Testing the CVAR in the fractional CVAR model

Søren Johansen and Morten Ørregaard Nielsen
Testing the CVAR in the fractional CVAR model*

Søren Johansen†
University of Copenhagen and CREATEs

Morten Ørregaard Nielsen‡
Queen’s University and CREATEs

October 24, 2017

Abstract

We consider the fractional cointegrated vector autoregressive (CVAR) model of
Johansen and Nielsen (2012a) and show that the test statistic for the usual CVAR
model is asymptotically chi-squared distributed. Because the usual CVAR model lies
on the boundary of the parameter space for the fractional CVAR in Johansen and
Nielsen (2012a), the analysis requires the study of the fractional CVAR model on
a slightly larger parameter space so that the CVAR model lies in the interior. This in
turn implies some further analysis of the asymptotic properties of the fractional CVAR
model.

Keywords: Cointegration, fractional integration, likelihood inference, vector autore-
gressive model.

JEL Classification: C32.

1 Introduction

For a p-dimensional time series, X_t, the fractional cointegrated vector autoregressive (CVAR)
model of Johansen (2008) and Johansen and Nielsen (2012a), hereafter JN(2012a), is

$$
\Delta^d X_t = \alpha \beta^t \Delta^{-b} L_b X_t + \sum_{i=1}^k \Gamma_i \Delta^d L^i_b X_t + \varepsilon_t, \quad t = 1, \ldots, T,
$$

(1)

where ε_t is p-dimensional independent and identically distributed with mean zero and co-
variance matrix Ω and Δ^b and $L_b = 1 - \Delta^b$ are the fractional difference and fractional lag
operators, respectively. The fractional difference is given by

$$
\Delta^d X_t = \sum_{n=0}^\infty \pi_n (-d) X_{t-n},
$$

(2)

*We are grateful to the Canada Research Chairs program, the Social Sciences and Humanities Research
Council of Canada (SSHRC), and the Center for Research in Econometric Analysis of Time Series (CRE-
ATES, funded by the Danish National Research Foundation, DNRF78) for research support.

†Email: Soren.Johansen@econ.ku.dk

‡Corresponding author. Email: mon@econ.queensu.ca
provided the sum is convergent, and the fractional coefficients \(\pi_n(u) \) are defined in terms of
the binomial expansion \((1 - z)^{-u} = \sum_{n=0}^{\infty} \pi_n(u) z^n \), i.e.,
\[
\pi_n(u) = \frac{u(u+1) \cdots (u+n-1)}{n!}.
\]

With the definition of the fractional difference operator in (2), a time series \(X_t \) is said
to be fractional of order \(d \), denoted \(X_t \in I(d) \), if \(\Delta^d X_t \) is fractional of order zero, i.e., if \(\Delta^d X_t \in I(0) \). The latter property can be defined in the frequency domain as having spectral
density that is finite and non-zero near the origin or in terms of the linear representation
coefficients if the sum of these is non-zero and finite, see, for example, JN(2012a, p. 2672).
An example of a process that is fractional of order zero is the stationary and invertible
ARMA model. Finally, then, a \(p \)-dimensional time series \(X_t \in I(d) \) for which one or more
linear combinations are fractional of a lower order, i.e., for which there exists a \(p \times r \) matrix
\(\beta \) such that \(\beta' X_t \in I(d - b) \) with \(b > 0 \), is said to be (fractionally) cointegrated.

When \(d = b = 1 \) in (1) the standard, non-fractional CVAR model, see Johansen (1996),
is obtained as a very important special case. Given the importance of this model, it would
be desirable to test the restriction \(d = b = 1 \) within the more general model (1), and, indeed,
this test can be calculated straightforwardly using the software package of Nielsen and Popiel
(2016). However, the asymptotic theory provided for model (1) in JN(2012a) is derived under
the assumption that the parameter space is \(\eta \leq b \leq d \leq d_1 \) for some (arbitrarily small) \(\eta > 0 \)
and some (arbitrarily large) \(d_1 > 0 \). Under this assumption, the standard CVAR model with
\(d = b = 1 \) lies on the boundary of the parameter space and hence it does not follow under the
assumptions in JN(2012a) that the test statistic for the standard model against the fractional
model is asymptotically \(\chi^2 \)-distributed, see, e.g., Andrews (2001).

In this paper we show that it is possible to prove the main theorems in JN(2012a) for
a larger parameter space, where, in particular, the line \(d = b \) is no longer on the boundary.
Hence, assuming \(\eta < 1 < d_1 \), the point \(d = b = 1 \) will be in the interior. The important
implication is that the test statistic for the non-fractional model against the fractional model
is asymptotically \(\chi^2(2) \)-distributed under our assumptions.

More generally, testing the usual CVAR model against the fractional CVAR model can
be viewed as a model specification test for the CVAR model against a fractional alternative.
There exists a large literature on testing univariate ARMA models against a fractional alter-
native, e.g., Robinson (1991), Agaikloglou and Newbold (1994), Tanaka (1999), and Dolado,
Gonzalo, and Mayoral (2002). Thus, the present paper contributes also to this literature by
analyzing the test of the multivariate CVAR model against a fractional alternative.

The remainder of the paper is laid out as follows. In the next section we give the
assumptions and the results. These results rely on an improved version of Lemma A.8 of
JN(2012a), which is given in Section 3. The implications of the results are discussed in
Section 4.

2 Results
In JN(2012a), asymptotic properties of maximum likelihood estimators and test statistics
were derived for model (1) with the parameter space \(\eta \leq b \leq d \leq d_1 \) for some \(d_1 > 0 \), which
can be arbitrarily large, and some \(\eta \) such that \(0 < \eta \leq 1/2 \), which can be arbitrarily small
Testing the CVAR in the fractional CVAR model

Figure 1: The parameter space \mathcal{N} in (3) is the set bounded by bold lines.

