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Abstract

We consider an observation driven, conditionally Beta distributed model for variables restricted to the

unit interval. The model includes both explanatory variables and autoregressive dependence in the mean

and precision parameters using the mean-precision parametrization of the beta distribution suggested by

Ferrari and Cribari-Neto (2004). Our model is a generalization of the βARMA model proposed in Rocha and

Cribari-Neto (2009), which we generalize to allow for covariates and a ARCH type structure in the precision

parameter. We also highlight some errors in their derivations of the score and information which has implica-

tions for the asymptotic theory. Included simulations suggests that standard asymptotics for estimators and

test statistics apply. In an empirical application to Moody’s monthly US 12-month issuer default rates in the

period 1972 − 2015, we revisit the results of Agosto et al. (2016) in examining the conditional independence

hypothesis of Lando and Nielsen (2010). Empirically we find that; (1) the current default rate influence the

default rate of the following periods even when conditioning on explanatory variables. (2) The 12 month

lag is highly significant in explaining the monthly default rate. (3) There is evidence for volatility clustering

beyond what is accounted for by the inherent mean-precision relationship of the Beta distribution in the

default rate data.
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1 Introduction

Since the recent financial crisis there has been a strong interest in improving our understanding of corporate

defaults. A focus of this interest is whether the clustering in defaults commonly observed is mainly caused by

defaults increasing the probability of default in other firms (the contagion hypothesis), or whether these clusters

are due to common risk factors, specifically business cycle and financial, affecting all companies (the conditional

independence or systematic risk hypothesis). This question has already been explored by several authors; see,

for example, Das et al. (2006), Lando and Nielsen (2010), and Agosto et al. (2016). For investors and regulatory

authorities the systemic components of credit portfolios are of interest to ensure financial stability of either

a portfolios return or the economy as a whole. While from an academic standpoint it is interesting because

assuming conditional independence is useful to assume in derivations, see Lando and Nielsen (2010).

We propose a conditionally Beta distributed time series model (CBTS), which is a generalization of the

βARMA model of Rocha and Cribari-Neto (2009). The CBTS allows for covariates and autoregressive depen-

dence in both the mean and precision parameters using the parametrization of the beta distribution suggested

by Ferrari and Cribari-Neto (2004). The use of a conditional beta distribution for the default rate allows one to

examine the impact on both the location and scale of the distribution, whereas the Poison distribution has only

one parameter to match both the mean and the variance, the beta distribution has two.

However, similar to the GARCH-X type of models, see Han and Kristensen (2014), as shown in section 3

inference is quite involved. Section 4 presents a simulation study which suggests that the maximum likelihood

estimator is asymptotically Gaussian and that likelihood ratio tests are asymptotically χ2 distributed under the

null.

We apply our model to Moody’s monthly US 12-month issuer default rates in the period 1973− 2015. The

specification for the mean and precision include macroeconomic and financial variables, intended to capture

the common or correlated risk factors faced by the companies. We find that while explanatory variables do

explain some of the time variation in the default rate, there remains dependence in the mean and the precision

parameters, possibly implying contagion effects. Further, we find evidence of volatility clustering in the default

rate, which we believe to be a phenomenon not previously observed in default rates. We also find that the

12 month lag is highly significant in explaining default rates which appears to be a new result when modeling

aggregate defaults and may indicate previously unknown seasonality. We also find that realized volatility which

was found to be highly significant in explaining corporate defaults by Agosto et al. (2016) is not significant for

the mean if dummies are included for October of 1987, September 2008 and October 2008, but may be for the

precision parameter.

Previously, Sean et al. 1999 applied a Poisson model to default counts as a way to forecast the default rate,

since the number of companies that can default is known 12 months in advance. Similarly, Agosto et al. (2016)

examine the contagion hypothesis by modeling default counts.
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However, using the default rate rather rather than the default count can avoid certain drawbacks of count

models. Specifically, as the numbers of companies monitored that are capable of defaulting, known as the expo-

sure for Poison models, see Cameron and Trivedi (2013), is not constant, this may create spurious dependence

in the default counts. Regardless of whether the default of a company increases the probability of additional de-

faults, i.e. potentially presenting misleading evidence in favor of the contagion hypothesis. Instead, By dividing

the number of defaults with the number of firms, i.e. using the default rate, this is handled in a straightforward

way - but restricts the variable to be modeled to the unit interval.

A possible solution therefore is to apply a regression after having log-transformed the default rates as done

in, for example, Giesecke et al. (2010). However, transformed values of proportions and rates often exhibit

problematic characteristics, see Ferrari and Cribari-Neto (2004). Further, the interest lies in the default rate,

not a logarithmic transformation of it - it therefore seems logical to wish to model the default rate directly.

The paper is organized as follows. Section 2 introduces the CBTS model. Section 3 considers some derivations

in the model, we highlight certain difficulties related to inference in both our model and the model of Rocha

and Cribari-Neto (2009). Section 4 conducts a simulation study to evaluate the finite sample accuracy of the

derived asymptotics for the ML estimator as well as the empirical size for the LR tests when using its asymptotic

distribution. Section 5 is an empirical application of the model to Moody’s monthly US 12-month issuer default

rates in the period 1973 − 2015, we consider the impact of covariates, discuss contagion effects. Section 6

concludes.

2 The Conditionally Beta Time Series (CBTS) Model

The beta distribution is a continuous distribution on the unit interval governed by two shape parameters and

is widely used to model variables restricted to the unit interval, e.g. rates and proportions. The probability

density function (PDF) of the beta distribution is given by

f(y) = Γ(p+ q)
Γ(p)Γ(q)y

p−1(1− y)q−1, 0 ≤ y ≤ 1,

where p > 0, q > 0 and Γ(·) is the gamma function. The shape of the PDF is highly flexible, allowing for a U, bell

or J (with right or left tail) shaped curve as well as nesting the uniform distribution, see Ferrari and Cribari-Neto

(2004) for figures of possible shapes. The mean and variance for a beta distributed random variable, y, is given

by

E(y) = p

p+ q
and V ar(y) = pq

(p+ q)2(p+ q + 1)

Following Ferrari and Cribari-Neto (2004) the distribution is reparametrized by setting p = µφ and q = (1−µ)φ

such that

E(y) = µ and V ar(y) = µ(1− µ)
1 + φ

(2.1)
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where µ = p/(p+ q) and φ = p+ q; here 0 < µ < 1 and φ > 0 where φ can be regarded as a precision parameter

since a larger φ forces a smaller V ar(y) for a fixed µ. We denote this as the Beta(µ, φ) distribution with density

given by

f(y) = Γ(φ)
Γ(µφ)Γ((1− µ)φ)y

µφ−1(1− y)(1−µ)φ−1, 0 ≤ y ≤ 1.

