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Abstract

In the cointegrated vector autoregression (CVAR) literature, deterministic terms
have until now been analyzed on a case-by-case, or as-needed basis. We give a compre-
hensive unified treatment of deterministic terms in the additive model Xt = γZt + Yt,
where Zt belongs to a large class of deterministic regressors and Yt is a zero-mean
CVAR. We suggest an extended model that can be estimated by reduced rank regres-
sion and give a condition for when the additive and extended models are asymptotically
equivalent, as well as an algorithm for deriving the additive model parameters from the
extended model parameters. We derive asymptotic properties of the maximum like-
lihood estimators and discuss tests for rank and tests on the deterministic terms. In
particular, we give conditions under which the estimators are asymptotically (mixed)
Gaussian, such that associated tests are χ2-distributed.

Keywords: Additive formulation, cointegration, deterministic terms, extended model,
likelihood inference, VAR model.

JEL Classification: C32.

1 Introduction
The cointegrated vector autoregressive (CVAR) model continues to be one of the most com-
monly applied model in many areas of empirical economics, as well as other disciplines.
However, the formulation and modeling of deterministic terms in the CVAR model has until
now been analyzed on a case-by-case basis because no general treatment exists. Moreover,
the role of deterministic terms is not always intuitive and is often diffi cult to interpret. In-
deed, Hendry and Juselius (2001, p. 95) note that “In general, parameter inference, policy
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simulations, and forecasting are much more sensitive to the specification of the deterministic
than the stochastic components of the VAR model.”
In this paper we give a comprehensive unified treatment of the CVAR model for a large

class of deterministic regressors and derive the relevant asymptotic theory. There are two
ways of modeling deterministic terms in the CVAR model, and we call these the additive
and innovative formulations. In the additive formulation the deterministic terms are added
to the process and in the innovative formulation they are added to the equations.

1.1 The additive formulation

In this paper, we analyze the additive formulation. To fix ideas, let the p-dimensional time
series Xt be given by the additive model,

Hadd
r : Xt = Yt + γZt, t = 1− k, . . . ,−1, 0, . . . , T, (1)

Π(L)Yt = εt, t = 1, . . . , T,

where Zt is a multivariate deterministic regressor and

Π(z) = (1− z)Ip − αβ′z −
k−1∑
i=1

Γi(1− z)zi (2)

is the lag-polynomial defining the cointegrated I(1) process Yt. Furthermore, εt is i.i.d.
(0,Ω), Y0, . . . , Y1−k are fixed initial values, and λ = (α, β,Γ1, . . . ,Γk−1, γ) and Ω are freely
varying parameters where α, β are p× r for some r < p.
The advantage of the formulation in (1) is that the role of the deterministic terms for the

properties of the process is explicitly modeled, and the interpretation is relatively straight-
forward. One can, for example, focus on the mean of the stationary processes ∆Xt and β′Xt,
for which we find from (1) that

E(∆Xt) = γ∆Zt and E(β′Xt) = β′γZt. (3)

Thus, γ can be interpreted as a “growth rate”, and, moreover, β′γ can be more accurately
estimated than the rest of γ, because the information

∑T
t=1 ZtZ

′
t in general is larger than∑T

t=1 ∆Zt∆Z
′
t. Note that if Zt contains the constant with parameter γ1 ∈ Rp, then the

corresponding entry in ∆Zt is zero and does not contain information about γ1, and we can
therefore only determine β′γ1.
When analyzing properties of the process, the following I(1) conditions are important,

see Johansen (1996, Theorem 4.2).

Assumption 1. The roots of det Π(z) = 0 are either greater than one in absolute value or
equal to 1. The matrices α and β are p× r of rank r, and for Γ = Ip −

∑k−1
i=1 Γi, we assume

that detα′⊥Γβ⊥ 6= 0, such that Yt is an I(1) process, β′Yt is a stationary I(0) process, and
C = β⊥(α′⊥Γβ⊥)−1α′⊥ is well defined.

It follows from Assumption 1, specifically detα′⊥Γβ⊥ 6= 0, that

(β,Γ′α⊥)′(β̄, β⊥) =

(
Ir 0

α′⊥Γβ̄ α′⊥Γβ⊥

)
(4)
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has full rank, so that also (β,Γ′α⊥) has full rank. Here, and throughout, for any p×s matrix
a of rank s ≤ p, we define ā = a(a′a)−1. This full rank result is used repeatedly, in particular
in the proof of Lemma 1 below, which gives an algorithm for calculating the parameters in
the additive model from the parameters in the extended model.
We assume throughout that the data generating process satisfies Assumption 1, but the

parameters will be assumed to be freely varying in the statistical models. For example, α
and β will be freely varying p× r matrices in the statistical model but of full rank r in the
data generating process.
The solution of the equations for Yt is given by the following version of Granger’s Rep-

resentation Theorem, which states that

Yt = C
t∑
i=1

εi +

t−1∑
i=0

C∗i εt−i + At, (5)

where At depends on initial values of Yt and β′At decreases to zero exponentially. The
representation for Xt is therefore

Xt = C
t∑
i=1

εi +
t−1∑
i=0

C∗i εt−i + γZt + At, (6)

which again illustrates the explicit role of the deterministic terms in the additive formulation.
The additive formulation has been analyzed by, e.g., Lütkepohl and Saikkonen (2000a,b,c),

Nielsen (2004, 2007), and Trenkler, Saikkonen, and Lütkepohl (2007); each for specific choices
of deterministic terms.

1.2 The innovative formulation

The most commonly applied method of modeling deterministic terms in the cointegrated
VAR model is the innovative formulation, where the regression variables are added in the
equation, i.e.,

∆Xt = αβ′Xt−1 +
k−1∑
i=1

Γi∆Xt−i + γ̃Zt + εt, (7)

and the deterministic terms are possibly restricted to lie in the cointegrating space; see
Johansen (1996) for a detailed treatment of the case Zt = (t, 1)′ or Rahbek and Mosconi
(1999) for stochastic regressors, Zt, in the innovative formulation. They point out that the
asymptotic distribution for the test for rank contains nuisance parameters, and that they
can be avoided by including the cumulated Zt as a regressor with a coeffi cient proportional
to α.We show below that starting with the additive formulation, the highest order regressor
automatically appears with a coeffi cient proportional to α in the innovative formulation, and
we find conditions for inference to be asymptotically free of nuisance parameters.
Under Assumption 1, the I(1) solution for the process Xt in (7) is given, see (5), by

Xt = C

t∑
i=1

(εi + γ̃Zi) +

t−1∑
i=0

C∗i (εt−i + γ̃Zt−i) + At. (8)

A model like (7) is easy to estimate using reduced rank regression, but it follows from (8)
that the deterministic terms are generated by the dynamics of the model. We see that the
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deterministic term in the process is a combination of the cumulated regressors in the first
term and a weighted sum of lagged regressors. Thus, for instance, an outlier dummy in the
equation (7) becomes a combination of a step dummy from the first term in the process
(8) and an exponentially decreasing function from the second term in (8), giving a gradual
shift from one level to another. A constant in the equation (7) becomes a linear function in
the process (8), see for instance Johansen (1996, Chapter 5) for a discussion of some simple
models and Johansen, Mosconi, and Nielsen (2000) for a discussion of a model with broken
trends and impulse dummies to eliminate a few observations just after the break. Thus, one
can use the innovative formulation to model the deterministic terms in the process by taking
into account the dynamics of the model.
Applications including broken trends and several types of dummy variables are also given

in, for example, Doornik, Hendry, and Nielsen (1998), Hendry and Juselius (2001), Juselius
(2006, 2009), and Belke and Beckmann (2015). For an application using various dummies,
including a “volcanic function”dummy variable for modeling volcanic eruptions, see Model
V of Pretis (2015) and also Pretis et al. (2016) for the definition of the volcanic function.
The remainder of the paper is organized as follows. In the next section we discuss

the structure of the regressors, derive the extended model, and consider identification and
estimation. In Section 3 we derive the asymptotic theory for the parameter estimators in
both the extended and additive models, and in Section 4 we derive and discuss tests on
the cointegrating rank and on the coeffi cients to the regressors. Finally, we conclude and
give some general recommendations in Section 5. The proofs of all results are given in the
appendix.

2 The regressors and the additive and extended models
Going back to the additive formulation in (1), we eliminate Yt to find the equations for Xt,

Π(L)Xt = Π(L)Yt + Π(L)γZt (9)

or

Hadd
r : ∆Xt = αβ′Xt−1 +

k−1∑
i=1

Γi∆Xt−i + γ∆Zt − αβ′γZt−1 −
k−1∑
i=1

Γiγ∆Zt−i + εt. (10)

From (10) it follows that maximum likelihood estimation and inference is not so straightfor-
ward as in the model with no deterministic terms, and this is the issue we want to address
in the present paper.
In the model equation (10) for Xt, the coeffi cients (γ,−αβ′γ,−Γ1γ, . . . ,−Γk−1γ) involve

γ. These depend nonlinearly on the model parameters, so the model becomes a nonlinear
restriction in the usual linear CVAR model with k lags and an innovative formulation of the
deterministic terms, (∆Zt, Zt−1,∆Zt−1, . . . ,∆Zt−k+1).
A general technique for handling such nonlinear models consists of finding a larger model

where the estimation problem is easier to handle. As a simple special example of this
principle, consider a linear regression with autoregressive errors, i.e. Xt = Yt + γZt, where
Yt = ρYt−1 + εt and εt is i.i.d. (0, σ2). The equation for Xt is Xt = ρXt−1 +γZt−ργZt−1 + εt
and maximum likelihood leads to non-linear least squares estimation. We extend the model
to Xt = ρXt−1 + γZt + γ1Zt−1 + εt with ρ, γ, γ1, σ

2 freely varying. This extended statistical
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model can be easily estimated by (linear) least squares, and asymptotic properties of the
estimators are derived under the assumption that the original (non-linear) model is the
data generating process. If we are interested in the original parameters, we can choose
the estimators ρ, γ from the extended model. We can use these (consistent) estimators as
starting values for an iteration to the maximum likelihood estimator.
Extending model (10) in a similar way to the simple example above, leads to the problem

that the regressors Zt−1 and ∆Zt−i for i = 0, . . . , k − 1 may be linearly dependent. As a
simple example of this, consider Zt−1 = (t − 1, 1)′ with ∆Zt−i = (1, 0)′ for i ≥ 0, which are
clearly linearly dependent. Such a linear dependence between the regressors has to be avoided
before the parameters can be estimated and the properties of the estimators derived. We
therefore first discuss a formulation of the regressors that allows an analysis of the additive
model and its extension.

