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Abstract: We show tightness of a general M-estimator for multiple linear regression in time
series. The positive criterion function for the M-estimator is assumed lower semi-continuous
and suffi ciently large for large argument. Particular cases are the Huber-skip and quantile
regression. Tightness requires an assumption on the frequency of small regressors. We show
that this is satisfied for a variety of deterministic and stochastic regressors, including stationary
an random walks regressors. The results are obtained using a detailed analysis of the condition
on the regressors combined with some recent martingale results.
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JEL Classification: 22.

1 Introduction and summary

We show tightness for a class of regression M-estimators, where the objective function can be
non-monotonic and non-continuous. A prominent example of an estimator with a non-convex
objective functions is the skip estimator suggested by Huber (1964), where each observation
contributes to the objective function through a criterion function, which is quadratic in the
central part and horizontal otherwise. The tightness result addresses a diffi culty which is often
met in asymptotic analysis of problems, where the objective function is non-convex. A very
common solution is to assume a compact parameter space. Such an assumption circumvents the
problem through a condition on the unknown parameter and it is therefore rarely satisfactory
from an applied viewpoint. Instead, our result only requires an assumption that can be justified
by inspecting the observed regressors and the objective function.
We consider the multiple linear regression and use the notation

yi = µ+ x′niα + εi, i = 1, . . . , n, (1.1)

see (2.1) for assumptions on regressors and error term. The M-estimator for the parameter
(µ, α′)′ is the minimizer of the objective function

Rn(µ, α) =
1

n

n∑
i=1

ρ(yi − µ− x′niα), (1.2)
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3Nuffi eld College & Department of Economics, University of Oxford & Programme for Economic Modelling.
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for some criterion function ρ.M-estimators were originally introduced for location problems by
Huber (1964) but later extended to regression models, see Maronna, Martin, and Yohai (2006),
Huber and Ronchetti (2009), or Jurečková, Sen, and Picek (2012) for recent monographs on
the topic. The class of M-estimators considered includes the Huber-skip estimator, which has a
non-convex criterion function, as well as quantile regression estimators, in particular the least
absolute deviation, and least squares estimator, which all have a convex criterion function.
The asymptotic theory of the regression M-estimator is well understood for nice criterion

functions ρ.Maronna, Martin, and Yohai (2006, §10.9) provide an asymptotic theory for regres-
sion M-estimators and show existence and uniqueness for the case of a convex, differentiable
criterion function. Chen and Wu (1988) give two results on tightness (and consistency) for
more general criterion functions. In both cases the criterion function ρ(u) is continuous, non-
decreasing in u > 0 and non-increasing for u < 0. Their Theorem 1 shows tightness of µ̂ and
α̂ in the regression yi = µ+ x′iα+ εi, when (yi, x

′
i) are i.i.d. and Eρ(yi− µ− x′iα) has a unique

minimum. Their Theorem 4 shows tightness when xi is deterministic and satisfies a condition
on the frequency of small regressors.
In this paper we generalize the result of Chen and Wu (1988). We assume ρ is semi-

continuous and nonnegative with a minimum at zero and greater than ρ∗ > 0 for large values
of the argument. We also need an extra condition on the expected criterion function h(v),
which is assumed to take a value below ρ∗ somewhere in the central part of the distribution of
the error term. The only condition to the regressors is a condition on the frequency of small
regressors, which is weaker than the condition of Chen and Wu (1988), albeit stronger than the
conditions for the tightness of least square estimators. The latter illustrates the price we pay
by leaving the least squares criterion. The condition is related to a condition for deterministic
regressor used by Davies (1990) for S-estimators. Our condition is, however, formulated in
a slightly different way, which seems to be easier to check for particular regressors. Indeed,
we check the condition for a few situations. We give a number of examples with deterministic
regressors to illustrate the condition. We also show that the condition is satisfied for stationary
regressors and for random walk regressors.
It is worth noting that the innovations are neither required to have a zero expectation

nor a continuous density. Thus, the results apply both when the innovations follow a non-
contaminated reference distribution with density f0, say, and when they are contaminated so
that they follow a mixture distribution with density (1 − ε)f0 + εf1, say. For simplicity we
will, however, require that the innovations are identically distributed. This assumption could
potentially be relaxed as the proofs use martingale techniques rather than results designed for
an i.i.d. situation. All proofs are given in the appendix.

2 Model, assumptions and main result

We define the model and some notation and then give the assumptions and the tightness result.

2.1 Formulation of the multiple regression model

To define the multiple regression model we consider a filtration Fi, and errors εi, i = 1, . . . , n,
and assume εi is Fi measurable and independent of Fi−1 and i.i.d. The model is defined by
the equations

yi = µ+ x′niα + εi, i = 1, . . . , n. (2.1)
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The m-dimensional regressors xni may be deterministic, stationary or even stochastically or
deterministically trending. If xni is stochastic, we assume that it is adapted to Fi−1.
This notation is chosen to cover a number of cases. The leading case is yi = µ + x′iα + εi,

where the regressors do not depend on n, but in yi = µ + α1(i≤τn) + εi, the regressor 1(i≤τn)
depends on n. If the regressors are (1, i), we normalize the regressor as (1, i/n) and consider
yi = µ+ α(i/n) + εi, and if xi is a random walk we consider yi = µ+ α(xi/n

1/2) + εi.
An M-estimator (µ̂, α̂′)′ is a minimizer of

Rn(µ, α) =
1

n

n∑
i=1

ρ(yi − µ− x′niα). (2.2)

Special criterion functions are the Huber-skip defined by ρ(u) = min(u2, c2)/2, and the Hu-
ber estimator defined by the convex function ρ(u) = 1

2
u21(|u|≤c) + c(|u − c| + 1

2
c)1(|u|>c).

The formulation also covers least squares regression, ρ(u) = u2/2, and quantile regression,
ρ(u) = −(1 − p)u1(u<0) + pu1(u>0), for some 0 < p < 1. In particular for p = 1/2 we get the
least absolute deviation. Note that the two Huber estimators require that the scale is known,
whereas this is not a requirement for least squares and quantile regression. Finally if f is the
density of the errors then ρ(u) = − ln f(u) gives the maximum likelihood estimators.

2.2 The assumptions and the result on tightness

For the tightness result, we need a condition on the frequency of small regressors, see Assump-
tion 1(iii). This is related to the assumptions of Chen and Wu (1988) and Davies (1990), see
Section 3, where we also discuss how to check the condition in some specific situations.
The proof relies on a bound on the supremum of a family of martingales indexed by a

continuous parameter in a compact set, which is evaluated using a recent martingale result,
see Lemma 4.1 or Johansen and Nielsen (2016, Lemma 5.2). The proof requires a moment
condition that depends on the dimension of the regressors, see Assumption 1(iic). We refrain
from exploring the heterogeneity allowed by the martingale theory and require i.i.d. innovations
for specificity in Assumption 1(i).
The required assumptions on the criterion function ρ are modest. It must exceed a threshold

for large values of u, see (iib), but it need not rise monotonically from the origin. Lower
semi-continuity in (iia) is used to ensure the existence of a minimizer on a compact set, and
continuity is needed to find a measurable minimizer. The value of µ∗ is chosen so the shifted
criterion function ρ(εi − µ∗) has expectation less than ρ(u∗).
For the formulation of the assumptions and results we use the notation

zni =

(
1
xni

)
∈ Rm+1, β =

(
µ
α

)
, Σn = n−1

n∑
i=1

zniz
′
ni.

