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Abstract

A multivariate CVAR(1) model for some observed variables and some unobserved
variables is analysed using its infinite order CVAR representation of the observations.
Cointegration and adjustment coeffi cients in the infinite order CVAR are found as
functions of the parameters in the CVAR(1) model. Conditions for weak exogeneity
of the cointegrating vectors in the approximating finite order CVAR are derived. The
results are illustrated by a few simple examples of relevance for modelling causal graphs.
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1 Introduction
Hoover (2018) applies the CVAR(1) model for the processes Xt and Tt of dimension p and
m respectively, given by the equations

∆Xt+1 = MXt + CTt + εt+1,
∆Tt+1 = ηt+1,

(1)

to model a causal graph for the p variablesX = {X1, . . . , Xp} andm trends T = {T1, . . . , Tm}.
Here the entry Mij 6= 0 means that Xj causes Xi, which we write Xj → Xi, and Cij 6= 0
means that Tj → Xi, see Examples 1—2. Note that the model assumes that there are no
causal links from X to T, so that Tt is strongly exogenous.
The paper by Hoover gives a detailed and general discussion of the problems of recov-

ering causal structures from nonstationary observations Xt, or subsets of Xt, when Tt is
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unobserved, that is, if Xt = (X ′1t, X
′
2t)
′, where the observations X1t are p1-dimensional and

the unobserved processes X2t and Tt are p2 and m-dimensional respectively, p = p1 + p2.
Model (1) is therefore rewritten as

∆X1t+1 = M11X1t +M12X2t + C1Tt + ε1t+1,
∆X2t+1 = M21X1t +M22X2t + C2Tt + ε2t+1,
∆Tt+1 = ηt+1.

(2)

Note that there is now a causal link from the observed process X1t to the unobserved
processes, if the matrix M21 6= 0.
The process X1t is a linear transformation of {Xt, Tt} and therefore allows, in steady

state, a CVAR(∞) representation, see Johansen and Juselius (2014),

∆X1t+1 = αβ′X1t +
∞∑
i=1

Γi∆X1,t+1−i + νt+1, (3)

where νt+1 = X1t+1 − EtX1t+1 is the prediction error for the observation X1t+1 given
X10, . . . , X1t.
Thus, a statistical analysis, including estimation of α and β, can be conducted for the ob-

servations X1t using an approximating finite order CVAR, see Saikkonen (1992) and Saikko-
nen and Lütkepohl (1996).
Hoover (2018) investigates in particular if weak exogeneity for β in the approximating

finite order CVAR, that is, a zero row in α, can help finding the causal structure in the
graph. The present note solves the problem of finding expressions for the parameters α and
β in the CVAR(∞) model (3) for the observation X1t, as functions of the parameters in
model (2), and finds conditions on these for the presence of a zero row in α, and hence weak
exogeneity for β in the approximating finite order CVAR.

2 The model and a preliminary analysis
We first give some notation and then formulate the assumptions of the model.
If A is a k1× k2 matrix of rank m ≤ min(k1, k2), we define A⊥ as a k1× (k1−m) matrix

of rank k1 −m for which A′⊥A = 0. If k1 = m, we define A⊥ = 0. The k1 × k1 matrix A is
stable if the eigenvalues are in the open unit circle.

Assumption 1 We make the following assumptions
(i) The processes {X1t, X2t, Tt}, t = 1, . . . , n, are given by the equations (2) with starting

values zero: T0 = 0, X10 = 0, X20 = 0, and ε1t, ε2t, and ηt are i.i.d. Gaussian with mean
zero and variances Ω1, Ω2, and Ωη, where Ω1 and Ω2 are diagonal matrices.
(ii) The matrices Ip1 +M11, Ip2 +M22 and Ip +M are stable.
(iii) The matrix C1.2 = C1 −M12M

−1
22 C2 satisfies

rank(C1.2) = m. (4)

