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Abstract

It is well-known that interest rates and inflation rates are extremely persis-

tent, yet they are best modeled and understood as stationary processes. These

properties are contradictory in the workhorse Gaussian affine term structure model

in which the persistent data often result in unit roots that imply non-stationarity.

We resolve this puzzle by proposing a macro-finance term structure model with

volatility-induced stationarity. Our model employs a level-dependent conditional

volatility that maintains stationarity despite presence of unit roots in the char-

acteristic polynomial corresponding to the conditional mean. Compared to the

Gaussian affine term structure model, we improve out-of-sample forecasting of the

yield curve and estimate term premia that are economically plausible and consistent

with survey data. Moreover, we show that volatility-induced stationarity affects the

error-correcting mechanism in a system of interest rates, inflation, and real activity.
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1 Introduction

Interest rates and inflation rates are extremely persistent data that can be described as

unit-root processes. Moreover, there is strong co-movement between interest rates of

different maturities. These stylized facts have motivated the use of cointegrated vec-

tor autoregressions (VARs) in term structure modeling starting with Engle and Granger

(1987). An error-correcting model also provides a framework for testing the expectations

hypothesis (Campbell and Shiller, 1987, Engle and Granger, 1987, Hall et al., 1992, Shea,

1992) and for understanding interactions between the yield curve and the macroecon-

omy. However, empirics as well as theory suggest that interest rates are bounded and

stationary (Beechey et al., 2009), hence challenging the I(1) assumption that underpins

the cointegrated VAR.

In this paper, we present a novel model of the term structure that at the same time

allows for unit roots and maintains stationarity. Thus, our model embraces important

features of the yield curve. We improve term structure modeling in terms of out-of-sample

forecasting and term premia estimation compared to models based on VAR processes.

Rather than ensuring stationarity by assuming away unit roots from the conditional

mean, the proposed model is stationary due to a level-dependent conditional volatility.

Intuitively, large realizations of the process are followed by periods in which the stochastic

component is weighted by a large conditional variance. The stochastic term eventually

dominates the conditional mean allowing the process to be stationary despite presence of

unit roots. As lagged levels of the process appear in both the conditional mean and the

conditional volatility, the model has been coined the double autoregression (DAR). Ling

(2004) and Nielsen and Rahbek (2014) provide conditions under which the univariate and

multivariate DAR processes are stationary. The concept of volatility-induced stationary

is discussed in further details in Albin et al. (2006) and Nicolau (2005).

We present an empirical macro-finance application that considers the short and long

ends of the yield curve along with measures of inflation and real activity. There is evidence

of volatility-induced stationarity in the interest rates and particularly in the short rate.

We show that volatility-induced stationarity affects the error-correcting mechanism: in

the DAR model, the yield spread is maintained as an equilibrium due to the long interest

rate suggesting that market mechanisms enforce no-arbitrage. The cointegrated VAR,
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however, identifies the short rate as an error-correcting variable. Also, there is a second

equilibrium between the short rate, inflation, and real activity, which mimics the dual

mandate of the Federal Reserve. Here, volatility-induced stationarity determines whether

the short rate participates in the error-correcting mechanism.

From this first set of empirical results, we conclude that the short rate is key for

generating stationary dynamics. In the cointegrated VAR, this property is realized as an

error-correcting behavior that is economically puzzling. In contrast, the DAR allows the

short rate to induce stationarity through the conditional volatility.

Next, we ask if volatility-induced stationarity matters for term structure modeling.

For this purpose, we build a no-arbitrage term structure model based on the DAR model.

The model is akin to the discrete-time Gaussian affine term structure model (GATSM)

studied in Ang and Piazzesi (2003), which is considered to be the workhorse in macro-

finance term structure modeling. The difference is that the usual linear autoregressive

dynamics are replaced by the DAR process. Since the model does not admit closed-form

computation of zero-coupon bond yields, we propose an approximation in which model-

implied yields are quadratic in the factor variables. In this sense, the model is related to

the class of quadratic term structure models studied in Ahn et al. (2002), Leippold and

Wu (2002), and Realdon (2006). However, whereas the quadratic component in these

models comes from a quadratic specification of the short rate, the model considered here

generates a quadratic term structure from the conditional variance. The approximation

is sufficiently accurate for the purposes pursued in this paper.

We find that our DAR term structure model outperforms the GATSM in out-of-

sample forecasting and obtains a closer match to survey expectations. The latter finding

emphasizes that modeling unit roots and error-correction while maintaining stationarity

is important for the decomposition of interest rates into expectations about future short

rates and term premia. Thus, the paper contributes to the ongoing discussion of term

premia estimation in interest rates that are more persistent than stationary VARs can

capture, which has been dubbed the persistence problem.1

Volatility-induced stationarity in interest rate data was first studied by Conley et al.

(1997), who consider Markov diffusion models with constant volatility elasticity as in the

CKLS model in Chan et al. (1992). Conley et al. (1997) apply these models to overnight

1The persistence problem was first discussed in Shiller (1979) and has been approached by reducing
small-sample bias as in Bauer et al. (2014) and Kim and Orphanides (2007,0); fractional cointegration in
Jardet et al. (2013), Osterrieder (2013); and long-memory models in Abbritti et al. (2013), Goliński and
Zaffaroni (2016).
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effective federal funds rates and conclude that ”when interest rates are high, local mean

reversion is small and the mechanism for inducing stationarity is the increased volatility”.

Nicolau (2005) also shows that the federal funds rate can be modelled by a process that

exhibits volatility-induced stationarity. Nielsen and Rahbek (2014) extend these analyses

by modeling two interest rates, namely the one- and three-month Treasury bill rates,

allowing for reduced rank. Their implementation, however, does not enforce no-arbitrage

restrictions. This paper contributes to this literature by (i) proposing a no-arbitrage

model for the entire term structure and (ii) allowing for more than two factors, e.g., the

usual level, slope, and curvature factors of the yield curve as suggested by Litterman and

Scheinkman (1991) and macroeconomic factors as in Ang and Piazzesi (2003). Finally,

this paper is the first to empirically study the impact of volatility-induced stationarity on

error-correction analysis.

The paper is structured as follows. Section 2 introduces the DAR model and discusses

how unit roots can be reconciled with stationary dynamics through volatility-induced

stationarity. The data is described in Section 3. Section 4 presents the first set of empirical

results and analyzes the error-correcting mechanism under volatility-induced stationarity.