Assumption 1 (i) Let Fi, i = 1, . . . , n be a filtration and assume εi is measurable with respect
to Fi and independent of Fi−1 and i.i.d. with variance σ2.
(ii) The Criterion function satisfies ρ(u) ≥ 0, ρ(0) = 0 and the conditions

(a) ρ is lower semi-continuous so that lim infv→u ρ(v) ≥ ρ(u) for all u ∈ R;
(b) Let 0 < h(v) = E{ρ(εi − v)} <∞, and let µ∗, u∗ ∈ R exist so that

0 < h(µ∗) < ρ∗ = inf
|u|≥|u∗|

ρ(u);
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(c) E{ρ(εi − µ∗)}2
r
<∞ for some r ∈ N so that 2r > m+ 1 = dim zni.

(iii) Frequency of small regressors. Define

Fn(a) = sup
|δ|=1

Fnδ(a) = sup
|δ|=1

n−1
n∑
i=1

1(|z′niδ|≤a). (2.3)

Suppose
(a) lim(a,n)→(0,∞) P[sup|δ|=1{Fnδ(a)− Fnδ(0)} ≥ ε]→ 0 for all ε > 0;
(b) a 0 < ξ < 1 exists such that limn→∞ P{Fn(0) ≥ ξ} = 0.

We give some remarks on Assumption 1.

Remark 2.1 Assumption 1(iiib) implies that Σ̂n = n−1
∑n

i=1 zinz
′
in is positive definite, because

if δ′Σ̂nδ = 0, then z′niδ = 0 for i = 1, . . . , n, and Fnδ(0) = 1.

Remark 2.2 Assumption 1(iiia, b) implies that Σ̂n is bounded away from zero in large samples.
We prove this by noting that

δ′Σ̂nδ ≥ n−1
n∑
i=1

δ′zniz
′
niδ1(|z′niδ|>a) ≥ a2n−1

n∑
i=1

1(|z′niδ|>a) = a2{1− Fnδ(a)}.

Adding and subtracting Fnδ(0) and taking supremum over δ gives the further bound

δ′Σ̂nδ ≥ a2[1− sup
|δ|=1

Fnδ(0)− sup
|δ|=1
{Fnδ(a)− Fnδ(0)}] ≥ a2(1− ε− ξ) ≥ 0

with large probability for large n, for ε < 1− ξ chosen according to Assumption 1(iiia, b).

Remark 2.3 In some situations we get an inverse of the result in Remark 2.2. If the regressors
are deterministic and bounded and λn, the smallest eigenvalue of

∑n
i=1(xi− x̄)(xi− x̄)′, satisfies

lim infn→∞ λn > 0 then a > 0, ξ < 1 exist so that Fn(a) ≤ ξ and the Assumption 1(iiib)
is satisfied, see Chen and Wu (1988, Lemma 6). The argument depends critically on the
boundedness of the regressors.

Remark 2.4 If Fn(a) = oP(1) as (a, n)→ (0,∞) then Assumption 1(iii) is satisfied, because
Fnδ(a)−Fnδ(0) ≤ Fn(a). To be precise, it suffi ces that for all ε > 0, η > 0 there exist a0, n0 > 0
such that

P{Fn(a) ≥ η} ≤ ε for a ≤ a0, n ≥ n0. (2.4)

Chen and Wu (1988, Theorem 4) assume the regressors are deterministic and that Fn(a) = o(1)
as (a, n)→ (0,∞).

Remark 2.5 If Assumption 1(iiia, b) are satisfied and the regressors are deterministic, it holds
that lim sup(a,n)→(0,∞) Fn(a) ≤ ξ, see Davies (1990). We return to this issue in Section 3.1 and
Example 3.5.

We now give the main result on the evaluation of the objective function and the result on
tightness.
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Theorem 2.1 Tightness. Under Assumption 1, we can for all ε > 0 find B, n0 > 0, and a
set Cn with P (Cn) ≥ 1− ε for n ≥ n0, such that on Cn a minimizer β̂ of Rn(β) exists on the
set (β : |β| ≤ B) and any minimizer satisfies

|β̂| ≤ B.

Theorem 2.2 Measurability. Under Assumption 1, and if ρ is continuous, a measurable
minimizer β̂ of Rn(β) exists and satisfies

|β̂| = OP(1).

3 The assumption to the frequency of small regressors

In this section, we illustrate Assumption 1(iii) concerning the frequency of small regressors
through some examples. We relate it to the quantity λn(ξ) of Davies (1990), who considered
S-estimators for fixed regressors, and to a condition in Chen and Wu (1988). We show that our
condition is satisfied for a number of different regressors including random walks and stationary
processes with a boundedness condition on a conditional density.

3.1 Relation to conditions in the literature

Chen and Wu (1988, Theorem 4) show in the regression yi = µ+αxi + εi, that (µ̂, α̂)→
(µ0, α0) a.s. under the following conditions. The regressors are deterministic, the criterion
function is bounded, 0 < ρ(∞) = ρ(−∞) <∞, and Fn(a)→ 0 as (a, n)→ (0,∞), noting that
Fn is deterministic when the regressors are deterministic. These conditions are relaxed in this
paper, albeit we only consider weak consistency. We allow quite general time series regressors,
drop the condition ρ(∞) = ρ(−∞) <∞, and give a weaker Assumption 1(iii).

Davies (1990) considers S-estimators rather than M-estimators and proves tightness for
symmetric density f and deterministic regressors. He defines for 0 < ξ < 1

λn(ξ) = min
|S|=int(nξ)

min
|δ|=1

max
i∈S
|z′niδ|, (3.1)

where S are subsets of the indices i = 1, . . . , n. It is a consequence of his Theorem 3, that if
lim infn→∞ λn(ξ) > 0 for some ξ > 0, then the S-estimator for β is consistent. If ξ = 0 then
λn(0) = 0, and for ξ = 1 then λn(1) = min|δ|=1 max1≤i≤n |z′niδ|.
We next give a result that compares the condition lim infn→∞ λn(ξ) > 0 with Assumption

1(iiib) that lim sup(a,n)→(0,∞) Fn(a) ≤ ξ, and show that λn(ξ) is almost the inverse of Fn(a),
see Remark 2.5.

Theorem 3.1 Let the regressors be deterministic.
(i) For 0 ≤ ξ ≤ 1,

{Fn(a) > int(nξ)/n} ⊂ {λn(ξ) ≤ a} ⊂ {Fn(a) ≥ int(nξ)/n}.

(ii) The condition lim infn→∞ λn(ξ∗) > 0 for some 0 < ξ∗ < 1 is equivalent to the condition
that there exists 0 < ξ < 1 for which lim sup(a,n)→(0,∞) Fn(a) ≤ ξ.
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Figure 1: Illustration of Fnδ in the dummy variable case

3.2 Regression with deterministic regressors

In the following we give some examples of simple regressors and show that Assumption 1(iii)
is satisfied. We apply a simple evaluation given in the next result.

Lemma 3.1 For any 0 ≤ c ≤ 1/2, |θ| < π/2

| − sin θ + x cos θ| ≤ c ⇒ 1

cos θ
≤ 2(1 + |x|). (3.2)

We consider first the regression yi = µ + α1(i≤τn) + εi, and then the regressions yi =
µ+ α(i/n)q + εi, for different q.