Assumption 1 (ii) on the matrices M11,M22 and M are taken from Hoover (2018) to
ensure that for instance the process Xt given by the equations Xt = (Ip +M)Xt−1 + input,
is stationary if the input is stationary, such that the nonstationarity of Xt in model (2) is
created by the trends Tt, and not by the own dynamics of Xt, as given byM. It follows from
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this assumption that the matrices M11,M22,M and therefore M11.2 = M11 −M12M
−1
22 M21

are nonsingular.
Assumption 1 (iii) on the rank of C1.2 = C1 −M12M

−1
22 C2, ensures that the m trends

Tt cause the observed variables X1t, and that E(Tt|X10, . . . , X1t) can be represented as a
random walk in the prediction errors of X1t.
From the model equations (2) we find, by eliminating X2t from the first two equations,

that
∆X1t+1 −M12M

−1
22 ∆X2t+1 = M11.2X1t + C1.2Tt + ε1t+1 −M12M

−1
22 ε2t+1,

where M11.2 = M11 −M12M
−1
22 M21 has full rank p1 and C1.2 = C1 −M12M

−1
22 C2 has rank m

by Assumption 1 (ii).
The terms∆X1t+1−M12M

−1
22 ∆X2t+1 is asymptotically stationary and ε1t+1−M12M

−1
22 ε2t+1

is stationary, and therefore
M11.2X1t + C1.2Tt (5)

is asymptotically stationary. It follows that for β′M11.2X1t to be stationary, it must hold
that β′M−1

11.2C1.2 = 0, or equivalently, up to multiplication from the right by a square matrix
of full rank,

β⊥ = M−1
11.2C1.2 and β = M ′

11.2(C1.2)⊥. (6)

Thus it is easy to find β⊥ and β directly from the model formulation. The derivation
of α is more complicated and will be dealt with below, using the theory for the solution of
algebraic Riccati equations, based on Assumption 1 (iii).
It is convenient for the analysis to rewrite the equations (2) as follows. We define the

unobserved processes

T̃t =

(
X2t

Tt

)
, η̃t =

(
ε2t
ηt

)
,

where η̃t are i.i.d. Np1+m(0, Ω̃), say, and the corresponding matrices

Q̃ =

(
Ip2 +M22 C2

0 Im

)
, C̃ = (M12, C1).

Then (2) becomes
X1t+1 = (Ip1 +M11)X1t + C̃T̃t + ε1t+1,

T̃t+1 =

(
M21

0

)
X1t + Q̃T̃t + η̃t+1.

(7)

Note that the observations X1t cause the unobserved process T̃t+1, with coeffi cients M21,
but for M21 = 0, we get the common trend state space model. The analysis of model (7)
requires a representation of EtT̃t+1 in terms of the prediction errors of the observations,

νt+1 = X1t+1 − Et(X1t+1) = ∆X1t+1 −M11X1t − C̃T̃t,

and for that we need to calculate the variance Vt = V artT̃t. Here Et and V art indicate con-
ditional mean and variance given {X10, . . . , X1t}. The variance can be calculated recursively
as follows

V art+1(T̃t+1) = V art(T̃t+1|X1t+1)

= V art(T̃t+1)− Covt(T̃t+1;X1t+1)V art(X1t+1)
−1Covt(X1t+1; T̃t+1).
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Here X1t does not contribute to the conditional variance V art(T̃t+1|X1t+1), and

V art(T̃t+1) = Q̃Vt(T̃t)Q̃
′ + Ω̃,

Covt(T̃t+1;X1t+1) = Covt(T̃t+1; (Ip1 +M11)X1t + C̃T̃t + ε1t+1) = Q̃V art(T̃t)C̃
′,

V art(X1t+1) = V art((Ip1 +M11)X1t + C̃T̃t + ε1t+1) = C̃V art(T̃t)C̃
′ + Ω1.

Thus, we find the recursion for Vt = V art(T̃t),

Vt+1 = Q̃VtQ̃
′ + Ω̃− Q̃VtC̃ ′{C̃VtC̃ ′ + Ω1}−1C̃VtQ̃′. (8)

This is the usual recursion from the Kalman filter equations for state space models. If
V0 = 0 and Vt → V , t→∞, the limit must satisfy the algebraic Riccati matrix equation,

V = Q̃V Q̃′ + Ω̃− Q̃V C̃ ′{C̃V C̃ ′ + Ω1}−1C̃V Q̃′, (9)

see Lancaster and Rodman (1995).
Note that the prediction errors νt+1 are independent and distributed as Np1(0,Σt), and

for t→∞ we find
Σt = C̃VtC̃

′ + Ω1 → C̃V C̃ ′ + Ω1 = Σ. (10)

In the next section we give some results on the algebraic Riccati matrix equation, and
show that under Assumption 1 we have Vt → V, so that in steady state EtTt is a random
walk in the prediction errors. We then use (5) to find the parameters α and β. The proofs
are given in the Appendix.

