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Abstract

It is well known that inference on the cointegrating relations in a vector autore-
gression (CVAR) is diffi cult in the presence of a near unit root. The test for a given
cointegration vector can have rejection probabilities under the null, which vary from
the nominal size to more than 90%. This paper formulates a CVAR model allowing
for many near unit roots and analyses the asymptotic properties of the Gaussian max-
imum likelihood estimator. Then a critical value adjustment suggested by McCloskey
for the test on the cointegrating relations is implemented, and it is found by simulation
that it eliminates size distortions and has reasonable power for moderate values of the
near unit root parameter. The findings are illustrated with an analysis of a number of
different bivariate DGPs.

Keywords: Long-run inference, test on cointegrating relations, likelihood inference,
vector autoregressive model, near unit roots, Bonferroni type adjusted quantiles.
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1 Introduction
Elliot (1998) and Cavanagh, Elliott and Stock (1995) investigated the test on a coeffi cient
of a cointegrating relation in the presence of a near unit root in a bivariate cointegrating
regression. They show convincingly that when inference on the coeffi cient is performed as if
the process has a unit root, then the size distortion is serious, see Figure 1 for a reproduction
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of their results. This paper analyses the p-dimensional cointegrated VAR model with r
cointegrating relations under local alternatives

∆yt = (αβ′ + T−1α1cβ
′
1)yt−1 + εt, t = 1, . . . , T, (1)

where α, β are p × r and εt is i.i.d. Np(0,Ω). It is assumed that α1 and β1 are known
p× (p− r) matrices of rank p− r, and c is (p− r)× (p− r) and an unknown parameter, such
that the model allows for a whole matrix, c, of near unit roots. The matrix αβ′ describes a
surface in the space of p× p matrices of dimension p2 − (p− r)2. The properties of the test
Qβ can be very bad, when the actual data generating process (DGP) is a slight perturbation
of the process generated by the model specified by αβ′. Thus, a model is formulated that
in some particular "directions", given by the matrix α1cβ

′
1, has a small perturbation of the

order of T−1 and (p− r)2 extra parameters, c, that are used to describe the near unit roots.
A similar model could be suggested for near unit roots in the I(2) model, see Di Iorio, Fachin
and Lucchetti (2016), but this will not be attempted here.
The model defined by (1) contains as a special case the DGP analyzed by Elliot (1998).

The likelihood ratio test, Qβ, for β equal to a given value, is derived assuming that c = 0
and analyzed when in fact near unit roots are present.
The parameters α, β, and Ω can be estimated consistently, but c cannot, and this is what

causes the bad behaviour of Qβ.
The matrix αβ′ + T−1α1cβ

′
1 has p

2 parameters, (α, β, c) so that the Gaussian maximum
likelihood estimator in model (1) is least squares, and their limit distributions are found.
The main contribution, however, is a simulation study for the bivariate VAR with p = 2,
r = 1. It is shown that one of the methods introduced by McCloskey (2016, Theorem Bonf,
p. 17) for allowing the critical value for Qβ to depend on the estimator of c, gives a much
better solution to inference on β, in the case of a near unit root. The results of McCloskey
(2016) also allow for multivariate parameters and for more complex adjustments, but in the
present paper we focus for the simulations on the case with p = 2 and r = 1, so there is only
one parameter in c.
The assumption that α1 and β1 are known is satisfied under the null, in the DGP analyzed

by Elliot, see (25). This is of course convenient, because α1, β1 as free parameters, are not
estimable.
Let θ denote the parameters α, β and Ω. For a given η (here 5% or 10%), the quantile

cη,θ(c) is defined by Pc,θ{ĉ ≤ cη,θ(c)} = η. Simulations show that the quantile is increasing
in c, and solving the inequality for c, a 1 − η confidence interval, [0, c−1

η,θ(ĉ)], is defined for
c. For given ξ (here 90% or 95%) the quantile qξ,θ(c) is defined by Pc,θ{Qβ ≤ qξ,θ(c)} = ξ,
and McCloskey (2016) suggests replacing the critical value qξ,θ(c), by the stochastic critical
value qξ,θ(c−1

η,θ(ĉ)). This method is explained and implemented by a simulation study, and it
is shown that it offers a solution to the problem of inference on β in the presence of a near
unit root.

2 The vector autoregressive model with near unit roots
The model is given by (1) and the following standard I(1) assumptions are made.

