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Abstract

In the cointegrated vector autoregression (CVAR) literature, deterministic terms
have until now been analyzed on a case-by-case, or as-needed basis. We give a compre-
hensive unified treatment of deterministic terms in the additive model X; = vZ; + Y%,
where Z; belongs to a large class of deterministic regressors and Y; is a zero-mean
CVAR. We suggest an extended model that can be estimated by reduced rank regres-
sion and give a condition for when the additive and extended models are asymptotically
equivalent, as well as an algorithm for deriving the additive model parameters from the
extended model parameters. We derive asymptotic properties of the maximum like-
lihood estimators and discuss tests for rank and tests on the deterministic terms. In
particular, we give conditions under which the estimators are asymptotically (mixed)
Gaussian, such that associated tests are y2-distributed.

Keywords: Additive formulation, cointegration, deterministic terms, extended model,
likelihood inference, VAR model.

JEL Classification: C32.

1 Introduction

The cointegrated vector autoregressive (CVAR) model continues to be one of the most com-
monly applied model in many areas of empirical economics, as well as other disciplines.
However, the formulation and modeling of deterministic terms in the CVAR model has until
now been analyzed on a case-by-case basis because no general treatment exists. Moreover,
the role of deterministic terms is not always intuitive and is often difficult to interpret. In-
deed, Hendry and Juselius (2001, p. 95) note that “In general, parameter inference, policy
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simulations, and forecasting are much more sensitive to the specification of the deterministic
than the stochastic components of the VAR model.”

In this paper we give a comprehensive unified treatment of the CVAR model for a large
class of deterministic regressors and derive the relevant asymptotic theory. There are two
ways of modeling deterministic terms in the CVAR model, and we call these the additive
and innovative formulations. In the additive formulation the deterministic terms are added
to the process and in the innovative formulation they are added to the equations.

1.1 The additive formulation

In this paper, we analyze the additive formulation. To fix ideas, let the p-dimensional time
series X; be given by the additive model,

HM X, =Y, +~Z, t=1—k,...,—1,0,....T, (1)
L)Y, =¢, t=1,...,T,

where 7, is a multivariate deterministic regressor and

k—1

H(z)=(1—2), —af'z— ZFi(l —2)2" (2)

=1

is the lag-polynomial defining the cointegrated I(1) process Y;. Furthermore, ¢; is i.i.d.
(0,9), Yy, ..., Y1 are fixed initial values, and A = (o, 8,T'1,...,Tx_1,7) and Q are freely
varying parameters where «, 5 are p x r for some r < p.

The advantage of the formulation in (1) is that the role of the deterministic terms for the
properties of the process is explicitly modeled, and the interpretation is relatively straight-
forward. One can, for example, focus on the mean of the stationary processes AX; and 5’ X,
for which we find from (1) that

E(AX;) =~vAZ, and E(8'X,) = 8'vZ;. (3)

Thus, v can be interpreted as a “growth rate”, and, moreover, 3~y can be more accurately
estimated than the rest of 7, because the information Zle Z: 7] in general is larger than
Zle AZ;AZ,. Note that if Z; contains the constant with parameter v; € RP, then the
corresponding entry in AZ; is zero and does not contain information about v;, and we can
therefore only determine 3'~;.

When analyzing properties of the process, the following /(1) conditions are important,
see Johansen (1996, Theorem 4.2).

Assumption 1. The roots of detII(z) = 0 are either greater than one in absolute value or
equal to 1. The matrices o and 3 are p X r of rank r, and for I' = I, — Zf;ll [';, we assume
that det o/ '8, # 0, such that Y; is an I(1) process, 5'Y; is a stationary I1(0) process, and
C = B.(a/ TP, is well defined.

It follows from Assumption 1, specifically det o/, I'3; # 0, that

00300 = (o e ) 0
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has full rank, so that also (3, I"a ) has full rank. Here, and throughout, for any p x s matrix
a of rank s < p, we define @ = a(a’a) . This full rank result is used repeatedly, in particular
in the proof of Lemma 1 below, which gives an algorithm for calculating the parameters in
the additive model from the parameters in the extended model.

We assume throughout that the data generating process satisfies Assumption 1, but the
parameters will be assumed to be freely varying in the statistical models. For example, «
and [ will be freely varying p X r matrices in the statistical model but of full rank r in the
data generating process.

The solution of the equations for Y; is given by the following version of Granger’s Rep-
resentation Theorem, which states that

t t—1
Yt:CZEi+ZC;5t—z‘+At, (5)
i=1 i=0

where A; depends on initial values of Y; and ’A; decreases to zero exponentially. The
representation for X; is therefore

t—1

t
Xt:CZ€i+ZCf€t4+’YZt+At, (6)

i=1 =0

which again illustrates the explicit role of the deterministic terms in the additive formulation.

The additive formulation has been analyzed by, e.g., Liitkepohl and Saikkonen (2000a,b,c),
Nielsen (2004, 2007), and Trenkler, Saikkonen, and Liitkepohl (2007); each for specific choices
of deterministic terms.

1.2 The innovative formulation

The most commonly applied method of modeling deterministic terms in the cointegrated
VAR model is the innovative formulation, where the regression variables are added in the

equation, i.e.,
k—1

AXy=aBf' Xy + Y TiAX i +5Z + e, (7)
i=1
and the deterministic terms are possibly restricted to lie in the cointegrating space; see
Johansen (1996) for a detailed treatment of the case Z; = (t,1)" or Rahbek and Mosconi
(1999) for stochastic regressors, Z;, in the innovative formulation. They point out that the
asymptotic distribution for the test for rank contains nuisance parameters, and that they
can be avoided by including the cumulated Z; as a regressor with a coefficient proportional
to a. We show below that starting with the additive formulation, the highest order regressor
automatically appears with a coefficient proportional to o in the innovative formulation, and
we find conditions for inference to be asymptotically free of nuisance parameters.
Under Assumption 1, the I(1) solution for the process X; in (7) is given, see (5), by

t—1

t
X, =C> (e +7Z)+ Y Cflermi + 7 Zi—i) + Ar. (8)

=1 i=0

A model like (7) is easy to estimate using reduced rank regression, but it follows from (8)
that the deterministic terms are generated by the dynamics of the model. We see that the
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deterministic term in the process is a combination of the cumulated regressors in the first
term and a weighted sum of lagged regressors. Thus, for instance, an outlier dummy in the
equation (7) becomes a combination of a step dummy from the first term in the process
(8) and an exponentially decreasing function from the second term in (8), giving a gradual
shift from one level to another. A constant in the equation (7) becomes a linear function in
the process (8), see for instance Johansen (1996, Chapter 5) for a discussion of some simple
models and Johansen, Mosconi, and Nielsen (2000) for a discussion of a model with broken
trends and impulse dummies to eliminate a few observations just after the break. Thus, one
can use the innovative formulation to model the deterministic terms in the process by taking
into account the dynamics of the model.

Applications including broken trends and several types of dummy variables are also given
in, for example, Doornik, Hendry, and Nielsen (1998), Hendry and Juselius (2001), Juselius
(2006, 2009), and Belke and Beckmann (2015). For an application using various dummies,
including a “volcanic function” dummy variable for modeling volcanic eruptions, see Model
V of Pretis (2015) and also Pretis et al. (2016) for the definition of the volcanic function.

The remainder of the paper is organized as follows. In the next section we discuss
the structure of the regressors, derive the extended model, and consider identification and
estimation. In Section 3 we derive the asymptotic theory for the parameter estimators in
both the extended and additive models, and in Section 4 we derive and discuss tests on
the cointegrating rank and on the coefficients to the regressors. Finally, we conclude and
give some general recommendations in Section 5. The proofs of all results are given in the
appendix.

2 The regressors and the additive and extended models

Going back to the additive formulation in (1), we eliminate Y; to find the equations for X,

(L)X, = I(L)Y; + T(L)y Z, (9)

k-1 k—1
H?dd CAXy =af X+ Z AX s +yAZy — 045’72::—1 - Z LivAZ; i + ;. (10)

=1 i=1

From (10) it follows that maximum likelihood estimation and inference is not so straightfor-
ward as in the model with no deterministic terms, and this is the issue we want to address
in the present paper.

In the model equation (10) for X, the coefficients (v, —af’y, —I'17, ..., —I'x_17) involve
~. These depend nonlinearly on the model parameters, so the model becomes a nonlinear
restriction in the usual linear CVAR model with £ lags and an innovative formulation of the
deterministic terms, (AZ;, Zy 1, AZy 1, ..., AZy_jy1).

