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Abstract

We present novel theory for testing for reduction of GARCH-X
type models with an exogenous (X) covariate to standard GARCH
type models. To deal with the problems of potential nuisance parame-
ters on the boundary of the parameter space as well as lack of iden-
tification under the null, we exploit a noticeable property of specific
zero-entries in the inverse information of the GARCH-X type models.
Specifically, we consider sequential testing based on two likelihood ra-
tio tests and as demonstrated the structure of the inverse information
implies that the proposed test neither depends on whether the nui-
sance parameters lie on the boundary of the parameter space, nor on
lack of identification. Our general results on GARCH-X type models
are applied to Gaussian based GARCH-X models, GARCH-X models
with Student’s t-distributed innovations as well as the integer-valued
GARCH-X (PAR-X) models.

Keywords: Testing on the boundary; Likelihood-ratio test; Non-
identification; GARCH-X; PAR-X; GARCH models; Integer-valued
GARCH; Poisson autoregression.
JEL Classification: C32.

1 Introduction

Conditional volatility models with exogenous explanatory variable(s), or GARCH-
X type models, have recently received much attention, see Han and Kris-
tensen (2014) for real-valued variables and Agosto et al. (2016) for integer-
valued variables (and references in these). Of particular interest in these
models is to formally test if the exogenous variable can be omitted whereby
the models can be reduced to pure conditional volatility models. However,
the testing problem is highly non-standard, as under the null of no covari-
ate, nuisance parameters appear in the limiting distribution of standard test
statistics. In particular, one, or more, nuisance parameters may be on the
boundary of the parameter space, and may also be non-identified under the
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null, which leads to a testing problem in GARCH-X type models not covered
by existing literature.
We propose to solve this and thereby deal with the problems of potential

nuisance parameters on the boundary of the parameter space as well as lack
of identification under the null, by a sequential testing strategy based on two
likelihood ratio (LR) tests. We demonstrate that the proposed sequential test
neither depends on whether the nuisance parameters lie on the boundary of
the parameter space, nor on lack of identification. In order to show this,
we derive and exploit a particular property of zero-entries of the inverse
information in GARCH-X type models.
The first LR test, or rather sup-LR test, addresses the issue of non-

identification by testing for no conditional heteroskedasticity. Provided that
the null of no conditional heteroskedasticity is rejected, in the second step,
the significance of the exogenous covariate is tested. The second test is a LR
test where parameters are allowed on the boundary. The null of no exogenous
covariate is tested under the assumption of conditional heteroskedasticity (as
no conditional heteroskedasticity was rejected in the first step). All parame-
ters are identified, and by exploiting a specific structure of the information
matrix for GARCH-X models, we show that the LR statistic is asymptoti-
cally pivotal and thus does not depend on whether nuisance parameters are
on the boundary or in the interior of the parameter space. Note that if one
is willing to assume a priori that the series investigated are conditionally
heteroskedastic one can omit the first stage of the sequential test and focus
on our new results for the second stage test.
In terms of presenting the results, we first discuss the widely applied

Gaussian-based GARCH-Xmodel. Next, we extend the theory to the GARCH-
X model with Student’s t-distributed innovations, and finally consider the
integer-valued (Poisson) GARCH-X model —the PAR-X model —in Agosto
et al. (2016).
In terms of existing literature, Han and Kristensen (2014) (see also Han

and Park, 2012) consider the asymptotic properties of the (quasi-)maximum
likelihood estimator for the GARCH-X model under the assumption that the
true parameter value lies in the interior of the parameter spaces, which in
particular excludes testing for the presence of exogenous covariates. More
recently, Francq and Thieu (2015) consider the asymptotic properties of the
(quasi-)maximum likelihood estimator in GARCH-X type models where the
true parameter value is a boundary point. However, the assumptions in
Francq and Thieu (2015) rule out the possibility of nuisance parameters
on the boundary as allowed here. In terms of pure (G)ARCH models (i.e.
GARCH models with no exogenous covariates) the general issue of testing
with parameters on the boundary of the parameter space has been consid-
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ered for ARCH(q) models by Silvapulle and Silvapulle (1995) and Demos
and Sentana (1998), by Andrews (2001) for the GARCH(1,1) model, and by
Francq and Zakoïan (2007,2009) for general GARCH(p, q) models.
The body of literature on constrained M-estimation and testing is vast

and dates back to Chernoff (1954). A general theory on estimation and
testing on the boundary of the parameter space can be found in Andrews
(1999,2001). We refer to Pedersen (2017) for additional references.
The remainder of the paper is organized as follows. In Section 2 we

present the GARCH-X model, present the sequential testing scheme, and
derive the asymptotic distributions of the LR statistics used in the testing
scheme. In Section 3 we discuss the applicability of the testing scheme in the
context of the GARCH-X model with Student’s t-distributed noise and the
integer-valued GARCH-X model. All proofs can be found in the Appendix.
The following notation is applied throughout: For a matrix x ∈ Rm×n,

‖x‖ =
√

tr(x′x), where tr(·) denotes the trace, and x′ denotes the transpose
of x. Unless stated otherwise, all limits are taken as the sample size tends
to infinity, that is T → ∞. Lastly, ”

w→ ” and ”
p→ ” denote convergence in

distribution and probability, respectively.

2 The real-valued GARCH-X Model

As in Han and Kristensen (2014), consider the real-valued GARCH-X model,

yt = σtzt, zt ∼ IID(0, 1), (2.1)

σ2
t = (1− β)ω + αy2

t−1 + βσ2
t−1 + γx2

t−1,

where xt is an exogenous ergodic covariate. The parameters of the model are
given by θ = (γ, α, ω)′ and β, where θ ∈ Θ and β ∈ Θβ defined by

Θ = {(γ, α, ω)′ ∈ R3 : 0 ≤ γ ≤ γ, 0 ≤ α ≤ α, ω ≤ ω ≤ ω}, (2.2)

for some 0 < γ <∞, 0 < α <∞, 0 < ω < ω <∞, and

Θβ = {β ∈ R : 0 ≤ β ≤ β}, (2.3)

for some 0 < β < 1. We let θ0 ∈ Θ and β0 ∈ Θβ denote the true parameters,
and assume throughout that ω < ω0 < ω, α0 < α, and β0 < β such that
α0 = β0 = 0 is allowed.
As mentioned we wish to test whether the covariate xt is significant for

the conditional variance σ2
t of yt. That is, to test the simple hypothesis,

H0 : γ = 0,
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against the alternative where γ > 0. While empirically of key interest in most
applications of models with exogenous covariates such as for the GARCH-X
model, testingH0 is non-standard. UnderH0 we allow for the possibility that
the nuisance parameters α (the "ARCH parameter") and β (the "GARCH
parameter") lie on the boundary of their respective parameter spaces, that
is α0 = 0 and/or β0 = 0 is allowed. Additionally, under H0 and if α0 = 0
then, as well-known, β is non-identified which leads to sup-type tests, see
Andrews (2001). Stated differently, the (quasi-)likelihood ratio statistic ofH0

in the GARCH-X model will have different limiting distributions depending
on whether the parameters α and β lie on the boundary or not. In particular,
the usual likelihood ratio test is asymptotically non-pivotal.
We propose to circumvent the issues by applying a sequential test, while

at the same time exploiting a noticeable structure of the inverse information
in this testing problem. More precisely, the idea is to replace the likelihood
ratio test by a sequential test based on two likelihood ratio (LR) tests: one
first tests, by a sup-LR test, the joint hypothesis

H∗0 : γ = α = 0,

and, provided rejection, one next tests by a LR-test the hypothesis H0 :
γ = 0. Thus γ = 0 may be rejected provided one rejects initially the joint
hypothesis of (conditional) homoskedasticity. This way, we obtain a test
which asymptotically does not depend on the α and β parameters. What is
crucial here is that the second test is asymptotically pivotal. This is non-
trivial as we allow β0 ≥ 0 and hence different limiting distributions would be
expected depending on whether β0 = 0 or not. However, as detailed below,
a particular zero-entry of the inverse information matrix ensures that indeed
the limiting distribution of the second LR statistic is the same whether β0 = 0
or not.
We present the two tests in the next two subsections. The first test is the

sup-(quasi-)LR test for the hypothesis H∗0 and the test statistic is denoted by
LR∗T . The second test is the (quasi-)LR test of the hypothesis H0, with the
test statistic denoted by LRT . We emphasize that if one is willing to assume
a priori that yt is not conditionally homoskedastic, i.e. that H∗0 is false, one
can skip the first step sup-LR test and move directly to testing H0.
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2.1 Testing H∗0
With observations {(yt, xt) : t = 0, ..., T}, consider the Gaussian conditional
quasi-log-likelihood function given by,

LT (θ, β) =
T∑
t=1

lt(θ, β), lt(θ, β) = log

(
1√

2πht(θ, β)
exp

{
− y2

t

2ht(θ, β)

})
,

(2.4)

ht(θ, β) = (1− β)ω + αy2
t−1 + βht−1(θ, β) + γx2

t−1, t = 1, ..., T

and initial value h0(θ, β) = ω.
As β is not identified under H∗0 , we consider the sup-LR statistic LR∗T

when testing for H∗0 . See Andrews (2001) for a general theory when testing
in the presence of non-identified parameters. Define therefore first the quasi-
maximum likelihood estimator (QMLE) for θ for fixed values of β, i.e.

θ̂β := arg max
θ∈Θ
LT (θ, β) , β ∈ Θβ. (2.5)

Likewise, we also define the constrained estimator,

θ̂∗β := arg max
θ∈Θ∗0
LT (θ, β) , β ∈ Θβ, (2.6)

where Θ∗0 = {θ ∈ Θ : α = γ = 0}. The standard sup-LR test is given
by, 2[supβ∈Θβ

LT (θ̂β, β) − supβ∈Θβ
LT (θ̂∗β, β)]. To allow for non-Gaussian in-

novations zt, following Andrews (2001, Section 5), we consider the rescaled
sup-LR statistic, defined by

LR∗T =
2

ĉ∗
[ sup
β∈Θβ

LT (θ̂β, β)− sup
β∈Θβ

LT (θ̂∗β, β)], (2.7)

where the scaling factor ĉ∗ is defined by

ĉ∗ = κ̂∗4/2, κ̂∗4 = T−1

T∑
t=1

(y2
t /ω̂

∗ − 1)2, (2.8)

with ω̂∗ := ω̂∗β, the restricted estimator for ω. Under assumptions stated
below ĉ∗ and κ̂∗4 have probability limits c = κ4/2 and κ4 respectively, where
the kurtosis κ4 of zt is given by κ4 = E[(z2

t − 1)2].
To state the limiting distribution of the LR∗T statistic, we make the fol-

lowing assumptions:

Assumption 2.1 The process {(yt, xt) : t ∈ Z} is stationary and ergodic.
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Assumption 2.2 With Ft the natural filtration generated by {(zs, xs) : s ≤
t} , zt and Ft−1 are independent. Moreover, κ4 := E[(z2

t − 1)2] <∞.

Assumption 2.3 E[x4
t ] <∞.

Assumption 2.4 For any vector (a, b)′ ∈ R2 \ {0}, az2
t + bx2

t |Ft−1 is non-
degenerate.