Example 3.1 The regression yi = µ + α1(i≤τn) + εi for some 0 < τ < 1. We show that
zni = {1, 1(i≤τn)}′ satisfies Assumption 1(iii). We use a geometric proof illustrated by Figure 1.
The regressors take values in the points (1, 0) and (1, 1) with frequency 1−τ and τ , respectively.
The direction δ = (− sin θ, cos θ)′ for θ = π/4 is illustrated with a diameter. The radial through
(1, 1) is the orthogonal complement with angle θ. The two parallel lines at a distance of a to
the radial indicate which points are counted towards Fnδ(a). Thus, by varying θ, and thereby
turning the diameter, we see that if a is suffi ciently small, 0 ≤ a < 1/2 say, then Fn(a) =
sup|δ|=1 Fnδ(a) = max(τ , 1−τ). In particular Fnδ(a)−Fnδ(0) = 0 and Fn(0) = max(τ , 1−τ) < 1
so that Assumption 1(iii) is satisfied. However, since Fn(0) > 0, the assumption Fn(a) → 0,
(a, n)→ (0,∞), used by Chen and Wu (1988), is not satisfied, see also Remark 2.4.

Example 3.2 The regression yi = µ + α(i/n)q + εi, with q > 0. In terms of Figure 1,
the points zni = {1, (i/n)q}′ are spaced on the line between the points (1, 0) and (1, 1). For
large n, their distribution can be described by the density q−1x1/q−1, x ∈ [0, 1]. For |δ′zni| =
| − sin θ + (i/n)q cos θ| ≤ a, cos θ > 0, the basic inequality is in all cases

−a+ sin θ

cos θ
≤ (i/n)q ≤ a+ sin θ

cos θ
. (3.3)
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This describes an interval for i of length n{(a+sin θ)1/q−(−a+sin θ)1/q}/(cos θ)1/q for sin θ > a.
For q = 1, the density q−1x1/q−1 is uniform on [0, 1], and we can use the inequality, see (3.2),

that (cos θ)−1 ≤ 2/(1− a). It follows that the length of the interval is bounded by 2na/ cos θ ≤
4na/(1− a), such that Fn(a) ≤ 4a/(1− a)→ 0, for (a, n)→ (0,∞), and Assumption 1(iii) is
satisfied.
For q > 1, the density q−1x1/q−1 has most mass close to x = 0 and the largest number of

points in the interval we find for θ small. The smallest value is found for (sin θ−a)/ cos θ = n−q,
such that sin θ − a = O(n−q), and cos θ = (1 − a2)1/2{1 + O(n−q)}. It follows that Fn(a) ≤
c{2a/(1− a2)1/2}1/q → 0, for (a, n)→ (0,∞).
Finally if 0 < q < 1 the density gives most mass to points close to 1, so we choose an

interval using sin θ close to π/4, that is (sin θ + a)/ cos θ = 1. This implies sin θ = 1/
√

2 −
a + o(a) and cos θ = {1 − (1/

√
2 − a)2}1/2{1 + o(a)} = 1/

√
2 + o(a). This gives the bound

Fn(a) ≤ c{(1/
√

2)1/q − (1/
√

2− 2a)1/q}/(1/
√

2)1/q → 0, for (a, n)→ (0,∞).

Example 3.3 The regression yi = µ + α(i/n)q + εi, with −1/2 < q < 0. The density of the
points is now |q|−1x1/q−1 on the interval [1,∞[. This has most mass close to x = 1 and again we
should choose θ close to π/4 such that (sin θ−a)/ cos θ = 1. This implies sin θ = 1/

√
2+a+o(a)

and cos θ = {1−(1/
√

2+a)2}1/2{1+o(a)} = 1/
√

2+o(a). In this case the interval for i becomes

n(
a+ sin θ

cos θ
)1/q ≤ i ≤ (

−a+ sin θ

cos θ
)1/qn = n{1 + o(a)}

and we find an upper bound of the form Fn(a) ≤ c{(1/
√

2)1/q−(2a+1/
√

2)1/q}/(1/
√

2)1/q → 0,
for (a, n)→ (0,∞).

In Examples 3.1, 3.2, and 3.3, the normalization is such that n−1
∑n

i=1 x
2
ni = O(1). Thus

for q > −1/2 we have

n−1
n∑
i=1

x2ni = n−1
n∑
i=1

(i/n)2q →
∫ 1

0

u2qdu = (1 + 2q)−1.

In these cases the regression is yi = µ+α(i/n)q+εi and Theorem 2.1 proves tightness of (µ̂, α̂).
In Theorem 2.1, Assumption 1(iii, a) to Fn is a suffi cient condition for tightness of β̂. The

necessity of Assumption 1(iii, a) for tightness of β̂ depends on the choice of criterion function.
For a least squares criterion it is not necessary. For a Huber-skip criterion it is also not
necessary. We give an example.

Example 3.4 Let ρ be the Huber-skip function and let zni = (1, 1(i=n))
′, such that

n∑
i=1

ρ(εi − µ− α1(i=n)) =
n−1∑
i=1

ρ(εi − µ) + ρ(εn − µ− α),

which shows that α̂(µ) = εn − µ. Inserting this we find the objective function for the Huber-
skip location problem (with n − 1 observations). It follows from Theorem 2.1, that µ̂ is tight,
such that also α̂ = εn − µ̂ is tight. On the other hand we find for 0 < a < 1, the function
Fn(a) = n−1

∑n
i=1 1(|zi|≤a) = (n− 1)/n −→ 1, for (a, n) −→ (0,∞).

Example 3.5 In the regression zni = (1, 1), i ≤ n/4 and zni = (1, 2−i), n/4 < i ≤ n we find
Fn(0) = int(n/4)/n→ 1/4 and Assumption 1(iiib) is satisfied, but lim(a,n)→(0,∞) sup|δ|=1{Fnδ(a)−
Fnδ(0)} = 3/4 so Assumption 1(iiia) is not satisfied. However, lim sup(a,n)→(0,∞) Fn(a) ≤ ξ =
3/4, so the condition of Davies is satisfied.
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3.3 Regression with multiple stochastic regressors

For this case we give two examples, where in first example xni is a random walk normalized
by n−1/2 and in the second a stationary process. In these cases, we give a condition on the
density for Assumption 1(iii) to be satisfied.

Theorem 3.2 (Random walk regressor) Let zni = (1, n−1/2x′i)
′ where xi is a multivariate ran-

dom walk xi =
∑i

j=1 ηj and ηj are i.i.d. (0,Φ) of dimension m. Assume the density of
γ′xi/(iγ

′Φγ)1/2 is bounded uniformly in |γ| = 1 and i = 1, . . . , n.
Then Fn(a) = oP(1), for (a, n)→ (0,∞), such that Assumption 1(iii) holds.

Theorem 3.3 (Stationary regressor) Let zni = zi = (1, x′i)
′ where xi is stationary of dimension

m. Let the conditional density of γ′xi given Gi−1 = σ(x1, . . . , xi−1) be bounded uniformly in
(x1, . . . , xi−1, xi) and |γ| = 1, γ ∈ Rm.
Then Fn(a) = oP(1), for (a, n)→ (0,∞), such that Assumption 1(iii) holds.

Theorems 3.2 and 3.3 involve conditions to certain conditional densities. These are satisfied
in a variety of situations. We give some simple examples.

Example 3.6 The assumption on the conditional density in Theorem 3.2 is satisfied for a
random walk with normal innovations. Indeed if ηj are independent normal Nm(0,Φ) with
positive definite covariance Φ, then γ′xi/(iγ′Φγ)1/2 is N(0, 1) for any |γ| = 1.