In Section 5, we develop a no-arbitrage term structure model whose time-series structure

is given by the DAR process. Section 6 uses this model to assess the implications of

volatility-induced stationarity on the term structure of interest rates. Section 7 concludes.

2 Double Autoregressive Models

The DAR model includes lagged levels of the process in both the conditional mean and

the conditional variance. The conditional mean is equivalent to that of the VAR, while

the conditional variance can be specified based on various multivariate GARCH models.

We consider a specification that resembles the BEKK ARCH model in Engle and Kroner

(1995) to obtain a DAR model for which a stationarity condition has been established.

To fix ideas, let Xt be a vector of p variables and consider the simplest form of a DAR

process:

Xt+1 = µ+ ΦXt + Ω
1/2
t+1zt+1,

Ωt+1 = Σ0Σ
′

0 + Σ1XtX
′

tΣ
′

1,

zt+1 ∼ i.i.d. Np (0, Ip) ,

(1)

where Σ0 is lower triangular with strictly positive elements on the diagonal. This unique

Cholesky factor ensures that the conditional variance matrix is positive definite without
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imposing further parameter restrictions. The parameter Σ1 determines the sensitivity of

the conditional volatility to the level of the process realized in the previous period. In the

special case where all elements of this matrix are zero, the model reduces to a VAR.

2.1 Volatility-Induced Stationarity

The DAR process in (1) is stationary despite presence of unit roots. Nielsen and Rahbek

(2014, Theorem 1) show that stationarity and geometric ergodicity is ensured if the top-

Lyapunov exponent is strictly negative. Formally,

γ = lim
ξ→∞

[

E

(

log ‖

ξ
∏

t=1

(Φ + et)‖

)]

< 0,

where et is a p×p matrix that is i.i.d. normally distributed with mean zero and covariance

matrix given by Σ1 ⊗Σ1. Thus, the interaction between the autoregressive parameter, Φ,

and Σ1 determines the stationarity properties of the model.

To understand the intuition behind this result, consider a univariate example with

Φ = 1. If Σ1 = 0, the process is a random walk and non-stationary. With Σ1 6= 0, however,

a large value of Xt results in a large conditional variance of Xt+1. Thus, extended periods

of increasing realizations eventually imply that the stochastic component dominates the

unit-root conditional mean. In result, when a negative innovation is realized to a process

that is far above zero, the process is pushed downwards. In this sense, the conditional

volatility can induce stationarity in unit-root processes.

The level-dependent conditional volatility also allows for extended periods of low

variance when levels of the process are near zero. In such regimes, however, the variance

does not vanish and the process as well as the variance will rise when a large shock

arrives. These properties are attractive when considering US Treasury bond yields over

the past decade, which has been stuck at the zero-lower bound although with a positive

probability of a lift-off. Indeed, we shall see that the model is successful at explaining

historical interest rates near the zero-lower bound.

2.2 Reduced Rank, Error-Correction, and Lag Structure

The empirical work in this paper considers two generalizations of (1). First, since interest

rates and macroeconomic variables are likely to co-move, we allow for reduced rank in the

autoregressive coefficient Φ. Assuming that the characteristic polynomial has q unit roots

and p−q roots outside the unit circle, the rank of Φ−Ip in (1) is r = p−q. Then, Φ can be

parameterized by Φ = Ip+αβ ′, where α and β are p×r matrices. This structure facilitates
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an error-correction interpretation of the dynamics, where α determines the adjustment

to long-run equilibria given by β ′Xt. Second, to achieve a well-specified model we allow

for an extensive lag structure in the conditional mean. We find that this generalization

is sufficient to match the data and thus we leave the conditional variance as specified in

(1). The resulting generalized DAR model is given by

Xt+1 = µ+ ΦXt +
K
∑

k=1

Γk∆Xt+1−k + Ω
1/2
t+1zt+1,

Ωt+1 = Σ0Σ
′

0 + Σ1XtX
′

tΣ
′

1,

zt+1 ∼ i.i.d. Np(0, Ip)

(2)

for K ≥ 1 and Φ = Ip + αβ ′. The associated top-Lyapunov exponent is given by

γ = lim
ξ→∞

[

E

(

log ‖

ξ
∏

t=1

(Φ̃ + ẽt)‖

)]

< 0,

where ẽt has dimension p(K + 1) × p(K + 1) and is i.i.d. normal with mean zero and

covariance matrix equal to Σ̃1 ⊗ Σ̃1. Φ̃ and Σ̃1 are defined by

Φ̃ =



























Φ + Γ1 Γ1 − Γ2 . . . ΓK − ΓK−1 −ΓK

Ip 0p×p . . . 0p×p 0p×p

0p×p Ip 0p×p 0p×p

...
. . .

...

0p×p 0p×p . . . Ip 0p×p



























, Σ̃1 =







Σ1 0p×pK

0pK×p 0pK×pK






.

3 Data

Consider a system of four variables: the short rate, or one-period interest rate (rt); a long-

term interest rate (Rt); and two macroeconomic measures interpreted as respectively

inflation (πt) and real activity (gt). Let Xt be the vector containing these variables,

Xt = [rt, Rt, πt, gt]
′.

We use monthly data between January 1985 and December 2016. The short rate is

measured by the one-month US Treasury Bill rate from the Fama Treasury Bills Term

Structure Files available at CRSP. We define the long rate by the ten-year US Treasury

bond yield from Gürkaynak et al. (2007). These data are observed end-of-month.
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Explained (pct) Empirical correlation coefficients

CPI PPI UNEMP EMP PROD HELP

πt 85.49 0.92 0.92 - - - -

gt 65.75 - - -0.71 0.93 0.71 0.87

Table 1: The percentage of variation in respectively inflation data (CPI, PPI) and data related
to real activity (unemployment rates, UNEMP, employment growth rates, EMP, the production
index, PROD, and the HELP index, HELP) explained by respectively the inflation measure (πt)
and the real-activity measure (gt). Empirical correlation coefficients between these measures
and the underlying variables are shown as well.

The macroeconomic variables are constructed following the approaches in Ang and

Piazzesi (2003) and Goliński and Zaffaroni (2016). The inflation measure, πt, is thus

given by the first principal component of standardized series of CPI and PPI data from

the US Bureau of Labor Statistics. Analogously, the measure of real activity, gt, is the first

principal component of standardized data on the unemployment and employment growth

rates from the US Bureau of Labor Statistics; the industrial production index from Federal

Reserve Economic Data; and the help-wanted-advertising-in-newspapers (HELP) index

from Barnichon (2010).