Remark 2.1 Assumptions 2.1 and 2.4 are standard regularity conditions. In
relation to Assumption 2.1, observe that Han and Kristensen (2014, Lemma
1) state a suffi cient condition for the existence of a stationary and ergodic
solution to the GARCH-X model which includes the case of α0, β0 ≥ 0. In
line with Han and Kristensen (2014) and Francq and Thieu (2015), one can
relax Assumption 2.2 and the underlying assumption of zt being IID(0, 1).
Indeed, one could instead assume that zt is a martingale difference sequence
with respect to Ft with constant conditional higher-order moments, see Han
and Kristensen (2014, Assumptions 1(i) and 2(i)). Relaxing Assumption 2.2
this way implies that one needs to impose finite higher-order moments of zt
and xt, as discussed in Francq and Thieu (2015). Assumption 2.3 imposes a
finite fourth-order moment of xt, which can be motivated by considering the
ratio appearing in the score (and Hessian),

∂ht(θ, β)/∂γ

ht(θ, β)
=

x2
t−1 + β∂ht−1(θ, β)/∂γ

(1− β)ω + αy2
t−1 + βht−1(θ, β) + γx2

t−1

.

For α, γ > 0, that is, with α and γ interior points, the fraction is bounded
by a constant, and hence integrable with no further requirements on finite
moments (see e.g. the arguments given in Jensen and Rahbek (2004a,2004b)
for the non-stationary (G)ARCH model). If, as under H∗0 , α = γ = 0, the
denominator reduces to ω, such that finite second (fourth) order-moments of
xt are needed in order to show that the fraction is (square) integrable. Note
also in this respect that Francq and Zakoïan (2009, Assumption A5) assume
finite sixth-order moments of yt when deriving asymptotic properties of the
QMLE and related test statistics for the GARCH(p,q) model.

Theorem 2.1 Consider the GARCH-X model given by (2.1) with log-likelihood
function in (2.4). Under Assumptions 2.1-2.4 and H∗0 , with LR

∗
T the rescaled

sup-LR statistic defined in (2.7), it holds that

LR∗T
w→ sup

β∈Θβ

{
λ′β(cKJ−1

β K ′)−1λβ
}
. (2.9)
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Here c = κ4/2, K = [I2 : 0] ∈ R2×3, Jβ is a constant positive definite matrix
defined in (A.3), and

λβ = arg inf
η∈R2+

{
(η − Zβ)′(KJ−1

β K ′)−1(η − Zβ)
}
, Zβ ∼ N(0, cKJ−1

β K ′).

The proof of Theorem 2.1 is given in the Appendix. The limiting distribu-
tion in (2.9) is non-standard, in particular so as Jβ depends on β, and requires
simulations as discussed in Andrews (2001). Also note that e.g. Andrews
(2001) and Francq and Zakoïan (2009) provide a geometric interpretation of
λβ as the projection of Zβ onto R2

+.

2.2 Testing H0

In the following we consider testing H0 when H∗0 is rejected, that is, we test
H0 under the assumption that α0 > 0 and β0 may be on the boundary of the
parameter space.
Our results rely on a general result for testing on the boundary of the

parameter space. The result formulated in Lemma 2.1 below states that
the LR test is asymptotically nuisance parameter free even when a nuisance
parameter is allowed to be on the boundary of the parameter space. The
lemma relies on the specific condition (A.iv) below on the inverse expected
information, which can be verified for the GARCH-X model, in addition to
standard high-level conditions (A.i)—(A.iii) for testing on the boundary.
We formulate the lemma in terms of a general likelihood function LT (τ)

in terms of the parameter τ .

Lemma 2.1 Consider a likelihood function LT (τ) in terms of the parame-
ter τ = (γ, β, η′)′ , where γ ∈ Θγ = [0, γ̄], β ∈ Θβ = [0, β̄], 0 < γ̄, β̄ < ∞,
and η ∈ Θη with Θη a compact subset of Rn for some n ∈ N. With
τ̂ = arg maxθ∈Θγ×Θβ×Θη LT (τ) and τ̃ = arg maxθ∈{0}×Θβ×Θη LT (τ), define
the likelihood ratio statistic LRT for the hypothesis that γ = 0, by LRT =
2 (LT (τ̂)− LT (τ̃)). With true value τ0 = (0, β0, η0) where β0 ∈ Θβ and
η0 ∈ intΘη make the following assumptions:

(A.i) τ̂ , τ̃
p→ θ0.

(A.ii) 1√
T

∂LT (τ0)
∂τ

w→ G, where G ∼ N(0, J), and − 1
T
∂2LT (τ0)
∂τ∂τ ′

p→ J, with J
positive definite.1

1Throughout, when the partial derivative of a (likelihood) function in the direction γ
(or β) is evaluated at a point where γ = 0 ( β = 0), the derivative is given in terms of the
right-derivative.
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(A.iii) LT (τ) is twice continuously differentiable on Θγ ×Θβ ×Θη, and for
all sequences (γT ), γT → 0,

sup
τ∈Θγ×Θβ×Θη :‖τ−τ0‖≤γT

∥∥∥∥ 1

T

∂2LT (τ)

∂τ∂τ ′
− 1

T

∂2LT (τ0)

∂τ∂τ ′

∥∥∥∥ p→ 0.

(A.iv) Either β0 ∈ intΘβ, or if β0 = 0, (J−1)γ,β = 0 where (·)γ,β denotes
the corresponding entry of J−.1.

Then LRT
w→ [max (U, 0)]2 with U a standard Gaussian distributed ran-

dom variable.

Lemma 2.1 follows by careful application of Andrews (2001, Theorem 4)
under the additional Assumption (A.iv).
Next, we apply Lemma 2.1 to test H0 in the GARCH-X model. Consider

the standard (quasi-)LR statistic for testing H0 based on estimation of the
parameter τ := (γ, α, ω, β)′ ∈ Θτ := Θ×Θβ, with Θ and Θβ defined in (2.2)
and (2.3), respectively. The Gaussian-based conditional quasi-log-likelihood
function is

LT (τ) :=
T∑
t=1

lt(τ), lt(τ) = log

(
1√

2πht(τ)
exp

{
− y2

t

2ht(τ)

})
, (2.10)

ht(τ) = (1− β)ω + αy2
t−1 + βht−1(τ) + γx2

t−1, t = 1, ..., T,

with initial value h0(τ) = ω. The QMLE for τ is defined as

τ̂ := arg max
τ∈Θτ
LT (τ) ,

and the constrained estimator under H0 is

τ̃ := arg max
τ∈Θτ,0

LT (τ) , Θτ,0 := {(γ, α, ω, β)′ ∈ Θτ : γ = 0}.

The rescaled (quasi-)LR statistic LRT is,

LRT := 2[LT (τ̂)− LT (τ̃)]/c̃, (2.11)

with

c̃ := κ̃4/2, κ̃4 := T−1

T∑
t=1

(y2
t /ht(τ̃)− 1)2. (2.12)

In order to state the limiting distribution of the LRT statistic in (2.11),
we impose an additional Assumption 2.5 about the dependence between the
processes (xt) and (yt) under the hypothesis H0. It is needed in order to
ensure condition (A.iv) holds and is in particular implied by assuming that
xt and F zt are independent, with F zt the natural filtration generated by (zs :
s ≤ t).
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Assumption 2.5 With β0 ∈ Θβ, then for β0 = 0, E
(
xkt |yt, yt−1

)
= E

(
xkt
)

for k = 2, 4.

Moreover, we impose moment conditions on xt and yt:

Assumption 2.6 There exists δ > 0 such that E[‖ (x2
t , y

2
t )
′ ‖2(1+δ)] <∞ and

E[z
2(1+δ)/δ
t ] <∞.

Theorem 2.2 Consider the GARCH-X model given by (2.1) with log-likelihood
function in (2.10). Suppose that Assumptions 2.1, 2.2 and Assumptions 2.4—
2.6 hold. Then under H0, with α0 > 0 and β0 ≥ 0, it holds that with LRT

defined in (2.11),

LRT
w→ [max(U, 0)]2, with U ∼ N(0, 1). (2.13)

Remark 2.2 Note that it is crucial for the condition in (A.iv) to hold that
the parameter ω is estimated. That is, fixing ω at ω = ω0, then (A.iv) does
not hold, that is, (J−1)γ,β 6= 0.

Remark 2.3 The results on testing H0 are derived under the assumption
that the covariate, xt, is strictly stationary and ergodic (Assumption 2.1).
Han and Kristensen (2014), see also Han and Park (2012) and Han (2015),
consider the properties of the QMLE of the GARCH-X model in the case
where xt is non-stationary under the crucial assumption that the parameters
γ, α and β are bounded away from zero and thus the theory cannot be ap-
plied to test H0. Also, while much emphasis has been given to the condition
(A.iv) of Lemma 2.1, we emphasize that our theory requires the score to be
asymptotically Gaussian and the information constant. For the GARCH-X —
under non-stationarity of xt —as established by Han and Kristensen (2014),
the limit of the score is non-Gaussian, and the limiting information random.
Consequently, it is a non-trivial task to derive the limiting distribution of
the LR-statistic when xt is non-stationary, and we leave this task for future
investigation.

3 Other GARCH-X Type Models

We show by two examples that we can extend the theory for the GARCH-X
model to hold for the case where we either replace the likelihood defining
distributional assumption, or replace yt to be integer-valued as opposed to
real-valued. The two examples are the GARCH-X model with Student’s
t-distributed innovations (t-GARCH-X) and the integer valued Poisson au-
toregressive model with exogenous variables (PAR-X).
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When presenting the two models, we focus on the second test of H0, while
the first step in the sequential testing is omitted for brevity. Thus our focus
is to show that for the PAR-X and t-GARCH-X models that the condition
(A.iv) on the inverse information holds.

