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Abstract

In a linear state space model, yt+1 = BTt + εt+1, we investigate if the unobserved
trend, Tt, cointegrates with the extracted trend EtTt, and with the estimated trend
ÊtTt, in the sense that the spreads Tt − EtTt and EtTt − ÊtTt are stationary. We find
that this result holds for BTt−BEtTt and BEtTt− B̂ÊtTt. For the trends Tt and ÊtTt,
however, this type cointegration depends on the identification of B and Tt. The same
results are found, if the observations, yt, from the state space model are analysed using
a cointegrated vector autoregressive model, where the trend is defined as the common
trend. Finally we investigate cointegration between trends and their estimators based
on the two models, and find the same results. We illustrate with two examples and
confirm the results by a small simulation study
Keywords: Cointegration of trends, State space models, CVAR models

JEL Classification: C32.

1 Introduction and Summary
In connection with a project on long-run causal order for nonstationary processes, see Hoover,
Johansen, Juselius and Tabor (2014), we used the state space model (SSM)

Tt+1 = Tt + ηt+1, (1)

yt+1 = BTt + εt+1,

t = 1, . . . , n, to estimate the effect, B, of unobserved independent random walks, Tt, on the
observed series, yt. When analysing some simulation studies, we noticed that the estimator
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of the extracted trend, ÊtTt, sometimes did not cointegrate with the simulated trend, Tt, in
the sense that Tt − ÊtTt was not stationary. In order to understand this phenomenon we
have analysed the state space model and found the solution, namely that we always have
cointegration (1,−1) between BTt and its estimator B̂ÊtTt, but not in general between Tt
and ÊtTt. The latter result depends on how the parameter B and the trend Tt are identified.
We then investigated the same questions using a cointegrated vector autoregressive model
(CVAR) to analyse y1, t = 1, . . . , n, and found the same results. Finally we compared the
estimated trends extracted from the SSM and the CVAR models and found the same results.
The results are given in Theorems 1, 2 and 3. For the trends from the CVAR, the trends

from the SSM, and finally for a comparison for the estimated trends from the two models.

2 The DGP and the statistical models
The data generating process (DGP) is formulated as

T 0t+1 = T 0t + ηt+1, (2)

yt+1 = B0T 0t + εt+1,

where T 0t ∈ Rm and yt ∈ Rp, t = 1, . . . , n. We assume m < p, and that B0 has full column
rank. Moreover ηt and εt are mutually independent and i.i.d. Gaussian with mean zero and
variances Ω0

η = diag(σ011, . . . , σ
0
pp) > 0 and Ω0

ε > 0 respectively. Note that the trend enters
with a lag in the observation equation. This is of course just a question of notation, as we
can define the trend S0t+1 = T 0t , and the observation equation becomes yt+1 = B0S0t+1 + εt+1.

2.1 The statistical models

We analyse the observations y1, . . . , yn from the DGP given in (2) using two different statis-
tical models each containing the DGP.

2.1.1 The first statistical model

We consider the state space model (SSM) defined by (1) for the observed process, yt, and
unobserved process, Tt, with p×m parameter B of full rank, and where Ωη > 0 and Ωε > 0
are freely varying positive covariance matrices of dimensions m×m and p× p respectively.
This statistical model can be analysed using the Kalman filter to calculate the likelihood
function, and an optimizing algorithm can be used to find the maximum likelihood estimator.

2.1.2 The second model

Next we reformulate the DGP in error correction form for the observation (yt, T
0
t )(

∆yt+1
∆T 0t+1

)
=

(
−Ip B0

0 0

)(
yt
T 0t

)
+

(
εt+1
ηt+1

)
.

It is seen that y1, . . . , yn are partial observations from a CVAR for (y′t, T
0′
t )′, and we use

the infinite order CVAR as statistical model

∆2yt = αβ′yt−1 − Γ∆yt−1 +

∞∑
i=0

Γi∆
2yt−i + δt. (3)

Using results of Saikkonen (1992) and Saikkonen and Lütkepohl (1996), parameters α, β,Γ,
and residuals δt can be estimated consistently by choosing a finite lag length kn →∞, such
that k3n/n→ 0.