Assumption 1 It is assumed that r < p, c is (p− r)× (p− r), and that the equation

det(Ip(1− z)− αβ′z) = 0
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has p − r roots equal to one, and the remaining roots are outside the unit circle, such that
|eigen(Ir + β′α)| < 1. Moreover Π = αβ′ + T−1α1cβ

′
1 has rank p and

det(Ip(1− z)− αβ′z − T−1α1cβ
′
1z) = 0

has all roots outside the unit circle.

In model (1) with cointegrating rank r and α1 and β1 known, the number of free parame-
ters in α and β is 2pr− r2 = p2− (p− r)2. Thus, allowing c to vary freely, there are (p− r)2

extra parameters, and the maximum likelihood estimators for Π = αβ′ + T−1α1cβ
′
1 and Ω

are found by regression of ∆yt on yt−1. The next theorem shows how the estimators for α, β,
and c are calculated from Π̂.
For any p ×m matrix of rank m < p, we use the notation a⊥ to indicate a p × (p −m)

matrix of rank p−m, for which a′⊥a = 0, and the notation ā = a(a′a)−1.

Theorem 1 In model (1) with α1 and β1 known, the Gaussian maximum likelihood estimator
of Π = αβ′ + T−1α1cβ

′
1 is the coeffi cient in a least squares regression of ∆yt on yt−1. For β

normalized on β′β1⊥ = Ir, the maximum likelihood estimators are

α̂ = Π̂β1⊥, (2)

β̂′ = (α′1⊥Π̂β1⊥)−1α′1⊥Π̂, (3)

ĉ = T (β′1Π̂−1α1)−1. (4)

For c = 0, such that the rank of Π is r, the test for a given value of β is

Qβ = T log
det(S00 − S01β(β′S−1

11 β)β′S10)

det(S00 − S01β̆(β̆′S−1
11 β̆)β̆′S10)

, (5)

where the maximum likelihood estimator β̆ is determined by reduced rank regression assuming
the rank is r.

2.1 Asymptotic distributions

The basic asymptotic result for the analysis of the estimators and the test statistic is that
α′⊥yt converges to an Ornstein-Uhlenbeck process. This technique was developed by Phillips
(1988), and Johansen (1996, Chapter 14) is used as a reference for details related to the
CVAR.
Under Assumption 1, the process given by (1) satisfies

T−1/2α′⊥y[Tu]
D→ K(u),

where K is the Ornstein-Uhlenbeck process

K(u) = α′⊥

∫ u

0

exp{α1cβ
′
1C(u− s)}dWε(s),

C = β⊥(α′⊥β⊥)−1α′⊥ and Wε is Brownian motion generated by the cumulated εt.
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Theorem 2 The test Qβ for a given value of β, derived assuming c = 0, see (5), satisfies

Qβ
D→ χ2

(p−r)r +B, (6)

where the stochastic noncentrality parameter

B = tr{β1c
′ζcβ′1β⊥(α′⊥β⊥)−1

(∫ 1

0

KK ′du

)
(β′⊥α⊥)−1β′⊥}, (7)

is independent of the χ2 distribution and has expectation

E(B) = tr{β1c
′ζcβ′1C

(∫ 1

0

(1− v) exp(vτC)Ω exp(vC ′τ ′)dv

)
C ′}. (8)

Here ζ = α′1Ω−1α(α′Ω−1α)−1α′Ω−1α1 and τ = α1cβ
′
1, so it follows that E(B) = 0 if and only

if α′1Ω−1α = 0, in which case Qβ
D→ χ2

(p−r)r.

Let β be normalized as β′β1⊥ = Ir. The asymptotic distribution of the estimators, α̂, β̂,
ĉ, see (2), (3) and (4), are given as

T 1/2(α̂− α)
D→Np×r(0,Σ

−1
ββ ⊗ Ω), (9)

Tβ′⊥(β̂ − β)
D→β′⊥α⊥

(∫ 1

0

KK ′du

)−1 ∫ 1

0

K(dWε)
′α1⊥(α′α1⊥)−1, (10)

ĉ− c D→(α′⊥α1)−1α′⊥

∫ 1

0

(dWε)K
′
(∫ 1

0

KK ′du

)−1

α′⊥β⊥. (11)

Note that the asymptotic distributions of β̂ and ĉ given in (10) and (11) are not mixed
Gaussian, because α′1⊥Wε(u) is not independent of K(u), which is generated by α′⊥εt. Note
also that both Tβ′⊥(β̂ − β) and ĉ have limit distributions that depend on the Dickey-Fuller
type distribution (

∫ 1

0
KK ′du)−1

∫ 1

0
K(dWε)

′.