A general technique for handling such nonlinear models consists of finding a larger model
where the estimation problem is easier to handle. As a simple special example of this
principle, consider a linear regression with autoregressive errors, i.e. X; = Y; + 7Z;, where
Y; = pYi 1 +&; and &; is i.i.d. (0,02). The equation for X; is X; = pX; 1 +7Z — pyZi_1+&:
and maximum likelihood leads to non-linear least squares estimation. We extend the model
to X; = pXy_1 +7vZ, + 11721 + &, with p,~y, v, 02 freely varying. This extended statistical
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model can be easily estimated by (linear) least squares, and asymptotic properties of the
estimators are derived under the assumption that the original (non-linear) model is the
data generating process. If we are interested in the original parameters, we can choose
the estimators p,~ from the extended model. We can use these (consistent) estimators as
starting values for an iteration to the maximum likelihood estimator.

Extending model (10) in a similar way to the simple example above, leads to the problem
that the regressors Z; ; and AZ; ; for i = 0,...,k — 1 may be linearly dependent. As a
simple example of this, consider Z;, ; = (t — 1,1) with AZ,_; = (1,0)’ for ¢ > 0, which are
clearly linearly dependent. Such a linear dependence between the regressors has to be avoided
before the parameters can be estimated and the properties of the estimators derived. We
therefore first discuss a formulation of the regressors that allows an analysis of the additive
model and its extension.

2.1 A formulation of a class of regressors

If U; € R has the property that it is linearly dependent on some of its differences, Y i, ¢;A'U; =
0 for all ¢, say, then U, is the solution to a linear difference equation. A basis for the solution
of such an equation is of the form a'y 7  a;t', where a is a root of multiplicity p + 1 of
o ciat =0, see Miller (1968). For a = 1 we therefore get a polynomial, for a = —1 and
p = 0 we get a seasonal (semi-annual) dummy (—1)¢, and for a = =i,i =v/—1, we can find
quarterly dummies. We do not deal with exponential regressors Z; = a’, |a] > 1, because
the asymptotic theory is different since the Central Limit Theorem does not apply to sums
of the form Y7, ,a* for |a| > 1.

Thus, in the following we consider all regressors that are linearly independent on their
differences, but for regressors that are linearly dependent on their differences we only consider
a polynomial and a seasonal dummy. We note specifically that for U; = (—1)* we have AU, =
—2U; = M,Uy, say, and for the quarterly dummy Uy, = i + (—1) 4+ i7" (also orthogonalized
on the constant) we find for U, = (U, Uy 4—1,Ur4—2) € R3 that AU, = MUy, where

1 -1 0
Mi=[0 1 -1]. (11)
1 1 2

This matrix can be diagonalized and has eigenvalues w;,j = 1,2,3, which are such that
1 — wj; is a seasonal unit root; that is (—1, %i).
For a general regressor we define its order as follows.

Definition 1. For a regressor U, € R we define the information as Z;‘le UZ. If the infor-
mation of U; diverges, we define the order of U; as the smallest integer 1 > —1 for which the
information of AU, is bounded, i.e.

T
m =inf{i > —1: Z(A”lUt)2 —c<ooasT — oo}

t=1

Thus, if the information of U, is bounded, limp_, Zthl UZ < oo, we define the order to be
m = —1, and if the information of AU, diverges for all i we define the order to be co.
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Example 1. For the impulse dummy Uy = 1}, where 1¢4) denotes the indicator function
for the event A, we find 3, , U? = 1 so that m = —1. On the other hand, when the
information for AU, diverges, which is important for proving tightness of the coefficient of
AUy, then i < m. For a polynomial we find that the order is the degree of the polynomial.
More generally, for the power function ¢, with a € R and a > —1/2, the order is m =
[a+ 1/2], where [z] denotes the integer part of z. For the broken linear trend U; = (t — o)™,
with 2t = max{0,x}, we see that all differences are linearly independent, but because
AU, = Lysirny satisfies ) (AU)? — oo and 3 (AU)? = 31 Lytorny = 1, the
order of Uy in this case is m = 1. Finally, for a seasonal dummy variable like U; = (—1)" it is
seen that A", = (—2)""!(—1)!, so the information diverges for all 7 > —1, and the order
is infinite. ¢

The regressors considered are conveniently expressed in differences (rather than lags)
since these have natural interpretations in many cases. Furthermore, as the examples sug-
gest, the sums of squares of differences of the regressors will typically have different orders
of magnitude, and hence different normalizations. We therefore define the structure of re-
gressors in terms of differences.

Definition 2. Let U, = (Uy,...,Uy) € R? be a set of linearly independent regressors
of orders m, < oo, v = 1,...,q. Assume further that {A'U,i > 0} are either linearly
independent or (for a polynomial) equal to zero for i > m,. Let Us.; € R*™! be an (s — 1)-
dimensional seasonal dummy variable orthogonalized to the constant term, which is such
that AUse, = MUs. ., where My has eigenvalues {w;,j =1,...,5s — 1} such that 1 —w, is a
seasonal unit root. We consider the regressor defined as

Zy = (U, AU, ..., AU UL, ),

which is of dimension (n+ 1)q+ s — 1. We decompose ~y correspondingly,

T=0"% YY) A =00 ), =0,

such that . . n
’VZt = Z ’yzAlUt + ’yseUse,t - Z Z 7;L;A1th + ’7$eUse,t-
=0 v=1 =0

It is important to note that some of the components of Z, may be zero (if a polynomial
is differenced too many times), or more generally have bounded information if the order of
the component is less than n.

2.2 Some reparametrizations of the additive model

To express the deterministic term in the additive model in terms of differences of U, we
expand II(z) around z = 1 and find the coefficients

M(2) = &g+ Py(1 —2) + -+ Pp(1 — 2)*, & = (—1)'DLI(2)],—1 /1!,

where ®; are functions of the parameters; in particular, see (1),

k-1

Oy =—af, O=-apf —(I,-» T;)=-af —T. (12)

=1
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We then find the deterministic term in the additive model equation, see (2),

k n+k
M(L)yZ = > & 27 AU+ 7 AUses) = > TN Uy + YoelUser, (13)
=0 7=0 =0

where we have introduced the coefficient T = (Yo, ..., T,ix, Tse) given by

min{s,k} k
Ti — Z (I)J’)/Z_], Z — O, e ,n7 Tse == Z (pi,ySEM;. (]‘4)
j=max{0,i—n} =0

It is clear from (14) that, for given values of the dynamic parameters («, 5,T'1,...,Tx_1), the
parameter T is a linear function of the parameter +. In Lemma 1 we next give an algorithm
for recovering the parameter v as a linear function of the parameter T, also for given values
of the dynamic parameters (o, 5,T'1,...,Tx_1).

Lemma 1. Let Assumption 1 be satisfied and define Y as in (14). Then, fori=0,...,n,

min{s,k} min{i+1,k}
Y=y +a Z @iy and o/ Tip1 = —a/ Ty + o) Z ;v (15)
j=1 =
Thus, because the matriz (8,1 a ) has full rank, see (4), the parameters v°, ..., ™ can be
recovered recursively as linear functions of (&' Yo, Y1,..., Tp,a/, Tpyi1) for given values of

(aaﬁarla"'arkfl)- -
The coefficient v*¢ is uniquely determined as a linear function of Y4 = Zf:o D,y M,

vec(y Z M!® ®;) ' vec(Tse). (16)

2.3 The extended model

We define the extended model based on the results in the previous subsection and the
coefficients in (14). We note in particular that Ty is proportional to «, and define the
parameter p' = @' Ty = &’ ®yy° = — 31, such that the extended model is, see also (13),

k—1 n+k
HAXy = a(B X1+ pU) + Y TiAXy i+ > VAU + Toelses +&,  (17)

i=1 i=1

where the parameters £ = (a, 8,11, ..., Tx_1,0, L1, ..., Tnik, Tse) and Q are freely varying.

The additive model H in (10) is now expressed as the submodel of the extended model
HE in (17), where the restrictions (14) and p' = — 3’7" give the extended model parameter,
¢, as a function of the additive model parameter, A = (o, 3, 'y, ..., Tx_1,7).