2.1 A formulation of a class of regressors

If Ut ∈ R has the property that it is linearly dependent on some of its differences,
∑n

i=0 ci∆
iUt =

0 for all t, say, then Ut is the solution to a linear difference equation. A basis for the solution
of such an equation is of the form at

∑p
i=0 ait

i, where a is a root of multiplicity p + 1 of∑n
i=0 cia

i = 0, see Miller (1968). For a = 1 we therefore get a polynomial, for a = −1 and
p = 0 we get a seasonal (semi-annual) dummy (−1)t, and for a = ±i, i =

√
−1, we can find

quarterly dummies. We do not deal with exponential regressors Zt = at, |a| > 1, because
the asymptotic theory is different since the Central Limit Theorem does not apply to sums
of the form

∑T
t=1 εta

t for |a| > 1.
Thus, in the following we consider all regressors that are linearly independent on their

differences, but for regressors that are linearly dependent on their differences we only consider
a polynomial and a seasonal dummy. We note specifically that for Ut = (−1)t we have∆Ut =
−2Ut = M2Ut, say, and for the quarterly dummy U1t = it + (−1)t + i−t (also orthogonalized
on the constant) we find for Ut = (U1t, U1,t−1, U1,t−2)′ ∈ R3 that ∆Ut = M4Ut, where

M4 =

 1 −1 0
0 1 −1
1 1 2

 . (11)

This matrix can be diagonalized and has eigenvalues ωj, j = 1, 2, 3, which are such that
1− ωj is a seasonal unit root; that is (−1,±i).
For a general regressor we define its order as follows.

Definition 1. For a regressor Ut ∈ R we define the information as
∑T

t=1 U
2
t . If the infor-

mation of Ut diverges, we define the order of Ut as the smallest integer i ≥ −1 for which the
information of ∆i+1Ut is bounded, i.e.

m = inf{i ≥ −1 :
T∑
t=1

(∆i+1Ut)
2 → c <∞ as T →∞}.

Thus, if the information of Ut is bounded, limT→∞
∑T

t=1 U
2
t < ∞, we define the order to be

m = −1, and if the information of ∆iUt diverges for all i we define the order to be ∞.
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Example 1. For the impulse dummy Ut = 1{t=t0}, where 1{A} denotes the indicator function
for the event A, we find

∑T
t=1 U

2
t = 1 so that m = −1. On the other hand, when the

information for ∆iUt diverges, which is important for proving tightness of the coeffi cient of
∆iUt, then i ≤ m. For a polynomial we find that the order is the degree of the polynomial.
More generally, for the power function ta, with a ∈ R and a > −1/2, the order is m =
[a+ 1/2], where [x] denotes the integer part of x. For the broken linear trend Ut = (t− t0)+,
with x+ = max{0, x}, we see that all differences are linearly independent, but because
∆Ut = 1{t≥t0+1} satisfies

∑T
t=1(∆Ut)

2 → ∞ and
∑T

t=1(∆2Ut)
2 =

∑T
t=1 1{t=t0+1} = 1, the

order of Ut in this case is m = 1. Finally, for a seasonal dummy variable like Ut = (−1)t it is
seen that ∆i+1Ut = (−2)i+1(−1)t, so the information diverges for all i ≥ −1, and the order
is infinite. �

The regressors considered are conveniently expressed in differences (rather than lags)
since these have natural interpretations in many cases. Furthermore, as the examples sug-
gest, the sums of squares of differences of the regressors will typically have different orders
of magnitude, and hence different normalizations. We therefore define the structure of re-
gressors in terms of differences.

Definition 2. Let Ut = (U1t, . . . , Uqt)
′ ∈ Rq be a set of linearly independent regressors

of orders mv < ∞, v = 1, . . . , q. Assume further that {∆iUvt, i ≥ 0} are either linearly
independent or (for a polynomial) equal to zero for i > mv. Let Use,t ∈ Rs−1 be an (s − 1)-
dimensional seasonal dummy variable orthogonalized to the constant term, which is such
that ∆Use,t = MsUse,t, where Ms has eigenvalues {ωj, j = 1, . . . , s− 1} such that 1− ωj is a
seasonal unit root. We consider the regressor defined as

Zt = (U ′t ,∆U
′
t , . . . ,∆

nU ′t , U
′
se,t)

′,

which is of dimension (n+ 1)q + s− 1. We decompose γ correspondingly,

γ = (γ0, . . . , γn, γse), γi = (γi1, . . . , γ
i
q), i = 0, . . . , n,

such that

γZt =
n∑
i=0

γi∆iUt + γseUse,t =

q∑
v=1

n∑
i=0

γiv∆
iUvt + γseUse,t.

It is important to note that some of the components of Zt may be zero (if a polynomial
is differenced too many times), or more generally have bounded information if the order of
the component is less than n.

2.2 Some reparametrizations of the additive model

To express the deterministic term in the additive model in terms of differences of Ut, we
expand Π(z) around z = 1 and find the coeffi cients

Π(z) = Φ0 + Φ1(1− z) + · · ·+ Φk(1− z)k, Φi = (−1)iDi
zΠ(z)|z=1/i!,

where Φi are functions of the parameters; in particular, see (1),

Φ0 = −αβ′, Φ1 = −αβ′ − (Ip −
k−1∑
i=1

Γi) = −αβ′ − Γ. (12)
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We then find the deterministic term in the additive model equation, see (2),

Π(L)γZt =

k∑
i=0

Φi(

n∑
j=0

γj∆i+jUt + γse∆iUse,t) =

n+k∑
i=0

Υi∆
iUt + ΥseUse,t, (13)

where we have introduced the coeffi cient Υ = (Υ0, . . . ,Υn+k,Υse) given by

Υi =

min{i,k}∑
j=max{0,i−n}

Φjγ
i−j, i = 0, . . . , n, Υse =

k∑
i=0

Φiγ
seM i

s. (14)

It is clear from (14) that, for given values of the dynamic parameters (α, β,Γ1, . . . ,Γk−1), the
parameter Υ is a linear function of the parameter γ. In Lemma 1 we next give an algorithm
for recovering the parameter γ as a linear function of the parameter Υ, also for given values
of the dynamic parameters (α, β,Γ1, . . . ,Γk−1).

Lemma 1. Let Assumption 1 be satisfied and define Υ as in (14). Then, for i = 0, . . . , n,

ᾱ′Υi = −β′γi + ᾱ′
min{i,k}∑
j=1

Φjγ
i−j and α′⊥Υi+1 = −α′⊥Γγi + α′⊥

min{i+1,k}∑
j=2

Φjγ
i+1−j. (15)

Thus, because the matrix (β,Γ′α⊥) has full rank, see (4), the parameters γ0, . . . , γn can be
recovered recursively as linear functions of (ᾱ′Υ0,Υ1, . . . ,Υn, α

′
⊥Υn+1) for given values of

(α, β,Γ1, . . . ,Γk−1).
The coeffi cient γse is uniquely determined as a linear function of Υse =

∑k
i=0 Φiγ

seM i
s,

vec(γse) = (
k∑
i=0

M i
s ⊗ Φi)

−1 vec(Υse). (16)

2.3 The extended model

We define the extended model based on the results in the previous subsection and the
coeffi cients in (14). We note in particular that Υ0 is proportional to α, and define the
parameter ρ′ = ᾱ′Υ0 = ᾱ′Φ0γ

0 = −β′γ0, such that the extended model is, see also (13),

Hext
r : ∆Xt = α(β′Xt−1 + ρ′Ut) +

k−1∑
i=1

Γi∆Xt−i +

n+k∑
i=1

Υi∆
iUt + ΥseUse,t + εt, (17)

where the parameters ξ = (α, β,Γ1, . . . ,Γk−1, ρ,Υ1, . . . ,Υn+k,Υse) and Ω are freely varying.
The additive model Hadd

r in (10) is now expressed as the submodel of the extended model
Hext
r in (17), where the restrictions (14) and ρ′ = −β′γ0 give the extended model parameter,

ξ, as a function of the additive model parameter, λ = (α, β,Γ1, . . . ,Γk−1, γ).
In general the additive model is a submodel of the extended model, but there is a special

case where the two models are the same, as given in the next theorem. Define the polynomials
fi(t) = t(t−1) · · · (t−i+1)/i!, which satisfy∆fi(t) = fi−1(t). The regressor Zt = (tm, . . . , 1)′

is equivalent to the regressor Zt = (fm(t), . . . , f0(t))′ in the sense that they span the same
space. For m = 0 and m = 1 the models with these regressors were denoted H∗0 (r) and
H∗1 (r), respectively, in Johansen (1996).
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Theorem 1. Let Assumption 1 be satisfied. Then the additive model for the regressor Zt =
(fm(t), . . . , f0(t))′ is a reparametrization of the extended model.

Note that the result in Theorem 1 also holds if Zt is extended with a seasonal dummy
like (−1)t. In general, of course, the simple result in Theorem 1 does not hold, so that the
additive model is not a reparametrization of the extended model. For the general case, we
next discuss identification and estimation of the parameters in the situation where we allow
a polynomial regressor U1t of order m1, say, in the additive model and have removed zero
regressors.

2.4 Identification of the parameters in the extended and additive models

For identification of the parameters in the extended model (17), the zero regressors∆iU1t = 0,
i > m1, have been removed together with their coeffi cients, so that the remaining regressors
are linearly independent (Definition 2). Then the coeffi cient ξ is identified, because if the
likelihood functions for parameters ξ1 and ξ2 are the same, then ξ1 = ξ2, except for α and
β, where only their product is identified. A convenient normalization to identify β, see
Johansen (1996, p. 179), is to assume that β′β̄0 = Ir. This will be assumed throughout.
We next consider identification of the additive model (10) as a submodel of the extended

model (17). This is a consequence of the following result, which is based on Lemma 1. The
result is formulated for the additive model with a polynomial regressor, which may generate
zero regressors.

Theorem 2. Let Assumption 1 be satisfied. Let λ = (α, β,Γ1, . . . ,Γk−1, γ) be the parameters
in the additive model (10), which contains a polynomial Pt = U1t, say, of order m1, and as-
sume that the regressors ∆iU1t = 0, i > m1, have been removed together with their coeffi cients
γi1. Let ξ = ξ(λ) = (α, β,Γ1, . . . ,Γk−1, ρ,Υ1, . . . ,Υn+k,Υse), where Υ0, . . . ,Υn+k,Υse are de-
fined by (14) and ρ′ = ᾱ′Υ0, and assume the coeffi cients Υi1, i > m1, have been removed.
Then, for any set of parameters λ0, λh, h→ 0, we find

ξ(λh)→ ξ(λ0) as h→ 0 implies λh → λ0, (18)

except if n ≥ m1, where for the constant term with coeffi cient γm1
1,h , we only find β

′γm1
1,h →

β′γm1
1,0 .