(although a smaller η implies a stronger moment condition, see Theorem 1 below). We will instead consider the parameter space

$$\mathcal{N} = \mathcal{N}(\eta, \eta_1, d_1) = \{d, b : \eta \leq b \leq d + \eta_1, d \leq d_1\},$$

(3)

again for an arbitrarily large $d_1 > 0$ and an arbitrarily small η such that $0 < \eta \leq 1/2$. While η is exactly the same as in JN(2012a), we have in (3) introduced the new constant $\eta_1 > 0$, which is zero in JN(2012a). We note that the parameter space \mathcal{N} explicitly includes the line segment $\{d, b : \eta < d = b < d_1\}$ in the interior precisely because $\eta_1 > 0$. The parameter space and the role of the constant $\eta_1 > 0$ is illustrated in Figure 1.

We will assume that the data for $t \geq 1$ is generated by the model (1). However, it is difficult to imagine a situation where $\{X_s\}_{s=-\infty}^T$ is available, or perhaps even exists, so we assume that the data is only observed for $t = -N+1, \ldots, T$. JN(2016) argue in favor of the assumption that data was initialized in the finite past using two leading examples, political opinion poll data and financial volatility data, but we maintain the more general assumption from JN(2012a), where the data $\{X_{-n}\}_{n=N}^\infty$ may or may not exist, but in any case is not observed. However, although the initial values assumption is based on that of JN(2012a), our notation for initial values is closer to that of JN(2016). That is, given a sample of size $T_0 = T + N$, this is split into N initial values, $\{X_{-n}\}_{n=0}^{N-1}$, on which the estimation will be conditional, and T sample observations, $\{X_t\}_{t=1}^T$, that are fitted to the model. We summarize this in the following display:

$$\underbrace{\ldots, X_{-N}}_{\text{Data may or may not exist, but is not observed}}, \quad \underbrace{X_{1-N}, \ldots, X_0}_{\text{Data is observed (initial values)}}, \quad \underbrace{X_1, \ldots, X_T}_{\text{Data is observed (estimation)}}$$

(4)
The inclusion of initial values, i.e. letting \(N \geq 1 \), has the purpose of mitigating the effect of the unobserved part of the process from time \(t \leq -N \). Note that the initial values and the unobserved part of the process, i.e. \(\{X_{-n}\}_{n=0}^{\infty} \), are not assumed to be generated by the model (1), but will only be assumed to be bounded, see Assumption 3 below. Also note that the statistical and econometric literature has almost universally assumed \(N = 0 \) and, in many cases, also assumed that data did not exist for \(t \leq 0 \) or was equal to zero for \(t \leq 0 \).

Because we do not observe data prior to time \(t = 1 - N \), it is necessary to impose \(X_{-n} = 0 \) for \(n \geq N \) in the calculations, even if these (unobserved) initial values are not in fact zero. Thus, we will apply the truncated fractional difference operator defined by

\[
\Delta_N^d X_t = \sum_{n=0}^{t+1-N} \pi_n (-d) X_{t-n}.
\]

Note that our \(\Delta_0 \) corresponds to \(\Delta_+ \) in, e.g., JN(2012a). Efficient calculation of truncated fractional differences is discussed in Jensen and Nielsen (2014).

We fit the model

\[
\Delta_N^d X_t = \alpha \beta' \Delta_N^d L_b X_t + \sum_{i=1}^{k} \Gamma_i \Delta_N^d L_i^b X_t + \varepsilon_t, \quad t = 1, \ldots, T, \tag{5}
\]

and consider maximum likelihood estimation of the parameters, conditional on \(N \) initial values, \(\{X_{-n}\}_{n=0}^{1-N} \). Define the residuals

\[
\varepsilon_t(\lambda) = \Delta_N^d X_t - \alpha \beta' \Delta_N^d L_b X_t - \sum_{i=1}^{k} \Gamma_i \Delta_N^d L_i^b X_t,
\]

where \(\lambda = (d, b, \alpha, \beta, \Gamma_1, \ldots, \Gamma_k, \Omega) \) is freely varying. The Gaussian log-likelihood function, conditional on \(N \) initial values, \(\{X_{-n}\}_{n=0}^{1-N} \), is then

\[
\log L_T(\lambda) = -\frac{T}{2} \log \det{\Omega} - \frac{T}{2} \text{tr}\{\Omega^{-1}T^{-1} \sum_{t=1}^{T} \varepsilon_t(\lambda)\varepsilon_t(\lambda)'\}, \tag{7}
\]

and the maximum likelihood estimator, \(\hat{\lambda} \), is defined as the argmax of (7) with respect to \(\lambda \) such that \((d, b) \in \mathcal{N}\). Specifically, the log-likelihood function \(\log L_T(\lambda) \) can be concentrated with respect to \((\alpha, \beta, \Gamma_1, \ldots, \Gamma_k, \Omega)\) by reduced rank regression, for given values of \((d, b)\), and the resulting concentrated log-likelihood function is then optimized numerically with respect to \((d, b)\) over the parameter space \(\mathcal{N} \) given in (3). Algorithms for optimizing the likelihood function (7) are discussed in more detail in JN(2012a, Section 3.1) and implemented in Nielsen and Popiel (2016).

