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ABSTRACT

We present novel theory for testing for reduction of GARCH-X
type models with an exogenous (X) covariate to standard GARCH
type models. To deal with the problems of potential nuisance parame-
ters on the boundary of the parameter space as well as lack of iden-
tification under the null, we exploit a noticeable property of specific
zero-entries in the inverse information of the GARCH-X type models.
Specifically, we consider sequential testing based on two likelihood ra-
tio tests and as demonstrated the structure of the inverse information
implies that the proposed test neither depends on whether the nui-
sance parameters lie on the boundary of the parameter space, nor on
lack of identification. Our general results on GARCH-X type models
are applied to Gaussian based GARCH-X models, GARCH-X models
with Student’s ¢-distributed innovations as well as the integer-valued
GARCH-X (PAR-X) models.

KeyworDS: Testing on the boundary; Likelihood-ratio test; Non-
identification; GARCH-X; PAR-X; GARCH models; Integer-valued
GARCH; Poisson autoregression.

JEL CLASSIFICATION: C32.

1 Introduction

Conditional volatility models with exogenous explanatory variable(s), or GARCH-
X type models, have recently received much attention, see Han and Kris-
tensen (2014) for real-valued variables and Agosto et al. (2016) for integer-
valued variables (and references in these). Of particular interest in these
models is to formally test if the exogenous variable can be omitted whereby
the models can be reduced to pure conditional volatility models. However,
the testing problem is highly non-standard, as under the null of no covari-
ate, nuisance parameters appear in the limiting distribution of standard test
statistics. In particular, one, or more, nuisance parameters may be on the
boundary of the parameter space, and may also be non-identified under the
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null, which leads to a testing problem in GARCH-X type models not covered
by existing literature.

We propose to solve this and thereby deal with the problems of potential
nuisance parameters on the boundary of the parameter space as well as lack
of identification under the null, by a sequential testing strategy based on two
likelihood ratio (LR) tests. We demonstrate that the proposed sequential test
neither depends on whether the nuisance parameters lie on the boundary of
the parameter space, nor on lack of identification. In order to show this,
we derive and exploit a particular property of zero-entries of the inverse
information in GARCH-X type models.

The first LR test, or rather sup-LR test, addresses the issue of non-
identification by testing for no conditional heteroskedasticity. Provided that
the null of no conditional heteroskedasticity is rejected, in the second step,
the significance of the exogenous covariate is tested. The second test is a LR
test where parameters are allowed on the boundary. The null of no exogenous
covariate is tested under the assumption of conditional heteroskedasticity (as
no conditional heteroskedasticity was rejected in the first step). All parame-
ters are identified, and by exploiting a specific structure of the information
matrix for GARCH-X models, we show that the LR statistic is asymptoti-
cally pivotal and thus does not depend on whether nuisance parameters are
on the boundary or in the interior of the parameter space. Note that if one
is willing to assume a priori that the series investigated are conditionally
heteroskedastic one can omit the first stage of the sequential test and focus
on our new results for the second stage test.

In terms of presenting the results, we first discuss the widely applied
Gaussian-based GARCH-X model. Next, we extend the theory to the GARCH-
X model with Student’s t-distributed innovations, and finally consider the
integer-valued (Poisson) GARCH-X model — the PAR-X model — in Agosto
et al. (2016).

In terms of existing literature, Han and Kristensen (2014) (see also Han
and Park, 2012) consider the asymptotic properties of the (quasi-)maximum
likelihood estimator for the GARCH-X model under the assumption that the
true parameter value lies in the interior of the parameter spaces, which in
particular excludes testing for the presence of exogenous covariates. More
recently, Francq and Thieu (2015) consider the asymptotic properties of the
(quasi-)maximum likelihood estimator in GARCH-X type models where the
true parameter value is a boundary point. However, the assumptions in
Francq and Thieu (2015) rule out the possibility of nuisance parameters
on the boundary as allowed here. In terms of pure (G)ARCH models (i.e.
GARCH models with no exogenous covariates) the general issue of testing
with parameters on the boundary of the parameter space has been consid-



ered for ARCH(q) models by Silvapulle and Silvapulle (1995) and Demos
and Sentana (1998), by Andrews (2001) for the GARCH(1,1) model, and by
Francq and Zakotan (2007,2009) for general GARCH(p, ¢) models.

The body of literature on constrained M-estimation and testing is vast
and dates back to Chernoff (1954). A general theory on estimation and
testing on the boundary of the parameter space can be found in Andrews
(1999,2001). We refer to Pedersen (2017) for additional references.

The remainder of the paper is organized as follows. In Section 2 we
present the GARCH-X model, present the sequential testing scheme, and
derive the asymptotic distributions of the LR statistics used in the testing
scheme. In Section 3 we discuss the applicability of the testing scheme in the
context of the GARCH-X model with Student’s ¢t-distributed noise and the
integer-valued GARCH-X model. All proofs can be found in the Appendix.

The following notation is applied throughout: For a matrix x € R"™*",
|z|| = \/tr(2'z), where tr(-) denotes the trace, and z’ denotes the transpose
of x. Unless stated otherwise, all limits are taken as the sample size tends
to infinity, that is T — oo. Lastly, ” — ” and ” % ” denote convergence in
distribution and probability, respectively.

2 The real-valued GARCH-X Model

As in Han and Kristensen (2014), consider the real-valued GARCH-X model,

Yo = ovz, 2z~ 11D(0,1), (2.1)

o = (1= B)w+ay; | + Bo;_y + vz},

where x; is an exogenous ergodic covariate. The parameters of the model are
given by 6 = (v, a,w)" and 3, where § € © and [ € Op defined by

O={(7,a,w) eR*:0<y<F0<a<aw<ww}, (2.2)
for some 0 <y < 00,0 <@ < 00,0 <w<w< o0, and
Os={B€R:0<B<B}, (2.3)

for some 0 < B < 1. We let 6, € © and 3y € O3 denote the true parameters,
and assume throughout that w < wy < @, oy < @, and By <  such that
ag = [y = 0 is allowed.

As mentioned we wish to test whether the covariate x; is significant for
the conditional variance o? of ;. That is, to test the simple hypothesis,

HQI’}/ZO,

3



against the alternative where v > 0. While empirically of key interest in most
applications of models with exogenous covariates such as for the GARCH-X
model, testing H is non-standard. Under H, we allow for the possibility that
the nuisance parameters a (the "ARCH parameter") and 3 (the "GARCH
parameter") lie on the boundary of their respective parameter spaces, that
is agp = 0 and/or By = 0 is allowed. Additionally, under Hy and if ag = 0
then, as well-known, S is non-identified which leads to sup-type tests, see
Andrews (2001). Stated differently, the (quasi-)likelihood ratio statistic of Hy
in the GARCH-X model will have different limiting distributions depending
on whether the parameters a and (3 lie on the boundary or not. In particular,
the usual likelihood ratio test is asymptotically non-pivotal.

We propose to circumvent the issues by applying a sequential test, while
at the same time exploiting a noticeable structure of the inverse information
in this testing problem. More precisely, the idea is to replace the likelihood
ratio test by a sequential test based on two likelihood ratio (LR) tests: one
first tests, by a sup-LR test, the joint hypothesis

Hi:vy=a=0,

and, provided rejection, one next tests by a LR-test the hypothesis Hj :
v = 0. Thus v = 0 may be rejected provided one rejects initially the joint
hypothesis of (conditional) homoskedasticity. This way, we obtain a test
which asymptotically does not depend on the o and [ parameters. What is
crucial here is that the second test is asymptotically pivotal. This is non-
trivial as we allow 3y > 0 and hence different limiting distributions would be
expected depending on whether Sy = 0 or not. However, as detailed below,
a particular zero-entry of the inverse information matrix ensures that indeed
the limiting distribution of the second LR statistic is the same whether 5y = 0
or not.

We present the two tests in the next two subsections. The first test is the
sup-(quasi-)LR test for the hypothesis Hj and the test statistic is denoted by
LR}.. The second test is the (quasi-)LR test of the hypothesis Hy, with the
test statistic denoted by LRr. We emphasize that if one is willing to assume
a priori that y; is not conditionally homoskedastic, i.e. that H is false, one
can skip the first step sup-LR test and move directly to testing H,.



2.1 Testing H,

With observations {(y:, z:) : t =0, ..., T}, consider the Gaussian conditional
quasi-log-likelihood function given by,

T

Lr(0,8) =Y _1(0,5), L(0,3)=1log (W P {_th%,ﬁ) }) ’

t=1

ht<07/6) = (1 - B)W + &th—l +/8ht—1<076) +’7I?_1, t= 17 aT

and initial value ho(0, 5) = w.