2



Note that the parameters of the SSM model consist of B,Ωη,Ωε, whereas the parameters
of the CVAR are α, β,Γ,Γi, i = 0, . . . ,∞,and Ωδ. Let B0

⊥ be p×(p−m) of full rank satisfying
B0′
⊥B

0 = 0. We see from (2), that B0′
⊥yt = B0′

⊥εt is stationary, such that the cointegrating
vectors in the DGP are β0 = B0

⊥. Hence it is natural to assume that parameters in the two
models are related by β⊥ = B.
Moreover, the long-run variance in the SSM, limn→∞ n

−1V ar(yn) = BΩηB
′, is the

same as the long-run variance in the CVAR, limn→∞ n
−1V ar(yn) = CΩC ′, where C =

B(α′⊥ΓB)−1α′⊥, which gives another relation between the parameters, see Johansen and
Juselius (2014).

2.2 The trends

Given the two models, there are two ways of defining trends. In the SSM generated by (2),
the trend Tt is part of the model formulation, and in the CVAR (3) we define the trend as
the common trend

T ∗t = (α′⊥ΓB)−1α′⊥

t∑
s=1

δs,

where δt is the prediction error for yt given the infinite past {ys, s < t}, see (3).
Thus we have two representations of yt,

SSM : yt = BTt + εt −Bηt, (4)

CV AR : yt = C
t∑

s=1

δs + ut = B(α′⊥ΓB)−1α′⊥

t∑
s=1

δs + ut = BT ∗t + ut, (5)

using the Granger Representation Theorem, see Johansen (1996, Theorem 4.2). Finally ut
is an asymptotically stationary process.

2.3 The Kalman filter

Conditional on y1, . . . , yt, Tt is Gaussian with mean EtTt = E(Tt|y1, . . . , yt) and variance
Vt = V ar(Tt|y1, . . . , yt). It is well known, see Durbin and Koopman (2012) or Harvey (1989),
that EtTt and Vt can be calculated recursively by the Kalman filter starting with E1T1 = 0
and V1 = Ωη, using the equations for t = 1, . . . , T − 1,

Et+1Tt+1 = EtTt + Kt(yt+1 − Etyt+1) (6)

Vt+1 = Ωη + Vt − VtB
′(BVtB

′ + Ωε)
−1BVt,

where Kt = VtB
′(BVtB

′ + Ωε)
−1 is the Kalman gain. Let B̄ = B(B′B)−1 and define ΩB =

ΩB = V ar(B̄′εt|B′⊥εt).

Lemma 1 The recursion for Vt can be expressed as

Vt+1 = Ωη + Vt − Vt(Vt + ΩB)−1Vt. (7)

Solving the eigenvalue problem
|λΩB − Ωη| = 0,
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we find eigenvectors W and eigenvalues Λ = diag(λ1, . . . , λm), such that W ′ΩBW = Im and
W ′ΩηW = Λ. Then, if V1 = Ωη, we find W ′VtW → W ′VW= Λ∞, where

λi,∞ =
1

2
{λi + (λ2i + 4λi)

1/2}. (8)

It follows that
KtB = VtB

′(BVtB
′ + Ωε)

−1B → KB = V(V′ + ΩB)−1, (9)

such that KB has positive eigenvalues less than one.

2.4 Estimation

With the above definitions of trends, there is an identification issue between B and Tt (or
B and Ωη) and between B and T ∗t , because for any m ×m matrix M of full rank, we can
use BM−1 as parameter and MTt as trend and MΩTM

′ as variance, and similarly for T ∗t .
In order to estimate B, T, and Ωη, we need to impose restrictions, and we shall give two
examples of identification.

2.4.1 Identification 1.

Because B has rankm, we can permute the rows and assume that B′ = (B′1, B
′
2), where B1

is m×m and has full rank. Then we redefine the parameters and trend as

Ḃ =

(
Im

B2B
−1
1

)
=

(
Im
γ′

)
, Ω̇η = B1ΩηB

′
1, Ṫt = B1Tt. (10)

This parametrization is useful because it separates parameters that are n-consistently esti-
mated, γ, from those that are n1/2-consistently estimated, Ωη,Ωε, see Lemma 2. Note that
we simply identify the (correlated) trends by defining T1t as the trend in y1t, T2t as the trend
in y2t, and so on.

2.4.2 Identification 2.

We also want to consider the normalization where Ω̇η is diagonal, and define a Cholesky
decomposition Ω̇η = Cηdiag(σ11, . . . , σmm)C ′η, and the new parameters and the trend

B̈ =

(
Cη
γ′Cη

)
, Ω̈η = diag(σ11, . . . , σmm), T̈t = C−1η Ṫt, (11)

such that B̈T̈t = ḂṪt = BTt and B̈Ω̈ηB̈
′ = ḂΩ̇ηḂ

′ = BΩηB
′.