The following further assumptions are imposed on the data generating process. For any \(n \times m \) matrix \(A \), we use the notation \(A_\perp \) for an \(n \times (n - m) \) matrix of full rank for which \(A'A_\perp = 0 \). We also let \(C_b \) denote the fractional unit circle, which is the image of the unit disk under the mapping \(y = 1 - (1 - z)^b \), see Johansen (2008, p. 660), \(\Gamma = I_p - \sum_{i=1}^{k} \Gamma_i \), and \(\Psi(y) = (1 - y)I_p - \alpha \beta'y - \sum_{i=1}^{k} \Gamma_i (1 - y)y^i \) is the usual polynomial from the CVAR model.
Theorem 1 Let Assumptions 1–4 hold and assume, in addition, that $E|\varepsilon_t|^q < \infty$ for some $q > 1/\min\{\eta/3, (1/2 - d_0 - b_0)/2\}$, where $0 < \eta \leq 1/2$. Let the parameter space $\mathcal{N}(\eta, \eta_1, d_1)$ be given in (3), where η_1 is chosen such that $0 < \eta_1 < \min\{\eta/3, (1/2 - d_0 - b_0)/2\}$. Then, with probability converging to one, $(\hat{d}, \hat{b}, \hat{\alpha}, \hat{\beta}, \hat{\Gamma}_1, \ldots, \hat{\Gamma}_k, \hat{\Omega})$ exists uniquely for $(d, b) \in \mathcal{N}$, and is consistent.

Proof of Theorem 1. If the results in Theorem 4 of JN(2012a) can be established under our assumptions (which are identical to those in JN, 2012), but with the larger parameter space given in (3), then the proof of Theorem 5(i) of JN(2012a) can be used without any changes to prove our Theorem 1. The proof of Theorem 4 in JN(2012a) is given in their Appendix B. To avoid repeating their very lengthy proof, we only detail the differences.

We first want to conclude that the deterministic terms in the process generated by the initial values are uniformly small. In JN(2012a), this follows from their Lemma A.8. However, with our larger parameter space, this requires a new proof, and thus we give an improved version of Lemma A.8 of JN(2012a) in Lemma 1 in Section 3. It follows from Lemma 1 that deterministic terms from initial values do not influence the limit behavior of product
moments, and hence do not influence the limit behavior of the likelihood function, so in the further analysis of the likelihood, we assume they are zero.

Then we analyze the stochastic terms in the likelihood function, the behavior of which depend on \(d \) and \(b \), and therefore on the parameter space. These stochastic terms are given by \(\beta_0 \Delta_N^{d+ib} X_t \) and \(\beta_0 \Delta_N^{d+ib} X_t \) for \(i, j = -1, \ldots, k \). The former processes are \(I(d_0 - d - ib) \), which can be either nonstationary, (asymptotically) stationary, or near critical in the sense that \(d_0 - d - ib \) is close to \(1/2 \). On the other hand, the latter processes are (asymptotically) stationary for all \(j \geq -1 \) because \(\beta_0 \Delta_N^{d+ib} X_t \in I(d_0 - b_0 - d - jb) \) and \(d_0 - b_0 - d - jb \leq d_0 - b_0 - d + b \leq d_0 - b_0 + \eta_1 < 1/2 \) by choice of \(\eta_1 \). Thus, we have the same classification of processes into nonstationary, stationary, and near critical processes as in Appendix B.3 of JN(2012a).

Close to the critical value \(d_0 - d - ib = 1/2 \), the process \(\beta_0 \Delta_N^{d+ib} X_t \) is difficult to analyze because in a neighbourhood of this value it can be both stationary and nonstationary. The proof therefore considers a small neighborhood of the near critical processes of the form

\[-\kappa_1 \leq d_0 - d - ib - 1/2 \leq \kappa,\]

where the constant \(\kappa_1 \), in particular, plays an important role. The behaviour of the product moments of the stationary, the nonstationary, and the near critical processes is analyzed in Appendix B.3 of JN(2012a) in their Lemma A.9 and its corollaries. Those results can be applied in the present setting without change.

In the application of Lemma 1 and the results in Appendix B.3 of JN(2012a) dealing with the stochastic terms, we need to choose the constant \(\kappa_1 \) carefully. Specifically, on p. 2728 in Appendix B.3 of JN(2012a), \(\kappa_1 \) needs to be chosen such that \(q^{-1} < \kappa_1 < \min\{\eta/3, (1/2 - d_0 + b_0)/2\} \) (in Appendix B.3 of JN(2012a) it is also required that \(\kappa_1 < 1/6 \), but this condition is redundant because we assume \(\eta \leq 1/2 \)), while in the application of Lemma 1 we need to choose \(\kappa_1 \) such that \(0 < \eta_1 < \kappa_1 < 1/4 \). Choosing \(\kappa_1 \) to satisfy all these restrictions is possible because \(q > 1/\min\{\eta/3, (1/2 - d_0 + b_0)/2\} \) and \(\eta_1 < \min\{\eta/3, (1/2 - d_0 + b_0)/2\} < 1/4 \).

The next theorem presents the asymptotic distributions of the estimators. For this result we will need to strengthen the condition on the initial values and make the following assumption, which was also made in JN(2012a).

Assumption 5 Either \(X_{-n} = 0 \) for \(n \geq T^\nu \) for some \(\nu < 1/2 \) or the sum \(\sum_{n=1}^\infty n^{-1/2}|X_{-n}| \) is finite.