In general the additive model is a submodel of the extended model, but there is a special
case where the two models are the same, as given in the next theorem. Define the polynomials
fi(t) =t(t—1)---(t—i+1)/d!, which satisfy Af;(t) = fi_1(t). The regressor Z; = (t™,..., 1)
is equivalent to the regressor Z; = (f,(f),..., fo(t))’ in the sense that they span the same
space. For m = 0 and m = 1 the models with these regressors were denoted Hj(r) and
H{ (1), respectively, in Johansen (1996).



The CVAR model with general deterministic terms 8

Theorem 1. Let Assumption 1 be satisfied. Then the additive model for the regressor Z; =
(fm(t), ..., fo(t)) is a reparametrization of the extended model.

Note that the result in Theorem 1 also holds if Z; is extended with a seasonal dummy
like (—1)*. In general, of course, the simple result in Theorem 1 does not hold, so that the
additive model is not a reparametrization of the extended model. For the general case, we
next discuss identification and estimation of the parameters in the situation where we allow
a polynomial regressor Uy; of order my, say, in the additive model and have removed zero
Tegressors.

2.4 Identification of the parameters in the extended and additive models

For identification of the parameters in the extended model (17), the zero regressors AUy, = 0,
1 > my, have been removed together with their coefficients, so that the remaining regressors
are linearly independent (Definition 2). Then the coefficient £ is identified, because if the
likelihood functions for parameters & and & are the same, then & = &, except for o and
B, where only their product is identified. A convenient normalization to identify 3, see
Johansen (1996, p. 179), is to assume that 3’3, = I,. This will be assumed throughout.

We next consider identification of the additive model (10) as a submodel of the extended
model (17). This is a consequence of the following result, which is based on Lemma 1. The
result is formulated for the additive model with a polynomial regressor, which may generate
ZETO Tegressors.

Theorem 2. Let Assumption 1 be satisfied. Let A = (o, 3,1, ..., Tx_1,7) be the parameters
in the additive model (10), which contains a polynomial P; = Uy, say, of order my, and as-
sume that the regressors AUy, = 0, i > mq, have been removed together with their coefficients
vi. Let E=EN) = (o, B,T1, .., D10, Ty ooy Yo, Tse), where Yo, ..., Toir, Toe are de-
fined by (14) and p' = &Yy, and assume the coefficients ;1,1 > mq, have been removed.
Then, for any set of parameters Ao, An, h — 0, we find

E(An) — &(No) as h — 0 implies A, — Ao, (18)

except if n > my, where for the constant term with coefficient 7\, we only find B’V —
B -

Identification of the additive model as a submodel of the extended model follows from
Theorem 2 because if (A1) = {(\o) then, choosing A\, = Ay, we find from (18) that A\; = Ao.
Thus, a special case of Theorem 2 implies identification of the parameters of the additive
model in the usual sense. However, in anticipation of our proof of consistency, Theorem 2
proves the more general result that & depends continuously on the parameter A, which one
could call “continuous identification”. The result in Theorem 2 shows continuous identifica-
tion of ~y, with the exception that, if n > m; (so that the constant term, A™ P, = A"™ Uy,
is included in the model), then the coefficient to the constant term is only identified in the
[-directions.

2.5 Estimation of the parameters in the extended and additive models

For estimation of the extended model (17), we continue to assume that the zero regressors
AUy, = 0, i > my, have been removed together with their coefficients, so that the remaining



The CVAR model with general deterministic terms 9

regressors are linearly independent. Then maximum likelihood estimation of the parameters
of the extended model can be conducted by reduced rank regression of AX; on (X]_;,U;)
corrected for the non-zero regressors. See Anderson (1951) and Johansen (1996, Chapter 6).

Next, the additive model (10) can be estimated by maximum likelihood using an op-
timizing algorithm, as a submodel of the extended model subject to the restrictions (14).
Starting values for the iterations in the numerical optimization of the likelihood function can
be found, using Lemma 1, from parameter estimates of the extended model.

3 Asymptotic theory for parameter estimators

We first give some conditions on the regressors which are needed for the asymptotic analy-
sis. We then discuss consistency of the parameter estimators and find their asymptotic
distributions for both the extended and additive models.

3.1 Normalization and partition of regressors

We introduce the notation for product moments of sequences U;, V;,, Wy, t =1,...,T,

T
UV)p =T UV,
t=1

and for residuals

(UV2) = Uy = (U, V) (V. V)2V

and conditional product moments
(U, VW) = (U, V) — (U, W) (W, W) (W, V).

When the limit of a product moment exists, we use the notation (U,V), — (U,V), for
example, to denote the limit as T' — oo.

For the asymptotic analysis, regressors with bounded information will not give consistent
estimation of their associated coefficients. That is, for any deterministic term U,; with order
M., the coefficients to the regressors AUy, i > m,, cannot be consistently estimated because
ZtT:l(Aith)2 is bounded, see Definition 1. However, as shown below, this has no influence
on asymptotic inference for the remaining parameters.

To conduct asymptotic inference, we thus partition the regressors into those with diver-
gent and those with bounded information, respectively, and for the former we also separate
those that are proportional to « in the extended model (17). These regressors and their
associated coefficients are defined next.

Definition 3. The non-zero regressors in A'Uy,1 < v < ¢,0 < i < n+ k, are partitioned
as

Zow = (UL,,0 < m,),
Zy = (AU, 1 <i < min{n + k,m,}; UL,),

Zoy = (Upy,my < 0; AU my, <@ <n+k),

vt
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with coefficients given by

po = (pv,my > 0),
T = (Tiv, 1 <0 <min{n + k,my}; Tee),
Y% = (apy, My < 0; Tip,my < i < n+ k).

Similarly to p° we define v°* = (v, m, > 0) such that p* = —3'7°*.

According to Definition 3, we have partitioned the regressors such that 7y, and Z;; have
divergent information and Zs; has bounded information, see Definitions 1 and 2, and we note
that Z;; may be empty in which case the remainder of the paper is simplified accordingly.
With the notation in Definition 3 we find that the deterministic terms in the extended model
(17) can be reparametrized as

n+k
Oép/Ut + Z TZAlUt + TseUse,t = Ozpo’ZOt + TIZM + T2ZQt. (19)
i=1
Finally, for the asymptotic analysis we need the following normalizations and a mild
condition to rule out asymptotically multicollinear regressors.

Assumption 2. For a regressor A'U,,, for which m, > 0, there exists normalizations Mry,
for i = 0,...,m,, satisfying MTZ'UMTT;HJ} — 0 and Mp T2 — 0, and for which the
normalized regressors A'Uyry = My, A'Uy satisfy that

T
<AiUvT7 AijvT>T = Til Z(MTivAith)(MijAijt),
i=1
18 convergent.

Corresponding to Zy; and Zy;, we collect their normalizations in the diagonal matrices
Nro = diag(Mrgy,, m, > 0,1 < v < q) and Np; = diag(Mry,, 1 < i < min{n + k,m,},1 <
v<agq,t, ), where t;_1 is an (s — 1)-vector of ones. This defines the normalized regressors

Zort = NpoZo and Zypy = N1 Zyy. (20)

Assumption 3. The asymptotic information matriz for (Zp,, Zip,) is nonsingular, i.e.
satisfies
<(Z(/]T7 ZiT)la (ZéTv ZiT)I>T - <(Z(I)7 Zi)/a (Z[/)7 Zi)/> > 0.

Example 2. The nonsingularity condition in Assumption 3 rules out asymptotically mul-
ticollinear regressors, and is easily satisfied in practice. As an example of what is ruled
out, consider the regressor U; = (1 + ly—t41}, 1 + l{t=¢,—13)’, which satisfies Definition 2

11
11
gular in the limit and thus violates Assumption 3. In this case, one could apply instead
Us = (1 + Lg—to41)> Lit=to—13 — Lgt=to+1})’, Which spans the same space, but where the in-
formation is (U,U); — (U,U) = é 8

estimation with a non-singular asymptotic information matrix. Thus, for this example, we
set Zoy = 1+ 1{t=t0+1} and Zy = 1{t:t0—1} - 1{t:t0+1}- ¢

with m; = mg = 0, but the information (U,U), — (U,U) = is clearly sin-

and the first element gives rise to consistent

10
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Finally, for the asymptotic analysis we make the following high-level assumption, for
which primitive sufficient conditions are well-known.
Assumption 4. We assume that ; is i.i.d. (0,9), and for Sy = 3.'_, &; we have the weak

limit T—Y QS[TU] LA W., where W. denotes Brownian motion generated by ;. Furthermore,
the following limits exist and the convergences hold jointly,

TV (Zip,e)p =T~ I/ZNTJZ et B (Z;,€) for j=0,1,

TY2(Zir,Si 1) g = T%*Ny; Z 7Sy D (Z;, W) for j=0,1,

T 1
TV2(S, 1 e)p =T Z Si-1€ 5 / W_(dW.) = (W.,e) .
=1 0

Again, we use (Z;,¢), for example, as the notation for the limit of a product moment,
because simple expressions in terms of stochastic integrals are not possible for all regressors.
Examples of the conditions in Assumption 4 are given next.