This parametrization is also useful because it defines independent trends and how they
load into the observations. An example is to define T1t as the trend in y1t, and T2t as the
trend in y2t, but orthogonalized on T1t, such that the trend in y2t is a combination of T1t and
T2t, etc.

2.4.3 A simple estimator

We can estimate the state space model using the Kalman filter to calculate the likelihood
function for given parameters and then maximize the likelihood function using a general
optimizing algorithm. But we can also find very simple (but not effi cient) estimators, which
are easier to analyse.
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Irrespective of the identification, we find the relations

V ar(∆yt) = BΩηB
′ + 2Ωε, (12)

Cov(∆yt,∆yt+1) = −Ωε. (13)

In the identified parametrization (10), where B = (Im, γ)′, we take B⊥ = (γ′,−Ip−m)′,
define z1t = (y1t, . . . , ymt)

′ and z2t = (ym+1,t, . . . , ypt) with a similar decomposition of εt =
(ξ′1t, ξ

′
2t)
′. Then the equation for yt+1 = (z1,t+1, z2,t+1)

′ becomes

z1,t+1 = Tt + ξ1,t+1, (14)

z2,t+1 = γ′Tt + ξ2,t+1 = γ′z1,t+1 − γ′ξ1,t+1 + ξ2,t+1 = γ′z1,t+1 − ε′tB⊥ (15)

Lemma 2 Assume B is identified as in (10), that is B′ = (Im, γ), B′⊥ = (γ,−Ip−m), and Ωη

is adjusted accordingly. Using (12) and (13), we can find n1/2-consistent estimators, which
are asymptotically Gaussian for the variance matrices Ωη and Ωε.
From equation (15), we find by regressing z2,t+1 on z1,t+1, that the estimator γ̂reg is n-

consistent with asymptotic Mixed Gaussian distribution

n(γ̂reg − γ) = nB′(B̂⊥ −B⊥)
D→ (

∫ 1

0

WηW
′
ηdu)−1

∫ 1

0

Wη(dWε)
′B⊥. (16)

If B is identified as in (11), that is B = (C ′η, C
′
ηγ)′, and Ωη = diag(σ11, . . . , σpp), then

B̂ −B = OP (n−1/2) but (16) still holds for nB′(B̂⊥ −B0
⊥).

Using the Kalman filter, we can calculate the extracted trend Et(Tt) based on observa-
tions and known parameters, and the estimator of the extracted trend T̂t = ÊtTt, based on
observations and estimated parameters.
Using the CVAR we find maximum likelihood estimators of the common trend T̆ ∗t =

(γ̆′⊥Γ̆B̆)−1γ̆′⊥
∑t

s=1 δ̆s. Note that we use B̂ to indicate an estimator in SSM, and B̆ to indicate
an estimator in CVAR.
Based on these trends, we can ask whether the trends cointegrate (1,−1) with the process

yt, whether they cointegrate with the estimated trends, and whether the estimated trends
from the two models cointegrate similarly with each other.

3 Cointegration between trends and their estimators
This section gives the main results in three theorems with proofs in the Appendix. In The-
orem 1 we show that in the CVAR model, the estimated trend B̆T̆ ∗t cointegrates with the
trend BT ∗t , and hence with yt, by showing that yt−BT ∗t and BT ∗t − B̆T̆ ∗t are asymptotically
stationary. However, whether T ∗t − T̆ ∗t is asymptotically stationary depends on the identi-
fication of B, Tt, and Ωη. Theorem 2 gives the same results for the state space model, and
finally in Theorem 3, we compare the estimated trends in the two models and show that
B̂T̂t− B̆T̆ ∗t is asymptotically stationary, but the same does not in general hold for T̂t − T̆ ∗t .
The conclusion is that in terms of cointegration of the trends, it does not matter which

model we use, as long as we focus on identified trends BTt and BT ∗t .
The missing cointegration between Tt and T̂t, say, can be explained in terms of the identity

B̂(Tt − T̂t) = (B̂ −B)Tt + (BTt − B̂T̂t),

5



where BTt − B̂T̂t is asymptotically stationary by Theorem 2 (b), but (B̂ − B)Tt is not
necessarily asymptotically stationary, because in general B̂ − B = OP (n−1/2) and Tt =
OP (n1/2). If, however, B is identified as in (10), then we have asymptotic stationarity for
Tt− T̂t = (Im, 0m×(p−m))(BTt− B̂T̂t). Thus, identification and estimation of parameters can
explain the lack of cointegration between estimated and true trends, see Examples 1 and 2
for an illustration.