Corollary 1 In the special case where r = p− 1, we choose α1 so that c ≥ 0, and find

E(B) =
e2δc − 1− 2δc

(2δ)2
κζ, (12)

where
δ = β′1Cα1, κ = β′1CΩC ′β1, ζ = α′1Ω−1α(α′Ω−1α)−1α′Ω−1α1.

3 Critical value adjustment for test on β in the CVAR with near
unit roots

In this section the method of McCloskey (2016) is illustrated by a number of simulation
experiments. The simulations are performed with data generated by a bivariate model (1),
where p = 2 and r = 1. The direction α1 is chosen such that c ≥ 0. The test Qβ for a given
value of β, is calculated assuming c = 0, see (5). The simulations of Elliot (1998), see section



Cointegration and near unit roots 5

(3.1), show that there may be serious size distortions of the test, depending on the value of
c and ρ, if the test is based on the quantiles from the asymptotic χ2(1) distribution.
The method of McCloskey (2016, Theorem Bonf) consists in this case of replacing the

χ2(1) critical value, with a stochastic critical value depending on ĉ, in order to control the
rejection probability under the null hypothesis.
Let θ = (α, β,Ω) and let Pc,θ denote the probability measure corresponding to the para-

meters c, θ. The method consists of finding the η quantile of ĉ, see (4), as defined by

Pc,θ(ĉ ≤ cθ,η(c)) = η,

for η = 5% or 10%, say, and the ξ quantile qθ,ξ(c) of Qβ as defined by

Pc,θ(Qβ ≤ qθ,ξ(c)) = ξ,

for ξ = 90% or 95%, say.
The suggestion of McCloskey (2016) in this case is to construct by simulation, for a given

θ and a grid of given of values c ∈ (c1, . . . , cn), the quantiles cθ,η(ci) and qθ,ξ(ci). It turns out,
that both cθ,η(c) and qθ,ξ(c) are increasing in c, see Figure 3. Therefore, a solution c−1

η,θ(ĉ)
can be found such that

Pc,θ{ĉ > cη,θ(c)} = Pc,θ{c ≤ c−1
η,θ(ĉ)} = 1− η. (13)

This gives a 1 − η confidence interval [0, c−1
η,θ(ĉ)] for c, based on the estimator ĉ. Note

that for c ≤ c−1
η,θ(ĉ) it holds that qθ,ξ(c) ≤ qθ,ξ(c

−1
η,θ(ĉ)), such that

1− ξ = Pc,θ{Qβ > qθ,ξ(c)} ≥ Pc,θ[Qβ > qθ,ξ{c−1
η,θ(ĉ)}].

Hence, maximizing over 0 ≤ c ≤ c−1
η,θ(ĉ), it is seen that

max
0≤c≤c−1η,θ(ĉ)

Pc,θ[Qβ > qθ,ξ{c−1
η,θ(ĉ)}] ≤ 1− ξ.

McCloskey (2016) proved that under suitable conditions

1− ξ − η ≤ lim sup
T→∞

sup
0≤c≤c−1η,θ(ĉ)

Pc,θ[Qβ > qθ,ξ{c−1
η,θ(ĉ)}] ≤ 1− ξ.

Thus, the limiting rejection probability, for given θ, of the test on β, calculated as if
c = 0, but replacing the χ2

ξ(1) quantile by the stochastic quantile qθ,ξ(c−1
η,θ(ĉ)), lies between

1− ξ − η and 1− ξ.
Note that for the theoretical analysis of the method, the parameters (θ, c,Ω), are assumed

known in order to simulate the quantiles in the distribution of ĉ and Qβ, for a range of c
values, such that c−1

η,θ(ĉ) and the corrected quantile qθ,ξ(c
−1
η,θ(ĉ)) can be found. It obviously

simplify matters that in all the examples it turns out that cθ,ξ(c) is approximately linear in
c, and qθ,ξ(c) is approximately quadratic in c, see Figure 3.
To implement the result in practice, however, one has of course to replace θ,Ω by a

consistent estimator in the simulations.
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3.1 The simulation study of Elliot (1998)

