
Discussion Papers 
Department of Economics 
University of Copenhagen 

  

 
 

 
 

 

 

 
Øster Farimagsgade 5, Building 26, DK-1353 Copenhagen K., Denmark 

Tel.: +45 35 32 30 01 – Fax: +45 35 32 30 00 
http://www.econ.ku.dk 

 
 

ISSN: 1601-2461 (E) 
 
 

No. 16-10 

 
 
 

Too good to be truthful: Why competent advisers are fired 
 

Christoph Schottmüller 
 

 

 
 
 
 

 

 

 

  
  
 

  
 

http://www.econ.ku.dk/


Too good to be truthful:

Why competent advisers are fired∗

Christoph Schottmüller†

University of Copenhagen and Tilec

September 12, 2016

Abstract

A decision maker repeatedly asks an adviser for advice. The adviser is either

competent or incompetent and his preferences are not perfectly aligned with the

decision maker’s preferences. Over time the decision maker learns about the

adviser’s type and fires him if he is likely to be incompetent. If the adviser’s

reputation for being competent improves, it is more attractive for him to push his

own agenda because he is less likely to be fired for incompetence. Consequently,

competent advisers are also fired with positive probability. Firing is least likely

if the decision maker is unsure about the adviser’s type.

JEL codes: C73, D83, G24

Keywords: advice, cheap talk, reputation

1. Introduction

As specialization is one of the cornerstones of the modern knowledge society, it is not

surprising that advice by specialized experts is important in many domains of life:

Savers have financial advisers to help them manage their wealth, consumers rely on

sales personnel, politicians and managers depend on their advisers to find the right

policy, patients need their physicians’ advice and internet users rely on search engines.

In most of these cases the adviser’s incentives are not necessarily aligned with the

advice seeker’s preferences. Financial advisers (as well as sales personal and search en-

gine operators) can get bonuses if their customers buy specific products, politicians and

managers might wonder whether their advisers have an own agenda and patients might

∗I want to thank Ole Jann, Jesper Rüdiger, Peter Norman Sørensen, Jörgen Weibull and audiences
at the University of Copenhagen, SING12 in Odense and the Meeting of the EEA in Geneva for helpful
comments.
†email: christoph.schottmueller@econ.ku.dk, phone: +45 35 32 30 87
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be worried that their physician’s enthusiasm for a certain drug stems from successful

lobbying efforts by its producer. Even ex post it is hard to detect whether these worries

were justified because advice in all these areas is complex and even the best possible

advice could turn out wrongly once in a while.

Another common feature of these examples is the repeated nature of advice: Most

people tend to get advice from the same adviser several times and switch advisers only

from times to times. It clearly makes sense to switch if one concludes that the adviser is

not competent, i.e. the adviser is more of a quack than an expert. However, long term

advisers who are viewed as very competent are also fired occasionally: In 2003, financial

analyst Jack Grubman was banned by the Security and Exchange Commission from the

financial industry for life and fined fifteen million dollar for misconduct. Grubman had

used his good reputation to pursue his own goals instead of his customers’ ones when

he gave a buy recommendation for AT&T as part of a complicated plan to get his

kids into the prestigious 92nd Street YM-YWHA’s preschool program (as he explained

in a private email that later went public).1 By the time the ban was announced,

market participants had, of course, already stopped listening to Grubman’s advice.

This reaction was, however, not a response to perceived incompetence: When Grubman

was hired by Distinctive Devices as consultant a year later, the company’s stock price

increased. The problem was that Grubman apparently (ab-)used his good reputation

by misrepresenting his information and thereby manipulated his followers for his own

personal benefit.

As an example from political advice, consider the firing of Roger Stone as Donald

Trump’s campaing adviser in his race to become the Republican Party’s candidate in

the 2016 presidential election. Trump and Stone had worked together for more than

a decade and Stone was well regarded within the Republican party. Trump explained

the firing by saying “I terminated Roger Stone last night because he no longer serves a

useful function for my campaign,” Trump added. “I really don’t want publicity seekers

who want to be on magazines or who are out for themselves. This campaign is not

about them.” That is, the firing was not due to incompetence but due the fact that

– from Trump’s point of view – Stone prioritized his personal agenda over the one his

boss had in mind.

History is full of further examples in which kings dismissed or even killed their most

prominent adivsers when these advisers were too competent and perceived as a threat

to the throne. Famous in this sense is the Ottoman Sultan Suleiman the Magnificient

who killed not only his Grand Vizier and childhood friend Pargali Ibrahim Pasha (after

Ibrahim committed the mistake of using the title “serasker sultan”) but also his own son

1See http://observer.com/2010/03/stockgoosing-grubman-to-sell-townhouse-for-196-m/

for a brief summary of the story.
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and designated heir Mustafa for this reason (after a successful military campaign on his

father’s behalf Mustafa committed the mistake of not stopping his soldiers referring to

him as “sultan”).

In all these examples, a very competent adviser is mistrusted and fired after com-

mitting some “mistake” that made the decision maker doubt whether the adviser acted

in the decision maker’s best interest or whether he was (ab-)using his power to push

his own agenda instead. This paper argues that these situations are typical. More

specifically, advisers are fired not although they had reputation for being competent

but because they had this reputation for competence. That is, they might have kept

their positions – and possibly not even committed the same mistake – if their compe-

tence had been in doubt. What is the logic behind this result? I consider a setting in

which the competence of the adviser is not perfectly known by the decision maker. An

adviser whose competence is doubtful is facing the danger of being dismissed because of

incompetence if his advice turns out to be bad (which strengthens the decision maker’s

initial doubts). Consequently, the advisor has strong incentives to act in the decision

maker’s best interest in order to keep his position. An adviser who is believed – with

high probability – to be competent, however, has more freedom because the danger

of being fired due to incompetence in the near future is negligible for him: even if his

advice turns out to be bad a few times, this is not immediately a sign of incompetence

as it could simply be due to bad luck. The adviser is therefore free to pursue his own

goals which are usually not in line with the decision maker’s goals. In this case, the

best response of the decision maker is to fire the adviser because his advice serves only

the interests of the adviser himself and not the decision maker’s interests.2

Figure 1 shows the reasons for firing an adviser who is in fact competent at different

beliefs of competence: The decision maker fires the adviser if the belief that he is

competent is too low because the information that the adviser is competent is hidden.

If the belief is high, the reason for firing the adviser is not hidden information but moral

hazard: The adviser does not act in the interest of the decision maker but pushes his

own agenda. Note that the decision maker values an adviser most when he is uncertain

about the quality of the adviser because this uncertainty will incentivize the adviser to

give good advice. The decision maker does not value the adviser for very low or very

high beliefs either because of likely incompetence or because of moral hazard.

The model is a repeated game in which the adviser recommends one of finitely many

options to the decision maker in every period until the decision maker ends the advice

2To be more precise, decision maker and adviser might in equilibrium use mixed strategies when
the adviser is believed to be competent: The decision maker will fire the adviser with some probability
when a recommendation turns out to be bad. This gives the adviser some incentives to give not too
bad advice in order to avoid being fired. However, the quality of advice will in equilibrium be just high
enough to make the decision maker indifferent between firing and keeping the adviser. Otherwise, the
decision maker’s threat of firing would not be credible.
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Figure 1: Reasons for firing a competent adviser (α is the belief that the adviser is
competent). The adviser is not fired for intermediate values of α.

relationship. One of the available options fits the decision maker’s needs and one fits the

adviser’s needs – e.g. he receives a bonus for this option. The two might accidentally

coincide from time to time but usually they do not. The decision maker has a uniform

prior concerning which option will fit his needs and also concerning which will fit the

adviser’s needs. The adviser has a noisy signal of which option fits the decision maker’s

needs and knows perfectly which option will give him a bonus. The decision maker

finds out whether the recommended option fitted his needs only after he followed the

recommendation. The adviser has one of two types: either he is competent, i.e. his

noisy signal is informative, or not.