Theorem 1 Let yt and Tt be generated by the DGP given in (2). If we use the CVAR (3)
for inference, and define the trend T ∗t = (α′⊥ΓB)−1α′⊥

∑t
s=1 δs, with estimator T̆

∗
t , then

(a) yt −BT ∗t is asymptotically stationary,
(b) BT ∗t − B̆T̆ ∗t is asymptotically stationary,
(c) T ∗t − T̆ ∗t is not necessarily asymptotically stationary.

If we choose the parametrization (10), then (Im, 0m×(p−m))(BT
∗
t − B̆T̆ ∗t ) = T ∗t − T̆ ∗t , such

that also T ∗t − T̆ ∗t is asymptotically stationary, but for the parametrization (11), the result
does not hold.
In the state space model we can prove similar results

Theorem 2 Let yt and Tt be generated by the DGP given in (2). If we use the state space
model defined by (2) for inference, see Lemma 1, then

(a) Tt − EtTt is asymptotically stationary,
(b) EtBTt − ÊtB̂Tt is asymptotically stationary,
(c) EtTt − ÊtTt is not in general asymptotically stationary.

Finally we compare trends estimated in the two models and prove the main result that
trends derived from the SSM and CVAR models cointegrate (1,−1), as long as we consider
B̂T̂t and B̆∗T̆ ∗t . For T̂t and T̆

∗
t we get the result again, that asymptotic stationarity depends

on how B and the trends are identified.

Theorem 3 Let yt and Tt be generated by the DGP given in (2). We estimate the trend
T ∗t = (α′⊥ΓB)−1α′⊥

∑t
s=1 δs by analysing CVAR (3), and estimate EtTt using SSM (2). If B̂

be the estimator for B derived from SSM, whereas B̆ is derived from CVAR, then
(a) Tt − T ∗t is asymptotically stationary,
(b) B̂T̂t− B̆T̆ ∗t is asymptotically stationary,
(c) T̂t − T̆ ∗t is not necessarily asymptotically stationary.

4 Two examples
We give two examples where p = 3 and m = 2. The parameters B and Ωη contain 6 + 3
parameters, but the 3× 3 matrix BΩηB

′ is of rank 2 and has only 5 estimable parameters.
Thus, we need to impose 4 restrictions to identify the parameters.

Example 1. We first consider the model with the identification given in (11),

B =

 1 0
a21 1
a31 a32

 , Ωη =

(
σ11 0
0 σ22

)
, (17)
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such that

EtBTt − ÊtB̂Tt =

 EtT1t − ÊtT1t
a21EtT1t + EtT2t − â21ÊtT1t − ÊtT2t

a31EtT1t + a32EtT2t − â31ÊtT1t − â32ÊtT2t

 . (18)

By the results in Theorem 2 (b), we see that EtT1t − ÊtT1t is asymptotically stationary,
because it can be recovered as the first row of EtBTt − ÊtB̂Tt in (18). Moreover the second
row of (18) (a21EtT1t− â21ÊtT1t)+(EtT2t− ÊtT2t) is asymptotically stationary. Thus to prove
that EtT2t − ÊtT2t is asymptotically stationary, it is enough to show stationarity of

a21EtT1t − â21ÊtT1t = (a21 − â21)EtT1t − â21(EtT1t − ÊtT1t). (19)

Here â21(EtT1t− ÊtT1t) is asymptotically stationary because EtT1t− ÊtT1t is, but the first

term is not, because â21 is n1/2-consistent, and in this case n1/2(a21 − â21)
D→ Z Gaussian,

such that

(a21 − â21)EtT1t|t=[nu] = n1/2(a21 − â21)n−1/2EtT1t|t=[nu]
D→ ZWη1(u),

which is nonstationary. This argument is a special case of the proof (22).
To illustrate theresults, we simulate data from the model with n = 100 observations