As 3 is not identified under H{, we consider the sup-LR statistic LR
when testing for H}. See Andrews (2001) for a general theory when testing
in the presence of non-identified parameters. Define therefore first the quasi-
maximum likelihood estimator (QMLE) for 6 for fixed values of 3, i.e.

éﬁ = arg max Lr(0,8), [ €O (2.5)
S
Likewise, we also define the constrained estimator,

0 = argmax L7 (8,6), B €6, (2.6)

where ©5 = {# € © : @ = v = 0}. The standard sup-LR test is given
by, 2[supsee, Lr(0s,5) — SUPgee, £T(éZ” B)]. To allow for non-Gaussian in-
novations z;, following Andrews (2001, Section 5), we consider the rescaled
sup-LR statistic, defined by

2 ~ ~
LR = T*[sup Lr(0s, ) — sup ﬁT(ezaﬁ)]a (2.7)
C" Beog BeBs

where the scaling factor ¢* is defined by

T
e =Ry2, R =TS ()" — 1) (2.8)

t=1
with w* := @3, the restricted estimator for w. Under assumptions stated

below ¢* and £} have probability limits ¢ = k4/2 and k4 respectively, where
the kurtosis x4 of 2; is given by k4 = E[(2? — 1)?].

To state the limiting distribution of the LR} statistic, we make the fol-
lowing assumptions:

Assumption 2.1 The process {(y,x:) : t € Z} is stationary and ergodic.



Assumption 2.2 With F, the natural filtration generated by {(zs,zs) : s <
t}, 2 and Fi_y are independent. Moreover, ry := E[(2? —1)?] < co.

Assumption 2.3 E[z}] < oco.

Assumption 2.4 For any vector (a,b)’ € R?\ {0}, az? + bx?|F;_1 is non-
degenerate.

Remark 2.1 Assumptions 2.1 and 2.4 are standard reqularity conditions. In
relation to Assumption 2.1, observe that Han and Kristensen (2014, Lemma
1) state a sufficient condition for the existence of a stationary and ergodic
solution to the GARCH-X model which includes the case of ag, Bg > 0. In
line with Han and Kristensen (2014) and Francq and Thieu (2015), one can
relaz Assumption 2.2 and the underlying assumption of z; being IID(0,1).
Indeed, one could instead assume that z; is a martingale difference sequence
with respect to F; with constant conditional higher-order moments, see Han
and Kristensen (2014, Assumptions 1(i) and 2(i)). Relazing Assumption 2.2
this way implies that one needs to impose finite higher-order moments of z
and x;, as discussed in Francq and Thieu (2015). Assumption 2.8 imposes a
finite fourth-order moment of x;, which can be motivated by considering the
ratio appearing in the score (and Hessian),

ohy(0,8)/0v x7 | + BOh_1(0, )/ 0y

h(6, B) (1—p)w+ay?, + Bhi-1(0,6) + vz,

For a,v > 0, that is, with o and v interior points, the fraction is bounded
by a constant, and hence integrable with no further requirements on finite
moments (see e.qg. the arguments given in Jensen and Rahbek (2004a,2004b)
for the non-stationary (G)ARCH model). If, as under Hj, o =~ = 0, the
denominator reduces to w, such that finite second (fourth) order-moments of
x; are needed in order to show that the fraction is (square) integrable. Note
also in this respect that Francq and Zakoian (2009, Assumption A5) assume
finite sixth-order moments of y, when deriving asymptotic properties of the
QMLE and related test statistics for the GARCH(p,q) model.

Theorem 2.1 Consider the GARCH-X model given by (2.1) with log-likelihood
function in (2.4). Under Assumptions 2.1-2.4 and Hf, with LR the rescaled
sup-LR statistic defined in (2.7), it holds that

LR} = sup {X;(cKJ;'K') "' Ag} . (2.9)
Be@g



Here ¢ = ky4/2, K = [I, : 0] € R?*3, J is a constant positive definite matriz
defined in (A.3), and

Ng =arg inf {(n— Zp)(KJ;'K')""(n—Zs)}, Zsg~ N(0,cKJ;'K").
nERi

The proof of Theorem 2.1 is given in the Appendix. The limiting distribu-
tion in (2.9) is non-standard, in particular so as Jz depends on 3, and requires
simulations as discussed in Andrews (2001). Also note that e.g. Andrews
(2001) and Francq and Zakoian (2009) provide a geometric interpretation of
Ag as the projection of Zz onto R .

2.2 Testing H,

In the following we consider testing Hy, when H{ is rejected, that is, we test
Hj under the assumption that ag > 0 and 5y may be on the boundary of the
parameter space.

Our results rely on a general result for testing on the boundary of the
parameter space. The result formulated in Lemma 2.1 below states that
the LR test is asymptotically nuisance parameter free even when a nuisance
parameter is allowed to be on the boundary of the parameter space. The
lemma relies on the specific condition (A.iv) below on the inverse expected
information, which can be verified for the GARCH-X model, in addition to
standard high-level conditions (A.i)—(A.iii) for testing on the boundary.

We formulate the lemma in terms of a general likelihood function L1 (1)
in terms of the parameter 7.

Lemma 2.1 Consider a likelihood function Lp (T) in terms of the parame-
ter 7 = (v,8,1), where v € ©, = [0,7],8 € ©5 = [0,5], 0 < 7,8 < o0,
and n € ©, with ©, a compact subset of R" for some n € N. With
T = argmaxgce,xo,x0, L1 (T) and T = argmaxge(oyxo,xeo, L (7), define
the likelihood ratio statistic LRy for the hypothesis that v = 0, by LRy =
2(Lr(7) — Lr(7)). With true value 79 = (0, S, 1m0) where By € O and

Mo € int©, make the following assumptions:
(AQ) 7,75 6,

(A.ii) = MTTTO) % G, where G ~ N(0,.J), and —+ZELG0) 2o 5 ith J

T oror!
posztwe definite.!

!Throughout, when the partial derivative of a (likelihood) function in the direction
(or B) is evaluated at a point where v =0 ( 8 = 0), the derivative is given in terms of the
right-derivative.



(A.iii) Lp(7) is twice continuously differentiable on ©, x ©g x O,, and for
all sequences (yr), yr — 0,

182£T(7') _ 182£T(To)

T oror’ T oror

sup 20.

TEOLXOXOy:||T—70||<Vr

(A.iv) Either 3y € int©g, or if By = 0, (J71)
the corresponding entry of J 1.

Then LRy = [max (U,0)]? with U a standard Gaussian distributed ran-
dom variable.

.5 = 0 where (-), 5 denotes

Lemma 2.1 follows by careful application of Andrews (2001, Theorem 4)
under the additional Assumption (A.iv).

Next, we apply Lemma 2.1 to test Hy in the GARCH-X model. Consider
the standard (quasi-)LR statistic for testing H, based on estimation of the
parameter 7 := (7, ,w, f) € O, := O x Op, with © and ©4 defined in (2.2)
and (2.3), respectively. The Gaussian-based conditional quasi-log-likelihood
function is

Lr (1) := th<7'), li(T) = log (#(T) exp {—%}) . (2.10)

hi(r) = (1 = Blw + ath_1 + Bhe1(T) + 7$§_1, t=1,...T,
with initial value ho(7) = w. The QMLE for 7 is defined as

7 = arg max Ly (1),

and the constrained estimator under H is

T = arg max »CT (7—)7 @7—,0 = {(’Y,Oé?w7ﬁ)/ EC_')T 7:0}

TEO, o
The rescaled (quasi-)LR statistic LRy is,
LRy :=2[Ly (7) — L1 (7)]/¢, (2.11)
with
T
Ei=Fgf2,  Ra=T7") (y7/h(7) —1)% (2.12)
t=1

In order to state the limiting distribution of the LRy statistic in (2.11),
we impose an additional Assumption 2.5 about the dependence between the
processes (z;) and (y;) under the hypothesis Hy. It is needed in order to
ensure condition (A.iv) holds and is in particular implied by assuming that
x; and F7 are independent, with F7 the natural filtration generated by (z; :
s <t).



Assumption 2.5 With 3, € ©g, then for By =0, E (:cf|yt,yt,1) =F (a:f)
for k=24.

Moreover, we impose moment conditions on x; and y;:

Assumption 2.6 There exists § > 0 such that E[|| (22,42)" |?*9] < 0o and
E[Z2") < 0.