Table 1 details how πt and gt correlate with the underlying observed data as well as

the fraction of total variation they capture. The inflation variable, πt, is highly correlated

with both inflation measurements and explains 85 pct of the total variation in these data.

The variable measuring real activity, gt, correlates strongest with employment growth rate

and the HELP index. Correlation with the unemployment rate is negative as expected.

Our measure of real activity captures 66 pct of the variation in the underlying observables.

The data for Xt = [rt, Rt, πt, gt]
′ are exhibited in Figure 1. The series appear ex-

tremely persistent and use of conventional unit root and stationarity tests indeed identify

unit roots, see Table 9 in Appendix C. Therefore, modeling this data using a linear VAR

involves the implicit assumption that interest rates are generated by non-stationary pro-

cesses, which is puzzling from both theoretical and empirical standpoints. Therefore, we

propose the DAR model for these persistent and stationary data.
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Figure 1: Data for Xt = [rt, Rt, πt, gt]
′. The interest rates, rt and Rt, are the 1-month Treasury

bill rate and the 10-year Treasury bond yield. The inflation measure, πt, is the first principal
component of CPI and PPI rates. Real activity, gt, is measured the first principal component of
unemployment and employment growth rates, and the industrial production and HELP indices.

4 Volatility-Induced Stationarity and Error-Correction

This section presents the empirical analysis of the DAR model in (2) for the data,

Xt = [rt, Rt, πt, gt]
′. In particular, we study the mechanisms related to volatility-induced

stationarity and error-correction.

4.1 Estimation Results

The data suggest a reduced rank of r = 2 and lag-length of K = 3, when specification

testing is conducted with use of conventional methods for VAR models. With these

choices, the DAR model appears to be well-specified. In fact, the DAR model removes

autocorrelation and improves normality tests of the standardized residuals in comparison

with the VAR. Details are provided in Appendix A.

Thus, we estimate the DAR model with r = 2 and K = 3 along with identifying

restrictions also described in the appendix. For reference, we also provide estimates of

the cointegrated VAR which corresponds to the DAR with restriction Σ1 = 04×4. The

DAR obtains the lowest AIC value, see Table 2, and the likelihood values of the models

are significantly different when compared by a LR test. Moreover, we note that the

estimated top-Lyapunov exponent in the DAR is strictly negative.2 Therefore, the process

2The Lyapunov exponents are obtained by the efficient and numerically stable algorithm described in
Nielsen and Rahbek (2014).
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DAR VAR

Log-likelihood 6986 6823

Akaike information criteria −13806 −13507

Top-Lyapunov exponent −0.004

Table 2: Log-likelihood and Akaike information criteria for the DAR and VAR models. Top-
Lyapunov exponent is reported for the DAR.

is stationary despite presence of unit roots. This feature contrasts the VAR dynamics in

which unit roots result in a non-stationary model. We shall see in Section 4.3 that this

difference carry implications for the long-run adjustments implied by the models.

4.2 Evidence and Sources of Volatility-Induced Stationarity

The estimated model-implied conditional variances are exhibited in Figure 2. In the DAR

model, conditional covariances are highly time-varying and fluctuate around the constant

levels estimated by the VAR. There are pronounced spikes at the outbreak of the financial

crisis in 2007/08 and variances are small and near constant during the zero-lower bound

regime in the aftermath of the crisis.

The DAR model allows all variables to exhibit volatility-induced stationarity and

furthermore, the conditional heteroskedasticity can be driven by all variables. This general

setting allows us to make statements about (i) which variables exhibit volatility-induced

stationarity? and (ii) what variables drive these effects? From Figure 2, the short rate

stands out with a highly volatile conditional variance that ranges from high and rapidly

changing to low and stable. Conditional volatility tends to be low and stable during

recessions, e.g., during the current zero-lower bound regime. From the estimation results

in Table 10, Appendix C the conditional variance of the short rate is given by

Vart (rt+1) = (95.7rt + 18.9Rt + 15.2πt)
2 ,

where insignificant coefficients are suppressed. Thus, volatility-induced stationarity in the

short rate is mainly driven by the short rate itself, but also by the long rate and inflation.

Figure 2 also shows the conditional correlations in the DAR model. The short rate

correlates positively with the long rate through the majority of the sample implying that

the monetary transmission mechanism from short to long rates works in normal times.

9



1985 1995 2005 2015
0

2

4

6

8

10

12
 var

t-1
(r

t
)

1985 1995 2005 2015
0.55

0.6

0.65

0.7

0.75

0.8

0.85
 var

t-1
(R

t
)

1985 1995 2005 2015
0.5

1

1.5

2

2.5

3
 var

t-1
(

t
)

1985 1995 2005 2015
0.15

0.2

0.25
 var

t-1
(g

t
)

1985 1995 2005 2015
-0.4

-0.2

0

0.2

0.4

0.6
 corr

t-1
(R

t
,r

t
)

1985 1995 2005 2015
-0.5

0

0.5

1
 corr

t-1
(

t
,r

t
)

1985 1995 2005 2015
-0.6

-0.4

-0.2

0

0.2
 corr

t-1
(

t
,R

t
)

1985 1995 2005 2015
-0.2

-0.1

0

0.1

0.2

0.3

0.4
 corr

t-1
(g

t
,r

t
)

1985 1995 2005 2015
0

0.1

0.2

0.3

0.4
 corr

t-1
(g

t
,R

t
)

1985 1995 2005 2015
-0.6

-0.4

-0.2

0

0.2
 corr

t-1
(g

t
,

t
)

DAR VAR

Figure 2: Estimated conditional volatilities and correlations. Reported in bps.
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DAR VAR

rt Rt πt gt rt Rt πt gt

α′
0 0 0.017

(0.008)
0.008
(0.003)

−0.016
(0.008)

0 0.017
(0.009)

0.009
(0.003)

0 −0.031
(0.012)

0 0 0.050
(0.027)

0 −0.033
(0.017)

0

β ′
1 0 −3.672

(1.150)
−1.681

(0.611)
1 0 −3.097

(0.911)
−2.174

(0.715)

−1 1 0 0 −1 1 0 0

Table 3: Estimates of the coefficients in the long-run relations, β, and adjustment speeds, α,
in the DAR (left panel) and VAR (right panel). Standard errors are in parentheses. Remaining
estimation results are reported in Table 10 in Appendix C.

However, in times of crisis in which the short rate is lowered to low levels with stable

variance, the correlation becomes negative.