Identification of the additive model as a submodel of the extended model follows from
Theorem 2 because if ξ(λ1) = ξ(λ0) then, choosing λh = λ1, we find from (18) that λ1 = λ0.
Thus, a special case of Theorem 2 implies identification of the parameters of the additive
model in the usual sense. However, in anticipation of our proof of consistency, Theorem 2
proves the more general result that ξ depends continuously on the parameter λ, which one
could call “continuous identification”. The result in Theorem 2 shows continuous identifica-
tion of γ, with the exception that, if n ≥ m1 (so that the constant term, ∆m1Pt = ∆m1U1t,
is included in the model), then the coeffi cient to the constant term is only identified in the
β-directions.

2.5 Estimation of the parameters in the extended and additive models

For estimation of the extended model (17), we continue to assume that the zero regressors
∆iU1t = 0, i > m1, have been removed together with their coeffi cients, so that the remaining
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regressors are linearly independent. Then maximum likelihood estimation of the parameters
of the extended model can be conducted by reduced rank regression of ∆Xt on (X ′t−1, U

′
t)
′

corrected for the non-zero regressors. See Anderson (1951) and Johansen (1996, Chapter 6).
Next, the additive model (10) can be estimated by maximum likelihood using an op-

timizing algorithm, as a submodel of the extended model subject to the restrictions (14).
Starting values for the iterations in the numerical optimization of the likelihood function can
be found, using Lemma 1, from parameter estimates of the extended model.

3 Asymptotic theory for parameter estimators
We first give some conditions on the regressors which are needed for the asymptotic analy-
sis. We then discuss consistency of the parameter estimators and find their asymptotic
distributions for both the extended and additive models.

3.1 Normalization and partition of regressors

We introduce the notation for product moments of sequences Ut, Vt,Wt, t = 1, . . . , T,

〈U, V 〉T = T−1

T∑
t=1

UtV
′
t ,

and for residuals
(Ut|Vt) = Ut − 〈U, V 〉T 〈V, V 〉

−1
T Vt

and conditional product moments

〈U, V |W 〉T = 〈U, V 〉T − 〈U,W 〉T 〈W,W 〉
−1
T 〈W,V 〉T .

When the limit of a product moment exists, we use the notation 〈U, V 〉T → 〈U, V 〉, for
example, to denote the limit as T →∞.
For the asymptotic analysis, regressors with bounded information will not give consistent

estimation of their associated coeffi cients. That is, for any deterministic term Uvt with order
mv, the coeffi cients to the regressors ∆iUvt, i > mv, cannot be consistently estimated because∑T

t=1(∆iUvt)
2 is bounded, see Definition 1. However, as shown below, this has no influence

on asymptotic inference for the remaining parameters.
To conduct asymptotic inference, we thus partition the regressors into those with diver-

gent and those with bounded information, respectively, and for the former we also separate
those that are proportional to α in the extended model (17). These regressors and their
associated coeffi cients are defined next.

Definition 3. The non-zero regressors in ∆iUvt, 1 ≤ v ≤ q, 0 ≤ i ≤ n + k, are partitioned
as

Z0t = (U ′vt, 0 ≤ mv)
′,

Z1t = (∆iU ′vt, 1 ≤ i ≤ min{n+ k,mv};U ′se,t)′,
Z2t = (U ′vt,mv < 0; ∆iU ′vt,mv < i ≤ n+ k)′,
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with coeffi cients given by

ρ0 = (ρv,mv ≥ 0),

Υ1 = (Υiv, 1 ≤ i ≤ min{n+ k,mv}; Υse),

Υ2 = (αρv,mv < 0; Υiv,mv < i ≤ n+ k).

Similarly to ρ0 we define γ0∗ = (γ0
v ,mv ≥ 0) such that ρ0′ = −β′γ0∗.

According to Definition 3, we have partitioned the regressors such that Z0t and Z1t have
divergent information and Z2t has bounded information, see Definitions 1 and 2, and we note
that Zjt may be empty in which case the remainder of the paper is simplified accordingly.
With the notation in Definition 3 we find that the deterministic terms in the extended model
(17) can be reparametrized as

αρ′Ut +

n+k∑
i=1

Υi∆
iUt + ΥseUse,t = αρ0′Z0t + Υ1Z1t + Υ2Z2t. (19)

Finally, for the asymptotic analysis we need the following normalizations and a mild
condition to rule out asymptotically multicollinear regressors.

Assumption 2. For a regressor ∆iUvt, for which mv ≥ 0, there exists normalizations MT iv

for i = 0, . . . ,mv, satisfying MT ivM
−1
T,i+1,v → 0 and MT ivT

−1/2 → 0, and for which the
normalized regressors ∆iUvT t = MT iv∆

iUvt satisfy that〈
∆iUvT ,∆

jUvT
〉
T

= T−1

T∑
i=1

(MT iv∆
iUvt)(MTjv∆

jUvt)
′

is convergent.

Corresponding to Z0t and Z1t, we collect their normalizations in the diagonal matrices
NT0 = diag(MT0v,mv ≥ 0, 1 ≤ v ≤ q) and NT1 = diag(MT iv, 1 ≤ i ≤ min{n + k,mv}, 1 ≤
v ≤ q, ι′s−1), where ιs−1 is an (s− 1)-vector of ones. This defines the normalized regressors

Z0Tt = NT0Z0t and Z1Tt = NT1Z1t. (20)

Assumption 3. The asymptotic information matrix for (Z ′0Tt, Z
′
1Tt)

′ is nonsingular, i.e.
satisfies

〈(Z ′0T , Z ′1T )′, (Z ′0T , Z
′
1T )′〉T → 〈(Z ′0, Z ′1)′, (Z ′0, Z

′
1)′〉 > 0.

Example 2. The nonsingularity condition in Assumption 3 rules out asymptotically mul-
ticollinear regressors, and is easily satisfied in practice. As an example of what is ruled
out, consider the regressor Ut = (1 + 1{t=t0+1}, 1 + 1{t=t0−1})

′, which satisfies Definition 2

with m1 = m2 = 0, but the information 〈U,U〉T → 〈U,U〉 =

(
1 1
1 1

)
is clearly sin-

gular in the limit and thus violates Assumption 3. In this case, one could apply instead
Ut = (1 + 1{t=t0+1}, 1{t=t0−1} − 1{t=t0+1})

′, which spans the same space, but where the in-

formation is 〈U,U〉T → 〈U,U〉 =

(
1 0
0 0

)
and the first element gives rise to consistent

estimation with a non-singular asymptotic information matrix. Thus, for this example, we
set Z0t = 1 + 1{t=t0+1} and Z2t = 1{t=t0−1} − 1{t=t0+1}. �



The CVAR model with general deterministic terms 11

Finally, for the asymptotic analysis we make the following high-level assumption, for
which primitive suffi cient conditions are well-known.

Assumption 4. We assume that εt is i.i.d. (0,Ω), and for St =
∑t

i=1 εi we have the weak

limit T−1/2S[Tu]
D→ Wε, where Wε denotes Brownian motion generated by εt. Furthermore,

the following limits exist and the convergences hold jointly,

T 1/2 〈ZjT , ε〉T = T−1/2NTj

T∑
t=1

Zjtε
′
t
D→ 〈Zj, ε〉 for j = 0, 1,

T−1/2 〈ZjT , St−1〉T = T−3/2NTj

T∑
t=1

ZjtSt−1
D→ 〈Zj,Wε〉 for j = 0, 1,

T−1/2 〈St−1, ε〉T = T−3/2

T∑
t=1

St−1ε
′
t
D→
∫ 1

0

Wε(dWε)
′ = 〈Wε, ε〉 .

Again, we use 〈Zj, ε〉, for example, as the notation for the limit of a product moment,
because simple expressions in terms of stochastic integrals are not possible for all regressors.
Examples of the conditions in Assumption 4 are given next.

Example 3. Let Ut = (t, (t− [Tv0])+)′ with ∆Ut = (1, 1{t≥[Tv0]+1})
′. Then MT0 = T−1 and

MT1 = 1, and we note that MT0M
−1
T1 → 0, reflecting that the order of the regressor in this

case decreases when differenced. We define u(v) = limT→∞ UT,[Tv] = limT→∞MT0U[Tv] =
(v, (v − v0)+)′ and u̇(v) = limT→∞∆UT,[Tv] = limT→∞MT1∆U[Tv] = (1, 1{v≥v0})

′. For this
example we find the limits

〈UT ,∆UT 〉T = T−1

T∑
t=1

(T−1Ut)(∆Ut)
′ →

∫ 1

0

u(v)u̇(v)′dv = 〈U,∆U〉 ,

T 1/2 〈UT , ε〉T = T−1/2

T∑
t=1

T−1Utε
′
t
D→
∫ 1

0

u(v)dWε(v)′ = 〈U, ε〉 ,

T−1/2 〈UT , St−1〉T = T−3/2

T∑
t=1

T−1UtS
′
t−1

D→
∫ 1

0

u(v)Wε(v)′dv = 〈U,Wε〉 .

�
The previous example illustrates a relatively simple regressor, which when appropri-

ately normalized has a limit, u(v), in L2. In this case, the limit of the product moment
T 1/2 〈UT , ε〉T , for example, can be expressed as a stochastic integral of u(v) with respect to
Brownian motion, Wε. However, such simple limit expressions are not always possible, as
the following example shows.

Example 4. Let Use,t = (−1)t be a seasonal dummy variable. Then

T 1/2 〈Use, ε〉T = T−1/2

T∑
t=1

Use,tε
′
t
D→ N(0,Ω) = 〈Use, ε〉 ,

T−1/2 〈St−1, Use〉T = T−3/2

T∑
t=1

St−1Use,t = OP (T−1),
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where we note that 〈Use, ε〉 is not a stochastic integral involving a limit of Use,t because Use,t
does not converge in L2. �

3.2 Consistency of parameter estimators

To prove consistency, we use the fact that both the additive model (10) and the extended
model (17) can be expressed as nonlinear submodels of a linear regression model, such that
we can apply the following result from Johansen (2006).