Theorem 2.2 Consider the GARCH-X model given by (2.1) with log-likelihood
function in (2.10). Suppose that Assumptions 2.1, 2.2 and Assumptions 2.4—
2.6 hold. Then under Hy, with ag > 0 and By > 0, it holds that with LRy
defined in (2.11),

LRy = [max(U,0))?, with U ~ N(0,1). (2.13)

Remark 2.2 Note that it is crucial for the condition in (A.iv) to hold that
the parameter w is estimated. That is, fiving w at w = wy, then (A.iv) does

not hold, that is, (J~'), 5 # 0.

Remark 2.3 The results on testing Hy are derived under the assumption
that the covariate, x;, is strictly stationary and ergodic (Assumption 2.1).
Han and Kristensen (2014), see also Han and Park (2012) and Han (2015),
consider the properties of the QMLE of the GARCH-X model in the case
where x; is non-stationary under the crucial assumption that the parameters
v, a and B are bounded away from zero and thus the theory cannot be ap-
plied to test Hy. Also, while much emphasis has been given to the condition
(A.iv) of Lemma 2.1, we emphasize that our theory requires the score to be
asymptotically Gaussian and the information constant. For the GARCH-X —
under non-stationarity of x; — as established by Han and Kristensen (2014),
the limit of the score is non-Gaussian, and the limiting information random.
Consequently, it is a non-trivial task to derive the limiting distribution of
the LR-statistic when x; is non-stationary, and we leave this task for future
1nwestigation.

3 Other GARCH-X Type Models

We show by two examples that we can extend the theory for the GARCH-X
model to hold for the case where we either replace the likelihood defining
distributional assumption, or replace 1, to be integer-valued as opposed to
real-valued. The two examples are the GARCH-X model with Student’s
t-distributed innovations (--GARCH-X) and the integer valued Poisson au-
toregressive model with exogenous variables (PAR-X).
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When presenting the two models, we focus on the second test of Hy, while

the first step in the sequential testing is omitted for brevity. Thus our focus
is to show that for the PAR-X and t~-GARCH-X models that the condition
(A.iv) on the inverse information holds.

3.1 Student’s :-GARCH-X

We show that Lemma 2.1 applies to the t-~-GARCH-X model. In particular,
we give details on establishing condition (A.iv) for the inverse information,
and also establish in Theorem 3.1 a novel result on consistency of the t-
GARCH-X MLE for condition (A.i). Theory for the t--GARCH model with no
exogenous covariate is considered in Berkes and Horvéth (2004), Straumann
(2005, Ch.6), and Pedersen and Rahbek (2016).

The t-GARCH-X model is,

Y =0z, or=wtayl | +pol +y?,, w>0,a,6,7>0, (3.1

where (z;) IID scaled t,-distributed with degrees of freedom v > 2. Specif-
ically, with z; Student’s t¢-distributed with v > 2 degrees of freedom, 2, =
/(v —2)/vZ, such that E[z] = 0 and E[z?] = 1. With v an additional para-
meter when compared to the GARCH-X model, define the model parameter
0= (v,a,w,B,v) € 6, where

O={(v, 0w, Br)eR:0<y<F0<a<aqw<w<w0<F <P,
and v <v <7},
for some 0 < 7 < 00,0 <@ <00, 0 <w<w<<o00,0<f <1, and
2 < v <V <oo. As before 6y = (v, g, wo, Po, ) € O denotes the true

parameter, and we assume throughout that w < wy < W, ag < @, [y < B,
and v < vy < 7. The Student’s t-log-likelihood function is,

£ol0) = 7 h(60). 1(0) = 5 loglhe(6)] + log{au u/ VR @)}, (32
hi(0) = (1 — Bw +ayf | + Bhi1(0) +yax7y, t=1,...T,

with initial value ho(#) = w and

2

14 x _(
9 (2) = 2 (1+m>

with I'(-) denoting the gamma function.

10



With 6 = arg maxgeo L7(6), and the constrained estimator § = arg maxgee, L1 (6),
Oo ={(v,a,w,B,v) € © : v =0} we first state result for consistency of the
estimators which is needed to verify condition (A.i) in Lemma 2.1.

Theorem 3.1 Consider the t-GARCH-X model given by (3.1) with log-likelihood
function in (3.2). Suppose that Assumptions 2.1, 2.2, and 2.4 hold, with
El||(yt, z¢)'||°] < oo for some s > 0. If (ag,70) # 0, then 8 = 0y + 0,(1). If

Y0 =0 and ap > 0, then § = 0y + op(1).

Theorem 3.1 implies that under Hy : v = 0 and o > 0, the MLE’s f and
6 are consistent. Next, we state the equivalent of Theorem 2.2, where we in
the proof in the Appendix establish that conditions (A.i)—(A.iv) of Lemma
2.1 hold for the t--GARCH-X model.

Theorem 3.2 Consider the t-GARCH-X model given by (3.1) with log-likelihood
function in (3.2). Assume that Assumptions 2.1, 2.2, 2.4-2.5 hold and
E|l(ye, z¢)'||*] < oo. Then under Hy, with ag > 0 and By > 0,

LRy = 2[Lr(0) — L7(0)] = [max(U, 0)]?, where U ~ N(0,1).

Theorem 3.2 illustrates in particular, that even for the --GARCH-X model
with the t¢-likelihood and an extra parameter (degrees of freedom v) to be
estimated, the condition (A.iv) still applies.

3.2 The integer-valued GARCH-X model: Poisson Au-
toregression with Exogenous covariate (PAR-X)

Consider next the Poisson integer-valued GARCH-X model, the PAR-X
model as considered in Agosto et al. (2016). We show here that a result
similar to Theorem 2.2 (and Theorem 3.2), applies to the PAR-X model.
Theory for the pure PAR model is given in Fokianos et al. (2009), and
Ahmad and Francq (2016).

Let y, € NU{0}, t =0, 1, ... be a time series of counts, and z;, t =0, 1, ...,
as before an ergodic covariate. With F; the natural filtration of {(y;,z;)" :
i <t}, the PAR-X model in Agosto et al. (2016) is given by

yi|Fi—1 ~ Poisson(\,), t=1,...,T, (3.3)
with time-varying (conditional) intensity, A; > 0,

A=1-pF)w+ay_1+ B -1 +7f(zi-1).

11



Here w > 0, a,v, > 0, and f(-) is a non-negative link function, f : R —
[0,00), see Agosto el al. (2016) for details.

As for the GARCH-X model, we consider testing the hypothesis Hy : 7 =
0, and as for the GARCH-X model, under H, the test is non-pivotal and
furthermore [ is not identified if & = 0. Thus the problem of testing Hj is
identical to the (t-)GARCH-X models and we show that the same approach
is indeed applicable.

With parameter 6 = (v, «,w, 3)’, the conditional Poisson-log-likelihood
function is given by,

T

Lr(0) = Z (), 1(0) = yilog[A(0)] — Ae(0), (3.4)
M(0) = (1= B)w+ ayi—1 + BN\—1(0) + v f(z-1), t=1,..,T,

with initial condition \g(#) = w. The MLE 6, § = arg maxgee Lr(0), where
© is given by

O={(yawp) eR:0<7<F0<a<Tw<w <0< [ <P,

for some 0 < 7 < 00,0 <@ < 00,0 <w<w<o0,and 0 < < 1. The
constrained MLE is given by,

0 = argmax Ly (A), with ©g = {(7,,w,3) € © : v = 0}.

0€Bq

As before let 6y € © denote the true parameter and assume throughout that
w<wy <, ay <a,and fy < . Similar to Theorem 2.2, it follows from the
proof in the appendix that the limiting information satisfies (J _1)aﬁ =0,
that is condition (A.iv) holds.

Assumption 3.1 (Agosto et al., 2016) The joint process {(ye, A, 1) : t €
7} is stationary and ergodic with E|||[ys, M, f(z:)]'||] < oo.

Assumption 3.2 With z; := yi/ N, it holds that z; and F,_1 are indepen-
dent.

Assumption 3.3 For 8y =0, E[f*(z)|ye, yi—1] = E[f*(x)] for k= 1,2.

We note that Assumption 3.3 holds if the covariate x; is independent of
F7?, where F} denotes the natural filtration generated by (zs : s < t), with

2t = yt//\t~

Assumption 3.4 For any (a,b) # (0,0), ay; + bf(x)|Fi—1 has a non-
degenerate distribution.

12



Theorem 3.3 Consider the PAR-X model given by (3.3) with log-likelihood
(8.4). Suppose that Assumptions 3.1-3.4 are satisfied. Then under Hy, with
ag >0 and By > 0,

LRy :=2[L1(0) — L1(0)] = [max (U, 0)]?, where U ~ N(0,1).
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Appendix

Throughout, we let 0 < C' < 0o and 0 < p < 1 denote generic constants.