Let y = (y1, ..., yT )′, be a time series whose distribution we model as a function of its own past, yt−m, m ≥ 1,

and in terms of some additional covariates xt = (x1t, ..., xkt)′ ∈ Rr. We now model yt as a conditional Beta

distribution with time-varying conditional mean,µt, and conditional precision, φt, which are measurable functions

of past yt and known covariates. Specifically, let the model be given by,

yt|Ft−1 ∼
i.i.d

Beta(µt, φt), Ft−1 = σ(yt−m, xt−m+1 : m ≥ 1) (2.2)

where the conditional density, f(yt|yt−m, xt−m+1 : m ≥ 1), is given by

f(yt|yt−m, xt−m+1 : m ≥ 1) = Γ(φt)
Γ(µtφt)Γ((1− µt)φt)

yµtφt−1
t (1− yt)(1−µt)φt−1, 0 < y < 1

It is assumed that the time-varying conditional mean is related to the linear predictor, through a twice

differentiable strictly monotonic link function g1 : (0, 1) 7→ R, e.g. the logit function g1(x) = log( x
1−x ). That

is, we follow the βarma model of Rocha and Cribari-Neto (2009) in defining g1(µt) as a function of a set of

regressors, xt, and an ARMA component, τt, such that the general expression for the mean is

g1(µt) = η1t = x′tβ1 + τt

= α1 + x′tβ1 +
∑
i≤Q1

δi
(
g1(yt−i)− x′t−iβ1

)
+
∑
j≤P1

γj (yt−j − µt−j) (2.3)

where β1 = (β1,1, ..., β1,k1), for notational convenience we also define δ = (δ1, ..., δq1) and γ = (γ1, ..., γp1) which

are the vectors of moving average and autoregressive parameters respectively. Q1 and P1 are the sets largest lag

of AR and MA included.

From Equation (2.1) it follows that the conditional variance is naturally time-varying as it is a function of

the time varying µt. To allow for a more flexible variance, we follow Smithsom and Verkuilen (2006) and let

that the time varying conditional precision be related to a set of regressors in a linear predictor, η2t, through a

twice differentiable strictly monotonic link function g2 : R+ 7→ R, e.g. the log function g2(x) = log(x). Further,

to allow for dependence in the precision we also include lagged standardized squared errors. We will refer to

the last term as the ARCH component of the model due to the inspiration owed to the ARCH model of Engle

(1982).
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g2(φt) = η2t = α2 + z′tβ2 +
∑
j≤P2

κjε
2
t−j , εt−j = (yt−j − µt−j)√

µt−j(1−µt−j)
1+φt−j

, (2.4)

where β2 = (β2,1, ..., β2,k2), for notational convenience we also define κ = (κ1, ..., κp2) which is the vector of the

ARCH parameters. P2 is the largest ARCH lag.

Employing a dependence structure when specifying φt is new to the beta regression literature and is cho-

sen for its ease of implementation and interpretation. To motivate this particular specification note that

E(yt−j |Ft−j−1) = µt−j and that V ar(yt−j |Ft−j−1) = µt−j(1−µt−j)
1+φt−j

, we therefore have that E(ε2t−j |Ft−j−1) =

V ar(εt−j |Ft−j−1) = 1. With larger values of ε2t−j indicating an uncharacteristically large deviation of yt−j from

µt−j . we can interpret a negative κj as indicating volatility clustering. Since ε2t−j is Ft−j−1 measurable it is

straightforward to calculate the likelihood.

We refer to the model given by equations (2.3) and (2.4) model as the conditional beta time series model

or simply as a CBTS(p1, q1, p2) model. The model has a decreasing variance for a mean near the extremes

(0 and 1), but allows for greater flexibility than a fixed precision model could. The parameter vector is θ =

(α1, β1, γ, δ, α2, β2, κ) ∈ Θ = R1+k1+p1+q1+1+k2+p2 .

3 Asymptotic Theory in the CBTS Model

Standard arguments for likelihood estimators are based on the verification of the limiting behavior of the like-

lihood function through the usual Taylor expansions of the log-likelihood and hence the first, second and third

derivatives of the log-likelihood, see eg. Jensen and Rahbek (2004) for standard regularity conditions. Given

such regularity conditions, the estimators are consistent, asymptotically Gaussian and moreover testing can be

based on χ2 inference via likelihood ratio statistics. We discuss here briefly the inherent difficulties in establish-

ing these, see also Han and Kristensen (2014) where the conceptually similar GARHC-X model is considered

for the GARCH −X(1, 1) case. We expect that the likelihood estimators are indeed asymptotically Gaussian

under mild conditions, but were not able to establish formally the regularity conditions in terms of conditions

on the true parameters θ0 of the model. Consequently, we supplement our considerations below with a detailed

simulation study of the asymptotic distributions of the likelihood estimators, θ̂T in the next section.

First consider the score and its variance. These may be used directly to facilitate numerical optimization of

the likelihood. However, the non-linearity of the model leads to complex expressions which renders it difficult

to derive closed form expressions or formally state the regularity conditions for the model as mentioned.

The conditional beta-type log-likelihood function conditional on m = max(P1, P2, Q1) observations fixed is

given by

LT (θ) ..=
T∑

t=m+1
lt(θ)
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where, simplifying the notation of lt(θ) as lt, we have

lt = log(Γ(φt))− log(Γ(µtφt))− log(Γ((1− µt)φt)) + log(yt)(µtφt − 1) + log(1− yt)((1− µt)φt − 1).

The score is given by,

ST (θ) ..=
T∑
t=1

st(θ) =
T∑
t=1

∂lt
∂θ

We then have the total derivative with respect to θ as

∂Lt
∂θ

= ∂Lt
∂µt

∂µt
∂η1t

∂η1t

∂θ
+ ∂Lt
∂φt

∂φt
∂η2t

∂η2t

∂θ
(3.1)

∂Lt

∂µt
and ∂Lt

∂φt
are standard, see Ferrari and Cribari-Neto (2004), and where ∂η1t

∂θ =
(
∂η1t

∂α1
, ...
)′

and ∂η2t

∂θ =(
∂η2t

∂α1
, ...
)′

are non-standard and given in Appendix B.

Taking the conditional expectation of the score contributions and using that µt, φt, ∂η1t

∂θ , ∂η2t

∂θ , ∂µt

∂η1t
and ∂φt

∂η2t

are Ft−1 measurable it holds that

E (st(θ) |Ft−1 ) = E

(
∂Lt
∂θ
|Ft−1

)
= E

(
∂Lt
∂µt

∂µt
∂η1t

∂η1t

∂θ
+ ∂Lt
∂φt

∂φt
∂η2t

∂η2t

∂θ
|Ft−1

)
= E

(
∂Lt
∂µt
|Ft−1

)
∂µt
∂η1t

∂η1t

∂θ
+ E

(
∂Lt
∂φt
|Ft−1

)
∂φt
∂η2t

∂η2t

∂θ
.