Example 3.7 The assumption on the conditional density in Theorem 3.3 is satisfied for a
stationary autoregressive process xi with Gaussian innovations. Indeed, if xi = αxi−1 + ηi with
ηi i.i.d. Nm(0,Φ) with positive definite variance Φ, then γ′xi given Gi−1 is N(γ′αxi−1, γ

′Φγ).
The conditional density is bounded in the mean, while the variance γ′Φγ is finite and bounded
away from zero when |γ| = 1.

4 On the supremum of families of martingales

We will need some results bounding the supremum of a family of martingales indexed by a
parameter in a compact set of Rm. These results build on the following result taken from
Johansen and Nielsen (2016) concerning the maximum of finitely many martingales.

Lemma 4.1 (Johansen and Nielsen 2016, Theorem 5.2) Let Fi be an increasing sequence of
σ-fields and let un`i be Fi adapted with E(u2

r

n`i) < ∞, r ∈ N, ` = 1, . . . , L, i = 1, . . . , n, and
let ς and λ be positive real numbers defined by

L = O(nλ), (4.1)

max
1≤q≤r

E( max
1≤`≤L

n∑
i=1

Ei−1u
2q

n`i) = O(nς). (4.2)

Then, if ν is chosen such that

(i) : ς < 2ν, (ii) : ς + λ < ν2r,

it holds that

max
1≤`≤L

|
n∑
i=1

(un`i − Ei−1un`i)| = oP(nν). (4.3)
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We prove a similar result for a family of martingales with a parameter κ ∈ Rm+1 which
lies in the intersection of a compact subset K and a ball B(κ0, Bn

−φ) centered in κ0 and with
radius Bn−φ. This result is applied in the proof of Theorem 3.3 for stationary regressors.

Theorem 4.1 Let Fi be an increasing sequence of σ-fields while K is a compact subset of
Rm+1. Consider a family of Fi measurable random variables uni(κ) with E|uni(κ)| < ∞ for
κ ∈ K, and normalized by uni(κ0) = 0 for some κ0 ∈ K. We define the martingales

Mn(κ) =

n∑
i=1

{uni(κ)− Ei−1uni(κ)} for κ ∈ K. (4.4)

Choose B > 0 and r such that 2r > 3 +m, and Fi−1-measurable random variables Ani(κ), such
that, for all 1 ≤ p ≤ 2r and φ ≥ 0 and κ ∈ K,

Ei−1 sup
κ̃∈B(κ,Bn−φ)∩K

|uni(κ)− uni(κ̃)|p ≤ n−φAni(κ). (4.5)

Let η, ν satisfy either of

Case 1 : η = 0, ν > 1/2, Case 2 : 0 < η < 1/2, ν = 1/2.

Suppose

n−1
n∑
i=1

E{ sup
κ∈B(κ0,Bn−η)∩K

Ani(κ)} ≤ C. (4.6)

Then it holds
sup

κ∈B(κ0,Bn−η)∩K
|Mn(κ)| = oP(nν). (4.7)

Lemma 4.1 is also used to prove the next result concerning a special class of martingales
needed in the proof of Theorem 2.1.

Theorem 4.2 Let ui be an Fi martingale difference sequence while zni ∈ Rm+1 is Fi−1 adapted,
where m ∈ N. Choose ν > 1/2 and r so that m+ 1 < ν2r. Let E

∑n
i=1 |ui|2

r
= O(n). Then

sup
|δ|=1
|

n∑
i=1

ui1(δ′zni=0)| = oP(nν).

Note that in Theorem 4.1, Assumption (4.5) implies that for φ > 0, Ei−1|uni(κ)− uni(κ̃)|p
is smooth in (κ, κ̃), whereas in Theorem 4.2 we find

Ei−1|ui1(δ′zni=0) − ui1(δ̃′zni=0)|
p = |1(δ′zni=0) − 1

(δ̃
′
zni=0)

|pE|ui|p,

which is not smooth in (δ, δ̃). The analysis in Theorem 4.2 of this situation is made possible
by the very explicit dependence on δ, which is analyzed in Lemma A.1.
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5 Conclusion and discussion

We have investigated tightness for M-estimators for the multiple regression model with sto-
chastic regressors and unrestricted parameters. The leading case of a robust M-estimator is the
Huber-skip proposed by Huber in (1964). As an assumption for the main result on tightness
(Theorem 2.1) we introduced a condition on the frequency of small regressors to show that
the objective function is uniformly bounded away from zero for large parameter values. This
applies for random regressors. It is weaker than the condition given by Chen and Wu (1988) for
deterministic regressors. It is related to the condition of Davies (1990) for S-estimators with
deterministic regressors. This condition is not so easy to check in specific examples, but it is
verified for some deterministic regressors and stochastic regressors that are either stationary
or random walks.

A Appendix

We have here collected all the proofs of the results in the previous sections.

Proof of Theorem 3.1. With |θ| < π/2 we have cos θ > 0. Writing tan θ = y and
(− sin θ, cos θ) = (−y, 1)/

√
1 + y2, noting 0 ≤ c ≤ 1/2, the inequality is therefore equivalent

to
|x− y| ≤ c

√
1 + y2 ≤ 1/2

√
1 + y2 ≤ 1/2(1 + |y|),

using
√

1 + y2 ≤ 1 + |y|. Further, using first the triangle inequality and then the above in-
equalities shows

1 + |y| ≤ 1 + |x|+ |y − x| ≤ 1 + |x|+ 1/2(1 + |y|),
so that (1 + |y|) ≤ 2(1 + |x|), and hence 1/ cos θ =

√
1 + y2 as bounded by first 1 + |y| and

then 2(1 + |x|).

A.1 Proof of tightness

Proof of Theorem 2.1. (a) Behavior of the criterion function for large |β|. Using yi =
β′0zni + εi we find

ρ(yi − z′niβ) = ρ{εi − (µ− µ0)− x′ni(α− α0)} = ρ{εi − z′ni(β − β∗)− µ∗},

where
β∗ = (µ0 + µ∗, α

′
0)
′.

Assumption 1(iib) shows that µ∗, u∗ ∈ R exists so that h∗ = h(µ∗) = Eρ(εi − µ∗) < ρ∗ =
inf |u|≥|u∗| ρ(u). We then give a condition for ρ{εi − z′ni(β − β∗)− µ∗} to be greater than ρ∗ for
large |β − β∗|. Define the direction δ = (β − β∗)/|β − β∗|, and length λ = |β − β∗|, so that
β − β∗ = λδ, |δ| = 1, and z′ni(β − β∗) = λz′niδ.
Then, for |εi| ≤ A and |z′niδ| ≥ a, and λ ≥ (A+ |u∗|+ |µ∗|)/a,

|εi − z′ni(β − β∗)− µ∗| ≥ |z′ni(β − β∗)| − |εi| − |µ∗| ≥ λa− A− |µ∗| ≥ |u∗|.

Hence ρ(εi − z′ni(β − β∗)− µ∗) ≥ ρ∗ for |z′niδ| ≥ a and large λ, but not uniformly in δ.
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(b) A set Cn with large probability. We define mi = ρ(εi − µ∗)− h∗ and the martingale

Mn(δ) = n−1
n∑
i=1

mi1(|z′niδ|>0) = n−1
n∑
i=1

mi − n−1
n∑
i=1

mi1(|z′niδ|=0).