3.1 Student’s t-GARCH-X

We show that Lemma 2.1 applies to the t-GARCH-X model. In particular,
we give details on establishing condition (A.iv) for the inverse information,
and also establish in Theorem 3.1 a novel result on consistency of the t-
GARCH-XMLE for condition (A.i). Theory for the t-GARCHmodel with no
exogenous covariate is considered in Berkes and Horváth (2004), Straumann
(2005, Ch.6), and Pedersen and Rahbek (2016).
The t-GARCH-X model is,

yt = σtzt, σ2
t = ω + αy2

t−1 + βσ2
t−1 + γx2

t−1, ω > 0, α, β, γ ≥ 0, (3.1)

where (zt) IID scaled tν-distributed with degrees of freedom ν > 2. Specif-
ically, with z̃t Student’s t-distributed with ν > 2 degrees of freedom, zt =√

(ν − 2)/νz̃t, such that E[zt] = 0 and E[z2
t ] = 1. With ν an additional para-

meter when compared to the GARCH-X model, define the model parameter
θ := (γ, α, ω, β, ν)′ ∈ Θ, where

Θ =
{

(γ, α, ω, β, ν)′ ∈ R5 : 0 ≤ γ ≤ γ, 0 ≤ α ≤ α, ω ≤ ω ≤ ω, 0 ≤ β ≤ β,

and ν ≤ ν ≤ ν} ,

for some 0 < γ < ∞, 0 < α < ∞, 0 < ω < ω < ∞, 0 < β < 1, and
2 < ν < ν < ∞. As before θ0 = (γ0, α0, ω0, β0, ν0)′ ∈ Θ denotes the true
parameter, and we assume throughout that ω < ω0 < ω, α0 < α, β0 < β,
and ν < ν0 < ν. The Student’s t-log-likelihood function is,

LT (θ) =
1

T

T∑
t=1

lt(θ), lt(θ) = −1

2
log[ht(θ)] + log{gν [yt/

√
ht(θ)]}, (3.2)

ht(θ) = (1− β)ω + αy2
t−1 + βht−1(θ) + γx2

t−1, t = 1, ..., T,

with initial value h0(θ) = ω and

gν (x) = η(ν)

[(ν−2)π]1/2

(
1 + x2

ν−2

)−( ν+12 )
, with η (ν) =

Γ( ν+12 )
Γ( ν2 )

,

with Γ(·) denoting the gamma function.
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With θ̂ = arg maxθ∈Θ LT (θ), and the constrained estimator θ̃ = arg maxθ∈Θ0 LT (θ),
Θ0 = {(γ, α, ω, β, ν)′ ∈ Θ : γ = 0} we first state result for consistency of the
estimators which is needed to verify condition (A.i) in Lemma 2.1.

Theorem 3.1 Consider the t-GARCH-X model given by (3.1) with log-likelihood
function in (3.2). Suppose that Assumptions 2.1, 2.2, and 2.4 hold, with
E[‖(yt, xt)′‖s] < ∞ for some s > 0. If (α0, γ0) 6= 0, then θ̂ = θ0 + op(1). If
γ0 = 0 and α0 > 0, then θ̃ = θ0 + op(1).

Theorem 3.1 implies that under H0 : γ = 0 and α0 > 0, the MLE’s θ̂ and
θ̃ are consistent. Next, we state the equivalent of Theorem 2.2, where we in
the proof in the Appendix establish that conditions (A.i)—(A.iv) of Lemma
2.1 hold for the t-GARCH-X model.

Theorem 3.2 Consider the t-GARCH-X model given by (3.1) with log-likelihood
function in (3.2). Assume that Assumptions 2.1, 2.2, 2.4—2.5 hold and
E[‖(yt, xt)′‖4] <∞. Then under H0, with α0 > 0 and β0 ≥ 0,

LRT := 2[LT (θ̂)− LT (θ̃)]
w→ [max(U, 0)]2, where U ∼ N(0, 1).

Theorem 3.2 illustrates in particular, that even for the t-GARCH-Xmodel
with the t-likelihood and an extra parameter (degrees of freedom ν) to be
estimated, the condition (A.iv) still applies.

3.2 The integer-valued GARCH-Xmodel: Poisson Au-
toregression with Exogenous covariate (PAR-X)

Consider next the Poisson integer-valued GARCH-X model, the PAR-X
model as considered in Agosto et al. (2016). We show here that a result
similar to Theorem 2.2 (and Theorem 3.2), applies to the PAR-X model.
Theory for the pure PAR model is given in Fokianos et al. (2009), and
Ahmad and Francq (2016).
Let yt ∈ N∪{0}, t = 0, 1, ... be a time series of counts, and xt, t = 0, 1, ...,

as before an ergodic covariate. With Ft the natural filtration of {(yi, xi)′ :
i ≤ t}, the PAR-X model in Agosto et al. (2016) is given by

yt|Ft−1 ∼ Poisson(λt), t = 1, ..., T, (3.3)

with time-varying (conditional) intensity, λt > 0,

λt = (1− β)ω + αyt−1 + βλt−1 + γf(xt−1).

11



Here ω > 0 , α, γ, β ≥ 0, and f(·) is a non-negative link function, f : R →
[0,∞), see Agosto el al. (2016) for details.
As for the GARCH-X model, we consider testing the hypothesis H0 : γ =

0, and as for the GARCH-X model, under H0 the test is non-pivotal and
furthermore β is not identified if α = 0. Thus the problem of testing H0 is
identical to the (t-)GARCH-X models and we show that the same approach
is indeed applicable.
With parameter θ = (γ, α, ω, β)′, the conditional Poisson-log-likelihood

function is given by,

LT (θ) =

T∑
t=1

lt(θ), lt(θ) = yt log[λt(θ)]− λt(θ), (3.4)

λt(θ) = (1− β)ω + αyt−1 + βλt−1(θ) + γf(xt−1), t = 1, ..., T,

with initial condition λ0(θ) = ω. The MLE θ̂, θ̂ = arg maxθ∈Θ LT (θ), where
Θ is given by

Θ = {(γ, α, ω, β)′ ∈ R4 : 0 ≤ γ ≤ γ, 0 ≤ α ≤ α, ω ≤ ω ≤ ω, 0 ≤ β ≤ β},

for some 0 < γ < ∞, 0 < α < ∞, 0 < ω < ω < ∞, and 0 < β < 1. The
constrained MLE is given by,

θ̃ = arg max
θ∈Θ0

LT (θ) , with Θ0 = {(γ, α, ω, β)′ ∈ Θ : γ = 0}.

As before let θ0 ∈ Θ denote the true parameter and assume throughout that
ω < ω0 < ω, α0 < α, and β0 < β. Similar to Theorem 2.2, it follows from the
proof in the appendix that the limiting information satisfies (J−1)α,γ = 0,
that is condition (A.iv) holds.

Assumption 3.1 (Agosto et al., 2016) The joint process {(yt, λt, xt)′ : t ∈
Z} is stationary and ergodic with E[‖[yt, λt, f(xt)]

′‖3] <∞.

Assumption 3.2 With zt := yt/λt, it holds that zt and Ft−1 are indepen-
dent.

Assumption 3.3 For β0 = 0, E[fk(xt)|yt, yt−1] = E[fk(xt)] for k = 1, 2.

We note that Assumption 3.3 holds if the covariate xt is independent of
F zt , where F zt denotes the natural filtration generated by (zs : s ≤ t), with
zt = yt/λt.

Assumption 3.4 For any (a, b) 6= (0, 0), ayt + bf(xt)|Ft−1 has a non-
degenerate distribution.

12



Theorem 3.3 Consider the PAR-X model given by (3.3) with log-likelihood
(3.4). Suppose that Assumptions 3.1-3.4 are satisfied. Then under H0, with
α0 > 0 and β0 ≥ 0,

LRT := 2[LT (θ̂)− LT (θ̃)]
w→ [max(U, 0)]2, where U ∼ N(0, 1).
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Appendix

Throughout, we let 0 < C <∞ and 0 < ρ < 1 denote generic constants.

A Proofs of Theorems 2.1 and 2.2

Proof of Theorem 2.1. Consider initially the ergodic version L∗T (θ, β) of
the log-likelihood function LT (θ, β) in (2.4). Specifically, in light of Assump-
tion 2.1, for any θ ∈ Θ and β ∈ Θβ, let

L∗T (θ, β) =
T∑
t=1

l∗t (θ, β), (A.1)

l∗t (θ, β) = log

(
1√

2πh∗t (θ, β)
exp

{
− y2

t

2h∗t (θ, β)

})
, t ∈ Z, (A.2)

h∗t (θ, β) = (1− β)ω + αy2
t−1 + βh∗t−1(θ, β) + γx2

t−1, t ∈ Z.

We verify the regularity condition of Andrews (2001, Theorem 5):

(i) θ̂β = θ0 + op(1) and θ̂∗β = θ0 + op(1).

(ii) For fixed β ∈ Θβ, L∗T (θ, β) is twice continuously differentiable on Θ.
For all sequences (γT ), γT → 0,

sup
θ∈Θ:‖θ−θ0‖≤γT

∥∥∥∥ 1

T

∂2L∗T (θ, β)

∂θ∂θ′
− 1

T

∂2L∗T (θ0, β)

∂θ∂θ′

∥∥∥∥ p→ 0.

(iii) 1√
T

∑T
t=1

∂l∗t (θ0,·)
∂θ

⇒ G· for some Gaussian process {Gβ : β ∈ Θβ} that
has bounded continuous sample paths almost surely.

(iv) − 1
T

∑T
t=1

∂2l∗t (θ0,β)

∂θ∂θ′ = Jβ + op(1) for all β ∈ Θβ, with Jβ positive definite
uniformly on Θβ.
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(v) For any β ∈ Θβ, Gβ ∼ N(0, cJβ) with c = κ4/2.

(vi) With ĉ∗ defined in (2.8), ĉ∗ = c+ op(1).

(vii) supβ∈Θβ
‖∂L∗T (θ0, β)/∂θ − ∂LT (θ0, β)/∂θ‖ = op(T

1/2) and
sup(θ′,β)′∈V(θ0)×Θβ

‖∂2L∗T (θ, β)/∂θ∂θ′−∂2LT (θ, β)/∂θ∂θ′‖ = op(T ), with
V(θ0) = {θ ∈ Θ : ‖θ − θ0‖ < ε} for some ε > 0.

Here (i) follows by Lemma A.1, while (ii) holds by Lemma A.2 and the
uniform law of large numbers (ULLN) for ergodic processes (see e.g. Ranga
Rao, 1962). (iii) holds by Lemma A.3. For (iv), note that by the ergodic
theorem and Lemma A.2

− 1

T

T∑
t=1

∂2l∗t (θ0, β)

∂θ∂θ′
= Jβ + op(1), with Jβ = −E

[
∂2l∗t (θ0, β)

∂θ∂θ′

]
and

∂2l∗t (θ, β)

∂θ∂θ′
=

1

2h∗2t (θ, β)

(
2

y2
t

h∗t (θ, β)
− 1

)
∂h∗t (θ, β)

∂θ

∂h∗t (θ, β)

∂θ′
.

Hence, with Vt,β defined in (A.19),

Jβ = E

[
1

2ω2
0

(2z2
t − 1)Vt,βV

′
t,β

]
=

1

2ω2
0

E
[
Vt,βV

′
t,β

]
. (A.3)

In order to show that the matrix Jβ is positive definite, we note that Vt,βV ′t,β
is positive semidefinite. For k = (k1, k2, k3) ∈ R3, k′Jβk = 0 if and only if

k′Vt,β = k1

∞∑
i=0

βix2
t−1−i + k2

∞∑
i=0

βiy2
t−1−i + k3 = 0 a.s. (A.4)

Due to Assumption 2.4, we have that (A.4) is true if and only if k = 0. We
conclude that Jβ is positive definite. This establishes (iv). Next, (v) follows
directly from Lemma A.3 and (A.3), and (vi) by Lemma A.4. Finally, (vii)
is implied by Lemma A.5.