A Proofs of Theorems 2.1 and 2.2

Proof of Theorem 2.1. Consider initially the ergodic version £ (0, 3) of
the log-likelihood function L7 (0, 3) in (2.4). Specifically, in light of Assump-
tion 2.1, for any 0 € © and 3 € Og, let

08 1o [ L o _y_?}
lt (975) - 10g ( 27Th?(9,ﬂ) e p{ 2h2‘(9,5) > ) te Z7 (AQ)
h:tk(e?ﬂ) = (1_B)w+ay1£2—l+6h:—1(97ﬂ>+7$§—17 t€Z.

We verify the regularity condition of Andrews (2001, Theorem 5):
(i) 05 = 0y + 0,(1) and 0% = Oy + 0,(1)

(i1) For fixed § € ©g, L1(0,[) is twice continuously differentiable on O.
For all sequences (yr), yr — 0,

1 0°L5(0,5) 8%W%®‘

1 20
T 0000 T 0000 '

sup
0€6:(|0—bo|| <7

(ii1) \F ST o (90 = @G. for some Gaussian process {G3 : 8 € Oz} that
has bounded continuous sample paths almost surely.

() —% I i ga(gg,’ﬁ) = Js+0,(1) for all 5 € Op, with Jz positive definite

uniformly on Og.
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(v) For any 8 € ©g, Gz ~ N(0,cJg) with ¢ = ky/2.
(vi) With ¢* defined in (2.8), ¢* = ¢+ 0,(1).

(vii) supgee, [|0L7(00, 8)/00 — OLr (6o, 3)/00 = o »(T%/?) and
SuP(@',,B)’EV(@o)X@g ||82£*( )/8080/ 62£T( )/89891” = Op( ) with
V(by) ={0 €O :|0—0 < e} for some ¢ > 0.

Here (i) follows by Lemma A.1, while (ii) holds by Lemma A.2 and the
uniform law of large numbers (ULLN) for ergodic processes (see e.g. Ranga
Rao, 1962). (i) holds by Lemma A.3. For (iv), note that by the ergodic
theorem and Lemma A.2

aZZ* 80a6 : _ aQZr(Q(Mﬁ)
= Z YT =Jsg+o0,(1), with Jz3=—F {—86’6’0’ } and

FLO.6) L () wE ) hi(0.5) 9k (6. 8)
9000 2020, 5) \ (6, B) 0 o0

Hence, with V; s defined in (A.19),

1
Js=E | —
B |:2w2

0

1
@ - Vsl | = e B ViV (49)

In order to show that the matrix Jp is positive definite, we note that V; sV/
is positive semidefinite. For k = (ky, ko, k3) € R?, k' Jgk = 0 if and only if

k;’vtﬁ:kIth - z+k226’yt i+ ks =0 as. (A.4)
=0

Due to Assumption 2.4, we have that (A.4) is true if and only if £ = 0. We
conclude that Jj is positive definite. This establishes (iv). Next, (v) follows
directly from Lemma A.3 and (A.3), and (vi) by Lemma A.4. Finally, (vii)
is implied by Lemma A.5. m

Proof of Theorem 2.2. Similar to the proof of Theorem 2.1, we consider
the ergodic quasi-log-likelihood function for 7 € ©,,

DEDWHGE (A.5)

1 y; }
F(t)=log | ———c¢ — , teZ, A.6
#(7) g( 27 h; (1) Xp{ 2h; (1) (A-6)
Ri(t)=(1-PB)w+ ayf_l + Bhi_ (1) + 7:)3?_1, teZ.
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We start out by verifying the following conditions which allows to use a
modified version of Lemma 2.1:

1. The estimators 7 and 7 satisfy condition (A.i) of Lemma 2.1.

2. Condition (A.ii) of Lemma 2.1 is satisfied for the ergodic likelihood in
(A.5) where the covariance matrix of G is replaced by ¢J with ¢ = r4/2
and ry = E[(27 — 1)?].

3. Condition (A.iii) of Lemma 2.1 is satisfied for the ergodic likelihood in
(A.5).

4. With V(1p) = {7 € O, : |7 — 10|| < €} for some small € > 0,
10L5(70) /07 — 0L (70) /07| = 0,(T*?)
and
sup ||0*Lh(1)/0T07 — O*Lr(7)/0707|| = 0,(T).
T€V(10)

5. With &4 defined in (2.12), £y = kg + 0,(1).

The consistency of 7 and 7 follows by arguments given in Han and Kris-
tensen (2014, proof of Theorem 3), using Assumptions 2.1 and 2.4.
Turning to point 2, we note that

al:(To) 1

— (52 _
or 2<zt DV
with
Oh; (1) /0T

V= AT

T ) D

Ohy(7)/0T = (Z By Z RTAN Z i oy + ”Yxt21i)> :

i=0 i=0 i=1

(A.8)

By Assumption 2.6, E[||V;]|?] < oo, so using that z; and V; are independent,
and that F|[z}] < co by Assumption 2.2, E[||0l;(7)/97]|*] < co. Noting that
V; is Fi_1-measurable, we have that 0lf(79)/07 is a martingale difference
with respect to F; and with finite variance. Hence, using that 9l (1)/0T
is ergodic, by the CLT by Brown (1971), we have T-Y20Lk(m) /07 =
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N(0,9Q), with Q = (k4/4)E[V,V/]. By the ergodic theorem and Lemma A.6,
—T19%L2(19)/0TOT" = J + 0,(1), where, by (A.28),

J =SBV (A.9)

Clearly, 2 = ¢J with ¢ = k4/2. By arguments similar to the ones given in
the proof of Theorem 2.1 to show that Jg is positive definite, we conclude
that E[V;V/] is positive definite.

Point 3 follows by Lemma A.6 and the ULLN for ergodic processes. Point
4 follows by arguments similar to the ones given in the proof of Lemma
A.5. Point 5 follows by Lemma A.7. If 55 > 0 condition (A.iv) of Lemma
2.1 is satisfied. The limiting distribution of LRt is then immediate from
Lemma 2.1, using point 4, that ¢ = ¢ + 0,(1) (by point 5), and Slutzky’s
Lemma. In the case 5y = 0, following condition (A.iv) of Lemma 2.1 we
verify (J '), 5 = 0. From (A.7),(A.8), and (A.9),

g EE Oh;(70)/0T Oh(10)/OT
2 h (7o) hi(r) |’

with ORh}(10)/0T = [22 |,y |, 1, apy? ], and ki (1) = wo + apy? ;. Hence,
using Assumption 2.5,

4 2 .2 2 2 2
Ty 1 ytfaxtfl ngl 040%719372
J = lE 1 Yi—1 Y1 QoY 1Yo
92 2 )2 1 apy?
(wo + aoy? ;) 0Yi—2
2 4
QgYi_o

R4z b/iz,x ak2 z d/f2,ac
bre, c b f

2 kg b a d ’
d/<v2,:v f d g

where
[ 1 1 Ui ] { Yi }
a=F , b=F , ¢c=F
_(WO + @09371)2_ {(WO + 0401/?71)2 (wo + 040%271)2
(A.10)
J—E aoyt{é 2—  f=E { OéOthflytzfQ 2} " [ a%yZ’LzQ 2]
| (wo + oy 1) ] (wo + @oyi 1) (wo + oy 1)
(A.11)
Kop = E[z}], and Ky, = E[z}]. (A.12)
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It holds that

2 —2
afm}wfan%’w 0 an47wfan%x k2@ 0
0 2d? —2ag 2bg—2df 2a f—2bd
Jfl _ gb%2—2bdf +cd?+af?2—acg gb%2—2bdf+cd?+af?2—acg  gb?—2bdf+cd?+af2—acg
- —2 K 2bg—2df 5 2cd—2bf
a/-e47$7an§,$ 2,2 b2 2bdf+cd?+af2—acg gb%—2bdf +cd?+af2—acg
2a.f—2bd 2cd—2bf 2b%2 —2ac
0 2 2 p) 2 2 2 2 2 )
gb?—2bdf +cd?+af?—acg  gb%>—2bdf+cd’+af?—acg  gb?—2bdf+cd?+af?—acg
(A.13)
with
-1

&= a (K3, — Kag) (gb* — 2bdf + cd? + af? — acg)
X (29b2n§7x - 4bdf/€§7m + 2cd2/£§7x + 20k, f* — 2acgkay) -

We note that J~! has entries zero with respect to 5 and v, and the limiting
distribution of LRy follows by Lemma 2.1, using that ¢ = ¢+ 0,(1) (by point
5), and Slutzky’s Lemma. =

A.1 Lemmas related to the proof of Theorem 2.1

Lemma A.1 Under Assumptions 2.1-2.4, and H{, é[g = b0y+0,(1) and ég =
00 + Op(l).