In this model, no meaningful advice could be obtained in a static setting because

the adviser would always recommend his bonus option if he did not face the threat of

losing future bonus payments. The same is true in a finitely repeated game: Similar to

the static setting the adviser is unable to give meaningful advice in the last period and

will therefore always be fired before the last period. Given this, the adviser is unable

to give meaningful advice in the second but last period and the game unravels meaning

that the adviser is never consulted in equilibrium. Some informative advice is, however,

possible in an infinitely repeated game setting. Unsurprisingly, the adviser is fired for

sure if the decision maker’s belief that the adviser is competent is very low. If this

belief is sufficiently high, the adviser is also fired with positive probability whenever he

recommends an option not fitting the decision maker’s needs. For these high beliefs,

equilibrium strategies are usually mixed: the decision maker is indifferent between firing

and keeping the adviser and the threat of firing is just high enough to ensure that the

adviser finds a strategy optimal that keeps the decision maker indifferent between these

two options.

The expected length of the game, i.e. the number of periods before the adviser is

fired, is uniformly bounded from above for any belief; that is, the bound is independent

of the decision maker’s belief about the adviser’s competence. This illustrates that

even an arbitrarily competent adviser will almost surely be fired within a finite amount

of time. These results hold for all equilibria of the game, i.e. they are not affected

by multiplicity of equilibria. While the result that the adviser is fired (with some

probability) if the belief in competence is high is naturally stated in terms of Markov

equilibrium, the results on the expected length of the game are more general, i.e. they
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also hold in non-Markovian equilibria. It is also shown that the adviser suffers in many

equilibria from a severe commitment problem: If he was able to commit to truthfully

revealing his signal in every period, he and the decision maker would both obtain a

strictly higher payoff than in equilibrium.

Related to this paper is the literature on cheap talk started by Crawford and Sobel

(1982) and surveyed in Krishna and Morgan (2008).3 The exact structure of the payoffs

is, however, somewhat different from the traditional cheap talk setup where the adviser

has a bias in a certain direction, e.g. a political adviser is more left-wing than the

decision maker and pushes therefore always for more leftist policies than the decision

maker would like. In my setup, the bias is not in a certain direction but for one (random)

option which carries a bonus for the adviser. Within the cheap talk literature, models of

repeated cheap talk in which the state of the world changes each period are closest to my

paper.4 Renault et al. (2013) characterize the set of equilibrium payoffs in a repeated

game framework when players are arbitrarily patient and states are correlated through

an irreducible Markov chain. Park (2005) analyzes a situation where a consumer has

a problem each period and relies on advice to find out which of several repair shops is

specialized in fixing the problem at hand. In contrast to the current paper, the adviser

knows in these papers the state of the world perfectly and reputation for competence

does consequently not play a role. Hence, an expert cannot be “too good” which is

the main focus of my paper. This is also the main difference to earlier papers (Sobel,

1985; Benabou and Laroque, 1992) where the adviser’s type refers to his honesty and

not the quality of his information. Being more certain to face a honest type is good

for consumers implying that they will certainly not fire the adviser at these favorable

beliefs. In my model being more likely to face an informed type can be bad because it

aggravates the moral hazard problem. More broadly, the paper is part of the literature

asking whether career concerns and reputation can prevent opportunism, see Fama

(1980) and Holmström (1982) for seminal contributions. Closest is Aghion and Jackson

(2016) in which (political) “leaders” have to be incentivized to take risky decisions

(instead of remaining inactive) by the threat to vote them out of office. In equilibrium,

even arbitrarily competent leaders are terminated with some probability whenever they

do not take a risky decision. However, setup and applications differ significantly as

“leaders” do not receive bonuses and do not know their own type.

3The adviser’s advice is in my setup directly relevant for the decision maker’s payoff but the main
reason is that – due to his ignorance – the adviser has no real choice but to follow the adviser’s advice
(as long as he did not quit the advice relationship). That is, the model of this paper is equivalent to a
model where the advice is real cheap talk and the decision maker has a pseudo decision to follow the
advice or not.

4There is also a literature analyzing the effect of repeated advice when the state is the same in
all periods and only one action has to be taken, e.g. Aumann and Hart (2003), or an action is taken
repeatedly, e.g. Golosov et al. (2014).
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Another strand of the literature, e.g. Brandenburger and Polak (1996); Ottaviani

and Sørensen (2006a,b), analyze how an expert who wants to maximizes his reputation

for being competent will misrepresent his information. The main result is that the

adviser will then misrepresent his signal towards the prior. This interplay between

prior beliefs and reputation concerns in a repeated game setup is also present in many

other papers, e.g. Prendergast and Stole (1996), Morris (2001), Ely and Välimäki

(2003), Li (2007) and Klein and Mylovanov (2016). This effect is, however, not present

in the current paper as the decision maker will have a uniform prior over a discrete set

which makes it impossible to misrepresent towards the prior. Furthermore, the expert

wants to maximize his expected bonus stream (not his reputation per se) which leads

to the aforementioned moral hazard problem that drives the results of my paper.

The outline of the paper is as follows. The next section introduces the model and

describes the solution concept used. Section 3 presents the results – most prominently

that competent advisers are fired with positive probability and that the game is expected

to end within a given finite time. It also provides an illustrative numerical example and

points out a commitment problem on the side of the adviser. Section 4 discusses the

results and their implications and also shows that it is possible to relax some of the

assumptions of the model. Section 5 concludes. The first part of the appendix describes

an algorithm for calculating Markov equilibria (numerically); the second part contains

the proofs of the results in the main text.

2. Model

The model is an infinitely repeated game. At the end of each period the decision maker

(DM) can decide to end the game and consume his outside option WO. If DM did not

end the game in previous periods, the stage game in period t is the following. The

adviser (A) receives a signal about DM’s needs in this period and recommends one of n

options to DM. DM will get a payoff of 1 (in this period) if the recommendation indeed

fits his needs, otherwise DM receives a payoff of 0. Exactly one of the n options fits

DM’s needs and whether the recommendation fitted DM’s needs or not is observed by

both A and DM. One of the n options carries a bonus for A. If A recommends the bonus

option, he receives a payoff of 1 in this period. Otherwise, A receives a payoff of 0. The

identity of the bonus option is privately observed by A. Ex ante, each option is equally

likely to be the bonus option.

DM considers – ex ante, i.e. before getting the advice – all options to be equally

likely to fit his needs, i.e. his prior is that each option fits his needs with probability

1/n. Furthermore, each option is – from DM’s point of view – equally likely to be

the one giving A the bonus. Consequently, DM cannot infer from the identity of the
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recommended option how likely it is that A recommended the bonus option.5 The

model considers the case where options and needs are not related across periods, e.g.

DM asks for advice on a different question each period and the n options are actually

different ones.

A has one of two types. A’s type is time invariant and privately known by A. If

A is competent, he receives an informative (though not perfectly informative) signal

which allows him to order the n options according to their likelihood. For notational

simplicity, I will refer to the k−most likely option as option k (but keep in mind that

only a competent A is aware of which option is the k-most likely while DM is not!).

The posterior of a competent adviser is denoted by (p1, p2, . . . , pn) where pk > pk+1 is

the posterior probability that A assigns to option k being the one fitting DM’s needs.

Clearly,
∑n

k=1 pk = 1. It is assumed that p1 < 1 and pn > 0, i.e. A cannot completely

rule out any option.6 All pi are assumed to be time invariant although this assumption

can be relaxed, see section 4.

If A is not competent, i.e. if A is incompetent, then he receives only a completely

uninformative signal and therefore his posterior assigns probability 1/n to all options.

At the end of period t, DM updates his belief that A is competent which is denoted

by α ∈ [0, 1] based on whether the recommendation in period t fitted his needs or not.

The initial belief is denoted by α0. After updating his belief, DM makes a decision

whether he wants to end the game which means that DM consumes his outside option

in period t + 1 and there is no further interaction/payoff between DM and A (A will

receive a zero payoff in all periods following t in this case while DM gets WO in t + 1

and zero ever after). The alternative is to proceed to stage t+ 1 where the same stage

game repeats. Figure 2 depicts the timeline within a given period t.

A and DM discount future profits. For notational convenience, both are assumed to

have the same discount factor δ ∈ (0, 1). However, all results continue to hold if A and

DM have different discount factors in (0, 1).

