KU constraints

in (8) and (21) that:

KEt (dt) = btxt, (30)

KEt (dt+k) =xt[L
b
t:t+kv

k exp(
k∑
j=1

Lµt:t+j), U
b
t:t+kv

k exp(
k∑
j=1

Uµ
t:t+j)], (31)

where v = E exp (εx,t), and Lbt:t+k, U b
t:t+k, Lµt:t+j , and Uµ

t:t+j are specified in (22) and (9).

Furthermore, the following iterative property of KE holds:

KEt (dt+k) = KEt (KEt+1 (. . . KEt+k−1 (dt+k) . . .)) . (32)

Remark 1 The property in (32) may be viewed as a law of iterated Knightian uncertainty

expectations. It holds for the characterizations of Knightian uncertainty in the dividends

process in (24)-(25).26

5 Muth’s Hypothesis Under Knightian Uncertainty

KUH’s representations of market participants’ forecasts of outcomes, such as dividends

and stock prices, rest on the premise that participants are rational, in the sense that they

are goal-oriented (typically assumed to mean profit-seeking) and relate the forecasts of

payoff-relevant outcomes to some understanding, albeit imperfect, of the process driving

26This property may, or may not, hold for a different KU characterizations. This is in contrast to REH

models where the complete stochastic specifications for all variables implies that the law of iterated expecta-

tions always applies. We leave for future research the characterization of a general class of KU constraints

under which the property in (32) holds.
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these outcomes. Muth (1961) argued that an economist can relate participants’ forecasts

to rational considerations by representing their understandings of the processes driving

dividends and stock prices with his own understanding of these processes, as formalized by

his model.

Muth (1961, pp. 315-317) was well aware that “there are considerable [...] differences

of opinion” about the processes driving outcomes. Importantly, he emphasized that his

hypothesis should not be “confused [...] with a pronouncement as to what [rational par-

ticipants] ought to do,” and that it does not assert that their forecasts, are "perfect." Muth

believed that, although boldly abstract, representing participants’ forecasts as being con-

sistent with models’ predictions of outcomes was a “sensible” way to acknowledge partic-

ipants’ rationality – that their forecasts are related to “the way the economy works.” That,

after all, is precisely what an economist hypothesizes and formalizes with his own model.

Relying on this premise, Lucas (1995, p. 254-255) argued that Muth’s hypothesis

should be considered “the principle” of coherent model building in macroeconomic and

finance theory. He pointed out that when an economist relates participants’ forecasts to

how “the economy works” in a way that is inconsistent with the predictions of his own

model, he contradicts his model’s hypothesis: that it represents how outcomes actually

unfold over time.

By imposing consistency within an intertemporal model, REH removed the “glaring”

inconsistency that characterized the intertemporal macroeconomic models of the 1960s.

Analogously, KUH relies on Muth’s hypothesis to construct coherent models that recognize

that not only market participants, but economists as well, face Knightian uncertainty about

the process driving outcomes.

5.1 REH’s Implementation of Muth’s Hypothesis

In order to highlight the main distinctive features of KUH’s application of Muth’s hypoth-

esis, we first briefly consider REH’s application of the hypothesis in the context of the

specifications of earnings and dividends in (1) and (14).

Constraining µ+ = µ− = µ and b+ = b− = b, in (7) and (20), formalizes the as-

sumption that the processes driving earnings and dividends do not undergo unforeseeable

change, thereby reducing our KUH prototype to its REH counterpart.

As we next illustrate formally, REH’s application of Muth’s hypothesis about how

economists’ models can recognize that participants rely on rational considerations has a

crucial implication: the conditional expectation of an economist’s own stochastic speci-
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fication of dividends represents precisely how every market participant understands and

forecasts dividends.

To this end, we let F it (dt+k) and F jt (dt+k) denote the values of the forecasts of dt+k

selected by any two market participants, say i and j. The REH version of our prototype

represents the time-t forecasts of dividends by every participant, as well as the market, at

any t+ k for k ≥ 1 and for any (participants) i and j as follows:

F it (dt+k) = F jt (dt+k) = Ft(dt+k) = ϕxt, (33)

where Ft(dt+k) denotes the value of the market’s (an aggregate of its participants) forecast,

and

ϕ = vkb exp (kµ) . (34)

Remark 2 The representation in (34) illustrates the key implication of assuming that the

process driving outcomes, such as dividends, does not undergo unforeseeable change. Ap-

plying Muth’s hypothesis in such models, as REH does, constrains representations of par-

ticipants’ forecasts of dividends at each t + k, dt+k, to be uniform, in the sense that every

market participant is assumed to select exactly the same quantitative forecast of dividends

in making his demand and supply decisions. Moreover, REH fully determines the singular

representation of the so-called “representative agent’s” forecasts in terms of the model’s

coefficients, (b, µ) and the moments of its stochastic innovations, v.

5.2 Relating Participants’ Forecasts of Dividends to Earnings under

Knightian Uncertainty

Having defined an economic model’s predictions under Knightian uncertainty, we apply

Muth’s hypothesis in our prototype KUH model. As with REH models, the hypothesis

enables an economist using a KUH model to acknowledge rationality in participants’ fore-

casting, thereby relating the specification of their forecasts of aggregate outcomes, such as

the stock price, to fundamental factors, such as earnings. However, in contrast to REH’s

representations, imposing consistency in a model that recognizes an economist’s Knightian

uncertainty yields neither precise nor uniform representations of participants’ forecasts.

A KUH model formalizes an economist’s understanding that the process driving out-

comes undergoes unforeseeable change. KUH implements Muth’s hypothesis by constrain-

ing the model’s representations of participants’ forecasts of dividends and stock prices to be
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consistent with its predictions of these outcomes. Consequently, the model does not repre-

sent how participants forecast these outcomes with a stochastic process. Applying Muth’s

hypothesis in a KUH model thus represents that market participants also understand that

the process driving outcomes undergoes unforeseeable change.

To demonstrate this formally, we show how our KUH prototype represents participants’

forecasts of dividends in terms of earnings. The KE expectation in (31) specifies the interval

within which dt+k is expected to lie, according to the KU characterization of dividends in

(24)-(25). Applying Muth’s hypothesis, we represent the value of the ith participant’s time-

t forecast of dt+k to be one of the points within the KE interval in (31):

F it (dt+k) = ϕit:t+kxt ∈ KEt (dt+k) . (35)

The expression for KEt (dt+k) in (31) implies that, according to the model, the interval,

Iϕt:t+k, within which ϕi lies is given by

ϕit:t+k ∈ I
ϕ
t:t+k =

[
Lϕt:t+k, U

ϕ
t:t+k

]
= vk

[
ldt:t+k, u

d
t:t+k

]
, (36)

where ldt:t+k and udt:t+k are specified in (28) and (29).

The representation in (35)-(36) formalizes the idea that recognizing that an economist

faces Knightian uncertainty means that his model does not determine completely which

particular value of F it (dt+k) a market participant will select at time t.27 However, although

Muth’s hypothesis neither determines the particular values that the coefficients ϕit:t+k in

(36) take for any i, nor restricts these coefficients to be the same for all i, the hypothesis

does constrain the values of all ϕit:t+ks to lie within the interval Iϕt:t+k, in (36). Denoting an

aggregate of ϕit:t+ks by ϕt:t+k, and the corresponding aggregate of F it (dt+1) by Ft (dt+1)),

we formally state this:

Ft (dt+k) = ϕt:t+kxt, (37)

where ϕt:t+k ∈ I
ϕ
t:t+k =

[
Lϕt:t+k, U

ϕ
t:t+k

]
, and the model does not specify the particular value

that ϕt:t+k takes within the interval Iϕt:t+k.

Herein lies the true significance of Muth’s hypothesis for macroeconomics and finance

theory: Once an economist recognizes that he faces Knightian uncertainty about the process

27If an economist were to specify a probabilistic rule that would enable him to represent which specific

value F it (dt+k) takes within the interval KEt (dt+k), in (35), he would be able to represent aggregate out-

comes with a stochastic process, thereby assuming that he does not face Knightian uncertainty. For an exam-

ple of such an approach and further discussion, see Ilut and Scheider (2014).

20



driving aggregate outcomes, he faces ambiguity about the precise values of the forecasts

that underpin rational participants’ decisions. However, because our KUH prototype char-

acterizes Knightian uncertainty with ex ante constraints on the extent of unforeseeable

change, applying Muth’s hypothesis in the model enables an economist to impose bounds

on his ambiguity about the values of rational participants’ forecasts of future dividends.