starting with T1 = 0, and parameter values a21 = 0.0, a31 = a32 = 0.5, σ11 = σ22 =
1. We estimate the parameters by Gaussian maximum likelihood using SsfPack 3.0, see
Koopman, Shepard, and Doornik (2008), where we fix y1 = 0 and assume a diffuse prior for
the initial value T1. The results are summarized in Figure 1. The panels a and b show plots
of (EtT1t, ÊtT1t) and (EtT2t, ÊtT2t) respectively, and we see that they co-move in each panel.
In panels c and d we show the differences EtT1t − ÊtT1t and EtT2t − ÊtT2t. We note that the
first looks stationary, whereas the second is clearly nonstationary. When comparing with
the plot of EtT1t in panel a, it appears that the process ÊtT1t can explain the nonstationarity
of EtT2t − ÊtT2t consistently with equation (19) and Table 1. Finally we analysed the four
variables (EtT1t, ÊtT1t,EtT2t, ÊtT2t) using a CVAR and we found two cointegrating relations
given in Table 1.

EtT1t ÊtT1t EtT2t ÊtT2t
β′1 −1 1 0 0
β′2 0 − 0.26

(0.003)
−1 1

Table 1: The result of a cointegration analysis of EtT1t, ÊtT1t, EtT2t, and ÊtT2t using model
(16). We found two cointegrating relations given in the Table. Note that ÊtT1t has a
significant coeffi cient in the second cointegrating relation. See also Figure 1 panel d, where
EtT2t − ÊtT2t is plotted, and it is seen that ÊtT2t is need to get a stationary relation.

Example 2. If instead we choose the parametrization (10)

B =

 1 0
0 1
a31 a32

 , Ωη =

(
σ11 σ12
σ12 σ22

)
, (20)
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we still have just identified parameters, but now

EtBT1t − ÊtB̂T1t =

 EtT1t − ÊtT1t
EtT2t − ÊtT2t

a31EtT1t + a32EtT2t − â31ÊtT1t − â32ÊtT2t

 . (21)

Thus, both EtT1t − ÊtT1t and EtT2t − ÊtT2t are asymptotically stationary, as the first two
rows of EtBT1t − ÊtB̂T1t, in (21), by Theorem 2.
In the simulation of this example, we use the values a21 = 0.0, a31 = a32 = 0.5 and

σ11 = σ22 = 1, σ12 = 0, such that in fact the DGP for this example is the same as the DGP
for Example 1, namely

B =

 1 0
0 1

0.5 0.5

 , Ωη =

(
1 0
0 1

)
.

In fact we analysed the same data as in Example 1. We plot the data in Figure 2. The
panels a and b show plots of (EtT1t, ÊtT1t) and (EtT2t, ÊtT2t) respectively, and we see that
they co-move. In panels c and d we show the differences ÊtT1t − EtT1t and ÊtT2t − EtT2t,
which appear to be stationary in this parametrization of the model. A cointegration analysis
of (EtT1t, ÊtT1t,EtT2t, ÊtT2t) shows that there two cointegrating relations, see Table 2.

EtT1t ÊtT1t EtT2t ÊtT2t
β′1 −1 1 0 0
β′2 0 0 −1 1

Table 2: The result of a cointegration analysis of EtT1t, ÊtT1t, EtT2t, and ÊtT2t using model
(19). We found the two cointegrating relations given here.

5 Conclusion
We have analysed data generated by a multivariate homogenous linear state space model

yt+1 = B0T 0t + εt+1,

T 0t+1 = T 0t + ηt+1,

where the state variable, T 0t , is an unobserved multivariate random walk. We have used
a state space model and a CVAR model to estimate the trend in the data. In both cases
we find that the estimated trend cointegrates (1,−1) with the trend in the model, provided
we only consider BTt and its estimator. The same result does not hold in general for the
trend Tt and its estimator. The reason is that if the parameters are identified using only
restrictions on Ωη, the estimator of B is not n-consistent, and recovering the trend T̂t from
the B̂T̂t causes some trends not to cointegrate with estimated trends.
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6 Appendix
Proof of Lemma 1. Proof of (7): We define M=(B̄, B⊥), for B̄ = B(B′B)−1, and find

KtB = VtB
′M [(M ′BVtB

′M +M ′ΩεM)]−1M ′B

= Vt

(
Im
0

)′(
Vt + B̄′ΩεB̄ B̄′ΩεB⊥
B′⊥ΩεB̄ B′⊥ΩεB⊥

)−1(
Im
0

)
= Vt(Vt + ΩB)−1,

where
ΩB = B̄′[Ωε − ΩεB⊥(B′⊥ΩεB⊥)−1B′⊥Ωε]B̄ = V ar(B̄′εt|B′⊥εt).