Theorem 2 Let Assumptions 1–5 hold with \((d_0, b_0) \in \operatorname{int}(\mathcal{N}) \) and let the parameter space \(\mathcal{N}(\eta, \eta_1, d_1) \) be given in \((3)\), where \(\eta \) and \(\eta_1 \) are chosen such that \(0 < \eta \leq 1/2 \) and \(0 < \eta_1 < \min\{\eta/3, (1/2 - d_0 + b_0)/2\} \). Assume, in addition, that \(E|\varepsilon_1|^q < \infty \) for some \(q > 1/\min\{\eta/3, (1/2 - d_0 + b_0)/2\} \). Then the following hold.

(i) If \(b_0 < 1/2 \) the distribution of \(\hat{\lambda} = (\hat{d}, \hat{b}, \hat{\alpha}, \hat{\Gamma}_1, \ldots, \hat{\Gamma}_k) \) is asymptotically normal.

(ii) If \(b_0 > 1/2 \) we assume, in addition, that \(E|\varepsilon_1|^q < \infty \) for some \(q > (b_0 - 1/2)^{-1} \). Then the distribution of \(\hat{\lambda} \) is asymptotically normal and the distribution of \(\hat{\beta} \) is asymptotically mixed Gaussian, and the two are independent.

Proof of Theorem 2. This follows from parts (i) and (ii) of Theorem 10 in JN(2012a). Specifically, the proof of Theorem 10 in JN(2012a) relies on the usual Taylor expansion of the
score function around the true values, and since we have made no changes to the assumptions on the data generating process or the true values, this proof applies to the current setting as well without any changes. Note that the moment condition $q > (b_0 - 1/2)^{-1}$ in part (ii) is used in the proof of Theorem 10 in JN(2012a) to apply the functional CLT for processes that are fractional of order b_0 and obtain convergence to fractional Brownian motion, see also JN(2012b). This fractional Brownian motion appears in the mixed Gaussian asymptotic distribution of β.

The important implication of Theorem 2 is stated in the following corollary, where $LR(d = b)$ and $LR(d = b = 1)$ denotes the likelihood ratio test statistics for the hypotheses $H_{01}: d_0 = b_0$ and $H_{02}: d_0 = b_0 = 1$, respectively.

Corollary 1 Let Assumptions 1–5 hold and let the parameter space $\mathcal{N}(\eta, \eta_1, d_1)$ be given in (3), where η and η_1 are chosen such that $0 < \eta_1 < \eta/3 < 1/6$. Assume, in addition, that $E|\varepsilon_1|^q < \infty$ for some $q > 3/\eta$. Then:

(i) Let the null hypothesis $H_{01}: d_0 = b_0$ be true, and if $b_0 > 1/2$ assume also that $E|\varepsilon_1|^q < \infty$ for some $q > 1/ \min\{\eta/3, b_0 - 1/2\}$. Then it holds that $LR(d = b) \overset{D}{\to} \chi^2(1)$.

(ii) Under the null hypothesis $H_{02}: d_0 = b_0 = 1$ it holds that $LR(d = b = 1) \overset{D}{\to} \chi^2(2)$.

Proof of Corollary 1. The corollary follows straightforwardly from Theorem 2 because $d_0 = b_0$ satisfies $(d_0, b_0) \in \text{int}(\mathcal{N})$ under (3). The conditions $q > 2/(1/2 - d_0 + b_0)$ and $\eta_1 < (1/2 - d_0 + b_0)/2$ from Theorem 2 are redundant when $d_0 = b_0$ because then $2/(1/2 - d_0 + b_0) = 4 < 3/\eta$ and $(1/2 - d_0 + b_0)/2 = 1/4 > \eta/3$ since $\eta/3 < 1/6$.

We note from the statements of Theorems 1 and 2, and in particular from their proofs, that the moment conditions and the conditions on the parameter space, i.e. on the user-chosen constants η and η_1, are closely linked. The different moment conditions that we apply are summarized in Table 1. Under the conditions of the hypotheses in Corollary 1, these simplify substantially. Specifically, under the null hypothesis $H_{02}: d_0 = b_0 = 1$ in Corollary 1(ii), only $q > 3/\eta$ moments are required, in addition to $q \geq 8$ from Assumption 2, because all other moment restrictions from Theorems 1 and 2 are redundant when $d_0 = b_0 = 1$. For example, if η is chosen as $\eta > 3/8$ (i.e., in particular if consideration is restricted to the case of so-called “strong cointegration”, where $b_0 > 1/2$), then the results in Corollary 1 follow under only the moment condition $q \geq 8$ in Assumption 2.

<table>
<thead>
<tr>
<th>Statement</th>
<th>Conclusion</th>
<th>Assumption on DGP</th>
<th>Assumption on q</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assns 2,4</td>
<td>assumed throughout</td>
<td>$0 \leq d_0 - b_0 < \frac{1}{2}, b_0 \neq \frac{1}{2}$, $q \geq 8$</td>
<td></td>
</tr>
<tr>
<td>Thm. 1</td>
<td>consistency</td>
<td>$q > 1/ \min{\frac{q}{3}, \frac{1/2 - d_0 + b_0}{2}}$</td>
<td></td>
</tr>
<tr>
<td>Thm. 2(i)</td>
<td>distr. params.</td>
<td>$b_0 < \frac{1}{2}$</td>
<td>$q > 1/ \min{\frac{q}{3}, \frac{1/2 - d_0 + b_0}{2}}$</td>
</tr>
<tr>
<td>Thm. 2(ii)</td>
<td>distr. params.</td>
<td>$b_0 > \frac{1}{2}$</td>
<td>$q > 1/ \min{\frac{q}{3}, \frac{1/2 - d_0 + b_0}{2}, b_0 - \frac{1}{2}}$</td>
</tr>
<tr>
<td>Cor. 1(i)</td>
<td>distr. $LR(d = b)$</td>
<td>$d_0 = b_0 < \frac{1}{2}$</td>
<td>$q > \frac{2}{\eta}$</td>
</tr>
<tr>
<td>Cor. 1(ii)</td>
<td>distr. $LR(d = b = 1)$</td>
<td>$d_0 = b_0 = 1$</td>
<td>$q > \frac{2}{\eta}$</td>
</tr>
</tbody>
</table>