Proof of Theorem 2.2. Similar to the proof of Theorem 2.1, we consider
the ergodic quasi-log-likelihood function for τ ∈ Θτ ,

L∗T (τ) =

T∑
t=1

l∗t (τ), (A.5)

l∗t (τ) = log

(
1√

2πh∗t (τ)
exp

{
− y2

t

2h∗t (τ)

})
, t ∈ Z, (A.6)

h∗t (τ) = (1− β)ω + αy2
t−1 + βh∗t−1(τ) + γx2

t−1, t ∈ Z.
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We start out by verifying the following conditions which allows to use a
modified version of Lemma 2.1:

1. The estimators τ̂ and τ̃ satisfy condition (A.i) of Lemma 2.1.

2. Condition (A.ii) of Lemma 2.1 is satisfied for the ergodic likelihood in
(A.5) where the covariance matrix of G is replaced by cJ with c = κ4/2
and κ4 = E[(z2

t − 1)2].

3. Condition (A.iii) of Lemma 2.1 is satisfied for the ergodic likelihood in
(A.5).

4. With V(τ0) = {τ ∈ Θτ : ‖τ − τ0‖ < ε} for some small ε > 0,

‖∂L∗T (τ0)/∂τ − ∂LT (τ0)/∂τ‖ = op(T
1/2)

and
sup

τ∈V(τ0)

‖∂2L∗T (τ)/∂τ∂τ ′ − ∂2LT (τ)/∂τ∂τ ′‖ = op(T ).

5. With κ̃4 defined in (2.12), κ̃4 = κ4 + op(1).

The consistency of τ̂ and τ̃ follows by arguments given in Han and Kris-
tensen (2014, proof of Theorem 3), using Assumptions 2.1 and 2.4.
Turning to point 2, we note that

∂l∗t (τ0)

∂τ
=

1

2
(z2
t − 1)Vt,

with

Vt :=
∂h∗t (τ0)/∂τ

h∗t (τ0)
, (A.7)

∂h∗t (τ)/∂τ =

( ∞∑
i=0

βix2
t−1−i,

∞∑
i=0

βiy2
t−1−i, 1,

∞∑
i=1

iβi−1(αy2
t−1−i + γx2

t−1−i)

)′
.

(A.8)

By Assumption 2.6, E[‖Vt‖2] <∞, so using that zt and Vt are independent,
and that E[z4

t ] <∞ by Assumption 2.2 , E[‖∂l∗t (τ0)/∂τ‖2] <∞. Noting that
Vt is Ft−1-measurable, we have that ∂l∗t (τ0)/∂τ is a martingale difference
with respect to Ft and with finite variance. Hence, using that ∂l∗t (τ0)/∂τ
is ergodic, by the CLT by Brown (1971), we have T−1/2∂L∗T (τ0)/∂τ

w→
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N(0,Ω), with Ω = (κ4/4)E[VtV
′
t ]. By the ergodic theorem and Lemma A.6,

−T−1∂2L∗T (τ0)/∂τ∂τ ′ = J + op(1), where, by (A.28),

J =
1

2
E[VtV

′
t ]. (A.9)

Clearly, Ω = cJ with c = κ4/2. By arguments similar to the ones given in
the proof of Theorem 2.1 to show that Jβ is positive definite, we conclude
that E[VtV

′
t ] is positive definite.

Point 3 follows by Lemma A.6 and the ULLN for ergodic processes. Point
4 follows by arguments similar to the ones given in the proof of Lemma
A.5. Point 5 follows by Lemma A.7. If β0 > 0 condition (A.iv) of Lemma
2.1 is satisfied. The limiting distribution of LRT is then immediate from
Lemma 2.1, using point 4, that c̃ = c + op(1) (by point 5), and Slutzky’s
Lemma. In the case β0 = 0, following condition (A.iv) of Lemma 2.1 we
verify (J−1)γ,β = 0. From (A.7),(A.8), and (A.9),

J =
1

2
E

[
∂h∗t (τ0)/∂τ

h∗t (τ0)

∂h∗t (τ0)/∂τ ′

h∗t (τ0)

]
,

with ∂h∗t (τ0)/∂τ = [x2
t−1, y

2
t−1, 1, α0y

2
t−2]′, and h∗t (τ0) = ω0 + α0y

2
t−1. Hence,

using Assumption 2.5,

J =
1

2
E

 1

(ω0 + α0y2
t−1)2


x4
t−1 y2

t−1x
2
t−1 x2

t−1 α0x
2
t−1y

2
t−2

y4
t−1 y2

t−1 α0y
2
t−1y

2
t−2

1 α0y
2
t−2

α2
0y

4
t−2




=
1

2


aκ4,x bκ2,x aκ2,x dκ2,x

bκ2,x c b f
aκ2,x b a d
dκ2,x f d g

 ,

where

a = E

[
1

(ω0 + α0y2
t−1)2

]
, b = E

[
y2
t−1

(ω0 + α0y2
t−1)2

]
, c = E

[
y4
t−1

(ω0 + α0y2
t−1)2

]
(A.10)

d = E

[
α0y

2
t−2

(ω0 + α0y2
t−1)2

]
, f = E

[
α0y

2
t−1y

2
t−2

(ω0 + α0y2
t−1)2

]
, g = E

[
α2

0y
4
t−2

(ω0 + α0y2
t−1)2

]
,

(A.11)

κ2,x = E[x2
t ], and κ4,x = E[x4

t ]. (A.12)
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It holds that

J−1 =


2

aκ4,x−aκ22,x
0 −2

aκ4,x−aκ22,x
κ2,x 0

0 2d2−2ag
gb2−2bdf+cd2+af2−acg

2bg−2df
gb2−2bdf+cd2+af2−acg

2af−2bd
gb2−2bdf+cd2+af2−acg

−2
aκ4,x−aκ22,x

κ2,x
2bg−2df

gb2−2bdf+cd2+af2−acg ξ 2cd−2bf
gb2−2bdf+cd2+af2−acg

0 2af−2bd
gb2−2bdf+cd2+af2−acg

2cd−2bf
gb2−2bdf+cd2+af2−acg

2b2−2ac
gb2−2bdf+cd2+af2−acg


(A.13)

with

ξ =
−1

a
(
κ2

2,x − κ4,x

)
(gb2 − 2bdf + cd2 + af 2 − acg)

×
(
2gb2κ2

2,x − 4bdfκ2
2,x + 2cd2κ2

2,x + 2aκ4,xf
2 − 2acgκ4,x

)
.

We note that J−1 has entries zero with respect to β and γ, and the limiting
distribution of LRT follows by Lemma 2.1, using that c̃ = c+op(1) (by point
5), and Slutzky’s Lemma.

A.1 Lemmas related to the proof of Theorem 2.1

Lemma A.1 Under Assumptions 2.1-2.4, and H∗0 , θ̂β = θ0 +op(1) and θ̂∗β =
θ0 + op(1).

Proof. We start out by showing that θ̂β is consistent. The proof follows
the steps given in Han and Kristensen (2014, Proof of Theorem 3). Since
Θ is compact and θ 7→ l∗t (θ, β) is continuous almost surely on Θ for fixed
β ∈ Θβ, it suffi ces to show that (i) 1

T

∑T
t=1 l

∗
t (θ, β) = E[l∗t (θ, β)] + op(1),

where E[l∗t (θ, β)] exists for all (θ′, β)′ ∈ Θ×Θβ, (ii) E[l∗t (θ0, β)] > E[l∗t (θ, β)]
for all θ ∈ Θ \ {θ0} and fixed β ∈ Θβ, (iii) E[supθ∈Θ l

∗
t (θ, β)] < ∞ for fixed

β ∈ Θβ and (iv) sup(θ′,β)′∈Θ×Θβ
|L∗T (θ, β)− LT (θ, β)| = op(T ).

We note that

E[ sup
(θ′,β)′∈Θ×Θβ

l∗t (θ, β)] ≤ −1

2
log(ω) <∞. (A.14)

Hence (i) follows by the ergodic theorem.
Turning to (ii), since γ0 = α0 = 0, H∗0 , h

∗
t (θ0, β) = ω0 a.s for all t. Hence,

E[|l∗t (θ0, β)|] ≤ 1

2
E{| log[h∗t (θ0, β)]|}+ C <∞.

Using that log(x) ≤ x−1 for all x > 0 and with equality if and only if x = 1,
we have that

E[l∗t (θ0, β)]− E[l∗t (θ, β)] ≥ 1

2
E

{
− log

[
h∗t (θ0, β)

h∗t (θ, β)

]
− 1 +

h∗t (θ0, β)

h∗t (θ, β)

}
≥ 0,

(A.15)
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with equality if and only if h∗t (θ0, β) = h∗t (θ, β) a.s. Using again that H∗0 ,
h∗t (θ0, β) = ω0 a.s, (A.15) holds if and only if ω0 = (1 − β)ω + αy2

t−1 +
βh∗t−1(θ, β) + γx2

t−1 a.s.,or equivalently,

1− ω

ω0

=
∞∑
i=0

βi
(
αz2

t−1−i +
γ

ω0

x2
t−1−i

)
a.s. (A.16)

Suppose (α, γ) = (0, 0), then clearly ω = ω0. On the other hand, suppose

that (α, γ) 6= (0, 0). Then due to (A.16),
∑∞

i=0 β
i
(
αz2

t−1−i + γ
ω0
x2
t−1−i

)
is

degenerate, which is ruled out by Assumption 2.4. We conclude that (A.16)
holds if and only if θ = θ0 = (0, 0, ω0)′, and hence that (ii) holds.
We note that (A.14) implies (iii).
It remains to verify (iv). From Francq and Zakoïan (2010, p.157),

sup
(θ′,β)′∈Θ×Θβ

|l∗t (θ, β)− lt(θ, β)| ≤ β
t1

2

(
1

ω
+
y2
t

ω2

)
[ sup
(θ′,β)′∈Θ×Θβ

h∗0(θ, β) + ω].

Using that y2
t = ω0z

2
t , we have that for some r ∈ (0, 1),

E

[
sup

(θ′,β)′∈Θ×Θβ

|l∗t (θ, β)− lt(θ, β)|r
]

(A.17)

≤ E

[∣∣∣∣∣βt12
(

1

ω
+
ω0z

2
t

ω2

)
[ sup
(θ′,β)′∈Θ×Θβ

h∗0(θ, β) + ω]

∣∣∣∣∣
r]

= O(ρt),

where we have used Assumption 2.2 and that E[sup(θ′,β)′∈Θ×Θβ
|h∗0(θ, β)|r] <

∞ as E[‖(xt, yt)‖4] <∞ in light of Assumptions 2.2 and 2.3 and the fact that
β < 1. Using (A.17) andMarkov’s inequality, for any ε > 0,

∑∞
t=1 P [sup(θ′,β)′∈Θ×Θβ

|l∗t (θ, β)−
lt(θ, β)| > ε]<∞. By the Borel-Cantelli Lemma, we conclude that sup(θ′,β)′∈Θ×Θβ

|l∗t (θ, β)−
lt(θ, β)| → 0 a.s. as t → ∞. As sup(θ′,β)′∈Θ×Θβ

|L∗T (θ, β) − LT (θ, β)| ≤∑T
t=1 sup(θ′,β)′∈Θ×Θβ

|l∗t (θ, β)− lt(θ, β)| , we conclude that (iv), using Cesaro’s
Lemma.
Turning to the consistency of θ̂∗β, we note that θ̂

∗
β = (0, 0, ω̂∗β)′ with ω̂∗β =

arg maxω∈[ω,ω]−1
2

∑T
t=1[log(ω)+y2

t /ω] = ω1
{
T−1

∑T
t=1 y

2
t < ω

}
+ω1

{
T−1

∑T
t=1 y

2
t > ω

}
+T−1

∑T
t=1 y

2
t 1
{
ω ≤ T−1

∑T
t=1 y

2
t ≤ ω

}
. By assumption, ω0 ∈ (ω, ω), such

that, using the ergodic theorem, ω̂∗β = T−1
∑T

t=1 y
2
t + op(1) = ω0 + op(1).