4.3 Long-Run Dynamics and Error-Correction

Table 3 summarizes the long-run dynamics of the models. The DAR and VAR models

carry similar predictions concerning the long-run relations, β ′Xt: one relation is the spread

between long and short rates as in Hall et al. (1992), and the short rate, inflation, and real

activity constitute another relation. Since the short rate follows the Federal Funds rate

closely as illustrated in Figure 8 in Appendix C, this relation mimics the dual mandate

of the Federal Reserve (Fed). In addition, the signs of the estimates are intuitive: a low

interest rate is associated with high levels of inflation and real activity.

The models, however, produce different estimates of the adjustment matrix. In the

DAR, adjustment to the yield spread is maintained by the long rate, whereas the VAR

predicts that the short rate adjust towards this equilibrium. To the extend that the yield

spread relation reflects no-arbitrage, we should expect the long rate, i.e., market mech-

anisms, to erode short-lived arbitrage opportunities rather than the short rate, which

is primarily controlled by the Fed.3 As for the second relation, the models disagree on

whether the short rate enters the error-correcting mechanism jointly with the macro vari-

ables. The fact that the Fed determines the policy discretionally rather than mechanically

3While the FOMC does use information on developments in the long-term yield to make decisions about
the discount rate (Bernanke, 2006), it is not concerned with maintaining a stable spread.
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Figure 3: Common stochastic factors computed by α̂′

⊥

∑t
s=1 Ω̂

1/2
s ẑs for the DAR and VAR.

from macroeconomic variables (Bernanke, 2015) is an argument for the plausibility of the

DAR results in which the short rate is not significant in the adjustment matrix.

In the analysis of the cointegrated VAR, one is often interested in the common

stochastic factors determined by the orthogonal complement of the adjustment matrix,

α⊥, as α̂
′

⊥

∑t
s=1 Ω̂

1/2ẑs. These are plotted in the right panel of Figure 3. By comparing

with the data plot in Figure 1, we identify that the state vector is partly driven by shocks

to the long rate according to the VAR model. A similar conclusion is reached by Hall et al.

(1992) also in an affine model but with yield data only. They interpret these results as

evidence of the expectations hypothesis: the term structure is driven by the long rate to

which current short rates adjust using the information contained in the yield spread. We

shall see in Section 6 that the VAR is indeed consistent with the expectations hypothesis

as it implies almost constant term premia.

The left panel of the figure shows the equivalent to stochastic common trends in the

DAR model. In this framework, the state vector appears to be driven by the short rate

rather than the long rate. Hence, the DAR predicts that the Fed can affect the dynamics

of the entire yield curve by controlling the short rate and that the market will adjust to

such monetary policy shocks.

In conclusion, we find that the short rate is an important factor for ensuring well-

defined long-run dynamics. In the cointegrated VAR, this property is realized as an

error-correcting behavior that is economically puzzling. In contrast, the DAR allows the
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short rate to induce stationarity through the conditional volatility.

5 No-Arbitrage Term Structure Model with DAR Dynamics

This section casts the DAR dynamics analyzed thus far into a macro-finance term struc-

ture model. Thus, consider a four-factor term structure model with the observable state

vector Xt = [rt, Rt, πt, gt]
′ whose dynamics is given by (2). We specify the term structure

model such that it is comparable with the discrete-time Gaussian affine term structure

model (GATSM) studied in Ang and Piazzesi (2003). This choice has two advantages.

First, the GATSM is considered to be the workhorse model in the macro-finance term

structure literature. Second, since the VAR process is nested in the DAR model, the

GATSM will be nested in the specified term structure model with DAR dynamics.

5.1 Stochastic Discount Factor

We adopt the standard linear-exponential stochastic discount factor given by

Mt+1 = exp

(

−rt −
1

2
Λ′

tΩt+1Λt − Λ′

tΩ
1/2
t+1zt+1

)

, (3)

where Λt is the market price of risk with risk measured by the conditional variance, Ωt+1.

We specify the market price of risk such that the factor dynamics under the risk-neutral

Q-measure follows a DAR model. Moreover, to reduce the number of parameters we treat

lagged variables as unspanned factors.4 Thus, the lag structure determines the dynamics

under the real-world measure but is not priced in the term structure cross-section. The

resulting market price of risk is given by

Λt = Ω−1
t+1 (λ0 + λ1Xt) , (4)

which is time-t measurable as Ωt+1 depends on Xt.

Under the real-world P-measure, Xt+1 follows a conditional normal distribution given

the past, Ft = {Xt, Xt−1, . . ., X1}. Therefore, the change of measure implied by the

stochastic discount factor in (3) is given by a discrete-time analogue to the Girsanov

theorem. In particular, the conditional mean is risk-adjusted by −Ωt+1λt, while the

conditional variance is equal to that under the P-measure. The risk-neutral Q-dynamics

4Models with unspanned factors are studied in Duffee (2011), Joslin et al. (2014) and Ludvigson and Ng
(2009) among others.
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is given by the following DAR model:

Xt+1 = µQ + ΦQXt +
K
∑

k=0

Γk∆Xt−k + Ω
1/2
t+1zt+1,

Ωt+1 = Σ0Σ
′

0 + Σ1XtX
′

tΣ
′

1,

zQt+1 =∼ i.i.d. Np(0, I4),

(5)

where µQ = µ− λ0, Φ
Q = Φ− λ1. Finally, note that per construction of the state vector,

the short rate and the state vector are related by rt = ι′1Xt where ι′1 is a unit vector with

one in the first entry.

These assumptions complete the term structure model with DAR dynamics. The

GATSM is contained as a special case for Σ1 = 04×4, i.e., when the factor dynamics

reduces to a VAR.