Proof of (8): If the recursion starts with V1 = Ωη, then all Vt can be diagonalized by W,
such that the recursion for λi,t, the eigenvalue of Vt, becomes

λi,t+1 = λi + λi,t −
λ2i,t

1 + λi,t
.

It is seen that λi,t is increasing in t and the limit is λi,∞ = {λi + (λ2i + 4λi)
1/2}/2. See for

instance Chan, Goodwin and Sin (1984) for more general results.

Proof of Lemma 2. Consider first the product moments and their limits (12) and (13),

S1n = n−1
n∑
t=1

∆yt∆y
′
t
P→ BΩηB

′ + 2Ωε,

S2n = n−1
n∑
t=1

∆yt∆y
′
t+1

P→ −Ωε.

Irrespective of the identfication, BΩηB
′ and Ωε can be estimated n1/2-consistently with

Gaussian limit distribution using the Central Limit Theorem.
To prove (16), we find from (14) and (15), that the least squares estimator γ̂reg satisfies

n(γ̂reg − γ) = −(n−2
n−1∑
t=1

z1,t+1z
′
1,t+1)

−1n−1
n−1∑
t=1

z1,t+1ε
′
t+1B⊥

D→ −(

∫ 1

0

WηW
′
ηdu)−1

∫ 1

0

Wη(dWε)
′B⊥.

HereWη is Brownian motion generated from ηt, adjusted to the identification of B = (Im, γ)′,
and Wε is Brownian motion generated from εt. We choose B⊥ = (γ0′,−Ip−m)′ and find the
relations

−(B̂ −B)′B⊥ = γ̂reg − γ = B′(B̂⊥ −B⊥).

Note that for the other parametrization (11), where B = (C ′η, C
′
ηγ)′ and we can choose the

same B⊥ = (γ0′,−Ip−m)′, such that for both parametrizations we have (16). The estimator
of B, however, changes in the parametrization (11), and we find

B̂ =

(
Ĉη
γ̂′Ĉη

)
,

9



where Ĉη is derived from the n1/2-consistent estimator of Ωη, such that for this parame-
trization, we do not get n-consistent estimation of B, but only that B̂ − B = OP (n−1/2).

Proof of Theorem 1. Proof of (a): This follows from (5).
Proof of (b): The Granger representation (5) holds for parameters and residuals, but

because yt is also a solution to the equations with estimated parameters and estimated
residuals, we have the same representation in terms of these. This implies that

BT ∗t − B̆T̆ ∗t = C
t∑

s=1

δs − C̆
t∑

s=1

δ̆s = yt − ut − (yt − ŭt) = ŭt − ut,

which is an asymptotically stationary process.
Proof of (c): We next find from

B̆(T ∗t − T̆ ∗t ) = (BT ∗t − B̆T̆ ∗t ) + (B̆ −B)T ∗t ,

that the first term is stationary by (b), and the last term (B̆−B)T ∗t = OP (1) is not stationary
because for the parametrization (11) we have only n1/2-consistent estimators, such that

n1/2(B̆ −B) = OP (1) and n−1/2T ∗[nu]
D→ Wδ(u), (22)

where Wδ is Brownian motion generated by δt. Thus, in general B̆(T ∗t − T̆ ∗t ) and therefore
T ∗t − T̆ ∗t is not asymptotically stationary.

Proof of Theorem 2. Proof of (a): We define the deviation between Tt and the extracted
trend, vt = Tt − EtTt, and find

yt+1 − Etyt+1 = BTt + εt+1 − EtBTt = Bvt + εt+1, (23)

Tt+1 − EtTt = Tt − EtTt + ηt+1 = vt + ηt+1. (24)

From the Kalman filter equations (6), we find

vt+1 = Tt+1 − Et+1Tt+1 = Tt+1 − EtTt − Kt(yt+1 − Etyt+1), (25)

such that, using (23) and (24),

vt+1 = vt + ηt+1 − Kt(Bvt + εt+1) = (Im − KtB)vt − Ktεt+1 + ηt+1.

From (9) we have that Im−KtB → ΩB(V + ΩB)−1, which has positive eigenvalues less than
1, and is hence stable. Moreover εt+1 is i.i.d. and the AR coeffi cient Ip − KtB is stable for
large t, so we find that (25) determines an asymptotically stationary process for Tt − EtTt.
Proof of (b): We define ut = BTt − ÊtB̂Tt, and find

EtBTt − ÊtB̂Tt = (EtBTt −BTt) + (BTt − ÊtB̂Tt) = B(EtTt − Tt) + ut.