Lemma 2. Let ς = ς(τ) be a continuously identified parametrization of a submodel of the
regression model yt = ς ′zt + εt, εt i.i.d. (0,Ω), with stochastic or deterministic regressors.
Assume that the information diverges in probability for all components of zt,

P

(
ωmin(

T∑
t=1

ztz
′
t) > A

)
→ 1 for all A > 0 as T →∞,

where ωmin(·) denotes the smallest eigenvalue of the argument. Then τ̂ exists with probability
converging to one and is consistent, as T →∞.

Consistency of the continuously identified parameters in both the additive and extended
models thus follows from Theorem 2 and Lemma 2 for those regressors that have divergent
information. That is, in the extended model, we cannot obtain consistency for Υ̂2, but the
remaining parameters are consistently estimated, as formulated in the next result.

Theorem 3. Suppose Assumptions 1—3 are satisfied. Then the maximum likelihood estima-
tors exist in both the extended model and the additive model, with probability converging to
one, and both are consistent for the regressors with divergent information.

3.3 Asymptotic distribution of the parameters of the extended model

We apply the Gaussian likelihood function and let ξ denote all parameters in the conditional
mean of the extended model, see (17), with true value ξ0. The normalized (negative) log-
likelihood function for model Hext

r is

L(ξ,Ω) = −T−1 logLT (ξ,Ω) =
1

2
log det(Ω) +

1

2
tr{Ω−1T−1

T∑
t=1

εt(ξ)εt(ξ)
′}, (21)

where

εt(ξ) = ∆Xt − α(β′Xt−1 + ρ0′Z0t)−
k−1∑
i=1

Γi∆Xt−i −Υ1Z1t −Υ2Z2t. (22)

We normalize β′β̄0 = Ir and use the decomposition β = β0 + β0⊥β̄
′
0⊥(β− β0). We then stack

T−1/2β′0⊥Yt−1 and Z0Tt = NT0Z0t, see (20), as

GTt =

(
T−1/2β′0⊥Yt−1

Z0Tt

)
,

and define the variance Σstat = V ar(Y ′t−1β0,∆Y
′
t−1, . . .∆Y

′
t−k+1)′.
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Theorem 4. Suppose Assumptions 1—4 are satisfied. Then it holds jointly that

T 1/2(α̂− α0, Γ̂1 − Γ1,0, . . . , Γ̂k−1 − Γk−1,0)
D→ Np×r

(
0,Σ−1

stat ⊗ Ω0

)
(23)

T 1/2

(
T 1/2β̄′0⊥(β̂ − β0)

N−1
T0 (ρ̂0 + γ0∗′

0 β̂)

)
D→ −〈G,G|Z1〉−1 〈G, εα|Z1〉 , (24)

T 1/2(Υ̂1 −Υ1
0)N−1

T1

D→ −〈ε, Z1〉 〈Z1, Z1〉−1 + α0 〈εα, G|Z1〉 〈G,G|Z1〉−1 〈G,Z1〉 〈Z1, Z1〉−1 ,
(25)

where ρ0 = −γ0∗′β̂ and εα,t = (α′0Ω−1
0 α0)−1α′0Ω−1

0 εt. Furthermore, the distribution (23) is
asymptotically independent of the distributions (24) and (25).

As discussed above, only the parameter Υ1 appears in Theorem 4. The parameter Υ2 cor-
responds to the regressors with bounded information, and cannot be consistently estimated
(Theorem 3) and hence has no place in Theorem 4.
The distribution in (24) is mixed Gaussian (MG), and an important consequence is that

asymptotic inference on β can be conducted using the χ2-distribution. However, the distri-
bution in (25) is not MG, although we can obtain Gaussianity for some linear combinations
of (Υ̂1 −Υ1

0) by pre-multiplication by α′0⊥.

3.4 Asymptotic distribution of the parameters of the additive model

In order to derive the simple result that the additive model and the extended model are
asymptotically equivalent, because the only difference is in some regressors with bounded
information, we make the next assumption. We show below that the result for polynomials
in Theorem 1 is asymptotically satisfied for a general additive model, if enough regressors
are included in the formulation of the additive model.

Assumption 5. The number, n, of differences ∆iUt in Zt, see Definition 2, satisfies n ≥ mv

for v = 1, . . . , q.

For any parameter θ, let the maximum likelihood estimator in the additive model be
denoted by θ̆.

Theorem 5. Suppose Assumptions 1—5 are satisfied. Then it holds jointly that

T 1/2(ᾰ− α0, Γ̆1 − Γ1,0, . . . , Γ̆k−1 − Γk−1,0)
D→ Np×r

(
0,Σ−1

stat ⊗ Ω0

)
, (26)

T 1/2

(
T 1/2β̄′0⊥(β̆ − β0)

−N−1
T0 (γ̆0∗ − γ0∗

0 )′β̆)

)
D→ −〈G,G|Z1〉−1 〈G, εα|Z1〉 , (27)

where εα = (α′0Ω−1
0 α0)−1α′0Ω−1

0 εt, see (23) and (24) in Theorem 4. For v = 1, . . . , q we
express the asymptotic distributions of γ̆iv in terms of the maximum likelihood estimators of
the parameters in the extended model,

T 1/2β′0(γ̆iv − γiv0)M−1
T iv = −T 1/2ᾱ′0(Υ̂iv −Υiv0)M−1

T iv + oP (1), 1 ≤ i ≤ mv, (28)

T 1/2α′0⊥Γ0(γ̆iv − γiv0)M−1
T,i+1,v = −T 1/2α′0⊥(Υ̂i+1,v −Υi+1,v,0)M−1

T,i+1,v + oP (1), 1 ≤ i < mv,

(29)

T 1/2 vec(γ̆se − γse0 ) = (

k∑
i=0

M i′
s ⊗ Φi)

−1T 1/2 vec(Υ̂se −Υse,0). (30)
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Because all Υ̂iv and Υ̂se coeffi cients on the right-hand sides of (28)—(30) are included in Υ̂1,
their asymptotic distributions are given in (25) in Theorem 4. Finally, the distribution in
(26) is asymptotically independent of the distributions (27)—(30).

The main result in Theorem 5 is that the simple condition in Assumption 5 implies that
the additive and extended models are (asymptotically) equivalent. The consequence is that,
under Assumption 5, asymptotic inference is identical in the two models.

3.5 Asymptotic distributions when m > n

If the condition that max1≤v≤qmv ≤ n in Assumption 5 is violated, inference becomes much
more involved. To simplify, we consider the additive model for a single regressor Ut ∈ R
with order m. In particular, we give the proof for the case m = 1, n = 0, k = 1, and use the
notation γ instead of γ0∗; that is, we consider the models

Hadd
r : ∆Xt = α(β′Xt−1 − β′γUt−1) + γ∆Ut + εt, (31)

Hext
r : ∆Xt = α(β′Xt−1 − ρUt−1) + υ∆Ut + εt. (32)

The general case follows similarly, but with more complicated notation.
As an illustration, consider the following example.

Example 5. Consider the model Xt = Yt + γ(t − t0)+ and ∆Yt = αβ′Yt−1 + εt, where
the innovative formulation of the additive model and the associated extended model are,
compare also (31) and (32),

Hadd
r : ∆Xt = α(β′Xt−1 − β′γ(t− t0 − 1)+) + γ1{t≥t0+1} + εt,

Hext
r : ∆Xt = α(β′Xt−1 + ρ(t− t0 − 1)+) + υ1{t≥t0+1} + εt.

Thus, the extended model has two parameters in the deterministic term, ρ and υ, both of
which can be consistently estimated, whereas the additive model has only one parameter,
γ. Obviously the two models are not asymptotically equivalent, and this is an example of a
case where n = 0, but m = m1 = 1, and hence Assumption 5 is not satisfied. �
We now consider the asymptotic distributions when m > n, i.e., when Assumption 5 is

violated. The asymptotic theory for the extended model in Theorem 4 covers case of m > n,
but the theory for the additive model in Theorem 5 does not. In the next theorem, we
compare inference in the two models.

Theorem 6. Suppose Assumptions 1—4 are satisfied, but Assumption 5 is violated. For the
additive model, the asymptotic distribution for ᾰ, Γ̆1, . . . , Γ̆k−1 in (26) continues to hold, but
the asymptotic distribution of

ζ̆ = T 1/2

(
T 1/2β̄′0⊥(β̆ − β0)

−M−1
T0 (γ̆ − γ0)′β̆

)
,

or any linear combination of it, is not mixed Gaussian. Furthermore, the asymptotic distrib-
ution α′0⊥(γ̆− γ0)M−1

T1 is neither asymptotically Gaussian nor mixed Gaussian and the same
holds for any linear combination of it.
Finally, the asymptotic information matrix for ζ in the extended model is larger than the

asymptotic information matrix for ζ in the additive model, in the sense that the difference
is positive definite.
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Note that when n < m, inference for ᾰ, Γ̆1, . . . , Γ̆k−1 in the additive model is asymp-
totically the same as for n ≥ m. This can be explained by the block-diagonality of the
information matrix for the parameters (α,Γ1, . . . ,Γk−1) and the remaining parameters, such
that inference on (α,Γ1, . . . ,Γk−1) can be conducted as if the remaining parameters were
known.
In order to explain what happens with the regression parameters in the additive model,

we decompose γ into β′γ and α′⊥γ. The first parameter is estimated as the coeffi cient to
Ut−1, and the contribution to β′γ from the coeffi cient to ∆Ut is asymptotically negligible,
whereas the parameter α′⊥γ is estimated from the coeffi cient to ∆Ut. Thus the information
in β′γ∆Ut is not used in the additive model.
By extending the model, we replace the coeffi cient to ∆Ut by a freely varying parameter,

and can then exploit all the information in the data. This simplifies inference with a loss
of effi ciency as measured by the ratio of the information matrices. More precisely, the
limiting asymptotic conditional variance of the mixed Gaussian distribution of ζ̂ in the
extended model is larger than the corresponding expression for the additive model, but the
interpretation of the limit distribution is entirely different in the two models.
The diffi cult inference problems in the additive model could possibly be solved by an

application of the bootstrap along the lines of Cavaliere, Rahbek, and Taylor (2012) and
Cavaliere, Nielsen, and Rahbek (2016). However, enlarging the model to have n ≥ m is a
simple device to achieve simple inference. The latter possibility is illustrated as follows.