As we show in the remainder of this paper, such bounds on representations of partici-

pants’ forecasts of dividends are essential to a KUH model’s derivation of the relationship

between the stock price and earnings. Moreover, because Muth’s hypothesis does not con-

strain a KUH model’s representation of participants’ forecasts fully, the hypothesis enables

economists to represent the roles played by both fundamental and non-fundamental factors,

such as market sentiment, in how participants forecast dividends and stock prices. KUH

thus reveals a path to building macroeconomics and finance models that synthesize the core

ideas underpinning the REH and behavioral-finance approaches in a way that is compatible

with the diversity and rationality that characterize participants’ forecasts.

6 The Stock Price under Knightian Uncertainty

In Section 5.1, we illustrated how the REH counterpart of our KUH prototype determines

the particular values of the model-consistent representation of Ft (dt+1). As is well known,

applying REH in the intertemporal representation in (13),

pt = γ (Ft (dt+1) + Ft (pt+1)) , (38)

determines the particular values of the stock price set by the market at time t, pt in terms

of the REH model’s coefficients and the moments of its stochastic innovations.

Like its REH counterpart, a KUH model assumes that the no-arbitrage condition in (38)

summarizes how market participants’ demand and supply decisions – made on the basis of

the specific values of their forecasts of dividends and prices, as aggregated by Ft (dt+1)

and Ft (pt+1) – set the value of pt . However, recognizing Knightian uncertainty on the

part of an economist, a KUH model does not specify the particular value of the market’s

quantitative forecast, Ft (dt+1). Instead, from (37), the model represents this forecast to

lie in the interval, that is, Ft (dt+1) ∈ KEt (dt+1). Consequently, the KUH model does

not represent the particular value of the stock price. However, as we show next, the model

specifies the interval within which the value of the price pt set by the market, according to

(38) lies at each t.
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6.1 A No-Arbitrage Price Interval

In this section, we define the concept of a no-arbitrage interval Ipt that satisfies the interval

analog of the no-arbitrage condition in (38). Moreover, we show that at any point in time,

pt ∈ Ipt , while Ft (dt+1) ∈ KEt (dt+1) and Ft (pt+1) ∈ KEt
(
Ipt+1

)
.

In order to define Ipt , we make the following assumption, which is the interval version

of the well-known transversality condition.

Assumption 3 Assume that γ is chosen such that γv exp
(
µ+
)
< 1, where v = E exp (εx,t).

Given this assumption, we define Ipt as follows.

Definition 1 Using the representation of the KE intervals in (31) within which dt+k is

expected to lie, we define the following interval:

Ipt =
∞∑
k=1

γkKEt (dt+k) . (39)

Because, as the following theorem establishes, pt ∈ Ipt and Ipt satisfies the interval

analogue of the (pointwise) no-arbitrage condition in (38), we refer to Ipt as a no-arbitrage

price interval.

Theorem 3 Under Assumption 3, the interval Ipt in (39) is well-defined, and satisfies the

no-arbitrage interval condition,

Ipt = γ
(
KEt (dt+1) +KEt

(
Ipt+1

))
. (40)

Moreover, Ipt is given by,

Ipt =
∞∑
k=1

γkKEt (dt+k) = xt [Lpt , U
p
t ] , (41)

where

Lpt =
∞∑
k=1

γkvkLbt:t+k exp(
k∑
j=1

Lµt:t+j), (42)

Up
t =

∞∑
k=1

γkvkU b
t:t+k exp(

k∑
j=1

Uµ
t:t+j), (43)

and the model-implied bounds Lbt:t+k, U b
t:t+k, Lµt:t+j , and Uµ

t:t+j are specified in (9) and (22).
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Remark 3 In the special case in which ρµ = ρb = 0, in (9) and (22), the Knightian

uncertainty about future bt+k and µt+k is the same for all horizons, k, and the no-arbitrage

stock-price interval in (39) simplifies to Ipt = xt [Lp, Up], with

Lp = b−
γv exp(µ−)
1−γv exp(µ−)

and Up = b+
γv exp(µ+)
1−γv exp(µ+)

.

Remark 4 Constraining µ+ = µ− = µ and b+ = b− = b, reduces our KUH prototype to

its REH counterpart. This collapses the no-arbitrage stock-price interval in Theorem 3 to

the point that represents the value of the stock price set by the market precisely and deter-

mines it completely in terms of the model’s coefficients and the moments of its stochastic

innovations:

pt = θxt, with θ = b γv exp(µ)
1−γv exp(µ) . (44)

Like its REH counterpart in (44) a KUH model’s representation in (41) relates stock

prices to earnings, which we may write as

pt = θtxt ∈ Ipt , (45)

where, with Lpt and Up
t defined in (42) and (43), θt ∈ [Lpt , U

p
t ] such that θt is a time-varying

coefficient. However, in contrast to its REH counterpart’s representation for pt in (44), the

KUH model does not imply the specific value of θt and thus pt, at any t.

Remark 5 Although a KUH model does not specify the particular values that θt, and thus

pt, actually take within their respective intervals, the model-implied specifications of the

intervals KEt (dt+k), in (37), mean that pt lies within the interval Ipt in (41). From (9) and

(22), the end-points of this interval, in (42) and (43), depend on xt, µt, bt, the set of exoge-

nously fixed KU parameters, (µ−, µ+, ρµ, b−, b+, ρb), and the moments of the innovation,

εx,t.
28

28Such model-implied parameterization of the interval within which the price actually set by the market at

time t lies enables us to confront the interval predictions of a KUH model with econometric estimates of the

model’s time-varying coefficients and the moments of the model’s stochastic innovations. In Section 9 and

Appendix B.3, we illustrate such a quantitative calibration exercise, which combines Kydland and Prescott’s

(1982) original calibration methodology with an explicit econometric framework, as advocated by Hansen

and Heckman (1996).
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6.2 Relating Participants’ Forecasts of Stock Prices to Earnings Un-

der Knightian Uncertainty

As we did in representing participants’ forecasts of dividends, we rely on Muth’s hypoth-

esis to constrain the model’s representation of Ft (pt+1). To this end, we note that the

specification of the no-arbitrage interval in Ft (pt+1) implies that Ipt+1 depends on xt+1, the

values of which are expected to lie within the interval (4) for k = 1, when viewed from

time t.Thus, the time-t Knightian uncertainty expectation of Ipt+1 is given by:

KEt
(
Ipt+1

)
= xt[L

φ
t , U

φ
t ], (46)

where

Lφt =
∞∑
k=1

γkvk+1Lbt:t+1+k exp(
k+1∑
j=1

Lµt:t+j), (47)

Uφ
t =

∞∑
k=1

γkvk+1U b
t:t+1+k exp(

k+1∑
j=1

Uµ
t:t+j). (48)

Applying Muth’s hypothesis, the KUH model represents an ith participant’s forecast,F it (pt+1),

to be a point in the interval KEt
(
Ipt+1

)
within which the price set by the market at t+ 1 is

expected at time t to lie:

F it (pt+1) ∈ KEt
(
Ipt+1

)
.

Denoting byFt (pt+1) the market’s (aggregate) forecast of pt+1, the expressions forKEt (pt+1)

in (46)-(48) imply that, according to the model,

Ft (pt+1) = φtxt, (49)

where φt ∈ I
φ
t = [Lφt , U

φ
t ].

7 How Fundamentals Drive Stock Prices: An Autonomous Role for

Participants’ Forecasts

We have shown that imposing consistency within a KUH model, in contrast to doing so

within its REH counterpart, does not fully constrain representations of participants’ fore-

casts of dividends and prices. In this sense, a KUH model formalizes the idea that partici-

pants’ forecasts play an autonomous role in driving aggregate outcomes, such as the stock
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price. To present this point formally, we note that by Theorem 3, the no-arbitrage condition

in (38), implies that

pt ∈ Ipt = γ(KEt (dt+1) +KEt
(
Ipt+1

)
). (50)

Thus, the model represents the price actually set by the market to be one of the points

within the interval Ipt . Moreover, although the model does not specify the particular value

that pt takes, it does assume that this price satisfies the intertemporal relationship pt =

γ (Ft (dt+1) + Ft (pt+1)). Using the representation of Ft (dt+1), in (37) for k = 1, and the

representation of Ft (pt+1) , in (49), we can formally write pt as follows:

pt = γ(ϕt + φt)xt, (51)

where ϕt ∈ I
ϕ
t:t+1 =

[
Lϕt:t+1, U

ϕ
t:t+1

]
and φt ∈ I

φ
t =

[
Lφt , U

φ
t

]
, while Lϕt:t+1, U

ϕ
t:t+1, L

φ
t and

Uφ
t are specified in (36) and in (47)-(48). Also to simplify notation, ϕt stands for ϕt:t+1.