DM’s outside option is assumed to satisfy

1/(n(1− δ)) < WO < p1/(1− δ). (1)

That is, DM prefers his outside option to receiving advice by an incompetent adviser

5One interpretation is that DM knows that there are n options but he cannot distinguish them,
e.g. he is unaware of what the possible options are and only learns that a specific option exists if it
is recommended to him (this is the reason why he seeks advice in the first place). Think of a person
googling “Italian restaurants in Manhattan” or a patient asking a physician for the right medication.
Also in financial advice, customers usually do not know the bonuses that are associated with all possible
investments. In these cases, advice is an experience good.

6One could imagine an alternative signal technology where A only gets a noisy signal that option 1
is most likely to fit, i.e. p1 > p2 = p3 = · · · = pn > 0. All results of this paper continue to hold true in
this case which is only ruled out to avoid messy case distinctions.
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Figure 2: Timeline within a given period t.

but DM prefers to get the best possible advice from a competent adviser to his outside

option.

2.1. Strategies, Value Functions and Equilibrium

For now, I will focus on Markov strategies where the belief α is the state variable.7

That is, the players’ actions in period t depend only on α and their observations in

t. More precisely, A’s recommendation depends on α and the identity of the bonus

option. DM’s decision to continue to period t+ 1 or to end the game depends on α and

on whether the recommendation in t fitted his needs or not. Strategies are assumed

to be measurable functions. A mixed strategy of DM is denoted by (β+, β−) with

β+ : [0, 1] → [0, 1], β− : [0, 1] → [0, 1] where β+(α) (β−(α)) denotes the probability

of continuing if the recommendation fitted (did not fit) DM’s needs and his belief is

α. It will be convenient to let β+ and β− depend on DM’s updated belief and I will

follow this convention. Note, however, that this is equivalent to having DM’s strategy

depend on the belief at the beginning of the period, i.e. before updating, because DM’s

strategy depends in any case on whether the recommendation fitted his needs or not. A’s

strategies will be analyzed below. At this point, a mixed Markov strategy of A can be

written as s : [0, 1]×{1, . . . , n} → ∆{1, . . . , n} where s(α, b) is a probability distribution

over the options which gives for each option the probability that A recommends this

option at belief α if the bonus option is b. A Markov perfect equilibrium – henceforth

equilibrium – is a profile of Markov strategies such that none of the two players can

profitably deviate in any subgame.

Given such Markov strategies, one can write the players value functions: V : [0, 1]→
R+ denotes A’s value function. That is, V (α) is A’s expected discounted payoff stream

at the start of a period (before the identity of the bonus element is observed) when

DM’s belief is α. Similarly, W : [0, 1]→ R+ denotes DM’s value function.

What conditions are satisfied by equilibrium value functions and equilibrium strate-

gies? The optimal strategy of an incompetent adviser is straightforward: As he cannot

influence the probability of satisfying DM’s needs (for him all options are equally likely

to satisfy DM’s needs), it is optimal for him to recommend the bonus option no matter

7Note that α is commonly known because both DM and A observe whether a recommendation
fitted DM’s needs and both know the initial belief α0.
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what α is.

Lemma 1. In equilibrium, the incompetent adviser recommends the bonus option (at

any belief α).

As the strategy of the incompetent adviser, is uninteresting I will in the remainder

refer to the competent type with “adviser” (A) and with V to this type’s value function.

Given some belief α (held at the begin of a period), let us denote by α+ DM’s

updated belief – using Bayes’ rule – in case the recommendation fits his needs and by

α− his belief if the recommendation does not fit his belief. I will focus on informative

equilibria with which I mean that α+ ≥ α−. Put differently, a competent adviser in

an informative equilibrium gives at least as good advice as an incompetent adviser,

i.e. the competent adviser’s strategy is at least as informative as suggesting the bonus

option.8 This implies the following technical result which states that in an informative

equilibrium A prefers – abstracting from the bonus payment – a fitting recommendation

to a non-fitting recommendation.

Lemma 2. Let V be the value function in an informative equilibrium. Then, β+(α+)V (α+) ≥
β−(α−)V (α−).

Given β+(α+)V (α+) ≥ β−(α−)V (α−), A’s equilibrium strategy has to be a cutoff

strategy : If the bonus option is among options 1, . . . , k, A recommends the bonus option

and otherwise A recommends option 1. To see this, it is useful to write A’s expected

utility as

q δβ+(α+)V (α+) + δ(1− q)β−(α−)V (α−) + 1bonus

where q is the probability that the recommendation satisfies DM’s needs (which depends

on the specific recommendation) and 1bonus is the indicator function for the bonus op-

tion, i.e. it is 1 if A recommends the bonus option and 0 otherwise. Note first that A

will recommend either option 1 or the bonus option. Recommending any other option

j is dominated by one of these two: If β+(α+)V (α+) > β−(α−)V (α−), recommend-

ing option 1 instead of j increases the probability that the recommendation fits DM’s

needs (q) and therefore increases the probability of receiving β+(α+)V (α+) instead of

β−(α−)V (α−). If β+(α+)V (α+) = β−(α−)V (α−), then any recommendation will give

the same continuation value but the bonus option gives an additional payoff of 1 today.

Now suppose recommending the bonus option if it is option k > 1 yields a (weakly)

higher payoff than recommending option 1. Then the same is true if the bonus option

8While non-informative equilibria are economically somewhat non-sensical, they could in principle
exist because a competent A has the ability to give worse advice than an incompetent A, e.g. by
suggesting option n. If DM expects A to do so (at some belief α), then it might be a best response for
A to actually give bad advice (at this belief) in order to improve (!) his reputation: a fitting advice
would then be interpreted as being more likely to be given by an incompetent type and therefore reduce
α.
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is option j < k with j > 1. This is true as the probability of fitting DM’s needs is

higher when the bonus option is j than when it is k. Hence, the expected payoff from

recommending the bonus option is higher when it is j than when it is k and therefore

it is higher than the expected payoff from recommending option 1. This implies that

A uses a cutoff strategy. Note that this argument does not completely rule out mixed

strategies: If A is indifferent between two cutoff levels, he could mix over two cutoff

strategies. However, the argument above implies that A can only be indifferent between

adjacent cutoff levels k and k + 1.

What is the optimal cutoff chosen by A given an equilibrium value function V ?

The cutoff level k ∈ {2, . . . , n − 1} is optimal if two conditions are satisfied: First,

recommending the bonus option leads to a higher payoff than recommending option 1 if

the bonus option is option k. Second, the opposite is true if the bonus option is option

k + 1. The corresponding inequalities are

pkδβ
+(α+)V (α+) + (1− pk)δβ−(α−)V (α−) + 1

≥ p1δβ
+(α+)V (α+) + (1− p1)δβ−(α−)V (α−)

pk+1δβ
+(α+)V (α+) + (1− pk+1)δβ

−(α−)V (α−) + 1

≤ p1δβ
+(α+)V (α+) + (1− p1)δβ−(α−)V (α−).

Rearranging these inequalities gives the following result.

Lemma 3. Let V be an equilibrium value function. The equilibrium cutoff at belief α

kα satisfies

p1 − pkα ≤
1

δ(β+(α+)V (α+)− β−(α−)V (α−))
≤ p1 − pkα+1 (2)

if kα ∈ {2, . . . , n− 1}. If kα = 1, then

1

δ(β+(α+)V (α+)− β−(α−)V (α−))
≤ p1 − p2;

and if kα = n then

p1 − pn ≥
1

δ(β+(α+)V (α+)− β−(α−)V (α−))
.

Note that A is indifferent between cutoffs k and k + 1 if and only if the second

inequality in (2) holds with equality. If A uses the cutoff k, the ex ante probability of
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satisfying DM’s needs is

qk = (n− k)
p1
n

+
k∑
j=1

pi
n
. (3)

The updated beliefs α+ and α− can then be written as9

α+
k =

αqk
(1− α)/n+ αqk

(4)

α−k =
α(1− qk)

(1− α)(n− 1)/n+ α(1− qk)
. (5)

DM’s optimal strategy is relatively simple: He ends the game if his expected payoff

(in t+ 1 and following periods) from continuing the game

W (α) = qkα(1 + δW (α+)) + (1− qkα)δW (α−) (6)

is lower than his outside option WO. As long as W (α) > WO, it is optimal to continue.