The DGP is defined by the equations,

y1t =
(

1− c

T

)
y1t−1 + u1t, (14)

y2t = γy1t + u2t. (15)

It is assumed that ut = (u1t, u2t)
′ are i.i.d. N2(0,Ωu) with

Ωu =

(
1 ρ
ρ 1

)
.

and the initial values are y10 = y20 = 0. The data y1, . . . , yT are generated from (14) and
(15), and the test statistic Qβ for the hypothesis γ = 0, is calculated using (5).
The DGP defined by (14) and (15) is contained in model (1) for p = 2. Note that

y2t = γ(1− c/T )y1t−1 + γu1t + u2t such that

α =

(
0
1

)
, β =

(
γ
−1

)
, α1 =

(
−1
−γ

)
, β1 =

(
1
0

)
, (16)

where the sign on α1 has been chosen such that c ≥ 0. Finally ε1t = u1t and ε2t = u2t + γu1t,
and therefore

Ω =

(
1 ρ+ γ

ρ+ γ 1 + γ2 + 2γρ

)
.

For c = 0, the process yt = (y1t, y2t)
′ is I(1) and γy1t − y2t is stationary, and if c/T is

close to zero, yt has a near unit root.
Applying Corollary 1 to the DGP (14)-(15), the expectation of the test statistic Qβ is

found to be

E(Qβ) = p− 1 +
e−2c − 1 + 2c

4

ρ2

1− ρ2
, (17)

which increases approximately linearly in c.
Based on N = 1000 simulations of errors u1, . . . , uT , T = 100, the data y1, . . . , yT , are

constructed from the DGP for each combination of the parameters

(γ, c, ρ) ∈ [−0.5 : (0.01) : 0.5]× [1 : (1) : 20]× [−0.9 : (0.1) : 0.9],

where [a : (b) : c] indicates the interval from a to c with step b. Based on each simulation, ĉ
and the test Qβ for γ = 0 are calculated.
Figure 1 shows the rejection probabilities of the test Qβ as a function of (c, ρ), using

the asymptotic critical value, χ2
0.95(1) = 3.84, for a nominal rejection probability of 5%.

The rejection probability increases with |ρ| and with c. When c = 10 (corresponding to an
autoregressive coeffi cient of c/T = 0.9) and |ρ| = 0.7, the size of the test Qβ is around 50%,
as found in Elliott (1998). The results are analogous across models with an unrestricted
constant term, or with a constant restricted to the cointegrating space. In the paper by
Elliot (1998) a number of tests are analyzed, and it was found that they were quite similar
in their performance and similar to the above likelihood ratio test Qβ from the CVAR with
rank equal to 1.
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3.2 Redoing the simulations with adjusted quantiles for Qβ

Data are simulated as above and first the rank test statistic, Qr, see Johansen (1996, Chapter
11) for rank equal to 1, is calculated. The rejection probabilities for Qr are given in Figure
2 and they show that for c = 20, the hypothesis that the rank is 1, is practically certain to
be rejected. If c = 8, the probability of rejecting that the rank is 1 is around 50%, so that
plotting the rejection probabilities for 0 ≤ c ≤ 10, covers the relevant values, see Figure 4.
For η = 5% and 10%, the quantiles cη(c) of ĉ are reported in Figure 3 as a function of c.

The quantiles cη(c) are nearly linear in c, and they are approximated by

c̃η(c) = aη + bηc,

where the coeffi cients (aη, bη) depend on η, which is used to construct the upper confidence
limit in (13) as

c̃−1
η (ĉ) = (ĉ− aη)b−1

η .

For ξ = 90% and 95%, the quantiles qρ,ξ(c) of Qβ are reported in Figure 3 as function of
c for four values of ρ. It is seen that for given ρ, the quantiles qρ,ξ(c) are quadratic in c, for
relevant values of c, and hence they can be approximated by

q̃ρ,ξ(c) = fρ,ξ + gρ,ξc+ hρ,ξc
2, (18)

where the coeffi cients (fρ,ξ, gρ,ξ, hρ,ξ) depend on ρ and ξ. The modified critical value is then
constructed replacing (c, ρ) by (c̃−1