Hence, θ̂∗β = θ0 + op(1).
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Lemma A.2 Under Assumptions 2.1-2.3 and H∗0 , with l
∗
t (θ, β) defined in

(A.2),

E

[
sup

(θ′,β)′∈Θ×Θβ

∥∥∥∥∂2l∗t (θ, β)

∂θ∂θ′

∥∥∥∥
]
<∞. (A.18)

Proof. With θi the ith entry of θ = (γ, α, ω)′,

∂2l∗t (θ, β)

∂θi∂θ′j
= −1

2
(2ω0z

2
t − 1)

1

h∗t (θ, β)

∂h∗t (θ, β)/∂θi
h∗t (θ, β)

∂h∗t (θ, β)/∂θj
h∗t (θ, β)

.

As sup(θ′,β)′∈Θ×Θβ
∂h∗t (θ, β)/∂γ ≤

∑∞
i=0 β

i
x2
t−1−i, sup(θ′,β)′∈Θ×Θβ

∂h∗t (θ, β)/∂α ≤∑∞
i=0 β

i
ω0z

2
t−1−i, sup(θ′,β)′∈Θ×Θβ

∂h∗t (θ, β)/∂ω = 1, and sup(θ′,β)′∈Θ×Θβ
h∗−1
t (θ, β) ≤

ω−1, (A.18) follows by Hölder’s inequality and Assumptions 2.2-2.3.

Lemma A.3 Under Assumptions 2.1-2.4 and H∗0 , with l
∗
t (θ, β) defined in

(A.2),

GT,· :=
1√
T

T∑
t=1

∂l∗t (θ0, ·)
∂θ

⇒ G·

for some Gaussian process {Gβ : β ∈ Θβ} that has bounded continuous
sample paths almost surely. Moreover, with β1, β2 ∈ Θβ, the process {Gβ :
β ∈ Θβ} has kernel

Σβ1β2 =
κ4

4ω2
0

E[Vt,β1V
′
t,β2

], κ4 = E[(z2
t − 1)2],

where

Vt,β =

( ∞∑
i=0

βix2
t−1−i,

∞∑
i=0

βiy2
t−1−i, 1

)′
. (A.19)

Proof. Following Andrews (2001, p.730), and noting that Θβ = [0, β] is to-
tally bounded, it suffi ces to show that (i) any finite dimensional distributions
of GT,· converge to those of G· and (ii) {GT,· : T ≥ 1} is tight.
We start out by proving (i). For β ∈ Θβ,

1√
T

T∑
t=1

∂l∗t (θ0, β)

∂θ
=

1√
T

T∑
t=1

1

2ω0

(z2
t − 1)Vt,β, (A.20)

with Vt,β defined in (A.19). By Assumptions 2.2-2.3 and since β < 1,
E[‖Vt,β‖2] < ∞, so using that 1

2ω0
(z2
t − 1)Vt,β is a martingale difference se-

quence with respect toFt−1, it follows by Brown (1971) that T−1/2
∑T

t=1 ∂l
∗
t (θ0, β)/∂θ

w→
N(0,Σββ).
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Next, let β1, β2 ∈ Θβ, and k1, k2 ∈ R3. Using the same arguments as
above,

1√
T

T∑
t=1

(k1, k2)

(
∂l∗t (θ0, β1)

∂θ
,
∂l∗t (θ0, β1)

∂θ

)′
w→ N(0, k′1Σβ1β1k1+k′2Σβ2β2k2+k′1Σβ1β2k2),

where Σβiβj = κ4
4ω20
E[Vt,βiV

′
t,βj

], i, j = 1, 2, with k′1Σβ1β1k1 + k′2Σβ2β2k2 +

k′1Σβ1β2k2 ≥ 0. An application of the Cramer-Wold theorem yields that
(i) holds.
Next, we verify (ii) by relying on Bierens and Ploberger (1997, Lemma

A.1). We consider (A.20), and note that E[(2ω0)−1(z2
t − 1)|Ft−1] = 0 and

E[(2ω0)−2(z2
t − 1)2] < ∞. Moreover, for any β1, β2 ∈ Θβ ‖Vt,β1 − Vt,β2‖ ≤

|β1 − β2|Kt, with

Kt =

∥∥∥∥∥
( ∞∑

i=0

β
i
x2
t−2−i,

∞∑
i=0

β
i
y2
t−2−i

)′∥∥∥∥∥ =

∥∥∥∥∥
( ∞∑

i=0

β
i
x2
t−2−i,

∞∑
i=0

β
i
ω0z

2
t−2−i

)′∥∥∥∥∥
which is Ft−1-measurable. Following Bierens and Ploberger (1997, Lemma
A.1), it suffi ces to show that lim supT→∞

1
T

∑T
t=1E[(2ω0)−2(z2

t −1)2K2
t ] <∞,

which is immediate from Assumptions 2.2-2.3.

Lemma A.4 With κ̂∗4 defined in (2.8), suppose that Assumptions 2.1-2.4
and H∗0 hold. Then κ̂

∗
4 = κ4 + op(1).

Proof. We have that κ4 = E[z4
t ] − 1, and κ̂∗4 = T−1

∑T
t=1 y

4
t /ω̂

∗2 + 1 −
2T−1

∑T
t=1 y

2
t /ω̂

∗. Note that y2
t /ω̂

∗ − z2
t = (ω0/ω̂

∗ − 1)z2
t and y

4
t /ω̂

∗2 − z4
t =

[(ω0/ω̂
∗)2 − 1]z4

t . Hence, by Lemma A.1 and the ergodic theorem, κ̂
∗
4 =

T−1
∑T

t=1 z
4
t + 1− 2T−1

∑T
t=1 z

2
t + op(1) = E[z4

t ]− 1 + op(1) = κ4 + op(1).

Lemma A.5 Under Assumptions 2.1, 2.3 and H∗0 , with L∗T (θ, β) defined in
(A.1) and LT (θ, β) defined in (2.4),

sup
β∈Θβ

‖∂L∗T (θ0, β)/∂θ − ∂LT (θ0, β)/∂θ‖ = op(T
1/2) (A.21)

and

sup
(θ′,β)′∈Θ×Θβ

‖∂2L∗T (θ, β)/∂θ∂θ′ − ∂2LT (θ, β)/∂θ∂θ′‖ = op(T ). (A.22)

Proof. We start out by showing that

E

[
sup
β∈Θβ

‖∂l∗t (θ0, β)/∂θ − ∂lt(θ0, β)/∂θ‖r
]

= O(ρt), (A.23)
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for some suffi ciently small r > 0. We have that

∂l∗t (θ0, β)/∂θ−∂lt(θ0, β)/∂θ = − 1

2ω0

(z2
t −1) [∂h∗t (θ0, β)/∂θ − ∂ht(θ0, β)/∂θ] .

Note that

∂h∗t (θ, β)/∂θ = Vt,β and ∂ht(θ, β)/∂θ =

(
t−1∑
i=0

βix2
t−1−i,

t−1∑
i=0

βiy2
t−1−i, 1

)′
.

(A.24)
Hence,

sup
β∈Θβ

‖∂h∗t (θ, β)/∂θ − ∂ht(θ, β)/∂θ‖ ≤ β
t

∥∥∥∥∥
( ∞∑

i=0

β
i
x2
−1−i,

∞∑
i=0

β
i
y2
−1−i

)′∥∥∥∥∥ ,
(A.25)

and we have that for some small r ∈ (0, 1),

E

[
sup
β∈Θβ

‖∂l∗t (θ0, β)/∂θ − ∂lt(θ0, β)/∂θ‖r
]

≤ E

[(
1

2ω0

)r
|z2
t − 1|rβrt

∥∥∥∥∥
( ∞∑

i=0

β
i
x2
−1−i,

∞∑
i=0

β
i
y2
−1−i

)′∥∥∥∥∥
r]

= E

[(
1

2ω0

)r
|z2
t − 1|rβrt

∥∥∥∥∥
( ∞∑

i=0

β
i
x2
−1−i,

∞∑
i=0

β
i
ω0z

2
−1−i

)′∥∥∥∥∥
r]

= O(ρt)

where we have used Assumption 2.3 and that β < 1. Hence, (A.23) holds.
By the Markov inequality and the cr inequality (see e.g. White, 2001, Propo-
sition 3.8), we have for any ε > 0 and some r ∈ (0, 1),

P

[
T−1/2 sup

β∈Θβ

‖∂L∗T (θ0, β)/∂θ − ∂LT (θ0, β)/∂θ‖ > ε

]

≤ T−r/2ε−r
T∑
t=1

E

[
sup
β∈Θβ

‖∂l∗t (θ0, β)/∂θ − ∂lt(θ0, β)/∂θ‖r
]

= o(1),

as T →∞, where we have used (A.23). We conclude that (A.21) holds.
In order to show (A.22), we start out by showing that for any θi, θj ∈

{γ, α, ω}, for some suffi ciently small r ∈ (0, 1),

E

[
sup

(θ′,β)′∈Θ×Θβ

|∂2l∗t (θ, β)/∂θi∂θj − ∂2lt(θ, β)/∂θi∂θj|r
]

= O(ρt), (A.26)
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From Francq and Zakoïan (2010, p.167), suppressing the dependence on θ, β,

sup
(θ′,β)′∈Θ×Θβ

|∂2l∗t (θ, β)/∂θi∂θj − ∂2lt(θ, β)/∂θi∂θj|r

≤ 1

2

∣∣∣∣(2
y2
t

h∗t
− 2

y2
t

ht

)(
1

h∗t

∂h∗t
∂θi

)(
1

h∗t

∂h∗t
∂θj

)
+

(
2
y2
t

ht
− 1

)[(
1

h∗t
− 1

ht

)
∂h∗t
∂θi

+
1

ht

(
∂h∗t
∂θi
− ∂ht
∂θi

)](
1

h∗t

∂h∗t
∂θj

)
+

(
2
y2
t

ht
− 1

)(
1

ht

∂ht
∂θi

)[(
1

h∗t
− 1

ht

)
∂h∗t
∂θj

+
1

ht

(
∂h∗t
∂θj
− ∂ht
∂θj

)]∣∣∣∣
Note that y2

t = ω0z
2
t , sup(θ′,β)′∈Θ×Θβ

h−1
t ≤ ω−1, and sup(θ′,β)′∈Θ×Θβ

h∗−1
t ≤

ω−1. Moreover,

sup
(θ′,β)′∈Θ×Θβ

∣∣∣∣ 1

h∗t
− 1

ht

∣∣∣∣ ≤ 1

ω2
sup

(θ′,β)′∈Θ×Θβ

|h∗t − ht| ≤
1

ω2
β
t

( ∞∑
i=0

β
i
x2
−1−i +

∞∑
i=0

β
i
y2
−1−i

)
.