Example 3. Let U, = (¢, (t — [Tvo)) ")’ with AU, = (1, Lysrug)+13) - Then Mpo =T and
My = 1, and we note that MpoMy — 0, reflecting that the order of the regressor in this
case decreases when differenced. We define u(v) = limy_.oc Urry) = limp oo MpoUppy) =
(v, (v —vo)") and W(v) = limy_oo AUp 1y = limp oo M1 AUjpy) = (1, 1{y>003)". For this
example we find the limits
T
(Ur, AUr)p =T (T7'U)(AD) —>/ a(v)'dv = (U, AU),

t=1

TV (Up,e)p =T~ WZT 1Utst—>/ v)dW.(v) = (U, ¢),

t=1

T-1/2 <UT7St 1) — T~ 3/2ZT lUtS; 1_>/ ( )dv— <U,W5>

¢

The previous example illustrates a relatively simple regressor, which when appropri-
ately normalized has a limit, u(v), in L. In this case, the limit of the product moment
TV? (Up, €)r, for example, can be expressed as a stochastic integral of u(v) with respect to
Brownian motion, W.. However, such simple limit expressions are not always possible, as
the following example shows.

Example 4. Let Uy, = (—1)" be a seasonal dummy variable. Then

T
TV (User€)y = T2 Useset & N(0,9) = (U ),

t=1

T
T (S Uy = T 8, U = O,

t=1
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where we note that (Us, €) is not a stochastic integral involving a limit of U, ; because U,
does not converge in Ls. ¢

3.2 Consistency of parameter estimators

To prove consistency, we use the fact that both the additive model (10) and the extended
model (17) can be expressed as nonlinear submodels of a linear regression model, such that
we can apply the following result from Johansen (2006).

Lemma 2. Let ¢ = ¢(7) be a continuously identified parametrization of a submodel of the
regression model y; = 'z + €, € i.i.d. (0,9), with stochastic or deterministic regressors.
Assume that the information diverges in probability for all components of z,

P (wmin(z 22) > A) — 1 forall A>0 as T — oo,

t=1

where wmin(+) denotes the smallest eigenvalue of the argument. Then T exists with probability
converging to one and is consistent, as T — oc.

Consistency of the continuously identified parameters in both the additive and extended
models thus follows from Theorem 2 and Lemma 2 for those regressors that have divergent
information. That is, in the extended model, we cannot obtain consistency for T2, but the
remaining parameters are consistently estimated, as formulated in the next result.

Theorem 3. Suppose Assumptions 1-3 are satisfied. Then the maximum likelihood estima-
tors exist in both the extended model and the additive model, with probability converging to
one, and both are consistent for the regressors with divergent information.

3.3 Asymptotic distribution of the parameters of the extended model

We apply the Gaussian likelihood function and let £ denote all parameters in the conditional
mean of the extended model, see (17), with true value . The normalized (negative) log-
likelihood function for model H is

T
L(&,Q) = —T 'log Lp(£,Q) = %log det(Q2) + %tr{Q_lT_1 Z et(§)er(§)'}, (21)

where
k-1

St(f) = AXt — Oé(ﬁlXt_l + pOIZ()t) — Z FiAXt—i — Tlth — TQZQt. (22)
i=1
We normalize 3’3y = I, and use the decomposition 3 = £y + o1 55, (3 — o). We then stack
T-Y285 Y,y and Zors = NroZos, see (20), as

GTt = ( T71/2B(/)J_}/t—1 )
ZOTt ’

and define the variance Xy = Var(Y;_ 8o, AY, 4, ... AY, . 1)

12
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Theorem 4. Suppose Assumptions 1-4 are satisfied. Then it holds jointly that
TY2(& — ag, Ty = Trg, .o, Ty = Th10) = Npser (0, 555, @ Q) (23)
1220 (R _
T1/2 ( T,1593_<6 0*{39) ) B) - <G7 CYY’21>_1 <G> ga’21> ) (24)
Nro (P° +78)
T1/2(Y1 - T(l))Nj:ll £> - <€, Zl> <Zl, Zl>_1 + Qp <5a; G’Zl> <G, G|Z1>_1 <G, Zl> <Zl, Zl>_1 y
(25)
where p° = =93 and e0y = (5 o) tal e, Furthermore, the distribution (23) is

asymptotically independent of the distributions (24) and (25).

As discussed above, only the parameter YT! appears in Theorem 4. The parameter Y? cor-
responds to the regressors with bounded information, and cannot be consistently estimated
(Theorem 3) and hence has no place in Theorem 4.

The distribution in (24) is mixed Gaussian (MG), and an important consequence is that
asymptotic inference on 3 can be conducted using the y2-distribution. However, the distri-
bution in (25) is not MG, although we can obtain Gaussianity for some linear combinations
of (Y' — T}) by pre-multiplication by o, .

3.4 Asymptotic distribution of the parameters of the additive model

In order to derive the simple result that the additive model and the extended model are
asymptotically equivalent, because the only difference is in some regressors with bounded
information, we make the next assumption. We show below that the result for polynomials

in Theorem 1 is asymptotically satisfied for a general additive model, if enough regressors
are included in the formulation of the additive model.

Assumption 5. The number, n, of differences AU, in Z,, see Definition 2, satisfies n > m,,
forv=1,...,q.

For any parameter 6, let the maximum likelihood estimator in the additive model be
denoted by 6.

Theorem 5. Suppose Assumptions 1-5 are satisfied. Then it holds jointly that

Tl/z(d — Oy, f1 - F1,0, e 71!‘1971 - kal,(l) g NPX?" (0’ Zt:tit ® QO) ’ (26)
TY23 (3 — _
(i ) & - eomt G e, 7
— 4V (’7 — % ) ﬁ)

where £, = (ahQ o) b e, see (23) and (24) in Theorem 4. Forv = 1,...,q we
express the asymptotic distributions of . in terms of the mazimum likelihood estimators of
the parameters in the extended model,

T2 B0(5s = vio) My = =T 2@ (Yiy — Yivo) My + 0p(1), 1 < i < my, (28)
T1/20‘6LF0(’% - Vio)Mi%+1,v = _T1/2a6L<Ti+1,v - Ti+1,v,0)Mi3+1,v +op(1), 1 <i<my,
(29)
k
T2 vec(¥* = 35°) = (Y MY @ &) 'T" vee(Tye — Tocp)- (30)

=0

13
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Because all T, and Y. coefficients on the right-hand sides of (28)-(30) are included in T*,
their asymptotic distributions are given in (25) in Theorem 4. Finally, the distribution in
(26) is asymptotically independent of the distributions (27)-(30).

The main result in Theorem 5 is that the simple condition in Assumption 5 implies that
the additive and extended models are (asymptotically) equivalent. The consequence is that,
under Assumption 5, asymptotic inference is identical in the two models.

3.5 Asymptotic distributions when m > n

If the condition that maxj<,<,m, < n in Assumption 5 is violated, inference becomes much
more involved. To simplify, we consider the additive model for a single regressor U, € R
with order m. In particular, we give the proof for the case m = 1,n =0,k = 1, and use the
notation v instead of 4°*; that is, we consider the models

HOMAX, = (X — BAU 1) + AU, + &4, (31)
H:xt . AXt = Oé(ﬁlXt_l — pUt—l) + UAUt + &¢. (32)

The general case follows similarly, but with more complicated notation.
As an illustration, consider the following example.

Example 5. Consider the model X; = Y; + v(t — tp)* and AY; = ap'Y, 1 + &, where
the innovative formulation of the additive model and the associated extended model are,
compare also (31) and (32),

Hy AXy = (B X = Byt —to = 1)") + YLy + &
H™  AXy = (B X1+ p(t —to — 1)F) + lgzier1y +&r

Thus, the extended model has two parameters in the deterministic term, p and v, both of
which can be consistently estimated, whereas the additive model has only one parameter,
~. Obviously the two models are not asymptotically equivalent, and this is an example of a
case where n = 0, but m = m; = 1, and hence Assumption 5 is not satisfied. ¢

We now consider the asymptotic distributions when m > n, i.e., when Assumption 5 is
violated. The asymptotic theory for the extended model in Theorem 4 covers case of m > n,
but the theory for the additive model in Theorem 5 does not. In the next theorem, we
compare inference in the two models.