Recognizing that an economist’s faces Knightian uncertainty, KUH does not represent

the precise values that ϕt and φt, and thus Ft (dt+1) and Ft (pt+1), take within their respec-

tive intervals. Thereby, KUH implies that an economist faces ambiguity about how rational

participants forecasts drive their demand and supply decisions, which, in turn, result in the

price pt set by the market at t. This ambiguity – that an economist’s model does not fully

constrain its representations of participants’ forecasts – is just another way of stating that

these forecasts play an autonomous role in how the model represents the price at t, pt.

The autonomy of participants’ forecasts in setting the stock price at a point in time

implies that participants’ revisions of their forecasts play an autonomous role in driving the

movements of aggregate outcomes, such as the stock price, over time. Using (51), we state

this formally as follows using (51):

∆pt = γ (ϕt + φt) ∆xt + γ (∆ϕt + ∆φt)xt−1, (52)

where ∆pt = pt − pt−1. The term γ (ϕt + φt) ∆xt represents the effect of the change in

earnings on stock prices between t−1 and t, while the term γ (∆ϕt + ∆φt)xt−1 represents

the effect of the change in the coefficients, which may depend on other factors (for example,

market sentiment) on how participants forecast dividends and prices between these periods

as illustrated in the next sections.
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8 Reconciling Model Consistency with Behavioral Evidence

Imposing consistency within a KUH model relates participants’ forecasts of aggregate out-

comes to fundamentals. By reconciling Muth’s hypothesis with the autonomy of partici-

pants’ forecasts, KUH opens a way to build macroeconomic and finance models that rep-

resent the influence of psychological and other non-fundamental considerations on how

participants forecast outcomes in terms of fundamentals, and thus aggregate outcomes,

without presuming that participants are irrational.

Remark 6 As we mentioned in the Introduction, we follow the convention in referring to

"fundamental" and "non-fundamental" factors as exogenous variables that, respectively,

an economist includes and does not include in his specification of dividends, in (14). Thus,

our KUH prototype includes only one fundamental factor: corporate earnings. Although

we refer to all other factors as non-fundamentals, they can include both psychological con-

siderations and other factors, such as aggregate economic activity or sales, that influence

participants’ forecasts of dividends and stock prices directly (not through their effect on

dividends, as specified by the model).

A KUH model implies that, like the economist, market participants also face Knightian

uncertainty. Thus, the model implies on logical grounds that a profit-seeking participant

understands that any statistical model at best approximates some incomplete aspect of the

process driving outcomes. Moreover, unforeseeable change may occur at any point in time,

thereby rendering any stochastic approximation of the process underpinning outcomes in-

consistent with how outcomes actually unfold. Thus, a KUH model’s consistency implies

that a market participant faces ambiguity about which stochastic specification approximates

the past relationships between dividends, prices, and earnings, let alone which specifica-

tions might approximate these relationships in the future.

Consequently, in selecting a particular quantitative forecast to underpin his demand and

supply decisions, a rational market participant relies on a variety of factors and methods.

These include the predictions of a multitude of economic models on offer, as well as as-

sessments of the effects of psychological and other non-fundamental considerations, such

as market sentiment or political events, on the future course of aggregate outcomes.

By constraining the model-consistent coefficients of representations of participants’

forecasts only partly, a KUH model formalizes the relevance of myriad factors that drive

participants’ forecasts, but that an economist cannot build into his necessarily parsimonious

and abstract model. In this section, we sketch two examples of how our KUH prototype
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can represent the autonomous influence of non-fundamental factors on participants’ fore-

casts of dividends and stock prices with mathematical conditions that constrain the model-

consistent coefficients of the model’s representations of these forecasts.

To this end, we define an exogenous variable, st, which, for the sake of concreteness,

we refer to as an aggregate of market participants’ sentiment about the future course of

corporate earnings, dividends, and/or stock prices. We specify st to take three discrete

values, which we refer to as the state of this market sentiment:

st =


1, if the market (sentiment) is optimistic,

0, if the market (sentiment) is neutral,

−1, if the market (sentiment) is pessimistic.

(53)

Remark 7 In an economic model, market sentiment affects the representation of partic-

ipants quantitative forecasts of outcomes. However, the “sentiment” itself stands for the

influence of a variety of factors, including psychological, political, and other qualitative as

well as quantitative factors that participants consider relevant, but that an economist has

not included in his mathematical model.29

8.1 Behavioral Finance: Representing the Role of Market Sentiment

with Inconsistent Models

Behavioral-finance theorists have amassed compelling empirical evidence that market sen-

timent has significant autonomous effect on aggregate outcomes, especially in asset mar-

kets. However, they often represent their findings with models that specify with a stochastic

process how outcomes unfold over time, thus not including unforeseeable change. This led

them to rely on inconsistent models.

We illustrate such behavioral-finance representations by constraining the coefficients µt

and bt in (1) and (14) to be equal to constants, µ and b, thereby reducing representations of

Ft (dt+1) and Ft (pt+1) in our prototype to their REH counterparts:

Ft(dt+1) = ϕrehxt, and Ft(pt+1) = φrehxt, (54)

29Sentiment measures are constructed on the basis of narrative reports covering various historical events

and market participants’ interpretations of them – specifically, whether participants consider these events

positive (negative) for the future course of the economy. See Section 9 and Appendix B.4 for the use of such

measures in confronting our prototype model with time-series data and further references.
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where, from (1), (33), and (44):

ϕreh = vb exp (µ) , and φreh = bγ(v exp(µ))
2

1−γv exp(µ) . (55)

Having represented their empirical findings with models that rule out unforeseeable change

in how market sentiment influences participants’ forecasts, behavioral-finance theorists

have had no option but to represent these forecasts with inconsistent models. A particu-

larly simple example of such a representation hypothesizes that, conditional on the time-t

earnings, xt, when the market is optimistic (pessimistic) its forecasts of dividends and

prices exceed (fall short of) their REH-implied values. This behavioral hypothesis can be

formally specified as constraints on participants’ forecasts of dividends and prices, such

that when the market is optimistic, st = 1:

Ft(dt+1) = ϕoptxt, and Ft(pt+1) = φoptxt, (56)

where ϕopt > ϕreh and φopt > φreh. Likewise, for the case of pessimisim, st = −1:

Ft(dt+1) = ϕpesxt, and Ft(pt+1) = φpesxt, (57)

where ϕpes < ϕreh and φpes < φreh, with
(
ϕopt, φopt

)
and (ϕpes, φpes) constants.

Remark 8 Constraints in (56) and (57) illustrate the key features of behavioral-finance

representations of the influence of market sentiment (as well as other non-fundamental

factors) on participants’ forecasts:

1. These representations are necessarily inconsistent with how outcomes such as divi-

dends or prices actually unfold over time, as hypothesized by an economist’s model.

2. They assume that market sentiment has the same influence on every participant’s

forecasts and that this effect is either unchanging over time or can be represented with a

probabilistic rule, such as Markov switching.30

Thus the representations in (56) and (57) presume that when participants are optimistic

(pessimistic), they necessarily forego profit opportunities. In the next section, we formulate

a KUH analog of the behavioral-finance representation in (56) and (57). We show how

30These features characterize a seminal behavioral-finance model of the role of market sentiment in driving

stock prices by Barberis et al. (1998). They formulate the model for a “representative investor” whose fore-

casts switch between two models of earnings, each inconsistent with an economist specification, according

to a Markov switching rule.
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recognizing that an economist faces Knightian uncertainty enables him to represent the

diverse, autonomous influences of market sentiment on participants’ forecasts, and thus on

stock prices, in a way that does not presume that, when they are optimistic (pessimistic)

they forego profit opportunities.

8.2 KUH: Representing the Role of Market Sentiment in Consistent

Models

As we summarized in Remark 8, behavioral-finance models suffer from theoretical and

(likely) empirical difficulties, owing to their assumption that neither economists nor market

participants face Knightian uncertainty. However, Barberis et al.’s. (1998) idea underpin-

ning the behavioral-finance constraints in (56) and (57) – that optimism (pessimism) leads

participants to select forecasts that tend to be higher (lower) than those chosen when the

market is in a neutral state – nonetheless seems a sensible way to represent the influence of

market sentiment on participants’ forecasts.

However, in contrast to REH models, applying Muth’s hypothesis in a KUH model does

not represent participants’ forecasts of dividends and prices with precise values. This opens

a way to represent the influence of market sentiment (and other non-fundamental factors)

on participants’ forecasts as a constraint on the model-consistent consistent KE intervals

within which participants’ forecasts lie, according to the model.