Using Assumption 2.3, we conclude that for some small 0 < r∗ < 1,

E

[
sup

(θ′,β)′∈Θ×Θβ

∣∣∣∣ 1

h∗t
− 1

ht

∣∣∣∣r∗
]

= O(ρt).

Likewise, in light of (A.24)

E

[
sup

(θ′,β)′∈Θ×Θβ

∣∣∣∣∂ht∂θi

∣∣∣∣r∗
]

= O(ρt) and E

[
sup

(θ′,β)′∈Θ×Θβ

∣∣∣∣∂h?t∂θi

∣∣∣∣r∗
]

= O(ρt),

and using (A.25),

E

[
sup

(θ′,β)′∈Θ×Θβ

∣∣∣∣∂h∗t∂θi
− ∂ht
∂θi

∣∣∣∣r∗
]

= O(ρt).

Combining these properties, and applying Hölder’s inequality repeatedly, we
conclude that (A.26) holds for some suffi ciently small 0 < r < 1. By argu-
ments identical to the ones given above, we conclude that for any ε > 0,

P

[
T−1 sup

(θ′,β)′∈Θ×Θβ

‖∂2L∗T (θ, β)/∂θi∂θj − ∂2LT (θ, β)/∂θi∂θj‖ > ε

]
= o(1).
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A.2 Lemmas related to the proof of Theorem 2.2

Lemma A.6 Under Assumptions 2.1, 2.2, 2.4, 2.5, 2.6, H0 and α0 ∈ (0, α),
with l∗t (τ) defined in (A.6) and V(τ0) = {τ ∈ Θτ : ‖τ − τ0‖ < ε} for some
small ε > 0,

E

[
sup

τ∈V(τ0)

‖∂2l∗t (τ)/∂τ∂τ ′‖
]
<∞. (A.27)

Proof. For τi, τj ∈ {γ, α, ω, β},

∂2l∗t (τ)

∂τi∂τj
=
−1

2

(
1− y2

t

h∗t (τ)

)(
∂2h∗t (τ)/∂τi∂τj

h∗t (τ)

)
(A.28)

− 1

2

(
2
y2
t

h∗t (τ)
− 1

)(
∂h∗t (τ)/∂τi
h∗t (τ)

)(
∂h∗t (τ)/∂τj
h∗t (τ)

)
,

so we seek to show that

E

[
sup

τ∈V(τ0)

∣∣∣∣( y2
t

h∗t (τ)

)(
∂2h∗t (τ)/∂τi∂τj

h∗t (τ)

)∣∣∣∣
]
<∞

and

E

[
sup

τ∈V(τ0)

∣∣∣∣( y2
t

h∗t (τ)

)(
∂h∗t (τ)/∂τi
h∗t (τ)

)(
∂h∗t (τ)/∂τj
h∗t (τ)

)∣∣∣∣
]
<∞.

By Hölder’s inequality, it suffi ces to show that for some p, q > 1 satisfying
q−1 + p−1 = 1,

E

[
sup

τ∈V(τ0)

∣∣∣∣ y2
t

h∗t (τ)

∣∣∣∣q
]
<∞, (A.29)

and

E

[
sup

τ∈V(τ0)

∣∣∣∣(∂h∗t (τ)/∂τi
h∗t (τ)

)(
∂h∗t (τ)/∂τj
h∗t (τ)

)∣∣∣∣p
]
<∞, E

[
sup

τ∈V(τ0)

∣∣∣∣∂2h∗t (τ)/∂τi∂τj
h∗t (τ)

∣∣∣∣p
]
<∞.

(A.30)
Note that

y2
t

h∗t (τ)
= z2

t

h∗t (τ0)

h∗t (τ)
. (A.31)

Choosing V(τ0) such that α is bounded away from zero on V(τ0), by Francq
and Zakoïan (2010, p.164),∣∣∣∣h∗t (τ0)

h∗t (τ)

∣∣∣∣ ≤ C +
α0

α

∞∑
i=0

βi0αy
2
t−1−i

ω + βiαy2
t−1−i

.
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Clearly, if β0 = 0, |h∗t (τ0)/h∗t (τ)| ≤ C, uniformly on V(τ0). Hence, with δ > 0
defined in Assumption 2.6, using (A.31) and Assumption 2.2

E

[
sup

τ∈V(τ0)

∣∣∣∣ y2
t

h∗t (τ)

∣∣∣∣(1+δ)/δ
]
<∞, if β0 = 0.

If β0 > 0 we may choose V(τ0) such that β is bounded away from zero on
V(τ0). In that case, using Francq and Zakoïan (2010, p.164), for s ∈ (0, 1)∣∣∣∣h∗t (τ0)

h∗t (τ)

∣∣∣∣ ≤ C +
α0

α

∞∑
i=0

(
β0

β1−s

)i(αy2
t−1−i
ω

)s
. (A.32)

In light of (A.31) and (A.32), choosing s suffi ciently small and V(τ0) such
that β0/β

1−s < 1 uniformly on V(τ0) and E[y
2s(1+δ)/δ
t ] < ∞, we have by

Assumption 2.2 and repeated use of Minkowski’s inequality,

E

[
sup

τ∈V(τ0)

∣∣∣∣ y2
t

h∗t (τ)

∣∣∣∣(1+δ)/δ
]
<∞, if β0 > 0.

Hence, (A.29) holds for q = (1 + δ)/δ > 1. Turning to (A.30), note that in
particular

∂h∗t (τ)/∂β

h∗t (τ)
≤ ω−1

∞∑
i=1

iβi−1(αy2
t−1−i + γx2

t−1−i).

By Assumption 2.6 and Minkowski’s inequality,

E

 sup
τ∈V(τ0)

∣∣∣∣∣
(
∂h∗t (τ)/∂β

h∗t (τ)

)2
∣∣∣∣∣
1+δ
 <∞.

By similar arguments, we conclude that (A.30) holds for p = 1 + δ.

Lemma A.7 Under Assumptions 2.1, 2.2, 2.4, 2.5, 2.6, H0 and α0 ∈ (0, α),
with κ̃4 defined in (2.12), κ̃4 = κ4 + op(1).

Proof. By definition

κ̃4 =
1

T

T∑
t=1

z̃4
t + 1− 2

1

T

T∑
t=1

z̃2
t , (A.33)
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and we will start out by focusing on the first term. It holds that∣∣∣∣∣ 1

T

T∑
t=1

z̃4
t −

1

T

T∑
t=1

z4
t

∣∣∣∣∣ ≤ 1

T

T∑
t=1

z4
t

∣∣∣∣∣
[
h∗t (τ0)

ht(τ̃)

]2

− 1

∣∣∣∣∣
≤ 1

T

T∑
t=1

z4
t (X1t +X2t +X3t +X4t +X5t) ,

where

X1t =

[
h∗t (τ0)− h∗t (τ̃)

ht(τ̃)

]2

, X2t =

[
h∗t (τ̃)− ht(τ̃)

ht(τ̃)

]2

, X3t = 2
|h∗t (τ0)− h∗t (τ̃)|

ht(τ̃)

X4t = 2
|h∗t (τ̃)− ht(τ̃)|

ht(τ̃)
, and X5t = 2

[
|h∗t (τ0)− h∗t (τ̃)|

ht(τ̃)

] [
|h∗t (τ̃)− ht(τ̃)|

ht(τ̃)

]
.

Using that ht(τ̃) ≥ ω on Θτ,0 and a Taylor expansion T−1
∑T

t=1 z
4
tX1t ≤

ω−2‖τ̃ − τ0‖2T−1
∑T

t=1 z
4
t supτ∈Θτ,0 ‖∂h∗t (τ)/∂τ‖2, where ∂h∗t (τ)/∂τ is given

in (A.8). By Assumption 2.6, and ULLN for ergodic processes, T−1
∑T

t=1 z
4
t

× supτ∈Θτ,0 ‖∂h∗t (τ)/∂τ‖2 p→ E[z4
t supτ∈Θτ,0 ‖∂h∗t (τ)/∂τ‖2] < ∞. Using that

τ̃ = τ0 + op(1), we have T−1
∑T

t=1 z
4
tX1t = op(1). By a similar argument,

we conclude that T−1
∑T

t=1 z
4
tX3t = op(1). Noting that h∗t (τ) − ht(τ) =

βt(
∑∞

i=0 β
iαy2
−1−i), choosing s ∈ (0, 1) suffi ciently small, using the cr inequal-

ity and Assumption 2.6, E[z4s
t supτ∈Θτ,0 |h∗t (τ)− ht(τ)|2s] = O(ρt). Hence for

any ε > 0

∞∑
t=1

P
(
|z4
tX2t| > ε

)
≤

∞∑
t=1

P

{
|ω−2z4

t sup
τ∈Θτ,0

|h∗t (τ)− ht(τ)|2 | > ε

}

≤ ε−s
∞∑
t=1

E

{
ω−2sz4s

t sup
τ∈Θτ,0

|h∗t (τ)− ht(τ)|2s
}
<∞.

By the Borel-Cantelli theorem and Cesaro’s lemma, we have that T−1
∑T

t=1 z
4
tX2t =

op(1). By similar arguments, T−1
∑T

t=1 z
4
tX4t = op(1) and T−1

∑T
t=1 z

4
tX5t =

op(1), and we have that T−1
∑T

t=1 z̃
4
t = T−1

∑T
t=1 z

4
t + op(1). By the LLN,

T−1
∑T

t=1 z̃
4
t = E[z4

t ] + op(1). By similar arguments T−1
∑T

t=1 z̃
2
t = E[z2

t ] +
op(1), and in light of (A.33) we conclude that κ̃4 = κ4 + op(1).

B Proofs of Theorems 3.1, 3.2, and 3.3

Proof of Theorem 3.1. The proof mimics Han and Kristensen (2014, Proof
of Theorem 3) and arguments given in Straumann (2005, Proof of Theorem
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6.1.1). We will focus on the consistency of θ̂ and note that the consistency
of θ̃ is proved by identical arguments.
First, we introduce the ergodic log-likelihood function

L∗T (θ) =
1

T

T∑
t=1

l∗t (θ), lt(θ) = −1

2
log[h∗t (θ)] + log{gν [yt/

√
h∗t (θ)]}, (B.1)

h∗t (θ) = (1− β)ω + αy2
t−1 + βh∗t−1(θ) + γx2

t−1, t ∈ Z. (B.2)

Since Θ is compact and θ 7→ lt(θ) is continuous almost surely on Θ,
it suffi ces to show that (i) 1

T

∑T
t=1 l

∗
t (θ) = E[l∗t (θ)] + op(1), where E[l∗t (θ)]

exists for all θ ∈ Θ, (ii) E[l∗t (θ0)] > E[l∗t (θ)] for all θ ∈ Θ \ {θ0}, (iii)
E[supθ∈Θ l

∗
t (θ)] <∞, and (iv) supθ∈Θ |L∗T (θ)− LT (θ)| = op(T ).