DM is willing to use a mixed strategy if and only if W (α) = WO.

3. Results

It is not surprising that DM’s equilibrium choice is to end the game for sufficiently

low α. By assumption – see (1) – DM’s outside option is strictly better than receiving

advice from an incompetent adviser forever. If DM is sufficiently convinced to face an

incompetent adviser, it will therefore be optimal for him to fire the adviser.

Proposition 1. In equilibrium, there exists an α > 0 such that DM ends the game

whenever α < α.

The more surprising result is that DM will end the game (with some probability)

also for sufficiently high α. The intuition for the result is the following: Suppose DM

continued for sure if α is above some threshold α̃ < 1. For α close enough to 1, A

would then be very sure that DM continues even if he gives repeatedly bad advice.

This is true as α− is very close to α if α is close to 1, see (5). Put differently, A has

close to zero dynamic incentives to give good advice. Statically, however, he has an

incentive to recommend the bonus alternative as this gives an immediate payoff of 1.

Consequently, A will recommend the bonus option no matter what his signal is. But

this means that both types of A behave in the same way. This has two implications:

First, the belief updating stops, i.e. α = α+ = α−. Second, DM’s expected payoff is

below his outside option as this situation gives him the same payoff as receiving advice

from an incompetent adviser forever. Clearly, this contradicts our starting point that

9If A mixes between cutoffs k with probability q and k + 1 with probability 1 − q, then α+ =
qα+

k + (1− q)α+
k+1 etc.
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DM continues whenever α > α̃. As such an α̃ < 1 does not exist, we can conclude

that there are beliefs arbitrarily close to 1 where DM quits the game with positive

probability. The following theorem states this result more formally and strengthens it

for equilibria where both players choose piecewise continuous strategies.

Theorem 1. There exists an ε > 0 such that in every equilibrium there exists a sequence

of beliefs (αi)
∞
i=1 converging to 1 where DM ends the game with at least ε probability at

every element of the sequence.

If equilibrium strategies are piecewise continuous, then there exists an ᾱ < 1 such

that W (α) = WO for all α > ᾱ. Furthermore, there exists an ε > 0 such that DM

continues with probability β−(α) < 1 − ε in case the recommendation does not fit his

needs for all α > ᾱ.

The previous theorem established that DM will fire the adviser with positive prob-

ability for high α. However, if this probability is close to zero, one could argue that it

has little economic relevance. The intuition above should already illustrate that this is

not the case (i.e. similar problems as for zero quitting probability emerge also with very

small positive quitting probabilities). The following lemma strengthens this intuition by

stating that DM quits the advice relationship almost certainly within T periods (where

T is some finite number depending on the parameters) no matter what the current belief

is. Note that in the following lemma Tε neither depends on the (initial) belief α nor on

the equilibrium. In particular, the result also holds in non-Markovian equilibria.

Lemma 4. Let ε > 0 and define10

Tε =

⌈
log(ε)

log (1− pT ′n ε′)

⌉
T ′ where ε′ = 1− δ and T ′ =

⌊
2

log(1− δ)
log(δ)

− 1

⌋
.

The probability that DM ends the game within Tε periods is at least 1 − ε in every

equilibrium.

The previous lemma has a direct implication on the expected length of the relation-

ship. Again the result holds for every (initial) belief α and every equilibrium.

Theorem 2. The expected length of the advice relationship is finite and bounded from

above by

T̄ = T ′
(

2− 1

log(1− pT ′n (1− δ))

)
.

Theorem 2 is driven by the fact that DM fires teh adviser when α is high and not

driven by the possibility that α < α at some point of time. To see this, consider α→ 1.

For beliefs arbitrarily close to 1, the time until which the belief α could possibly fall

10The ceiling dxe is the smallest integer above x and the floor bxc is the highest integer below x.
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below α is going towards infinity. Nevertheless, the expected length of the game is

below T̄ for any belief. That is, the finiteness of the expected game length is driven by

DM ending the game for high beliefs.

After deriving properties that hold for all equilibria one might wonder about exis-

tence of equilibrium. Similar to normal cheap talk models, an equilibrium in which no

meaningful advice is given (“babbling equilibrium”) will always exist. In the framework

of this paper, the babbling equilibrium takes the following form: DM ends the game

for all α and A chooses kα = n for all α. As in usual cheap talk, informative equilibria

can exist as well and the following subsection presents an illustrative example solved

numerically. This example will also provide the motivation for a more general result on

commitment.

3.1. Example

This section presents an equilibrium of a numerical example. The appendix contains

an algorithm to calculate equilibria and an online webappendix contains the specific

numerical calculations to solve the here presented example.11

There are three options (n = 3) and parameter values used in this section are

p1 = 0.9, p2 = 0.08, p3 = 0.02, δ = 0.95 and WO = 6.75. The following is an

equilibrium:

• If α < 0.35, DM ends the game and A gives totally uninformative advice, i.e.

kα = 3.

• For α ∈ [0.35, 0.75], DM continues with probability 1 and A recommends always

the most likely option 1, i.e. kα = 1.

• If α > 0.75, DM will end the game with a non-zero probability if the last rec-

ommendation did not fit his needs. A will mix between the cutoffs kα = 2 and

kα = 3. The mixing is such that DM is indifferent between continuing and end-

ing the game, i.e. W (α) = WO. DM’s mixing probability is such that A is just

indifferent between the cutoff strategies kα = 2 and kα = 3.

The equilibrium strategies and value functions are depicted in figure 3. The example

illustrates some general features. DM’s value function is equal to his outside option for

both very low and very high beliefs α but strictly higher for intermediate beliefs. The

mixed strategies for high beliefs are also typical: For high beliefs, DM will have a value

equal to his outside option in the next period no matter whether the recommendation

fits his needs or not. This follows from limα→1 α
+ = limα→1 α

− = 1. But this implies

11For the code checking the equilibrium conditions and generating the graphs see
https://nbviewer.jupyter.org/urls/schottmueller.github.io/papers/dyn\%20advise\

%20reputation/reputation_web1.ipynb.
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Figure 3: Equilibrium value functions and cutoffs. For α > 0.75, A mixes between two
cutoffs.

that DM’s value today is δWO + prob where prob is the probability of getting a rec-

ommendation today that fits his needs. As DM’s value today equals his outside option

we get that prob = (1 − δ)WO. This probability is generically not obtained by a pure

cutoff strategy and therefore A has to use a mixed strategy for high beliefs. Of course,

A uses a mixed strategy only if he is indifferent between the two cutoff levels and this

indifference can generically only be ensured if DM uses a mixed strategy.

The example can also illustrate theorem 2 which states that the expected length of

the game is bounded by a finite number for all beliefs α ∈ (0, 1). Figure 4 shows the

actual expected length of the game as a function of the belief is less than seven periods

for all beliefs.12 That is, if DM is almost sure that A is of high quality, he expects to

ask A for advice only around six times. Figure 5 plots the distribution of game lengths

for four different beliefs. It is clear that the probability of asking A for advice more

than 20 times is basically zero (conditional on A being actually competent).

A’s value function in figure 3 illustrates a basic commitment problem A faces. Sup-

pose A could commit to the strategy“always recommend option 1”. This would give DM

the highest possible payoff and imply that DM does not end the game if he believes that

A is sufficiently competent. What is more surprising is that this commitment would also

increase the payoff of A. Note that the probability of recommending the bonus option is

1/3 in each period and therefore the expected payoff of A is 1/(3(1−δ)) = 20/3 which is

12Note that the (expected) length of the games given here already assume that A is competent. The
unconditional expected length of the game is shorter.
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Figure 4: Expected length of game conditional on A being competent (Simulation with
100000 draws per α)

higher than the maximum value of A without commitment. The following proposition

states that this situation is not as special as it might appear at first sight. In fact, A’s

value will be below the commitment value for high levels of α in all equilibria that share

the same structure as the example equilibrium, i.e. all equilibria where for high α DM

continues for sure if the recommendation fits his needs and ends the game with positive

probability if not.