Proof. We start out by showing that ég is consistent. The proof follows
the steps given in Han and Kristensen (2014, Proof of Theorem 3). Since
© is compact and 6 — [f(0,3) is continuous almost surely on © for fixed
B € ©g, it suffices to show that (i) %ZtT:l [f(0,8) = E[l;(0,5)] + o,(1),
where E[l} (0, 8)] exists for all (¢, )" € © x O, (ii) E[l; (6, B)] > E[l}(6, )]
for all 0 € ©\ {0p} and fixed € Op, (iii) F[supyee /;(6,5)] < oo for fixed
B € O and (iv) Sup(g. sy cove, 150, B) — L2(0, B)] = o,(T).
We note that

1
E[ sup [;(0,8)] < —5log(w) < oo. (A.14)
(0.8)cOxOp 2

Hence (i) follows by the ergodic theorem.
Turning to (ii), since v = apg = 0, HE, hi (6o, ) = wp a.s for all . Hence,

E[1 (6o, D)) < 5 E{]Toglhi (o, H]I} +C < oo

Using that log(z) < z—1 for all z > 0 and with equality if and only if z = 1,
we have that

Bl 00, 9] - 16,9 > 3 { ~tog | )] 14 S0 >0
A.15)
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with equality if and only if A} (6o, 5) = h;(0,5) a.s. Using again that Hg,
hi (6o, 8) = wo a.s, (A.15) holds if and only if wy = (1 — B)w + ay? | +
Bhi_1(6,5) + vr?_ | a.s.,or equivalently,

7 )
1—-— = oy 4+ —T a.s. A.16
- ;;a(tl Lot ) (A16)
Suppose (a,7) = (0,0), then clearly w = wp. On the other hand, suppose
that (a,y) # (0,0). Then due to (A.16), > =, 5" <azt2_1_i + wloxf_l_i) is
degenerate, which is ruled out by Assumption 2.4. We conclude that (A.16)
holds if and only if § = 6y = (0,0, wp)’, and hence that (ii) holds.

We note that (A.14) implies (iii).

It remains to verify (iv). From Francq and Zakoian (2010, p.157),

wp 0.0 100 <FG (S E)( aw  Hi(0.9) 3l

2
(0",8)€Ox0Og w ,B)'€OxO4

Using that y? = wpz?, we have that for some 7 € (0, 1),

E sup |l;(975) - lt(&ﬁ)V] (Al?)
(9’,[3)’6®><@ﬁ
—1 (1 woz?) . ' ,
<E||f= ( + sup  hy(0,0)+w =0(p'),
2 \w w2 [(9’,6)’e@x®5 0(0.5) ] ()

where we have used Assumption 2.2 and that Elsupy gycoxe, [16(0, 8)["] <
o0 as E[||(xy, y:)[[*] < coin light of Assumptions 2.2 and 2.3 and the fact that
B < 1. Using (A.17) and Markov’s inequality, for any € > 0, 32, P[sup(y sycoxe, |l; (0, 8)—
1(0, B)| > €] < co. By the Borel-Cantelli Lemma, we conclude that sup(y s coxe, |l; (0, 3)—
W(0,8)] — 0 as. ast — oo. As supy gycoxe, |[L7(0,8) — Lr(0,8)] <

ST SUp(g gy coxoy |1i (0, 8) — (0, B)| , we conclude that (iv), using Cesaro’s
Lemma. R )
Turning to the consistency of ¢, we note that ¢ = (0,0, w5)" with &} =

arg max, el s —3 2o [l0g(w)+y7 /w] = wl {T‘l S vi < g} +w1 {T‘l S vi > w}
+T' 3 A {g <T 'Y g2 < U}. By assumption, wy € (w,®), such

that, using the ergodic theorem, &f = T~! Sy + 0,(1) = wo + 0p(1).

Hence, 9; =0y +0,(1). m
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Lemma A.2 Under Assumptions 2.1-2.3 and H{, with [F(0,3) defined in

(A.2),
Ol H] (A18)

E 8989’

sup
(6/,8)€OxOp

Proof. With 6; the ith entry of 0 = (v, a,w)’,
0?11 (0, B) 1 2 1 0hy(0,)/00; 0h; (0, 3)/00;
= —=(2woz; — 1)— . . .
ht(eaﬁ) ht(eaﬁ) ht(evﬁ)

8&69; 2
As SUP(¢7,8ycox04 oh;(0,8)/0y < Z?Ooﬁx? 1—i» SUP(0r gy cOx O, Ohi (0, 8)/0a <

S Bwor? i, SUp (g gycoxo, 0N (0, 8)/0w = 1, and sup(y gycoxe, i =10,8) <
~1 (A.18) follows by Holder’s inequality and Assumptlons 2.2-23. =

Lemma A.3 Under Assumptions 2.1-2.4 and H{, with [;(0,3) defined in
(A.2),

1 0%, )
Gr. = \/_Z oy =G

for some Gaussian process {Gz : [ € ©Og} that has bounded continuous
sample paths almost surely. Moreover, with By, P2 € ©g, the process {Gp :
B € O} has kernel
K4
ZB1ﬂ2 = A2 E[V;ﬁﬁl tl,ﬂg]z Rg = E[<2t2 - 1)2]7
0

where .
‘/;f,ﬂ = (Z ﬁi‘%?flfw Zﬁlyt 1—2» ) . (Alg)
=0 =0

Proof. Following Andrews (2001, p.730), and noting that ©4 = [0, 3] is to-
tally bounded, it suffices to show that (i) any finite dimensional distributions
of Gr. converge to those of G. and (i) {Gr.: T > 1} is tight.

We start out by proving (i). For 8 € ©g,

1 Al ( 90, 1 XT: 1
Z — Vi, (A.20)

VT < VTS QWO
with V,;”g defined in (A.19). By Assumptions 2.2-2.3 and since 8 < 1,
E[|Vi5]I] < oo, so using that o - (zt 1)Vi s is a martingale difference se-

quence with respect to F;_1, it follows by Brown (1971) that T—1/2 Z:{:l ol (0o, B)/00 =
N(0, Xgp)-
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Next, let 81,82 € O, and ki, ke € R3. Using the same arguments as
above,

T /

1 Ol (60, B1) Ol (00, B1) | w

ﬁ Z(lﬁ’ k2> ( : 809 : ) : a(;) : - N<07 kllzﬁlﬁlk1+k525252k2+k325152k2)7
t=1

where Eﬂiﬂj = %E[W,Biv;g,g.]; l,j = 1,2, with kizglﬁlkl + ]{3525252]@2 +
0 gV}
k1Xa,,k2 > 0. An application of the Cramer-Wold theorem yields that
(i) holds.
Next, we verify (ii) by relying on Bierens and Ploberger (1997, Lemma

A.1). We consider (A.20), and note that E[(2w)~ (22 — 1)|F_1] = 0 and
FE[(2wo)™%(22 — 1)?] < oo. Moreover, for any 31,85 € Op [|[Vig, — Vig,| <

|81 — Ba| Ky, with
o H (Z Frta S ) _ H (ZF zm)
=0 1=0

which is JF;_j-measurable. Following Bierens and Ploberger (1997, Lemma
A.1), it suffices to show that limsupy_., & 71, B[(2wo) 2(22—1)2K?] < o0,
which is immediate from Assumptions 2.2-2.3. =

Lemma A.4 With &} defined in (2.8), suppose that Assumptions 2.1-2.}
and H{ hold. Then i} = k4 + 0,(1).

Proof. We have that s, = E[2}] — 1, and &5 = T-' S yl/e? + 1 —
27131, y?/&*. Note that y2/w* — 22 = (wo/&* — 1)22 and yi/&*? — 2f =
[(wo/@w*)? — 1]z}. Hence, by Lemma A.1 and the ergodic theorem, &} =
T Zthl g +1-27" Zthl 7 +0p(1) = El] = 1+ 0,(1) = k4 +0,(1). m

Lemma A.5 Under Assumptions 2.1, 2.3 and Hf, with L(6,3) defined in
(A.1) and L1(0,3) defined in (2.4),

sup |0L(60, 8)/00 — ILr (0o, 8)/ 00| = 0,(T"/?) (A.21)

66@5

and

sup  [|02L5(0, B)/0000" — 0L (6, 5)/0000|| = 0,(T).  (A.22)

(6/,8)€OxOp

Proof. We start out by showing that

E | sup |01 (0o, 8)/00 — Oli(6o, 8)/00|" | = O(p"), (A.23)

66@5
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for some sufficiently small » > 0. We have that

0l; (6o, 5)/00 — 0ly(6o, V89——§L% 1) [0h; (00, 5)/ 00 — Ohe (0, 8)/06)]

Note that

!