There are a number of ways to formulate an analog of the constraints in (56) and (57)

in a KUH model. Here, we present two examples of such representations.31

8.2.1 Modifying Bounds for Representations of Participants’ Forecasts

We state the representations of optimism and pessimism as the following hypothesis:

Hypothesis 1

(i) When the market is optimistic, its forecasts lie within the following upper subinter-

vals of the KE intervals within which Ft (dt+1) and Ft (pt+1) lie, KEt(dt+1) in (31) and

KEt(Ipt+1) in (46):

Foptt (dt+1)∈ Iϕt:t+1(st = 1) =
[
Lϕt:t+1(st = 1), Uϕ

t:t+1

]
, (58)

Foptt (pt+1)∈ Iφt (st = 1) = [Lφt (st = 1), Uφ
t ], (59)

31A more complete exposition of how KUH can represent the insights of behavioral finance in consistent

models, that is, without presuming that market participants are irrational, is beyond the scope of this paper.
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where

Lϕt:t+1 (st = 1) =Lϕt:t+1(1− η) + Uϕ
t:t+1η, (60)

Lφt (st = 1) =Lφt (1− η) + Uφ
t η, (61)

and 0 ≤ η ≤ 1. We note that as η increases, the lower end-points of the restricted inter-

vals, Lϕt:t+1(st = 1) and Lφt (st = 1) increase. We therefore refer to η as the sentiment effect.

(ii) When the market is pessimistic, its forecasts lie within the following lower subin-

tervals of the KE intervals within which Ft (dt+1) and Ft (pt+1) lie, KEt(dt+1) in (31) and

KEt(Ipt+1) in (46):

Fpest (dt+1)∈ Iϕt:t+1(st = −1) =
[
Lϕt:t+1, U

ϕ
t:t+1(st = −1)

]
, (62)

Fpest (pt+1)∈ Iφt (st = −1) =
[
Lφt , U

φ
t (st = −1)

]
, (63)

where

Uϕ
t:t+1 (st = −1) =Uϕ

t:t+1(1− η) + Lϕt:t+1η, (64)

Uφ
t (st = −1) =Uφ

t (1− η) + Lφt η, (65)

and 0 ≤ η ≤ 1.

Remark 9 The constraints representing the effect of optimism and pessimism on partic-

ipants’ forecasts, in Hypothesis 1 (i) and (ii), highlight how recognizing that an econo-

mist faces Knightian uncertainty enables him to remedy the difficulties inherent in the

behavioral-finance formalizations of market sentiment in (56) and (57). In contrast to

Remark 8:

(i) By design, the representations implied by KU constraints in (58)-(59) and (62)-(63) are

model-consistent, thus avoiding behavioral-finance models’ presumption that partic-

ipants’ optimism (pessimism) leads them to forego profit opportunities.

(ii) KUH representations are compatible with the diversity of market sentiment’s influence

on individual participant’s forecasts.

(iii) These representations recognize that whether the market is in an optimistic, neutral,
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or pessimistic state, and how this state influences participants’ forecasts, changes at

times and in ways that cannot be represented with a stochastic process.

Empirical Consequences of Hypothesis 1 According to the no-arbitrage condition in

(38), and given the representations in (58)-(59) , (62)-(63), optimistic (pessimistic) partic-

ipants bid the stock price to lie within the upper (lower) subintervals of the no-arbitrage

interval, Ipt in (41):

poptt ∈Ipt (st = 1) = γ
(
Iϕt:t+1(st = 1) + Iφt (st = 1)

)
xt, (66)

ppest ∈Ipt (st = −1) = γ
(
Iϕt:t+1(st = −1) + Iφt (st = −1)

)
xt, (67)

where poptt and ppest denote the values of prices set by the market when its participants are

optimistic or pessimistic.

The subintervals, within which poptt and poptt in (66) and (67) lie, depend on xt, the

model’s KU parameters
(
µ−, µ+, ρµ, b−, b+, ρb

)
, and the sentiment effect, η. Thus, contin-

gent on whether the market is optimistic or pessimistic, we can confront the model’s predic-

tions about the influence of sentiment on participants’ forecasts by assessing whether the

time-series observations on pt actually lie within the subintervals (66) and (67). In Section

9 and Appendix B.4, we illustrate how this can be done using an econometric calibration

methodology and the proxy for market sentiment extracted from narrative market reports.

Remark 10 Representations in (66) and (67) highlight an essential role of Muth’s hy-

pothesis in building intertemporal models under Knightian uncertainty. Imposing consis-

tency within a KUH model enables an economist to represent and test the influence of

non-fundamental factors (market sentiment) on aggregate outcomes (stock prices).

8.2.2 Market Sentiment in Participants’ Forecast Revisions

As we demonstrated in Section 6, although a KUH model generates quantitative predictions

about the interval within which the values of pt lie at a point in time, conditional on xt,

the model does not generate quantitative predictions about how pt and xt co-move over

time. Moreover, a KUH model’s qualitative predictions about the co-movements in time-

series data are contingent on whether and, if so, how the model specifies change in its

representations of participants’ forecasts.32 For example, as is apparent from (52), leaving

32We refer to a macroeconomic model’s predictions as contingent if they depend on some variables

(events), the effects of which cannot be specified ex ante with a stochastic process. Recognizing that an
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changes in the coefficients, ∆ϕt and ∆φt, in the representations of Ft (dt+1) and Ft (pt+1)

unconstrained renders even the model’s qualitative predictions ambiguous, in the sense that

the model is compatible with both positive and negative co-movement between pt+k and

xt+k, at any time horizon k.33

Remark 11 The ambiguity of a KUH model’s predictions is just another way of stating

that, under Knightian uncertainty, the coefficients of the model-consistent representations

of participants’ forecasts are partly autonomous: they are not completely determined in

terms of the model’s KU parameters,
(
µ−, µ+, ρµ, b−, b+, ρb

)
, its coefficients at time t, µt

and bt, and the moments of its stochastic innovations.

The autonomy of a KUH model’s representation of participants’ forecasts thus reveals

one of the key implications of recognizing an economist’s Knightian uncertainty in an

intertemporal model. For a consistent model to generate even qualitative predictions of the

co-movements in time-series data, an economist must appeal to a non-fundamental factor

and formalize its effect with constraints on the change in the parameters of his model’s

representation of participants’ forecasts.

Given ϕt−1 and φt−1, constraining ∆ϕt = ϕt − ϕt−1 and ∆φt = φt − φt−1 involves

constraining ϕt and φt to lie within the subintervals Iϕt:t+1 and Iφt specified in (31) and

(46). Here, we consider a particularly simple example of such constraints: optimistic (pes-

simistic) participants’ revisions of forecasts, in terms of earnings, are represented by con-

straining ∆ϕt > 0 and ∆φt > 0 (∆ϕt < 0 and ∆φt < 0).

8.2.3 Constraining Change in Representations of Participants’ Forecasts

We next consider Hypothesis 2 given by:

Hypothesis 2

(i) If the market is optimistic at time t, that is, if st = 1, and ϕt−1 < Uϕ
t:t+1 and

economist faces Knightian uncertainty means that he cannot specify completely how future events will affect

the process driving outcomes. Thus, under Knightian uncertainty, predictions of co-movements in time-series

data are necessarily contingent. An exploration of this point and related issues is beyond the scope of this

paper.
33This is in contrast to REH models, which generate unambiguous quantitative and qualitative time-t pre-

dictions of the co-movement between pt+k and xt+k, for each time horizon k.
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φt−1 < Uφ
t , then

ϕoptt ∈ [max(ϕt−1, L
ϕ
t:t+1), U

ϕ
t:t+1], (68)

φoptt ∈ [max(φt−1, L
φ
t ), Uφ

t ]. (69)

(ii) If the market is pessimistic at time t, that is, if st = −1, and ϕt−1 > Lϕt:t+1 and

φt−1 > Lφt , then

ϕpest ∈ [Lϕt:t+1,min(ϕt−1, U
ϕ
t:t+1)], (70)

φpest ∈ [Lφt ,min(φt−1, U
φ
t )]. (71)

We note that (ϕoptt , ϕpest , φoptt , φpest ) lie within their respective model-consistent inter-

vals, if the constraints ϕt−1 < Uϕ
t:t+1 and φt−1 < Uφ

t (ϕt−1 > Lϕt:t+1 and φt−1 > Lφt ) hold.

If these constraints are not satisfied, it is impossible that φt ∈ I
φ
t such that ∆φt > 0 when

st = 1. Likewise for ϕt. The following lemma establishes sufficient conditions for the

constraints.

Lemma 5 If µt > µt−1, in (1) and bt > bt−1 in (14) the constraints ϕt−1 < Uϕ
t:t+1 and

φt−1 < Uφ
t in Hypothesis 2 are satisfied. Analogously if µt < µt−1 and bt < bt−1, the

constraints ϕt−1 > Lϕt:t+1 and φt−1 > Lφt are satistfied.

