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Abstract

It is a well-established fact that testing a null hypothesis on the boundary of the
parameter space, with an unknown number of nuisance parameters at the bound-
ary, is infeasible in practice in the sense that limiting distributions of standard test
statistics are non-pivotal. In particular, likelihood ratio statistics have limiting
distributions which can be characterized in terms of quadratic forms minimized
over cones, where the shape of the cones depends on the unknown location of
the (possibly mulitiple) model parameters not restricted by the null hypothesis.
We propose to solve this inference problem by a novel bootstrap, which we show
to be valid under general conditions, irrespective of the presence of (unknown)
nuisance parameters on the boundary. That is, the new bootstrap replicates the
unknown limiting distribution of the likelihood ratio statistic under the null hy-
pothesis and is bounded (in probability) under the alternative. The new bootstrap
approach, which is very simple to implement, is based on shrinkage of the parame-
ter estimates used to generate the bootstrap sample toward the boundary of the
parameter space at an appropriate rate. As an application of our general theory,
we treat the problem of inference in finite-order ARCH models with coeffi cients
subject to inequality constraints. Extensive Monte Carlo simulations illustrate
that the proposed bootstrap has attractive finite sample properties both under
the null and under the alternative hypothesis.
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ARCH models; Bootstrap.

∗Department of Economics, University of Bologna, Italy. †Department of Economics, University of
Copenhagen, Denmark. Correspondence to: Giuseppe Cavaliere, Department of Economics, University
of Bologna, Piazza Scaravilli 2, 40126 Bologna, Italy; email: giuseppe.cavaliere@unibo.it. The authors
thank Michael McAleer, Federico Bandi, Valentino Dardanoni, Michael Wolf, Christian Brownlees,
Anders Kock, David Preinerstorfer and participants to the 2018 "New Developments in Econometrics
and Time Series" workshop held in Copenhagen, September 2018. This research was supported by
the Danish Council for Independent Research (DSF Grant 7015-00028B). Cavaliere also acklowledges
partial financial support from the University of Bologna (Alma Idea 2017 grant).

1



1 Introduction

We consider (likelihood ratio-based) testing the null hypothesis that some of the pa-
rameters of a statistical model lie on the boundary of the parameter space. This is a
non-standard testing problem which has been widely analyzed in the case where the pa-
rameters not restricted by the null hypothesis are in the interior of the parameter space,
see Andrews (2001) and the references therein. However, the assumption that the only
parameters which may lie on the boundary are those restricted by the null hypothesis
excludes several important cases in empirical applications. A classic example, which
we discuss in detail in the paper, is testing hypotheses in (G)ARCH models subject to
non-negativity parameter constraints; see Francq and Zakoïan (2009). In this case, the
practitioner may want to test whether some of the (G)ARCH parameters are zero, but
(s)he is uncertain about the location of the remaining parameters.
This testing problem is particularly involved because the relevant null asymptotic

distributions depend on whether the parameters not restricted by the null hypothesis
—henceforth, ‘nuisance parameters’— lie on the boundary or not. More specifically,
likelihood ratio [LR] statistics have limiting distributions which can be characterized in
terms of quadratic forms minimized over cones, where the shape of the cones depends
on the unknown location of the (possibly multiple) nuisance parameters. The widely
applied assumption that such parameters are not on the boundary (which corresponds to
the assumption that the location of the parameters not restricted by the null hypothesis
is known) is implausible in most testing problems, such as the aforementioned (G)ARCH
case.
Attempts to deal with inference problems involving nuisance parameters potentially

on the boundary of the parameter space are given in the literature; see e.g. Andrews
and Guggenberger (2009), Elliott, Müller and Watson (2015), McCloskey (2017), Ketz
(2018) and the reference therein. Here, however, we take a completely different route.
Specifically we propose and analyze a novel bootstrap-based testing approach which
can be applied to this testing problem.
Interestingly, the bootstrap is usually regarded as invalid when applied to testing

whether some parameters are on the boundary of the parameter space, see e.g. Horowitz
(2001). For instance, Andrews (2000) shows that in a simple location model with i.i.d.
Gaussian errors the asymptotic distribution of the bootstrap maximum likelihood [ML]
estimator of the location parameter is random in the limit, and hence fails to mimic
the asymptotic distribution of the original ML estimator. The bootstrap in Andrews
(2000) does not impose the null hypothesis on the bootstrap sample — that is, it is
an example of the widely applied ‘unrestricted bootstrap’—and this is crucial when
interest is in testing that a parameter is on the boundary. In contrast, Cavaliere,
Nielsen and Rahbek (2017) show that randomness of the limiting distribution can be
avoided by applying a bootstrap scheme which imposes the null hypothesis on the
bootstrap sample, that is, the ‘restricted bootstrap’, see also Davidson and MacKinnon
(2006). However, the approach of Cavaliere, Nielsen and Rahbek (2017) requires that
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all parameters not restricted by the null hypothesis are in the interior of the parameter
space and, when this is not the case, also this bootstrap fails to replicate the correct
asymptotic distribution, see the discussion in Section 3 below. An analog requirement
is made in Francq and Zakoïan (2009) for testing that some coeffi cients in a general
(G)ARCH model are equal to zero.
To overcome this drawback, we propose here a straightforward, bootstrap-based test-

ing approach, which is very simple to implement and moreover delivers asymptotically
correctly sized tests without losing the consistency property, irrespectively of the loca-
tion of the parameters not restricted by the null hypothesis (the nuisance parameters).
In particular, we show that a simple modification of either the restricted bootstrap, or
the unrestricted bootstrap, delivers correct inference in large samples. Such modifica-
tion is based on shrinkage of the original estimates of the parameters not restricted by
the null hypothesis toward the boundary of the parameter space at an appropriate rate.
A similar approach, which draws back to Beran (1997), is advocated in Andrews (2000,
p. 403) for a one-parameter location model. As we demonstrate, this modification of the
bootstrap scheme is able to eliminate the randomness in the limiting distribution of the
bootstrap LR statistic. Consequently, we are able to provide high-level conditions on
the data and bootstrap generating processes such that the bootstrap test allows control
of the rejection probability under the null in large samples, irrespective of the presence
of nuisance parameters on the boundary. We also discuss suffi cient conditions for this
novel modified bootstrap tests to be consistent under the alternative hypothesis.
As an application of our theory, in the paper we treat the problem of inference in

finite-order ARCH models with coeffi cients subject to inequality (i.e. non-negativity)
constraints. Using a fixed-volatility bootstrap scheme to illustrate, see Cavaliere, Ped-
ersen and Rahbek (2018) and Beutner, Heinemann and Smeekes (2018), we show that
our modified bootstrap LR test is asymptotically valid under the null and consistent
under the alternative under standard regularity conditions.
We complete the paper by providing an extensive Monte Carlo experiment based on

the ARCH model, where we show three important facts. First, we show that neglecting
the presence of parameters on the boundary affects the size of asymptotic and bootstrap
tests, which do not take into account the unknown location of the nuisance parameters.
These tests may in general be either undersized or oversized, depending on the location
of nuisance parameters and their implied correlation structure. Second, we show that
even in samples of moderate size our modified bootstrap test has excellent properties
under the null, while its power is indistinguishable to the power of asymptotic LR test
based on the artificial assumption (see above for a discussion of this assumption) that
all nuisance parameters are in the interior of the parameter space. Third, our Monte
Carlo simulations show that the small sample properties of our modified bootstrap
are extremely good irrespective of the bootstrap sample being based on restricted or
unrestricted model parameter estimates.
The paper is organized as follows. Section 2 describes the general framework and
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introduces the main assumptions on the estimators, the parameter space, the null hy-
pothesis and the test statistics. The special case that will be considered throughout,
namely the ARCH(q) model, is detailed here in Section 2.1. Section 3 presents the new
bootstrap tests and analyzes their large sample properties, in particular by showing
validity of the tests under the null and under the alternative hypotheses. The theory
is applied to the ARCH(q) case in Section 4, while the small-sample properties are in-
vestigated by Monte Carlo simulation in Section 5. Section 6 concludes. All proofs are
placed in the Appendix.

Notation. We make use of the following notation and definitions throughout. With
R+ we denote the set of non-negative real numbers; with I(·) we denote the indicator
function, and ‘x := y’(‘x =: y’) indicates that x is defined by y (y is defined by x).
We let {0}k := {0} × · · · × {0} (k times), while 0k = (0, ..., 0)′ (of dimension k). We
say that a set A ⊂ Rp is locally equal to a set B ⊂ Rp if there exists C (0p, ε) such that
A∩C (0p, ε) = B ∩C (0p, ε), with C (0p, ε) an open cube in Rp centered at 0p and with
edge length 2ε, ε > 0. For any vector or matrix, x, ‖x‖ denotes the usual Euclidean
norm, ‖x‖ := [tr (x′x)]1/2; moreover, the norm of a vector x with respect to a (square)
matrix M is defined as ‖x‖2

M := x′Mx and M > 0 means the matrix M is positive
definite.
Unless differently specified, limits are taken for n→∞. We use P ∗ and E∗ respec-

tively to denote probability and expectation, conditional on the original sample. With
w→ and

p→ we denote weak convergence and convergence in probability, respectively. For
a given sequence X∗n computed on the bootstrap data, X

∗
n = o∗p(1), in probability, and

X∗n
p∗→p X mean that for any ε > 0, P ∗(||X∗n|| > ε)

p→ 0 and P ∗(||X∗n −X|| > ε)
p→ 0,

respectively. Similarly, X∗n = O∗p (1), in probability, means that, for every ε > 0, there
exists a constant M > 0 such that, for all large n, P (P ∗(||X∗n|| > M) < ε) is arbitrarily
close to one. Finally, weak convergence (in probability) of X∗n to a random variable X

is denoted by X∗n
w∗→p X.

2 The setting

We address inference and testing in statistical models with parameters θ ∈ Θ ⊂ Rdθ
where some of the parameters in θ are subject to an inequality constraint. Specifically,
we look at the case where such parameters are restricted to be greater than or equal to
zero, and test whether some of these parameters are indeed zero. Inference and testing
is infeasible in practice, in the sense that it is not known whether the parameters in θ
which are not restricted by the null hypothesis lie on the boundary or not. That is, the
location of the nuisance parameters is unknown, and, as is detailed below, asymptotic
inference is non-pivotal.
To address the issue, it is useful to partition the dθ × 1 parameter vector θ as

θ = (γ′, β′, δ′)
′
,
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where γ, β and δ are of dimension dγ, dβ and dδ respectively, with dγ + dβ + dδ = dθ.
The true parameter value is denoted by θ0 = (γ′0, β

′
0, δ
′
0)′ and the null hypothesis H0 we

consider testing is given by
H0 : γ = 0dγ .

Thus, the parameters in θ are for simplicity, and without any loss of generality, par-
titioned into, or simply labelled as, (i) γ, the parameters of interest, which are the dγ
parameters restricted to zero under the hypothesis H0, and; (ii) the remaining parame-
ters β and δ. The parameters in δ are the dδ parameters which are known a priori to
have true values in the interior of the parameter space. The parameters in β —which
we call ‘nuisance parameters’in the following —can attain true values which are zero or
not, and it is unknown a priori whether these are at the boundary or in the interior of
the parameter space. Reflecting the partitioning of θ, the parameter space Θ is assumed
to be given by

Θ = Θγ ×Θβ ×Θδ, (1)

where γ ∈ Θγ := [0, γU ]dγ , γU > 0, β ∈ Θβ := [0, βU ]dβ , βU > 0, and δ ∈ Θδ ⊂ Rdδ
with Θδ compact. We emphasize that for the true value of the nuisance parameters β0

and δ0, the vector δ0 is assumed to be an interior point in Θδ, and hence not on the
boundary, while for β0 it is not known whether parts of it are on the boundary (that is,
equal to zero) or not.
We assume in addition that the statistical model is given by the variables (xt)

n
t=1

together with a (quasi log-) likelihood function —or, more generally, an objective func-
tion —denoted here by Ln (θ). In particular, the unrestricted and restricted estimators
of θ are given by

θ̂n = (γ̂′n, β̂
′
n, δ̂
′
n)′ := arg max

θ∈Θ
Ln (θ) , θ̃n = (γ̃′n, β̃

′
n, δ̃
′
n)′ := arg max

θ∈ΘH0

Ln (θ) , (2)

where the optimization set under the null hypothesis is given by

ΘH0 = {θ ∈ Θ : γ = 0dγ}, (3)

such that γ̃n = 0dγ . The (quasi-)likelihood ratio statistic for the hypothesis H0 is given
by

LRn := −2(Ln(θ̃n)− Ln(θ̂n)). (4)

Andrews (2001) derives the limiting distribution of the likelihood ratio statistic for
the null hypothesis H0 under a set of standard regularity conditions, in addition to
the conditions on the parameter space(s). The standard regularity conditions for the
asymptotic theory are as follows.