From Lemma 2 in the Appendix it follows that E
(
∂Lt

∂µt

∣∣∣
θ=θ0

|Ft−1

)
= 0 and E

(
∂Lt

∂φt

∣∣∣
θ=θ0

|Ft−1

)
= 0 so that

E
(
st(θ)|θ=θ0

|Ft−1
)

= 0. That is, the score contribution is a martingale difference sequence with respect to Ft−1

when evaluated in the true parameter values. Thus provided stationarity and ergodicity of {yt} as well as finite

higher order moments, standard arguments would imply asymptotic normality of the score provided contraction

conditions apply to the recursions of ∂η1t

∂θ and ∂η2t

∂θ . While we expect this to hold we were unable to derive

explicit conditions. To illustrate the difficulty in conducting inference consider the simple CBTS(1,1,1) model.

To calculate the score contribution we need the two vectors ∂η1t

∂θ and ∂η2t

∂θ . Using the notational convention that∏0
j=1 = 1, we can find the following expression for ∂η1t

∂α1
, the first element of ∂η1t

∂θ , as the alternating series
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∂η1t

∂α1
= 1− γ ∂µt−1

∂α1

= 1− γ
(
∂µt−1

∂η1t−1

∂η1t−1

∂α1

)
= ...

=
t∑
i=0

(−1)i
γi i∏

j=1
(1− µt−j)µt−j

 ,
where we have used that ∂µt−1

∂α1
= ∂µt−1

∂η1t−1

∂η1t−1
∂α1

.

This result differs from the score for the βARMA model of Rocha and Cribari-Neto (2009) and invalidates

the asymptotic theory derived for estimators, diagnostic and test statistics suggested in that paper1. Similar

derivations for the other parameters and higher order derivatives are typically much more complex, and for more

general models even ∂η1t

∂α1
becomes difficult to derive in any sort of closed form.

4 Simulation Study

In the previous section it was shown that deriving formal asymptotic theory is quite difficult. In this section we

perform a simulation study to evaluate the asymptotics for the ML estimator as well as the empirical size for

the LR tests when assuming usual inference, that is, χ2 asymptotics for LR tests, are valid. We use sample sizes

T = 50, 100, 200, 500 and 1, 000 with N = 1, 000 Monte Carlo replications for each sample size.

In the following two subsections we consider the following two data generating processes (DGP) for the

covariate, let xt be generated from an AR(1) model given by

xt = κ+ ψxt−1 + εt, εt ∼
i.i.d.

N(0, σ2) (4.1)

We use σ2 = 0.05 and with AR parameter ψ = 0.5 or ψ = 0.95. The two DGPs are respectively somewhat

persistent or highly persistent, as commonly seen in macroeconomic and financial time series. The intercept, κ,

is set such that E(xt) = κ
1−ψ = 1.

We let yt be generated by the CBTS model of equation (2.2) with mean and precision specifications given by

g1(µt) = α1 + x′tβ1 + γ(yt−1 − µt−1) + δ
(
g(yt−i)− x′t−iβ1

)
(4.2)

g2(φt) = α2 + x′tβ2 + κε2t−1, εt−1 = (yt−1 − µt−1)√
µt−1(1−µt−1)

1+φt−1

< z (4.3)

where g1(·) is the logit function and g2(·) is the exponential function. We use the parameter values α1 = −2,

β1 = 0.5, γ = 0.5, δ = 0.5, α2 = 8, β2 = 0.5 and κ = −0.5. The parameters are chosen such that the simulated
1As a result, the authors of the original paper are now preparing a corrigendum to their original paper. The mistake of that

particular paper is a result of neglecting the recursive elements of the score, this result then permeates throughout the paper.
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yt has a level around 3%, with some dependence, influence from the covariate and volatility clustering. The level

is similar to that of the default rate for speculative issuers examined in section 5. In the very rare case that yt

gets so close to 0 that its value is set to 0 by the computer, we drop the simulated path and simulate a new one.

The log-likelihood is maximized numerically, with initial values for α1 and β1 based on OLS estimates as

suggested in Ferrari and Cribari-Neto (2004) but including xt−1 and yt−1 as regressors to account for some

dependence. We also initialize by matching α1 and α2 to the first two moments of the data. When calculating

test statistics we also initialize in the unrestricted MLE but add the restrictions of the test statistic. Maximization

is carried out using the interior-point method available in Matlab 2015B with the analytical scores derived in

section 32.

4.1 Finite Sample Performance of ML Estimator Asymptotics

In this subsection we perform a simulation study to illustrate the finite sample properties of the MLE when

simulating the model given by equations (4.2)-(4.3). Figure 4.1 (A)-(D) report histogram and kernel density

estimates for sample sizes T = 200, 500 and 1000 of the estimators along with the asymptotic distributions

probability density function when simulating the covariate using equation 4.1 with ψ = 0.5.

From Figure 4.1 it is appears that the kernel estimates are reasonably close to the fitted normal distribution.

Results were unchanged when using ψ = 0.95. Close examination of the simulation data revealed that the

normal approximation was actually worsened by a few outliers (less than 0.5% of the data), with the remaining

99.5% of the data appearing to follow a Gaussian distribution3 quite closely.

4.2 Finite Sample Performance of LR Test Asymptotics

In this subsection we perform a simulation study to illustrate the empirical size and power of the LR tests when

using the asymptotic distribution derived in the previous section.

4.2.1 Empirical Size

We consider the hypotheses H0 : θi = 0 for i = 3, ..., 7 with θi the i′th element of θ. In each case since this

is a single restriction, the LR test should be asymptotically χ2(1) if usual asymptotics apply and we therefore

examine if this is the case for the simulations. The results of the simulations are presented in Table 1 for sample

sizes T = 50, 100, 200, 500 and 1, 000 with N = 1, 000 replications for each sample size. For each sample size

we report the empirical rejection frequency using the 90%, 95% and 99% critical value of the χ2(1) distribution

as well as the P-value of the Kolmogorov-Smirnov test for the hypothesis that the test statistics are χ2(1)

distributed.
2Simulations not shown indicate using numerical derivatives does not significantly affect the results.
3These outliers do no appear to be due to a failure of the maximization procedure which was reinitialized in several different

areas of the parameter space and using several different optimization methods.
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The results suggest that χ2(1) can be used as a good approximation for the distribution of the LR test for most of

the parameters when 200 or more observations are used in conjunction with a significance level of 90− 95%, the

exceptions being tests on δ and κ parameters. The critical values 90−95% of the asymptotic distribution produce

a size close to the intended level for tests on all parameters, except δ, when using 500 or more observations. The

dependence of the explanatory variable, as measured by the AR parameter ψ, does not appear to influence the

empirical size of the test statistics. The 99% critical values are generally somewhat oversized.
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(a) α1 = −2 (b) β1 = 0.5 (c) γ = 0.5