Note: This table provides a summary of the different moment conditions and where they are applied.
3 Improving Lemma A.8 of JN(2012a)

The next lemma gives results for the impact of deterministic terms generated by initial values. It improves Lemma A.8(i) of JN(2012a) to accommodate the larger parameter space given in (3), which requires a new proof and particularly requires careful choice of the constants η_1 in the parameter space (3) and κ_1 in Lemma 1. To state the lemma, we define the operators Δ_+ and Δ_- such that, for any a, $\Delta^a_+ X_t = \Delta^a_0 X_t$ and, for $a \geq 0$, $\Delta^a X_t = \Delta^a_+ X_t + \Delta^a_- X_t$. We also define $\tilde{X}_t = X_t[I\{t \geq 1 - N\}]$, where $I\{\cdot\}$ denotes the indicator function. Note that, for any a, $\Delta^a_+ \tilde{X}_t = (\Delta^a_N - \Delta^a_0)X_t$, and that $\Delta^a_0 X_t|_{a=0} = X_0[I\{t = 0\}]$ such that $\Delta^a_+ \Delta^0_0 X_t = 0$.

When $d_0 \geq 1/2$, the deterministic terms in the likelihood function can be written as functions of

$$D_{it}(d, b) = \begin{cases}
(\Delta^{d-b}_+ - \Delta^{d}_-)\tilde{X}_t + (\Delta^{d-b}_+ - \Delta^{d}_-)\mu_{0t}, & i = -1, \\
(\Delta^{d+ib}_+ - \Delta^{d+ib}_-\tilde{X}_t + (\Delta^{d+ib}_+ - \Delta^{d+ib}_-)\mu_{0t}, & i = 0, \ldots, k - 1, \\
\Delta^{d+kb}_+ \tilde{X}_t + \Delta^{d+kb}_+ \mu_{0t}, & i = k.
\end{cases}$$

(8)

where, see equations (8) and (97) in JN(2012a),

$$\mu_{0t} = F_+(L)\alpha_0 \beta_0^\ell \Delta^{d_0-b_0}_+ \Delta^{d_0-b_0}_- X_t - \sum_{j=0}^{k} (C_{0j} \Psi_j \Delta^{d_0}_+ + F_+(L) \Psi_{0j} \Delta^{d_0}_+) \Delta^{d_0+jb_0}_+ X_t,$$

(9)

$C_0 = \beta_0 \alpha_0 \sum_{j=0}^{j-1} \alpha_0 \beta_0^\ell \Delta^{d_0-b_0}_+ \Delta^{d_0-b_0}_- X_t - \sum_{j=0}^{k} (C_{0j} \Psi_j \Delta^{d_0}_+ + F_+(L) \Psi_{0j} \Delta^{d_0}_+) \Delta^{d_0+jb_0}_+ X_t,$

(8)

Lemma 1 Let Assumption 3 be satisfied. Choose κ_1 and η_1 such that $0 < \eta_1 < \kappa_1 < 1/4$ and define the intervals $S_+ = [d_0 - 1/2 - \kappa_1, \infty[$ and $S_- = [-\eta_1, d_0 - 1/2 - \kappa_1]$. Then the functions $D^m_{it}(d, b)$ are continuous in $(d, b) \in N(\eta_1, \eta_1, d_1)$ and satisfy

$$\sup_{d+ib \in S_+} |D^m_{it}(d, b)| \to 0 \text{ as } t \to \infty,$$

(10)

$$\max_{d+ib \in S_-} \sup_{1 \leq t \leq T} |D^m_{it} T^{d+ib-d_0+1/2} \beta_0^\ell \Delta^a_{it}(d, b)| \to 0 \text{ as } T \to \infty.$$

(11)

Proof of Lemma 1. The following evaluations are taken from Lemmas B.3 and C.1 of JN(2010). For $|u| \leq u_0$, $0 < v_0 \leq v \leq v_1$, $m \geq 0$, and $t \geq 1$, it holds that

$$|D^m_u \pi_t(u)| \leq c(1 + \log t)^{m \eta_1},$$

(12)

$$|D^m_u T^{n} \Delta^a_{it} \Delta^v X_t| \leq c(1 + \log T)^{m+1} T^{\max\{-v,-1,u-v,n\}},$$

(13)
where the constant c does not depend on u, v, m, t, or T. Our new Lemma 2 below shows that, for $u+v+1 \geq a_1 > 0$ and $v \geq a_2 > 0$, it holds that

$$|D_{-}^{w} \Delta_{+}^{u} \Delta_{+}^{v} X_{t}| \leq c(1 + \log t)^{m+1} t^{\max\{-u-1,-v,-2u-v-1\}} \tag{14}$$

where the constant c does not depend on u, v, m, or t. In each of the evaluations (12)–(14), the m'th derivative with respect to u gives rise to an extra logarithmic factor, which does not influence the convergences in (10) and (11), so in the following we assume $m = 0$.

Proof of (10) for the terms involving $\Delta_{+}^{u} X_{t}$: The initial values X_{t} appear in the form of terms involving $\Delta_{+}^{u} X_{t}$ for some $w \geq -\eta_{1}$. We apply (12) to obtain the bound

$$|\Delta_{+}^{w} \tilde{X}_{t}| = \left| \sum_{j=0}^{N-1} \pi_{j+t}(-w) X_{-j} \right| \leq c \sum_{j=0}^{N-1} (j+t)^{-w-1} \leq c(1 + \log t) t^{-w-1} \leq c(1 + \log t) t^{\eta_{1}-1} \tag{15}$$

which tends to zero as $t \to \infty$, which proves (10).