Assumption 1 Assume (i), that for θ0 ∈ Θ, the unrestricted estimator θ̂n is consistent,
that is, θ̂n = θ0 + op (1), and likewise for the restricted estimator θ̃n, θ̃n = θ0 + op (1)

under H0. Furthermore, for θ0 ∈ ΘH0:
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(ii) −n−1∂2Ln (θ0) /∂θ∂θ′
p→ Ω > 0, Ω−1n−1/2∂Ln (θ0) /∂θ

w→ Z,
(iii) maxi,j,k=1,2,...,dθ supθ∈Θ |n−1∂3Ln (θ) /∂θi∂θj∂θk| ≤ κn,

where κn = Op (1) and Z a dθ-dimensional Gaussian random variable with covariance
matrix Ω−1ΣΩ−1, Σ > 0.

Remark 2.1 Note that, as is standard, Assumption 1(iii) can be replaced by the
requirement that a uniform law of large numbers applies to the second order deriva-
tive, n−1∂2Ln (θ) /∂θ∂θ′, see also Andrews (1999) and Jensen and Rahbek (2004) for a
discussion. �

For the parameter space Θ in (1), we denote by k ∈ {0, 1, .., dβ} the unknown
number of nuisance parameters which are (at their true value) on the boundary of the
parameter space and we make the following assumption.

Assumption 2 The shifted parameter space, Θ−θ0, is locally equal to the cone Λ given
by

Λ := Λγ × Λβ × Λδ, (5)

where Λγ = Rdγ+ , Λδ = Rdδ and Λβ = Λ1× ....×Λdβ , with k of the Λi’s equal to R+ and
the remaining dβ − k equal to R.

Remark 2.2 It is important to stress that the shape of the cone Λ in (5) varies de-
pending on the unknown value k of nuisance parameters at the boundary. The above
formulation of Λ allows, in particular, for any combination of nuisance parameters on
the boundary. �

From Andrews (1999, 2001), it follows that under Assumptions 1 and 2, the test
statistic LRn in (4) converges in distribution to a non-standard, non-pivotal distribu-
tion, say L. In general, L can be written as a difference between two quadratic forms
minimized separately over cones which depend on the unknown k, or equivalently on
the shape of the cone Λβ, defined in Assumption 2. Specifically, if θ0 = (γ′, β′, δ′) ∈ ΘH0

with δ0 ∈ int(Θδ) then as in Andrews (2001) we have that

LRn
w→ L := inf

λ∈{0}dγ×Λβ

‖λ−HZ‖2
(HΩ−1H′)−1 − inf

λ∈Λγ×Λβ
‖λ−HZ‖2

(HΩ−1H′)−1 (6)

with H a matrix of dimension (dγ + dβ)× dθ such that (γ′, β′)′ = Hθ.
Thus, the limiting distribution L depends on the unknown cone Λβ, as well as on

the covariances Ω and Σ, and we may write L = L (Ω,Σ,Λβ). Hence, in general, the
distribution of L is non-pivotal and asymptotic inference is infeasible. We propose a
new bootstrap as detailed in Section 3 to circumvent this.
Before, we next briefly discuss the just presented theory in terms of the well-known

ARCH(q) model.
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2.1 The ARCH(q) model

Consider the finite-order linear ARCH(q) model with q ≥ 1,

xt = σt (θ) ηt, with σ2
t (θ) = ω +

q∑
i=1

αix
2
t−i (7)

for t = 1, 2, ..., n, (x−q+1, ..., x0) fixed in the statistical analysis and ηt i.i.d.(0,1), where
ηt has a Lebesgue density that is strictly positive in a neighborhood of zero.
We assume ω ∈ [ωL, ωU ], with ωU > ωL > 0, and (α1, ..., αq) ∈ [0, αU ]q, αU > 0. The

true values of the parameters are denoted by ω0, α10, ..., αq0. The setting above covers
hypotheses such as any (non-empty) subset of {α1, ..., αq} are equal to zero. However,
to keep notation simple, we focus on the simple hypothesis H0 : αq = 0.
Notice that while we assume a priori that the true value ω0 of the intercept term

ω in the ARCH model is an interior point, importantly it is unknown whether the true
values of the remaining ARCH nuisance parameters equal zero or not; that is, it is
unknown whether αi0 = 0 or αi0 > 0 for i = 1, ..., q − 1.
In terms of the notation introduced above, we make the following assumption on

the parameter space for θ as well as on the true parameter θ0.

Assumption 3 Consider the ARCH(q) model given by (7). With θ = (γ, β′, δ)′, where
γ = αq, β = (α1, ..., αq−1)′ and δ = ω, assume that

γ ∈ Θγ := [0, αU ], β ∈ Θβ := [0, αU ]q−1, and δ ∈ Θδ := [ωL, ωU ], (8)

with ωU > ωL > 0 and αU > 0. Moreover, assume that at the true parameter vector θ0,
θ0 ∈ Θ = Θγ × Θβ × Θδ, with δ0 ∈ int Θδ, the ARCH process {xt} is stationary and
ergodic with E [x6

t ] <∞.

With the Gaussian (quasi-) log-likelihood function given by

Ln (θ) =

n∑
t=1

lt (θ) , lt (θ) = −1
2
(log σ2

t (θ) +
x2t

σ2t (θ)
), (9)

we can define the unrestricted estimator of θ, θ̂n = (γ̂n, β̂
′
n,δ̂n)′ where γ̂n = α̂q,n, β̂n :=

(α̂1,n, ...., α̂q−1,n)′ and δ̂n = ω̂n, as the maximizer of (9) over Θ. Similarly, the restricted
estimator of θ, denoted by θ̃n = (0, β̃′n,δ̃n)′ where β̃n := (α̃1,n, ...., α̃q−1,n)′ and δ̃n = ω̃n,
is the maximizer of (9) over ΘH0 := {0} ×Θβ ×Θδ.
It follows as in Andrews (2001), see also Francq and Zakoïan (2009), that under

Assumption 3, and with θ0 ∈ ΘH0 defined in (3), LRn →w L with L given in (6).
As emphasized earlier, the limiting distribution L in (6) is non-pivotal and an

asymptotic test infeasible in practice, as it depends on the unknown number k ∈
{0, 1, 2, ..., , dβ = q − 1} of nuisance parameters on the boundary of the parameter space.
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When (as done here) the null hypothesis restricts one parameter only, i.e. dγ = 1,
some remarks can be made about the distribution of L depending on the number k of
nuisance parameters at zero.
For the case of k = 0, where there are no nuisance parameters on the boundary, the

distribution of L reduces to the well-known mixture distributionM =1
2
χ2

0 + 1
2
χ2

1, i.e. a
mixture of a χ2

1 and singular random variable with probability mass at zero, both with
weights 1

2
; see e.g. Andrews (2001), Francq and Zakoïan (2009) and Cavaliere et al.

(2017).
For the case of k = 1, where one (and only one) nuisance parameter is on the

boundary, the distribution L can be characterized by a correlation parameter ρ of a
bivariate Gaussian variable, Zρ. This can be seen by combining our proof of Theorem
1 below with the theory of Kopylev and Sinha (2010, 2011), defining Zρ = H1Z, with
Hk defined in (A.2) in the Appendix. In particular, for ρ ≥ 0, the distribution is a
mixture of independent χ2

0, χ
2
1, and χ

2
2 variables with mixture weights (1

2
−p, 1

2
, p), where

p := sin−1(ρ)/2π. This distribution is shifted to the right compared to the mixture
distribution M, in the sense that P (L = 0) = 1

2
− p ≤ 1

2
= P (M = 0). For ρ < 0,

the distribution is not a mixture of χ2- distributed random variables. Interestingly, the
distribution is shifted to the left compared to M. That is, for k = 1 and ρ < 0, and
P (L = 0) = 1

2
+ sin−1(−ρ)/2π > P (M = 0). Observe that for the ARCH(q) case, with

k = 1, the correlation ρ is negative, ρ < 0. Hence, a test which neglects the presence
of the nuisance parameter on the boundary and hence uses M as the reference null
distribution may be undersized in large samples.
For the remaining cases, where 1 < k ≤ dβ, the distribution L cannot, to the best

of our knowledge, be characterized by a mixture of χ2-distributed random variables.
However, we conjecture that it depends on the correlation structure of a Gaussian
(k + 1)-dimensional random vector, similarly to the k = 1 case.
Noticeably, for the ARCH(q) model where k = dβ; that is, with all nuisance pa-

rameters in β on the boundary, L is distributed as the mixture M, since the matrix
HΩ−1H ′ in (6) is block-diagonal with respect to γ and β, as demonstrated by Demos
and Sentana (1998, Appendix A); see also Francq and Zakoïan (2009, Section 7.1) and
Pedersen and Rahbek (2018).

3 A new bootstrap

As detailed in Section 2, the limiting distribution L is non-pivotal, hence rendering
asymptotic inference infeasible in general. As anticipated earlier, we propose here a
new bootstrap which is based on shrinking the parameter estimators used to generate
the bootstrap sample, see Andrews (2000) for a simple one-parameter location model.
In this respect, our bootstrap involves the use of Hodges-Le Cam super-effi cient type
estimators, see e.g. Bickel, Klaassen, Ritov and Wellner (1998) and the references
therein. We provide a full asymptotic theory for the validity of the new bootstrap,
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and as a by-product we also discuss why conventional bootstrap methods —such as the
standard, restricted or unrestricted bootstrap —do not work in the case where there are
nuisance parameters possibly at the boundary.
The setup of the bootstrap we consider is as follows. As is standard, we consider

bootstrap data {x∗t}
n
t=1 with x

∗
t generated (possibly recursively) as a function of: (i)

the original data, {xt}nt=1; (ii) possibly lagged x
∗
t’s or exogenous variables, X

∗
t , (iii) a

bootstrap true parameter value θ∗n, which is some function of {xt}
n
t=1; (iv) a random

vector of bootstrap shocks, independent of the original data, denoted here by π∗n. That
is,

x∗t := f (θ∗n, {xt}
n
t=1 , X

∗
t , π

∗
n) , t = 1, 2, ..., n. (10)

Remark 3.1 The bootstrap true parameter value θ∗n in (iii) is crucial in defining the
properties of the bootstrap. Usually θ∗n is set equal to θ̂n, the unrestricted estimator
of θ0, or to θ̃n, the estimator of θ0 obtained with the null hypothesis imposed (see
Davidson and MacKinnon, 2006), or a hybrid of the two (see e.g. Swensen, 2004,
for an application to co-integration). For standard testing problems, the associated
(un-)restricted bootstraps are often asymptotically valid, or consistent. For some non-
testing problems, such as for inference on the number of unit roots (Cavaliere, Rahbek
and Taylor, 2012) and in the presence of infinite variance innovations (Davidson and
Flachaire, 2008), the restricted bootstrap based on θ̃n is asymptotically valid even when
the bootstrap based on θ̂n may fail. In the testing problem considered here, both
the unrestricted and the restricted bootstraps fail, making the bootstrap unable to
mimic the target distribution L under the null hypothesis, see Remark 3.4 below. The
bootstrap discussed in the section circumvents this drawback.