3 Main results
An important result on the algebraic Riccati equation, see Hautus (1969) and Lancaster and
Rodman (1995, Theorems 4.5.6 and 17.5.3), gives a simple condition for the existence of the
limit of the recursively defined Vt, as the solution of (9). We have chosen a formulation that
is directly applicable using simple matrix theory.

Theorem 1 Let V0 = 0, and let Vt be defined by (8). If

rank

(
C̃

Q̃− λIp2+m

)
= p2 +m for all |λ| ≥ 1, (11)

then there exists a unique V , which is the largest solution to (9), and Vt → V as t → ∞.
Furthermore 0 < V <∞ and

Q̃− Q̃V C̃ ′(C̃V C̃ ′ + Ω1)
−1C̃ ′ (12)

is stable.

For model (2) we can check the assumption (11) of Theorem 1 and find the following
result.

Corollary 2 Let X1t, X2t, Tt be given by model (2) and let Vt = V art(X2t, Tt). Then As-
sumption 1 implies that Vt, given by (8) and starting with Vt = 0, converges to a finite
positive definite limit V, which solves the algebraic Riccati equation (9).
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For large t the process X1t therefore approaches steady state, see Durbin and Koopman
(2012), defined by Vt = V, and in steady state the prediction errors are i.i.d. Np1(0,Σ), see
(10).

We can now formulate our main result. We use the notation

V = V art

(
X2t

Tt

)
=

(
VX2,X2 VX2,T
VT,X2 VT,T

)
.

Theorem 3 Under Assumption 1, and for the process X1t in steady state, the coeffi cients
α and β in the CVAR(∞) representation of X1t are given for m < p1 as

β⊥ = M−1
11.2C1.2, and α⊥ = Σ−1(M12VX2,T + C1VT,T ), (13)

β = M ′
11.2(C1.2)⊥ and α = Σ(M12VX2,T + C1VT,T )⊥. (14)

For m = p1, β⊥ has rank p1, and there is no cointegration: α = β = 0.

The result for β is simple to analyse in terms of the parameters of the model, see (6),
but the expression for α is more complicated, because it involves the matrix V .
Let W = M12VX2,T + C1VT,T so that α = ΣW⊥. Then,

Σ = C̃V C̃ ′ + Ω1 = M12(VX2X2M
′
12 + VX2TC

′
1) + C1W

′ + Ω1,

such that
α = {M12(VX2X2M

′
12 + VX2TC

′
1) + Ω1}W⊥.

Thus in order to investigate a zero row in α we need to know the elements of V . The matrix
V is easy to calculate from the recursion (8) for given value of the parameters, because the
convergence is exponentially fast, but the properties of V are more diffi cult to evaluate. We
therefore consider some simple examples.

Example 1. If M12 = 0, so that the unobserved process X2t does not cause the obser-
vation X1t, we have C1.2 = C1, α⊥ = Σ−1C1VT,T , and

α = ΣC1⊥ = ((0, C1)V (0, C1)
′ + Ω1)C1⊥ = Ω1C1⊥.

Let ei be a p1-dimensional unit vector, then

e′iα = ωie
′
iC1⊥,

because Ω1 = diag(ω1, . . . , ωp1). Thus α has a zero row if C1⊥ has a zero row. Thus, the
observations are not caused by X2t, the observations that are directly caused by the trends
Tt, are weakly exogenous.
An example of M12 = 0 is the chain T → A → B → C → D, where we observe

X1 = {A,B,C,D} and X2 = 0 such that M12 = 0, C2 = 0. Then

C1 =


∗
0
0
0

 , C1⊥ =


0 0 0
1 0 0
0 1 0
0 0 1

 .
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Thus, the first row is a zero row, such that A is weakly exogenous.