Proof of (11) for the terms involving $\Delta_{+}^{u} X_{t}$: First note that if $d_{0} \leq 1/2$, then $S_{-} = \emptyset$ because $0 < \eta_{1} < \kappa_{1}$, and consequently there is nothing to prove if $d_{0} \leq 1/2$. Thus, we prove the result for $d_{0} > 1/2$.

The initial values \tilde{X}_{t} appear in expressions of the form $T^{w-d_{0}+1/2} \Delta_{+}^{w+h} \tilde{X}_{t}$, for $w \in S_{-}$ and for some $h \geq 0$. We then find that

$$\sup_{w \leq d_{0}-1/2-\kappa_{1}} T^{w-d_{0}+1/2} \leq T^{-\kappa_{1}} \to 0,$$

and from (15) that

$$\sup_{w \geq -\eta_{1}} \max_{1 \leq t \leq T} |\Delta_{+}^{w+h} \tilde{X}_{t}| \leq \sup_{w+h \geq -\eta_{1}} \max_{1 \leq t \leq T} |\Delta_{+}^{w+h} \tilde{X}_{t}| \leq c,$$

which proves (11).

Proof of (10) for the terms involving μ_{0t}: These terms are only present if $d_{0} \geq 1/2$, which we therefore assume in the remainder of the proof. There are three types of terms, as in the proof of (10) for the terms involving $\Delta_{+}^{w} X_{t}$; namely $\sup_{d+k \in S_{+}} |\Delta_{+}^{d+k} \mu_{0t}|$ for $i = -1, \ldots, k$, which are all equal, $\sup_{d+k \in S_{+}} |\Delta_{+}^{d+k} \mu_{0t}|$ for $i = 0, \ldots, k$, which are dominated by $\sup_{d+k \in S_{+}} |\Delta_{+}^{d} \mu_{0t}|$, and $\sup_{d \in S_{+}} |\Delta_{+}^{d} \mu_{0t}|$, which is dominated by $\sup_{d \in S_{+}} |\Delta_{+}^{d} \mu_{0t}|$. Thus, for $w \in S_{+}$, we need only consider $\Delta_{+}^{w} \mu_{0t}$ given by

$$F_{+}(L)\alpha_{0} \beta_{0} \Delta_{+}^{w-d_{0}+b_{0}} \Delta_{+}^{d_{0}-b_{0}} X_{t} - \sum_{j=0}^{k} (C_{0} \Psi_{0j} \Delta_{+}^{w-d_{0}} + F_{+}(L) \Psi_{0j} \Delta_{+}^{w-d_{0}+b_{0}}) \Delta_{+}^{d_{0}+j_{0}b_{0}} X_{t} \tag{16}$$

see (9). We note that the terms in (16) are of the form $\sum_{i=0}^{t-1} A_{ni} R_{n,t-i}(w)$, $n = 1, 2, 3$, for suitable matrices A_{ni}, which satisfy $\sum_{i=0}^{\infty} |A_{ni}| < \infty$, and

$$R_{1t}(w) = \Delta_{+}^{w-d_{0}+b_{0}} \Delta_{+}^{d_{0}-b_{0}} X_{t}, R_{2t}(w) = \Delta_{+}^{w-d_{0}} \Delta_{+}^{d_{0}+j_{0}b_{0}} X_{t}, R_{3t}(w) = \Delta_{+}^{w-d_{0}+b_{0}} \Delta_{+}^{d_{0}+j_{0}b_{0}} X_{t}.$$

Thus, if we show that $\sup_{w \in S_{+}} |R_{ni}(w)| \to 0$ for $n = 1, 2, 3$, then it follows from the Dominated Convergence Theorem that $\sup_{w \in S_{+}} \left| \sum_{i=0}^{t-1} A_{ni} R_{n,t-i}(w) \right| \to 0$ for $n = 1, 2, 3$, which proves (10) in view of (16).
We apply (14) for each $R_{nt}(w)$. For $R_{1t}(w)$ we first note that $\Delta_0^0 X_t = X_{01(t=0)}$, such that $\Delta_0^u \Delta_0^0 X_t = 0$, to see that $R_{1t}(w)$ is in fact zero when $d_0 = b_0$, i.e.,

$$R_{1t}(w)|_{d_0 = b_0} = \Delta_+^{w-d_0 + b_0} \Delta_0^{d_0-b_0} X_t|_{d_0 = b_0} = \Delta_+^{w} \Delta_0^{d_0} X_t = 0.$$

We therefore assume $d_0 > b_0$ in the proof for $R_{1t}(w)$. Let $u = w - d_0 + b_0$, $v = d_0 - b_0$ such that for $w \geq d_0 - 1/2 - \kappa_1$ we find $u + v + 1 = w + 1 \geq d_0 - 1/2 - \kappa_1 = a_1 > 0$ and $v = d_0 - b_0 = a_2 > 0$. Then (14) shows that

$$|\Delta_0^u \Delta_0^v X_t| \leq c(1 + \log t) t^{\max\{-u-1,-v,-2u-v-1\}} \leq c(1 + \log t) t^{\max\{-u-1,-a_2,-a_1-u\}}.$$

Moreover, $u + a_1 \geq d_0 - b_0 - 2\kappa_1 \geq 1/2 - 2\kappa_1 > 0$ and $u + 1 \geq 1/2 - 1 + 2\kappa_1 \geq 1/2 - \kappa_1 > 0$, such that $\sup_{w \in S_+} |R_{1t}(w)| \to 0$.