(i) Follows by Assumption 2.1 and the ergodic theorem, provided that
E[l∗t (θ)] exists for all θ ∈ Θ. Note that by definition, log[h∗t (θ)] ≥ log (ω), and
hence supθ∈θ l

∗
t (θ) ≤ C such that E[l∗t (θ)

+] <∞ for all θ ∈ Θ. Turning to (ii),
from Han and Kristensen (2014, Proof of Theorem 3), E| log[h∗t (θ0)]| < ∞,
such that

E[|l∗t (θ0)|] ≤ E| log[h∗t (θ0)]|+ E| log gν0 [zt]| <∞.

Next, following Straumann (2005, Proof of Theorem 6.1.1), let

ft(θ) =
gν [yt/

√
h∗t (θ)]

h∗t (θ)
and rt(θ) =

√
h∗t (θ0)√
h∗t (θ)

.

Using that log(x) ≤ x− 1 for all x > 0 with equality if and only if, it holds
that

E[l∗t (θ)]− E[l∗t (θ0)] = E

[
log

ft(θ)

ft(θ0)

]
≤ E

[
ft(θ)

ft(θ0)

]
− 1

with equality if and only if ft(θ) = ft(θ0) a.s. We have that

ft(θ)

ft(θ0)
=

gν [yt/
√
h∗t (θ)]

√
h∗t (θ0)

gν0 [yt/
√
h∗t (θ0)]

√
h∗t (θ)

=
gν [rt(θ)zt]rt(θ)

gν0 [zt]
.

Note that by Assumption 2.2, zt and rt(θ) are independent. Consider the
conditional expectation of ft(θ)/ft(θ0) given rt(θ):

E

[
ft(θ)

ft(θ0)
|rt(θ)

]
=

∫
gν [rt(θ)z]rt(θ)

gν0 [z]
gν0 [z]dz

=

∫
gν [rt(θ)z]rt(θ)

gν0 [z]
gν0 [z]dz

=

∫
gν [rt(θ)z]rt(θ)dz.
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Using that gν [rt(θ)z]rt(θ0) is the (conditional) density of zt/rt(θ), we conclude
that E [ft(θ)/ft(θ0)|rt(θ)] = 1, such that E [ft(θ)/ft(θ0)] = 1. Hence,

E[l∗t (θ)] ≤ E[l∗t (θ0)]

with equality if and only if ft(θ) = ft(θ0) a.s. So it remains to show that
ft(θ) = ft(θ0) a.s. implies θ = θ0. Observe that ft(θ) = ft(θ0) a.s. if and
only if

gν0 [zt] = gν [rt(θ)zt]rt(θ) a.s. (B.3)

Suppose that (γ, α, ω, β) 6= (γ0, α0, ω0, β0), then by Assumption 2.4 and ar-
guments given in Han and Kristensen (2014, Proof of Theorem 3),

P (rt(θ) 6= 1) > 0.

By Straumann (2005, Lemma 6.1.2), P{gν0 [zt] 6= gν [rt(θ)zt]rt(θ)} > 0, which
contradicts (B.3), so necessarily we must have that (γ, α, ω, β) = (γ0, α0, ω0, β0).
In light of (B.3), using that necessarily rt(θ) = 1, it remains to show that
gν0 [zt] = gν [zt] a.s. implies that ν = ν0, which is trivial. We conclude that
(ii) holds.
(iii) holds by the arguments given in order to establish (i).
Lastly, (iv) is shown by arguments similar to the ones given in Han and

Kristensen (2014, Proof of Theorem 3).

Proof of Theorem 3.2. We show that the conditions of Lemma 2.1 apply.
Due to Theorem 3.1, we have that θ̂ and θ̃ are consistent for θ, and hence
condition (A.i) of Lemma 2.1 is satisfied. For brevity, we focus on establishing
(A.ii)-(A.iii) of Lemma 2.1 for the ergodic log-likelihood function in (B.1)-
(B.2).
In order show (A.ii), the asymptotic normality of the score is established,

using the martingale CLT by Brown (1971). We will rely on some results
from the supplementary material to Pedersen and Rahbek (2016). The score
contributions are

∂l∗t (θ)

∂θi
=

1

2

[
(ν + 1) y2

t /h
∗
t (θ)

(ν − 2) + y2
t /h

∗
t (θ)

− 1

]
∂h∗t (θ) /∂θi
h∗t (θ)

for θi ∈ {γ, α, ω},

and

∂l∗t (θ)

∂ν
=
∂ log η (ν)

∂ν
−1

2
log

(
1 +

y2
t /h

∗
t (θ)

ν − 2

)
+

1

2(ν − 2)

[
(ν + 1) y2

t /h
∗
t (θ)

(ν − 2) + y2
t /h

∗
t (θ)

− 1

]
.

Consider the score contribution at θ0, St = (st,γ, st,α, st,ω, st,β, st,ν)
′
, where

st,γ =
∂l∗t (θ0)

∂γ
, st,α =

∂l∗t (θ0)

∂α
, st,ω =

∂l∗t (θ0)

∂ω
, st,β =

∂l∗t (θ0)

∂β
, st,ν =

∂l∗t (θ0)

∂ν
.
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For θi ∈ {γ, α, ω, β},

st,θi =
1

2
z∗1t
∂h∗t (θ0) /∂θi
h∗t (θ0)

and st,ν = z∗3t +
z?1t

2(ν0 − 2)
, (B.4)

where

z∗1t =

[
(ν0 + 1) z2

t

(ν0 − 2) + z2
t

− 1

]
and z∗3t =

[
∂ log η (ν0)

∂ν
− 1

2
log

(
1 +

z2
t

ν0 − 2

)]
.

From Pedersen and Rahbek (2016, Lemma A.5 in the supplementary ma-
terial), E[z∗1t] = E[z∗3t] = 0 and E[z∗21t ], E[z∗23t ] < ∞. Hence, using that
E[‖(yt, xt)′‖4] < ∞ and Assumption 2.2, we have that St is a martingale
difference sequence with respect to Ft with E[‖St‖2] < ∞. Then using the
ergodic theorem 1

T

∑T
t=1E[(k′St)2|Ft−1]

p→ k′Σk < ∞ for any k ∈ R5 \ {0}
and some constant matrix Σ. Moreover, using the ergodic theorem, for any
δ > 0 and any k ∈ R5, 1

T

∑T
t=1 E[(k′St)21(|k′St|>T 1/2δ)] = op(1), verifying the

Lindeberg condition. It remains to show that k′Σk > 0 for any k ∈ R5 \ {0},
i.e. that Σ is positive definite. We note that Σ = E[StS ′t], so Σ is positive
semi-definite. Following Straumann (2005, proof of Lemma 6.3.2), suppose
that there exists k = (k1, k2, k3, k4, k5)′ ∈ R5 such that k′Σk = 0, which is
equivalent to

k′St = k1st,γ + k2st,α + k3st,ω + k4st,β + k5st,ν = 0 a.s. (B.5)

We will argue that it cannot be the case that k 6= 0. Suppose that (k1, k2, k3, k4)′ =
0 and k5 6= 0. Then k′Σk = k2

5E[s2
t,ν ]. From Pedersen and Rahbek (2016,

proof of Lemma A.1 in the supplementary material), with ψ′(·) the trigamma
function,

E[s2
t,ν ] =

1

4

[
ψ′
(ν0

2

)
− ψ′

(
ν0 + 1

2

)]
+

6

(ν0 − 2)2(ν + 1)(ν0 + 3)
> 0,

which contradicts k′Σk = 0. Suppose that (k1, k2, k3, k4)′ 6= 0 and k5 = 0.
Using (B.4), that P (z∗1t 6= 0) = 1, and that P [h∗t (θ0) > 0] = 1, we have that
(B.5) is equivalent to

k1

∞∑
i=0

βix2
t−1−i+k2

∞∑
i=0

βiy2
t−1−i+k3+k4

∞∑
i=1

iβi−1(α0y
2
t−1−i+γ0x

2
t−1−i) = 0 a.s.,

which is ruled out by Assumption 2.4, using that (α0, γ0) 6= 0. Lastly, suppose
that (k1, k2, k3, k4)′ 6= 0 and k5 6= 0. Again, using that P (z∗1t 6= 0) = 1 and
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P [σ2
t (θ0) > 0] = 1, (B.5) is equivalent to

k1

∞∑
i=0

βix2
t−1−i + k2

∞∑
i=0

βiy2
t−1−i + k3 + k4

∞∑
i=1

iβi−1(α0y
2
t−1−i + γ0x

2
t−1−i)

= 2
z∗3t
z∗1t

+
1

(ν0 − 2)
a.s,

which contradicts the fact that z∗3t/z
∗
1t is non-degenerate and that z

∗
3t/z

∗
1t and

Ft−1 are independent. We conclude that k′Σk > 0 for any k ∈ R5\{0}. Using
(B.8) and the ergodic theorem, − 1

T

∑T
t=1

∂2l∗t (θ0)

∂θ∂θ′
p→ J , and we conclude that

condition (A.ii) is satisfied.
In order to establish (A.iii), we consider the second derivative of the log-

likelihood contribution. With θi, θj ∈ {ω, α, γ, β},

∂2l∗t (θ)

∂θi∂θj
=

1

2

[
1− (ν + 1) y2

t /h
∗
t (θ)

(ν − 2) + y2
t /h

∗
t (θ)

− (ν + 1) (ν − 2) y2
t /h

∗
t (θ)

[(ν − 2) + y2
t /h

∗
t (θ)]

2

]
×
(
∂h∗t (θ) /∂θi
h∗t (θ)

)(
∂h∗t (θ) /∂θj

h∗t (θ)

)
+

1

2

[
(ν + 1) y2

t /h
∗
t (θ)

(ν − 2) + y2
t /h

∗
t (θ)

− 1

](
∂2h∗t (θ) /∂θi∂θj

h∗t (θ)

)

∂2l∗t (θ)

∂ν2
=
∂2 log η (ν)

∂ν∂ν
+

1

(ν − 2)

y2
t /h

∗
t (θ)

(ν − 2) + y2
t /h

∗
t (θ)

− 1

2(ν − 2)2

[
(ν + 1) y2

t /h
∗
t (θ)

(ν − 2) + y2
t /h

∗
t (θ)

− 1

]
−
(

1

2(ν − 2)

)
(ν + 1) y2

t /h
∗
t (θ)

[(ν − 2) + y2
t /h

∗
t (θ)]

2 ,

and

∂2l∗t (θ)

∂θi∂ν
=

1

2

[
y2
t /h

∗
t (θ)

(ν − 2) + y2
t /h

∗
t (θ)

− (ν + 1) y2
t /h

∗
t (θ)

[(ν − 2) + y2
t /h

∗
t (θ)]

2

]
∂h∗t (θ) /∂θi
h∗t (θ)

.