On;(6,8)/06 = Vi and Ohy(6 /39—<Zﬁ%t11,251yt1w>

(A.24)
Hence,

sup [|0h; (0, 3)/00 — Ohy(0, 8)/00]| < B’

9

(Zm_l ,,Zﬁy - )

,86@5
(A.25)
and we have that for some small r € (0, 1),
sup H@QK&O,ﬂ)/89<—-8@(90,6)/89HT]
Be@g
[ 1 " —=r > —1 > —1 I
<E <2—w0> 22— 18" (Zﬁ v%y 25 y2li)
L i=0 i=0 1
VARV —r =\ >\ I
=F <2_wo> 22— 18" (Zﬁ 22y, Zﬁ w0221i> =0(p")
i i=0 i=0

where we have used Assumption 2.3 and that 3 < 1. Hence, (A.23) holds.
By the Markov inequality and the ¢, inequality (see e.g. White, 2001, Propo-
sition 3.8), we have for any ¢ > 0 and some r € (0, 1),

P

T2 sup |0L5(00, 3)/00 — OL1 (6o, 5) /08| > 6]

56@5

T
< T_T/2€_T Z E
t=1

as T' — oo, where we have used (A.23). We conclude that (A.21) holds.
In order to show (A.22), we start out by showing that for any 6;,6; €
{7, @,w}, for some sufficiently small r € (0, 1),

sup |0l (0q, 5)/060 — 8lt(«90,5)/89||r] = o(1),
8c65

E sup |82l:(9,6)/891(99] - a2lt(0,6)/80289]|r

(6/,8)€OxO5

=0(p), (A.26)
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From Francq and Zakoian (2010, p.167), suppressing the dependence on 0, f3,

sup  |9%(0,3)/00:00; — 9*1,(0, B)/00,00;|"
(0",8)€OxOy

< L|(ou _ gy (Lohi (Lon
N AV A
(% \[(L L\ Ok 10k on\] 10k
hy hif hy) 00; hy \ 00;  00; hy 00,
i Lo [(1_ 1\ Ok 1 (0 oh
he hy 00; hy he) 00;  hy \ 00; @9
Note that y7 = w27, sup(y gyeoxe, iy < w ™', and supgy greoxe, i ' <
w~!. Moreover,

1 1

he hy| =

sup
(6",8)€®x 64

sup  |hy — hyl < B (Zﬁx_l_z"'zgy 1- z)'

1
w? (0",8)€OxOp

Using Assumption 2.3, we conclude that for some small 0 < r* < 1,

I
E sup — - — = O(ph).
(0",8)'cO©x064 ht ht ] ( )
Likewise, in light of (A.24)
Ohy|” oh;|”
E sup ! =0(p") and E sup t = 0(p"),
(¢",8)€O©xOg 90; (07,8)€OxOp d0;
and using (A.25),
oh;  Oh|"
E sup E = O(p").
©.8yeoxe, | 00;  00; (7)

Combining these properties, and applying Holder’s inequality repeatedly, we
conclude that (A.26) holds for some sufficiently small 0 < r < 1. By argu-
ments identical to the ones given above, we conclude that for any € > 0,

P

T sup  ||02L(0,8)/00,00; — 0°Lr(0, ywwn>4:du
(0",8)'€OxOp
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A.2 Lemmas related to the proof of Theorem 2.2

Lemma A.6 Under Assumptions 2.1, 2.2, 2.4, 2.5, 2.6, Hy and oy € (0, @),
with [} (1) defined in (A.6) and V(19) = {17 € O, : || — 70|| < €} for some
small e > 0,

E | sup ||0%(r)/or0r|| < . (A.27)
T7€V(70)
Proof. For 7, 7; € {7,a,w, 5},
() 1 w2\ (0%hi(r)/omor,
(1= e A2
1,07, 2 ( hf(T)) ( hi(T) > (4.28)

Sl ) (S504) (504,

so we seek to show that
( E;f ) (82h;(2)/87i87j)‘ o
h; (7') h} (7')

() (25 (2] -~

By Holder’s inequality, it suffices to show that for some p,q > 1 satisfying
1,1
¢ +p =1

E

sup
T€V(10)

and

E

sup
TGV(’T())

v |*
E | sup < 00, A.29
T7€V(10) h;fk(T) ( )
and
8h*(7’)/8ﬂ-> <8h*(7)/07’») P O?hi (1) /0707,
E | su t : J <oo, E| su t J
revi) ( i (7) i (7) v | BE(T)
(A.30)
Note that ) .
Yi 2 t(TO) (A31)

nir) - Uhi(r)

Choosing V(7p) such that « is bounded away from zero on V(7y), by Francq
and Zakoian (2010, p.164),

hi (7o)
hi(T)

<O @i Boayi 1,
- a Zwt Blay?

25

p
< 0



Clearly, if 5y = 0, |k} (70)/h;(7)| < C, uniformly on V(7). Hence, with 6 > 0
defined in Assumption 2.6, using (A.31) and Assumption 2.2

2
t

o i (7)

sup < oo, if By =0.

T€V(70)

(1+6)/5]

If 55 > 0 we may choose V(79) such that § is bounded away from zero on
V(7p). In that case, using Francq and Zakoian (2010, p.164), for s € (0,1)

Qo - Bo ' ayt2—1—i ’
§C+EZ(615)( - ) (A.32)

1=0

hi (10)
hi(T)

In light of (A.31) and (A.32), choosing s sufficiently small and V() such
that 8y/8'* < 1 uniformly on V(7)) and E[y*"*"’] < oo, we have by
Assumption 2.2 and repeated use of Minkowski’s inequality,

2
t
hi(7)

Hence, (A.29) holds for ¢ = (1 +6)/0 > 1. Turning to (A.30), note that in
particular

E

sup < oo, if By > 0.

T7€V(10)

(1+5) /5]

w <w ! Z B gl vai ).
hi(7) i=1

By Assumption 2.6 and Minkowski’s inequality,

1+46
E | sup

T7€V(70)

()

By similar arguments, we conclude that (A.30) holds forp=1+4. =

Lemma A.7 Under Assumptions 2.1, 2.2, 2.4, 2.5, 2.6, Hy and o € (0, @),
with Ry defined in (2.12), Ry = kg + 0p(1).

Proof. By definition
T T

~ 1 ~4 1 ~2
m4:TZzt+1—2TZzt, (A.33)

t=1 t=1
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and we will start out by focusing on the first term. It holds that

Pt =]
S%izf(Xlt+X2t+X3t+X4t+X5t),
where -
X, = [hmzit@ ?MT’ Xy = [hwzt@?tmr’ X3t22|h:<fo}zt(—% ;1:<%>|
X, 2|h:<%}>%z%;zt<%>|7 and Xop = 2 Ph:(ro;t(—% )h:mq Ph:(%%tz%;u(ﬂq |

Using that hy(7) > w on O, and a Taylor expansion T-'3."  24X;, <
w27 — mo|PT Zthl 2 Sup.co |0k (1)/07||?, where Oh¥(7)/d7 is given
n (A.8). By Assumption 2.6, and ULLN for ergodic processes, 7' 3 24
X Sup,ce, |Ohs(T)/or|* & B[z} SUp,co, |0k (1)/07|°] < oo. Using that
7 = 79 + 0,(1), we have T! Zthl 2¢ X1, = 0,(1). By a similar argument,
we conclude that T-'3 | 22Xy, = o0,(1). Noting that (1) — hy(1) =
B>, Blay?,_;), choosing s € (0,1) sufficiently small, using the ¢, inequal-
ity and Assumption 2.6, E[2{* sup,cq_, |} (7) — he(7)|**] = O(p"). Hence for
any € > 0

ZP(|Z§‘X2,5| > ¢) ZP{|W 22t sup |hi(T) — (7)) | > 5}
t=1 7€Om0

<eg*® ZE {_ 25245 sup |hi (1) — ht(T)]2s} < 0.