η (ĉ), ρ̂) in (18), and thus one finds the adjusted critical
value

q̃ρ̂,ξ,η(ĉ) = fρ̂,ξ + gρ̂,ξ(ĉ− aη)b−1
η + hρ,ξ((ĉ− aη)b−1

η )2 (19)

which depends on estimated values, ĉ and ρ̂, and on discretionary values, ξ and η.
For (ξ, η) = (95%, 5%), the rejection frequency of Qβ, the test for γ = 0, is calculated

using the adjusted critical value in (19) and reported as a function of c for four values of ρ
in Figure 4 together with the unadjusted rejection probabilities. In all cases the rejection
frequency is in a neighborhood of the nominal size of 5%; hence the procedure is able to
eliminate size-distortions almost completely for c ≤ 5. The power of the test is shown in
Figure 5 for values of |γ| ≤ 1/2. It is seen that the better rejection probabilities in Figure
4 are achieved together with a reasonable power, again for c ≤ 5, where the probability
of rejecting the hypothesis of r = 1 is around 30%. Notice that the test becomes slightly
biased, that is, the power function is not flat around the null γ = 0.

3.3 A few examples of other DGP

Four other data generating processes are defined in Table 1, to investigate the role of different
choices of α1 and β1 for the results on improving the rejection probabilities for test on β
under the null and alternative. The DGPs all have α = −β = (−1, 1)′/2. The vectors α1

and β1 are chosen to investigate different positions of the near unit root in the DGP.
The choice of DGP turns out to be important also for the test, Qr, for r = 1. In fact the

probability of rejecting r = 1 is around 50% for DGP 1 if c = 4, for DGP 2 if c = 20,whereas
for DGP 3 and 4 the 50% value value is 8.
The rejection probabilities in Figure 6 are plotted for c ≤ 10, to cover the most relevant

values.
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Four DGPs allowing for near unit roots, Ω = I2

1:
(
−1

4
+ c/T 1

4
+ c/T

1
4

+ c/T −1
4

+ c/T

)
3:

(
−1

4
1
4

1
4

+ c/T −1
4

+ c/T

)

2:
(
−1

4
1
4

1
4
−1

4
+ c/T

)
4:

(
−1

4
+ c/T 1

4
+ c/T

1
4

−1
4

)

Table 1: Four different DGPs given by α = −β = (−1, 1)′/2 which are the basis for the
simulations of rejection probabilities for the adjusted test for β = (−1, 1)′/2. The positions
of c/T give the different α1 and β1 .

The results are summarized in Figures 6 and 7. It is seen that the conclusions from the
study of the DGP analyzed by Elliot seem to be valid also for other DGPs. For moderate
values of c, the adjusted test has a rejection probability in a neighborhood of the nominal
size 5%, and the power curve looks reasonable for c ≤ 5, although the test is slightly biased,
except for DGP 1. For this DGP, α1 = β1 = (1, 1)′, Ω = I2, such that α′1Ω−1α = 0, which
means that the asymptotic distribution of Qβ is χ2(1), see Theorem 2, despite the near unit
root. It is seen from Figure 6, there is only moderate distortion of the rejection probability
in this case and in Figure 7, the power curve is symmetric around γ = 0, so the test is
approximately unbiased.

4 Conclusion
It has been demonstrated that for the DGP analyzed by Elliot (1998), it is possible to apply
the method of McCloskey (2016) to adjust the critical value in such a way that the rejection
probabilities of the test for β, are reasonably close to the nominal values for relevant values
of c, that is, for which c ≤ 5. By simulating the power of the test for β, it is seen that for
c ≤ 5, the test has a reasonable power, even though the test is slightly biased.
Some other DGPs have been investigated and similar results found. What remains to

be done, of course, is to investigate by simulations if the values of ξ, η can be tuned to give
a specified rejection probability under the null taking into account the power. What also
remains to be done, is to see if the assumption that α1 and β1 are known, is helpful in
applications.
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6 Appendix
Proof of Theorem 1. The product moments of ∆yt, yt−1, and εt are denoted

S11 = T−1

T∑
t=1

yt−1y
′
t−1, S10 = T−1

T∑
t=1

yt−1∆y′t−1, S1ε = T−1

T∑
t=1

yt−1ε
′
t.