Remark 3.2 The role of π∗n in (iv) is crucial, as it defines —along with the function
f (·) —the bootstrap resampling scheme. For instance, for the usual i.i.d. bootstrap,
π∗n := (π∗n1, ..., π

∗
nn) is the (random) number of times each of the original observations

(or some residuals) are selected during the re-sampling process; for the wild bootstrap,
π∗n is the vector of bootstrap i.i.d. innovations used to rescale the original data (or
residuals). �

Corresponding to the bootstrap data {x∗t}
n
t=1 we introduce a bootstrap (quasi) log-

likelihood, or criterion function, L∗n (θ), and the associated bootstrap (unrestricted and
restricted) estimators,

θ̂∗n := arg max
θ∈Θ

L∗n (θ) , and θ̃∗n := arg max
θ∈ΘH0

L∗n (θ) . (11)

The bootstrap (quasi-)likelihood ratio statistic for the hypothesis H0 is given by

LR∗n = −2(L∗n(θ̃∗n)− L∗n(θ̂∗n)). (12)

Importantly, as discussed in Remark 3.1, the bootstrap likelihood ratio statistic,
LR∗n, will not for the (un-)restricted bootstrap replicate the unknown non-pivotal dis-
tribution L in (6), even asymptotically.
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Instead of the classical bootstraps, we propose here to choose θ∗n differently: First,
we impose the null hypothesis H0 on θ∗n, which corresponds to setting γ

∗
n equal to zero.

Second, and crucially, we impose a requirement on the rate of consistency for β∗n in θ
∗
n,

which we refer to as ‘shrinkage’, for the reasons explained below. Formally, we make
the following assumption about θ∗n.

Assumption 4 With θ∗n = (γ∗′n , β
∗′
n , δ

∗′
n )′, let γ∗n = 0dγ and assume that

θ∗n
p→ θ†0 := (0′dγ , β

†′
0 , δ

†′
0 ) ∈ ΘH0 (13)

under H0 as well as the alternative, where θ
†
0 = θ0 under H0. Furthermore, for i =

1, ...dβ, assume
√
n(β∗n,i − β

†
0,i) =

{
op (1) if β†0,i = 0

Op (1) if β†0,i > 0
, (14)

and
√
n(δ∗n − δ

†
0) = Op (1).

For comparison, the classical unrestricted bootstrap where θ∗n = θ̂n does satisfy (13)
under H0, but not under the alternative. Moreover, for the unrestricted bootstrap,
γ∗n 6= 0dγ and, in addition, the convergence rates in (14) do not apply. For the restricted
bootstrap, θ∗n = θ̃n, and satisfies by definition γ∗n = 0dγ , but as for the unrestricted
bootstrap, the convergence rates in (14) do not apply. As to (13), this follows under H0,
while under the alternative it is non-trivial for various models to establish if, or indeed
if not, θ∗n converges to some pseudo-true value θ

†
0.

A particular bootstrap scheme satisfying Assumption 4 is given by choosing δ∗n = δ̂n
and

β∗n,i = β̂n,iI(β̂n,i > cn) i = 1, ..., dβ

with cn a scalar sequence converging to zero at an appropriate rate, as seen in the
following lemma.

Lemma 1 Under Assumption 1, and with the sequence {cn}n=1,2,.... satisfying

cn → 0 and
√
ncn →∞ as n→∞, (15)

then θ∗n defined by

θ∗n = (γ∗′n , β
∗′
n , δ

∗′
n )
′
= (0′dγ ,{β̂n,iI(β̂n,i > cn)}′i=1,..,dβ

, δ̂′n)′, (16)

satisfies Assumption 4 with θ†0 = (0′dγ , β
′
0, δ
′
0)′.

The proposed shrinkage in terms of the cn sequence, or more generally, the re-
quirement on β∗n in (14) ensures that the bootstrap replicates the unknown limiting
distribution L under the null, while being of order O∗p (1), in probability, under the al-
ternative. That is, as is established in Theorem 1 below, the new bootstrap is consistent
even though it is unknown if any of the nuisance parameters are on the boundary or
not.
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Remark 3.3 Alternatively, in (16) the unrestricted estimators β̂n and δ̂n could be
replaced by the restricted estimators, β̃n and δ̃n. However, as already mentioned, in that
case it may not be trivial to establish θ∗n →p θ

†
0 in Assumption 4 under the alternative.�

For the bootstrap we make the following assumption which need to be verified on a
case by case basis depending on the model of interest. Assumption 5 is the bootstrap
equivalent of Assumption 1.

Assumption 5 Assume that (i) θ̂∗n, θ̃
∗
n = θ†0 + o∗p (1), in probability, for some θ†0 =

(0′dγ , β
†′
0 , δ

†′
0 )′ ∈ ΘH0. Furthermore,

(ii) −n−1∂2L∗n (θ∗n) /∂θ∂θ′
p∗→p Ω∗ > 0, with Ω∗ = Ω under H0,

and, Ω∗−1n−1/2∂L∗n (θ∗n) /∂θ
w∗→p Z

∗,
(iii) maxi,j,k=1,2,...,dθ supθ∈Θ |n−1∂3L∗n (θ) /∂θi∂θj∂θk| ≤ κ∗n,

where κ∗n = O∗p (1), in probability, and Z∗ a dθ-dimensional Gaussian random variable

with positive definite covariance Ω∗−1Σ∗Ω∗−1, with Z∗ d
= Z under H0.

We can then state the following general result:

Theorem 1 Consider the model for {xt}nt=1 with (quasi-)likelihood function Ln (θ), and
assume that Assumptions 1 and 2 hold, such that the (quasi-)likelihood ratio statistic
satisfies LRn →w L, with L defined in (6). Then, with the bootstrap data {x∗t}

n
t=1

defined in (10) and the bootstrap (quasi-) likelihood ratio statistic LR∗n in (12), under
Assumptions 4 and 5, we have under H0,

LR∗n
w∗→p L.

Under the alternative and Assumptions 1, 2, 4 and 5, then LR∗n = O∗p (1), in probability,

with LR∗n
w∗→p L† defined in (A.3) in the appendix.

Remark 3.4 If we replace β∗n by the unrestricted estimator β̂n (or the restricted estima-
tor β̃n) in the construction of θ∗n, then LR

∗
n does not converge weakly (in probability) to

L, hence invalidating the consistency of the classic unrestricted and restricted boot-
straps. To see this, note that in the proof of Theorem 1, it is used that by Assumption
4 the convergence rate of β∗n should satisfy (14). With β

∗
n = β̂n, β̃n, that is in the case of

no shrinkage, it only holds that
√
n(β∗n,i − β

†
0,i) = Op (1) for i = 1, ...dβ and hence (14)

does not apply. Furthermore, with U the weak limit of
√
n(β∗n − β

†
0), it can be shown

that the limiting distribution of LR∗n in this case is given by (6), with HZ replaced by
H (Z∗ + U), where Z∗ under H0 has the same distribution as Z. That is, while in (6),
Z has mean zero, Z∗ + U , conditional on U , has mean U . Alternatively, the limiting
distribution of LR∗n is given by (6), with Λβ replaced by Λβ − HU , that is Λβ shifted
stochastically, corresponding to the appropriate limit of

√
n (H(Θ− θ∗n)). This is in

line with the results in Cavaliere, Nielsen and Rahbek (2015), where in the context
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of co-integration, an Ornstein-Uhlenbeck process with stochastic diffusion coeffi cient
characterizes the limiting distribution of the bootstrap LR statistics. Obviously, when
there are no nuisance parameters on the boundary, shrinkage is not required and the
classic unrestricted or restricted bootstraps are asymptotically valid. �

4 Bootstrap theory applied to ARCH(q)

We consider here in detail bootstrap-based inference for the ARCH(q) model of Section
2.1, and establish that the proposed bootstrap indeed satisfies the regularity conditions
for Theorem 1. That is, we show here that the proposed bootstrap is consistent in
the ARCH(q) model case, in the sense that under the null hypothesis it replicates the
limiting distribution L, while under the alternative the bootstrap LR statistic converges
in distribution to a random variable L† and hence is bounded, in probability.
When testing the simple hypothesis H0 : αq = 0, the bootstrap ARCH(q) data are

generated as

x∗t = f (θ∗n, {xt}
n
t=1 , X

∗
t , π

∗
n) = σt (θ∗n) η∗t , for t = 1, ..., n, (17)

with θ∗n given as in (16):

θ∗n = (γ∗n, β
∗′
n , δ

∗
n)′ = (0, {α̂i,nI (α̂i,n > cn)}q−1

i=1 , ω̂n)′, (18)

where the α̂i,n’s and ω̂n are unrestricted estimators of the ARCH parameters obtained
on the original data, see Section 2.1. Here the bootstrap conditional volatility σ2

t (θ∗n)

is given by

σ2
t (θ∗n) = δ∗n + (β∗′n , γ

∗
n)′X∗t (19)

X∗t =
(
x2
t−1, ..., x

2
t−q
)′
, (20)

hence corresponding to a non-recursive, fixed volatility bootstrap as in Cavaliere et al.
(2018) and Beutner et al. (2018), and X∗1 =

(
x2

0, ...x
2
−q+1

)
fixed.

As to the bootstrap resampling scheme, that is π∗n in (17), we let π
∗
n = (η∗1, ..., η

∗
n)

where the η∗t ’s are bootstrap innovations {η∗t }
n
t=1 obtained by re-sampling with re-

placement from the normalized and re-scaled estimated residuals, {η̂t}nt=1, defined as
η̂t := xt/σt(θ̂n). That is, η∗t is re-sampled with replacement from

η̂st := η̂t−η̄n√
n−1

∑n
t=1(η̂t−η̄n)2

, η̄n := n−1
∑n

t=1η̂t. (21)

The Gaussian bootstrap criterion function is given by

L∗n (θ) =
n∑
t=1

l∗t (θ) , l∗t (θ) = −1
2
(log σ2

t (θ) +
x∗2t
σ2t (θ)

), (22)
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where θ̂∗n (θ̃
∗
n) maximizes L

∗
n (θ) (under H0). Finally, the bootstrap quasi-likelihood ratio

statistic LR∗n for the hypothesis H0 : αq = 0, is given by (12).
We establish next that the regularity conditions in Assumption 5 hold for this boot-

strap, such that Theorem 1 holds, as formulated in the next proposition.

Proposition 1 Let Assumption 3 holds with Ex8
t < ∞, and consider the bootstrap

data {x∗t}
n
t=1 as generated by (17). Then, under H0, the (quasi-)likelihood ratio sta-

tistic LR∗n satisfies LR
∗
n

w∗→p L, provided the sequence {cn} satisfies (15). Under the
alternative, LR∗n

w∗→p L†, with L† defined in (A.3) in the appendix.

The proof of Proposition 1 follows in two steps. First, the above choice of θ∗n, see
(18), implies by Lemma 1 that Assumption 4 holds. Second, Lemmas 2—4 below imply
that Assumption 5 holds, such that Theorem 1 applies and the desired result is obtained.

Remark 4.1 As previously mentioned, although we focus here on a simple hypothesis
such that dγ = 1, all results generalize to the case of dγ > 1.

Remark 4.2 While the asymptotic theory for the standard LR statistic requires exis-
tence of 6th order moments for xt, our implementation of the fixed regressor bootstrap
is based on the suffi cient condition Ex8

t <∞. This is needed to analyze the asymptotic
behaviour of the third-order derivatives of the bootstrap quasi-log likelihood. Our simu-
lation results, see section 5 below, suggest that this requirement may not be necessary.�

Lemma 2 Under Assumption 3, and with {x∗t} given by (17), it holds that the bootstrap
unrestricted and restricted estimators θ̂∗n, θ̃

∗
n satisfy Assumption 5(i); that is,

θ̂∗n, θ̃
∗
n

p∗→p θ
†
0 = (0, {αi,0}q−1

i=1 , ω0).