The matrices C1,C2, and M12 indicate the causation from T to X1 and X2, and from X2

to X1.We define a property which we call strong orthogonality between these matrices. We
say that two matrices A and B are strongly orthogonal if A′DB = 0 for all diagonal matrices
or equivalently if AjiBjk = 0 for all i, j, k. Thus, if M12 and C1 are strongly orthogonal, and
if the j′th row of M12 has a nonzero element, then the j’th row of C1 is zero and vice versa.
Thus under strong orthogonality of M12 and C1, if T causes a variable in X1, then X2 does
not cause that variable and vice versa.

Example 2. If M12 and C1 are strongly orthogonal and C2 = 0, another simplification
occurs in the result for α, namely that VX2T = 0, such that V is block diagonal. We prove
this by induction. First for V0 = 0, we find V1 = Ω̃, which is block diagonal. Next assume
Vt is block diagonal and consider the expression for Vt+1, see (8). In this expression we note
that C2 = 0 implies that Q is block diagonal, and therefore the same holds for QV 1/2

t . Thus,
we only have to show block diagonality of V 1/2

t C̃ ′{C̃VtC̃ ′+ Ω1}−1C̃V 1/2
t , see (8). To simplify

the notation define the normalized parameters

M̌ = Ω
−1/2
1 M12(V

1/2
t )X2,X2 and Č = Ω

−1/2
1 C1(V

1/2
t )T,T .

Then M̌ ′Č = 0 and

V
1/2
t C̃ ′{C̃VtC̃ ′ + Ω1}−1C̃V 1/2

t

= (M̌, Č)′{M̌M̌ ′ + ČČ ′ + Ip1}−1(M̌, Č)

= (M̌, Č)′{Ip1 − M̌(Ip2 + M̌ ′M̌)−1M̌ ′ − Č(Im + Č ′Č)−1Č ′}(M̌, Č)

=

(
(Ip2 + M̌ ′M̌)−1 0

0 (Im + Č ′Č)−1

)
.

Thus, Vt and therefore its limit, V, are block diagonal, such that VX2,T = 0.
It follows that α⊥ = Σ−1(M12VX2,T +C1VT,T ) = Σ−1C1VT,T so that, using M ′

12C1 = 0, so
that M12 = C1⊥ξ, we find

α = ΣC1⊥ = (C̃V C̃ ′ + Ω1)C1⊥ = (M12VX2,X2M
′
12 + Ω1)C1⊥

= C1⊥ξVX2,X2ξ
′C ′1⊥C1⊥ + Ω1C1⊥,

Thus

e′iα = e′iC1⊥ξVX2,X2ξ
′C ′1⊥C1⊥ + ωie

′
iC1⊥ = e′iC1⊥(ξVX2,X2ξ

′C ′1⊥C1⊥ + ωiIp1−m) = e′iC1⊥φ,

say. Thus again a zero row in C1⊥ gives a zero row in α.
An example of M12 6= 0, is given by the chain T → A → B → C → D, where we only

observe X1 = {A,C,D} such that X2 = {B}. Here B causes C and T causes A so that, for
some coeffi cients a and b

M12 =

 0
a
0

 , C1 =

 b
0
0

 .
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Furthermore, C2 = 0 because T does not cause B directly. Note that M ′
12DC1 = 0 for all D

because T and X2 cause disjoint subsets of X1.This implies that V is block diagonal and

α = ΣC1⊥ = e′i

 0 0
1 0
0 1

φ,

and it is seen that A is weakly exogenous.

4 Conclusion
This paper investigates the problem of finding adjustment and cointegrating coeffi cients for
the infinite order CVAR representation of a partially observed CVAR(1) model. The main
tools are some results for the solution of the algebraic Riccati equation, and the results are
exemplified by an analyse of CVAR(1) models for causal graphs.

5 Appendix
Before giving the proof of Theorem 1, we give some definitions from control theory, which are
useful for working with the results in Lancaster and Rodman (1995), subsequently LR(1995).

Definition 1
(i) Let A be n× n and B be n×m. The pair {A,B} is called controllable if

rank(B;AB; . . . ;An−1B) = n,

LR(1995, (4.1.3)).
(ii) The pair {A,B} is stabilizable if there is an m× n matrix K, such that A + BK is

stable LR(1995, p. 90).
(iii) Finally {B,A} is detectable means that {A′, B′} is stabilizable, LR(1995, page 91

line 5-).