Theorem 6. Suppose Assumptions 1—4 are satisfied, but Assumption 5 is violated. For the
additive model, the asymptotic distribution for &,I'y,...,I'x_1 in (26) continues to hold, but
the asymptotic distribution of

o (TG,
—Mypo (Y — )8

or any linear combination of it, is not mixed Gaussian. Furthermore, the asymptotic distrib-
ution ofy | (5 —v0) My, is neither asymptotically Gaussian nor mized Gaussian and the same
holds for any linear combination of it.

Finally, the asymptotic information matrix for ¢ in the extended model is larger than the
asymptotic information matrix for ¢ in the additive model, in the sense that the difference
1s positive definite.

14
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Note that when n < m, inference for d,fl, e ,f‘k_l in the additive model is asymp-
totically the same as for n > m. This can be explained by the block-diagonality of the
information matrix for the parameters (o, I'y,...,I'x_1) and the remaining parameters, such
that inference on (a,I'y,...,I'x_1) can be conducted as if the remaining parameters were
known.

In order to explain what happens with the regression parameters in the additive model,
we decompose 7 into fy and «/|7y. The first parameter is estimated as the coefficient to
U;_1, and the contribution to f’v from the coefficient to AU; is asymptotically negligible,
whereas the parameter o/, v is estimated from the coefficient to AU;. Thus the information
in #'vAU, is not used in the additive model.

By extending the model, we replace the coefficient to AU, by a freely varying parameter,
and can then exploit all the information in the data. This simplifies inference with a loss
of efficiency as measured by the ratio of the information matrices. More precisely, the
limiting asymptotic conditional variance of the mixed Gaussian distribution of é in the
extended model is larger than the corresponding expression for the additive model, but the
interpretation of the limit distribution is entirely different in the two models.

The difficult inference problems in the additive model could possibly be solved by an
application of the bootstrap along the lines of Cavaliere, Rahbek, and Taylor (2012) and
Cavaliere, Nielsen, and Rahbek (2016). However, enlarging the model to have n > m is a
simple device to achieve simple inference. The latter possibility is illustrated as follows.

Example 6. Continuation of Example 5. Note that Assumption 5 would be satisfied by
including a step dummy, 1g>¢,413 = A(t —to)™, in the additive model formulation such that
Xi =Y+ ’71 (t - t0)+ + ’721{t2t0+1} giving

HY S AXy = (B X — Byt —to— 1) = B9 Lustor1y) + 7 Lusuer1y + 7 Lmtor1) + €ty
H AXy = (B X1+ p(t—to— 1)7) + V1l e>to41) + V2lig=to11y + &t

With this slightly larger additive model we have n = 1 and m = 1 such that Assumption
5 is satisfied. It is seen that the two models are not reparametrizations as for polynomi-
als, see Theorem 1, but the coefficient v, is associated with a regressor with information
Zthl 1%t:t0 1y = 1, and hence does not contribute to the asymptotic analysis. That is, by
including the missing step dummy, 1{;>4,+1}, in the additive model, and hence allowing the
broken trend to have a discontinuity at the breakpoint, t,, Assumption 5 is now satisfied
and the two models are asymptotically equivalent. In this case the asymptotic analysis is
relatively simple as shown in Theorem 5. ¢

4 Hypothesis testing

We first give the asymptotic distribution of the test for cointegration rank and then discuss
tests on coefficients of deterministic terms.

4.1 Test of cointegration rank

We consider the extended model (17) for r = p,

k—1
' AX =TH(X oy — 7" Zo) + Y TiAX, i+ Y1 2y + Y2 Zoy + &1 (33)

=1

15
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The likelihood ratio test for rank r or Il = a/3’, where o and 3 are p X r matrices, is denoted
LR(H"|H™). For the general class of models and deterministic terms considered, we can
provide a unified result for the asymptotic distribution of the test of cointegration rank, and
this is given next.

Theorem 7. Under Assumptions 1-5, the asymptotic distribution of the test of cointegrating
rank in either the extended model (17) or in the additive model (1) is given by

—2log LR(HEMHE™) 2 tr{(G ea, | 21) (G, G| Z1) (G ea, | Z0) )

where &4, 1 = (afy, Qo) )"V2l & is i.i.d. N(0,1,_,).

Note that the limit distribution of the rank test depends on the type of regressors and
needs to be simulated for the various cases. However, it does not depend on the values of
the regression parameters, i.e. the rank test is asymptotically similar with respect to the
regression parameters, see Nielsen and Rahbek (2000). This is a consequence of starting
from the additive formulation with n > max;<,<, m,, and deriving the extended model from
the additive model. In the innovative formulation (7), this is not the case, see for example
the analysis of the model with an unrestricted constant term in Johansen (1996).

4.2 Tests of hypotheses on deterministic terms

We consider inference on the coefficients 72, m, > 0, and 7,7 = 1,...,m, < n, in the
additive model and denote by %! the maximum likelihood estimator in the additive model.
It follows from Theorems 4 and 5 that the limit distribution of ¥¢ — ¢, naturally decomposes
in two parts, and we therefore split the hypothesis v/ = 0 into a test that 37/ = 0 and a
test that o/, T'y: = 0.

Theorem 8. Let Assumptions 1-5 be satisfied. When m, > 0, the likelihood ratio test for
the hypothesis 3’70 = 0 is asymptotically x*-distributed, and when m, > 1, the likelihood
ratio test for the hypothesis o/, T7° = 0 is asymptotically x*-distributed.

We apply the results in Theorem 8 as follows. It appears natural first to investigate if
72, the coefficient of Uy, is zero. If we cannot reject that it is zero, then we can proceed to
test that the coefficient of AU, is zero; that is, test the hypothesis v} = 0, assuming 7% = 0.

Under Assumption 5 the additive and extended models are asymptotically equal. Under
the hypothesis 37% = 0, we find T? = 0, so we estimate the other parameters by reduced
rank regression leaving out the regressor U, in the extended model. If also o/, T7? = 0,
then by (4) we have 72 = 0, so that U,; is no longer a regressor in the additive model and
AU,; becomes the highest order term. By reformulating the model to take this into account,
the coefficient ~! is split into 3’7} and o/, 'y}. The first is in the cointegrating space where
lei (¥} — ~L,) has an asymptotic mixed Gaussian distribution. The second is found from the
new o/, ®;, and the asymptotic distribution of T%/2(&/, T3} — o), Tovly) My, is Gaussian.

Thus we can apply the asymptotic distributions in Theorem 4 to test recursively that
vt =0, provided we assume that v/ = 0,0 < j < i.
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5 Conclusions

We define the CVAR model with additive deterministic terms and derive the corresponding
innovative formulation which is nonlinear in the parameters. This additive model is extended
to a model which is linear in the coefficients of the deterministic terms and hence allows
estimation by reduced rank regression. A general class of regressors is defined and for each
regressor its order. This setup allows a discussion of the relation between the innovative
formulation of the additive model and its extension.

A simple condition for when the additive and the extended model are (asymptotically)
identical is given. The condition, given as Assumption 5, is that for each regressor in the
additive model one should also include its differences, as long as they have diverging infor-
mation. If this recommendation is not followed, asymptotic inference is considerably more
complicated. For example, when the regressor is a polynomial or power function, say t* for
some a > —1/2, the recommendation is to include (at least) m = [a + 1/2] differences of
t*, which seems like a natural thing to do. Indeed, not doing so seems very strange. On
the other hand, for the broken trend function, (¢ — tg)™, it may in fact be reasonable to
exclude the first difference, 1¢>4 41}, When insisting on continuity of the trend function as
in Example 5. However, the recommendation is to include the first difference anyway, even
if it may be zero, because including it leads to simple inference.

The asymptotic distribution of the parameter estimates is found to be a mixture of a
Gaussian distribution and a mixed Gaussian distribution, and we show how it can be applied
to test that the regression coefficients are zero. Finally, we derive the asymptotic distribution
of the rank test and show that it is similar with respect to the regression parameters.