Assumption 1(iic) implies that the first term is oP(1) by the Law of Large Numbers for mar-
tingales, and the second term is oP(1) uniformly in δ by Theorem 4.2 used with ν = 1.
Next we find by the Law of Large Numbers that n−1

∑n
i=1 1(|εi|≥A) → P(|ε1| ≥ A), which

is small for large A. Moreover, P[sup|δ|=1{Fnδ(a) − Fnδ(0)} ≥ ε] → 0 while, for some ξ < 1,
P{sup|δ|=1 Fnδ(0) ≥ ξ} → 0 by Assumption 1(iii). Collecting these results, we define below
sets Cn with large probability. That is, for all ε, η > 0 there exists A0, a0, n0 > 0 such that for
all A ≥ A0, n ≥ n0, a ≤ a0 the sets Cn defined by the inequalities

sup
|δ|=1
|Mn(δ)| ≤ η, (A.1)

n−1
n∑
i=1

1(|εi|≥A) ≤ η, (A.2)

Fn(0) = sup
|δ|=1

Fnδ(0) ≤ ξ, (A.3)

sup
|δ|=1
{Fnδ(a)− Fnδ(0)} ≤ η. (A.4)

have probability P(Cn) ≥ 1− ε.
(c) Reformulation of Rn(β) − Rn(β∗). We note that Rn(β) − Rn(β∗) does not depend on

the terms with z′niδ = 0, and therefore define

R̃n(β) = n−1
n∑
i=1

ρ(εi − λz′niδ − µ∗)1(|z′niδ|>0),

such that Rn(β)−Rn(β∗) = R̃n(β)− R̃n(β∗).
(d) Lower bound for R̃n(β) on Cn for large |β−β∗| uniformly in δ. Delete terms for which

|εi| ≥ A or |z′niδ| ≤ a and take |β−β∗| = λ ≥ (A+u∗+ |µ∗|)/a, so that ρ(εi−λz′niδ−µ∗) ≥ ρ∗
by item (a). Then,

R̃n(β) ≥ n−1
n∑
i=1

ρ(εi − λz′niδ − µ∗)1(|εi|<A)1(|δ′zni|>a) ≥ ρ∗n
−1

n∑
i=1

1(|εi|<A)1(|δ′zni|>a).

Use that for sets A and B, 1A∩B ≥ 1− 1Ac − 1Bc so that

R̃n(β) ≥ ρ∗{1− n−1
n∑
i=1

1(|εi|≥A) − Fnδ(a)}.

Now, on the set Cn use (A.2) and (A.4) so that

R̃n(β) ≥ ρ∗{1− η − Fnδ(a)}
≥ ρ∗[1− η − sup

|δ|=1
{Fnδ(a)− Fnδ(0)} − Fnδ(0)] ≥ ρ∗{1− Fnδ(0)− 2η}.
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(e) Upper bound for R̃n(β∗) on Cn. Using mi = ρ(εi − µ∗)− h∗ we find

R̃n(β∗) = n−1
n∑
i=1

{ρ(εi − µ∗)− h∗ + h∗}1(|z′niδ|>0) = Mn(δ) + h∗n
−1

n∑
i=1

1(|z′niδ|>0).

Recall the definition of Fnδ(0) and use (A.1) to get

R̃n(β∗) ≤ η + h∗n
−1

n∑
i=1

1(|z′niδ|>0) = η + h∗{1− Fnδ(0)}.

(f) Combine (d) and (e) to get a uniform positive lower bound for R∗n(β)−R∗n(β∗).

Rn(β)−Rn(β∗) ≥ ρ∗{1− Fnδ(0)− 2η} − h∗{1− Fnδ(0)} − η
= −η(2ρ∗ + 1) + ρ∗{1− Fnδ(0)}(1− h∗/ρ∗).

The bound (A.3) to Fnδ(0) ≤ Fn(0) ≤ ξ < 1 then shows that, uniformly in |δ| = 1 and
|β − β∗| > (A+ u∗ + |µ∗|)/a = B0, say, then

Rn(β)−Rn(β∗) ≥ −η(2ρ∗ + 1) + ρ∗(1− ξ)(1− h∗/ρ∗).

By Assumption 1(iib), 1− h∗/ρ∗ > 0, such that the lower bound is positive when η < ρ∗(1−
ξ)(1 − h∗/ρ∗)/(2ρ∗ + 1). Thus, inf |β−β∗|≥B0 Rn(β) > Rn(β∗) but Rn(β∗) ≥ inf |β−β∗|≤B0 Rn(β)
on Cn.
(g) Existence of minimizer. The objective function is lower semi-continuous on the compact

(|β − β∗| ≤ B0) by Assumption 1(iia), and therefore attains its minimum, and any minimizer
is in the set (|β| ≤ B) for B = B0 + |β∗|.

Proof of Theorem 2.2. If further ρ is continuous we can apply the argument of Jennrich
(1969) and construct a measurable minimizer, β̂, with value in the compact set (|β| ≤ B), such
that β̂ is tight.

A.2 Proof of martingale results

Proof of Theorem 4.1. We study the martingale Mn(κ) =
∑n

i=1{uni(κ)−Ei−1uni(κ)}, see
(4.4), on sets of the form B(κ0, Bn

−η)∩K. We prove (4.7) in the situations

Case 1 : η = 0, ν > 1/2, Case 2 : 0 < η < 1/2, ν = 1/2.

(a) Chaining argument. With the assumption 2r > 2 +m+ 1 we can choose ζ such that

1/2 < ζ < (2r−1 − 1)/(m+ 1). (A.5)

For 0 ≤ η < 1/2, cover B(κ0, Bn
−η)∩K by L = O{n(ζ−η)(m+1)} balls B(κ`, n

−ζ) with radius
n−ζ and centers κ` ∈ B(κ0, Bn

−η) ∩ K for ` = 1, . . . , L. Note that L = O{n(ζ−η)(m+1)} → ∞.
For all κ ∈ B(κ0, Bn

−η)∩K, we choose κ` such that B(κ`, Bn
−ζ) covers κ. Use chaining to get

sup
κ∈B(κ0,Bn−η)∩K

|Mn(κ)| ≤ max
1≤`≤L

|Mn(κ`)|+ max
1≤`≤L

sup
κ∈B(κ`,Bn−ζ)∩K

|Mn(κ)−Mn(κ`)| = Rn1 +Rn2.
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We need a martingale bound for Rn2. Define

kni(κ`, n
−ζ) = sup

κ∈B(κ`,Bn−ζ)∩K
|uni(κ)− uni(κ`)|.

Applying the triangle inequality and then |X − EX| ≤ (|X| − E|X|) + 2E|X| and defining

M̃n2` =
n∑
i=1

{kni(κ`, n−ζ)− Ei−1kni(κ`, n−ζ)}, Mn2` =

n∑
i=1

Ei−1kni(κ`, n
−ζ)

gives the bound Rn2 ≤ max1≤`≤L(M̃n2` + 2Mn2`). We then prove (4.7) by applying Lemma
4.1 to the martingales Mn(κ`) and M̃n2` while boundingMn2`.
(b) The term max1≤`≤L |Mn(κ`)| = Rn1. We apply Lemma 4.1 to the martingale Mn(κ`)

defining un`i = uni(κ`). Let λ = (ζ − η)(m + 1) in (4.1). We argue that ς = 1 − η in (4.2).
Indeed, we find from (4.5) with φ = η, and 1 ≤ p ≤ 2r, because uni(κ0) = 0,

Ei−1 sup
κl∈B(κ0,Bn−η)∩K

|uni(κ`)|p = Ei−1 sup
κl∈B(κ0,Bn−η)∩K

|uni(κ`)− uni(κ0)|p ≤ n−ηAni(κ0),

uniformly in `, p. Since
∑n

i=1 EAni(κ0) = O(n) by (4.6) we get, see (4.2),

max
1≤p≤2r

E( max
1≤`≤L

n∑
i=1

Ei−1|un`i|p) ≤ n−η
n∑
i=1

E{Ani(κ0)} ≤ Cn1−η = O(nς).