Example 6. Continuation of Example 5. Note that Assumption 5 would be satisfied by
including a step dummy, 1{t≥t0+1} = ∆(t− t0)+, in the additive model formulation such that
Xt = Yt + γ1(t− t0)+ + γ21{t≥t0+1} giving

Hadd
r : ∆Xt = α(β′Xt−1 − β′γ1(t− t0 − 1)+ − β′γ21{t≥t0+1}) + γ11{t≥t0+1} + γ21{t=t0+1} + εt,

Hext
r : ∆Xt = α(β′Xt−1 + ρ(t− t0 − 1)+) + υ11{t≥t0+1} + υ21{t=t0+1} + εt.

With this slightly larger additive model we have n = 1 and m = 1 such that Assumption
5 is satisfied. It is seen that the two models are not reparametrizations as for polynomi-
als, see Theorem 1, but the coeffi cient υ2 is associated with a regressor with information∑T

t=1 12
{t=t0+1} = 1, and hence does not contribute to the asymptotic analysis. That is, by

including the missing step dummy, 1{t≥t0+1}, in the additive model, and hence allowing the
broken trend to have a discontinuity at the breakpoint, t0, Assumption 5 is now satisfied
and the two models are asymptotically equivalent. In this case the asymptotic analysis is
relatively simple as shown in Theorem 5. �

4 Hypothesis testing
We first give the asymptotic distribution of the test for cointegration rank and then discuss
tests on coeffi cients of deterministic terms.

4.1 Test of cointegration rank

We consider the extended model (17) for r = p,

Hext
p : ∆Xt = Π(Xt−1 − γ0∗Z0t) +

k−1∑
i=1

Γi∆Xt−i + Υ1Z1t + Υ2Z2t + εt. (33)
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The likelihood ratio test for rank r or Π = αβ′, where α and β are p× r matrices, is denoted
LR(Hext

r |Hext
p ). For the general class of models and deterministic terms considered, we can

provide a unified result for the asymptotic distribution of the test of cointegration rank, and
this is given next.

Theorem 7. Under Assumptions 1—5, the asymptotic distribution of the test of cointegrating
rank in either the extended model (17) or in the additive model (1) is given by

−2 logLR(Hext
r |Hext

p )
D→ tr{〈G, εα⊥|Z1〉′ 〈G,G|Z1〉−1 〈G, εα⊥|Z1〉},

where εα⊥,t = (α′0⊥Ω0α0⊥)−1/2α′0⊥εt is i.i.d. N(0, Ip−r).

Note that the limit distribution of the rank test depends on the type of regressors and
needs to be simulated for the various cases. However, it does not depend on the values of
the regression parameters, i.e. the rank test is asymptotically similar with respect to the
regression parameters, see Nielsen and Rahbek (2000). This is a consequence of starting
from the additive formulation with n ≥ max1≤v≤qmv, and deriving the extended model from
the additive model. In the innovative formulation (7), this is not the case, see for example
the analysis of the model with an unrestricted constant term in Johansen (1996).

4.2 Tests of hypotheses on deterministic terms

We consider inference on the coeffi cients γ0
v ,mv ≥ 0, and γiv, i = 1, . . . ,mv ≤ n, in the

additive model and denote by γ̆iv the maximum likelihood estimator in the additive model.
It follows from Theorems 4 and 5 that the limit distribution of γ̆iv−γi0v naturally decomposes
in two parts, and we therefore split the hypothesis γiv = 0 into a test that β′γiv = 0 and a
test that α′⊥Γγiv = 0.

Theorem 8. Let Assumptions 1—5 be satisfied. When mv ≥ 0, the likelihood ratio test for
the hypothesis β′γ0

v = 0 is asymptotically χ2-distributed, and when mv ≥ 1, the likelihood
ratio test for the hypothesis α′⊥Γγ0

v = 0 is asymptotically χ2-distributed.

We apply the results in Theorem 8 as follows. It appears natural first to investigate if
γ0
v , the coeffi cient of Uvt, is zero. If we cannot reject that it is zero, then we can proceed to
test that the coeffi cient of ∆Uvt is zero; that is, test the hypothesis γ1

v = 0, assuming γ0
v = 0.

Under Assumption 5 the additive and extended models are asymptotically equal. Under
the hypothesis β′γ0

v = 0, we find Υ0
v = 0, so we estimate the other parameters by reduced

rank regression leaving out the regressor Uvt in the extended model. If also α′⊥Γγ0
v = 0,

then by (4) we have γ0
v = 0, so that Uvt is no longer a regressor in the additive model and

∆Uvt becomes the highest order term. By reformulating the model to take this into account,
the coeffi cient γ1

v is split into β
′γ1
v and α

′
⊥Γγ1

v . The first is in the cointegrating space where
β̆′(γ̆1

v − γ1
v0) has an asymptotic mixed Gaussian distribution. The second is found from the

new α′⊥Φ1, and the asymptotic distribution of T 1/2(ᾰ′⊥Γ̂γ̆1
v − α′0⊥Γ0γ

1
v0)M−1

T1v is Gaussian.
Thus we can apply the asymptotic distributions in Theorem 4 to test recursively that

γiv = 0, provided we assume that γjv = 0, 0 ≤ j < i.
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5 Conclusions
We define the CVAR model with additive deterministic terms and derive the corresponding
innovative formulation which is nonlinear in the parameters. This additive model is extended
to a model which is linear in the coeffi cients of the deterministic terms and hence allows
estimation by reduced rank regression. A general class of regressors is defined and for each
regressor its order. This setup allows a discussion of the relation between the innovative
formulation of the additive model and its extension.
A simple condition for when the additive and the extended model are (asymptotically)

identical is given. The condition, given as Assumption 5, is that for each regressor in the
additive model one should also include its differences, as long as they have diverging infor-
mation. If this recommendation is not followed, asymptotic inference is considerably more
complicated. For example, when the regressor is a polynomial or power function, say ta for
some a > −1/2, the recommendation is to include (at least) m = [a + 1/2] differences of
ta, which seems like a natural thing to do. Indeed, not doing so seems very strange. On
the other hand, for the broken trend function, (t − t0)+, it may in fact be reasonable to
exclude the first difference, 1{t≥t0+1}, when insisting on continuity of the trend function as
in Example 5. However, the recommendation is to include the first difference anyway, even
if it may be zero, because including it leads to simple inference.
The asymptotic distribution of the parameter estimates is found to be a mixture of a

Gaussian distribution and a mixed Gaussian distribution, and we show how it can be applied
to test that the regression coeffi cients are zero. Finally, we derive the asymptotic distribution
of the rank test and show that it is similar with respect to the regression parameters.

A Appendix: proofs of results
A.1 Proof of Lemma 1

The result (15) follows from (14) when multiplying by ᾱ′ and α′⊥ using Φ0 = −αβ′ and
Φ1 = −αβ′ − Γ. The relations (15) can be solved for γi because (β,Γ′α⊥) has full rank
under Assumption 1, see (4), and therefore γi is determined recursively as a linear function
of Υ0, . . . ,Υi, α

′
⊥Υi+1.

To solve for γse, we let (ωj, vj), j = 1, . . . , s − 1, be the eigenvalues and eigenvectors of
Ms. It is clear from (14) that Υse is a linear function of γse, and we want to show that this
function is non-singular, that is, that Υse =

∑k
i=0 Φiγ

seM i
s = 0 implies γse = 0. To see this,

post-multiply by vj and use M i
svj = ωijvj, such that

0 = Υsevj =
k∑
i=0

Φiγ
seM i

svj =
k∑
i=0

Φiω
i
jγ

sevj = Π(1− ωj)γsevj. (34)

Now 1 − ωj is a seasonal root, see Definition 2 and (11), and by Assumption 1 this implies
that Π(1− ωj) has full rank, such that γsevj = 0 for all j and hence γse = 0. The definition
of Υse is therefore

vec(Υse) = (

k∑
i=0

M i
s ⊗ Φi) vec(γse),

where
∑k

i=0M
i
s ⊗ Φi is of full rank. The solution is then given by (16).
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A.2 Proof of Theorem 1

The additive formulation of model (1) with Zt = (fm(t), . . . , f0(t))′ has deterministic term

Π(L)γZt =
k∑
i=0

Φi∆
i

m∑
j=0

γjfm−j(t) =

k∑
i=0

m∑
j=0

Φiγ
jfm−j−i(t) =

m∑
s=0

Υsfm−s(t).

Lemma 1 shows that γ0, . . . , γm−1, β′γm can be determined from ρ′ = ᾱ′Υ0,Υ1, . . . ,Υm for
given values of (α, β,Γ1, . . . ,Γk−1). Thus, for this choice of regressors, the additive model
parametrized by (α, β,Γ1, . . . ,Γk−1, γ

0, . . . , γm−1, β′γm) is the same as the extended model
parametrized by (α, β,Γ1, . . . ,Γk−1, ρ,Υ1, . . . ,Υm).

A.3 Proof of Theorem 2

The proof follows from Lemma 1 because ξ(λ) determines λ as a linear, and hence continuous,
function except for α′⊥Γγm1

1 (in the case n ≥ m1).

A.4 Proof of Theorem 3

We can express both the additive model (10) and the extended model (17) as nonlinear
submodels of a linear regression model as follows. Because we have normalized β on β′β̄0 =
Ir, we can define θ = β̄′0⊥(β−β0) such that β = β0 +β0⊥θ. Then the extended model (17) is

∆Xt = αβ′0Xt−1 + αθ′β′0⊥Xt−1 + αρ0′Z0t +
k−1∑
i=1

Γi∆Xt−i + Υ1Z1t + Υ2Z2t + εt,

which is a submodel of the linear regression model

∆Xt = α(β′0Xt−1) + φ(β′0⊥Xt−1) + ψZ0t +
k−1∑
i=1

Γi∆Xt−i + Υ1Z1t + Υ2Z2t + εt (35)

defined by the restrictions φ = αθ′, ψ = αρ0′, and the remaining parameters being the same
in the two models. From Theorem 2 it follows that, because α0ρ

0′
h → α0ρ

0′
0 and α0θ

′
h → α0θ

′
0

implies θh → θ0 and ρ0
h → ρ0

0, the extended model is continuously identified in the larger
linear regression model (35). Similarly, the additive model is continuously identified in the
extended model and hence in the larger linear regression model. The result now follows
immediately from Theorem 2 and Lemma 2.