Remark 12 Lemma 5 reveals the theoretical importance of behavioral finance’s empir-

ical findings that non-fundamental factors exert an autonomous, significant influence on

how market participants revise their forecasts. The relevance of factors such as market

sentiment may enable economists to build models that generate empirically verifiable pre-

dictions of co-movements in time-series data.34

Empirical Consequences of Hypothesis 2 Applying Hypothesis 2 to constrain ∆ϕt and

∆φt in the expression for change in the stock price, ∆pt = γ (ϕt + φt) ∆xt+γ (∆ϕt + ∆φt)xt−1,

illustrates one such prediction:

(i) If st = 1 and ∆xt > 0, then (68) and (69) imply that ∆pt > 0.

(ii) If st = −1 and ∆xt < 0, then (70) and (71) imply that ∆pt < 0.

34The conditions under which the constraints in (68)-(71) are compatible with model consistency at t− 1
and t , depend on the change in the model’s coefficients and its KU parameters.
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9 Confronting a KUH Model’s Predictions with Time-Series Data: An

Illustration of the Econometric Methodology with the S&P Stock-

Price Index

Recognizing that economists face Knightian uncertainty about how outcomes unfold over

time, poses considerable challenges for assessing the empirical relevance of macroeco-

nomic and finance models’ predictions. Here, we sketch how the existing economet-

ric methods, particularly econometrically-based calibration, as advocated by Hansen and

Heckman (1996), can be adapted to meet this challenge.

We focus on our prototype’s quantitative predictions that stock prices lie within the no-

arbitrage intervals that depend on earnings. The details of our calibration methodology,

econometric specifications, graphs and tables of the results are presented in the Appendix

B.

The core premise of KUH is that any fixed stochastic model eventually ceases to ap-

proximate time-series data adequately, owing to unforeseeable structural change in the

process driving aggregate outcomes. While such change cannot be represented ex ante

with a stochastic process, it can be approximated ex post on the basis of historical time-

series data. As new data accrue, the econometric model must be re-estimated, new potential

structural changes must be identified, and the adequacy of the re-estimated model must be

assessed.

In our econometrically-based calibration approach, we build on the generalized autore-

gressive score (GAS) approach.35 We estimate approximations of earnings and dividend

processes, in (1) and (14), for the sample of stock prices and earnings of the companies in-

cluded in the S&P 500 Index, spanning the period from 1960(4) to 2017(3). These approxi-

mations allow for both time-varying coefficients and structural breaks. We rely on standard

misspecification tests to assess the adequacy of the econometric model as an approximation

of the data. This enables us to suggest estimates of the sequences {µt, bt}t=1,2,...,T .

Given that the estimated econometric model is an adequate approximation of the past

data, we can assess the quantitative predictions of the KUH model. All these predictions

depend on the Knightian uncertainty parameters
(
µ−, µ+, ρµ, b−, b+, ρb

)
. To compute the

empirical counterpart of the stock-price interval Ipt in (41), we use the estimated sequences

{µ̂t, b̂t}t=1,2,...,T , and we choose values for the Knightian uncertainty parameters, the dis-

count factor γ, and v. This leads us to compute how often the observed stock prices take

35Creal et al. (2012) gives an overview of the GAS approach and its applications.
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values within these empirical intervals. As described in Appendix B.3 we find that the

observed stock price pt lies in the empirical stock price intervals in 96 percent of the obser-

vations.

To assess the KUH model’s predictions contingent on market sentiment, we rely on a

numerical proxy for sentiment. This enables us to assess the adequacy of the empirical

implications of Hypothesis 1, in Section 8.2.1, by computing, contingent on whether the

market is optimistic (st = 1) or pessimistic (st = −1), how often the observed stock prices

are within the upper (lower) subintervals, in (66) or (67) The results are summarized in

Appendix B.4. We find that the observed stock price lies in the respective intervals in 74 of

the 76 observations where st = 1 or st = −1 for η = 0.2. Finally, we assess the adequacy

of the empirical implications of Hypothesis 2, in Section 8.2.3 by computing how often,

contingent on whether st = 1 (st = −1) and ∆xt > 0 (∆xt < 0), the observed stock

prices co-move positively with earnings. We find that the stock price increases in 21, or 75

percent, of the 28 observations where earnings increase and the market is optimistic. The

stock price decreases in nine, or 60 percent, of the 15 observations where earnings decrease

and the market is pessimistic.

Rigorous assessment of the consequences of Hypothesis 1 and 2 as well as other rep-

resentations of the influence of non-fundamental factors, such market sentiment, requires

the development of a methodology for testing models that formalize both measurable and

Knightian uncertainty about the process driving aggregate outcomes. Thus, although the

results we present are broadly supportive of a KUH prototype’s predictions, we view them

as strictly preliminary.

An assessment of the empirical relevance of the KUH present-value model of stock

prices also requires developing extensions of our prototype model, which would allow for

the time-varying discount factor and generalize the model’s other simplifying specifica-

tions. However, illustrating how our prototype’s predictions can be confronted with time-

series data has enabled us to highlight some of the essential features of the econometric

methodology needed to test models that recognize that an econometrician faces Knightian

uncertainty, which, by definition, cannot be characterized with a stochastic process.

10 Concluding Remarks

For Knight, recognizing unforeseeable change and the true uncertainty that such change

engenders is the key to understanding profit-seeking activity in real-world markets. As he

put it:
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“if all changes [...] could be foreseen for an indefinite period in advance of their

occurrence [...] profit or loss would not arise” (Knight 1921, p. 198).

But if Knight is correct in arguing that an inherent feature of profit seeking is that market

participants are alert to unforeseeable change and revise their decision-making accordingly,

we would expect that the process driving aggregate outcomes that result from participants’

demand and supply decisions undergoes unforeseeable change as well.

To be sure, econometric analysis cannot decisively reject REH and behavioral-finance

models’ core premise that an economist can represent change in an economy’s structure

over an indefinite future with probabilistic rules. After all, “unforeseeable change” refers to

the possibility of representing future change, whereas econometric analysis, ipso facto, can

ascertain only whether particular models missed structural changes that an econometrician

had not specified in the past.

There is ample evidence that the process driving outcomes, especially in asset mar-

kets, undergoes quantitative structural change. The key question regarding the empirical

relevance of Knightian uncertainty is how to ascertain whether this structural change is, at

least in part, unforeseeable. The findings of a number of econometric studies point to the

key reason why this is the case: structural change in models of outcomes, especially in fi-

nancial markets, seems to occur contemporaneously with historical events that are not exact

repetitions of similar events in the past. These events give rise to change in the economy’s

structure that could not have been represented ex ante with probabilistic rules.36

Kaminsky’s (1993) largely overlooked study of currency markets shows that historical

events may trigger change in the parameters of the probabilistic rule, which is often used

to represent change in the process driving outcomes. She finds that the Markov model’s

transition probabilities are not only time-varying, but that they also depend on who is Fed

chair and the credibility of the incumbent’s policies. Moreover, Kaminsky shows that the

predictions of Engel and Hamilton’s (1990) Markov model, which ignores such change,

are inconsistent with the actual turning points in currency movements. Frydman and Gold-

berg’s (2007) analysis of structural change in major currency markets lends support to

Kaminsky’s conclusion that historical events are among the major triggers of inflection

points.

In a series of papers and books, David Hendry has traced macroeconomic models’

36For evidence that structural change in models of stock returns is related to historical events that are to

some extent novel, see Pettenuzzo and Timmermann (2011) and Ang and Timmermann (2012). Frydman et

al. (2015) provide evidence that 20% of events that triggered movements in US stock prices between 1993

and 2009 were, at least in part, non-repetitive.
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empirical difficulties to their structural instability. He has demonstrated not only that

macroeconomic models experience structural breaks, but also that these breaks are often

triggered by historical events. The novel mathematical framework that underpins KUH en-

ables economists to specify models of outcomes that undergo such inherently unforeseeable

structural change.37

Moreover, relying on this framework and Muth’s hypothesis, KUH offers a coherent ap-

proach to building intertemporal macroeconomics and finance models that recognize that

economists as well as market participants face Knightian uncertainty about the process

driving aggregate outcomes. KUH thus opens a way to construct macroeconomics and fi-

nance models premised on market participants’ rationality that accord a role to both funda-

mental and psychological (and other non-fundamental) considerations in driving aggregate

outcomes. We have provided examples of how a KUH model can represent the autonomous

influence of market sentiment on participants’ forecasts, leaving a more complete presenta-

tion of “behavioral finance under Knightian uncertainty” to a follow-up paper. Much work

remains to be done to develop KUH models that specify key features of processes driving

outcomes in specific contexts or markets.