Remark 4.3 To establish the result in Lemma 2 a non-standard asymptotic criterion
function is introduced in the arguments under the alternative. �

Lemma 3 Under Assumption 3, and with {x∗t} given by (17), it holds that the bootstrap
score and information satisfy Assumption 5(ii); that is,

−n−1∂2L∗n (θ∗n) /∂θ∂θ′
p∗→p Ω∗ > 0; and Ω∗−1n−1/2∂L∗n (θ∗n) /∂θ

w∗→p Z
∗,

with Z∗ distributed as a N (0,Ω∗−1Σ∗Ω∗−1) random variable. Here Ω∗ = Ω under H0,
while Ω∗ = E[1

2
σ−4
t (θ†0)ztz

′
t] under the alternative, with zt as defined in (B.5) and Σ∗ =

E[(∂lt(θ
†
0)/∂θ)(∂lt(θ

†
0)/∂θ′)].

Lemma 4 Under Assumption 3, with {x∗t} given by (17), and the additional assumption
that E[x8

t ] < ∞, it holds that the bootstrap third order derivatives of the (quasi-)
likelihood function satisfy Assumption 5(iii); that is,

max
i,j,k=1,...,q+1

sup
θ∈Θ

∣∣n−1∂3L∗n (θ) /∂θi∂θj∂θk
∣∣ ≤ κ∗n, with κ

∗
n = O∗p (1) ,

in probability.
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Remark 4.4 The fixed volatility bootstrap implemented in this section can be replaced
by a recursive bootstrap scheme, see e.g. Hidalgo and Zaffaroni (2007), Corradi and
Iglesias (2008) and Jeong (2017). This can be done by replacing X∗t in (20) by X

∗
t :=(

x∗2t−1, ..., x
∗2
t−q
)′
. Accordingly, the bootstrap criterion function changes to

L∗n (θ) =

n∑
t=1

l∗t (θ) , l∗t (θ) := −1
2
(log σ∗2t (θ) +

x∗2t
σ∗2t (θ)

)

with σ∗2t (θ) = ω +
∑q

i=1 αi(x
∗
t−i)

2. �

5 Numerical results

In this section we illustrate the finite sample properties of the proposed bootstrap LR
tests using a detailed simulation study based on an ARCH(q) model with q = 5. First,
we aim at exploring the performance in terms of size and power of our new bootstrap test
across different choices of the bootstrap true values and different volatility resampling
schemes. Second, we aim at analyzing the robustness of the result over different choices
of the shrinkage sequence {cn}, and in particular to show that the test behaviour is
not substantially affected by such choices. Third, we aim at providing evidence about
the superiority of our bootstrap tests over existing techniques, such as the ‘m out of
n’bootstrap (see Hall and Yao, 2003, for some applications to ARCH-type models), a
‘plain’restricted bootstrap and the asymptotic test based on the mixtureM = 1

2
χ2

0+1
2
χ2

1

defined in Section 4. This section is organized as follows. In Section 5.1 we describe
the model, the null hypothesis, the bootstrap and non-bootstrap test statistics and the
design of the Monte Carlo experiments. In Section 5.2 we analyze the empirical rejection
probabilities [ERP] of the tests under the null hypothesis. In Section 5.3 we analyse
the behaviour of the test under the alternative hypothesis, in particular by discussing
both raw and (pointwise) size-adjusted ERPs when the null hypothesis does not hold.
In Section 5.4 we discuss the choice of the shrinkage sequence {cn} on our tests and
compare with the choice of the length of the bootstrap samples for the ‘m out of n’
bootstrap.

5.1 Monte Carlo design

The data generating process is

xt = σtηt, σ2
t := ω +

5∑
i=1

αix
2
t−i (t = 1, 2, ..., n)

with ηt i.i.d. N(0, 1) and initialized at x1−q, ..., x0 = 0. The null hypothesis of interest
is univariate and of the form

H0 : α5 = 0.
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The parameter vector can be written as θ := (γ, β′, δ′)′, where γ := α5, β := (α1, α2,

α3, α4)′, and δ := ω. All parameters are restricted to be non-negative. Observe that the
number of nuisance parameters in β —that is, the parameters which may or may not be
on the boundary of the parameter space —is dβ = 4. Hence, the number k of nuisance
parameters on the boundary may take any value in the set {0, 1, 2, 3, 4}. Accordingly,
in order to investigate properties of the proposed bootstrap test for different values of
k, we consider five cases, denoted by (Ck)

4
k=0, and defined as follows:

(ω0, α1,0, α2,0, α3,0, α4,0, α5,0) =


(1, 0.1, 0.1, 0.1, 0.1, α5,0) (C0)

(1, 0.133, 0.133, 0.133, 0, α5,0) (C1)

(1, 0.2, 0.2, 0, 0, α5,0) (C2)

(1, 0.4, 0, 0, 0, α5,0) (C3)

(1, 0, 0, 0, 0, α5,0) (C4)

Thus, for the case Ck there are k nuisance parameters on the boundary (that is, equal
to zero) and dβ − k interior points. Notice that across cases we always have that
α1,0 + ... + α4,0 = 0.4. As to the value of α5,0 we set α5,0 = 0 under H0, and α5,0 > 0

under the alternative.
We consider four different versions of the proposed bootstrap, depending on how the

vector θ∗n of bootstrap true values is chosen an on whether the fixed volatility bootstrap
or the recursive bootstrap are selected. Specifically, we have:

(i) The proposed bootstrap (denoted as ‘unrestricted, fixed vol.’ in the following),
with θ∗n defined as

θ∗n := (0, {α̂i,n1 (α̂i,n > cn)}4
i=1 , ω̂n)′,

see (18), and hence based on the unrestricted parameter estimates {α̂1,n, ..., α̂5, ω̂n};
moreover, σ2

t (θ∗n) is as defined in (19) (fixed volatility bootstrap);
(ii) A recursive volatility version of the proposed bootstrap (‘unrestricted, recursive

vol.’), with θ∗n as in (i), X∗t :=
(
x∗2t−1, ..., x

∗2
t−5

)′
and conditional variance defined

recursively, see Remark 4.4;
(iii) A restricted version of the proposed bootstrap (‘restricted, fixed vol.’), see Remark

3.3, based on θ∗n := (0, {α̃i,n1 (α̃i,n > cn)}4
i=1 , ω̃n)′, where ω̃n and the α̃i,n’s are

parameter estimates obtained with the null hypothesis imposed;
(iv) A recursive volatility version of (iii) (‘restricted, recursive vol.’).

For comparison, results are also reported for the classic restricted bootstrap (that
is, without shrinkage), based on θ∗n = θ̃n, which is asymptotically valid only for k = 0

(no nuisance parameters on the boundary) or k = 4 (all nuisance parameters on the
boundary), see Remark 3.4. Along with the restricted bootstrap we further consider
the ‘m out of n’bootstrap. We also report results for an ‘infeasible’version of the
asymptotic test (‘infeasible asymptotic’), based on the unrealistic assumption that the
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practitioner knows how many (and which) nuisance parameters are on the boundary1.
Finally, we also report results for the an asymptotic test (‘M-based asymptotic’) based
on the quantiles of the M distribution discussed in Section 4, which is valid only for
the cases where k = 0 or k = q − 1 = 4.
As to the choice of the shrinkage sequence cn, we set cn = νn−ε, with ε = 0.45 and

ν = 1.60, such that c100 = 0.195, c500 = 0.093, and c1000 = 0.068. In this respect, we
note e.g. that in case C4 for n = 1000, cn corresponds to the approximate 98% quantile
of the simulated distribution of α̂i, for i = 1, 2, 3, 4. For the ‘m out of n’ bootstrap
implementation, we set the size mn of the bootstrap sample to cn/ log(n), with c = 1.5.
This implies that mn = 32 for n = 100 and mn = 217 for n = 1000. Different choices
of cn and mn are discussed in Section 5.4.
Throughout, we use 10, 000 Monte Carlo replications while we use B = 199 boot-

strap repetitions to approximate the distribution of the LR statistics2 ,3. Sample of size
n ∈ {100, 500, 1000} are considered throughout. All tests are run at the nominal 10%

significance level.

5.2 Empirical rejection probabilities under the null

Table 1 reports the empirical rejection probabilities (as estimated on the 10, 000 Monte
Carlo replications) under the null hypothesis, H0 : α5,0 = 0, for the five cases C0-C4. As
summary measures to compare the performance across cases and sample sizes, we also
report the mean absolute deviation [MAD] and the root mean square error [RMSE]
between the ERPs and the chosen 10% nominal level. In Table 1 we focus on the
preferred versions of the shrinkage-based bootstrap and the ‘m out of n’bootstrap,
while results for additional cases are presented in Section 5.4, Table 4.

[Table 1 about here]

The following points can be made out of the analysis.
First, the ERPs of the different implementations of the shrinkage-based bootstrap

are all remarkably close to the nominal level, even at the smaller sample sizes. Results
do not change across different numbers of nuisance parameters on the boundary, i.e.
across the five cases (Ci)

4
i=0.

Second, recursive bootstrap implementations of our tests perform slightly better
than the corresponding fixed volatility bootstraps. This results is different from what

1For this asymptotic test, critical values are obtained by simulation based on samples of size T =
20, 000.

2Unreported simulations show that varying the number B of bootstrap repetitions does not imply
any changes in the results.

3Computations have been performed using Ox 8.0, see Doornik (2007). Code is available upon
request.
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reported in Cavaliere et al. (2018), where however no nuisance parameters on the
boundary of the parameter space are allowed.
Third, there are no substantial differences in terms of which estimator is chosen

in order to construct θ∗n; that is, (shrinkage) unrestricted and restricted bootstraps
have similar behaviour in terms of size control. While the choice of the bootstrap true
parameters is indeed crucial in other testing problems (see e.g. Cavaliere et al., 2012)
and, in particular, restricted estimators tend to deliver better size control, for the testing
problem considered here this is not the case.
Fourth, in terms of finite-sample size control, the proposed bootstrap tests are clearly

superior to the ‘m out of n’bootstrap, which is oversized for small values of k and un-
dersized for larger values of k. Overall, the MAD and RMSE of the ‘m out of n’
bootstrap is approximately doubled compared to those of our shrinkage-based proce-
dure. Similarly, the proposed bootstrap tests substantially outperform the infeasible
asymptotic test based on the assumption that the limiting null distribution of LRn is
known in advance. This is an important result, as it clearly show that not only the
proposed bootstrap estimates the correct limiting distribution LRn, but it also delivers
significant finite-sample refinements, even at the larger sample sizes.
Fifth, as expected, see the discussion in Remark 3.4, the standard restricted boot-

strap performs well in case C0, where there are no nuisance parameters on the boundary.
This is consistent with the theory in Cavaliere et al. (2017) and Cavaliere et al. (2018),
where the parameters not restricted by the null hypothesis are all in the interior of the
parameter space. Unfortunately, this bootstrap is not valid in the general case.
Sixth, for case C0, in terms of size our shrinkage bootstrap tests are again very

similar to the restricted bootstrap tests, despite shrinkage is not required here. This
shows that cost of shrinkage —when it is not needed —is actually very low. For cases
C1-C4, the standard bootstrap is not mimicking the correct null distribution and its
implementation leads to undersized tests4.
Seventh, regarding the asymptotic test based on critical values from theM = 1

2
χ2

0 +
1
2
χ2

1 mixture, we observe that it tends to be somewhat conservative in small samples for
the two cases where the test is asymptotically valid (case C0 and case C4). For case C1,
with one nuisance parameter on the boundary of the parameter space, the asymptotic
test becomes undersized, even for n = 1000, reflecting that the true limiting distribution
shifts to the left in the ARCH case, see the discussion at the end of Section 2.1. In case
C2 and case C3, the asymptotic test gets increasingly undersized, suggesting that the
true limiting distribution also shifts to the left in these cases.
Overall, the proposed bootstrap procedure gives excellent size control, irrepectively

of how many (if any) nuisance parameters are on the boundary of the parameter space.