5.2 Approximation for Analytical Bond Pricing

The no-arbitrage time-t price of a zero-coupon bond with n + 1 periods to maturity is

given by

Pt,n+1 = Et (Mt+1Pt+1,n) ,

where Et(·) denotes the conditional expectation given Ft = {Xt, Xt−1, . . . , X1} under

real-world probabilities. Our model does not admit a closed-form bond price expression

that satisfies this equation. Instead, we propose an exponential-quadratic approximation

that allows the conditional covariance matrix to affect bond yields. This is similar to the

GATSM in which the closed-form solution depend on the constant conditional variance,

see Ang and Piazzesi (2003). Also, we make sure that for Σ1 = 04×4, bond yield compu-

tation must coincide with the solution of the GATSM. Appendix B shows that such an

approximation can be obtained by controlling the dynamics of the conditional variance

under the Q-measure. The resulting approximation is given by

Pt,n =exp (An +B′

nXt + C ′

nvec (XtX
′

t)) , (6)

where

An = An−1 +B′

n−1µ
Q + C ′

n−1

(

vec
(

µQµQ′

)

+ vec (Σ0Σ
′

0)
)

+
1

2
B′

n−1Σ0Σ
′

0Bn−1

B′

n = −ι1 +B′

n−1Φ
Q + C ′

n−1

(

ΦQ ⊗ µQ + µQ ⊗ ΦQ
)

C ′

n = C ′

n−1

(

ΦQ ⊗ ΦQ + Σ1 ⊗ Σ1

)

+
1

2

(

[B′

n−1Σ1]⊗ [B′

n−1Σ1]
)
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initiated at n = 0 with A0 = 0, B0 = 0p×1, C0 = 0p2×1.
5 The associated approximated

bond yield is given by

Yt,n = −
1

n
log (Pt,n) = −

1

n
An −

1

n
B′

nXt −
1

n
C ′

nvec (XtX
′

t) . (7)

The approximated bond yield expression is similar to the solution of the class of

quadratic term structure models (QTSMs) studied in Leippold and Wu (2002), Ahn et al.

(2002), and Realdon (2006). Thus, the model based on DAR dynamics and the QTSM

can produce similar shapes of the yield curve. However, the source of the quadratic term

and thus the loading recursions are highly different across the two model frameworks:

whereas the quadratic bond yield stems from the variance specification in the DAR, the

QTSM imposes this non-linearity through a quadratic specification of the short rate. This

difference is particularly highlighted in the macro-finance model considered in this paper

in which the short rate is a factor itself. In this setting, the short-rate specification is

linear per construction and the QTSM reduces in this case to the GATSM.

6 Term Structure Results

6.1 Estimation and In-Sample Performance

We estimate µQ and ΦQ by non-linear least squares given the parameters obtained for

the factor dynamics in Section 4.1, Θ̂P = {µ̂, α̂, β̂, Σ̂0, Σ̂1, Γ̂1, Γ̂2, Γ̂3}.6 The yield data are

annualized, continuously compounded yields of US Treasury bonds from Gürkaynak et al.

(2007) with maturities n = 1, 2, . . . , 10 years. Let Y O
t,n denote the observed n-month yield

and Yt,n the corresponding model-implied yield computed by (7). Then, the estimation

problem is given by

min
µQ,ΦQ

T
∑

t=1

10
∑

i=1

{

Y O
t,12i − Yt,12i

(

µQ,ΦQ, Θ̂P
)}2

To achieve convergence of this highly non-linear problem, we first estimate ΦQ with µQ =

04×1 and then, µQ given the estimated value of ΦQ. Using these estimates as starting

values, the parameters are re-estimated jointly. The results are shown in Table 4.

5 To evaluate the approximation error, we proxy the exact solution by averaging 10,000,000 paths of

exp
(

−
∑

n−1

i=0
ι′
1
X̂t

)

, where X̂t is simulated under the Q-measure according to (5). Then, this simulated

bond price is converted to yields. We repeat this procedure for all months of January in the sample using
parameter values reported in Table 4. The approximation error is largest for the ten-year yield, for which
the average absolute error is 38 bps corresponding to 6.94 pct of the average ten-year yield level.
6This two-step estimation method is a common approach in the macro-finance term structure literature,
see for instance Ang and Piazzesi (2003) and Ang et al. (2006).
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Term structure model with DAR GATSM

(µQ)′×10−3 -2.591
(1.336)

-2.765
(1.212)

1.459
(0.731)

5.371
(2.490)

-0.140
(0.050)

0.066
(0.047)

-0.284
(0.284)

-0.052
(0.095)

ΦQ

-1.336
(0.235)

1.615
(0.329)

1.413
(0.085)

-0.130
(0.087)

0.548
(0.011)

0.251
(0.015)

-0.010
(0.010)

-0.029
(0.010)

-2.451
(0.197)

2.728
(0.178)

1.750
(0.213)

-0.059
(0.089)

-0.037
(0.008)

1.034
(0.011)

0.157
(0.008)

0.068
(0.006)

1.374
(0.217)

-0.876
(0.157)

0.550
(0.195)

0.046
(0.068)

0.043
(0.044)

0.050
(0.066)

1.396
(0.045)

0.035
(0.037)

4.635
(0.297)

-3.240
(0.458)

-2.961
(0.251)

1.613
(0.169)

0.014
(0.018)

0.022
(0.026)

0.058
(0.016)

1.217
(0.015)

Table 4: Estimated conditional mean parameters under the Q-measure given the estimated
parameters of the factor dynamics, Θ̂P = {µ̂, α̂, β̂, Σ̂0, Σ̂1, Γ̂1, Γ̂2, Γ̂3}. Standard errors in paran-
thesis.

In the DAR-based term structure model, ΦQ has eigenvalues outside the unit circle.

However, due to the time-varying conditional volatility, the model remains stationary

under the Q-measure with a top-Lyapunov exponent of −0.017. The maximum eigenvalue

of ΦQ in the GATSM is 0.9999.

Model-implied yields are plotted for the one- and five-year maturities in Figure 4.

The immediate conclusion is that volatility-induced stationarity does not affect in-sample

fit: the term structure model with DAR and the GATSM both match the observed yields

closely. This is not surprising because the differences between the models are given in

the conditional variance, which only affects bond yields through a convexity effect that is

small (Joslin and Konchitchki, 2018).

6.2 Out-of-Sample Performance

We assess the out-of-sample performance through a rolling-window forecasting exercise.

In particular, we estimate the models with one lag in the factor dynamics for the sample

from January 1985 to December 2005 (T = 252). Using these estimated models, the yield

curve is forecasted 3, 6, and 12 months ahead. We repeat this procedure by re-estimating

the models based on a rolling-window sample of length T = 252 from January 2006 to

December 2015. This period contains events that are difficult to forecast including the

financial crisis of 2007/08 and the zero-lower bound regime.

Root mean squared errors from this exercise are presented in Table 5 along with ran-
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Figure 4: Observed and fitted yields with maturities 1 and 5 years.

dom walk forecasts. The term structure model with DAR outperforms both the GATSM

and the random walk for all maturities but the 10-year yield. The differences between the

models’ forecasting performance are larger for shorter maturity reflecting that volatility-

induced stationarity is generated by the short end of the yield curve. Thus, volatility-

induced stationarity clearly improves out-of-sample forecasting of the yield curve.