A.5 Proof of Theorem 4

Let Π0(L) be the characteristic polynomial with the true values inserted. The data is gen-
erated by Π0(L)(Xt − γ0Zt) = εt and we define

εt(ξ) = Π(L)(Xt − γZt) = Π(L)Yt − Π(L)(γ − γ0)Zt

= (Π(L)− Π0(L))Yt − Π(L)(γ − γ0)Zt + εt,

where, see (2), (13), (19), and Definition 3,

−Π(L)(γ − γ0)Zt = αβ′(γ0∗ − γ0∗
0 )Z0t − (Υ1 −Υ1

0)Z1t − (Υ2 −Υ2
0)Z2t, (36)

(Π(L)− Π0(L))Yt = −(α− α0)β′0Yt−1 − α(β − β0)′β̄′0⊥β
′
0⊥Yt−1 −

k−1∑
i=1

(Γi − Γi,0)∆Yt−i. (37)
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We can simplify the notation by redefining the parameters to account for the different orders
of magnitude of the regressors. We therefore use

GTt =

(
T−1/2β′0⊥Yt−1

Z0Tt

)
, ζ =

(
T 1/2β̄′0⊥(β − β0)
−N−1

T0 (γ0∗ − γ0∗
0 )′β

)
, and υ = (Υ1 −Υ1

0)N−1
T1 ,

and also define

α∗ = (α− α0,Γ1 − Γ1,0, . . . ,Γk−1 − Γk−1,0) and Y ∗t = (Y ′t−1β0,∆Y
′
t−1, . . . ,∆Y

′
t−k+1)′. (38)

Then we find the expression

εt(ξ) = −α∗Y ∗t − αζ ′GTt − υZ1Tt − (Υ2 −Υ2
0)Z2t + εt. (39)

Elimination of Z2t: At the true values (α∗0 = 0, ζ0 = 0, υ0 = 0) we find the derivatives

Dα∗εt(ξ0; dα∗) = −(dα∗)Y ∗t ,

Dζεt(ξ0; dζ) = −α0(dζ)′GTt,

Dυεt(ξ0; dυ) = −(dυ)Z1Tt,

DΥ2εt(ξ0; dΥ2) = −(dΥ2)Z2t.

Because the scores for Y ∗t , GTt, and Z1Tt all need to be normalized by T−1/2 by definition of
NT1 and GTt, while the score for Z2t need not be normalized, showing that the information is
asymptotically block diagonal with respect to Υ2 entails showing that T 1/2 〈Z0T , Z2〉T → 0,

T 1/2 〈Z1T , Z2〉T → 0, T 1/2 〈GT , Z2〉T
P→ 0, and T 1/2 〈Y ∗, Z2〉T

P→ 0. The proofs are almost
identical, so we prove only that T 1/2 〈Z1T , Z2〉T → 0. We use that Z2t has bounded informa-
tion while Z1t has diverging information, and for T1 < T we decompose as

T 1/2 〈Z1T , Z2〉T = T−1/2

T∑
t=1

Z1TtZ
′
2t = T−1/2NT1

T1∑
t=1

Z1tZ
′
2t + T−1/2

T∑
t=T1+1

Z1TtZ
′
2t.

Here the first term tends to zero for any fixed T1 because T−1/2NT1 → 0. The second term
is bounded in norm by the Cauchy-Schwarz inequality,

T∑
t=T1+1

T−1/2||Z1Tt||||Z2t|| ≤ (
T∑

t=T1+1

T−1||Z1Tt||2)1/2(
T∑

t=T1+1

||Z2t||2)1/2

≤ tr{〈Z1T , Z1T 〉T}1/2(

∞∑
t=T1+1

||Z2t||2)1/2 → 0

as T1 → ∞ because
∑∞

t=T1+1 ||Z2t||2 → 0 as T1 → ∞. Thus, we can conduct inference
separately on (α∗, ζ, υ) and Υ2, and we continue fixing Υ2 = Υ2

0.
Score and information: We denote the normalized score function with respect to α∗,

for example, in the direction dα∗ as Sα∗ = T 1/2Dα∗L(ξ,Ω; dα∗)|ξ=ξ0 . The information with
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respect to α∗, ζ, for example, is similarly denoted by Iα∗ζ = D2
α∗ζL(ξ,Ω; dα∗, dζ)|ξ=ξ0 . It

follows that the scores are

T−1/2Sα∗ = − tr{Ω−1
0 (dα∗)T 1/2 〈Y ∗, ε〉T}

D→ − tr{Ω−1
0 (dα∗) 〈Y ∗, ε〉}, (40)

T−1/2Sζ = − tr{Ω−1
0 α0(dζ)′T 1/2 〈GT , ε〉T}

D→ − tr{Ω−1
0 α0(dζ)′ 〈G, ε〉}, (41)

T−1/2Sυ = − tr{Ω−1
0 (dυ)T 1/2 〈Z1T , ε〉T}

D→ − tr{Ω−1
0 (dυ) 〈Z1, ε〉}, (42)

and the diagonal elements of the information are

T−1Iα∗α∗ = tr{Ω−1
0 (dα∗) 〈Y ∗, Y ∗〉T (dα∗)′}+ oP (1)

P→ tr{Ω−1
0 (dα∗)Σstat(dα

∗)′}, (43)

T−1Iζζ = tr{Ω−1
0 α0(dζ)′ 〈GT , GT 〉T (dζ)α′0}+ oP (1)

D→ tr{Ω−1
0 α0(dζ)′ 〈G,G〉 (dζ)α′0},

(44)

T−1Iυυ = tr{Ω−1
0 (dυ) 〈Z1T , Z1T 〉T (dυ)′}+ oP (1)

D→ tr{Ω−1
0 (dυ) 〈Z1, Z1〉 (dυ)′}, (45)

where Σstat = V ar(Y ∗t ). There is one non-zero off-diagonal block,

T−1Iζυ = tr{Ω−1
0 α0(dζ)′ 〈GT , Z1T 〉T (dυ)′}+ oP (1)

D→ tr{Ω−1
0 α0(dζ)′ 〈G,Z1〉 (dυ)′}, (46)

and the following are asymptotically negligible,

T−1Iα∗ζ = tr{Ω−1
0 (dα∗) 〈Y ∗, GT 〉T (dζ)′α′0}+ oP (1)

P→ 0, (47)

T−1Iα∗υ = tr{Ω−1
0 (dα∗) 〈Y ∗, Z1T 〉T (dυ)′}+ oP (1)

P→ 0. (48)

Because the information is asymptotically block diagonal, α̂∗ and (ζ̂ , υ̂) are asymptotically
independent, and we consider inference separately for α∗ and (ζ, υ), in both cases fixing
Ω = Ω0 and Υ2 = Υ2

0.
The asymptotic distribution of T 1/2α̂∗: By the usual Taylor expansion of the likelihood

equations, we find that the equations for the asymptotic distribution of T 1/2α̂∗ are given by

tr{Ω−1
0 (dα∗) 〈Y ∗, Y ∗〉T (T 1/2α̂∗)′} = − tr{Ω−1

0 (dα∗)T 1/2 〈Y ∗, ε〉T}+ oP (1) for all dα∗,

and hence
ΣstatT

1/2α̂∗′ = −T 1/2 〈Y ∗, ε〉T + oP (1),

which by the Central Limit Theorem gives the result in (23).
The asymptotic distribution of T 1/2(ζ̂ , υ̂): Similarly, we find that the equations for de-

termining the limit distribution of (ζ̂ , υ̂) are

〈GT , GT 〉T (T 1/2ζ̂)α′0Ω−1
0 α0 + 〈GT , Z1T 〉T (T 1/2υ̂)′Ω−1

0 α0 = −T 1/2 〈GT , ε〉T Ω−1
0 α0 + oP (1),

(49)

〈Z1T , GT 〉T (T 1/2ζ̂)α′0Ω−1
0 + 〈Z1T , Z1T 〉T (T 1/2υ̂)′Ω−1

0 = −T 1/2 〈Z1T , ε〉T Ω−1
0 + oP (1).

(50)

Pre-multiplying (50) by 〈GT , Z1T 〉T 〈Z1T , Z1T 〉−1
T , post-multiplying it by α0, and subtracting

the result from (49) we find

〈GT , GT |Z1T 〉T (T 1/2ζ̂)α′0Ω−1
0 α0 = −〈GT , ε|Z1T 〉T Ω−1

0 α0,

which implies (24). Finally, inserting (24) into (50), we find (25).
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A.6 Proof of Theorem 5

The additive model is parametrized by the dynamic parameters (α, β,Γ1, . . . ,Γk−1), the para-
meters β′γ0

v , γ
se, ifmv = 0, and γ0

v , . . . , γ
mv−1
v , β′γmv

v , γse, ifmv ≥ 1, as well as the parameters
α′⊥Γγmv

v , γmv+1
v , . . . , γnv , where the latter are coeffi cients to regressors with bounded informa-

tion, see Definitions 1 and 2. Thus, for the asymptotic analysis, the last set of parameters
is irrelevant. The extended model is similarly parametrized by the dynamic parameters
(α, β,Γ1, . . . ,Γk−1), ρ′v = ᾱ′Υ0v = −β′γ0

v for mv ≥ 0, Υiv for 1 ≤ i ≤ mv, and Υse, as well
as the parameters Υiv,mv < i ≤ n + k. Again, the latter are coeffi cients to regressors with
bounded information and therefore not relevant.
Lemma 1 thus shows that there is a simple one-to-one relation between the relevant

parameters of the additive model and the relevant parameters in the extended model. The
likelihoods for the two models are therefore asymptotically the same. Consequently, the
results (26) and (27) follow directly from (23) and (24).
We next find that γ̆0

v , . . . , γ̆
mv−1
v , β̆′γ̆mv

v can be expressed in terms of ρ̂v, Υ̂1v, . . . , Υ̂mv ,v,
using that the maximum likelihood estimators of the dynamic parameters (α, β,Γ1, . . . ,Γk−1)
in both models are consistent (Theorem 3). That is, by Lemma 1,

−T 1/2β′0(γ̆iv − γiv0)M−1
T iv = −T 1/2ᾱ′0(Υ̂iv −Υiv0)M−1

T iv

+ T 1/2ᾱ′0

min{i,k,mv}∑
j=1

Φj0(γ̂i−jv − γi−jv0 )M−1
T iv

= −T 1/2ᾱ′0(Υ̂iv −Υiv0)M−1
T iv + oP (1)

and

T 1/2α′0⊥Γ0(γ̆iv − γiv0)M−1
T,i+1,v = −T 1/2α′0⊥(Υ̂i+1,v −Υi+1,v,0)M−1

T,i+1,v

+ T 1/2α′0⊥

min{i+1,k,mv}∑
j=2

Φj0(γ̂i+1−j
v − γi+1−j

v0 )M−1
T,i+1,v

= −T 1/2α′0⊥(Υ̂i+1,v −Υi+1,v,0)M−1
T,i+1,v + oP (1)

because MT,i−j,vM
−1
T iv → 0 for j = 1, . . . ,min{i, k,mv} and MT,i−j+1,vM

−1
T,i+1,v → 0 for j =

2, . . . ,min{i + 1, k,mv}. This proves (28) and (29). Note that T 1/2ᾱ′0(Υ̂iv − Υiv0)M−1
T iv is

neither asymptotically Gaussian nor mixed Gaussian.
Finally, (30) follows directly from vectorization of (14) and noting that

∑k
i=0M

i′
s ⊗Φi is

invertible by the proof of Theorem 2.