4We conjecture that the fact that the standard bootstrap tests are undersized is a consequence of
the correlation structure in the ARCH case. For other models with positive correlations, the standard
bootstrap may be over-sized.
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5.3 Empirical rejection probabilities under the
alternative

We now investigate the ERPs for tests of H0 : α5 = 0 under the alternative H1 : α5 = ᾱ

where
ᾱ ∈ (0.025, 0.05, 0.1, 0.2, 0.3) .

The corresponding ERPs are reported in Table 2 for the five cases C0—C4 and for samples
of size n = 500. In addition, in order to make the ERPs directly comparable, in Table
3 we report pointwise size-corrected rejection frequencies. These are constructed as
follows: for each case under the null, α5,0 = 0, we store the nominal level that would
have given an ERP of 10%, and then use this nominal level for parameter combinations
under the alternative, α5,0 > 0. This type of size-correction is obviously infeasible in
practice, but makes the ERP’s directly comparable, see also Davidson and MacKinnon
(2006) and Cavaliere et al. (2015). The last column in Table 3 corresponds to the
(size-adjusted) power of the (infeasible) asymptotic test.

[Table 2 about here]

[Table 3 about here]

The following points can be made out of these tables.
First, and as expected, for all tests, power is monotonically increasing as the true

α5,0 gets further away from the null hypothesis.
Second, the shrinkage device implemented in the proposed bootstrap tests does not

seem to affect the power of the test. The behaviour in terms of (size-adjusted) ERPs of
our tests matches the (size-adjusted) ERPs of the (M-based and infeasible) asymptotic
test. In particular, this is true even for the cases where shrinkage is not necessary (for
instance, case C0).
Third, there are no substantial power differences in terms of which estimator is

chosen in order to construct θ∗n: shrinkage with the unrestricted estimator and shrinkage
with the restricted estimator deliver bootstrap tests with similar behaviour in terms
of ERPs under the alternative hypothesis. While in other testing problems the use
of unrestricted estimators tend to deliver better power, this is not the case here. A
possible explanation is that for both our restricted and unrestricted bootstraps we set
γ = 0 in the bootstrap DGP —that is, we impose the null hypothesis on the bootstrap
sample. Hence, our shrinkage bootstrap based on θ̂n differs from a standard, unrestricted
bootstrap, where γ = γ̂n and the null hypothesis to be tested on the bootstrap sample
is H̃0 : γ = γ̂; cf. Hall (1992).
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Fourth, in terms of ERFs under the alternative, recursive bootstrap implementations
of our tests perform slightly better than the corresponding fixed volatility bootstraps.
The gap between recursive and fixed volatility bootstraps is, however, rather marginal.
In summary, the new tests show excellent power properties, with ERFs almost iden-

tical to those of the infeasible LR test based on the unrealistic assumption that the
practitioners knows which nuisance parameters are on the boundary of the parameter
space.

5.4 Choice of the tuning parameters

We conclude this section with a brief analysis on the choice of the shrinkage sequence cn
used to construct the bootstrap true values. More specifically, in order to investigate the
effect of the choice of cn we set, as done earlier in this section, cn := νn−ε, with ε = 0.45.
The tuning parameter ν is now chosen in the set V := {0.2, 0.4, 0.8, 1.2, 1.6, 2.0} (recall
that the results in sections 5.2 and 5.3 are based on ν = 1.6). With this choice of V we
are able to cover quantiles of the distribution of α̂i for i = 1, 2, 3, 4 from approximately
60% to 99%.
We also consider the choice of the length of the bootstrap sample for the ‘m out of

n’bootstrap implementation. Here we set, as before, mn := cn/ log(n) with the tuning
parameter c in the set C := {1, 1.5, 2, 2.5, 3, 3.5} (the results in sections 5.2 and 5.3 are
based on c = 1.5). With this choice, m100 ranges from 21 to 76 while m1000 ranges from
144 to 506.

[Table 4 about here]

The most important point that can be made out of Table 4 is that the finite-sample
behaviour of the shrinkage-based bootstrap tests under the null hypothesis is quite
robust with respect to the choice of tuning parameter ν. In particular, for v ≥ 0.8 we
find no remarkable differences, for all the sample sizes n considered. For n ≤ 500, smaller
values of v implies that the cut-off point is such that virtually all bootstrap parameter
values are not set to zero corresponding to no shrinkage. As a result, the tests tend to
behave as the standard restricted bootstrap and therefore can be slightly undersized.
In general, our bootstrap test tends to outperform the ‘m out of n’bootstrap across
different values of c and ν.

6 Conclusions

Testing whether a subset of the parameters lie on the boundary of the parameter space
is a classic inference problem in statistics and econometrics. The ‘parameter on the
boundary problem’is particularly important for economics, where most models involve
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parameters restricted by some inequality constraints; see e.g. Chernozhucov, Hong and
Tamer (2007). Chernoff (1954) was the first to notice that Wilks’classical result about
the χ2-type asymptotic distribution of likelihood ratio statistics breaks down when the
true parameter is a boundary point. Andrews (1999, 2001) provide a comprehensive
framework for dealing with estimation with parameters on the boundary and testing
that a subset of the parameters is on the boundary. While dealing with very general
econometric models, parameter spaces and restrictions, a maintained assumption which
is required in order to obtain feasible tests is that the parameters not restricted by
the null hypothesis are indeed interior points (see Francq and Zakoïan, 2007, 2009).
When this is not the case —as it is in most empirical applications — the asymptotic
distributions of the test statistics depends on nuisance parameters which are unknown.
In this paper we have proposed a bootstrap-based approach to (LR) testing whether

a subset of the parameter vector lie on the boundary of the parameter set, here defined
thorough inequality constraints. The bootstrap just requires a simple, straightforward
to implement, adjustment of the parameter values used to generate the bootstrap data.
We have shown that our bootstrap consistently estimate the relevant asymptotic null
distribution, irrespective of the number (and location) of nuisance parameters on the
boundary. Under the alternative, the associated bootstrap statistics are bounded in
probability, hence making the bootstrap test consistent.
Validity of the bootstrap for ‘parameter on the boundary’problems is far from being

expected. In particular, even in simple econometric models the classic (unrestricted)
bootstrap fails to mimic the correct asymptotic distributions (Andrews, 2000). Other
bootstraps such as the restricted bootstrap works only in the special case where there
are no further parameters on the boundary (Cavaliere et al., 2017, 2018). In this respect,
our results unexpectedly show that the bootstrap may indeed be an extremely powerful
device in econometric models featuring parameters on the boundary.
In the paper we have also shown how our results can be applied to the classic problem

of inference in ARCH models subject to non-negativity parameter constraints; that is,
testing significance of one ARCH coeffi cient when there is uncertainty about the nullity
of the remaining parameters. There are many further open problems in the literature
that may be analyzed in our framework.
In the application to ARCH we have focused on a single parameter constraint dγ, but

the analysis can be extended to tests on a general subvector of parameters. For instance,

consider the ARCH(22) for daily returns xt := ηt

√
ω +

∑22
i=1 αix

2
t−i, ηt i.i.d.(0,1) and,

in the spirit of the HARCH model of Corsi (2007), suppose that interest is in the null
hypothesis H0 :

⋃
i 6=1,5,22 αi = 0, which implies that the only relevant ARCH parameters

are those corresponding to the daily (i = 1), weekly (i = 5) and monthly (i = 22)
frequencies. The asymptotic distribution of the LR test for H0 depends on αi, i = 1, 5, 22

being on the boundary or not. The implementation of our bootstrap test allow inference
without prior knowledge of the location of these three parameters.
Another important application is within the PARX class of models of Agosto, Cav-
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aliere, Kristensen and Rahbek (2016), which assumes that the behaviour of a count
variable yt over time can be described by a Poisson random variable, with intensity λt
measurable with respect to the past information set and given by

λt = ω +

p∑
i=1

αiyt−i +

q∑
j=1

βjλt−j +
r∑

k=1

γkxkt,

where the (exogenous) regressors xkt’s, as well as the αi’s, βj’s and γk’s are all non-
negative. The outcome of an asymptotic test on any of the parameters depends on the
location of the remaining parameters (and, in particular, on whether they are boundary
points or not). Our bootstrap approach circumvents this problem and allow inference
without making unrealistic assumption on the location of the unknown parameters.
There are obviously further extensions of our work which are left open for future

research. For instance, we have here focused on parameters spaces defined through
non-negativity constraints. The case of general linear and nonlinear restriction is in-
deed important and deserves further investigations. We conjecture that versions of the
bootstrap defined here would apply to the general case.
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Appendix

This appendix is organized as follows. In Section A we present the proofs of our main
general results; that is Theorem 1 and the related Lemma 1. In Section B we provide
the proofs of the lemmas used to prove bootstrap validity for the ARCH model.

A Proofs of general results

A.1 Proof of Theorem 1

By definition, the bootstrap likelihood ratio statistic is given by

LR∗n = 2(L∗n(θ̂∗n)− L∗n(θ̃∗n)) = 2(L∗n(θ̂∗n)− L∗n (θ∗n)− (L∗n(θ̃∗n)− L∗n (θ∗n)).

Next, as in Andrews (2001, eq.(3.3)) expand the bootstrap likelihood function as follows,

L∗n(θ)− L∗n (θ∗n) =
∂L∗n(θ∗n)

∂θ′
(θ − θ∗n) +

1

2
(θ − θ∗n)′

∂2L∗n(θ∗n)

∂θ∂θ′
(θ − θ∗n) +R∗n(θ)

=
1

2
Z∗′n J

∗
nZ
∗
n −

1

2
q∗n[n1/2(θ − θ∗n)] +R∗n(θ),

with J∗n := −n−1 ∂
2L∗n(θ∗n)
∂θ∂θ′ , Z

∗
n := n−1/2(J∗n)−1 ∂L

∗
n(θ∗n)
∂θ

and

q∗n[λ] := (λ− Z∗n)′J∗n(λ− Z∗n).

Furthermore, due to Assumption 5, it holds as in Andrews (2001, Lemma 1), that√
n(θ̂∗n− θ∗n) and

√
n(θ̃∗n− θ∗n) are O∗p (1), in probability. This together with Assumption

5(iii), implies that R∗n (θ) = o∗p (1), in probability, for θ = θ̂∗n, θ̃
∗
n.

By Assumption 5, it follows by Andrews (2001, proof of Theorem 4(a)) that the
bootstrap likelihood ratio statistic is given by,

LR∗n = q∗n[n1/2(θ̃∗n − θ∗n)]− q∗n[n1/2(θ̂∗n − θ∗n)] + op∗(1),

in probability. Next,

q∗n[n1/2(θ̂∗n − θ∗n)] =
∥∥∥n1/2(θ̂∗n − θ∗n)− Z∗n

∥∥∥2

J∗n
= inf

θ∈Θ

∥∥n1/2(θ − θ∗n)− Z∗n
∥∥2

J∗n
+ o∗p (1)

= n inf
θ∈Θ

∥∥θ − θ∗n − Z∗nn−1/2
∥∥2

J∗n
+ o∗p (1)

= n inf
λ∈Θ−θ†0

∥∥λ−W ∗
nn
−1/2

∥∥2

J∗n
+ o∗p (1) ,

in probability, where
W ∗
n = n1/2(θ∗n − θ

†
0) + Z∗n. (A.1)
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Let Λ† be defined as Λ† := Λγ × Λ†β × Λδ, where Λ†β = Λ†1 × .... × Λ†dβ , with k
† of the

Λ†i’s equal to R+ and the remaining dβ − k† equal to R. Under H0, k† = k and Λ† = Λ

of Assumption 2.
By Silvapulle and Sen (2005, Corollary 4.7.5), Assumption 2 and Lemma A.1(i),

which we give at the end of this section, then as in Andrews (2001, Lemma 7),

inf
λ∈Θ−θ†0

∥∥λ−W ∗
nn
−1/2

∥∥2

J∗n
= inf

λ∈Λ†

∥∥λ−W ∗
nn
−1/2

∥∥2

J∗n
+ o∗p(n

−1),

in probability, such that

q∗n[n1/2(θ̂∗n − θ∗n)] = inf
λ∈Λ†
‖λ−W ∗

n‖
2
J∗n

+ o∗p (1) ,

in probability.