6.3 Model-Implied Expectations and Survey Data

Estimation of term premia is an important application of term structure models, e.g., for

understanding the reasons behind interest rate movements which serve as a guideline for

policy makers (Bernanke, 2006). Term premia are defined by the difference between no-

arbitrage bond yields and an expectations component given by the following conditional

expectation under real-world probabilities:

Ỹt,n = −
1

n
logEt

(

exp

[

−
n−1
∑

i=0

rt+i

])

.

While the term structure model based on DAR dynamics does not outperform the GATSM

in matching yields, there are good reasons to expect that volatility-induced stationarity

help estimating expectations under the P-measure as the DAR process simultaneously

allows for stationarity and unit roots in the short rate. In the cointegrated VAR dynamics

underpinning the GATSM, the short rate is a random walk such that the expectations

component is almost equivalent to current yields and term premia are almost constant.

To empirically evaluate the models in this respect, we compare model-implied ex-

pectations with survey expectations. The survey data is from the Survey of Professional

17



Model with DAR GATSM Random Walk

Horizon 3M 6M 12M 3M 6M 12M 3M 6M 12M

Average 58.06 71.77 87.42 69.07 88.21 102.74 63.37 79.48 125.61

1Y 65.90 85.18 113.43 99.57 131.34 168.83 65.53 102.71 175.08

2Y 63.23 78.86 99.29 86.35 111.69 136.38 64.60 91.40 156.03

3Y 61.77 75.03 90.18 77.96 99.04 115.84 64.20 83.29 140.76

4Y 60.24 72.83 85.93 72.16 90.75 103.14 63.82 78.08 129.29

5Y 58.33 70.88 83.53 67.52 84.74 94.88 63.45 75.12 120.86

6Y 56.33 69.02 81.94 63.50 79.94 89.03 63.12 73.64 114.60

7Y 54.55 67.39 80.76 59.96 75.87 84.56 62.80 73.00 109.85

8Y 53.24 66.16 79.95 56.90 72.36 80.96 62.47 72.73 106.11

9Y 52.64 65.56 79.46 54.35 69.37 78.05 62.07 72.54 103.05

10Y 54.36 66.78 79.72 52.42 66.95 75.77 61.60 72.28 100.44

Table 5: Root mean squared errors from forecasting the yield curve using the term structure
model with DAR and the GATSM. The models are estimated on a rolling window starting with
the sample from January 1985 to December 2005. Forecasts by the random walk are reported
for reference. The minimum value obtained for each forecast horizon and maturity is boldfaced.
Reported in bps.

Term structure model with DAR GATSM

Short rate Long rate Inflation Short rate Long rate Inflation

3M 39.71 217.80 106.38 44.09 221.18 115.33

6M 49.14 200.23 98.49 58.74 205.46 113.78

1Y 74.56 167.48 92.66 83.90 174.33 106.66

Table 6: Root mean squared errors of model-implied expectations under the real-world measure
compared to survey data from Survey of Professional Forecasters. Reported in bps.
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Figure 5: Expectations components for the 10-year maturity implied by the term structure
model with DAR and the GATSM. The 10-year yield is plotted for reference. Shaded areas
mark recessionary periods as defined by NBER.
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Figure 6: 10-year term premium implied by the term structure model with DAR and the
GATSM. The 10-year yield is plotted for reference. Shaded areas mark recessionary periods as
defined by NBER.

Forecasters (SPF) conducted by the Federal Reserve Bank of Philadelphia on a quarterly

basis. We use median forecasts of the three-month Treasury bill rate as proxy for the

short rate; the ten-year Treasury bond yield; and standardized CPI inflation following

the construction of the inflation factor. We compare this data to expectations of the cor-

responding risk factors computed with respectively the model with DAR dynamics and

the GATSM. Table 6 compares root mean squared errors in bps between model-implied

and survey expectations for forecasting horizons of 3, 6, and 12 months ahead. The

results unambiguously show that volatility-induced stationarity help matching market

expectations.

The model-implied expectations components are plotted in Figure 5, which supports
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the a priori hypothesis: the GATSM assigns all variation of interest rates to the expecta-

tions component because the model does not allow unit-root processes to be stationary.

The effect of volatility-induced stationarity is clearly illustrated in the figure by the fact

that the term structure model based on DAR dynamics allows the expectations component

to move along different patterns than the interest rate itself.

The implications for term premia estimates are shown in Figure 6. The DAR dy-

namics implies term premia that are time-varying, but stable, and countercyclical. In

contrast, the GATSM estimates term premia that are almost constant and do not vary

with business cycles. These differences carry over to different policy recommendations.

For instance, in the period leading to the financial crisis of 2007/08, the DAR model sug-

gests a downward trend in the term premium, which signals a movement towards more

risk-taking among investors calling for a monetary policy tightening. The GATSM, how-

ever, does not predict a change in term premium in this period and, combined with a

stable interest rate, does not suggest neither policy easing or tightening.

6.4 Conditional Volatilities

The DAR model distinguishes from the GATSM by a time-varying conditional volatility

of the factor dynamics. Thus, a natural question is, how well does the term structure

model with DAR dynamics capture the conditional volatility of the yield curve?

To compute model-implied conditional yield volatilities based on the approxima-

tive bond yield equation in (7), we apply a local linearization around Xt−1 such that

Vart−1(Yt,n) ≈ [B′

n + C ′

nf(Xt−1)] Ωt [B
′

n + C ′

nf(Xt−1)]
′ /n2, where the function f(·) is de-

fined by f(a) = ∂vec (XtX
′

t) /∂X
′

t|Xt=a. This measure is compared to two proxies of

the unobserved conditional variance: realized variance computed from daily observa-

tions, available from Gürkaynak et al. (2007), and rolling-sample variance with a 6-

month look-back. The results are shown for the one- and five-year yields in Figure

7. The graphs also show the constant conditional volatility of the GATSM given by

vart−1(Yt,n) = B′

nΣ0Σ
′

0Bn/n
2.

Considering the one-year maturity, the DAR term structure model captures the low

conditional variance during the zero-lower bound regime with a peak at the outbreak of

the financial crisis of 2007/08. Apart from these observations, the model-implied volatility

appears to be more correlated with levels of the risk factors than with the conditional

volatility proxies. At the longer maturity, the level of the model-implied volatility is

consistent with the proxies, but the fluctuations are not captured.
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Figure 7: Conditional volatilities of 1- and 5-year yields implied by the DAR term structure
model and the GATSM. The former is computer by a local linearization. Proxies for conditional
volatilities of the data given by respectively realized variances (RV) based on daily data and
rolling-sample variance with a 6-month look-back are plotted for reference. Reported in bps.