TG@T,O

By the Borel-Cantelli theorem and Cesaro’s lemma, we have that 7! Zthl 2 Xy =

0,(1). By similar arguments, 7~ Zt LA Xy = 0,(1) and T 24 X5 =

op( ), and we have that T-'S°] 24 = T7-'3°7 2% + 0,(1). By the LLN,
3T 2 = B2} + 0,(1). By similar arguments 7~ 31| 72 = E[22] +

op(l), and in light of (A.33) we conclude that &y = K4 + 0,(1). =

B Proofs of Theorems 3.1, 3.2, and 3.3

Proof of Theorem 3.1. The proof mimics Han and Kristensen (2014, Proof
of Theorem 3) and arguments given in Straumann (2005, Proof of Theorem
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6.1.1). We will focus on the consistency of 6 and note that the consistency
of @ is proved by identical arguments.
First, we introduce the ergodic log-likelihood function

L30) = = 30 6), 1(6) = —3 Toalhi ()] +loglauly/ VA B}, (B)

hi(0) = (1= B)w + ay; 1 + Bhi_1(0) + 27, tEL. (B.2)

Since © is compact and 6 — [;(6) is continuous almost surely on ©,
it suffices to show that (i) 7 L 150) = E[I2(0)] + 0,(1), where E[l(0)]
exists for all § € O, (ii) E[lf(6y)] > FE[lf(0)] for all 8 € ©\ {6y}, (iii)
Elsupyce [ (0)] < 00, and (iv) suppee 1£3(8) — Lr(0)] = 0,(T).

(i) Follows by Assumption 2.1 and the ergodic theorem, provided that
Ell7(0)] exists for all § € ©. Note that by definition, log[h;(¢)] > log (w), and
hence supyey Iy (#) < C such that E[l}(0)*] < oo for all # € ©. Turning to (ii),
from Han and Kristensen (2014, Proof of Theorem 3), E|log[h;(6y)]| < oo,
such that

E[|13(60)l] < E[log[hi (00)]| + E|log g, [2]| < oo.

Next, following Straumann (2005, Proof of Theorem 6.1.1), let
_ Gulye/ /R (6)] _ Vhi(bh)

fild) = ——=—"———" and n(f) = —=—=.
hi (0) HO)

Using that log(z) < x — 1 for all z > 0 with equality if and only if, it holds
that

\ . fi(0) fi(0)

with equality if and only if f;(0) = f;(6y) a.s. We have that
ft(9> - gu[yt/\/hf(e)]\/hlk(@o) _ gu[rt<9)zt]7"t(6)_

Fi60)  gulye/ VHi@0)VREO) 9wl

Note that by Assumption 2.2, z; and r,(f) are independent. Consider the
conditional expectation of f;(6)/f:(6y) given r:(0):

0 wlr®n)
E{ftwo)’””)} [ Pl

gvlr:(6)2]

- E— P [z]dz

/ el
/

()
9v [Tt (9)2’] Tt(ﬁ)dz
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Using that g, [r;(0)z]r(0o) is the (conditional) density of z; /r(6), we conclude
that E [f,(0)/f:(00)|r:(0)] = 1, such that E[f,(0)/f(0p)] = 1. Hence,

E[l; (0)] < E[I7(60)]

with equality if and only if f,(6) = fi(6y) a.s. So it remains to show that
fi(0) = fi(6p) a.s. implies 6 = 6. Observe that f;(0) = fi(6) a.s. if and
only if

Guol2t) = gu[re(0)z]r:(0)  a.s. (B.3)

Suppose that (v, o, w, 5) # (Y0, @, wo, 5o), then by Assumption 2.4 and ar-
guments given in Han and Kristensen (2014, Proof of Theorem 3),

P(r,(0) 1) > 0.

By Straumann (2005, Lemma 6.1.2), P{gy,,[2:] # gu[r+(0)z:)r:(0)} > 0, which
contradicts (B.3), so necessarily we must have that (v, o, w, 5) = (70, a0, wo, Bo)-
In light of (B.3), using that necessarily () = 1, it remains to show that
Guol2t] = gu[z] a.s. implies that v = 1, which is trivial. We conclude that
(ii) holds.

(iii) holds by the arguments given in order to establish (i).

Lastly, (iv) is shown by arguments similar to the ones given in Han and
Kristensen (2014, Proof of Theorem 3). =

Proof of Theorem 3.2. We show that the conditions of Lemma 2.1 apply.
Due to Theorem 3.1, we have that 6 and 0 are consistent for f, and hence
condition (A.i) of Lemma 2.1 is satisfied. For brevity, we focus on establishing
(A.ii)-(A.iii) of Lemma 2.1 for the ergodic log-likelihood function in (B.1)-
(B.2).

In order show (A.ii), the asymptotic normality of the score is established,
using the martingale CLT by Brown (1971). We will rely on some results
from the supplementary material to Pedersen and Rahbek (2016). The score
contributions are

A0 L[ DO ) 0000

00, 2 [(v—2)+y2/h (0) hi (0)

for 0; € {v, o, w},

and

ol (0) _ dlogn(v) yi/hi (0) 1 (v + 1) yi /i (0)
o o —Elog(l—k v—2 )+2<V—2) l(u—2)+yf/h;‘(9)

. . . !
Consider the score contribution at 6y, S; = (St St.a, Stw, St.8, St,v) , Where

Cooney) _one) oGO0 %6
t,y 3”}/ ; t,« Do ) t,w O ; t,05 86 ) (8% v .
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For 0; € {v, a,w, 5},

= =z + — B4
Staez 2zlt h:; (90) a’nd Sth Z3t + 2(V0 _ 2)’ ( )
where
(o +1) 2} dlogn (w) %
f= | — 1 - = —t — 21 1 .
1 (vg — 2) + 27 ) and z ov g | L vy — 2

From Pedersen and Rahbek (2016, Lemma A.5 in the supplementary ma-
terial), E[z},] = E[z%] = 0 and E[z}?], E[23?] < oo. Hence, using that
E|[(ys, 7)'||*] < oo and Assumption 2.2, we have that S; is a martingale
difference sequence with respect to F; with F[||S;]|?] < co. Then using the
ergodic theorem L S°7 | E[(K'S)?|Fi1] > K'Sk < oo for any k € R\ {0}
and some constant matrix Y. Moreover, using the ergodic theorem, for any
§ > 0 and any k € R®, %Zle E[(K'S:)*1 s, 1>11/25)) = 0p(1), verifying the
Lindeberg condition. It remains to show that k’Yk > 0 for any k € R\ {0},
i.e. that X is positive definite. We note that ¥ = E|[S5,S]], so X is positive
semi-definite. Following Straumann (2005, proof of Lemma 6.3.2), suppose
that there exists k = (ky, ko, k3, k4, ks)' € R® such that &’k = 0, which is
equivalent to

]{Z,St == ]{ZlStﬁ + k28t7a + kgSt’w + ]{34813’5 + ]{?5815,,/ =0 a.s. (B5)

We will argue that it cannot be the case that k # 0. Suppose that (k1, ko, k3, ky)' =
0 and k5 # 0. Then 'Sk = kZE[s;,]. From Pedersen and Rahbek (2016,
proof of Lemma A.1 in the supplementary material), with ¢/'(-) the trigamma
function,

E[s},) = }1 {w’ (5) - (V“TH)] e 2)2(1/(1 Toess ” %

which contradicts &’k = 0. Suppose that (ki, ks, k3, k4)" # 0 and ks = 0.
Using (B.4), that P(z}, # 0) = 1, and that P[h](6p) > 0] = 1, we have that
(B.5) is equivalent to

k1 Z Bla} _i+ks Z Biy? | ikstky Z i N aoy? 4022 ;) =0 a.s.,
=0 =0 =1

which is ruled out by Assumption 2.4, using that (g, 7o) # 0. Lastly, suppose
that (k1, ko, k3, kq)" # 0 and ks # 0. Again, using that P(z}, # 0) = 1 and
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P[o2(6y) > 0] = 1, (B.5) is equivalent to

klzﬁzxt 1— z+k2262yt 1— 1+k3+k42251 1 aoyt 1— z+70xt 1— 'L)
1=0 1=0 =1

*
234 1

=t 4+ a.s
214 (0 —2) ’

which contradicts the fact that 23, /2], is non-degenerate and that z3,/z}, and
F;_1 are independent. We conclude that 'Yk > 0 for any k& € R%\{0}. Using
(B.8) and the ergodic theorem, —7 . 862539 %, J, and we conclude that
condition (A.ii) is satisfied.

In order to establish (A.iii), we consider the second derivative of the log-

likelihood contribution. With 6;,60; € {w, «,, 8},

a?zrw)_l[l_ (v Dgt/hi ()  (v+1) (v =2)y; /h*()}
00:00; 2| (v =2+ /M (O)  [(w—2)+y3/h; (O)
)

) (ah* (9(9/)@ ) (ah*hf()eéa )
1{(<u+ 1) 42 /1 (0) 1} (a i (9)/3@.39].)