For any given k†, without loss of generality consider the partition β†0 = (β
(k†)′
0 , β

(dβ−k†)′
0 )′

with β
(k†)
0,i = 0 for i = 1, ..., k† and β(dβ−k†)

0,i > 0 for i = k† + 1, ..., dβ. Likewise, let

Λβ†k
= Rk†+ denote the part of the cone Λ†β corresponding to the boundary points β

(k†)
0 ,

and let Hk† denote the selection matrix of dimension (dγ + k†)× dθ such that

Hk†θ = (γ′, β(k†)′)′. (A.2)

Then, as in Andrews (2001, proof of Theorem 2(b)), it holds that, in probability,

q∗n[n1/2(θ̂∗n − θ∗n)] = inf
λ∈Λ†
‖λ−W ∗

n‖
2
J∗n

+ o∗p (1)

= inf
λ∈Λγ×Λ†βk

‖λ−Hk†W
∗
n‖

2
(H

k†J
∗−1
n H′

k†
)−1 + o∗p (1) .

Analogously, for the restricted bootstrap estimator we have that

q∗n[n1/2(θ̃∗n − θ∗n)] = inf
λ∈{0}dγ×Λ

β
†
k

‖λ−Hk†W
∗
n‖

2
(H

k†J
∗−1
n H′

k†
)−1 + o∗p (1) ,

in probatility.
Collecting terms, it holds by Lemma A.1(ii) that, in probability,

LR∗n = q∗n[n1/2(θ̃∗n − θ∗n)]− q∗n[n1/2(θ̂∗n − θ∗n)] + op∗(1)

= inf
λ∈{0}dγ×Λ

β
†
k

‖λ−Hk†W
∗
n‖

2
(H

k†J
∗−1
n H′

k†
)−1 − inf

λ∈Λγ×Λ†βk

‖λ−Hk†W
∗
n‖

2
(H

k†J
∗−1
n H′

k†
)−1 + o∗p (1)

= inf
λ∈{0}dγ×Λ

β
†
k

‖λ−Hk†Z
∗‖2

(H
k†Ω

∗−1H′
k†

)−1 − inf
λ∈Λγ×Λ

β
†
k

‖λ−Hk†Z
∗‖2

(H
k†Ω

∗−1H′
k†

)−1 + o∗p (1) .

Under H0, it follows that LR∗n
w∗→p L as claimed, since under H0, k† = k, Λ† = Λ,

Ω∗ = Ω,Σ∗ = Σ and, by an application of the just given arguments from Andrews
(2001, Theorem 2(b)),

L = inf
λ∈{0}dγ×Λβ

‖λ−HZ‖2
(HΩ−1H′)−1 − inf

λ∈Λγ×Λβ
‖λ−HZ‖2

(HΩ−1H′)−1

25



= inf
λ∈{0}dγ×Λβk

‖λ−HkZ‖2

(HkΩ−1H′k)
−1 − inf

λ∈Λγ×Λβk

‖λ−HkZ‖2

(HkΩ−1H′k)
−1 .

Finally under the alternative, LR∗n
w∗→p L†, with

L† = inf
λ∈{0}dγ×Λ

β
†
k

‖λ−Hk†Z
∗‖2

(H
k†Ω

∗−1H′
k†

)−1 − inf
λ∈Λγ×Λ

β
†
k

‖λ−Hk†Z
∗‖2

(H
k†Ω

∗−1H′
k†

)−1 .

(A.3)

This completes the proof. �

Lemma A.1 With W ∗
n defined in (A.1), θ

∗
n satisfying Assumption 4, then under As-

sumption 5, (i) W ∗
n = O∗p (1), in probability, and (ii) Hk†W

∗
n
w∗→p Hk†Z

∗, where Hk† is
given by (A.2).

Proof. Recall thatW ∗
n = n1/2(θ∗n−θ

†
0)+Z∗n. The result in (i) follows as, by Assumption

4, n1/2(θ∗n− θ
†
0) = Op (1) and, by Assumption 5, Z∗n = O∗p(1), in probability. Turning to

(ii), Hk†W
∗
n = Hk†n

1/2(θ∗n− θ
†
0) +Hk†Z

∗
n, where by definition of Hk† and Assumption 4,

it follows that Hk†n
1/2(θ∗n − θ

†
0) = op(1). By Assumption 5, Hk†Z

∗
n
w∗→p Hk†Z

∗, and the
result holds by an application of a bootstrap version of Slutzky’s Lemma. �

A.2 Proof of Lemma 1

By Assumption 1, it follows by Andrews (2001, Lemma 1) that
√
n(θ̂n − θ0) = Op(1).

As in this case θ†0 = (γ†0, β
†′
0 , δ

†′
0 ) = (0′dγ , β

′
0, δ
′
0)′, we have

√
n(δ∗n − δ

†
0) = Op(1), while

√
n(β̂n,i − β†0,i) = Op(1), for i = 1, ..., dβ. It remains to show that (14) in Assumption 4

holds.
Suppose first that β†0,i = 0. By (15), β̂n,ic−1

n = n1/2β̂n,i(n
1/2cn)−1 = Op(1)o(1) = op(1).

Hence for any ε > 0,

P (I(β̂n,i > cn) > ε) ≤ P (I(β̂n,i > cn) = 1) = P (β̂n,i > cn) = P (β̂n,i/cn > 1)→ 0,

and we have that I(β̂n,i > cn) = op(1). Hence, for β†0,i = 0,

√
n(β∗n,i − β

†
0,i) =

√
nβ∗n,i =

√
nβ̂n,iI(β̂n,i > cn) = Op(1)op(1) = op(1).

Suppose next that β†0,i > 0, and note that

√
n(β∗n,i − β

†
0,i) =

√
n(β̂n,i − β†0,i)I(β̂n,i > cn)−

√
nβ†0,iI(β̂n,i ≤ cn). (A.4)

It holds that n1/2(β̂n,i−β†0,i)/(n1/2cn) = op(1) and β†0,i/cn →∞, such that for any ε > 0

P (n1/2(β̂n,i − β†0,i)(n1/2cn)−1 + β†0,i/cn > ε)→ 1,
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i.e. n1/2(β̂n,i − β†0,i)(n1/2cn)−1 + β†0,i/cn diverges to ∞. Hence, for any ε > 0

P ((1− I(β̂n,i > cn)) > ε) = P (I(β̂n,i ≤ cn) > ε) ≤ P (β̂n,i ≤ cn)

= P (n1/2(β̂n,i − β†0,i)(n1/2cn)−1 ≤ 1− β†0,i/cn)

= P (n1/2(β̂n,i − β†0,i)(n1/2cn)−1 + β†0,i/cn ≤ 1)

= 1− P (n1/2(β̂n,i − β†0,i)(n1/2cn)−1 + β†0,i/cn > 1)→ 0,

and we have that I(β̂n,i > cn) − 1 = op(1). We conclude that
√
n(β̂n,i − β†0,i)I(β̂n,i >

cn) = Op(1), so in light of (A.4), it remains to show that
√
nβ†0,iI(β̂n,i ≤ cn) = Op(1).

Note that for any ε > 0, by similar arguments as above,

P (
√
nI(β̂n,i ≤ cn) > ε) ≤ P (I(β̂n,i ≤ cn) = 1) = P (β̂n,i ≤ cn)→ 0,

and we have that
√
nI(β̂n,i ≤ cn) = op(1). We conclude that for β†0,i > 0,

√
n(β∗n,i −

β†0,i) = Op(1). �

B Proofs of Lemmata 2-4

Throughout this section, we make use of the following notation and results. First, we
let

zt := (x2
t−q, x

2
t−1, ..., x

2
t−(q−1), 1)′, (B.5)

such that with k > 0, E[‖zt‖k] <∞ if E[x2k
t ] <∞. Second, with σ2

t (θ) := θ′zt, and for
any θ, θ̃ ∈ Θ, it holds that

σ2t (θ)

σ2t (θ̃)
≤ ω−1

L ‖θ‖‖zt‖.

Finally, suppose that E[x2k
t ] <∞ with k > 0. Then,

E
(
σ2t (θ)

σ2t (θ̃)

)k
<∞

for any θ, θ̃ ∈ Θ.

B.1 Proof of Lemma 2

We initially consider the convergence of θ̂∗n. Recall that the bootstrap true value is given
by θ∗n = (0, {α̂i,n1 (α̂i,n > cn)}q−1

i=1 , ω̂n). Under Assumption 3 and the stated condition
on {cn}, Lemma 1 applies such that

θ∗n →p θ
†
0 = (0, {αi,0}q−1

i=1 , ω0) (B.6)

under H0 and under the alternative, where, in particular, θ
†
0 = θ0 under H0.

We now prove that the bootstrap unrestricted estimator is consistent for θ†0; that

is, θ̂∗n
p∗→p θ

†
0. Consistency of the bootstrap restricted estimator θ̃

∗
n follows using similar
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arguments but with Θ replaced by ΘH0 in (3) with dγ = 1. The proof consists of two
steps. First, we show the uniform convergence result

sup
θ∈Θ
|n−1L∗n(θ)−M(θ)| p

∗
→p 0,

where M (·) is an asymptotic estimating function given by

M(θ) = −1
2
E
[
log σ2

t (θ) +
σ2t (θ†0)

σ2t (θ)

]
.

Second, we show that identification in terms of M (·) applies; that is, for any θ ∈ Θ, we
have that M(θ†0) ≥M(θ), with equality if and only if θ = θ†0.

Uniform convergence. Consider the following inequality

sup
θ∈Θ
|n−1L∗n(θ)−M(θ)| ≤ sup

θ∈Θ
|n−1L∗n(θ)− E∗[n−1L∗n(θ)]|+ sup

θ∈Θ
|E∗[n−1L∗n(θ)]−M(θ)|

=: T ∗1,n + T2,n,

with T ∗1,n,T2,n implicitly defined. We have

T ∗1,n = sup
θ∈Θ
|n−1L∗n(θ)− E∗[n−1L∗n(θ)]|

= sup
θ∈Θ

∣∣∣n−1
∑n

t=1
1
2

(
log σ2

t (θ) +
x∗2t
σ2t (θ)

)
− n−1

∑n
t=1

1
2

(
log σ2

t (θ) +
σ2t (θ∗n)

σ2t (θ)

)∣∣∣ = sup
θ∈Θ
|G∗n(θ)|

where 2G∗n(θ) := n−1
∑n

t=1(η∗2t − 1)σ2
t (θ
∗
n)σ−2

t (θ). In order to show that T ∗1,n
p∗→p 0, we

apply Lemma B.4 of Cavaliere, Nielsen, and Rahbek (2017) which requires establishing
that, for all θ, θ̃ ∈ Θ,

G∗n(θ)
p∗→p 0, |G∗n(θ)−G∗n(θ̃)| ≤ B∗n||θ − θ̃||, (B.7)

where B∗n does not depend on θ and θ̃ and satisfies E
∗[B∗n] = Op(1).