These results are consistent with Filipović et al. (2017), who find evidence that yield

volatilities are level-dependent near the zero-lower bound but unspanned at higher levels.

In fact, an expanding literature emphasizes that separate factors drive respectively first-

and second-order moments of the yield curve (Cieslak and Povala, 2016, Haubrich et al.,

2012). This includes unspanned stohcastic volatility models studied in Andersen and

Benzoni (2010), Collin-Dufresne and Goldstein (2002), Creal and Wu (2015), Joslin et al.

(2014).

7 Conclusion

This paper presented a macro-finance term structure model based on the error-correcting

double autoregression. The model accommodates the extreme persistence observed in

interest rates and inflation without implying non-stationarity by reconciling unit roots

and stationarity. This property is driven by a level-dependent conditional volatility, hence

the model is volatility-induced stationary.

We demonstrated empirically that US Treasury bond yields exhibit volatility-induced

stationarity especially in the short end of the yield curve. Moreover, volatility-induced

stationarity alters the error-correcting mechanism and improves term structure modeling

compared to results obtained with the cointegrated VAR. Specifically, while the DAR

and VAR models agree on the relations that determine the yield curve, the models carry

different predictions about the error-correcting mechanisms. With respect to term struc-
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ture modeling, volatility-induced stationarity improves out-of-sample forecasting and term

premia estimation.

Although the DAR process is heteroskedastic, the resulting term structure model

does not match conditional yield volatilities well. Fulfilling that objective may require

restrictions that separate factors of the conditional variance from those of the conditional

mean; that second-order moments are targeted in estimation as in Cieslak and Povala

(2016); or inclusion of derivatives in the information set as in Almeida et al. (2011),

Bikbov and Chernov (2011), and Jagannathan et al. (2003). We leave this topic for

future research.
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A Specification and Estimation of the DAR

We specify the model in (2) by use of conventional methods. In particular, the rank is

determined by the likelihood-ratio test in Johansen (1991), which is based on the Gaus-

sian VAR, with critical values obtained using the wild bootstrap procedure in Cavaliere

et al. (2014). The lag structure of the test is specified by general-to-specific LR tests,

information criteria, and misspecification tests. For the choice of three months lags, the

residuals are not autocorrelated according to univariate Ljung-Box tests, see the right

panel of Table 8. The likelihood-ratio test, for which results are reported in Table 7,

suggests a reduced rank of r = 2. We interpret these findings as indications that the

DAR model in (2) may be well-specified by r = 2 and lag length K = 3 as well. The left

panel of Table 8 confirms this presumption.

r ≤ 0 r ≤ 1 r ≤ 2 r ≤ 3

90.89 32.62 15.99 5.06

[0.00] [0.03] [0.07] [0.11]

Table 7: Likelihood-ratio test of the null, H0: r ≤ r⋆ < p, against r = p. P-values obtained
with the wild bootstrap in brackets.

DAR VAR

rt Rt πt gt rt Rt πt gt

Ljung-Box test
7.71 1.67 0.61 4.96 3.72 1.48 1.05 5.75

[0.10] [0.80] [0.96] [0.29] [0.44] [0.83] [0.90] [0.22]

Engle’s ARCH test
23.81 4.37 2.53 1.58 36.15 9.92 20.82 0.60

[0.00] [0.04] [0.11] [0.21] [0.00] [0.00] [0.00] [0.44]

Kolmogorov-Smirnov test
0.07 0.06 0.06 0.06 0.09 0.06 0.10 0.05

[0.05] [0.09] [0.12] [0.16] [0.00] [0.12] [0.00] [0.12]

Table 8: Residual specification tests: Ljung-Box test of no autocorrelation. Engle’s test of no
ARCH effects. Kolmogorov-Smirnov test of standard normal distribution. P-values in brackets.
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Then, we estimate (2) with r = 2 and K = 3 by maximum likelihood under just-

identifying restrictions. Nielsen and Rahbek (2014) prove that the maximum likelihood

estimator in a particular bi-variate specification of the model in (1) is consistent and

asymptotically normal. Since there are no results available for the general multivariate

specification, we confirm by simulations that the maximum likelihood estimator exhibit

reasonable properties in the four-dimensional model. The simulations are available upon

request. Then, we impose further restrictions to obtain models with economically sensible

interpretations. The restrictions are imposed sequentially starting with setting the most

insignificant estimates to zero first in the relations β ′Xt and then in the adjustment

matrix. At each step, the restrictions are tested by LR tests and the short-run coefficient

estimates are compared.

B Bond Yield Approximation

Define εQt = Ω
1/2
t zQt . From the factor dynamics under the Q-measure in (5), write

XtX
′

t =µQµQ′

+ µQX ′

t−1Φ
Q′

+ ΦQXt−1µ
Q′

+ ΦQXt−1X
′

t−1Φ
Q′

+
(

µQ + ΦQXt−1

)

εQ
′

t

+ εQt

(

µQ′

+X ′

t−1Φ
Q′

)

+ εQt ε
Q′

t ,

or by using the vectorization operator, vec (A), that stacks the columns of the matrix A

into a vector and its relation with the Kronecker product denoted ⊗,

vec (XtX
′

t) =vec
(

µQµQ′

)

+
(

ΦQ ⊗ µQ + µQ ⊗ ΦQ
)

Xt−1 +
(

ΦQ ⊗ ΦQ
)

vec
(

Xt−1X
′

t−1

)

+
(

I4 ⊗
(

µQ + ΦQXt−1

)

+
(

µQ + ΦQXt−1

)

⊗ I4
)

εQt + vec
(

εQt ε
Q′

t

)

.

Next, we compute the conditional expectation given Ft−1 = {Xt−1, . . . , X1} under Q-

measure probabilities, EQ
t−1(·), of this expression. It follows that

E
Q
t−1 (vec (XtX

′

t)) =vec
(

µQµQ′

)

+
(

ΦQ ⊗ µQ + µQ ⊗ ΦQ
)

Xt−1 +
(

ΦQ ⊗ ΦQ
)

vec
(

Xt−1X
′

t−1

)

+ vec (Ωt) .