Proof of Theorem 1. The result follows from LR (1995, Theorem 17.5.3), where the
assumptions, in the present notation, are
1. (C̃, Q̃) is detectable,
2. (Q̃, Ip2+m) is stabilizable,
3. (Q̃, Ip2+m) controllable.
Now (Q̃, Ip2+m) controllable implies (Q̃, Ip2+m) stabilizable by LR (1995,Theorem 4.4.2),

and is easily established, see Definition 1 (i), because

rank(Ip2+m; Q̃Ip2+m; . . . ; Q̃p2+m−1Ip2+m) = p2 +m.

Thus the assumptions 2 and 3. hold.
Definition 1 (iii) shows that (C̃, Q̃) detectable means (Q̃′, C̃ ′) stabilizable, and LR(1995,

Theorem 4.5.6 (b)), see also Hautus (1969), shows that (Q̃′, C̃ ′) is stabilizable, if and only if

rank(Q̃′ − λIp2+m; C̃ ′) = p2 +m for all |λ| ≥ 1, (15)

which is the condition (11) in Theorem 1. Thus also condition 1. is satisfied, which proves
Theorem 1.
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XXX HERTIL
Proof of Corollary 2. We verify that condition (11) in Theorem 1 follows from Assumption
1 (ii) and (iii). We define

M(λ) =

(
C̃

Q̃− λIp2+m

)
=

 M12 C1
Ip2 +M22 − λIp2 C2

0 Im − λIm

 .

For λ = 1 we get, using C1.2 = C1 −M12M
−1
22 C2 and Assumption 1 (ii) and (iii), that

rank(M(1)) = rank

(
M12 C1
M22 C2

)
= rank

(
0 C1.2
M22 C2

)
= rank(C1.2) + rank(M22) = m+ p2.

For |λ| > 1 we find, using Assumption 1 (ii),

rank(M(λ)) = rank(Ip2 +M22 − λIp2) + rank(Im − λIm) = p2 +m,

because λ is not an eigenvalue of the stable matrix Ip2 + M22, when |λ| > 1. Thus we can
apply Theorem 1 which proves Corollary 2.

In the following we assume that the process X1t is in steady state, where the prediction
errors νt+1 are i.i.d. Np1(0,Σ) for Σ = C̃V C̃ ′ + Ω1.

Proof of Theorem 3. We first prove that EtTt is a random walk in the prediction errors
νt+1 = X1t+1 − EtX1t+1. We find a recursion for the calculation of Et(T̃t) in terms of
prediction errors,

Et+1(T̃t+1) = Et(T̃t+1|X1t+1) = Et(T̃t+1) + Cov(T̃t+1;X1t+1)V art(X1t+1)
−1νt+1

=

(
M21

0

)
X1t + Q̃Et(T̃t) + Cov(T̃t+1;X1t+1)V art(X1t+1)

−1νt+1.

Note that this is not the usual recursion from the common trends model, because of the term
with M21. Still, multiplying by (0, Im) we find, using (0, Im)Q̃ = (0, Im), that M21 cancels
and

Et+1Tt+1 = (0, Im)Q̃Et(T̃t) + (0, Im)Q̃V C̃Σ−1νt+1

= Et(Tt) + (0, Im)V C̃Σ−1νt+1,

so that EtTt is a random walk in the prediction errors

EtTt = E0T0 + (0, Im)V C̃Σ−1
t∑
i=1

νi. (16)

From (5) we find, taking conditional expectations, that

M11.2X1t + C1.2EtTt = {M11.2β⊥(α′⊥Γβ⊥)−1α′⊥ + C1.2(0, Im)V C̃ ′Σ−1}
t∑
i=1

νi
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is stationary, such that

M11.2β⊥(α′⊥Γβ⊥)−1α′⊥ + C1.2(0, Im)V C̃ ′Σ−1 = 0.

We use this relation to find α⊥, up to multiplication from the right by a full rank m×m
matrix,

α⊥ = Σ−1C̃V (0, Im)′ = Σ−1(M12VX2,T + C1VT,T )

and therefore
α = Σ(M12VX2,T + C1VT,T )⊥.
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