Consider the first term in (B.7). By Chebychev inequality and using that E∗[(η∗2t −
1)(η∗2s − 1)] = 0 for t 6= s, for any θ ∈ Θ,

P ∗ (|G∗n(θ)| > ε) ≤ Cn−2E∗
[∑n

t=1

(
(η∗2t −1)σ2t (θ∗n)

σ2t (θ)

)2
]

+ Cn−2E∗
[∑n

t=1,s=1,t6=s

(
(η∗2t −1)σ2t (θ∗n)

σ2t (θ)

)(
(η∗2s −1)σ2s(θ∗n)

σ2s(θ)

)]
= Cn−2E∗

[
(η∗2t − 1)2

]∑n
t=1

(
σ2t (θ∗n)

σ2t (θ)

)2

≤ Cω−2
L n−2E∗

[
(η∗2t − 1)2

]
‖θ∗n‖2

n∑
t=1

‖zt‖2

= Cn−2Op(1)Op(1)Op(n) = Op(n
−1),
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where the last equality holds by Lemma B.5 together with the fact that {xt} is ergodic
with E[x4

t ] <∞. Consider now the second term in (B.7). We have

|G∗n(θ)−G∗n(θ̃)| =
∣∣∣12n−1

∑n
t=1(η∗2t − 1)σ2

t (θ
∗
n)
(

1
σ2t (θ)
− 1

σ2t (θ̃)

)∣∣∣
=

∣∣∣∣12n−1
∑n

t=1(η∗2t − 1)σ2
t (θ
∗
n)

(
z′t(θ̃−θ)
σ2t (θ)σ2t (θ̃)

)∣∣∣∣
≤ ||θ − θ̃||

∥∥∥1
2
n−1
∑n

t=1(η∗2t − 1)σ2
t (θ
∗
n)
(

1
σ2t (θ)σ2t (θ̃)

)
zt

∥∥∥
≤ ||θ − θ̃||1

2
ω−2
L n−1

∑n
t=1

∥∥(η∗2t − 1)σ2
t (θ
∗
n)zt

∥∥ =: ||θ − θ̃||B∗n,

and it is straightforward to show that E∗[B∗n] = Op(1), using again Lemma B.5, θ∗n =

Op(1), and that {xt} is ergodic with Ex4
t <∞.

Next, consider T2,n. We have that

T2,n = sup
θ∈Θ
|E∗[n−1L∗n(θ)]−M(θ)|

= sup
θ∈Θ

∣∣∣−n−1
∑n

t=1
1
2

(
log σ2

t (θ) +
σ2t (θ∗n)

σ2t (θ)

)
−M(θ)

∣∣∣
≤ sup

θ∈Θ

∣∣∣−n−1
∑n

t=1
1
2

(
log σ2

t (θ) +
σ2t (θ†0)

σ2t (θ)

)
−M(θ)

∣∣∣
+ sup

θ∈Θ

∣∣∣n−1
∑n

t=1
1
2

(
log σ2

t (θ) +
σ2t (θ∗n)

σ2t (θ)

)
− n−1

∑n
t=1

1
2

(
log σ2

t (θ) +
σ2t (θ†0)

σ2t (θ)

)∣∣∣
= sup

θ∈Θ

∣∣∣−n−1
∑n

t=1
1
2

(
log σ2

t (θ) +
σ2t (θ†0)

σ2t (θ)

)
−M(θ)

∣∣∣
+ sup

θ∈Θ

∣∣∣n−1
∑n

t=1
1
2

(
σ2t (θ∗n)−σ2t (θ†0)

σ2t (θ)

)∣∣∣ ,
where the first term tends to zero in probability by the ULLN (since Ex2

t < ∞), and
the second term is bounded by

||θ∗n − θ
†
0|| 1

2ωL
n−1
∑n

t=1||zt|| = op(1).

We conclude that T2,n
p→ 0, and hence the desired result holds.

Identification. First, note that M(θ†0)−M(θ) is well-defined on Θ since E[x2
t ] <∞.

Then

M(θ†0)−M(θ) = −1
2
E
[
log σ2

t (θ
†
0) +

σ2t (θ†0)

σ2t (θ†0)

]
+ 1

2
E
[
log σ2

t (θ) +
σ2t (θ†0)

σ2t (θ)

]
= 1

2
E
[
− log

(
σ2t (θ†0)

σ2t (θ)

)
+

σ2t (θ†0)

σ2t (θ)
− 1
]
≥ 0,

with equality if and only if σ2
t (θ
†
0) = σ2

t (θ) with probability one, which by standard
arguments is true if and only if θ = θ†0. This completes the proof. �
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B.2 Proof of Lemma 3

The proof follows by Lemmas B.2 and B.3 below together with an application of the
bootstrap version of Slutzky’s Lemma.

Lemma B.2 Suppose that Assumption 3 holds. Then

1√
n

n∑
t=1

s∗t (θ
∗
n)

w∗→p N(0,Σ∗),

where s∗t (θ
∗
n) = ∂l∗t (θ∗n) /∂θ and Σ∗ = E[(∂lt(θ

†
0)/∂θ)(∂lt(θ

†
0)/∂θ′)] > 0.

Proof: Recall that

n−1L∗n (θ) = − 1
2n

∑n
t=1

{
log σ2

t (θ) +
x∗2t
σ2t (θ)

}
, σ2

t (θ) = θ′zt.

and hence that s∗t (θ
∗
n) = −1

2
{1− η∗2t }σ−2

t (θ∗n)zt.
Similar to Cavaliere et al. (2018) the result holds by verifying, with F∗t = σ(x∗s :

s = 0, ..., t):

(i) E∗[s∗t (θ
∗
n)|F∗t−1] = 0,

(ii) n−1
∑n

t=1E
∗[s∗t (θ

∗
n)s∗t (θ

∗
n)′|F∗t−1]

p∗→p Σ∗ > 0,

(iii) n−1
∑n

t=1E
∗[(λ′s∗t (θ

∗
n))2 1(|λ′s∗t (θ∗n)|>εn1/2)]

p→ 0,

for any λ ∈ Rk and any ε > 0. Condition (i) is immediate, since E∗[η∗2t |F∗t−1] =

E∗[η∗2t ] = 1. For (ii), note that s∗t (θ
∗
n) is, conditionally on the data, an independent

process, and hence

n−1
∑n

t=1E
∗[s∗t (θ

∗
n)s∗t (θ

∗
n)′|F∗t−1] = n−1

∑n
t=1E

∗[s∗t (θ
∗
n)s∗t (θ

∗
n)′]

= n−1
∑n

t=1

(
2σ2

t (θ
∗
n)
)−2

ztz
′
tE
∗[
(
1− η∗2t

)2
]

= 1
4

(
n−1
∑n

t=1σ
−4
t (θ∗n)ztz

′
t

)
E∗[
(
1− η∗2t

)2
].

By Lemma B.5, E∗[(1− η∗2t )
2
] = Op (1). Moreover, asEx6

t <∞, E
[
supθ∈Θ ‖σ−4

t (θ)ztz
′
t‖
]
<

∞ and, by the ULLN for stationary and ergodic processes,

sup
θ∈Θ

∥∥n−1
∑n

t=1σ
−4
t (θ)ztz

′
t − E

[
σ−4
t (θ)ztz

′
t

]∥∥ p→ 0. (B.8)

Using (B.8), θ∗n
p→ θ†0, compactness of Θ, and continuity of E

[
σ−4
t (θ)ztz

′
t

]
at θ†0, we have

that
n−1
∑n

t=1σ
−4
t (θ∗n)ztz

′
t

p→ E
[
σ−4
t (θ†0)ztz

′
t

]
,

and hence that (ii) holds with Σ∗ > 0, since λ′zt 6= 0 with probability one for any
λ ∈ Rq+1.
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Turning to (iii), λ′s∗t (θ
∗
n) = (1− η∗2t )σ−2

t (θ∗n)λ′zt, such that

E∗
[
(λ′s∗t (θ

∗
n))

2 I(|λ′s∗t (θ∗n)| > εn1/2)
]
≤ Cn−1/2E∗

[
(λ′s∗t (θ

∗
n))

3
]

= Cn−1/2
(
σ−2
t (θ∗n)λ′zt

)3
E∗
[(

1− η∗2t
)3
]

≤ Cn−1/2 sup
θ∈Θ
|σ−2
t (θ)λ′zt|3E∗

[(
1− η∗2t

)3
]

≤ C|λ′zt|3n−1/2E∗
[(

1− η∗2t
)3
]

= n−1/2|λ′zt|3Op(1),

where we have used Lemma B.5. Hence, (iii) holds as Ex6
t <∞. �

Lemma B.3 Suppose that Assumption 3 holds and, in addition, that E[x8
t ] <∞. Then,

−n−1∂2L∗n(θ∗n)/∂θ∂θ′
p∗→p Ω∗

where Ω∗ = 1
2
E[σ−4

t (θ†0)ztz
′
t] with zt defined in (B.5), and Ω∗ = Ω under H0.

Proof: Define Ω∗ := 1
2
E[σ−4

t (θ†0)ztz
′
t], Ω∗n := 1

2
n−1
∑n

t=1σ
−4
t (θ∗n)ztz

′
t and J∗n (θ) :=

−n−1∂2L∗n(θ)/∂θ∂θ′. We have

‖J∗n(θ∗n)− Ω∗‖ ≤ ‖J∗n(θ∗n)− Ω∗n‖+ ‖Ω∗n − Ω∗‖ , (B.9)

where the second term tends to zero in probability by standard arguments using that
E[x6

t ] < ∞ and θ∗n − θ†0 = op(1). To see that first term tends to zero, note that the
result holds if for all i, j = 1, ..., q + 1,∣∣−n−1∂2L∗n(θ∗n)/∂θi∂θj − (Ω∗n)ij

∣∣ p∗→p 0.

By definition,

− n−1∂2L∗n(θ∗n)/∂θi∂θj − (Ω∗n)ij

= n−1
∑n

t=1(η∗2t − 1
2
)σ−4

t (θ∗n) [ztz
′
t]i,j − 1

2
n−1
∑n

t=1σ
−4
t (θ∗n) [ztz

′
t]i,j

= n−1
∑n

t=1

(
η∗2t − 1

)
σ−4
t (θ∗n) [ztz

′
t]i,j ,

and by arguments similar to the ones given in Cavaliere et al. (2018, Proof of Lemma
A.8), using that Ex8

t < ∞, we have that ‖J∗n(θ∗n)− Ω∗n‖ is op∗(1), in probability, and
hence ‖J∗n(θ∗n)− Ω∗‖ = op∗(1), in probability. Finally, observe that under H0, θ

†
0 = θ0,

such that Ω = −E [∂2lt(θ0)/∂θ∂θ′] = 1
2
E[σ−4

t (θ0) ztz
′
t] = Ω∗.

�

B.3 Proof of Lemma 4

It holds that for any i, j, k = 1, ..., q + 1,

n−1 ∂
3L∗n (θ)

∂θi∂θj∂θk
= n−1

n∑
t=1

(
3
x∗2t
σ2
t (θ)
− 1

)
zt,izt,jzt,k
σ6
t (θ)

.
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Using that x∗2t = η∗2t σ
2
t (θ
∗
n) = η∗2t θ

∗′
n zt with zt defined in (B.5), for any i, j, k = 1, ..., q+1,

sup
θ∈Θ

∣∣∣∣ ∂3L∗n (θ)

∂θi∂θj∂θk

∣∣∣∣ ≤ n−1

n∑
t=1

(
3η∗2t

σ2
t (θ
∗
n)

σ2
t (θ)

+ 1

)
zt,izt,jzt,k
σ6
t (θ)

≤ n−1

n∑
t=1

(
3ω−1

L η∗2t ‖θ∗n‖‖zt‖+ 1
)
ω−3
L zt,izt,jzt,k

=: K∗n,

and it suffi ces to show that K∗n = O∗p(1), in probability. Given the the stated moment
conditions, this follows by an application of Markov’s inequality conditionally on the
original data.

B.4 Auxiliary lemmata

Lemma B.4 Suppose that Assumption 3 holds. If E|xt|k < ∞ for some k ≥ 1, then
n−1

∑n
t=1 η̂

k
t

p→ Eηkt .