We then check the conditions of Lemma 4.1 :

(i) : 0 < ς = 1− η < 2ν, (ii) : ς + λ = 1− η + (ζ − η)(m+ 1) < ν2r.

Condition (i) is satisfied in Case 1 since 1 − η = 1 and 2ν > 1 and in Case 2 since 1 − η < 1
and 2ν = 1. Condition (ii) is satisfied in Case 1 and 2 by the choice of ζ in (A.5), because for
0 ≤ η and ν ≥ 1/2

ς + λ = 1− η + (ζ − η)(m+ 1) ≤ 1 + ζ(m+ 1) < 1 +
2r−1 − 1

m+ 1
(m+ 1) = 2r−1 ≤ ν2r.

Applying (4.3) of Lemma 4.1, we get max1≤`≤L |Mn(κ`)| = Rn1 = oP(nν) in both cases.
(c) The term max1≤`≤LMn2`. Use (4.5) for φ = ζ to get

Ei−1k
p
ni(κ`, n

−ζ) ≤ n−ζAni(κ`) ≤ n−ζ sup
κ∈B(κ0,Bn−η)∩K

Ani(κ), (A.6)

uniformly in κ` and 1 ≤ p ≤ 2r. We then find from (4.6) that

E max
1≤`≤L

n∑
i=1

Ei−1k
p
ni(κ`, n

−ζ) ≤ n−ζ
n∑
i=1

E{ sup
κ∈B(κ0,Bn−η)∩K

Ani(κ)} = O(n1−ζ) = o(nν), (A.7)

since ν ≥ 1/2 > 1 − ζ by (A.5). In particular for p = 1 we find Emax1≤`≤LMn2` = o(nν) so
that, by the Chebychev inequality, max1≤`≤LMn2` = oP(nν).

(d) The term max1≤`≤L M̃n2`. We apply Lemma 4.1 to the martingale M̃n2` using un`i =
kni(κ`, Bn

−ζ). Due to (A.7) we can choose λ = (ζ − η)(m + 1) and ς = 1 − ζ. Noting that
ζ > 1/2 > η then ς = 1− ζ ≤ 1− η, which was the value of ς chosen in item (b). We can then
proceed as in (b) to get max1≤`≤L M̃n2` = oP(nν).

For the proof of Theorem 4.2 we need the following Lemma. For any 0 6= v ∈ Rm+1 we
define v⊥ as an (m+ 1)×m matrix of rank m for which v′v⊥ = 0.

13



Lemma A.1 For i = 1, . . . , n, let ui be random variables while zi are random vectors in Rm+1.
Let

Sn(δ) =

n∑
i=1

ui1(δ′zi=0).

For m = 0 we define Mn =
∑n

i=1 ui1(zi=0) and find Sn(δ) = Mn.
For m = 1 we define for 1 ≤ `1 ≤ n+ 1

Mn`1 =

`1−1∑
i=1

ui1(zi=0) +

n∑
i=`1

ui1(z`1 6=0,(z`1 )′⊥zi=0), (A.8)

and find
sup
|δ|=1
|Sn(δ)| ≤ max

1≤`1≤n+1
|Mn`1|. (A.9)

For m > 1 we define for 1 ≤ `1 ≤ · · · ≤ `m ≤ n+ 1 the martingales

Mn,`1,`2,....`m =
m∑
k=0

`k+1−1∑
i=`k

ui1{z(0)`1 6=0,...,z
(k−1)
`k

6=0, z(k)i =0}, (A.10)

where we write `0 = 1 and `m+1 = n + 1. Here z(0)i = zi, and for k = 1, . . . ,m we define
recursively for z(k−1)`k

6= 0, z
(k)
i = (z

(k−1)
`k

)′⊥z
(k−1)
i for i = `k, . . . , `k+1 − 1. Then

max
|δ|=1
|Sn(δ)| ≤ max

1≤`1≤···≤`m≤n+1
|Mn`1,...,`m |. (A.11)

Proof of Lemma A.1. (a) The case m = 0. If zi ∈ R, then δ = ±1, and δ′zi = 0 if and only
if zi = 0, such that Sn(δ) = Mn.

(b) The case m = 1. In order to find an expression for Sn(δ), we define the stopping time
sδ1 with respect to the filtration generated by zi, as the first index i for which δ

′zi = 0 and
zi 6= 0. If no such i exists, we let sδ1 = n + 1. For i < sδ1 this means that either δ

′zi 6= 0
or zi = 0. If δ′zi 6= 0, then 1(δ′zi=0) = 1(zi=0) = 0 and if zi = 0 then 1(δ′zi=0) = 1(zi=0) = 1,

such that
∑sδ1−1

i=1 ui1(δ′zi=0) =
∑sδ1−1

i=1 ui1(zi=0). For i = sδ1 we find zsδ1 6= 0 and δ′zsδ1 = 0, and
because m = 1, δ ∈ R2 is proportional to (zsδ1)⊥, and therefore δ

′zi ∝ (zsδ1)
′
⊥zi for i ≥ sδ1. Thus∑n

i=sδ1
ui1(δ′zi=0) =

∑n
i=sδ1

ui1{z
sδ1
6=0,(z

sδ1
)′⊥zi=0}, and

Sn(δ) =

n∑
i=1

ui1(δ′zi=0) =

sδ1−1∑
i=1

ui1(zi=0) +

n∑
i=sδ1

ui1{z
sδ1
6=0,(z

sδ1
)′⊥zi=0}. (A.12)

We now compare with the martingales Mn`1
, see (A.8). For all sample paths and all δ we have

the evaluation

|Sn(δ)| = |
sδ1−1∑
i=1

ui1(zi=0) +

n∑
i=sδ1

ui1{z
sδ1
6=0,(z

sδ1
)′⊥zi=0}| ≤ max

1≤`1≤n+1
|Mn`1 |,

and hence (A.9) holds for m = 1.
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(c) The case m > 1. We use the stopping time sδ1, and define the regressors z
(0)
i = zi, i < sδ1

and z(1)i = {z(0)
sδ1
}′⊥z

(0)
i , s

δ
1 ≤ i. Then z(0)

sδ1
6= 0 and δ′z(0)

sδ1
= 0, so that δ = δ0 = {z(0)

sδ1
}⊥δ1 for

some δ1 ∈ Rm−1 and hence δ′z(0)i = δ′1{z
(0)

sδ1
}′⊥z

(0)
i = δ′1z

(1)
i . By the argument leading to (A.12),

we then find
n∑
i=1

ui1{δ′z(0)i =0} =

sδ1−1∑
i=1

ui1{z(0)i =0} +

n∑
i=sδ1

ui1{z(0)
sδ1

6=0,δ′1z
(1)
i =0}. (A.13)

Then we have expressed the sum from 1 to n involving an m+ 1 dimensional parameter δ and
regressors z(0)i in terms of a sum from sδ1 to n involving an m dimensional parameter δ1 and
regressors z(1)i . Therefore we define recursively stopping times sδk, parameters δk ∈ Rm+1−k,
and regressors z(k)i , for k = 2, . . . ,m

sδk = min{i : δ′k−1z
(k−1)
i = 0, z

(k−1)
i 6= 0},

δk−1 = {z(k−1)
sδk
}⊥δk,

z
(k)
i = {z(k−1)

sδk
}′⊥z

(k−1)
i , i = sδk, . . . , n.