The maximum likelihood estimator of Π is Π̂ = S01S
−1
11 , and Ω̂ = S00 − S01S

−1
11 S10. From

Π̂ = α̂β̂′ + T−1α1ĉβ
′
1,

it follows, post-multiplying by β1⊥ and using the normalization β′β1⊥ = Ir, that

α̂ = Π̂β1⊥,

which shows (2). Pre-multiplying instead by α′1⊥ it follows, inserting α̂ = Π̂β1⊥ that

α′1⊥Π̂ = α′1⊥α̂β̂
′ = α′1⊥Π̂β1⊥β̂

′,

which proves (3). Inserting the estimates it is found that

Π̂ = α̂β̂′ + T−1α1ĉβ
′
1 = Π̂β1⊥(α′1⊥Π̂β1⊥)−1α′1⊥Π̂ + T−1α1ĉβ

′
1. (20)

Next Π̂ is decomposed using

Π̂ = Π̂β1⊥(α′1⊥Π̂β1⊥)−1α′1⊥Π̂ + α1(β′1Π̂−1α1)−1β′1, (21)

which is proved by premultiplying (21) by α′1⊥ and β
′
1Π̂−1. Subtracting (20) and (21) and

multiplying by ᾱ′1 and β̄1, it is seen that

(β′1Π̂−1α1)−1 = ĉ/T,

which proves (4). If c = 0, the maximum likelihood estimator β̆ can be determined by
reduced rank regression, see Johansen (1996, Chapter 6).

Proof of Theorem 2. Proof of (6) and (7): The limit results for the product moments are
given first, using the normalization matrix CT = (β, T−1/2α⊥),

C ′TS11CT =

(
β′S11β T−1/2β′S11α⊥

T−1/2α′⊥S11β T−1α′⊥S11α⊥

)
D→
(

Σββ 0

0
∫ 1

0
KK ′du

)
, (22)

T 1/2C ′TS1ε =

(
T 1/2β′S1ε

T−1α′⊥S1ε

)
D→
(
Nr×p(0,Ω⊗ Σββ)∫ 1

0
K(dWε)

′

)
. (23)
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The test for a known value of β is given in (5). It is convenient for the derivation of the
limit distribution of Qβ, to normalize β̆ on the matrix α(β′α)−1, such that β̆′α(β′α)−1 = Ir,

and define θ̆ = (β′⊥α⊥)−1β′⊥(β̆ − β). This gives the representation

β̆ − β = α⊥(β′⊥α⊥)−1β′⊥(β̆ − β) + β(α′β)−1α′(β̆ − β) = α⊥θ̆.

The proof can be found in Elliot (1998), and is just sketched here. The estimator for θ for
known α,Ω and c = 0, is given by the equation

T θ̆ = (α′⊥T
−1S11α⊥)−1(α′⊥S1ε + α′⊥T

−1S11β1cα
′
1)αΩ,

where αΩ = Ω−1α(α′Ω−1α)−1. The limit distribution of T θ̆ follows from (22) and (23) as

follows. Because T−1α′⊥S11β
P→ 0 it follows that

α′⊥T
−1S11β1cα

′
1 = α′⊥T

−1S11(α⊥(β′⊥α⊥)−1β′⊥ + β(α′β)−1α′)β1cα
′
1

D→
(∫ 1

0

KK ′du

)
(β′⊥α⊥)−1β′⊥β1cα

′
1,

and from α′⊥S1ε
D→
∫ 1

0
K(dWε), it is seen that

T θ̆
D→
(∫ 1

0

KK ′du

)−1(∫ 1

0

K(dWε) +

(∫ 1

0

KK ′du

)
(β′⊥α⊥)−1β′⊥β1cα

′
1

)
αΩ = U,

say. Conditional on K, the distribution of U is Gaussian with variance (α′Ω−1α)−1 ⊗
(
∫ 1

0
KK ′du)−1 and mean (β′⊥α⊥)−1β′⊥β1cα

′
1αΩ. The information about θ satisfies

−T−2Iθθ = tr{Ω−1α(dθ)′α′⊥S11α⊥(dθ)α′} D→ tr{α′Ω−1α(dθ)′
∫ 1

0

KK ′du(dθ)},

and inserting U for (dθ) determines the asymptotic distribution of Qβ. Conditional on K,
this has a noncentral χ2((p− r)r) distribution with noncentrality parameter

B = tr{(β′⊥α⊥)−1β′⊥β1c
′ζcβ′1β⊥(α′⊥β⊥)−1

∫ 1

0

KK ′du},

where ζ = α′1Ω−1α(α′Ω−1α)−1α′Ω−1α1, which proves (7). The marginal distribution is there-
fore a noncentral χ2 distribution with a stochastic noncentrality parameter, which is inde-
pendent of the χ2 distribution, as shown by Elliot (1998).
Proof of (8): For τ = α1cβ