We have also suggested how the existing econometric methods – involving calibration,

estimation of models with time-varying parameters, and reliance on information extracted

from narrative market reports – can be adapted to confront KUH models with time-series

data. The development of the statistical methodology needed to test models of outcomes

characterized by Knightian uncertainty is another area that we plan to explore in future

research.
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Appendix (For online publication)

A Proofs of Lemmas and Theorems

Proof of Lemmas 1 and 3. Proof of (8) and (9): We give the proof of

µt+k ≥ Lµt:t+k = µ− + ρkµ
(
µt − µ−

)
,

because the proofs for Uµ
t:t+k, Lbt:t+k and U b

t:t+k are similar. For k = 1, this follows from

Assumption 1 and the general result by induction. We give the proof for k = 2. We use the

result for k = 1 and t replaced by t+ 1, and find

µt+2≥µ− + ρµ
(
µt+1 − µ−

)
≥ µ− + ρµ

(
µ− + ρµ

(
µt − µ−

)
− µ−

)
=µ− + ρ2µ

(
µt − µ−

)
= Lµt:t+2,

which completes the proof.

Proof of Lemma 4. Proof of (24): From

dt+1 = bt+1xt+1 + εd,t+1 = bt+1xt exp
(
εx,t+1 + µt+1

)
+ εd,t+1,

we apply the bounds for bt+1 and µt+1 and find

dt+1 ≥ Lbt:t+1xt exp
(
εx,t+1 + Lµt:t+1

)
+ εd,t+1 = Lbt:t+1,

which proves the result for k = 1. The general proof is by induction. We give the proof for

k = 2. We apply the result for k = 1 and t replaced by t+ 1, and find using,

Lµt+1:t+2 = µ− + ρµ
(
µt+1 − µ−

)
≥ µ− + ρ2µ

(
µt − µ−

)
= Lµt:t+2,

that

dt+2≥Lbt+1:t+2xt+1 exp
(
εx,t+2 + Lµt+1:t+2

)
+ εd,t+2

=Lbt+1:t+2xt exp
(
εx,t+1 + Lµt:t+1

)
exp

(
εt+2 + Lµt+1:t+2

)
+ εd,t+2

≥xt exp(

2∑
j=1

εx,t+j)L
b
t:t+2 exp(

2∑
j=1

Lµt:t+j),
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which completes the proof.

Proof of Theorem 2. That (30) and (31) apply follows from the definition of KEt (dt+k)

in (26) and the expressions for the end-points of Idt:t+k in (28) and (29).

The proof of (32) follows by induction. Consider the case of k = 2,

KEt (KEt+1 (dt+2)) .

Using (31) for t+ 2, KEt+1 (dt+2) is the interval given by

Et+1
(
Idt+1:t+2

)
=
[
Et+1

(
Ldt+1:t+2

)
, Et+1

(
Ud
t+1:t+2

)]
,

where, again by definition,

Et+1
(
Ldt+1:t+2

)
=xt+1vL

b
t+1:t+2 exp

(
Lµt+1:t+2

)
=xt exp

(
µt+1 + εx,t+1

)
vLbt+1:t+2 exp

(
Lµt+1:t+2

)
,

and likewise for Et+1
(
Ud
t+1:t+2

)
. Thus, the end-points of the interval KEt+1 (dt+2) con-

tain µt+1 and bt+1 which have not been introduced at time t. We bound the interval

KEt+1 (dt+2), and find that KEt+1 (dt+2) is contained in an interval, with lower end-point,

xt exp
(
Lµt:t+1 + εx,t+1

)
vLbt:t+2 exp

(
Lµt:t+2

)
.

Similarly for the upper end-point. Collecting terms, we find,

KEt (KEt+1 (dt+2)) = KEt
(
E(Idt+1:t+2

)
=xtv

2
[
bL,t:t+2 exp

(
µL,t:t+1 + µL,t:t+2

)
, bU,t:t+2 exp

(
µU,t:t+1 + µU,t:t+2

)]
.

The identity,

KEt (KEt+1 (dt+2)) = KEt (dt+2) ,

can be seen by using the monotonicity properties in (23),

dt+2 ∈ Idt+1:t+2 ⊆ Idt:t+2 =
[
Ldt:t+2, U

d
t:t+2

]
,
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with

Ldt:t+2 =xt exp (εx,t+1 + εx,t+2)L
b
t:t+2 exp

(
Lµt:t+1 + Lµt:t+2

)
+ εd,t+2,

Ud
t:t+2 =xt exp (εx,t+1 + εx,t+2)U

b
t:t+2 exp

(
Uµ
t:t+1 + Uµ

t:t+2

)
+ εd,t+2,

which completes the proof.

Proof Theorem 3. Note that by definition, Ipt+1 =
∑∞

i=1 γ
iKEt (dt+1+i|Xt+1) where

KEt (dt+1+i) has lower and upper end-points given by,

vixt+1L
b
t+1:t+1+i exp(

i∑
j=1

Lµt+1:t+1+j), and vixt+1U
b
t+1:t+1+i exp(

i∑
j=1

Uµ
t+1:t+1+j),

which are functions of µt+1, bt+1 and εx,t+1. Using Lemmas 1 and 3 the lower end-point

can be bounded by,

vixt+1L
b
t+1:t+1+i exp(

i∑
j=1

Lµt+1:t+1+j) ≥ vixt exp (εx,t+1)L
b
t:t+1+i exp(

i∑
j=0

Lµt:t+1+j).

Collecting terms, it follows that Ipt+1 has the lower bound given by,

∞∑
i=1

γivixt exp (εx,t+1)L
b
t:t+1+i exp(

i+1∑
j=1

Lµt:t+j).

Hence the lower end-point of KEt
(
Ipt+1

)
is given by,

∞∑
i=1

γivi+1xtL
b
t:t+1+i exp(

i+1∑
j=1

Lµt:t+j).

Next, recall that KEt (dt+1) has the lower end-point,

vxtL
b
t:t+1 exp

(
Lµt:t+1

)
,
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such that the lower end-point of the right hand side of (40) therefore is given by,

γ(vxtL
b
t:t+1 exp

(
Lµt:t+1

)
+
∞∑
i=1

γivi+1xtL
b
t:t+1+i exp(

i+1∑
j=1

Lµt:t+j))

=
∞∑
i=1

γivixtL
b
t:t+i exp(

i∑
j=1

Lµt:t+j),

which is the lower end-point of Ipt as desired. Similarly for the upper end-point which

proves the claimed result.

Proof Lemma 5. We prove the result for the upper bounds. From (8), (22), (31) and (43)

we find the expressions

Uµ
t:t+k =µ+ + ρkµ(µt − µ+),

U b
t:t+k = b+ + ρkb (bt − b+),

Uϕ
t:t+1 = vU b

t:t+1 exp(Uµ
t:t+1),

Uφ
t =

∞∑
k=1

γivkU b
t:t+k exp(

k∑
j=1

Uµ
t:t+j).

It is seen that Uµ
t:t+k depends linearly on µt with a positive coefficient, ρkµ, so that Uµ

t:t+k is

increasing in µt, such that if µt−1 < µt,

Uµ
t−1:t−1+k = µ+ + ρkµ(µt−1 − µ+) < µ+ + ρkµ(µt − µ+) = Uµ

t:t+k.

A similar expression shows that U b
t:t+k is increasing in bt. It follows that Uϕ

t:t+1 and Uφ
t are

increasing functions of both µt and bt. Thus, for µt−1 < µt and bt−1 < bt, it follows that

Uϕ
t−1:t < Uϕ

t:t+1 and Uφ
t−1 < Uφ

t .

A consequence of Uϕ
t−1:t < Uϕ

t:t+1 is that

ϕt−1 ≤ Uϕ
t−1:t < Uϕ

t:t+1,

which completes the proof.
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B Econometric Methodology, Data and Results

We confront the KUH prototype’s predictions with time-series data in the context of ap-

proximations of earnings and dividend processes, in (1) and (14), for the sample of stock

prices and earnings of the companies included in the S&P 500 Index, spanning the period

from 1960(4) to 2017(3). The data are described in Appendix B.5.

B.1 Econometric Models

In our econometric approach, we specify time-varying coefficients equivalent to µt and bt.

To this end, we build on the generalized autoregressive score (GAS) approach by including

structural breaks. We rely on standard misspecification tests to assess the adequacy of the

econometric model as an approximation of the data. This allows us to suggest estimates of

the sequences {µt, bt}t=1,2,...,T .

There are, of course, potentially many other econometric models that might approxi-

mate the historical time-series data. In principle, one could estimate several econometric

models; as long as they provide adequate approximations of the historical data, the KUH

model’s predictions should hold.