(d) δ = 0.5 (e) α2 = 8 (f) β2 = 0.5

(g) κ = −0.5

Figure 4.1: Kernel density estimates of the simulated distributions of the estimated parameters for the CBTS
model described in section 4. The covariate, xt was simulated using the model of equation (4.1) with the AR
parameter set to 0.5 and an unconditional mean of 1. We display kernel density estimates for sample sizes
T = 200 (blue), 500 (green) and 1000 (red) with N = 1, 000 Monte Carlo replications. The vertical black line
indicates the true parameter value and the thin black curves are the pdf of normal distributions with mean and
variance fitted to the data.
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H0 : γ = 0 H0 : δ = 0 H0 : κ = 0
T / CV 90% 95% 99% KS 90% 95% 99% KS 90% 95% 99% KS

50 26.8 19.5 10.6 0 52.9 44.3 29.8 0 48.1 41.5 29.9 0
100 14.2 7.8 2.6 0 34.4 25.8 14.4 0 19.7 13.2 5.8 0
200 10.6 5.7 1.7 0.67 23.6 15.7 6.4 0 14.1 8.1 2.3 0
500 10.1 4.5 1.0 0.34 16.8 9.9 4.3 0 11.6 6.1 1.9 0.04
1,000 11.6 6.1 1.5 0.14 16.4 10.9 3.6 0 10.2 5.6 1.1 0.13

H0 : β1 = 0 H0 : β2 = 0
T / CV 90% 95% 99% KS 90% 95% 99% KS

50 23.3 16.8 8.4 0 21.9 15.6 7.0 0
100 13.8 8.4 1.8 0 14.6 8.3 1.7 0
200 11.6 6.2 2 0.06 11.2 6.5 1.9 0.43
500 10.0 4.7 1.0 0.53 10.7 6.2 1.5 0.1
1,000 10.4 5.3 1.1 0.93 9.9 4.3 1.1 0.83

(a) Results usingψ = 0.5

H0 : γ = 0 H0 : δ = 0 H0 : κ = 0
T / CV 90% 95% 99% KS 90% 95% 99% KS 90% 95% 99% KS

50 26.2 19.8 10.5 0 53.8 44.7 29.7 0 52.4 46.6 34.6 0
100 14.3 8.2 2.9 0 32.0 24.1 12.6 0 20.6 13.1 5.9 0
200 11.6 6.4 1.3 0.49 25.8 17.5 7.7 0 13.0 7.0 2.3 0
500 10.8 4.6 0.9 0.20 17.4 10.6 4.1 0 12.6 6.4 1.7 0
1,000 10.9 6.1 1.4 0.43 15.9 9.3 3.1 0 11.3 6.3 2.4 0.11

H0 : β1 = 0 H0 : β2 = 0
T / CV 90% 95% 99% KS 90% 95% 99% KS

50 25.3 18.0 8.6 0 22.3 15.5 7.1 0
100 14.8 8.1 1.9 0 13.4 8.5 2.5 0
200 11.8 6.6 2.2 0.5 14.4 8.1 2.1 0.02
500 12.5 5.7 0.7 0.26 11.0 6.4 1.6 0.62
1,000 11.5 6.0 1.5 0.85 11.9 7.1 2.2 0.68

(b) Results usingψ = 0.95

Table 1: Empirical rejection frequency (ERF) in percent for the LR test for the either the hypothesis listed in
each table using the 90%, 95% or 99% critical values of the χ2(1) distribution. Also shown is the P-value of the
Kolmogorov-Smirnov test for the hypothesis that the data is χ2(1) distributed. The covariate, xt was simulated
using the model of equation (4.1) with the AR parameter set to 0.5 and an unconditional mean of 1. We display
ERF’s for sample sizes 50, 100, 200, 500 and 1, 000 with N = 1, 000 Monte Carlo replications.
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5 Empirical Application to US Default Rates 1973− 2015

In this section we examine Moody’s monthly US 12-month issuer default rates4 in the period from January 1973

until September 2015 (T = 514). The data is available for both the non-speculative grade issuers and speculative

grade issuers. We first examine default rate for the non-speculative issuers before turning to the default rate of

the speculative grade issuers in subsection 5.2.

Primarily, we wish to examine if the ARMA component, τt, is included in the mean when correcting for

other variables indicating evidence in favor of the contagion hypothesis, if no such component is significant it

indicates evidence in favor of the conditional independence hypothesis.

The secondary goal is to examine which variables are important for explaining the mean and precision parameters

for the default rate, whether these are the same when considering non-speculative and speculative issuers and

how stable the parameters have been over time.

Lastly, we wish to compare our findings to those of a number of papers; Agosto et al. (2016) who use monthly

US default counts in the 1982-2011 period, Simons and Rolwes (2009) who use quarterly default rates from the

Netherlands from 1983-2006.

The non-speculative and speculative default rates are shown in Figure 5.2. From the plots it can be seen that

there is a large degree of persistence in the default rates, but also that they vary over time. The non-speculative

default rate is as low as 0.09% from December 1979 until Marts 1980 and as high as 7.73% in November of 2009.

Similarly, the speculative default rate varies from a minimum of 0, 43% from January 1980 until Marts 1980 to a

high of 14.71% in November 2009. From the figure it is also discernible that large increases in the default rates

have been associated with recessions in the past, as indicated by the shaded time periods.

The choice of covariates in explaining the default rate largely follows that of Lando and Nielsen (2010) and

Agosto et al. (2016). We include the following financial and macroeconomic variables in our study: Baa Moody’s

rated 10-year Treasury spread (SP)5, 6 month change in Industrial Production Index (IP)6, The Chicago Fed

National Activity Index (NA) 7 released by the Federal Reserve Bank of Chicago, we use NA rather than the

Leading Index, released by federal reserve bank of St. Louis, as NA has been published for the entirety of our

sample period. We also include the recession indicator released by the National Bureau of Economic Research

(RI)8 and monthly realized volatility (RV) of the S&P 500 index, calculated using daily returns obtained from

Bloomberg.

Motivated by Simons and Rolwes (2009) where it was found that quarterly default rates in the Netherlands are

influenced by oil prices and interest rates, we include the 12 month changes in percent for oil prices (WTI) and

corporate bond yields (CBY). Both variables represent an expenditure for most companies therefore a change
4The default rate is available from Moody’s webpage from the Monthly Default Report in the Research & Ratings section.
5research.stlouisfed.org/fred2/series/BAA10YM
6research.stlouisfed.org/fred2/series/INDPRO
7chicagofed.org/research/data/cfnai/current-data
8research.stlouisfed.org/fred2/series/USREC
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could affect the companies ability to repay their loans. We measure the oil price by the West Texas Intermediate
9 and use Moody’s Seasoned Baa Corporate Bond yield 10 for the interest rate.