Definition 1. An equilibrium is called regular if (i) players use piecewise continuous

strategies,(ii) there exists an ᾱ < 1 such that β+(α) = 1 for α > ᾱ and β−(α) < 1 for

α > ᾱ and (iii) A uses a mixed strategy for α > ᾱ.

Proposition 2. In every regular equilibrium, limα→1 V (α) < 1/(n(1− δ)).

4. Discussion

How can the previous results on dismissal of competent advisers be interpreted? The

model allows for two different reasons why DM might want to end the relationship.

First, incompetence. If the belief of facing a competent adviser is very low, DM prefers

to take his outside option; that is, to fire A. Second, mistrust. This is the case if the

belief of facing a competent adviser is high. In this case, A is not afraid of losing his

job due to perceived incompetence. But absent this fear A is free to push his own

agenda, i.e. he can recommend the bonus option even if it is unlikely to fit DM’s needs.
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(a) α = 0.4 (b) α = 0.6

(c) α = 0.8 (d) α = 0.95

Figure 5: Distribution of game lengths for different beliefs conditional on A being
competent (Simulation with 100000 draws per α)

Consequently, DM cannot trust A’s advice because the fear of losing his job due to

incompetence no longer disciplines him. This (fully justified!) lack of trust explains

why DM obtains only a value equal to his outside option for high beliefs and why he is

willing to fire A in this case.

The previous thoughts also explain why DM obtains his highest values for interme-

diate beliefs where he is uncertain whether A is competent or not. The uncertainty

disciplines A in the sense that A is afraid of being perceived as an ignorant type and

being consequently fired due to incompetence. To avoid this scenario, he is willing to

give good advise, i.e. he is willing to forgo bonuses today in order to keep the relation-

ship which promises future bonuses. It might – at first glance – appear that this hope

for future bonuses is in vain as A can also be fired at high beliefs. This view is, how-

ever, misguided for several reasons: First, there is a chance that tomorrow the bonus

action coincides with an option that is likely to fit DM’s needs, i.e. the tension between

wanting to prolong the relationship and getting a bonus could – by chance – be smaller

in the next period(s). Second, a fitting recommendation today might make it possible
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not to be fired even after a non-fitting recommendation in the period afterwards. But

then a fitting recommendation today would allow A to collect – at least – two bonuses

(in the two consecutively following periods) while a non-fitting recommendation today

might lead to an immediate end of the game. Third and most importantly, even if

a fitting recommendation leads into the region where β−(α) < 1, A’s value at these

beliefs might nevertheless be quite high: DM only ends the game at these beliefs with

some probability and even that only when receiving a non-fitting recommendation; this

risk might be small and can easily be outweighed by the decreased likelihood of being

dismissed for incompetence anytime soon.

The results of this paper establish an inefficiency: The game is expected to end

in finite time although the advice relationship lasts forever in a first best world. The

inefficiency arises due to the assumption that A cannot commit to a strategy because

his signal is private. That is, an announcement like“I will always recommend the option

most likely to fit DM’s needs.” is not credible because DM cannot check whether A

actually sticks to his announcement. Of course, the private nature of A’s signal captures

exactly the reason why DM needs to get advice and is therefore indispensable. Efficiency

gains could be realized if A was able to truthfully reveal his signal. However, this seems

unrealistic in many applications. In particular, A will often be able to manipulate the

revealed signal which renders the revelation useless.

It is perhaps not surprising that, say, a consumer buys the wrong investment prod-

ucts if his financial adviser receives a bonus for selling certain products. The inefficiency

established in this paper is, however, somewhat more subtle. Not only does the con-

sumer buy the wrong products, he will also switch to worse financial advisers after

some time or not consume any advice – depending how the outside option in the cur-

rent model is interpreted. This is an additional inefficiency that arises inevitably if one

seriously considers the dynamic nature of the problem. Dynamics should, of course, be

considered given that no meaningful advice is possible in the static model as pointed

out in the introduction.

One possible solution to the problem would be to resolve the underlying differences

in objectives, that is, to eliminate A’s bonus payments. This idea was, for example,

expressed in the “Global Analyst Research Settlements” (2003) between US regulators

and 10 top investment banks in the aftermath of the dot com bubble. This settlement

required banks to separate research and investment banking and stated that compen-

sation of analysts cannot depend on investment banking activities.13 The motivation

for this rule was that analysts had beforehand often recommended those assets that

the investment branch of their employer had to place in the market (although this was

not necessarily beneficial for the analysts’ customers). However, as many commentators

13See https://www.sec.gov/news/speech/factsheet.htm for more information.
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pointed out, analysts still receive trading commissions meaning that the problem of non-

aligned incentives between analysts and customers was only mitigated but not resolved.

Trading commissions are, of course, an instrument to resolve a moral hazard problem

between analysts and their employers. Consequently, they cannot be eliminated with-

out creating an inefficiency at a different place. In other applications, it is not even

possible to eliminate the misalignment of interests. In case of a political adviser, the

bonus might simply be interpreted as a personal political preference. Such preferences

and resulting differences in opinions appear to be inevitable. In case of managers and

their (subordinate) advisers, the bonus could be non-monetary (e.g. concerns for the

own career) which makes it again hard to eliminate. Nevertheless, the inefficiency es-

tablished in this paper can be a rational for regulations as the one mentioned above

and also for the existence of independent, non-profit consumer organizations. The un-

derlying conflict in preferences does not occur in the case of these organizations and

meaningful advice becomes feasible.

The paper explains why most advice relationships are short lived. This leads to the

question: which advice relationships can last long? One possibility is that there is no

conflict of interest as mentioned in the previous paragraph. Another possibility is that

players are very patient: The bounds T ′ in lemma 4 and T̄ in theorem 2 converge to

infinity as δ → 1. Intuitively, A is not tempted to get his bonus today quickly if there is

almost no discounting and therefore he might be willing to give better advice today in

order not to risk future bonus payments. Of course, the opposite also holds: If δ → 0,

the bounds get very tight. In fact, T ′ and T̄ are 0 for δ < δ where the threshold δ is

strictly positive. That is, DM will end the game without getting advice once if there is

heavy discounting. The reason is that the game with heavy discounting is similar to the

static game where A will always recommend his bonus option and meaningful advice is

therefore impossible.

Finally, I want to discuss how some of the assumptions could be relaxed. First, the

assumption that A and DM share the same discount factor can be discarded without

affecting any result or proof as long as the two discount factors are strictly less than

1. Second, one might consider non-Markovian strategies and equilibria. In this case,

theorem 1 can no longer be stated as DM’s strategy will depend not only on α but

possibly on the complete history of the game. It is therefore not clear how a result like

“advisers who are believed to be competent are fired” can be stated if strategies do not

directly depend on the belief of being competent. In contrast to this, the results on

the (expected) length of the game, i.e. lemma 4 and theorem 2, will continue to hold

in every – also non-Markovian – equilibrium. The reason is that the proof uses only a

general non-deviation constraint that has to be satisfied in every equilibrium. Third,

one might wonder about a signal technology that is not constant over time. That is, the
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posterior p1, . . . , pn might depend on the period. Again theorem 1 is then impossible

to state as strategies will then naturally not only depend on the belief but also on the

time period. The results on the (expected) length of the game, however, still hold true

if one substitutes pn by inf({ptn}) where ptn is pn in period t and the infimum is assumed

to be strictly larger than 0. With this adjustment the proofs of lemma 4 and 2 will

go through and the results hold. If the posterior p1, . . . , pn depended not on the time

period t but on the belief α, then even theorem 1 could still be stated and proven as

long as inf({pn(α)}) > 0.