A Appendix: proofs of results

A.1 Proof of Lemma 1

The result (15) follows from (14) when multiplying by &' and o/, using &y = —af’ and
®; = —af’ — . The relations (15) can be solved for " because (5,1, ) has full rank
under Assumption 1, see (4), and therefore +* is determined recursively as a linear function
of To, ey TZ', O/J_Ti—‘rl-

To solve for v*¢, we let (w;,v;),j =1,...,5 — 1, be the eigenvalues and eigenvectors of
M. Tt is clear from (14) that Y. is a linear function of *¢, and we want to show that this
function is non-singular, that is, that T, = Z?:o ;¢ M! = 0 implies v*¢ = 0. To see this,
post-multiply by v; and use M{v; = wiv;, such that

k k
0="T,v, = Z Oy Miv; = Z @iwéysevj = II(1 — w;)y*v;. (34)
i=0

=0

Now 1 — w; is a seasonal root, see Definition 2 and (11), and by Assumption 1 this implies
that II(1 — w;) has full rank, such that v*“v; = 0 for all j and hence y*¢ = 0. The definition

of T, is therefore
k

vee(Tse) = (Z M! @ ;) vec(y*),

=0

where Zf:o M} ® ®; is of full rank. The solution is then given by (16).
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A.2 Proof of Theorem 1

The additive formulation of model (1) with Z; = (f,.(t),..., fo(t))’ has deterministic term
kK m m

L)yZ, = Zcb NZ’V Fuei®) =D @i frujei(t) = > Tafmms(t)

=0 5=0 s=0

Lemma 1 shows that 7°,...,y™~1 3'4™ can be determined from p’ = &Yy, Y1,...,T,, for

given values of («,3,T1,...,Tx_1). Thus, for this choice of regressors, the additive model

parametrized by (o, 3,T1,...,Tr_1,7°%,...,7™ % B'v™) is the same as the extended model
parametrized by (o, 8,1, ..., Tp_1,p, Y1, ..., Thn).

A.3 Proof of Theorem 2

The proof follows from Lemma 1 because £(\) determines A as a linear, and hence continuous,
function except for o/, I'y{"* (in the case n > my).

A.4 Proof of Theorem 3

We can express both the additive model (10) and the extended model (17) as nonlinear
submodels of a linear regression model as follows. Because we have normalized 3 on 3’3, =
I, we can define 6 = 3, (5 — Bo) such that 5 = [y + [ 6. Then the extended model (17) is

k—1
AX; = afyXe 1+ ab' By, Xio1 + ap” Zos + Z DiAX s+ Y 2y + T2 2oy + &4,
i=1
which is a submodel of the linear regression model
k—1
AX, = o(B)Xi1) + By, Xim1) + ¥ Zo + Y TiAXy i+ Y 2y + T2 +6, (35)

=1

defined by the restrictions ¢ = o, 1) = ap”, and the remaining parameters being the same
in the two models. From Theorem 2 it follows that, because app) — app) and o), — b
implies 0, — 6y and p) — pJ, the extended model is continuously identified in the larger
linear regression model (35). Similarly, the additive model is continuously identified in the
extended model and hence in the larger linear regression model. The result now follows
immediately from Theorem 2 and Lemma 2.

A.5 Proof of Theorem 4
Let I1Iy(L) be the characteristic polynomial with the true values inserted. The data is gen-
erated by Ilo(L)(X; — v0Z;) = &; and we define
ei(§) = I(L)(Xy —~vZy) = (L)Y, — (L) (v — 70) Z:
= (I(L) = IIo(L))Y; = I(L)(y — 70) Zt + &1,
where, see (2), (13), (19), and Definition 3,
(L) (y = 70)Z = af' (7" = 10") Zoe — (Y = T5) Zay — (Y = T5) Zay, (36)

k—1
(I(L) — o(L))Y; = — (v — ) BgYi1 — (B — Bo)' By By, Yier — 3 _(Ty — Tig) AV, (37)

=1
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We can simplify the notation by redefining the parameters to account for the different orders
of magnitude of the regressors. We therefore use

T-123 Y, T1/2B/ (8 — Bo) )
G N o ) ’ - < - 5 0 3 d - Tl — Tl N 1’
" ( Zory ¢ _NT()l (7 — ~2)8 and v = ( DN

and also define

*

a = (Cl{ — (Y, Fl — FLO? e ,Fk,1 - kal,g) and Y;* = (Y;Llﬁo, AY;LD co ,A}QLkJrl)/. (38)
Then we find the expression
515(5) = —Oé*}/t* - OZC/GTt - UZth - (TZ - Tg)th + &¢. (39)

Elimination of Zs: At the true values (of = 0,y = 0,9 = 0) we find the derivatives

Dysei(§o; da™) = —(da™) Y/,
Dgft(fo; d¢) = —Oéo(dC)’GTu
Dyei(§o; dv) = —(dv) Zury,

Dry2e4(&o; dT2) = —(dTQ)ZQt.

Because the scores for Y;*, G, and Z;1; all need to be normalized by T—1/2 by definition of

Nr1 and Gy, while the score for Zs; need not be normalized, showing that the information is
asymptotically block diagonal with respect to Y? entails showing that 72 (Zyr, Zy)p — 0,
TY2(Zyy, Zo)yp — 0, TYV2 (G, Zy)y 2> 0, and TV2(Y*, Zy) 25 0. The proofs are almost
identical, so we prove only that T2 (Z,, Zy) — 0. We use that Zy; has bounded informa-
tion while Z1; has diverging information, and for 77 < T" we decompose as

T T T
T1/2 <ZlT7 ZQ>T = T_1/2 Z ZthZét = T_1/2NT1 Z thZét -+ T_1/2 Z ZthZét'

Here the first term tends to zero for any fixed T} because T2 Ny, — 0. The second term
is bounded in norm by the Cauchy-Schwarz inequality,

T T T
S T PZmlZall < (Y T HZml )20 12l
t=T1+1 t=T1+1 t=T1+1
< tr{(Zir, Zur) 320D 112 P) =0
t=T1+1

as Ty — oo because Y % . |[Zx|[> — 0 as Ty — oo. Thus, we can conduct inference
separately on (a*,(,v) and T2, and we continue fixing T2 = T3.

Score and information: We denote the normalized score function with respect to o,
for example, in the direction da* as S,« = TY2D o L(€, Q; da*)|e—¢,- The information with
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respect to a*, (, for example, is similarly denoted by I, = Di*CL(f, Q;da*, dC)|e=¢,- It
follows that the scores are

T 1280 = — te{Q5 (da™) T2 (Y* )} 2 — tr{Q5 (da*) (Y™, &)}, (40)
T7128 = — tr{ Q5 o (dC) T (G, £) 7} = — tr{ Q5 e (dC)' (G )}, (41)
7128, = — tr{Q 1 (dv)TY? (Zip, €) ) = — tr{ Q5 (dv) (Z1, )}, (42)

and the diagonal elements of the information are
T oo = tr{Q5 (da) (Y*, Y*) . (do®)'} + 0p(1) D> tr{Q5 " (do*) Spar (da*)'}, (43)
T~ Iee = {5 o (dC) (G, Gr)y (d)ap} + 0p(1) = tr{Q%5  an(dC) (G, G) <d<>aa}(,4 Y

T, = tr{le(dv) (Zvr, Zar) g (dv)'} + op(1) b, tr{le(dv) (Z1,Z1) (dv)'}, (45)
where Y, = Var(Y;"). There is one non-zero off-diagonal block,
T_1[<v = tr{leozo(dC)' (Gr, Zir) (dv)'} + op(1) 5, tr{Qalao(dC)' (G, Zy) (dv)'},  (46)
and the following are asymptotically negligible,

T e = tr{Q7 (da”) (Y, Gr)y (dC) g} + 0p(1) 5 0, (47)
T ey = tr{Q  (do®) (Y™, Zi7) 7 (d0)'} + 0p(1) 5 0. (48)

Because the information is asymptotically block diagonal, &* and (é’ ,0) are asymptotically
independent, and we consider inference separately for o and ({,v), in both cases fixing
Q= Qpand T? = T3.