Further, we also include the 12 month return on the S&P500 index11 (SP12), because in the structural framework

of credit risk, see Merton (1973), an increase in the underlying asset i.e. the companies value, should lead to a

decrease in default probability12.

Lastly, since it has been argued that leverage cycles may be important in determining defaults, see eg. Geanako-

plos (2009), Geanakoplos and Fostel (2008) and Brave and Butters (2012), we also include the Chicago Fed

National Financial Conditions Leverage Sub-index13 (FCL). FCL is a weighted average of 33 indicators of debt

and equity measures in the US financial system, see Brave and Butters (2012) for details. The index is con-

structed to have an average of zero and a standard deviation of one with positive (negative) values indicate

tighter (looser) than average conditions in money markets, debt and equity markets. As the Index is released

on a weekly basis, we average over the weeks to get a monthly value.

It should be noted that some care should be taken when interpreting the estimates of the model. Firstly, no

variable exists in a vacuum, for example the Recession Indicator is sure to be negatively correlated with National

Activity, making ceteris paribus interpretation of either meaningless. Secondly, while we have attempted to use

reasonable measures for oil and interests rate changes, it could be the case that companies have hedged their risk

at some time period but are still exposed to changes in oil and interests over a different time period. Similarly,

if many oil companies finance their operations through bonds it may be that a falling oil price, which one might

expect would lead to fewer defaults as companies have less costs in their production actually has the opposite

effect when dropping below the production costs of some producers causing them to default. In their November

2015 announcement Moody’s write “We note that over a third of corporate defaults have been from commodity

sectors so far this year, with the majority from oil and gas", which might be expected following the oil glut

and subsequent price drops in 2014-2016, similar to the oil glut of the 1980’s. Lastly one should be mindful of

reverse causality, for example one might expect an increased leverage to signal an increase in defaults. However,

it may well be that lenders are only willing to lend at an increased leverage when there are few defaults which

then builds up until default rates rise, this could then actually cause a negative correlation between leverage

and defaults.

Figure 5.2 displays the covariates, including a shading indicating a recession as defined in the RI variable.

There do not appear to be any trends in the variables, but a degree of persistence is found in all of them, fitting

an AR(1) model to each series we find autoregressive parameters ranging from 0.97 for IP to 0.45 for RV. Large
9WTI can be found at research.stlouisfed.org/fred2/series/MCOILWTICO but is only available from 1986, prior to this we use

the spot oil price of West Texas Intermediate, available at https://research.stlouisfed.org/fred2/series/OILPRICE. The two oil prices
are very highly correlated.

10https://research.stlouisfed.org/fred2/series/BAA
11Obtained from Bloomberg.
12As the company should be able to roll their debt using the increased value of the company, therefore a general increase in stocks

value would be expected to decrease default rates.
13research.stlouisfed.org/fred2/series/NFCILEVERAGE
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outliers in October of 1987, September 2008 and October 2008 dominates the RV variable, this is due to the

crash of 1987 and the financial crisis. We may wish to include dummy variables for these observations. Further,

FC shows a tendency to increase in most regressions despite being designed to be uncorrelated with economic

conditions. Lastly, there is correlation between the covariates, none less than 0.24 in absolute value and the

following with correlations greater than 0.5 in absolute value; RI and NA (−0.67), IP and RI (−0.54), IP and

SP (−0.60), SP and NA (−0.52), RI and FC (0.60).
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(a) Non-Speculative Issuers (b) Speculative Issuers

Figure 5.1: Plot of default rates for non-speculative and speculative graded issuers, with shading indicating a
recession as defined by the recession indicator released by the National Bureau of Economic Research (RI).

(a) FCL (b) IP (c) NA (d) RV

(e) SP (f) SP12 (g) WTI (h) CBY

Figure 5.2: Plot of covariates with shading indicating a recession as defined by the recession indicator released
by the National Bureau of Economic Research (RI). The variables are: The Chicago Fed National Financial
Conditions Leverage Sub-index (FCL), change in Industrial Production Index (IP), Chicago Fed National Activ-
ity Index (NA), realized volatility (RV), Baa Moody’s rated 10-year Treasury spread (SP), 12 month return on
the S&P500 index (SP12), 6 month changes in percent for oil prices (WTI) and corporate bond yields (CBY).
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5.1 Full-sample Analysis

In this subsection we conduct an analysis for the full sample. Figure 5.3 sub-figure (a) shows the Akaike

information criterion (AIC) for CBTS(1,1,1) through CBTS(18,18,18). From the plot it appears that little gain

is obtained by including lags 4 − 11, but including lag 12 improves the model. Based on the AIC, and since

optimizing the log-likelihood is both time consuming and difficult for larger models, we use the following model

as the starting point for our analysis

g1(µt) = α1 + x′tβ1 +
∑

j∈{1,2,3,12}

γj(yt−j − µt−j) +
∑

i∈{1,2,3,12}

δi
(
g1(yt−i)− x′t−iβ1

)
, (5.1)

g2(φt) = α2 + z′tβ2 +
∑

j∈{1,2,3,12}

κjε
2
t−j (5.2)

Where xt and zt both contain all the covariates described in 5. We will refer to the model of equations (5.1)

and (5.2) as the full model. Table 2 shows the estimation results for the full model. We have slightly changed

the notation of the AR, MA and ARCH lags to highlight that parameters between 3 and 12 are set to 0.

We then iteratively reduce the full model by removing the least significant variables, excepting the intercepts,

using LR tests and re-estimating the model until a significance level of 10% is reached for all remaining variables.

After this procedure we have a model which we will refer to as the reduced model, parameter estimates are

presented in Table 3 for the reduced model.

The fit of the reduced model is evaluated in Figure 5.3 sub-figures (b)-(f) by examining the weighted residuals

suggested by Espinheira et al. (2008) which in a well specified Beta regression model are approximately N(0, 1)

distributed. From the sub-figures it appears that the reduced model has a good fit to the data.

Examining the estimated model we see that even when including all the covariates many lags are significant.

We find that there is evidence of volatility clustering, but this is mainly due to the 2 and 3 month ARCH

term with the 1 month ARCH term actually having a positive estimate. The model appears to have several

insignificant variables with only RV being significant for the mean specification. For the precision specification

RV and WTI are significant. The 12 month lag is highly significant for both the mean and the precision

specifications. The 3 month AR and MA terms are both highly significant and negative. The fitted distribution

is at all points bell shaped rather than J-shaped14.

As expected, a large number of variables was removed from both the mean and precision. For the mean only

RV and the WTI are significant. The parameter values suggest that increased volatility in the financial markets

could cause an increase in the default rate while a drop in oil prices will tend to cause a decrease.