The proof for $R_{2t}(w)$ is the same as that for $R_{1t}(w)$, setting $u = w - d_0$ and $v = d_0 + jb_0 \geq d_0 > 0$. Finally, for $R_{3t}(w)$ we let $u = w - d_0 + b_0$, $v = d_0 + jb_0 \geq d_0 > 0$ and apply the same proof as for $R_{1t}(w)$.

Proof of (11) for the terms involving μ_0: Again only the case $d_0 > 1/2$ needs to be considered (because $S_- = \emptyset$ when $d_0 = 1/2$) and there are three types of terms to be analyzed: (i) The terms $\sup_{d \pm i b \in S_-} |T^{d \pm i b - d_0 + 1/2} \Delta_+^{d \pm i b} \mu_0|$ for $i = -1, \ldots, k$, which are all equal, (ii) the terms $\sup_{d \pm i b \in S_-} |T^{d \pm i b - d_0 + 1/2} \Delta_+^{d \pm i b} \mu_0|$ for $i = 0, \ldots, k$, and (iii) the term $\sup_{d \in S_-} T^{d - d_0 + 1/2} |\Delta_+^d \mu_0|$. Thus, for $w = d \pm i b \in S_-$, we analyze

$$T^{w - d_0 + 1/2} g \beta_{\pm} \Delta_+^{w \pm i b - d_0} \Delta_0^{d_0} X_t$$

where $h = 0$ (for terms of type (i)), $h = (k - i)b$ (for terms of type (ii)), or $h = b$ (for the term of type (iii)), see (9). By application of the Dominated Convergence Theorem we only need to prove that $\sup_{w \in S_-} |Q_{nt}(w)| \to 0$ as $T \to \infty$ for $n = 1, 2, 3$, where

$$Q_{1T}(w) = T^{w - d_0 + 1/2} \max_{1 \leq t \leq T} |\Delta_+^{w \pm i b - d_0} \Delta_0^{d_0} X_t|,$$

$$Q_{2T}(w) = T^{w - d_0 + 1/2} \max_{1 \leq t \leq T} |\Delta_+^{w \pm i b - d_0} \Delta_0^{d_0} X_t|,$$

$$Q_{3T}(w) = T^{w - d_0 + 1/2} \max_{1 \leq t \leq T} |\Delta_+^{w \pm i b - d_0} \Delta_0^{d_0} X_t|.$$

Each term has a factor with a bound from (13) for suitable choices of u and v. Note that all three cases have either $v = d_0 - b_0 \geq 0$ or $v = d_0 + jb_0 \geq d_0 > 0$, which implies that $u - v \leq u + v \geq w \geq -\eta_1$, so that $-v \leq u + \eta_1$. This shows that $\max\{-v, -1, u - v, u\} = \max\{u + \eta_1, -1\}$, so that the bound in (13), multiplied by T^z, becomes

$$|T^{u+z} \Delta_+^u \Delta_0^v X_t| \leq c(1 + \log T) T^{\max\{u+z+\eta_1, z-1\}}.$$

For $n = 1, 2, 3$ we apply (18) with the choices

$$n = 1: u = w + hb - d_0 + b_0, z = 1/2 - hb - b_0,$$

$$n = 2: u = w + hb - d_0, z = 1/2 - hb,$$

$$n = 3: u = w + hb - d_0 + b_0, z = 1/2 - hb - b_0.$$
respectively. For all three cases we find that \(u + z + \eta_{1} = w - d_{0} + 1/2 + \eta_{1} \leq -\kappa_{1} + \eta_{1} < 0 \)
by choice of \(\eta_{1} < \kappa_{1} \), and for all three cases we find that \(z - 1 \leq 1/2 - hb - 1 \leq -1/2 < 0 \),
so it follows from (18) that \(\sup_{w \in \mathbb{S}_{-}} |Q_{nT}(w)| \to 0 \) as \(T \to \infty \) for \(n = 1, 2, 3 \).

The next lemma presents a new bound on \(|D_{u}^{m} \Delta_{+}^{u} \Delta_{v}^{w} X_{t}| \), improving Lemma C.1 in JN(2010). This bound is critical to the analysis of the initial values on the larger parameter space compared with Lemma A.8 in JN(2012a). Furthermore, it is also this new bound that allows us to include the case \(d_{0} = 1/2 \) in the proof of Lemma 1, which was missing in the proof of Lemma A.8 in JN(2012a).

Finally, the bound in Lemma 2 allows us to avoid the condition that \(\kappa_{1} < d_{0} - 1/2 \) when \(d_{0} > 1/2 \) in Lemma 1, which was assumed in Lemma A.8 in JN(2012a), but apparently was overlooked in the statement of the main theorems and assumptions in JN(2012a). Specifically, this would have required the existence of \(q > (d_{0} - 1/2)^{-1} \) when \(d_{0} > 1/2 \), in addition to other conditions on \(q \), so that \(\kappa_{1} \) can be chosen to satisfy \(q^{-1} < \kappa_{1} < d_{0} - 1/2 \). The use of our new Lemma 2 allows us to avoid this condition in the proof of Lemma 1 and hence avoid strengthening the moment condition on \(q \).

Lemma 2 Let Assumption 3 be satisfied. Then, uniformly for \(u + v + 1 \geq a_{1} > 0 \) and \(v \geq a_{2} > 0 \), it holds that

\[
|D_{u}^{m} \Delta_{+}^{u} \Delta_{v}^{w} X_{t}| \leq c(1 + \log t)^{m+1} t^{\max\{-u-1,-v,-2u-v-1\}},
\]

where the constant \(c \) does not depend on \(u, v, m, \) or \(t \).