The asymptotic distribution of T'/?6*: By the usual Taylor expansion of the likelihood
equations, we find that the equations for the asymptotic distribution of T'/24* are given by

tr{Qy  (da*) (Y*, V), (TY?&")'} = — tr{Qy (da*)TY* (Y*, &), } + op(1) for all da*,
and hence
YaaT26" = T2 (Y* &) + op(1),

which by the Central Limit Theorem gives the result in (23).
The asymptotic distribution of T 1/2(¢,0): Similarly, we find that the equations for de-
termining the limit distribution of (¢, v) are

(Gr, Gy (TY20) g5 g + (G, Zar) g (TY20) 5 ag = —TY? (G, €) Q5 g + 0p(1),
(49)

(Zir, Gr)y (T + (Zar, Zir) g (TV?0) Q5" = =T (Zur,€)7 Q5 + 0p(1).
(50)

Pre-multiplying (50) by (Gr, Zir), (Z1r, Z1T>;1, post-multiplying it by «y, and subtracting
the result from (49) we find

(Gr, Grl Zar) 7 (TY20) 0 oo = — (G Zur) 1 Mo,
which implies (24). Finally, inserting (24) into (50), we find (25).

20
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A.6 Proof of Theorem 5
The additive model is parametrized by the dynamic parameters («, 5,11, ...,T'x_1), the para-

meters 372, ¢, if m, = 0, and 72, ... ™~ B/yme ~%€ if m, > 1, as well as the parameters
o Ty ,7;””“, ...,7., where the latter are coefficients to regressors with bounded informa-

tion, see Definitions 1 and 2. Thus, for the asymptotic analysis, the last set of parameters
is irrelevant. The extended model is similarly parametrized by the dynamic parameters
(a, 3,11, ..., T 1), p. = @Yo, = =370 for m, > 0, Ty, for 1 < i < m,, and T, as well
as the parameters Y,;,,m, < i < n + k. Again, the latter are coefficients to regressors with
bounded information and therefore not relevant.

Lemma 1 thus shows that there is a simple one-to-one relation between the relevant
parameters of the additive model and the relevant parameters in the extended model. The
likelihoods for the two models are therefore asymptotically the same. Consequently, the
results (26) and (27) follow directly from (23) and (24).

We next find that 59, ... 4™~ 1,5’ v can be expressed in terms of p,, Th,, e me,
using that the maximum likelihood estimators of the dynamic parameters («, 5,11, ..., ['x_1)
in both models are consistent (Theorem 3). That is, by Lemma 1,

—Tl/Qﬁ(/)(”% - ’Yf;o)Mﬂi = _Tl/zdf)(’fiv - TivO)MTj;
min{é,k,my }

+ TY%a) Z ®jo (45 %0 )MTi
j=1
= ~T2a(Ti, — Tivo) Mz, + 0p(1)
and
T1/2a Lol %o)MTf}H v = _T1/2O‘6J_(Ti+17” - THL%O)MT_H”

min{i+1,k,my}

+Tah, Y R M,
=2

= —T"2af, (Tis10 — Tit100) Mz, + 0p(1)
because Mr;_j My, — 0 for j = 1,... min{i,k,m,} and My;_j1,Mp;,,, — 0 for j =
2,...,min{i + 1,k m,}. This proves (28) and (29). Note that T'/2a}(T;, — Yio) Mz, is
neither asymptotically Gaussian nor mixed Gaussian.

Finally, (30) follows directly from vectorization of (14) and noting that Z?:o M!® ®; is
invertible by the proof of Theorem 2.

A.7 Proof of Theorem 6

The extended model: From (49) and (50) we find the equations to determine the limit
distribution of the maximum likelihood estimator T'/2((, v),

(G, G) (Tl g + (G, Z1) (TV?0)Q25 g = — (G, €) Q5 e, (51)
(Z1,G) (TY20)aly 5 + (21, Z0) (TV?0)05 B — (Zy,8) 9 (52)
Eliminating 7%/%¢ from the equations, the right-hand side becomes

—(G,e) Qy a0 + (G, Z1) (Z1, Z1) "' (Z1,€) Q.

21
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Conditional on G, this expression has mean zero because a/y§; ' W is independent of af, | W..
This implies that the limit distribution of T%/2( is mixed Gaussian as given in Theorem 4,
and subsequently that o, T2 is Gaussian.

The additive model: We decompose v — vy as

Y= = a(f'a) B (v —0) + B/ BL) L (v — 0)-
We note that ¢4 = —3'(y — v0)Myy and define ¢' = TY2(a/, B1) 72, (v — 7o) My, as well as
o =a—ap, Y, = ByYi-1. The corresponding likelihood is then based on

Et(a*> ¢, ¢> = _Oé*Y{s* - @C/GTt - a(ﬁ'a)_lCéMToMT_me - 5J_¢/Z1Tt + &y,

see (39). We note that ¢, appears in two places, but MTOMj:ll — 0, and therefore the term
with (; and Z;7; disappears in the asymptotic analysis of the score and information, because
it is dominated by the term a('Gr;. Note also that @ = a(a*) and 8 = §({) when we
calculate derivatives below.
Mimicking the analysis of the extended model, we find at the true values, of = 0,(y =

0, o9 = 0, the derivatives

Da* 6t(O[*? C) ¢a dC) = _<da*)Yt*7

Dee(@”, ¢, ¢3dC) = —ao(dC)' Gre — ao(Byan) ™' (dG) MroMyp Zire = —ao(dC) Gy + o(1),
Dyer(a”, (, ¢3d9) = —PoL(do) Zurs.

The scores for o and ¢ are given in (40) and (41), and for ¢ we find

TY28, = — {0 Bou (d6) T (Zyr, )} 2 — {0 Bor (d) (Z1,)}.

The information matrix blocks Iy«a+, I¢¢, and I« are given in (43), (44), and (47), respec-
tively, and for ¢ we find

T ' s = tv{Q " BoL (d9) (Zir, Zir)y (dd)Bh, } + op(1) > tr{Q " Bor (do) (Z1, Z1) (do) B, },
T ey = tr{Qg (da®) (Y™, Zyg)p (d) By, } + 0p(1) 2 0,
T ey = tr{Q o (dC) (G, Zur)y (d) By, } + op(1) = tr{Q Lao(dC) (G, Z1) (d) By, }-

Thus, the only difference compared with the extended model is the factor 3y, which comes
from only estimating o/, v from the coefficient to AU;. It is seen that the limit information
is block-diagonal corresponding to a* and (¢, ¢), such that the asymptotic distribution of
TV254* = TY2(& — ayp) is as given in (26) in Theorem 5.

We find the equations for determining the limit distribution of the maximum likelihood
estimator TY2((, ¢), compare (49) and (50),

(G, GY(TYV* a5 ag + (G, Z:) (TY?$) 8], Qg g 2 — (G, ) Q5 v, (53)
(Zy, GY (T2 )y Bou + (Z1, Z1) (TY20) By Q5 for = — (Z1,8) 05 Bor. (54)
Eliminating 7%/2¢ from (53), we find the right-hand side

—(G.e) U 'ao + (G, Z0) (Z1, Z2) " (Zy,€) Q5 Bor (Bh1 Q™ Bor) ™ 81 Qg o
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If we condition on G, or equivalently on ag, W,, the right-hand side is Gaussian with mean
proportional to

E((Z1,e) Q' Bor|ag We) = (Z1, ) ao1 (ag, Qoaor) g, for # 0. (55)

Thus, the limit distribution of TV 25 is not mixed Gaussian, and the same holds for any
linear combination of Ti/ 2C.

If we eliminate T%/2( from the equations (53) and (54), we find that the right-hand side
becomes

(Zy,G) (G, GG, &) Q5 oo (g evg) ey Bor — (Zy,€) Q5 Bou -

Conditional on G the distribution has mean —E({Zy, ) Q' Bo1 |alh, We), see (55), and the
limit distribution of T'/2¢ is neither Gaussian nor mixed Gaussian, and the same holds for
any linear combination.

Comparison of information matrices: The limit of the information matrix for (¢,v) in
the extended model is, see (51) and (52),

Qe @ (G,G) Qlag® (G, Z) \ _ (L1 IE
' ®(Z1,G) Q' @ (%, Z) I 15 )
say. In the additive model the limit of the information matrix for (¢, ¢) is, see (53) and (54),

( ayQy 'l @ (G,G) a7 BoL @ (G, Zy) ) - ( o s >
By o @ (21, G) By, Q5 oL © (21, Z4) 158t g4t )

We note that the left factors in the information matrix for ({, ¢) satisfy the relation
o — apSdy Bor (B L% Bor) ™ B o = apBo(BoS2 Bo) ™ Bpcro > 0.
This has the consequence that
add add ( Tadd\—1 radd
[CC B IC¢ ([¢¢ ) [d)C
= 0y a0 ® (G, G) — apQe™ Bor (851 % Bor) B o @ (G, Z0) (21, Z0) {2y, G)

> ahQ5ta @ (G, G) — Q5 e @ (G, 21) (Zy, Z0) (24, G)
= apQ e @ (G, GIAZ) = I — I (T T e

A.8 Proof of Theorem 7

Because the regressors with bounded information, Zs;, do not contribute in the asymptotic
analysis, see the proof of Theorem 4, we continue setting them equal to zero.