A.7 Proof of Theorem 6

The extended model : From (49) and (50) we find the equations to determine the limit
distribution of the maximum likelihood estimator T 1/2(ζ̂ , υ̂),

〈G,G〉 (T 1/2ζ̂)α′0Ω−1
0 α0 + 〈G,Z1〉 (T 1/2υ̂)Ω−1

0 α0
D→− 〈G, ε〉Ω−1

0 α0, (51)

〈Z1, G〉 (T 1/2ζ̂)α′0Ω−1
0 + 〈Z1, Z1〉 (T 1/2υ̂)Ω−1

0
D→− 〈Z1, ε〉Ω−1

0 . (52)

Eliminating T 1/2υ̂ from the equations, the right-hand side becomes

−〈G, ε〉Ω−1
0 α0 + 〈G,Z1〉 〈Z1, Z1〉−1 〈Z1, ε〉Ω−1

0 α0.
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Conditional on G, this expression has mean zero because α′0Ω−1
0 Wε is independent of α′0⊥Wε.

This implies that the limit distribution of T 1/2ζ̂ is mixed Gaussian as given in Theorem 4,
and subsequently that α′0⊥T

1/2υ̂ is Gaussian.
The additive model : We decompose γ − γ0 as

γ − γ0 = α(β′α)−1β′(γ − γ0) + β⊥(α′⊥β⊥)−1α′⊥(γ − γ0).

We note that ζ ′2 = −β′(γ − γ0)M−1
T0 and define φ

′ = T 1/2(α′⊥β⊥)−1α′⊥(γ − γ0)M−1
T1 as well as

α∗ = α− α0, Y
∗
t = β′0Yt−1. The corresponding likelihood is then based on

εt(α
∗, ζ, φ) = −α∗Y ∗t − αζ ′GTt − α(β′α)−1ζ ′2MT0M

−1
T1Z1Tt − β⊥φ′Z1Tt + εt,

see (39). We note that ζ2 appears in two places, but MT0M
−1
T1 → 0, and therefore the term

with ζ2 and Z1Tt disappears in the asymptotic analysis of the score and information, because
it is dominated by the term αζ ′GTt. Note also that α = α(α∗) and β = β(ζ) when we
calculate derivatives below.
Mimicking the analysis of the extended model, we find at the true values, α∗0 = 0, ζ0 =

0, φ0 = 0, the derivatives

Dα∗εt(α
∗, ζ, φ; dζ) = −(dα∗)Y ∗t ,

Dζεt(α
∗, ζ, φ; dζ) = −α0(dζ)′GTt − α0(β′0α0)−1(dζ2)′MT0M

−1
T1Z1Tt = −α0(dζ)′GTt + o(1),

Dφεt(α
∗, ζ, φ; dφ) = −β0⊥(dφ)′Z1Tt.

The scores for α∗ and ζ are given in (40) and (41), and for φ we find

T−1/2Sφ = − tr{Ω−1
0 β0⊥(dφ)′T 1/2 〈Z1T , ε〉T}

D→ − tr{Ω−1
0 β0⊥(dφ)′ 〈Z1, ε〉}.

The information matrix blocks Iα∗α∗ , Iζζ , and Ia∗ζ are given in (43), (44), and (47), respec-
tively, and for φ we find

T−1Iφφ = tr{Ω−1
0 β0⊥(dφ)′ 〈Z1T , Z1T 〉T (dφ)β′0⊥}+ oP (1)

D→ tr{Ω−1
0 β0⊥(dφ)′ 〈Z1, Z1〉 (dφ)β′0⊥},

T−1Iα∗φ = tr{Ω−1
0 (dα∗) 〈Y ∗, Z1T 〉T (dφ)β′0⊥}+ oP (1)

P→ 0,

T−1Iζφ = tr{Ω−1
0 α0(dζ)′ 〈GT , Z1T 〉T (dφ)β′0⊥}+ oP (1)

D→ tr{Ω−1
0 α0(dζ)′ 〈G,Z1〉 (dφ)β′0⊥}.

Thus, the only difference compared with the extended model is the factor β0⊥, which comes
from only estimating α′⊥γ from the coeffi cient to ∆Ut. It is seen that the limit information
is block-diagonal corresponding to α∗ and (ζ, φ), such that the asymptotic distribution of
T 1/2ᾰ∗ = T 1/2(ᾰ− α0) is as given in (26) in Theorem 5.
We find the equations for determining the limit distribution of the maximum likelihood

estimator T 1/2(ζ̆ , φ̆), compare (49) and (50),

〈G,G〉 (T 1/2ζ̆)α′0Ω−1
0 α0 + 〈G,Z1〉 (T 1/2φ̆)β′0⊥Ω−1

0 α0
D→− 〈G, ε〉Ω−1

0 α0, (53)

〈Z1, G〉 (T 1/2ζ̆)α′0Ω−1
0 β0⊥ + 〈Z1, Z1〉 (T 1/2φ̆)β′0⊥Ω−1

0 β0⊥
D→− 〈Z1, ε〉Ω−1

0 β0⊥. (54)

Eliminating T 1/2φ̆ from (53), we find the right-hand side

−〈G, ε〉Ω−1
0 α0 + 〈G,Z1〉 〈Z1, Z1〉−1 〈Z1, ε〉Ω−1

0 β0⊥(β′0⊥Ω−1
0 β0⊥)−1β′0⊥Ω−1

0 α0.
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If we condition on G, or equivalently on α′0⊥Wε, the right-hand side is Gaussian with mean
proportional to

E(〈Z1, ε〉Ω−1
0 β0⊥|α′0⊥Wε) = 〈Z1, ε〉α0⊥(α′0⊥Ω0α0⊥)−1α′0⊥β0⊥ 6= 0. (55)

Thus, the limit distribution of T 1/2ζ̆ is not mixed Gaussian, and the same holds for any
linear combination of T 1/2ζ̆.
If we eliminate T 1/2ζ̆ from the equations (53) and (54), we find that the right-hand side

becomes

〈Z1, G〉 〈G,G〉−1 〈G, ε〉Ω−1
0 α0(α′0Ω−1

0 α0)−1α′0Ω−1
0 β0⊥ − 〈Z1, ε〉Ω−1

0 β0⊥.

Conditional on G the distribution has mean −E(〈Z1, ε〉Ω−1
0 β0⊥|α′0⊥Wε), see (55), and the

limit distribution of T 1/2φ̆ is neither Gaussian nor mixed Gaussian, and the same holds for
any linear combination.
Comparison of information matrices: The limit of the information matrix for (ζ, υ) in

the extended model is, see (51) and (52),(
α′0Ω−1

0 α0 ⊗ 〈G,G〉 Ω−1
0 α0 ⊗ 〈G,Z1〉

α′0Ω−1
0 ⊗ 〈Z1, G〉 Ω−1

0 ⊗ 〈Z1, Z1〉

)
=

(
Iextζζ Iextζυ

Iextυζ Iextυυ

)
,

say. In the additive model the limit of the information matrix for (ζ, φ) is, see (53) and (54),(
α′0Ω−1

0 α0 ⊗ 〈G,G〉 α′0Ω−1
0 β0⊥ ⊗ 〈G,Z1〉

β′0⊥Ω−1
0 α0 ⊗ 〈Z1, G〉 β′0⊥Ω−1

0 β0⊥ ⊗ 〈Z1, Z1〉

)
=

(
Iaddζζ Iaddζφ

Iaddφζ Iaddφφ

)
.

We note that the left factors in the information matrix for (ζ, φ) satisfy the relation

α′0Ω−1
0 α0 − α′0Ω−1

0 β0⊥(β′0⊥Ω−1
0 β0⊥)−1β′0⊥Ω−1

0 α0 = α′0β0(β′0Ω−1
0 β0)−1β′0α0 > 0.

This has the consequence that

Iaddζζ − Iaddζφ (Iaddφφ )−1Iaddφζ

= α′0Ω−1
0 α0 ⊗ 〈G,G〉 − α′0Ω−1

0 β0⊥(β′0⊥Ω−1
0 β0⊥)−1β′0⊥Ω−1

0 α0 ⊗ 〈G,Z1〉 〈Z1, Z1〉−1 〈Z1, G〉
> α′0Ω−1

0 α0 ⊗ 〈G,G〉 − α′0Ω−1
0 α0 ⊗ 〈G,Z1〉 〈Z1, Z1〉−1 〈Z1, G〉

= α′0Ω−1
0 α0 ⊗ 〈G,G|∆Z〉 = Iextζζ − Iextζυ (Iextυυ )−1Iextυζ .

A.8 Proof of Theorem 7

Because the regressors with bounded information, Z2t, do not contribute in the asymptotic
analysis, see the proof of Theorem 4, we continue setting them equal to zero.
Normalization of parameters and an auxiliary model : We introduce the p× r matrix β0

of rank r and decompose Π as

Π = Πβ̄0β
′
0 + Πβ̄⊥0β

′
⊥0,

and define the auxiliary hypothesis

H = {Πβ̄⊥0 = 0 and β′0(γ0∗ − γ0∗
0 ) = 0}.
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We note that under the assumptions in H, Π = αβ′0 for α = Πβ̄0, such that

H = {Π = αβ′0 and β
′
0(γ0∗ − γ0∗

0 ) = 0}.

Thus, if β∗ = (β′, β′γ0∗)′ then

Hext
p ∩H = Hext

r ∩ {β∗ = β∗0}.

To facilitate the analysis of the test for rank, we introduce the extra hypothesis H in
models Hext

p and Hext
r , see Lawley (1956) for an early application of this idea or Johansen

(2002, p. 1947) and Johansen and Nielsen (2012) for applications to the (fractional) CVAR
model. We then find

LR(Hext
r |Hext

p ) =
maxHextr

LT (ξ,Ω)

maxHextp
LT (ξ,Ω)

=
maxHextp ∩H LT (ξ,Ω)

maxHextp
LT (ξ,Ω)

/
maxHextr ∩{β∗=β∗0} LT (ξ,Ω)

maxHextr
LT (ξ,Ω)

.