_|_

2 [(v—2) +yi/hi (0) hi (6)
OLO) _ Plogn(v) 1 yi/hi(0) 1 { W+ Dy/hi0)
ov? wdv (v =2)(v=2) +yi/hi (6)  2(v—2)> [(v —2)+ /D (0)

_( 1 ) (v + 1) /17 (6)
200 =2)) [(v —2) + 3/hi (O)F

and
o (0) _ 1 [ yi/hi () (DY R ) ] Ohy (0) /00,
00;0v 2 | (v—2)+yi/hi (0) [(v—2)+v2/h; (O) hy (0)

It holds that

(O(6) O1; (6) Dh(6) i (0)Y'
Vt(g)'_( oy = Oda T Odw T 0B )

!/
- <Zﬁzxt 1- wZﬁl?Jt 1-is 72251 Nayio i + e, z)) ;
1=0 =0

921 (0)
06,00,

=0 for 6,,60; € {w,a,},
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OB S0 9adp A Y10 TL08 T
PUO) N e

= E — 15
8685 p Z( )B xt—l—z

For 6,6, € {w,,~, 5}, on O,

0217 (0)

<
00,00,

(14207 + 1)]510%; (6) /06,108 (6) /08|

1
)
1
T3

[T+ 2]|0%Rh; (0) /00;00,].

and

%Hl:;gi) < % [1 + %} w907 () /00;]

Hence, using that E[||(y:, 2;)'||*] < oo and that |3 < 1 uniformly on ©,

E[sup |0%;(0)/00;00,|] < co and E[sup |01} (0)/00;0v|] < 0o, for 6;,0; € {w,a,, B}.
90 60

(B.6)
Moreover, on O,

(9212‘(9)‘< 8210g77(y)+ 1 v+ 2 +( 1 )(?+1)

W | =l iy (- ) 22 \2w-2)) w—2) =™
and hence 521 (0)
t
E {31611@) 97 H < 0. (B.7)
By (B.6)-(B.7),
E[sup ||0%17(0)/0000'||] < oc. (B.8)
0cO

Using (B.8) and ULLN for ergodic processes, we conclude that condition
(A.iii) holds.

Next, for the case By > 0, there are no nuisance parameters on the
boundary, and the limiting distribution of the LR statistic is immediate from
Lemma 2.1. We then turn to the case fy = 0. Using that J = ¥ = E[S;:S]]
and that h}(0y) = wo + apy? ; under Hy, J = E[S;S]], where

S — thx?fl Ziktyt{l 214 O‘OZItthfz 2L 214 /
! 202(0)" 202 (6p) 202(60)" 202(60) " " 2wy —2) )
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Hence, using that E[||(y:, 7;)'||*] < oo and E[272] = 2vy/(vo + 3), E2},25] =
—(vp+ 1)t (Pedersen and Rahbek, 2016, Lemma A.5 in the supplementary
material),

ngwzl—l Zf?x?—ly?—l ZI?‘T?—1 O‘OZfEm?—ly?—Q th‘f%—l 2k 23
4h?2(0o) 4h}2(0o) 4h}2(0o) 4h}2(0o) 2k (0o) 3t 2(19—2)
217via 2P a0V avio AV JE I
4hy%(6o0) 4h$*(0o) 4hZ22(920) 2h} (60) \ 73t " 2(v0-2)
*2 * * *
_ G X0213 Yi—2 21t * 21t
J=£ TR0 e 00 \ 23 T 2mg)
O‘nggy?—Q aOzftth_z o z_ft
4h;%(60) 2hi (6o) 3t T 2(n—2)

N 2
(2 + i)
nNak4 g 77[?/412,1 narg g 77d/€2,x j¢K’2,x
nbka.  MC nb nf ko
= | nara, b na nd Jjo
ndky,  nf nd ng meo
JOkog k@ Jjo mo 3

1 Yi1 } [ Yi 1
a=F  b=F  ¢=F
| 4(wo + aoyfl)2] L(WO + aoyi)? 4(wo + aoyp_,)?

l—E Oéo?JtQ_z } f—FE [ Oéoyg—ly?—z } g=E [ 043?/?—2 }
| 4(wo + aoyi_1)? ]’ Awo + aoyi_1)?]’ 4wo + aoyi_1)?]’

1 Ye—1 } [ QoYt—2 }
, k=F , m=~F
| 2(wo + Oéoyf—ﬂ} {Q(WO + aoy? ) 2(wo + o)

. 2
* 21t
(Z3t " 2(vo — 2))

¢={wvo/[(m+3)(r—2)]-1/(m+1)}, §=FE , n=E[z]]

Kor = E[z}], and kK, = E[z}].

It holds that

—1 0 1
—_— —————K 0 0
1177’4%,1—077’44,93 ann%@—anfm@ 2,x
0
-1 __ 1
J = a3, —anra B T2 ’
0
0

with some positive definite 4 x 4 matrix Ja. Hence, condition (A.iv) of
Lemma 2.1 holds, and the limiting distribution of the LR statistic then follows
by Lemma 2.1. m
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Proof for Theorem 3.3. We show that the conditions of Lemma 2.1 are
satisfied. Under Assumptions 3.1, 3.2, and 3.4, the consistency of 6 and
f holds by Agosto et al. (2016, Theorem 2), and hence condition (A.i) of
Lemma 2.1 is satisfied. For brevity, we focus on establishing conditions (A.ii)-
(A.iii) of Lemma 2.1 for the ergodic log-likelihood function,

T

Lr(0) =D 15(0), 17(0) = yelog[\; (0)] — A (6),
N(O)=(1=P)w+ay_1+LBAN_10) +vf(x—1), te.

Consider the score contribution, 0l (6y)/00 = (y:/A;(60) — 1) (OA}(6)/00).
By Agosto et al. (2016, Section A.4.1), T-Y23"1 dl¥(6y)/00 = N(0,.J),
with J = —FE [0%}(6y)/0000'], which is positive definite due to Agosto et al.
(2016, Section A.4.2), using Assumption 3.4. Moreover, due to Agosto et al.
(2016, Section A.4.2), T-* 31 9%1%(6,)/9000' = —J + 0,(1). We conclude
that condition (A.ii) of Lemma 2.1 holds.

Turning to condition (A.iii), consider the second derivative of the log-
likelihood contribution,

CPEO) oy ONO)ONO) [y . oN;(0)
0000’ A2(0) 00 o0’ A5 (6) 0000’

where 0X;(6)/00 = {Zig B f (1), Zzo B'y—1-i, 1, Zi’il i oy +

’Yf(xtflfi)]},a and

00 0 Sy BT (1)
o (0) 00 Yo i
9600’ 0 0

Yoo i(i — 1) 2 o1 + Bf (w4-1-3))]

Since, A} (f) > w > 0on © and supy.g 8 < B < 1, it holds that E[supycg ||021}(0) /0000 ||]
< 0o due to Assumption 3.1 and Holder’s inequality. By the ULLN for er-
godic processes, we then have that condition (A.iii) of Lemma 2.1 is satisfied.

For the case By > 0, the limiting distribution of L Ry follows directly from
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Lemma 2.1. In the case Sy = 0, A\j(6y) = wo + aoys—1. Here

8217 (6,)
J=-E [ 9000’ }

f2($t—1) yt—lf(%:—l) f(xt—l) aof(xt_l)yt_z

=F ; Yi Yi—1 QoYt—1Yt—2
wo + aoyt—l 1 Oégytz,Q
QpYi_o

ARk bRig ark1gz dRig
bk1 » c b f
ak1y b a d

dl{l,x f d g

where

1 B 2
a:E[—], b:E{L], C:E[L}
wo + QoY1 wo + QoY1 wo + QoY1
d—E [ QoYi—2 } . f=E [ QoYs—1Yt—2 } - [ agyt{z }
wo + QoY1 wo + QoY1 wo + QoY1
Rix = E[f('rt)L and Rz = E[f2(xt)])

and where we have used Assumption 3.3. It holds that

1 5 O —Kl,z 5 O
ak2,z—akK7 , ak2,z—aK7] ,
0 T P—ag bg—df  af—bd
Jh= —Klz ngdf é cdgbf )
ar2,e—ak3 , ¢ ¢
0 af—bd cd—bf b%2—ac
¢ ¢ ¢

with ¢ := gb* — 2bdf + cd* + af? — acg and

gb*k: , — 2bdf KT, 4 cd®k] , + ako o f? — acgro,

§= —a (K}, — ko) (gb% — 2bdf + cd? + af? — acg)’

We note that (1), 3 = 0, and hence the limiting distribution of LRy follows
by Lemma 2.1. m
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