For the precision we see that NA and RV will actually decrease the conditional variance of the default rate

whereas an increase in IP will increase the conditional variance of the default rate.
14This can not be seen directly from the parameter estimates but for all points in time the requirement was checked manually.
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No dependence terms for the mean where removed at the 10% significance level, although the second MA

term is close with a P-value of 9.3%. We again see a large negative dependence in the default rate to the past

years default rate, i.e. lag 12 is negative and highly significant for both AR and MA parameters. The ARCH

component seem to indicate a volatility clustering effect as indicated by the negative parameter values for the 2,

3 and 12 month lags, with the puzzling existence of a positive parameter for the 1 lag ARCH parameter. This

last parameter however is dwarfed by the other lags and is only significant at the 8.9% level.

It was noted earlier that there were some large outliers in RV at October of 1987, September 2008 and

October 2008. Corresponding to the crash of 1987 and the onset of the recent financial crisis. In Table D we

present the estimation obtained by including dummies for the RV outliers in the full model, as it was done

previously we reduce until a 10% significance level is reached, the result are presented in Table 7.

From Table 7 we see that there are only two explanatory variables in the models mean specification, FCL

and WTI. That is, the RV variable is replaced by the FCL variable. In Agosto et al. (2016) when examining

parameter stability it can similarly be seen that RV is only significant around 2008. We speculate that the link

between financial market volatility and corporate defaults is mostly present in cases of extreme volatility and

that the evidence for a general link is limited.

5.2 Analysis of Speculative Grade Default Rate

We redo the empirical application but using the default rate for companies designated as speculative (a credit

rating of Ba1 or worse). Our procedure is similar as the one used for the non-speculative grade in initially

estimating the larger model which is then iteratively reduced, the parameter estimates of the full and reduced

models are presented in Appendix C.

Similar to the non-speculative default rate model we see that RV is highly significant for the mean, however

FCL is now also significant. However, for the precision parameters far more parameters are now significant;

IP, SP, NA, RV, SP12 and CBY. We note that IP has a different sign on its estimate than what was found

for the non-speculative default rate, but the remaining significant parameters have the same sign. In the MA

component we now see more negative signs, but also a smaller 12 month lag. As for the non-speculative default

rate we find highly significant 12 month effects. The ARCH terms are only significant at the 3 month lag where

there is an indication of volatility clustering.
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Parameters for mean Parameters for precision
Parameter Estimate LR test P-value Parameter Estimate LR test P-value

α1 -0.07168 13.70347 0.0021*** α2 9.47078 1860.73064 0.00000 ***
IP 0.00020 0.00185 0.96567 IP -0.05878 2.57947 0.10826
RI 0.00328 0.05519 0.81427 RI -0.04070 0.06553 0.79796
SP -0.01013 0.95591 0.32822 SP -0.05443 0.18758 0.66494
NA 0.00576 1.74532 0.18647 NA 0.24416 5.22490 0.02227*
FCL -0.02043 1.43759 0.23053 FCL -0.05744 0.43869 0.50775
RV 0.00017 8.16847 0.00426** RV 0.00989 7.26361 0.00704**
SP12 0.02404 0.20830 0.64810 SP12 0.41791 0.20830 0.64810
CBY 0.01305 1.44000 0.23014 CBY 0.13528 1.44000 0.23014
WTI -0.19491 4.32757 0.03750 WTI -0.30037 4.32757 0.03750*

MA-1 3.32602 3.27553 0.07032 ARCH-1 0.09784 5.59168 0.01805*
MA-2 3.15727 3.27682 0.07027 ARCH-2 -0.06810 6.64973 0.00992**
MA-3 4.22991 4.4957 0.03400* ARCH-3 -0.16588 7.80750 0.00520**
MA-12 -20.16512 60.44146 0.00000 *** ARCH-12 -0.12907 22.94570 0.00000 ***
AR-1 1.03316 204.57602 0.00000 ***
AR-2 0.10618 2.42971 0.11906
AR-3 -0.10185 2.9844 0.08412
AR-12 -0.05521 27.39353 0.00000 ***

Table 2: Parameter estimates for the full model for the non-speculative grade default rate, likelihood ratio tests
and P-values.
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Parameters for mean Parameters for precision
Parameter Estimate LR test P-value Parameter Estimate LR test P-value

α1 -0.07278 15.35459 0.00009*** α2 9.50469 3718.50885 0.00000 ***
RV 0.00016 8.60110 0.00336** IP -0.06415 4.91345 0.02665*
WTI -0.18559 4.35506 0.03690* NA 0.33692 17.26600 0.00000 ***

RV 0.00687 7.82486 0.00515**

MA-1 4.22262 3.67163 0.05535 ARCH-1 0.05570 2.88428 0.08945
MA-2 4.28348 2.82136 0.09302 ARCH-2 -0.08647 8.92701 0.00281**
MA-3 3.92035 5.04191 0.02474* ARCH-3 -0.18166 21.53402 0.00000 ***
MA-12 -19.18987 56.16531 0.00000 *** ARCH-12 -0.14500 26.92891 0.00000 ***
AR-1 1.01104 208.73117 0.00000 ***
AR-2 0.11293 3.88781 0.04864*
AR-3 -0.08925 3.74313 0.05302
AR-12 -0.05252 37.82379 0.00000 ***

Table 3: Reduced parameter estimates for the reduced model for the non-speculative grade default rate, likelihood
ratio tests and P-values.

19



(a) AIC (b) Residuals

(c) ACF of residuals (d) ACF of squared residuals

(e) Histogram, boxplot of residuals and N(0,1) pdf (f) QQ-plot of residuals

Figure 5.3: Sub-figure (a) displays the AIC for CBTS(1,1,1) through CBTS(18,18,18). Sub-figures (b)-(f) display
plots evaulating the weighted residuals suggested by Espinheira et al. (2008) for the reduced model.
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6 Concluding Remarks

We have proposed an extension to the Beta-ARMA model of Rocha and Cribari-Neto (2009) which allows

for dependence and explanatory variables in both the mean and the precision parameters. We have discussed

some issues related to inference and note that there exists an error in the results of Rocha and Cribari-Neto

(2009). Simulations presented suggest that standard inference applies for realistic sample sizes for at least some

parameter values.

We suggest that working with default counts may be biased towards the contagion hypothesis and that

working with default rates using our model solves this problem. We apply our model to Moody’s monthly US

12-month speculative and non-speculative issuer default rates in the period from December 1972 until September

2015, including several explanatory variables in both the mean and precision parameters. From residuals our

model appears to be well specified. After removing insignificant variables we find evidence in favor of an ARMA

component to the mean, thus presenting evidence in favor of the contagion hypothesis.