′
1 it is seen that

Etr{(β′⊥α⊥)−1β′⊥β1c
′ζcβ′1β⊥(α′⊥β⊥)−1

∫ 1

0

KK ′du}

= Etr{β1c
′ζcβ′1C

∫ 1

0

(∫ u

0

exp(τC(u− s))dW (s)

)(∫ u

0

dW (t)′ exp(C ′τ ′(u− t))
)
duC ′}

= tr{β1c
′ζcβ′1C

∫ 1

0

(∫ u

0

exp(τC(u− s))Ω exp(C ′τ ′(u− s))ds
)
duC ′}

= tr{β1c
′ζcβ′1C

(∫ 1

0

(1− v) exp(vτC)Ω exp(vC ′τ ′)dv

)
C ′},
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which proves (8). Note that this expression is zero if and only if ζ = 0, or α′1Ω−1α = 0, in
which case the asymptotic distribution of Qβ is χ2.

Proof of (9) and (10):
It follows that Π̂ = S01S

−1
11 can be expressed as

Π̂ = αβ′ + T−1α1cβ
′
1 + Sε1S

−1
11 (24)

= αβ′ + T−1α1cβ
′
1 + T−1/2(T 1/2Sε1CT )(C ′TS11CT )−1

(
β, T−1/2α⊥

)′
= αβ′ + T−1α1cβ

′
1 + T−1/2M1Tβ

′ + T−1M2Tα
′
⊥,

where, using (22) and (23),

M1T
D→M1 = Np×r(0,Σ

−1
ββ ⊗ Ω), (25)

M2T
D→M2 =

∫ 1

0

dWεK
′
(∫ 1

0

KK ′du

)−1

. (26)

From α̂ = Π̂β1⊥, and using the normalization β′β1⊥ = Ir such that α = Πβ1⊥, it is seen
that

T 1/2(α̂− α) = T 1/2(Π̂− Π)β1⊥ = (M1Tβ
′ + T−1/2M2Tα

′
⊥)β1⊥

D→M1β
′β1⊥ = M1,

which proves (9). From β̂′ = (α′1⊥Π̂β1⊥)−1α′1⊥Π̂ follows that

T (β̂ − β)′β⊥ = T (α′1⊥Π̂β1⊥)−1α′1⊥(Π̂− αβ′)β⊥
= (α′1⊥Π̂β1⊥)−1α′1⊥(T 1/2M1Tβ

′ +M2Tα
′
⊥)β⊥

D→ (α′1⊥αβ
′β1⊥)−1α′1⊥M2α

′
⊥β⊥ = (α′1⊥α)−1α′1⊥M2α

′
⊥β⊥,

where T 1/2M1Tβ
′β⊥ = 0, α′1⊥α1cβ

′
1 = 0 and β′β1⊥ = Ir. This proves (10).

Proof of (11): To analyse the limit of the estimator, define

AT = (T−1/2ᾱ, α⊥) and BT = (T−1/2β̄, β⊥),

and write
ĉ = T (β′1Π̂−1α1)−1 = (β′1BT (A′TT Π̂BT )−1A′Tα1)−1.

The expansion (24), and the limits (25) and (26) are then applied to give the limit results

T−1/2ᾱ′(T Π̂)T−1/2β̄ = Ir +O(T−1) +OP (T−1),

T−1/2ᾱ′(T Π̂)β⊥ = 0 +O(T−1/2) +OP (T−1/2),

α′⊥(T Π̂)β̄T−1/2 = 0 +O(T−1/2) +M1T ,

α′⊥(T Π̂)β⊥ = 0 + α′⊥α1cβ
′
1β⊥ + α′⊥M2Tα

′
⊥β⊥.