Proof: Note that, with zt defined in (B.5),

η̂kt =
xkt

(σ2
t (θ̂n))k/2

=
xkt

(θ̂′nzt)
k/2

= ηkt + ηkt

[(
θ′0zt
θ̂′nzt

)k/2
− 1

]
= ηkt + gt(θ̂n),

where we set gt(θ) := ηkt ((θ′0zt(θ
′zt)
−1)k/2 − 1), such that gt(θ0) = 0 . By the LLN for

i.i.d. processes, n−1
∑n

t=1 η
k
t

p→ Eηkt . To show that

n−1
∑n

t=1η
k
t gt(θ̂n) = op(1), (B.10)

and, for any θ ∈ Θ,
|gt(θ)| ≤ |ηt|k + |ηt|k|θ

′

0zt|k/2ω
−k/2
L .

Hence,
E sup

θ∈Θ
‖gt(θ)‖ ≤ C + CE[|xt|k] <∞,

with C denoting a generic positive constant. By the ULLN for ergodic processes,

sup
θ∈Θ

∣∣n−1
∑n

t=1gt(θ)− Egt(θ)
∣∣ = op(1)

and, using that ‖θ̂n − θ0‖ = op(1), Θ is compact, and E[gt(θ)] is continuous at θ0, we
have that n−1

∑n
t=1 gt(θ̂n)− E[gt(θ0)] = op(1), which implies (B.10). �

Lemma B.5 Suppose that Assumption 3 holds. Then, E∗[η∗kt ]
p→ E[ηkt ], for k ∈ [1, 6].

Proof: The result follows by Lemma B.4 and the arguments given in the proof of
Lemma A.11 in Cavaliere, Pedersen, and Rahbek (2018). �
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Table 1: Empirical Size for the ARCH(5) Example.

Shrinking-based bootstrap Standard Asymptotic
Unrestricted Restricted ‘m out of n’ restricted

fixed vol. recursive fixed vol. recursive bootstrap bootstrap M-based Infeasible

n C0: (ω0, α1,0, α2,0, α3,0, α4,0, α5,0) = (1, 0.1, 0.1, 0.1, 0.1, 0)

100 10.0 11.4 9.7 11.2 11.4 9.5 6.7 7.2

500 11.0 11.3 10.7 11.3 12.1 10.1 8.4 9.0

1000 10.8 11.3 10.6 11.1 12.2 10.5 9.3 9.8

C1: (ω0, α1,0, α2,0, α3,0, α4,0, α5,0) = (1, 0.133, 0.133, 0.133, 0, 0)

100 9.3 10.8 9.0 10.7 10.7 8.9 6.4 7.3

500 10.2 10.7 10.0 10.8 11.1 9.0 7.6 9.2

1000 10.1 10.5 9.9 10.4 11.0 9.1 8.2 9.7

C2: (ω0, α1,0, α2,0, α3,0, α4,0, α5,0) = (1, 0.2, 0.2, 0, 0, 0)

100 8.2 9.7 8.1 9.6 9.4 7.7 5.2 7.5

500 9.1 10.1 9.1 10.0 9.2 7.2 6.2 8.9

1000 10.0 10.3 9.9 10.4 9.0 7.6 6.9 9.5

C3: (ω0, α1,0, α2,0, α3,0, α4,0, α5,0) = (1, 0.4, 0, 0, 0, 0)

100 8.1 10.2 7.9 10.0 8.9 7.0 5.2 8.0

500 9.2 10.0 9.2 10.0 7.8 6.5 5.9 8.8

1000 10.1 10.4 10.2 10.4 8.2 6.8 6.6 9.5

C4: (ω0, α1,0, α2,0, α3,0, α4,0, α5,0) = (1, 0, 0, 0, 0, 0)

100 8.3 10.9 7.9 10.7 9.3 7.4 7.2 7.5

500 9.1 10.1 9.1 10.0 8.5 7.1 8.2 8.7

1000 10.0 10.3 9.9 10.3 8.2 7.7 9.2 9.7

MAD 0.73 0.57 0.78 0.52 1.32 1.94 2.85 1.31

RMSE 0.98 0.73 1.05 0.67 1.44 2.22 3.12 1.60

Notes: Empirical rejection frequencies under the null hypothesis, α5,0 = 0. The nominal level is 10%. Bootstrap
p-values are based on 199 bootstrap replications and the simulation is based on 10000 Monte Carlo replications. The
shrinking-based bootstrap uses cn = 1.6n−0.45 and the m-out-of-n bootstrap uses mn = 1.5n/log(n). The feasible
asymptotic test uses the distribution M for all cases. The infeasible asymptotic test uses critical values simulated
for each case with T = 20000. MAD and RMSE measure the overall deviation from the nominal level across cases
and sample sizes.
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Table 2: Empirical Unadjusted Power for the ARCH(5) Example.

Shrinking-based bootstrap Standard Asymptotic
Unrestricted Restricted ‘m out of n’ restricted

fixed vol. recursive fixed vol. recursive bootstrap bootstrap M-based Infeasible

α5,0 C0: (ω0, α1,0, α2,0, α3,0, α4,0, α5,0) = (1, 0.1, 0.1, 0.1, 0.1, 0)

0 11.0 11.3 10.7 11.3 12.1 10.1 8.4 9.0

0.025 25.1 25.6 24.3 25.6 26.8 23.8 20.8 21.8

0.05 41.9 42.6 41.2 42.7 44.2 40.6 37.1 38.2

0.1 73.3 73.9 72.8 73.8 74.9 72.1 69.6 70.5

0.2 97.0 97.3 97.0 97.3 97.6 97.1 96.5 96.7

0.3 99.8 99.9 99.8 99.8 99.9 99.8 99.7 99.8

C1: (ω0, α1,0, α2,0, α3,0, α4,0, α5,0) = (1, 0.133, 0.133, 0.133, 0, 0)

0 10.2 10.7 10.0 10.8 11.1 9.0 7.6 9.2

0.025 24.0 25.2 23.6 25.2 25.8 21.9 20.1 22.6

0.05 41.6 43.0 41.1 43.0 43.5 39.4 36.9 40.1

0.1 73.5 74.5 73.1 74.4 75.0 71.9 70.0 72.3

0.2 97.3 97.5 97.3 97.5 97.7 97.2 96.7 97.1

0.3 99.8 99.9 99.8 99.9 99.9 99.8 99.8 99.8

C2: (ω0, α1,0, α2,0, α3,0, α4,0, α5,0) = (1, 0.2, 0.2, 0, 0, 0)

0 9.1 10.1 9.1 10.0 9.2 7.2 6.2 8.9

0.025 25.3 26.5 25.3 26.4 25.1 21.2 19.5 24.6

0.05 44.7 46.6 44.5 46.7 44.9 40.5 38.0 44.2

0.1 77.4 78.5 77.3 78.4 77.5 74.4 72.6 77.3

0.2 98.2 98.3 98.2 98.3 98.3 97.7 97.5 98.2

0.3 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9

C3: (ω0, α1,0, α2,0, α3,0, α4,0, α5,0) = (1, 0.4, 0, 0, 0, 0)

0 9.2 10.0 9.2 10.0 7.8 6.5 5.9 8.8

0.025 29.0 30.2 28.8 30.3 26.7 23.0 21.8 28.1

0.05 51.6 52.7 51.4 52.9 49.2 44.4 43.5 50.7

0.1 82.5 83.7 82.5 83.6 81.4 78.3 78.0 82.5

0.2 98.9 99.0 98.8 99.0 98.8 98.4 98.4 98.9

0.3 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9

C4: (ω0, α1,0, α2,0, α3,0, α4,0, α5,0) = (1, 0, 0, 0, 0, 0)

0 9.1 10.1 9.1 10.0 8.5 7.1 8.2 8.7

0.025 21.9 23.5 21.6 23.4 20.1 17.7 20.9 21.5

0.05 38.3 40.0 38.0 39.9 36.2 33.1 36.6 37.7

0.1 70.1 72.3 70.0 72.3 68.0 65.4 69.3 70.2

0.2 96.8 97.1 96.8 97.1 96.3 95.9 96.7 96.9

0.3 99.8 99.8 99.8 99.8 99.7 99.6 99.8 99.8

Notes: Empirical rejection frequencies under the alternative hypothesis, α5,0 > 0, for n = 500. The nominal
level is 10%. Bootstrap p-values are based on 199 bootstrap replications and the simulation is based on 10000
Monte Carlo replications. The shrinking-based bootstrap uses cn = 1.6n−0.45 and the m-out-of-n bootstrap uses
mn = 1.5n/log(n).

34



Table 3: Empirical Size-adjusted Power for the ARCH(5) Example.

Shrinking-based bootstrap Standard Asymptotic
Unrestricted Restricted ‘m out of n′ restricted Infeasible

fixed vol. recursive fixed vol. recursive bootstrap bootstrap M-based

α5,0 C0: (ω0, α1,0, α2,0, α3,0, α4,0, α5,0) = (1, 0.1, 0.1, 0.1, 0.1, 0)

0 10.1 10.3 10.3 10.3 10.3 10.1 10.0

0.025 23.2 23.9 23.4 23.7 24.0 23.8 23.4

0.05 39.7 40.5 40.2 40.5 41.2 40.6 40.3

0.1 71.5 72.2 71.8 72.1 72.2 72.1 72.2

0.2 96.7 97.0 96.8 97.0 97.1 97.1 97.0

0.3 99.8 99.8 99.8 99.8 99.8 99.8 99.8

C1: (ω0, α1,0, α2,0, α3,0, α4,0, α5,0) = (1, 0.133, 0.133, 0.133, 0, 0)

0 10.2 10.2 10.0 10.3 10.0 10.4 10.0

0.025 24.0 24.3 23.6 24.2 24.0 24.4 23.7

0.05 41.6 42.0 41.1 42.0 41.7 42.2 41.5

0.1 73.5 73.8 73.1 73.6 73.5 74.2 73.5

0.2 97.3 97.4 97.3 97.4 97.3 97.5 97.4

0.3 99.8 99.8 99.8 99.9 99.9 99.9 99.9

C2: (ω0, α1,0, α2,0, α3,0, α4,0, α5,0) = (1, 0.2, 0.2, 0, 0, 0)

0 10.0 10.1 10.0 10.0 10.1 10.1 10.0

0.025 27.0 26.5 26.8 26.4 26.7 26.7 26.5

0.05 46.7 46.6 46.7 46.7 46.7 47.1 46.4

0.1 78.7 78.5 78.6 78.4 78.7 78.4 78.6

0.2 98.4 98.3 98.4 98.3 98.4 98.4 98.4

0.3 99.9 99.9 99.9 99.9 99.9 99.9 99.9

C3: (ω0, α1,0, α2,0, α3,0, α4,0, α5,0) = (1, 0.4, 0, 0, 0, 0)

0 10.2 10.5 10.2 10.0 10.1 10.1 10.0

0.025 30.9 31.3 30.7 30.3 30.6 30.7 30.4

0.05 53.3 53.8 53.0 52.9 53.4 53.0 53.2

0.1 83.6 84.2 83.5 83.6 83.7 83.6 83.8

0.2 99.0 99.0 98.9 99.0 99.0 99.0 99.1

0.3 99.9 99.9 99.9 99.9 100.0 100.0 100.0

C4: (ω0, α1,0, α2,0, α3,0, α4,0, α5,0) = (1, 0, 0, 0, 0, 0)

0 10.2 10.1 10.1 10.0 10.0 10.1 10.0

0.025 23.4 23.5 23.2 23.4 22.9 23.2 23.8

0.05 40.1 40.0 40.1 39.9 39.7 39.4 40.4

0.1 71.8 72.3 71.8 72.3 71.3 71.3 72.4

0.2 97.1 97.1 97.1 97.1 96.9 97.0 97.1

0.3 99.8 99.8 99.8 99.8 99.8 99.8 99.8

Notes: Pointwise size-adjusted rejection frequencies under the alternative hypothesis, α5,0 > 0, for
n = 500. The nominal level is 10%. Bootstrap p-values are based on 199 bootstrap replications and the
simulation is based on 10000 Monte Carlo replications. The shrinking-based bootstrap uses cn = 1.6n−0.45

and the m-out-of-n bootstrap uses mn = 1.5n/log(n).
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