To derive a bond yield expression in closed-form, we introduce the following approxima-

tion:

vec (XtX
′

t) ≈vec
(

µQµQ′

)

+
(

ΦQ ⊗ µQ + µQ ⊗ ΦQ
)

Xt−1 +
(

ΦQ ⊗ ΦQ
)

vec
(

Xt−1X
′

t−1

)

+ vec (Ωt) ,

where ≈ denotes an equality that is valid only approximately. Given this equation, the

zero-coupon bond price takes the form

Pt,n+1 =exp
(

An+1 +B′

n+1Xt + C ′

n+1vec (XtX
′

t)
)

.
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It is straightforward to prove this claim and derive recursive formulas for the loadings:

logPt,n+1 =− rt + An +B′

n(µ
Q + ΦQXt) + C ′

nvec
(

µQµQ′

)

+ C ′

n

(

ΦQ ⊗ µQ + µQ ⊗ ΦQ
)

Xt

+ C ′

n

(

ΦQ ⊗ ΦQ
)

vec (XtX
′

t) + C ′

nvec (Ωt) + logEQ
t

[

exp
(

B′

nε
Q
t+1

)]

=− rt + An +B′

n(µ
Q + ΦQXt) + C ′

nvec
(

µQµQ′

)

+ C ′

n

(

ΦQ ⊗ µQ + µQ ⊗ ΦQ
)

Xt

+ C ′

n

(

ΦQ ⊗ ΦQ
)

vec (XtX
′

t) + C ′

nvec (Ωt+1) +
1

2
B′

nΩt+1Bn.

Gathering terms result in factor loadings recursions given by

An+1 = An +B′

nµ
Q + C ′

n

(

vec
(

µQµQ′

)

+ vec (Σ0Σ
′

0)
)

+
1

2
B′

nΣ0Σ
′

0Bn

B′

n+1 = −ι1 +B′

nΦ
Q + C ′

n

(

ΦQ ⊗ µQ + µQ ⊗ ΦQ
)

C ′

n+1 = C ′

n

(

ΦQ ⊗ ΦQ + Σ1 ⊗ Σ1

)

+
1

2
([B′

nΣ1]⊗ [B′

nΣ1]) .

To be consistent with rt = ι′1Xt, the recursions are initiated at n = 0 with A0 = 0,

B0 = 0p×1, C0 = 0p2×1.

C Additional Tables and Figures

H0 rt Rt πt gt

ADF test unit root
2.16 3.19 -16.98 -14.83

[0.44] [0.17] [0.00] [0.01]

KPSS test stationarity
1.49 1.89 0.39 0.43

[0.00] [0.00] [0.08] [0.06]

Table 9: Augmented Dickey-Fuller and KPSS tests for respectively unit roots and stationarity.
P-values in brackets.
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Figure 8: The short rate and the effective Federal Funds Rate from Federal Reserve Economic
Data between January 1985 and December 2016 with monthly frequency.
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DAR VAR

Σ0 (×10−3) 0.045
(0.010)

0.369
(0.022)

0.049
(0.037)

0.217
(0.012)

0.029
(0.015)

0.228
(0.010)

-0.016
(0.040)

0.022
(0.016)

0.247
(0.017)

0.020
(0.013)

-0.007
(0.016)

0.275
(0.016)

0.012
(0.015)

0.014
(0.007)

0.002
(0.009)

0.113
(9,995)

0.013
(0.005)

0.017
(0.005)

-0.001
(0.008)

0.114
(0.005)

Σ1 -0.096
(0.013)

-0.019
(0.006)

-0.015
(0.006)

-0.008
(0.005)

-0.015
(0.014)

0.007
(0.010)

0.012
(0.011)

-0.028
(0.012)

-0.006
(0.018)

-0.007
(0.011)

-0.012
(0.018)

0.076
(0.016)

-0.002
(0.006)

-0.000
(0.004)

-0.008
(0.007)

-0.0074
(0.007)

µ′ (×10−4) -0.041
(0.060)

0.288
(0.217)

-0.273
(0.263)

-0.244
(0.106)

-0.637
(0.448)

-0.215
(0.119)

-0.122
(0.425)

-0.241
(0.095)

Γ1 -0.175
(0.064)

0.059
(0.034)

0.027
(0.022)

0.036
(0.039)

-0.427
(0.076)

0.183
(0.088)

0.014
(0.060)

-0.064
(0.161)

-0.026
(0.034)

0.027
(0.055)

0.150
(0.050)

0.140
(0.102)

-0.028
(0.032)

0.034
(0.059)

0.148
(0.054)

0.069
(0.100)

0.039
(0.032)

0.032
(0.056)

0.444
(0.059)

-0.087
(0.113)

0.020
(0.030)

0.024
(0.056)

0.449
(0.077)

0.029
(0.140)

0.027
(0.016)

0.010
(0.027)

0.068
(0.022)

0.244
(0.048)

0.020
(0.015)

0.021
(0.027)

0.065
(0.023)

0.236
(0.049)

Γ2 -0.028
(0.072)

-0.032
(0.023)

0.011
(0.019)

0.014
(0.045)

-0.125
(0.082)

0.164
(0.080)

0.035
(0.065)

0.527
(0.165)

-0.035
(0.040)

-0.119
(0.055)

0.064
(0.044)

0.048
(0.106)

-0.025
(0.039)

-0.117
(0.053)

0.057
(0.048)

0.005
(0.114)

0.036
(0.032)

-0.063
(0.049)

-0.162
(0.066)

0.292
(0.118)

0.015
(0.033)

-0.035
(0.052)

-0.124
(0.079)

0.480
(0.137)

0.008
(0.017)

-0.015
(0.025)

0.025
(0.029)

0.187
(0.053)

0.010
(0.016)

-0.009
(0.025)

0.017
(0.033)

0.193
(0.049)

Γ3 -0.061
(0.056)

-0.022
(0.022)

-0.0359
(0.0220)

0.061
(0.038)

0.030
(0.074)

-0.064
(0.083)

-0.190
(0.062)

-0.070
(0.141)

-0.045
(0.034)

0.065
(0.058)

-0.090
(0.043)

0.001
(0.096)

-0.026
(0.034)

0.056
(0.061)

-0.078
(0.044)

-0.063
(0.099)

0.007
(0.029)

0.064
(0.051)

0.122
(0.056)

-0.084
(0.113)

0.009
(0.030)

0.066
(0.056)

0.063
(0.070)

0.050
(0.111)

-0.039
(0.015)

-0.015
(0.025)

0.034
(0.025)

0.288
(0.052)

-0.035
(0.014)

-0.017
(0.024)

0.032
(0.028)

0.278
(0.053)

Table 10: Short-run factor dynamics in the DAR and VAR. Standard errors in parentheses.
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