Specifically, we first consider modeling log-changes in earnings as:

∆ log xt =µt + γ′xFx,t + εx,t, (B.1)

µt = µ̃t + δ′xSx,t, (B.2)

µ̃t =ωµ + αµ1µ̃t−1 + αµ2µ̃t−2 + βµεx,t−1, (B.3)

for t = 1, 2, . . . , T , where εx,t ∼ i.i.d.N (0, σ2x) and the initial value are set to µ0 =

∆ log x0 and µ−1 = ∆ log x−1. The vector Fx,t includes a set of six dummy variables

corresponding to the observations of extreme changes in earnings from 2008 to 2010 as

evident from Panel (c) in Figure 4 in Appendix B.5. The vector Sx,t consists of 12 sub-

sample dummies that take the value 1 during specific subperiods, and zero otherwise. In

the estimations, we treat the variables Fx,t and Sx,t as fixed. Prior to estimation of the

model in (B.1)-(B.3), the subsample dummy variables in Sx,t have been selected using the

Autometrics algorithm in OxMetrics.38

38See Doornik (2009). Details, including a full description of Fx,t and Sx,t, are provided in Appendix B.6.
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We model dividends as:

dt = btxt + γ′dFd,t + εd,t, (B.4)

bt = b̃t + δ′dSd,t, (B.5)

b̃t =ωb + αb1b̃t−1 + αb2b̃t−2 + βb
εd,t−1
xt−1

, (B.6)

for t = 1, 2, . . . , T , where εd,t ∼ i.i.d.N (0, σ2d) and the initial values are set to b0 =

d0/x0 and b−1 = d−1/x−1. The vector Fd,t includes a set of four dummy variables for the

observations during the financial crisis, while Sd,t is a vector of subsample dummies that

take the value 1 during specific subperiods, and zero otherwise. Prior to estimation of the

model in (B.4)-(B.6), the subsample dummy variables in Sd,t have been selected using the

Autometrics algorithm in OxMetrics, see Doornik (2009). Details and a full description of

Fd,t and Sd,t are given in Appendix B.6.

The models in (B.1)-(B.3) and (B.4)-(B.6) specify the time-varying coefficients µt and

bt as observation-driven autoregressive processes combined with structural breaks in the

levels due to the inclusion of the subsample dummies Sx,t and Sd,t.

B.2 Empirical Results

We estimate the models in (B.1)-(B.3) and (B.4)-(B.6) by Gaussian maximum likelihood

using time-series data for the real S&P500 dividends and earnings, which generates an

effective sample of T = 228 observations covering the period from 1960(4) to 2017(3).

Plots of the time-series data are shown in Figure 4 in Appendix B.5. To assess the adequacy

of the econometric model as an approximation of the historical data, we rely on standard

misspecification tests.

The estimation results and misspecification tests are shown in Table 1. For the model

of the log-changes in earnings, the tests for no autocorrelation of order 1 and order 1-4

are not rejected with p-values of 0.30 and 0.15. Moreover, the test for no ARCH of order

1-4 is not rejected with a p-value of 0.22, and normality of the estimated residuals is not

rejected with a p-value of 0.48. As the misspecification tests are not rejected, we conclude

that the estimated model is an adequate approximation of the log-change in earnings over

the sample period considered. Importantly, restricting δx = 0 – that is, assuming that there

are no structural breaks in the time-varying coefficient µt – renders the model inadequate

as an approximation of the earnings process.

For the model of dividends, the tests for no autocorrelation of order 1 and order 1-4 are
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not rejected with p-values of 0.97 and 0.75, respectively.39 Importantly, restricting δd = 0 –

that is, assuming that there no structural breaks in the time-varying coefficient bt – renders

the model inadequate as an approximation of the dividends process.

B.3 Empirical Stock-Price Intervals

Given the estimated sequences {µ̂t, b̂}t=1,2,...,T and values for the parameters ρµ, µ−, µ+,

ρb, b−, b+, γ, v and σ2x, we can compute the empirical counterparts of the intervals Iµt:t+1 in

(7), Ibt:t+1 in (20), and the stock-price interval Ipt in (41).

We first use the estimates in Table 1 to set the parameters ρµ, ρb, and v. We set the

parameter ρµ to the modulus of the largest inverse root of the characteristic polynomial

for µ̃t, given by αµ (z) = 1 − α1µz − α2µz
2. Equivalently, we set the parameter ρb to

the modulus of the largest inverse root of the characteristic polynomial for b̃t, given by

αb (z) = 1 − α1bz − α2bz2. That gives the parameter values ρµ = 0.743 and ρb = 0.738.

Moreover, we use the estimate σx = 0.028 to set the parameter value v = E exp (εx,t) =

exp (−σ2x/2) = 0.9996 and we set the discount factor to γ = 0.94.

We next calibrate the parameters
(
µ−, µ+, b−, b+

)
such that the empirical stock-price

intervals Îpt match the range of historical stock prices, and such that a sufficiently high

percentage of (µ̂t+1, b̂t+1), given the values of (µ̂t, b̂t), lie within the computed empirical

intervals for Iµt:t+1 and Ibt:t+1. Moreover, we set µ+ = 0.047 to ensure that the transversality

condition of the theoretical model is satisfied. Not taking the uncertainty of µ̂t into account,

however, we note that almost ten percent of the estimates µ̂t lie above this value. The

parameter values are shown in Table 2.

We compute the empirical intervals Îµt:t+1 and Îbt:t+1 given the parameter values in Table

2 and the estimates µ̂t and b̂t. Panel (a) in Figure 1 shows the estimates of µ̂t+1 (red line)

and the computed empirical intervals Îµt:t+1 (vertical grey lines). We find that µ̂t+1 lies

within these intervals in 139, or 61 percent, of the 228 observations. Panel (b) in Figure 1

shows the estimates of b̂t+1 (red line) and the computed empirical intervals Îbt:t+1 (vertical

grey lines). We find that b̂t+1 lies within these intervals in 207, or 91 percent, of the 228

observations.

39However, no ARCH and normality of the estimated residuals are both rejected with p-values of 0.000.

This is caused by a few potential outliers and a tendency for the variance σ2d to increase over the sample

period, which have not been accounted for in the model. We leave an investigation of these specification

problems for future development of a model of stock prices.
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Model for earnings in (1)–(3) Model for dividends in (4)–(6)

Coefficient Estimate Std.Error Coefficient Estimate Std.Error

γ
(t=2008(4))
x -1.071 0.030 γ

(t=2008(4))
d 1.222 0.058

γ
(t=2009(1))
x -0.795 0.033 γ

(t=2009(1))
d 3.248 0.065

γ
(t=2009(2))
x 0.052 0.035 γ

(t=2009(2))
d 2.731 0.048

γ
(t=2009(3))
x 0.481 0.035 γ

(t=2009(3))
d 1.326 0.054

γ
(t=2009(4))
x 1.381 0.036

γ
(2010(1)≤t≤2010(2))
x 0.098 0.028

δ(1987(3)≤t≤1988(2))x 0.110 0.023 δ
(1972(3)≤t≤1981(2))
d -0.003 0.016

δ(1988(3)≤t≤1991(4))x -0.033 0.014 δ
(1981(3)≤t≤1990(4))
d -0.011 0.022

δ(1992(1)≤t≤2000(3))x 0.028 0.010 δ
(1991(1)≤t≤1994(1))
d -0.024 0.026

δ(2000(4)≤t≤2001(1))x -0.073 0.027 δ
(1994(2)≤t≤1999(3))
d -0.027 0.029

δ(2001(2)≤t≤2001(3))x -0.199 0.031 δ
(1999(4)≤t≤2001(2))
d -0.034 0.030

δ(2001(4)≤t≤2002(1))x -0.053 0.030 δ
(2001(3)≤t≤2003(1))
d 0.023 0.033

δ(2002(2)≤t≤2002(3))x 0.075 0.032 δ
(2003(2)≤t≤2003(3))
d -0.066 0.034

δ(2002(4)≤t≤2002(4))x -0.067 0.030 δ
(2003(4)≤t≤2007(3))
d -0.108 0.038

δ(2003(1)≤t≤2003(4))x 0.156 0.025 δ
(2007(4)≤t≤2008(1))
d -0.058 0.038

δ(2004(1)≤t≤2007(2))x 0.013 0.015 δ
(2008(2)≤t≤2008(3))
d -0.012 0.042

δ(2007(3)≤t≤2008(3))x -0.099 0.023 δ
(2009(4)≤t≤2013(1))
d -0.062 0.048

δ(2010(3)≤t≤2017(3))x 0.016 0.011 δ
(2013(2)≤t≤2015(1))
d -0.058 0.048

δ
(2015(2)≤t≤2017(3))
d -0.063 0.048

ωµ -0.001 0.003 ωb 0.035 0.010

α1µ 0.953 0.069 α1b 1.474 0.046

α2µ -0.551 0.079 α2b -0.545 0.045

βµ 0.559 0.066 βb 1.490 0.064

σx 0.028 σd 0.798

Log-likelihood 488.359 Log-likelihood -217.965

Ljung-Box 1-1 χ2(1) = 1.08 [0.30] Ljung-Box 1-1 χ2(1) = 0.00 [0.97]
Ljung-Box 1-4 χ2(4) = 6.72 [0.15] Ljung-Box 1-4 χ2(4) = 1.94 [0.75]
No ARCH 1-4 F (4, 219) = 1.44 [0.22] No ARCH 1-4 F (4, 219) = 5.13 [0.00]
Normality χ2(2) = 1.47 [0.48] Normality χ2(2) = 52.28 [0.00]

Table 1: The table shows the estimates of the model for the log-change in earnings in

(B.1)-(B.3) and the model for dividends in (B.4)-(B.6). Both models are estimated for an

effective sample of T = 228 observations covering the sample from 1960(4) to 2017(3).