By repeated application of (A.13) we then find, using the notation sδ0 = 1 and sδm+1 = n+ 1,

n∑
i=1

ui1{δ′z(0)i =0} =
m∑
k=0

sδk+1−1∑
i=sδk

ui1{z(0)
sδ1

6=0,...,z(k−1)
sδ
k

6=0,z(k)i =0},

and the inequality, using the martingales defined in (A.10),

|
n∑
i=1

ui1{δ′z(0)i =0}| ≤ max
1≤`1≤···≤`m≤n+1

|Mn,`1,`2,....`m |,

which proves (A.11).

Proof of Theorem 4.2. We apply Lemma A.1 for m + 1 = dim z to see that we must
evaluate the maximum of |Mn,`1,`2,....`m|, see (A.10), where the summands

un`1,...,`m,i = ui1{z(0)n`1 6=0,...,z
(k−1)
n`k

6=0, z(k)ni =0}
, `k ≤ i < `k+1,

are now martingale difference sequences. We apply Lemma 4.1. The number of martingales is
L = O(nm) and we choose λ = m ∈ N, see (4.1). We find

max
1≤q≤r

E( max
1≤`1<···<`m≤n

n∑
i=1

Ei−1u
2q

n`1,...,`m,i
) ≤ max

1≤q≤r

n∑
i=1

Eu2
q

i ≤
n∑
i=1

E(1 + u2
r

i ) = O(n),

such that ς = 1, see (4.2). We then apply Lemma 4.1 and find for ν > 1/2, that 1 = ς < 2ν
and m+ 1 = ς + λ < ν2r, so that max1≤`1≤···≤`m≤n+1 |Mn,`1,`2,....`m| = oP(nν).
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A.3 Proof of results regarding the frequency of small regressors

We prove Theorem 3.1 which relates the condition of small regressors in Assumption 1(iii)
to the condition of Davies (1990) for deterministic regressors. Finally we show in Theorems
3.2 and 3.3, that the condition for small regressors is satisfied for random walk and stationary
regressors.

Proof of Theorem 3.1. (ia) We first prove that

{λn(ξ) ≤ a} ⊂ {Fn(a) ≥ int(nξ)/n}, 0 ≤ ξ ≤ 1. (A.14)

If ξ < 1/n, int(nξ)/n = 0, and {Fn(a) ≥ int(nξ)/n} is the full set, so the relation trivially
holds. Consider therefore 1/n ≤ ξ ≤ 1. If λn(ξ) ≤ a, there exists a non empty subset S of
(1, . . . , n) with |S| = int(nξ) elements such that min|δ|=1 maxi∈S |z′niδ| ≤ a, and therefore, by
continuity, a δ with δ′δ = 1, such that for all i ∈ S we have |z′niδ| ≤ a. Hence the number of i
for which |z′niδ| ≤ a must be greater than or equal |S| = int(nξ), that is, Fnδ(a) ≥ int(nξ)/n
and hence Fn(a) ≥ int(nξ)/n. which proves (A.14).

(ib) We next prove
{Fn(a) > int(nξ)/n} ⊂ {λn(ξ) ≤ a}. (A.15)

This is obvious for ξ = 1, because {Fn(a) > int(nξ)/n} is empty, so the relation trivially
holds. Assume therefore ξ < 1. If Fn(a) = sup|δ|=1 Fnδ(a) > int(nξ)/n, there is a δ for which
Fnδ(a) > int(nξ)/n or

∑n
i=1 1(|z′niδ|≤a) > int(nξ)/n, and therefore the number of i for which

|z′niδ| ≤ a is at least int(nξ) and hence we can find S with |S| = int(nξ) for which |z′niδ| ≤ a
for i ∈ S. Thus λn(ξ) ≤ a, which shows (A.15).

(ii) First, if lim infn→∞ λn(ξ∗) > 0 for some ξ∗ ≤ 1, then λn(ξ∗) > a0 > 0 for some a0,
and all n ≥ n0. It then follows from (A.15) that Fn(a0) ≤ int(nξ∗)/n ≤ ξ∗, n ≥ n0, and hence
lim sup(a,n)→(0,∞) Fn(a) ≤ ξ∗ and we define ξ = ξ∗. Second, if lim sup(a,n)→(0,∞) Fn(a) ≤ ξ < 1
then for η > 0, there is a0,n0 such that for n ≥ n0 and a ≤ a0, Fn(a0) < ξ+η < int{n(ξ+2η)}/n.
Thus, we choose η so small that ξ + 2η < 1 and find from (A.14) that λn(ξ + 2η) > a0, so we
choose ξ∗ = ξ + 2η < 1, such that lim infn→∞ λn(ξ∗) ≥ a0, which proves (ii).

Before we prove Theorem 3.2 we show an intermediate result.

Lemma A.2 Consider the random walk xi =
∑i

j=1 ηj ∈ Rm, where ηj i.i.d. (0,Φ), j =

1, . . . , n, and assume that the density of γ′xi/(iγ′Φγ)1/2 is bounded uniformly in |γ| = 1 and
i = 1, . . . , n. Then the sets

Bi = {| − sin θ + a

cos θ
+
γ′xi
n1/2
| ≤M},

satisfy

E(n−1
n∑
i=1

1Bi)
m+1 ≤ n−1 + CMm+1. (A.16)

Proof of Lemma A.2. We find

E(
n∑
i=1

1Bi)
m+1 =

∑
1≤i1,...,im+1≤n

E(

m+1∏
j=1

1Bij ) =
∑

at least two ij equal

E(

m+1∏
j=1

1Bij ) +
∑

all ij different

E(

m+1∏
j=1

1Bij )
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The first sum contains at most nm terms which are all bounded by 1 and hence the contribution
is at most nm, which accounts for the term n−1 in (A.16).
Conditioning on the σ-field Gm = σ{ηj, j ≤ im} we can express the second sum as

(m+ 1)!
∑

1≤i1<···<im≤n
E

(
m∏
j=1

1Bij )
n∑

im+1=im+1

E(1Bim+1 |Gm)

 . (A.17)

Let σ2m+1 = V ar(γ′
∑im+1

j=im+1
ηj) = (im+1−im)γ′Φγ be the conditional variance of γ′

∑im+1
j=1 ηj,

given Gm. Then

E(1Bim+1 |Gm) = P({| − sin θ + a

cos θ

n1/2

σm+1
+
γ′xim
σm+1

+
γ′
∑im+1

j=im+1
ηj

σm+1
| ≤M

n1/2

σm+1
}|Gm),

is the probability that the random component, γ′
∑im+1

j=im+1
ηj/σm+1, is contained in an interval

of length 2Mn1/2σ−1m+1. Hence the assumption of a bounded density of the normalized random
walk implies that

E(1Bim+1 |Gm) ≤ CMn1/2
1

(im+1 − im)1/2
.

Summing over im+1 we find the bound
n∑

im+1=im+1

E(1Bim+1 |Gm) ≤ CMn1/2(n− im)1/2 ≤ CMn.

Inserting this into (A.17) we get∑
1≤i1<···<im+1≤n

E(
m+1∏
j=1

1Bij ) ≤ CMn
∑

1≤i1<···<im≤n
E(

m∏
j=1

1Bij ).

Repeating the argument we find the result in (A.16).