Thus

A′T (T Π̂)BT
D→
(

Ir 0
M1 α′⊥α1cβ

′
1β⊥ + α′⊥M2α

′
⊥β⊥

)
,

BT (A′T (T Π̂)BT )−1A′T
D→ (0, β⊥)

(
Ir 0
M1 α′⊥α1cβ

′
1β⊥ + α′⊥M2α

′
⊥β⊥

)−1

(0, α⊥)′

= β⊥(α′⊥α1cβ
′
1β⊥ + α′⊥M2α

′
⊥β⊥)−1α′⊥.
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Thus, multiplying by β′1 and α1 and inverting, it is seen that because β′1β⊥ and α
′
1α⊥ are

(p− r)× (p− r) of full rank,

ĉ = (β′1BT (A′TT Π̂BT )−1A′Tα1)−1 D→ [β′1β⊥(α′⊥α1cβ
′
1β⊥ + α′⊥M2α

′
⊥β⊥)−1α′⊥α1]−1

= (α′⊥α1)−1(α′⊥α1cβ
′
1β⊥ + α′⊥M2α

′
⊥β⊥)(β′1β⊥)−1

= c+ (α′⊥α1)−1α′⊥M2α
′
⊥β⊥(β′1β⊥)−1,

which proves (11).

Proof of Corollary 1. Proof of (12): If r = p − 1, the expression (8) can be reduced as
follows. For τ = α1cβ

′
1

(τC)2 = cα1c(β
′
1Cα1)β′1C = c(β′1Cα1)α1cβ

′
1C = cδτC,

for δ = β′1Cα1, and in general for n ≥ 0, it is seen that

(τC)n+1 = (cδ)nτC.

Therefore, using β1c
′ζcβ′1 = β1c

′τΩ−1α(α′Ω−1α)−1α′Ω−1τ ′,

E(B) = tr{Ω−1α(α′Ω−1α)−1α′Ω−1τC

(∫ 1

0

(1− v) exp(vτC)Ω exp(vC ′τ ′)dv

)
C ′τ ′}.

The integral can be calculated by the expansion

τC exp(vτC)Ω exp(vC ′τ ′)C ′τ ′ =
∞∑

n,m=0

vn

n!
(τC)n+1Ω(C ′τ ′)m+1v

m

m!

=
∞∑

n,m=0

(vcδ)n+m

n!m!
τCΩC ′τ ′ = exp(2vcδ)c2κα1α

′
1,

where κ = β′1CΩC ′β1. This allows the integral to be calculated

τC

(∫ 1

0

(1− v) exp(vτC)Ω exp(vC ′τ ′)dv

)
C ′τ ′

=

(∫ 1

0

(1− v) exp(2vcδ)dv

)
c2κα1α

′
1 =

e2δc − 1− 2cδ

(2δc)2
c2κα1α

′
1.

Therefore

E(B) =
e2cδ − 1− 2cδ

(2δ)2
κα′1Ω−1α(α′Ω−1α)−1α′Ω−1α1 = (e2cδ − 1− 2cδ)

κζ

(2δ)2
,

where ζ = α′1Ω−1α(α′Ω−1α)−1α′Ω−1α1.
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Figure 1: Rejection frequency of the test Qβ for γ = 0 using the χ2(1)0.95 quantile as a
function of c and ρ; N = 1000 simulations of T = 100 observations from the DGP (14) and
(15).
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Figure 2: Rejection frequency of the test Qr for r = 1 using Table 15.1 in Johansen (1996)
as a function of c; N = 1000 simulations of T = 100 observations from the DGP (14) and
(15).
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Figure 3: Quantiles and fitted values in the distributions of ĉ and Qβ as a function of c for
different values of ρ; N = 1000 simulations of T = 100 observations from the DGP (14) and
(15).
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Figure 4: Rejection frequency of the test Qβ for γ = 0 using the χ2(1)0.95 quantile (unad-
justed) and the adjusted quantile in (19) for ξ = 95% and η = 5%, as a function of c for
different values of ρ; N = 1000 simulations of T = 100 observations from the DGP (14) and
(15).
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Figure 5: Rejection frequency of the test Qβ for γ = 0 using the χ2(1)0.95 quantile (unad-
justed) and the adjusted quantile in (19) for ξ = 95% and η = 5%, as a function of γ for
different values of c and ρ; N = 1000 simulations of T = 100 observations from the DGP
(14) and (15).
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Figure 6: Rejection frequency of the test Qβ for γ = 0 using the χ2(1)0.95 quantile (unad-
justed) and the adjusted quantile in (19) ξ = 95% and η = 5%, as a function of c; N = 1000
simulations of T = 100 observations from the DGPs in Table 1.
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Figure 7: Rejection frequency of the test Qβ for γ = 0 using the χ2(1)0.95 quantile (unad-
justed) and the adjusted quantile in (19) for ξ = 95% and η = 5%, as a function of γ for
different values of c; N = 1000 simulations of T = 100 observations from the DGPs in Table
1.
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