One might also wonder whether it is possible to restrict the strategy space such

that DM’s decision is allowed to depend on his belief α only (and not on whether the

recommendation in the current period fitted his needs or not). That is, could one impose

β+(α) = β−(α)? Unfortunately, no informative equilibrium with piecewise continuous

strategies apart from the babbling equilibrium exists in this restricted class. To see

this, consider β(α) (V (α+)− V (α−)) as α → 1. With piecewise continuous strategies

V will be continuous for all α above a certain threshold and from Bayes’ rule, see (4)

and (5), it follows that (V (α+)− V (α−)), and therefore also β(α) (V (α+)− V (α−)),

converge to 0 as α → 1. Consequently, k(α) = n for sufficiently high α by lemma 3

which implies that DM has to end the game for all α above a certain threshold α̂ < 1.

Consequently, V (α) = 0 for α sufficiently high. But this implies that the equilibrium

cannot be informative unless V (α) = 0 for all α ∈ [0, 1]: Otheriwse, there would have

to be a belief α where V (α−) > 0 but V (α+) = 0 and a competent adviser would then

have an incentive to give worse advice than an incompetent type. Of course, V (α) = 0

for all α implies that DM never asks A for advice, i.e. this value function belongs to the

babbling equilibrium. Hence, the intuitive assumption that DM’s equilibrium strategy

depends on whether he just got fitting advice or not is essential to construct equilibria

with some information transmission.

5. Conclusion

This paper analyzes the questions why advisers are fired. Two reasons are identified

in a repeated game model. First, incompetence, that is, advisers who are believed to

be of low quality are fired. Second, (justified!) mistrust. Advisers who are believed to

be competent are not afraid of being fired due to incompetence. In equilibrium, these

advisers will therefore push their own agenda, i.e. recommend actions that foster their

own benefit more than the decision maker’s benefit. Consequently, the decision maker

is indifferent to firing them and will do so with positive probability whenever he receives

bad advice. The interplay of these two effects implies that the decision maker benefits

most from an adviser whose qualification is unclear. Such an adviser tries to give good

advice because he is afraid to be perceived as being of so low quality that he is fired
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due to incompetence in case his advice turns out to be bad. The firing of competent

advisers is inevitable in equilibrium but inefficient. Independent of qualification and

beliefs, the expected length of the advice relationship is limited although advice by a

qualified adviser is efficient. The presence of private benefits for the adviser, like bonus

payments, does therefore not only lead to bad advice, it also implies that decision

makers drop (eventually) the best advisers and end up with inferior (or no) advice.

The model of this paper helps to identify the effects mentioned above and paves the

way for further research. For example, the literature on sell-side analysis in financial

advice, see for example Fang and Yasuda (2009); Jackson (2005), is concerned to what

extent reputation effects can alleviate opportunistic behavior by analysts.14 While this

literature establishes empirically that more reputable analysts give on average better

predictions, this result is based on assuming either a binary or a linear functional form

for this relationship. The model of this paper, however, suggests a non-monotonic (pos-

sibly inversely U-shaped) relationship.15 On the theoretical side, exploring alternative

setups provides opportunities for further research. For example, competition between

advisers is only part of the model if one interprets the outside option as the value that

can be received from advice by another adviser. If simultaneous competition between

several advisers is modeled explicitly, switching forth and back between advisers might

become a viable strategy. This and other possibilities are beyond the scope of the

current paper and left for future research.

14“Sell-side analysis” refers to the situation where employees of a broker provide analysis and stock
recommendations to potential customers for free in the hope of generating an order that yields a
commission.

15The possibility of non-monotonicities seems to have escaped the attention of the authors, e.g. Fang
and Yasuda (2009, p. 3736) write “Because analysts with a better reputation have greater long-term
benefits to lose, theory predicts that they are more likely to refrain from opportunism.” My paper
shows that this argument, though plausible at first sight, might not be true in equilibrium.
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Appendix

A. Calculating simple Markov equilibria

This section shows how to calculate regular equilibria. To simplify matters, I will (a)

concentrate for most of the section on the case where there are only two options, i.e.

n = 2, and (b) focus on equilibria in which neither player mixes at α < ᾱ where ᾱ is

as in definition 1. This implies that the equilibria of this section have the structure

described in figure 6 (where the statement concerning V ′ will be derived below). I will

derive an equilibrium candidate that has this structure (namely value functions V and

W ) and then formulate conditions under which this equilibrium candidate is indeed an

equilibrium. This will be done for fixed α and ᾱ. That is, one should think of repeating

this derivation and check for different values of α and ᾱ whether the derivation leads

to an equilibrium.

α
0 1α ᾱ

stop continue + continue
- mix

W = WO W > WO W = WO

k = 2 k = 1 mix

V = 0 V > 0 V ′ = 0

Figure 6: Equilibrium structure: First “row” indicates DM’s value function, second
row DM’s strategy, third row (below the axis) A’s strategy and fourth row A’s value
function.

First consider α > ᾱ. As A mixes, he has to be indifferent between k = 1 and k = 2.

Hence,

β−(α) =
V (α+)− 1

δ(p1−p2)

V (α−)
(7)

by rearranging the expressions in lemma 3 and taking β+(α) = 1. As A is indifferent

between his equilibrium strategy and using the cutoff 2 with probability 1, his value

can be written as V (α) = q2V (α+)+(1−q2)β−(α)V (α−)+1. Plugging β−(α) as stated

in (7) into A’s value function gives

V (α) = δV (α+)− 1− q2
p1 − p2

+ 1 = δV (α+)− 1/2

2p1 − 1
+ 1

where the last equality utilizes that n = 2 implies q1 = p1, q2 = 1/2 and p2 = 1 − p1.
Note that the previous equation is solved by a constant V where (of course only for

α > ᾱ)

V (α) = V ∗ ≡ 1

1− δ
− 1

2(1− δ)(2p1 − 1)
.

Second, consider α < α. Note that k = 2 implies that α+ = α− = α, i.e. there is no
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updating because both types of A use the same strategy of always recommending their

bonus option. Given the other player’s strategy and the fact that there is no updating,

both A and DM clearly play a best response.

Third, consider α ∈ [α, ᾱ]. Given A’s strategy of using cutoff k = 1, the updated

beliefs are

α+ =
αp1

(1− α)/2 + αp1
=

1

1 + 1−α
α

1
2p1

(8)

α− =
α(1− p1)

(1− α)/2 + α(1− p1)
=

1

1 + 1−α
α

1
2(1−p1)

. (9)

A’s value function for α ∈ [α, ᾱ] has to satisfy the Bellman equation

V (α) =
1

2
+ p1δV (α+) + (1− p1)δV (α−) (10)

where α+ and α− are as stated above. The main difficulty is to find a function V that

satisfies this equation. Define the mapping Ṽ that assigns to each function V : [α, ᾱ]→
R+ the function Ṽ defined by

Ṽ (V )(α) =
1

2
+ p1δV (α+) + (1− p1)δV (α−)

where α+ and α− are as stated in (8) and (9) (using V (α−) = 0 for α− < α and

V (α+) = V ∗ for α+ > ᾱ). It is straightforward to show that Ṽ is a contraction.16

Applying the contraction mapping theorem yields that Ṽ has a unique fixed point

which implies that there is a unique V that satisfies (10). The contraction mapping

theorem also gives a way to compute this V : Starting from any bounded function,

applying Ṽ repeatedly will lead to a sequence of value functions converging to V .

The steps above gave us a solution candidate for V (given α and ᾱ). Before checking

whether this candidate is part of an equilibrium, we derive an equilibrium candidate

for W . By the structure of the equilibrium, W (α) = WO for α < α and α > ᾱ. For

α ∈ [α, ᾱ], W has to satisfy the Bellman equation

W (α) = (αp1 + (1− α)/2)(1 + δW (α+)) + (1− αp1 − (1− α)/2)δW (α−)

where α+ and α− are as in (8) and (9). The mapping W̃ that assigns to every bounded

function W on [α, ᾱ] the function W̃ (W ) given by

W̃ (W )(α) = (αp1 + (1− α)/2)(1 + δW (α+)) + (1− αp1 − (1− α)/2)δW (α−)

16For this, we equip the space of bounded functions on [α, ᾱ] with the sup norm.
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is again a contraction. By the contraction mapping theorem, a unique fixed point of

W̃ exists and this fixed point can be obtained by iterating W̃ . This fixed point is the

candidate solution for W .