The first term is stationary by (a), such that it is enough to show that ut is asymptotically
stationary. From (23), (24), and (25) we find, using estimated values of parameters,

yt+1 − Êtyt+1 = BTt + εt+1 − ÊtB̂Tt = ut + εt+1,
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and the recursion
ut+1 = (Ip − B̂K̂t)ut − B̂K̂tεt+1 +Bηt+1. (26)

From the definition of ut, we find from (16), that

B̂′⊥ut = B̂′⊥BTt = B̂′⊥(B − B̂)Tt = −B̂′(B⊥ − B̂⊥)Tt = OP (n−1)OP (n1/2) = OP (n−1/2).

Next we multiply (26) by ̂̄B′ = (B̂′B̂)−1B̂′ and use ̂̄B′B = ̂̄B′(B−B̂)+Im = Im+OP (n−1/2),
to find

̂̄B′ut+1 = ( ̂̄B′ − K̂t)ut − K̂tεt+1 + ̂̄B′Bηt+1
= ( ̂̄B′ − K̂t)(B̂

̂̄B′ + B̂′⊥
̂̄B′⊥)ut − K̂tεt+1 + ηt+1 + ̂̄B′(B − B̂)ηt+1

= (Im − K̂tB̂) ̂̄B′ut − K̂tεt+1 + ηt+1 +OP (n−1/2),

because both ̂̄B′(B − B̂)ηt+1 and (Im − K̂t)B̂
′
⊥
̂̄B′⊥ut are OP (n−1/2). From (9) we see that

Im − K̂tB̂
P→ ΩB(V + ΩB)−1 is stable for large n and t, which shows that ̂̄B′ut+1 and hence

ut is asymptotically stationary.
Proof of (c): We apply previous results and find from the identity

B̂(Tt − ÊtTt) = (B̂ −B)Tt + (BTt − B̂ÊtTt),

that BTt− B̂ÊtTt is asymptotically stationary by (b). For the second term we find n1/2(B̂−
B) = OP (1) and n−1/2T[nu]

D→ Wη, see (22), such that (B̂ − B)Tt is not necessarily asymp-
totically stationary. Hence Tt − ÊtTt is not in general a stationary process.

Proof of Theorem 3. Proof of (a): This follows from (4) and (5).
Proof of (b): We compare each estimator with the corresponding trend and find

B̂T̂t − B̆T̆ ∗t = (B̂T̂t −BTt) + (BTt −BT ∗t ) + (BT ∗t − B̆T̆ ∗t ).

Here the first term is asymptotically stationary using Theorem 2(b), and the last is asymp-
totically stationary by Theorem 1(b, c), and the middle term is asymptotically stationary by
(a).
Proof of (c): We find similarly

T̂t − T̆ ∗t = (T̂t − Tt) + (Tt − T ∗t ) + (T ∗t − T̆ ∗t ), (27)

where Tt − T ∗t is asymptotically stationary by (a). For the first term, we decompose as

B̂(Tt − T̂t) = (B̂ −B)Tt + (BTt − B̂T̂t),

where (B̂−B)Tt is asymptotically nonstationary, because B̂ is in general only n1/2−consistent.
The same argument applies to the last term in (27), which shows that in general we do not
get asymptotic stationarity.
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Figure 1: The result of a simulation of model (17) are plotted. Panels a and b show plots of
ÊtT1t and EtT1t, and ÊtT2t and EtT2t respectively.We note that in both cases, the processes
seem to co-move. In panel c we have plotted ÊtT1t −EtT1t which appears stationary, but in
panel d we note that the spread ÊtT2t −EtT2t is nonstationary. This is accordance with the
finding in Table 1, where it is seen that ÊtT1t is needed to find cointegration, see (18).
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Ê t T 2 t − E t T 2 t

Figure 2: The results of a simulation of model (20) are plotted. Panels a and b show plots of
ÊtT1t and EtT1t, and ÊtT2t and EtT2t respectively.We note that in both cases, the processes
seem to co-move. In panels c and d, we have plotted ÊtT1t−EtT1t and ÊtT2t−EtT2t, which
now appear stationary, because they are both recovered from ÊtÂTt−EtATt as the first two
coordinates see (19).
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