P-values in square brackets for the misspecification tests.
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Parameter Value

ρµ 0.743
µ+ 0.047
µ− −0.095
ρb 0.738
b+ 0.805
b− 0.262
v 0.9996
γ 0.94

Table 2: The table shows the choices of parameters.

We compute the empirical stock-price intervals Îpt by calculating the sum in (46) for

i = 1, 2, . . . ,M withM chosen such that remainder terms are of order 10−m, m ≥ 7. Panel

(a) in Figure 2 shows the observed stock-prices pt (red line) and the computed empirical

stock-price intervals Îpt (vertical grey lines). We find that the stock price lies within the

computed stock-price intervals in 220, or 96 percent, of the 228 observations.

B.4 The Influence of Market Sentiment on Stock Prices

For sentiment data st described in Appendix C for the sample of 124 quaterly observations

from 1984(1) to 2014(4), we compute the sentiment dependent stock price intervals in (66)

and (67),

Ipt (st = 1) = γ
(
Iϕt:t+1(st = 1) + Iφt (st = 1)

)
xt,

Ipt (st =−1) = γ
(
Iϕt:t+1(st = −1) + Iφt (st = −1)

)
xt.

As described in Hypothesis 1 the change in the intervals depend on η, and we display here

the empirical intervals for η = 0.2 and η = 0.5.

For η = 0.2, we find that the observed stock prices pt lie within the computed empirical

intervals Îpt (st = 1) in 38 of the 39 observations where st = 1. For η = 0.5, the number

reduces to 5 of the 39 observations. We find that the observed stock prices lie within the

computed empirical intervals Îpt (st = −1) in 36 of the 37 observations where st = −1

for η = 0.2, and in 26 of the 37 observations when η = 0.5. Figure 3 illustrates this

graphically.
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Figure 1: The figure shows the estimated time-varying coefficients and their computed

intervals. Panel (a) shows the estimates µ̂t+1 (red line) and the computed empirical intervals

Îµt:t+1 (grey vertical lines). Panel (b) shows the estimates b̂t+1 (red line) and the computed

empirical intervals Îbt:t+1 (grey vertical lines).

B.5 Data Description

The data for the empirical analysis has been downloaded from Robert Shiller’s website40 in

March, 2018. Real measures of the stock price index, earnings, and dividends are computed

using the consumer price index (CPI). Monthly data is available, but as the earnings and

dividends series are interpolated from quarterly observations we consider only the quarterly

observations corresponding to March, June, September, and December.

The time-series data for real stock prices, dividends, and earnings are shown in Panels

(a) and (b) in Figure 4. The log-change in real earnings is shown in Panel (c).

40http://www.econ.yale.edu/~Shiller/data.htm
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(b) Price­earnings ratios p t / x t  and computed intervals for the price­earnings­ratio Î t

p / x t  (grey vertical lines)

Figure 2: The figure shows the observed stock price and price-earnings ratio with their

computed intervals. Panel (a) shows the observed stock price pt (red line) and the computed

empirical intervals Îpt (grey vertical lines). Panel (b) shows the observed price-earnings

ratio pt/xt and the computed empirical intervals Îpt /xt (grey vertical lines).

B.6 Definition of the Dummy Variables and Subsample Dummy Vari-

ables

The vector of dummy variables Fx,t is defined as Fx,t =
(
F 1x,t, F

2
x,t, . . . , F

6
x,t

)′
with:

F 1x,t = 1 (t = 2008 (4)) , F 2x,t = 1 (t = 2009 (1)) , F 3x,t = 1 (t = 2009 (2)) ,

F 4x,t = 1 (t = 2009 (3)) , F 5x,t = 1 (t = 2009 (4)) , F 6x,t = 1 (2010 (1) ≤ t ≤ 2010 (2)) ,

where 1 (·) is an indicator variable that takes the value 1 when the expression in (·) is true,

and zero otherwise.

Before estimating the full model in (B.1)-(B.3), the variables in Sx,t have been se-

lected using step-indicator saturation (SIS) with Autometrics, see Castle et al. (2015). The

selection is done in the restricted model with ωµ = αµ1 = αµ2 = βµ = 0 and with

a target size of 0.001 in the Autometrics algorithm. The twelve subsample dummies in

Sx,t selected by Autometrics are given by the expression, Six,t = 1 (τx,i ≤ t ≤ τx,i+1 − 1)
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Figure 3: The figure shows the observed stock prices pt (black lines) and the computed

empirical intervals Îpt (st) for η = 0.2 and η = 0.5. Panels (a) and (c) show the computed

empirical intervals Îpt (st = 1) (vertical green lines) for η = 0.2 and η = 0.5, respectively,

for those observations where st = 1. Panels (b) and (d) show the computed empirical

intervals Îpt (st = −1) (vertical red lines) for η = 0.2 and η = 0.5, respectively, for those

observations where st = −1.

for i = 1, 2, . . . , 12, where the breakpoints τx,i occur at observations 1987 (3), 1988 (3),

1992 (1), 2000 (4), 2001 (2), 2001 (4), 2002 (2), 2002 (4), 2003 (1), 2004 (1), 2007 (3), and

2010 (3), and where τx,13 = 2017 (4).

The vector of dummy variables Fd,t is defined as Fd,t =
(
F 1d,t, F

2
d,t, F

3
d,t, F

4
d,t

)′
with

F 1d,t = 1 (t = 2008 (4)), F 2d,t = 1 (t = 2009 (1)), F 3d,t = 1 (t = 2009 (2)), and F 4d,t =

1 (t = 2009 (3)).

Before estimating the full model in (B.4)-(B.6), the variables in Sd,t have been se-

lected using multiplicative-indicator saturation (MIS) with Autometrics, see Kitov and

Tabor (2018). The selection is done in the restricted model with ωb = αb1 = αb2 =

βb = 0 and with a target size of α = 0.001 in the Autometrics algorithm. The thir-

teen subsample dummies in Sd,t selected by Autometrics are defined by the expression,

Sid,t = 1 (τ d,i ≤ t ≤ τ d,i+1 − 1) for i = 1, 2, . . . , 13, where the breakpoints τ d,i occur at

observations 1972 (3), 1981 (3), 1991 (1), 1994 (2), 1999 (4), 2001 (3), 2003 (2), 2003 (4),
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2007 (4), 2008 (2), 2009 (4), 2013 (2), and 2015 (2), and where τ 14 = 2017 (4).

C The Proxy for the Market Sentiment

Based on Mangee (2017) we define the proxy for the market sentiment as follows: Define

the ratio, rt = post−negt
post+negt+1

, where post is the number of positive words and negt is the

number of negative words in the Wall Street Journal’s “Abreast of the Market” columns

for the 124 quarterly observations for the period from 1984(1) to 2014(4). The market

sentiment st is next defined as representing optimism (st = 1) when rt > τ+, pessimism

(st = −1) when rt < τ−, and neutral otherwise. We set the threshold values τ− and τ+ to

the 33.3 and 66.7 percentiles of rt. The measure rt and the threshold values are shown in

Panel (d) of Figure 4.
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(a) Stock­prices p t
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(b) Dividends d t  (red line) and earnings x t  (black line)
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­1

0
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(c) Log­change in earnings ∆ log x t
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­0.1
(d) Sentiment proxy r t

Figure 4: The figure shows the time-series data used in the empirical analysis. Panel (a)

shows the stock-prices pt, while Panel (b) shows the dividends dt (red line) and earnings

xt (blue line). Panel (c) shows the log-change in earnings ∆ log xt. Panel (d) shows the

measure rt (red line) and the threshold values τ− and τ+ (black lines) used to compute the

proxy for the market sentiment st.
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