When is this candidate actually an equilibrium? The steps above ensure that the

candidate V is consistent with DM’s strategy and also that A is indifferent between

k = 1 and k = 2 for α > ᾱ. It is, however, unclear whether A’s strategy is optimal for

α ∈ [α, ᾱ]. Following lemma 3, the candidate V is part of an equilibrium only if

0 ≤ 1

δ(V (α+)− V (α−))
≤ 2p1 − 1 for α ∈ [α, ᾱ].

Furthermore, V has to be non-negative everywhere. While this is obviously true for

α < ᾱ, it is unclear for V ∗ (while a negative V ∗ might look economically impossible on

first sight, note that we did not track the restriction β−(α−) ∈ [0, 1] when deriving V ∗

which is the root of this possibility). In fact, V ∗ ≥ 0 if and only if

p1 ≥ 3/4.

This means that the type of equilibria discussed here exists only if the information

technology is sufficiently informative as one would have expected. For W , it is necessary

to check that W ≥ WO. By construction, this is true for α < α and α > ᾱ but needs

to be checked for α ∈ [α, ᾱ].

Finally, it is necessary to check whether the mixing is feasible for all α > ᾱ. That

is, is β−(α) ∈ [0, 1] as defined in (7) and is there a s(α) ∈ [0, 1] (which is interpreted as

the probability that A uses k = 1) for every α > ᾱ such that DM is indifferent between

his outside option and continuing? Note that if s(α) = 0, the quality of the advice

DM is getting is the same as getting advice from an incompetent adviser forever. By

assumption, the outside option is better than this. Hence, it is only necessary to check

that for s(α) = 1 continuing is optimal for DM: By continuity, there will then be a

s(α) ∈ (0, 1] where DM is indifferent. Note furthermore that continuing is – in case

s(α) = 1 – always optimal for α sufficiently high: By assumption getting best advice

(k = 1) from a competent adviser is better than the outside option. As DM’s value in

the next period is at least the outside option, continuing is therefore optimal if s(α) = 1

and α close to 1. Hence, existence of a suitable s(α) will be unproblematic unless ᾱ is

too low.

To summarize, it is computationally simple to obtain a candidate equilibrium (calcu-

lating the fixed points of two contractions) for given α and ᾱ. A candidate equilibrium

(V,W ) is an equilibrium if

• p1 ≥ 3/4,
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• 0 ≤ 1
δ(V (α+)−V (α−))

≤ 2p1 − 1 for α ∈ [α, ᾱ],

• W (α) ≥ WO for α ∈ [α, ᾱ],

• 0 ≤ β−(α) ≤ 1 for α > ᾱ where β−(α) is defined as in (7),

• continuing is optimal if s(θ) = 1: α [p1(1 + δW (α+)) + (1− p1)δW (α−)] + (1 −
α) [(1 + δW (α+))/2 + δW (α−)/2] ≥ WO for all α > ᾱ (where W (α+) = WO by

the structure of the equilibrium).

Again these conditions are easy to check numerically.

For n > 2, in principle the same procedure can be used to produce candidate

equilibria. However, some additional difficulties arise. In particular, one might be

interested in equilibria that have cutoff k = 2 for some beliefs α ∈ [α, ᾱ] and cutoff

k = 1 for other beliefs α ∈ [α, ᾱ]. This makes it impractical to fix the strategies

of the players before deriving the candidate value functions. One could extend the

procedure for finding a candidate V in the following way: Starting from some arbitrary

V 0 determine A’s optimal cutoffs given V 0 (using lemma 3). Then use these cutoffs

and V 0 in the Ṽ operator to get V 1 and iterate this procedure. The problem with this

procedure is that as soon as A’s strategy is endogenous, i.e. new cutoffs are computed

in each iteration, Ṽ is no longer a contraction. This has two implications: First, it

might have several fixed points or no fixed points at all. Second, even if it has a fixed

point the iteration is not guaranteed to converge. If, however, it converges to a fixed

point, a candidate equilibrium emerges and the remaining feasibility conditions can be

checked for this candidate equilibrium as above.

B. Proofs

Proof of lemma 2: Suppose to the contrary that β+(α+)V (α+) < β−(α−)V (α−).

Then, A has an incentive to recommend options that do not fit DM’s needs as this will

give him the higher continuation value. Hence, a competent adviser will give (weakly)

worse advice than an uniformed adviser which implies α+ ≤ α−. In case of α+ = α−,

β+(α+)V (α+) < β−(α−)V (α−) cannot hold and in case α+ < α− the equilibrium is not

informative.

Proof of proposition 1: DM’s expected payoff from continuing is bounded from

above by αp1/(1 − δ) + (1 − α)/(n(1 − δ)). For α sufficiently low (but strictly higher

than 0), this upper bound is less than WO as WO > 1/(n(1− δ)) by (1).

Proof of theorem 1: The first part is proven by contradiction and follows the argu-

ment in the main text. Suppose the statement was not true; i.e. suppose that there

was an equilibrium such that for no sequence (αi)
∞
i=1 converging to 1 there exists ε > 0
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such that DM ends the game with at least ε probability at each element of the se-

quence.17 This implies that in this equilibrium for every ε′ > 0 there exists an ᾱε′ < 1

such that for all α ≥ ᾱε′ DM continues with probability greater than 1 − ε′. Note

that α − α− converges to zero as α → 1 (for any strategy A employs). This implies

the following: For every T ∈ N and ε′ > 0 there is a αTε′ ∈ (ᾱε′ , 1) such that DM’s

belief after T consecutive recommendations that did not fit DM’s needs will still be

above ᾱε′ . This implies that at the belief αTε′ (for T high enough) A will find it op-

timal to choose the pure strategy kαTε′ = n: The reason is that A at belief αTε′ when

observing that the bonus option is option n can earn a deviation payoff of at least

1 + δ(1 − ε′) + δ2(1 − ε′)2 + · · · + δT (1 − ε′)T by recommending the bonus option in

this and the following T periods. Not recommending the bonus option n would lead

to a payoff of at most δ/(1 − δ) = δ + δ2 + δ3 + . . . . For T large enough and ε′ small

enough, the deviation payoff is clearly higher than the upper bound on the payoff ob-

tained by other strategies. This establishes the claim that A chooses the pure cutoff

strategy kαTε′ = n for T high and ε > 0 small enough. But then αTε′ = α+
Tε′ = α−Tε′ and

therefore W (αTε′) = 1/(n − nδ) < WO; i.e. DM’s best response is to end the game at

belief αTε′ contradicting the definition of ᾱε′ (and αTε′ > ᾱε′).

For the second part, note that piecewise continuity of the strategies implies piecewise

continuity of the value functions. In particular, V is piecewise continuous and therefore

has bounded total variation (which will be used later). Note that whenever A plays

the pure strategy kα = n at some α, then α = α+ = α− and therefore ending the

game is DM’s best response when α is reached as continuing would lead to a payoff of

1/(n− nδ) < WO.

Choose k ∈ {1, 2, . . . , n − 1} such that for every ᾱ < 1 we have k = kα (or more

generally for the case of mixed strategies: kα = k with positive probability) for some

α > ᾱ. If no such k exists, then kα = n for sufficiently large α and the previous

paragraph implies that the last claim of the theorem is true. I will now show that this

claim is also true if such a k ∈ {1, 2, . . . , n− 1} exist. Let Aε be the set of α such that

kα = k (with positive probability) and β−(α) > 1− ε. If the last claim of the theorem

holds, then Aε∩(ᾱ, 1) is empty for ε > 0 small enough and ᾱ < 1 large enough. Suppose

this is not the case, i.e. suppose Aε ∩ (ᾱ, 1) is non-empty for all ε > 0 and ᾱ < 1. For

α ∈ Aε, the difference β+(α)V (α+) − β−(α)V (α−) is bounded from below by lemma

3 and k < n. This and β−(α) > 1 − ε implies that V (α+) − V (α−) is bounded from

below as well for ε > 0 sufficiently small and α ∈ Aε. Furthermore, if we concentrate

on α ∈ Aε, α+ and α− are strictly increasing in α as kα = k for all α ∈ Aε. Now note

17It is immaterial for this proof whether DM ends the game only when receiving a non-fitting
recommednation or not. The reason is that A’s signal is noisy. Hence, even when recommending
option 1 there is a probability 1− q1 > 0 of not fitting. If DM ends the game with probability ε̃ > 0 if
the recommendation does not fit, then he ends the game with at least probability ε = (1− q1)ε̃.
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that α+ − α− converges to zero as α approaches 1.