Our results suggests there may exist volatility clustering in the default rates and that the 12 month lag is

significant for both the mean and precision parameters, as it enters with a negative parameters this suggests

that a large number of defaults will decrease the default rate 1 year later but that it also increases the variance

of the default rate 1 year later. Both appear to be novel results in the literature.

We initially confirm the observation of Agosto et al. (2016) that RV is significant in explaining corporate

defaults, but this becomes insignificant when including dummies for September and October 2008, thus suggests

a relationship only exists in the most extreme of cases and not even always then since a dummy for September

of 1987 was not found to be significant
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A Moments of Beta Distributed Variables

Given x ∼ Beta(µ, φ), we have the following results for moments of log transformations, see eg. Ferrari and

Cribari-Neto (2004).

E(log(x)) = ψ(µφ)− ψ(φ),

E(log(1− x)) = ψ((1− µ)φ)− ψ(φ),

E(log(X)2) = [ψ(µφ)− ψ(φ)]2 + ψ(µφ)− ψ′(φ),

E(log(1−X)2) = [ψ((1− µ)φ)− ψ(φ)]2 + ψ′((1− µ)φ)− ψ′(φ),

E(log(X) log(1−X)) = [ψ(µφ)− ψ(φ)] [ψ((1− µ)φ)− ψ(φ)]− ψ′(φ),

var

(
log
(

x

1− x

))
= ψ′(µφ) + ψ′((1− µ)φ).
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B Some Useful Lemmas for the Score and Information

Using the expressions for moments of a Beta distributed variable given in Appendix A and with ψ(.) denoting

the digamma function the following lemma 1 can be shown

Lemma 1. Define the following; y∗t ..= log( yt

1−yt
), y∗∗t ..= log(1 − yt), y∗∗∗t ..= log(yt)log(1 − yt) and y∗∗∗∗t

..=

log(1− yt)2 = (y∗∗t )2. We then have their conditional expectations, and the conditional variance of y∗t , as

µ∗t
..= E (y∗t |Ft−1 ) = ψ(µtφt)− ψ((1− µt)φt)

µ∗∗t
..= E (y∗∗t |Ft−1 ) = ψ((1− µt)φt)− ψ(φt)

µ∗∗∗t
..= E (y∗∗∗t |Ft−1 ) = [ψ(µtφt)− ψ(φt)] [ψ((1− µt)φt)− ψ(φt)]− ψ′(φt)

µ∗∗∗∗t
..= E (y∗∗∗∗t |Ft−1 ) = [ψ((1− µt)φt)− ψ(φt)]2 + ψ′((1− µt)φt)− ψ′(φt)

σ2∗
t

..= E
(

[(y∗t − µ∗t )]
2 |Ft−1

)
= ψ′(µtφt)− ψ′((1− µt)φt)

σ∗∗2t =..= E
(

(y∗∗t − µ∗∗t )2
)

= ψ′ ((1− µt)φt)− ψ′ (φt)

The partial derivatives of Lt(θ) with respect to µt, φt and their second and product moments are given in

the following Lemma

Lemma 2. With y∗t , y∗∗t , µ∗t and µ∗∗t as defined in Lemma 1 we have

∂Lt(θ)
∂µt

= −φtψ(µtφt) + φtψ ((1− µt)φt) + φtlog(yt)− φtlog(1− yt)

= φt

(
log
(

yt
1− yt

)
− ψ (µtφt) + ψ ((1− µt)φt)

)
= φt (y∗t − µ∗t )

and

∂Lt
∂φt

= ψ(φt)− µtψ (µtφt)− (1− µt)ψ ((1− µt)φt) + µt log(yt) + (1− µt) + log(1− yt)

= µt

(
log
(

yt
1− yt

)
− ψ (µtφt) + ψ ((1− µt)φt)

)
+ ψ(φt)− ψ((1− µt)φt) + log(1− yt)

= µt (y∗t − µ∗t ) + y∗∗t − µ∗∗t

Using that µ∗∗∗t − µ∗∗∗∗t − µ∗tµ∗∗t = ψ′((1− µt)φt) it follows that

E

([
∂Lt
∂µt

]2
|Ft−1

)
= E [φ (y∗t − µ∗t ) |Ft−1 ]2

= φ2
tσ
∗2
t
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and

E

([
∂Lt
∂φt

]2
|Ft−1

)
= E

(
[µt (y∗t − µ∗t ) + (y∗∗t − µ∗∗t )]2 |Ft−1

)
= E

(
µ2
t (y∗t − µ∗t )

2 + (y∗∗t − µ∗∗t )2 + 2µt (y∗t − µ∗t ) (y∗∗t − µ∗∗t ) |Ft−1

)
= µ2

tσ
∗2
t + σ∗∗2t + 2µtE [(y∗t − µ∗t ) (y∗∗t − µ∗∗t ) |Ft−1 ]

= µ2
tσ
∗2
t + σ∗∗2t + 2µt(−ψ′((1− µt)φt))

and

E

(
∂Lt
∂µt

∂Lt
∂φt
|Ft−1

)
= E (φt (y∗t − µ∗t ) [µt (y∗t − µ∗t ) + (y∗∗t − µ∗∗t )] |Ft−1 )

= φtµtσ
∗2
t + φt (ψ′(φt)− ψ′((1− µt)φt))

The partial derivatives of µt and φt are given in the following Lemma 3

Lemma 3. Using the logit and log link-functions for g1 and g2 we have
∂µt
∂η1t

= 1
g′1(µt)

= µt(1− µt) = µt − µ2
t

∂φt
∂η2t

= 1
g′2(φt)

= φt.

Using the results of Lemmas 2 and 3, we find the following expression for the expectation of the variance of

the score

E

([
∂Lt
∂θ

]2
|Ft−1

)
= E

([
∂Lt
∂µt

∂µt
∂η1t

∂η1t

∂θ
+ ∂Lt
∂φt

∂φt
∂η2t

∂η2t

∂θ

]2
|Ft−1

)

= E

([
∂Lt
∂µt

∂µt
∂η1t

∂η1t

∂θ

]2
|Ft−1

)
+ E

([
∂Lt
∂φt

∂φt
∂η2t

∂η2t

∂θ

]2
|Ft−1

)

+ 2E
(
∂Lt
∂µt

∂µt
∂η1t

∂η1t

∂θ

∂Lt
∂φt

∂φt
∂η2t

∂η2t

∂θ
|Ft−1

)
= E

([
∂Lt
∂µt

]2
|Ft−1

)(
∂µt
∂η1t

∂η1t

∂θ

)2
+ E

([
∂Lt
∂φt

]2
|Ft−1

)(
∂φt
∂η2t

∂η2t

∂θ

)2

+ E

(
∂Lt
∂µt

∂Lt
∂φt
|Ft−1

)
2 ∂µt
∂η1t

∂η1t

∂θ

∂φt
∂η2t

∂η2t

∂θ

= φ2
t (ψ′(µtφt) + ψ′((1− µt)φt))