Proof of Lemma 2. We prove the result for \(m = 0 \) and find that

\[
|\Delta_{+}^{u} \Delta_{v}^{w} X_{t}| \leq c \sum_{j=0}^{t-1} \sum_{k=t-j}^{\infty} |\pi_{j}(-u)||\pi_{k}(-v)| = A_{t} + B_{t},
\]

where the inner summation is split in two at \(k = \max\{j, t - j\} \) to define

\[
A_{t} = c \sum_{j=0}^{t-1} \sum_{k=t-j}^{\max\{j, t-j\}-1} |\pi_{j}(-u)||\pi_{k}(-v)| \quad \text{and} \quad
B_{t} = c \sum_{j=0}^{t-1} \sum_{k=\max\{j, t-j\}}^{\infty} |\pi_{j}(-u)||\pi_{k}(-v)|.
\]

Next, for \(r > s \) we use the decomposition and evaluations

\[
\pi_{r}(w) = \pi_{s}(w) \prod_{i=s+1}^{r} (1 + (w - 1)/i) = \pi_{s}(w) \alpha_{s,r}(w), \tag{19}
\]

\[
|\pi_{s}(w)| \leq c s^{w-1}, \quad \text{and} \quad |\alpha_{s,r}(w)| \leq c r^{w-1},
\]

where the constant \(c \) does not depend on \(w, r, \) or \(s \); see Lemma A.3 of JN(2016). We will also need Lemma B.4 from JN(2010), which shows that

\[
\sum_{j=1}^{t-1} j^{u-1}(t-j)^{v-1} \leq c(1 + \log t)^{t^{\max\{-u-1,-v,-u+v-1\}}}, \tag{20}
\]
where \(c \) does not depend on \(t, u, v \) for \(|u| \leq u_0, |v| \leq v_0 \).

Proof for \(A_t \): For \(k < j \) we find from (19) that
\[
|\pi_j(-u)||\pi_k(-v)| = |\pi_k(-u)||\alpha_{k,j}(-u)||\pi_k(-v)| \leq c_j^{-u-1}k^{-(u+v+1)-1}
\]
and it follows that
\[
A_t \leq c \sum_{j=t/2}^{t-1} j^{-u-1} \sum_{k=t-j}^{j-1} k^{-(u+v+1)-1} \leq c \sum_{j=t/2}^{t-1} j^{-u-1}(t-j)^{-(u+v+1)}
\]
\[
\leq c(1 + \log t)^{\max\{-u-1, -u-v-1, -2u-v-1\}},
\]
where we used (20) and that \(\sum_{k=t-j}^{j-1} k^{-(u+v+1)-1} \leq \sum_{k=t-j}^{\infty} k^{-(u+v+1)-1} \leq c(t-j)^{-(u+v+1)} \)
for \(u + v + 1 \geq a_1 > 0 \).

Proof for \(B_t \): For \(k \geq j \) we find from (19) that
\[
|\pi_j(-u)||\pi_k(-v)| = |\pi_j(-u)||\pi_j(-v)||\alpha_{j,k}(-v)| \leq c_j^{(u+v+1)-1}k^{v-1},
\]
and it follows that
\[
B_t \leq c \sum_{j=0}^{t-1} j^{-(u+v+1)-1} \sum_{k=t/2}^{\infty} k^{v-1} \leq ct^{-v} \sum_{j=0}^{t-1} j^{-(u+v+1)-1} \leq ct^{-v},
\]
where we used that \(\sum_{k=t/2}^{\infty} k^{v-1} \leq ct^{-v} \) for \(v \geq a_2 > 0 \) and \(\sum_{j=0}^{t-1} j^{-(u+v+1)-1} \leq c \) for \(u + v + 1 \geq a_1 > 0 \).

4 Conclusions and discussion

In this article, we have shown that the test statistic for the usual CVAR model in the more
general fractional CVAR model is asymptotically chi-squared distributed. In the analysis of
the fractional CVAR in Johansen and Nielsen (2012a), the usual CVAR was on the boundary
of the parameter space, so in this article we studied the fractional CVAR model on a slightly
larger parameter space for which the CVAR model lies in the interior. This analysis required
improving several related results in Johansen and Nielsen (2012a); in particular regarding the
negligibility of the contribution of the initial values of the process to the likelihood function.

Our main results, presented in Corollary 1, show that the LR test of the usual CVAR is
asymptotically \(\chi^2(2) \) and that the LR test of the less restrictive hypothesis that \(d = b \) in the
fractional model is asymptotically \(\chi^2(1) \). Thus, the tests are very easy to implement and
can be calculated straightforwardly using the software package of Nielsen and Popiel (2016).
Both tests are important in empirical analysis as part of model determination to test a more
simple and parsimonious formulation of the empirical model.

These new results allow, at least, two important applications. First, they allow testing
the usual CVAR model against a model with more general fractional integration dynamics,
as part of the model specification step in empirical analysis. This test has been calculated
in empirical work, where it has been conjectured to be asymptotically \(\chi^2 \)-distributed as we
have now verified. Second, it seems common to apply the model (1) with the restriction \(d = b \) imposed,
without testing this restriction against the unrestricted model. For examples
of both these types of applications see, among others, Bollerslev, Osterrieder, Sizova, and
Tauchen (2013), Dolatabadi, Nielsen, and Xu (2016), and Chen, Chiang, and Härdele (2016).
References