Therefore, it is possible to construct an increasing sequence (αi) of elements of Aε

such that α−i+1 ≥ α+
i . This can be done as for any given a+i there exists an â+i such that

α− > a+i for all α > â+i (this follows as α−α− converges to zero as α converges to 1 and

the assumption that Aε ∩ (ᾱ, 1) is non-empty for all ᾱ < 1). The construction of this

sequence and the fact that V (α+) − V (α−) is bounded from below then implies that

V is a function of unbounded total variation. This, however, contradicts the piecewise

continuity of V . Hence, Aε ∩ (ᾱ, 1) has to be empty for ᾱ < 1 high enough and ε > 0

small enough. This establishes the last claim of the theorem.

The result that W (α) = WO for almost all α > ᾱ follows directly from the fact that

DM ends the game with positive probability for all α > ᾱ (the just proven last claim

of the theorem) which is only optimal if W (α) = WO.

Proof of lemma 4: If kα = n, then α+ = α− = α and W (α) < WO, i.e. DM ends

the relationship immediately and any Tε > 0 will give the result.

Take α such that kα < n with positive probability. Then the probability that DM

ends the game within T ′ periods (when DM sticks to his equilibrium strategy while A

might not) has to be at least ε′ for some ε′ > 0 (taking a high T ′ and a sufficiently small

ε′ > 0). That is, there is at least one path of (up to) T ′ hits and misses such that the

probability that DM ends the game along this path is at least ε′ > 0. To see this, note

that kα < n implies that A (weakly) prefers to recommend option 1 to recommending

the bonus option if the bonus option is option n. This is clearly not the case if no ε′

and T ′ as described above exist.

Next, I will show that we can use ε′ = (1− δ)/2 and T ′ = b2 log(1− δ)/ log(δ)− 1c.
Suppose otherwise, i.e. suppose there is no path of hits and misses of length T ′ such that

DM ends the game on this path with probability ε′ or higher. I will show that in this

case A has an incentive to deviate when the bonus option is option n. By recommending

the bonus option, A can achieve a payoff of at least 1 + (1− ε′)(δ + δ2 + · · ·+ δT
′
). By

sticking to his equilibrium strategy (i.e. not recommending the bonus option) A will

achieve a payoff of at most 0 + δ/(1− δ). With ε′ and T ′ chosen as above, however, the

lower bound on the deviation profit is higher than the upper bound of the equilibrium

profit, i.e. the deviation is profitable:

T ′ =

⌊
2

log(1− δ)
log(δ)

− 1

⌋
≤ 2

log(1− δ)
log(δ)

− 1

⇔ (T ′ + 1) log(δ) ≤ 2 log(1− δ)

⇔ δT
′+1 ≤ (1− δ)2

⇔ δT
′+1

1− δ
≤ 1− δ

⇔ δ
(

1 + δT
′+1 + δT

′+2 + . . .
)
≤ 1
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⇔ (1− δ)
(
δ + δ2 + · · ·+ δT

′
)

+ δT
′+1 + δT

′+2 + . . . ≤ 1

⇔ δ + δ2 + . . . ≤ 1 + δ
(
δ + δ2 + · · ·+ δT

′
)

⇔ δ

1− δ
≤ 1 + (1− 2ε′)

(
δ + δ2 + · · ·+ δT

′
)

which implies that the lower bound of the deviation payoff (which is the right hand

side but without multiplying ε′ by 2) is strictly higher than the upper bound of the

supposed equilibrium payoff. This establishes that ε′ and T ′ have the desired property.

As the path of hits and misses on which DM’s probability to end the game is (at

least) ε′ has positive probability under equilibrium play by the assumption that A is

uncertain (i.e. p1 < 1 and pn > 0), it follows that the game ends with probability

γε′ > 0 in the next T ′ periods where γ is a lower bound on the probability of the

path under equilibrium play (which can be chosen independent of the specifics of the

equilibrium and the belief depending only on the probabilities p1, . . . , pn, e.g. γ = pT
′

n

works and will be used in the remainder).

Hence, the probability that DM does not end the game within 2T ′ periods is at

most (1 − γε′)2. Iterating yields that the probability that DM does not end the game

within mT ′ periods is at most (1− γε′)m. Let m′ be such that ε < (1− γε′)m′ and let

Tε > m′T ′. Using γ = pT
′

n and T ′, ε′ as derived above, for example, yields

Tε =

⌈
log(ε)

log (1− pT ′n ε′)

⌉
T ′.

The result follows.

Proof of theorem 2: Lemma 4 states that the probability that the game lasts longer

than Tε periods is at most ε. As I want to derive an upper bound on the expected

length, I can assume that the probability that the game lasts longer than Tε periods

is exactly ε. As it simplifies the derivation and since I am only interested in an upper

bound, I will actually assume that the probability that the game lasts longer than

T̃ε =
log(ε)

log (1− pT ′n ε′)
T ′ + T ′

equals ε (which again will increase the expectation as T̃ε ≥ Tε) for T̃ε > T ′. That is, I

assume that the game lasts at least T ′ periods (which again increases the expectation).

Rearranging yields that the probability that the game’s length is T̂ > T ′ or less is

1 − e(T̂−T
′)/B where B = T ′/ log

(
1− pT ′n ε′

)
. Note that B < 0. The corresponding

density is −e(T̂−T ′)/B/B. This allows to compute an upper bound on the expected
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length of the game as

T ′ +

∫ ∞
T ′
− T̂ e

(T̂−T ′)/B

B
dT̂ = T ′ +

[
−T̂ e(T̂−T ′)/B +Be(T̂−T

′)/B
]∞
T ′

= 2T ′ −B = T ′
(

2− 1

log(1− pT ′n ε′)

)
.

Proof of proposition 2: Without loss of generality, choose ᾱ high enough such

that strategies and value functions are continuous for α > ᾱ. As DM uses a mixed

strategy, his value W (α) has to equal WO for α > ᾱ. Therefore, A mixes over two

cutoff levels k̃ and k̃ + 1 such that using cutoff k̃ for sure would result in a DM value

above WO while using k̃ + 1 for sure would result in a DM value below WO. A is

indifferent between the cutoffs k̃ and k̃ + 1 only if

β−(α) =
V (α+)− 1

δ(p1−pk̃+1)

V (α−)
.

As A is indifferent between his equilibrium strategy and using the cutoff k̃+1 with proba-

bility 1, his value can be written as V (α) = qk̃+1δβ
+(α)V (α+)+(1−qk̃+1)δβ

−(α)V (α−)+

(k̃ + 1)/n. Plugging β−(α) and β+(α) = 1 into A’s value function gives

V (α) = δV (α+)−
1− qk̃+1

p1 − pk̃+1

+
k̃ + 1

n
.

Since V is continuous and α+ → α as α→ 1, the limit result limα→1 V (α) = limα→1 V (α+)

has to hold. Consequently, the previous equation can be solved in the limit for V (α):

lim
α→1

V (α) =
1

1− δ

(
−

1− qk̃+1

p1 − pk̃+1

+
k̃ + 1

n

)
.

It is now shown that limα→1 V (α) < 1/n, i.e. that

k̃

n
<

1− qk̃+1

p1 − pk̃+1

.
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Plugging in the definition of qk̃+1 in (3) and multiplying through by (p1 − pk̃+1)n gives

k̃(p1 − pk̃+1) < n− (n− k̃ − 1)p1 −
k̃+1∑
i=1

pi

⇔ 0 < n(1− p1)−
k̃∑
i=2

(pi − pk̃+1)

⇔ 0 < (n− k̃ + 1)(1− p1) +
k̃∑
i=2

(1− p1 − pi + pk̃+1)

which is obviously true as 1− p1 − pi ≥ 0 for i = 2, . . . .
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