(
µt − µ2

t

)2
(
∂η1t
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Parameters for mean Parameters for precision
Parameter Estimate LR test P-value Parameter Estimate LR test P-value

α1 -0.00130 0.03581 0.84992 α2 7.00872 315.08911 0.00000***
IP -0.01029 1.11074 0.29192 IP 0.07335 9.25022 0.00235**
RI -0.01242 0.35386 0.55194 RI 0.38818 2.11923 0.14546
SP 0.01255 1.13511 0.28669 SP 0.30635 39.55042 0.00000***
NA -0.00567 2.35080 0.12522 NA 0.26151 5.35775 0.02063*
FCL -0.4859 4.59063 0.03215* FCL -0.04463 0.83535 0.36073
RV 0.00013 13.31484 0.00026*** RV 0.01470 10.40583 0.00126**
SP12 0.00719 0.15860 0.69045 SP12 1.09474 6.32007 0.01194*
CBY 0.02293 0.94508 0.33097 CBY 0.14764 6.27895 0.01222*
WTI 0.00000 0.00002 0.99639 WTI -0.05449 0.10919 0.74107

MA-1 -1.69665 3.49131 0.06169 ARCH-1 0.03973 2.28595 0.13055
MA-2 -1.51656 4.47343 0.03443* ARCH-2 -0.03387 1.57222 0.20988
MA-3 -0.93493 2.07778 0.14946 ARCH-3 -0.13774 30.92964 0.00000***
MA-12 -12.28802 53.68793 0.00000*** ARCH-12 -0.07559 3.26573 0.07074
AR-1 1.14039 193.75087 0.00000***
AR-2 -0.00829 6.00053 0.01430*
AR-3 -0.10148 1.71556 0.14946
AR-12 -0.03209 27.43364 0.00000***

Table 4: Parameter estimates for the full model for the speculative default rate, likelihood ratio tests and
P-values.

C Tables of Estimates Speculative
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Parameters for mean Parameters for precision
Parameter Estimate LR test P-value Parameter Estimate LR test P-value

α1 -0.06387 12.76857 0.00035*** α2 7.33560 1664.05496 0.00000 ***
FCL -0.03913 10.24851 0.00137** SP 0.30966 6.55506 0.01046*
RV 0.00014 14.14489 0.00017*** NA 0.31951 27.30663 0.00000 ***

RV 0.01013 12.92601 0.00032***
CBY 0.11099 4.29210 0.03829*

MA-1 2.07273 6.41911 0.01129* ARCH-1 0.06801 4.49505 0.03399*
MA-2 2.53084 7.13915 0.00754** ARCH-2 -0.08994 8.23242 0.00411**
MA-12 -8.96960 75.45613 0.00000 *** ARCH-3 -0.18084 51.64435 0.00000 ***
AR-1 1.03528 937.09653 0.00000 ***
AR-12 -0.05484 38.84132 0.00000 ***

Table 5: Reduced parameter estimates for the reduced model for the speculative grade default rate, likelihood
ratio tests and P-values.
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Parameters for mean Parameters for precision
Parameter Estimate LR test P-value Parameter Estimate LR test P-value

α1 -0.07600 9.93414 0.00162 ** α2 10.05947 461.47984 0.00000 ***
IP -0.00766 2.63333 0.10464 IP -0.14189 15.03152 0.00011 ***
RI -0.00902 0.59649 0.43992 RI -0.20372 0.65714 0.41757
SP 0.01523 0.86813 0.43992 SP -0.32817 7.49649 0.00618 **
NA 0.00038 0.04733 0.82778 NA 0.34872 21.74455 0.00000 ***
FCL -0.05144 5.53702 0.01862 * FCL -0.18620 7.67287 0.00561 **
RV -0.00019 116.25579 0.00000 *** RV 0.02363 18.41214 0.00002 ***
SP12 0.00707 0.10453 0.74646 SP12 -0.24438 0.20083 0.65405
CBY -0.01423 0.00884 0.92511 CBY 0.00000 0.00007 0.99348
WTI -0.02291 2.04122 0.15309 WTI 0.41058 3.39631 0.06534

30-Sep-1987 0.01385 0.00215 0.96304 30-Sep-1987 -18.08655 6.38315 0.01152 *
30-sep-2008 0.17699 18.30465 0.00002 *** 30-sep-2008 -0.00000 0.00001 0.99807
31-Oct-2008 0.10234 110.47038 0.00000 *** 31-Oct-2008 3.78217 3.77848 0.05192

MA-1 12.29137 23.72818 0.00000 *** ARCH-1 0.05030 2.56128 0.10951
MA-2 7.16837 3.67438 0.05525 ARCH-2 -0.10525 20.25920 0.00001 ***
MA-3 6.62618 32.45402 0.00000 *** ARCH-3 -0.14736 19.39046 0.00001 ***
MA-12 -14.66305 56.95383 0.00000 *** ARCH-12 -0.14350 41.81648 0.00000 ***
AR-1 0.93980 246.68468 0.00000 ***
AR-2 0.21309 73.72456 0.00000 ***
AR-3 -0.10855 17.64756 0.00000 ***
AR-12 -0.06311 30.01065 0.00000 ***

Table 6: Parameter estimates for the full model for the non-speculative grade default rate, likelihood ratio tests
and P-values.

D Tables of Estimates With Dummies
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Parameters for mean Parameters for precision
Parameter Estimate LR test P-value Parameter Estimate LR test P-value

α1 -0.05767 14.76943 0.00012*** α2 8.95324 4676.07860 0.00000 ***
FCL -0.05662 12.33340 0.00044*** FCL -0.21444 6.15989 0.01307*
WTI -0.22164 5.22036 0.02232* RV 0.01212 14.53732 0.00014***

SP12 0.69690 5.59366 0.01803*
CBY 0.10123 3.73678 0.05323

30-Sep-1987 0.12218 12.95025 0.00032*** 31-Oct-2008 6.35810 5.98634 0.01442*
30-sep-2008 0.10397 14.15309 0.00017***
31-Oct-2008 0.07022 10.36111 0.00129**

MA-12 -23.58777 81.07336 0.00000 *** ARCH-1 0.11752 8.81574 0.00299**
AR-1 1.07085 394.15715 0.00000 *** ARCH-2 -0.05076 7.38878 0.00656**
AR-2 0.13811 9.82311 0.00172** ARCH-3 -0.08194 6.90678 0.00859**
AR-3 -0.17830 16.78098 0.00000 *** ARCH-12 -0.08887 15.75281 0.0007***
AR-12 -0.04540 38.07460 0.00000 ***

Table 7: Parameter estimates for the reduced model for the non-speculative grade default rate, likelihood ratio
tests and P-values.
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