That is, instead of the rank test statistic, we analyze the ratio of two test statistics,

LR(Hext
r |Hext

p ) =
LR(H|Hext

p )

LR(β∗ = β∗0 |Hext
r )

. (56)

Analysis of LR(H|Hext
p ): We apply the formulas (36) and (37) for Hext

p , using α− α0 =
(Π− Π0)β̄0,

−Π(L)(γ − γ0)Zt = Π(γ0∗ − γ0∗
0 )N−1

T0Z0Tt − (Υ1 −Υ1
0)N−1

T1Z1Tt,

(Π(L)− Π0(L))Yt = −α∗Y ∗t − T 1/2Πβ̄′0⊥T
−1/2β′0⊥Yt−1,

where α∗ and Y ∗t are given in (38), such that for

ζ ′ = (T 1/2Πβ̄′0⊥,Π(γ0∗ − γ0∗
0 )N−1

T0 ) and GTt =

(
T−1/2β′0⊥Yt−1

Z0Tt

)
, (57)

we find the residuals

εt(ξ) = −α∗Y ∗t − ζ ′GTt − (Υ1 −Υ1
0)N−1

T1Z1Tt + εt.

This shows that the likelihood for Hext
p is maximized by regression of εt on (GTt, Y

∗
t , Z1Tt),

and the maximized likelihood function becomes

−2T−1 logLmax(Hext
p ) = log det 〈ε, ε|GT , Y

∗, Z1T 〉T = log det 〈ε, ε|GT , Z1T 〉T + oP (1)

because 〈ε, Y ∗〉T = OP (T−1/2). The hypothesis H is just ζ = 0, and we find similarly

−2T−1 logLmax(Hext
p ∩H) = log det 〈ε, ε|Y ∗, Z1T 〉T = log det 〈ε, ε|Z1T 〉T + oP (1).

It follows from

〈ε, ε|GT , Z1T 〉T = 〈ε, ε|Z1T 〉T − 〈ε,GT |Z1T 〉T 〈GT , GT |Z1T 〉−1
T 〈GT , ε|Z1T 〉T



The CVAR model with general deterministic terms 25

and 〈ε, ε|Z1T 〉T
P→ Ω0 that

−2 logLR(H|Hext
p ) = tr{Ω−1

0 T 1/2 〈ε,GT |Z1T 〉T 〈GT , GT |Z1T 〉−1
T T 1/2 〈GT , ε|Z1T 〉T}+ oP (1)

D→ tr{Ω−1
0 〈ε,G|Z1〉 〈G,G|Z1〉−1 〈G, ε|Z1〉}. (58)

Analysis of LR(β∗ = β∗0 |Hext
r ): The hypothesis we want to test here involves only β and

γ0∗, and because inference on (α∗,Ω) is asymptotically independent of inference on (β, γ0∗),
we can assume that α∗ = α∗0 = 0 and Ω = Ω0 for the asymptotic analysis of this statistic.
We now find for β = β0 + β⊥0β̄

′
⊥0(β − β0) that

−Π(L)|α∗=α∗0(γ − γ0)Zt = α0β
′(γ0∗ − γ0∗

0 )N−1
T0Z0Tt − (Υ1 −Υ1

0)N−1
T1Z1Tt,

(Π(L)− Π0(L))|α∗=α∗0Yt = −α0(β − β0)′β̄⊥0β
′
0⊥Yt−1.

We define GTt as above, see (57), and define

ζ ′ = (T 1/2β̄′⊥0(β − β0), β′(γ0∗ − γ0∗
0 )N−1

T0 ),

and note that the hypothesis β = β0 and β′γ0∗ = β′0γ
0∗
0 is again ζ = 0. We then find

Hext
r : εt(ξ) = −α0ζ

′GTt − (Υ1 −Υ1
0)N−1

T1Z1Tt + εt.

We split the residuals by multiplying by α′Ω0 = (α′0Ω−1
0 α0)′α′0Ω−1

0 and α′0⊥ into

α′Ω0εt(ξ) = −ζ ′GTt − α′Ω0(Υ
1 −Υ1

0)N−1
T1Z1Tt + α′Ω0εt,

α′0⊥εt(ξ) = −α′0⊥(Υ1 −Υ1
0)N−1

T1Z1Tt + α′0⊥εt.

The errors α′Ω0εt and α′0⊥εt are independent and both sets of residuals are analyzed by
regression, and we find

−2T−1 logLmax(Hext
r ) = log det

〈
α′Ω0ε, α

′
Ω0
ε|GT , Z1T

〉
T

+ log det 〈α′0⊥ε, α′0⊥ε|Z1T 〉T
and

−2T−1 logLmax(Hext
r ∩ {ζ = 0}) = log det

〈
α′Ω0ε, α

′
Ω0
ε|Z1T

〉
T

+ log det 〈α′0⊥ε, α′0⊥ε|Z1T 〉T .

The test of β∗ = β∗0 in Hext
r , using

〈
α′Ω0ε, α

′
Ω0
ε
〉−1

T

P→ α′Ω0Ω0αΩ0 = (α′0Ω−1
0 α0)−1, is

−2 logLR(β∗ = β∗0 |Hext
r )

= tr{α′0Ω−1
0 α0T

1/2
〈
α′Ω0ε,GT |Z1T

〉
T
〈GT , GT |Z1T 〉−1

T T 1/2
〈
GT , α

′
Ω0
ε|Z1T

〉
T
}+ oP (1)

D→ tr{Ω−1
0 α0(α′0Ω−1

0 α0)−1α′0Ω−1
0 〈ε,G|Z1〉 〈G,G|Z1〉−1 〈G, ε|Z1〉}. (59)

Analysis of LR(Hext
r |Hext

p ): By (56), the test for rank r converges to the difference
between (58) and (59), i.e.,

−2 logLR(Hext
r |Hext

p )
D→ tr{(Ω−1

0 −Ω−1
0 α0(α′0Ω−1

0 α0)−1α′0Ω−1
0 ) 〈ε,G|Z1〉 〈G,G|Z1〉−1 〈G, ε|Z1〉}.

Using the identity Ω−1
0 − Ω−1

0 α0(α′0Ω−1
0 α0)−1α′0Ω−1

0 = α0⊥(α′0⊥Ω0α0⊥)−1α′0⊥ and defining
εα⊥,t = (α′0⊥Ω0α0⊥)−1/2α′0⊥εt, we obtain the result.
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A.9 Proof of Theorem 8

The test that β′γ0
v = 0: We find from Theorem 5 and defining θ = T 1/2β̄′0⊥(β − β0), that

ζ ′Tv = T 1/2(θ̆′,−N−1
T0 β̆

′(γ̆0
v − γ0

v0))
D→ −〈εα, G, |Z1〉 〈G,G|Z1〉−1A1v = ζv, (60)

say, for a suitable selection matrix A1v. However, we cannot use (60) directly to test the
hypothesis that β′γ0

v = 0, because the result is not given in terms of β̆′γ̆0
v − β′0γ0

v0. Instead,
we use the expansion of T 1/2(β̆′γ̆0

v − β′0γ0
v0)M−1

T0v as

−T 1/2(θ̆′β′0⊥γ
0
v0T

−1/2M−1
T0v − β̆′(γ̆0

v − γ0
v0)M−1

T0v) = ζ ′Tv

(
−β′0⊥γ0

v0T
−1/2M−1

T0v

1

)
, (61)

and thus the asymptotic distribution depends on the relative orders of magnitude of the
two terms on the right-hand side; that is, on the relation between the normalizations T 1/2

and MT0v, and on the value of the parameter β′0⊥γ
0
v0. Haldrup (1996) encounters a similar

problem of different limit behaviour of estimators in the context of a Dickey-Fuller regression
with a slope coeffi cient. Here we have to consider two cases.
If β′0⊥γ

0
v0 = 0 or T−1/2M−1

T0v → c <∞, then

T 1/2(β̆′γ̆0
v − β′0γ0

v0)M−1
T0v = ζ ′Tv

(
−β′0⊥γ0

v0T
−1/2M−1

T0v

1

)
D→ ζ ′v

(
−β′0⊥γ0

v0c
1

)
.

On the other hand, if β′0⊥γ
0
v0 6= 0 and T−1/2M−1

T0v →∞, the estimator has to be renormalized
and we find

T (β̆′γ̆0
v − β′0γ0

v0) = ζ ′Tv

(
−β′0⊥γ0

v0

T−1/2M−1
T0v

)
D→ ζ ′v

(
−β′0⊥γ0

v0

0

)
.

Thus, in any case the asymptotic distribution of the suitably normalized estimator is mixed
Gaussian because ζ ′v is mixed Gaussian, see Theorem 5, and hence inference can be conducted
using likelihood ratio tests and the χ2-distribution.
The test that α′⊥Γγ0

v = 0: Similarly to (61) we expand

T 1/2(ᾰ′⊥Γ̆γ̆0
v−α′0⊥Γ0γ

0
v0)M−1

T1v = T 1/2α′0⊥Γ0(γ̆0
v−γ0

v0)M−1
T1v+T 1/2(ᾰ′⊥Γ̆−α′0⊥Γ0)γ̆0

vM
−1
T1v (62)

and define
η′Tv = (T 1/2α′0⊥Γ0(γ̆0

v − γ0
v0)M−1

T1v, T
1/2(ᾰ′⊥Γ̆− α′0⊥Γ0))

D→ η′v,

which by (26) and (29) is Gaussian. Then

T 1/2(ᾰ′⊥Γ̆γ̆0
v − α′0⊥Γ0γ

0
v0)M−1

T1v = η′Tv

(
1

γ̆0
vM

−1
T1v

)
,

and again there are two cases.
If M−1

T1v → c < ∞, then the asymptotic distribution of (62) is given by the asymptotic
distribution of

η′v

(
1
γ0
v0c

)
,

which is Gaussian. On the other hand, if MT1v → 0, we have to renormalize and find

T 1/2(ᾰ′⊥Γ̆γ̆0
v − α′0⊥Γ0γ

0
v0) = η′Tv

(
MT1v

γ̆0
v

)
D→ η′v

(
0
γ0
v0

)
,

which is also Gaussian, so that asymptotic inference can again be conducted using likelihood
ratio tests and the χ2-distribution.
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