It holds that

Vt(θ) :=

(
∂h∗t (θ)

∂γ
,
∂h∗t (θ)

∂α
,
∂h∗t (θ)

∂ω
,
∂h∗t (θ)

∂β

)′
=

( ∞∑
i=0

βix2
t−1−i,

∞∑
i=0

βiy2
t−1−i, 1,

∞∑
i=1

iβi−1(αy2
t−1−i + γx2

t−1−i)

)′
,

∂2l∗t (θ)

∂θi∂θj
= 0 for θi, θj ∈ {ω, α, γ},
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and

∂2l∗t (θ)

∂γ∂β
=

∞∑
i=1

iβi−1x2
t−1−i,

∂2l∗t (θ)

∂α∂β
=

∞∑
i=1

iβi−1y2
t−1−i,

∂2l∗t (θ)

∂ω∂β
= 0,

∂2l∗t (θ)

∂β∂β
=

∞∑
i=2

i(i− 1)βi−2x2
t−1−i.

For θi, θj ∈ {ω, α, γ, β}, on Θ,∣∣∣∣∂2l∗t (θ)

∂θi∂θj

∣∣∣∣ ≤ 1

2
[1 + 2(ν + 1)]

1

ω2
|∂h∗t (θ) /∂θi||∂h∗t (θ) /∂θj|

+
1

2
[ν + 2]|∂2h∗t (θ) /∂θi∂θ2|.

and ∣∣∣∣∂2l∗t (θ)

∂θi∂ν

∣∣∣∣ ≤ 1

2

[
1 +

(ν + 1)

(ν − 2)

]
ω−1|∂σ2

t (θ) /∂θi|

Hence, using that E[‖(yt, xt)′‖4] <∞ and that |β| < 1 uniformly on Θ,

E[sup
θ∈Θ
|∂2l∗t (θ)/∂θi∂θj|] <∞ and E[sup

θ∈Θ
|∂2l∗t (θ)/∂θi∂ν|] <∞, for θi, θj ∈ {ω, α, γ, β}.

(B.6)
Moreover, on Θ,∣∣∣∣∂2l∗t (θ)

∂ν2

∣∣∣∣ ≤ sup
ν∈[ν,ν]

∂2 log η (ν)

∂ν∂ν
+

1

(ν − 2)
+

ν + 2

2(ν − 2)2
+

(
1

2(ν − 2)

)
(ν + 1)

(ν − 2)
<∞,

and hence

E

[
sup
θ∈Θ

∣∣∣∣∂2l∗t (θ)

∂ν2

∣∣∣∣] <∞. (B.7)

By (B.6)-(B.7),
E[sup

θ∈Θ
‖∂2l∗t (θ)/∂θ∂θ

′‖] <∞. (B.8)

Using (B.8) and ULLN for ergodic processes, we conclude that condition
(A.iii) holds.
Next, for the case β0 > 0, there are no nuisance parameters on the

boundary, and the limiting distribution of the LR statistic is immediate from
Lemma 2.1. We then turn to the case β0 = 0. Using that J = Σ = E[StS ′t]
and that h∗t (θ0) = ω0 + α0y

2
t−1 under H0, J = E[StS ′t], where

St =

(
z∗1tx

2
t−1

2σ2
t (θ0)

,
z∗1ty

2
t−1

2σ2
t (θ0)

,
z∗1t

2σ2
t (θ0)

,
α0z

∗
1ty

2
t−2

2σ2
t (θ0)

, z∗3t +
z?1t

2(ν0 − 2)

)′
.
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Hence, using that E[‖(yt, xt)′‖4] <∞ and E[z∗21t ] = 2ν0/(ν0 + 3), E[z∗1tz
∗
3t] =

−(ν0 + 1)−1 (Pedersen and Rahbek, 2016, Lemma A.5 in the supplementary
material),

J = E



z∗21t x
4
t−1

4h∗2t (θ0)

z∗21t x
2
t−1y

2
t−1

4h∗2t (θ0)

z∗21t x
2
t−1

4h∗2t (θ0)

α0z∗21t x
2
t−1y

2
t−2

4h∗2t (θ0)

z∗1tx
2
t−1

2h∗t (θ0)

(
z∗3t +

z?1t
2(ν0−2)

)
z∗21t y

4
t−1

4h∗2t (θ0)

z∗21t y
2
t−1

4h∗2t (θ0)

α0z∗21t y
2
t−1y

2
t−2

4h∗2t (θ0)

z∗1ty
2
t−1

2h∗t (θ0)

(
z∗3t +

z?1t
2(ν0−2)

)
z∗21t

4h∗2t (θ0)

α0z∗21t y
2
t−2

4h∗2t (θ0)

z∗1t
2h∗t (θ0)

(
z∗3t +

z?1t
2(ν0−2)

)
α20z
∗2
1t y

4
t−2

4h∗2t (θ0)

α0z∗1ty
2
t−2

2h∗t (θ0)

(
z∗3t +

z?1t
2(ν0−2)

)
(
z∗3t +

z?1t
2(ν0−2)

)2



=


ηaκ4,x ηbκ2,x ηaκ2,x ηdκ2,x jφκ2,x

ηbκ2,x ηc ηb ηf kφ
ηaκ2,x ηb ηa ηd jφ
ηdκ2,x ηf ηd ηg mφ
jφκ2,x kφ jφ mφ ξ


where

a = E

[
1

4(ω0 + α0y2
t−1)2

]
, b = E

[
y2
t−1

4(ω0 + α0y2
t−1)2

]
, c = E

[
y4
t−1

4(ω0 + α0y2
t−1)2

]
d = E

[
α0y

2
t−2

4(ω0 + α0y2
t−1)2

]
, f = E

[
α0y

2
t−1y

2
t−2

4(ω0 + α0y2
t−1)2

]
, g = E

[
α2

0y
4
t−2

4(ω0 + α0y2
t−1)2

]
,

j = E

[
1

2(ω0 + α0y2
t−1)

]
, k = E

[
yt−1

2(ω0 + α0y2
t−1)

]
, m = E

[
α0yt−2

2(ω0 + α0y2
t−1)

]
φ = {ν0/[(ν0 + 3)(ν0 − 2)]− 1/(ν0 + 1)}, ξ = E

[(
z∗3t +

z?1t
2(ν0 − 2)

)2
]
, η = E[z∗21t ]

κ2,x = E[x2
t ], and κ4,x = E[x4

t ].

It holds that

J−1 =


−1

aηκ22,x−aηκ4,x
0 1

aηκ22,x−aηκ4,x
κ2,x 0 0

0
1

aηκ22,x−aηκ4,x
κ2,x J22

0
0

 ,

with some positive definite 4 × 4 matrix J22. Hence, condition (A.iv) of
Lemma 2.1 holds, and the limiting distribution of the LR statistic then follows
by Lemma 2.1.
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Proof for Theorem 3.3. We show that the conditions of Lemma 2.1 are
satisfied. Under Assumptions 3.1, 3.2, and 3.4, the consistency of θ̂ and
θ̃ holds by Agosto et al. (2016, Theorem 2), and hence condition (A.i) of
Lemma 2.1 is satisfied. For brevity, we focus on establishing conditions (A.ii)-
(A.iii) of Lemma 2.1 for the ergodic log-likelihood function,

L∗T (θ) =

T∑
t=1

l∗t (θ), l∗t (θ) = yt log[λ∗t (θ)]− λ∗t (θ),

λ∗t (θ) = (1− β)ω + αyt−1 + βλ∗t−1(θ) + γf(xt−1), t ∈ Z.

Consider the score contribution, ∂l∗t (θ0)/∂θ = (yt/λ
∗
t (θ0)− 1) (∂λ∗t (θ0)/∂θ).

By Agosto et al. (2016, Section A.4.1), T−1/2
∑T

t=1 ∂l
∗
t (θ0)/∂θ

w→ N(0, J),
with J = −E [∂2l∗t (θ0)/∂θ∂θ′], which is positive definite due to Agosto et al.
(2016, Section A.4.2), using Assumption 3.4. Moreover, due to Agosto et al.
(2016, Section A.4.2), T−1

∑T
t=1 ∂

2l∗t (θ0)/∂θ∂θ′ = −J + op(1). We conclude
that condition (A.ii) of Lemma 2.1 holds.
Turning to condition (A.iii), consider the second derivative of the log-

likelihood contribution,

−∂
2l∗t (θ)

∂θ∂θ′
=

yt
λ∗2t (θ)

∂λ∗t (θ)

∂θ

∂λ∗t (θ)

∂θ′
−
(

yt
λ∗t (θ)

− 1

)
∂λ∗t (θ)

∂θ∂θ′
,

where ∂λ∗t (θ)/∂θ = {
∑∞

i=0 β
if(xt−1−i),

∑∞
i=0 β

iyt−1−i, 1,
∑∞

i=1 iβ
i−1[αyt−1−i+

γf(xt−1−i)]}′, and

∂λ∗t (θ)

∂θ∂θ′


0 0 0

∑∞
i=1 iβ

i−1f(xt−1−i)
0 0

∑∞
i=1 iβ

i−1yt−1−i
0 0∑∞

i=2 i(i− 1)βi−2[αyt−1−i + βf(xt−1−i)]

 .

Since, λ∗t (θ) ≥ ω > 0 onΘ and supθ∈Θ β ≤ β < 1, it holds thatE[supθ∈Θ ‖∂2l∗t (θ)/∂θ∂θ
′‖]

< ∞ due to Assumption 3.1 and Hölder’s inequality. By the ULLN for er-
godic processes, we then have that condition (A.iii) of Lemma 2.1 is satisfied.
For the case β0 > 0, the limiting distribution of LRT follows directly from
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Lemma 2.1. In the case β0 = 0, λ∗t (θ0) = ω0 + α0yt−1. Here

J = −E
[
∂2l∗t (θ0)

∂θ∂θ′

]

= E

 1

ω0 + α0yt−1


f 2(xt−1) yt−1f(xt−1) f(xt−1) α0f(xt−1)yt−2

y2
t−1 yt−1 α0yt−1yt−2

1 α0yt−2

α2
0y

2
t−2




=


aκ2,x bκ1,x aκ1,x dκ1,x

bκ1,x c b f
aκ1,x b a d
dκ1,x f d g


where

a = E

[
1

ω0 + α0yt−1

]
, b = E

[
yt−1

ω0 + α0yt−1

]
, c = E

[
y2
t−1

ω0 + α0yt−1

]
d = E

[
α0yt−2

ω0 + α0yt−1

]
, f = E

[
α0yt−1yt−2

ω0 + α0yt−1

]
, g = E

[
α2

0y
2
t−2

ω0 + α0yt−1

]
,

κ1,x = E[f(xt)], and κ2,x = E[f 2(xt)],

and where we have used Assumption 3.3. It holds that

J−1 =


1

aκ2,x−aκ21,x
0 −κ1,x

aκ2,x−aκ21,x
0

0 d2−ag
ζ

bg−df
ζ

af−bd
ζ

−κ1,x
aκ2,x−aκ21,x

bg−df
ζ

ξ cd−bf
ζ

0 af−bd
ζ

cd−bf
ζ

b2−ac
ζ

 ,

with ζ := gb2 − 2bdf + cd2 + af 2 − acg and

ξ :=
gb2κ2

1,x − 2bdfκ2
1,x + cd2κ2

1,x + aκ2,xf
2 − acgκ2,x

−a
(
κ2

1,x − κ2,x

)
(gb2 − 2bdf + cd2 + af 2 − acg)

.

We note that (J−1)γ,β = 0, and hence the limiting distribution of LRT follows
by Lemma 2.1.
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