Normalization of parameters and an auxiliary model: We introduce the p X r matrix Sy
of rank r and decompose II as

IT = 3o B3 + UB1oS o,

and define the auxiliary hypothesis

H = {11510 =0 and FH(7* — ") = 0}.
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We note that under the assumptions in H, II = a3} for a = I13,, such that
H = {Il = af; and Fi(v** —19") = 0}.
Thus, if 8* = (8', 5/v**)" then
HE H = HE ({3 = i)

To facilitate the analysis of the test for rank, we introduce the extra hypothesis H in

models Hs* and H;*, see Lawley (1956) for an early application of this idea or Johansen

(2002, p. 1947) and Johansen and Nielsen (2012) for applications to the (fractional) CVAR
model. We then find
maxyeat Lp(§,€Q)  Maxperty Lr(£,9) maxyeeenisr=p3) Lr(€, )

L ext ext — —
R(HT |Hp ) ma.X'Hgmt LT (5, Q) ma.XHgmt LT (57 Q) maXH?‘xt LT <£’ Q)

That is, instead of the rank test statistic, we analyze the ratio of two test statistics,

exr exr LR<H|Hext)
EROGTPS™) = TRt = Gy o0

Analysis of LR(H|H™): We apply the formulas (36) and (37) for H:™, using a — ag =
(H - HO)BO?

—T(L)(y — v0)Ze = I("** — 70" ) Ny Zore — (Y' = Yo) Ny Zare,
(L)~ To(L)Y; = —a*¥;" — TYTI3, T80, Vi,

where o and Y,* are given in (38), such that for

_ . . B T—1/2 Iy
¢ = (TYTB,,  TI(1"™ — 79 )Nzd) and Gy = ( Zﬁo;f i1 > ’ (57)

we find the residuals
g(§) = =Y, — (G — (Tl - T(l))N:FllZth + &

This shows that the likelihood for Hgmt is maximized by regression of ¢; on (G, Y/, Zi14),
and the maximized likelihood function becomes

—2T" 108 Linax (H™) = logdet (¢, ¢|Gr, Y™, Zir)y = logdet (¢,e|Gr, Zir), + op(1)
because (¢, Y*), = Op(T1/2). The hypothesis H is just ¢ = 0, and we find similarly
—2T110g Linax(H™ N'H) = log det (e, e|Y™, Zi7) 7 = log det (e, €| Zir) 1+ 4 0p(1).
It follows from

(€,€|Gr, Zvr)p = (€,€| Zar)p — (e, Gr| Zir) 7 (G, GT|ZlT>;1 (Gr,e|Zir)p

24



The CVAR model with general deterministic terms 25

and (e, e|Zi7) 7 L Qo that
—2log LR(HIH™) = te{Q ' T (e, Gr| Zur)y (G, Grl Zur) 7 TV? (G, €| Zir) 7} + op(1)
2 {7 (¢, G121) (G. G| Z1) ' (G.e| Z)}. (58)

Analysis of LR(5* = B5|H"): The hypothesis we want to test here involves only 5 and

7%, and because inference on (a*,2) is asymptotically independent of inference on (3,7%*),

we can assume that o = aj = 0 and 2 = () for the asymptotic analysis of this statistic.
We now find for 5 = By + B106' (8 — Po) that

—IL(L)|a*=az (Y — 70) Zt = 08’ (¥ — 740" ) Nipo Zore — (Y1 = L) Nyt Zure,
(TI(L) = To(L))]ar=az Ye = —ao(B — Bo) BroBo, Yi-1-

We define G'r; as above, see (57), and define
¢' = (TY2B0(8 — fo), B' (7" = 16" )Nro),
and note that the hypothesis 8 = 3y and 3'7* = Bj7J* is again ¢ = 0. We then find

H ey(€) = —aol'Gry — (T = Yo) Nyt Ziy + &4
We split the residuals by multiplying by g, = (apl ag) Q" and af, into

agyee(€) = —C'Gre — ag (T! = To)Np Ziry + alg e,
ag (&) = _O‘E)L(Tl - T(lJ)N:FllZth + g, €

The errors ag e; and g, &; are independent and both sets of residuals are analyzed by
regression, and we find

—2T " 10g Lmax(H;™) = log det (ag e, g, €|Gr, Zir),, + log det (o &, oy € Zyr)
and

—2T110g Linax(H™ N {¢ = 0}) = log det (g €, ag, el Zir) . + log det (o &, o €| Zir) -
The test of 8* = 5 in HE™, using (ag, €, a§]05>;1 i g, Qocvg, = Qg ) 7Y, s

—2logLR(B" = B |H;™)
= tr{OngalOéoTl/2 <Oz§206, GT|ZlT>T <GT, GT|ZIT>;1 T1/2 <GT, O/QO€|ZlT>T} + Op(l)
Bt {5 Yoo (ah Qg o) Qe (e, GI1Z1) (G, G 2:) TG, e| Z4)). (59)

Analysis of LR(H{™'|H;™): By (56), the test for rank 7 converges to the difference
between (58) and (59), i.e.,

~2log LRHEHE™) 2 tr{(9 Q5 aolahy o) " ap ) (e, G 21) (G, G122) ™ (G e Z)}-

Using the identity Q5" — Qytao(ahQ o) tahQy! = aou (o, Qap,) ey, and defining
.+ = (), Qo) H2al,| &4, we obtain the result.
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A.9 Proof of Theorem 8
The test that 370 = 0: We find from Theorem 5 and defining 0 = T/23}, (3 — f3y), that

Gy = T2, =Nt (30 = 2%)) = — (60, G, |20) (G, G| Z0) T Avy =Gy (60)

say, for a suitable selection matrix A;,. However, we cannot use (60) directly to test the
hypothesis that 7% = 0, because the result is not given in terms of 5'5° — 347%. Instead,
we use the expansion of TY2(8'5° — 857%) Mzg, as

o B 3 g T-1/2 )11
—Tl/z(elﬁéi%?oT 1/2MT01v - 5,(%? - %o) TOU) CTU ( BOL%O 1 o ) ’ (61)

and thus the asymptotic distribution depends on the relative orders of magnitude of the
two terms on the right-hand side; that is, on the relation between the normalizations 7"/2
and Mry,, and on the value of the parameter 3),7%. Haldrup (1996) encounters a similar
problem of different limit behaviour of estimators in the context of a Dickey-Fuller regression
with a slope coefficient. Here we have to consider two cases.

If 3),7% = 0 or T~Y2M,;, — ¢ < oo, then

o —ﬁ, %(3 T—l/QMflv D _B/ 78 c
T1/2(ﬁ/’72 - BOIYvO)MTOlv = CT’U ( O 10 1 o - Cl/) 0J1_ ‘ :

On the other hand, if 85, 7% # 0 and T-Y/2M,, — 00, the estimator has to be renormalized
and we find

51 v —B; '70 D . _ﬁ/ ’70
T30 - ) = G i ) 2 TH ).
v 0 /v0 Tv T 1/2 MTOv v 0
Thus, in any case the asymptotic distribution of the suitably normalized estimator is mixed
Gaussian because (), is mixed Gaussian, see Theorem 5, and hence inference can be conducted

using likelihood ratio tests and the y?-distribution.
The test that o/, T~? = 0: Similarly to (61) we expand

Tl/z( F% - af)LFO'YSO)MT_llu = Tl/%‘hFO(:Yg _’YSO)MT_fU "‘Tl/z(élf - aBLFO)’VYSMTm (62)
and define
W, = (120, To (50 — 750 My, TV (6T — af, T)) =,
which by (26) and (29) is Gaussian. Then

1
Tl/zoiF—aFOM_lz'(u _),
(& T, 0.L070) T = Mo %()) MT11U

and again there are two cases.
If MT_llv — ¢ < 00, then the asymptotic distribution of (62) is given by the asymptotic

distribution of
! 7800 7

which is Gaussian. On the other hand, if My, — 0, we have to renormalize and find
M
TV, T3] = ag Tovte) = 1, ( 0 ) . 77;( ) ) :
Yo Y0
which is also Gaussian, so that asymptotic inference can again be conducted using likelihood
ratio tests and the y2-distribution.
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