Proof of Theorem 3.2. We assume that the regressors are zni = (1, n−1/2x′i)
′, where xi is a

random walk. We want to prove that Fn(a) = oP(1) for (a, n)→ (0,∞), see (2.4).
To study the sup|δ|=1 Fnδ(a), we apply a chaining argument and letm = dimx. We therefore

consider δ ∈ Rm+1 and cover the m dimensional surface K = {|δ| = 1} with L = η−m balls,
B(δ`, η), of equal radius η and centers δ`, ` = 1, . . . , L, and evaluate sup|δ|=1 Fnδ(a) as follows

sup
|δ|=1

Fnδ(a) ≤ max
1≤`≤L

Fnδ`(a) + max
1≤`≤L

sup
B(δ`,η)∩K

|Fnδ(a)− Fnδ`(a)|.

We truncate the stochastic regressors |n−1/2xi| by A and find, using Boole’s inequality, that
P{sup
|δ|=1

Fnδ(a) > η} ≤ P0n + P1n + P2n,

where

P0n = P( max
1≤i≤n

n−1/2|xi| > A),

P1n =

L∑
`=1

P{Fnδ`(a) > η/2, max
1≤i≤n

n−1/2|xi| ≤ A},

P2n =
L∑
`=1

P{ sup
B(δ`,η)∩K

|Fnδ(a)− Fnδ`(a)| > η/2, max
1≤i≤n

n−1/2|xi| ≤ A}.

17



We discuss these in turn.
P0n. By tightness of max1≤i≤n n

−1/2|xi|, P0n tends to zero for A→∞ uniformly in n.
P1n. We bound P1n by the Markov inequality

P1n ≤
2

η

L∑
`=1

E{Fnδ`(a)1(max1≤i≤n n−1/2|xi|≤A)} =
2

η

L∑
`=1

1

n

n∑
i=1

P(|z′niδ`| ≤ a, max
1≤i≤n

n−1/2|xi| ≤ A).

Write δ′`zni = − sin θ` + n−1/2γ′xi cos θ` where cos θ` > 0 and |γ| = 1. From (3.2) with |x|
replaced by n−1/2|γ′xi| ≤ A while c = a < 1/2, we find (cos θ`)

−1 ≤ 2(1 + A) and therefore,
when dividing by cos θ`, and leaving out the intersection with (max1≤i≤n n

−1/2|xi| ≤ A) we get
the further bound

P1n ≤
2

η

L∑
`=1

1

n

n∑
i=1

P{| − tan θ` + n−1/2γ′xi| ≤ 2a(1 + A)}.

Dividing by n−1/2(iγ′Φγ)1/2 gives

P1n ≤ 2η−1
L∑
`=1

1

n

n∑
i=1

P

{
| − n1/2

(iγ′Φγ)1/2
tan θ` +

γ′`xi
(iγ′`Φγ`)

1/2
| ≤ 2a(A+ 1)n1/2

(iγ′Φγ)1/2

}
.

The random variable (γ′`xi)(iγ
′
`Φγ`)

−1/2 is assumed to have a bounded density and the prob-
ability that it is contained in an interval of length 4(A + 1)n1/2(iγ′`Φγ`)

−1/2, then gives the
inequality

P1n ≤ CL2a(A+ 1)
1

n

n∑
i=1

(
n

i
)1/2 ≤ CLAa. (A.18)

P2n. Let zni = (1, x′in
−1/2)′ and note |δ` − δ| < η resulting in the inequality

|1{|z′niδ`|≤a}− 1{|z′niδ|≤a}| = |1(|z′niδ`|≤a)− 1{|z′niδ`+z′ni(δ−δ`)|≤a}| ≤ 1{|z′niδ`−a|≤η|zni|}+ 1{|z′niδ`+a|≤η|zni|}.

The same holds multiplying by 1(|xi|≤A). Introducing z
′
niδ` = − sin θ` + cos θ`(γ

′
`xin

−1/2) and
the bound |zni| ≤ 1 + |xi|n−1/2 ≤ 1 + A, we apply (3.2) for b = ±a, c = a + η(A + 1) < 1/2.
We find that (cos θ`)

−1 ≤ 2(A+ 1), and therefore

{|z′niδ` ± a| ≤ η|zni|, |xi|n−1/2 ≤ A} ⊂ {| − sin θ` ± a
cos θ`

+
γ′`xi
n1/2
| ≤ 2η(1 + A)2} = B±i,`,

say. By Chebychev’s inequality

P2n ≤
L∑
`=1

{P(n−1
n∑
i=1

1B+i,`
> η/4) + P(n−1

n∑
i=1

1B−i,`
> η/4)}

≤ (
4

ηn
)m+1{

L∑
`=1

E(
n∑
i=1

1B+i,`
)m+1 + E(

n∑
i=1

1B−i,`
)m+1}.

From Lemma A.2 with M = 2η(1 + A)2, we find from (A.16) that

P2n ≤ 2L(
4

η
)m+1{n−1 + Cηm+1(1 + A)2(m+1)} ≤ CLn−1 + CLηm+1(1 + A)2(m+1). (A.19)
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We therefore find from (A.18) and (A.19), using ηm+1 = L−1−1/m, that

P{sup
|δ|=1

Fnδ(a) > η} ≤ P{max
1≤i≤n

|xi|n−1/2 > A}+ CLAa+ CLn−1 + CL−1/m(1 + A)2(m+1).

By tightness of max1≤i≤n |xi|n−1/2 we can choose A > 0 so large that P{max1≤i≤n |xi|n−1/2 >
A} ≤ ε/4 for all n. Next choose a small and L large so that a+η(1+A) = a+L−1/m(1+A) ≤ 1/2
and CL−1/m(1 +A)2(m+1) ≤ ε/4, then a so small that CLAa ≤ ε/4, and finally n so large that
CLn−1 ≤ ε/4. This proves (2.4) and hence Theorem 3.2.

Proof of Theorem 3.3. We assume that zi = (1, x′i)
′, where xi is a stationary process. We

want to prove that Fn(a) = oP(1) for (a, n) −→ (0,∞), see (2.4).
We truncate each of the stationary regressors at A and decompose Fnδ(a) as follows

Fnδ(a) = n−1
n∑
i=1

[1(|z′iδ|≤a,|xi|≤A) − E{1(|z′iδ|≤a,|xi|≤A)|Gi−1}]

+n−1
n∑
i=1

1(|z′iδ|≤a,|xi|>A) + n−1
n∑
i=1

E{1(|z′iδ|≤a,|xi|≤A)|Gi−1}

= Mnδ(a) +R1nδ(a) +R2nδ(a).

We have to prove that the terms Mnδ(a), R1nδ(a), R2nδ(a) vanish in probability uniformly in
|δ| = 1 for suitable choices of a, A, and n.
The remainder term R1nδ. From 1(|z′iδ|≤a,|xi|>A) ≤ 1(|xi|>A), we find by Chebychev’s inequality

P{sup
|δ|=1

R1nδ(a) > η} ≤ P{n−1
n∑
i=1

1(|xi|>A) ≥ η} ≤ 1

η
P(|x1| ≥ A), (A.20)

which can be made arbitrary small by choosing A large.
The remainder term R2nδ. Since |δ| = 1 we can write z′iδ = − sin θ+ γ′xi cos θ for cos θ > 0

and |γ| = 1. Thus, using (3.2) with c = a ≤ 1/2 we get (cos θ)−1 ≤ 2(A+ 1). Then

(|z′iδ| ≤ a, |xi| ≤ A) = {| − sin θ+ (γ′xi) cos θ| ≤ a, |xi| ≤ A} ⊂ {|− tan θ+ γ′xi| ≤ 2a(A+ 1)}.

Further, the density of γ′xi (and hence of |−tan θ+γ′xi|) given Gi−1 is bounded by assumption,
and we find

E{1(|z′iδ|≤a,|xi|≤A)|Gi−1} ≤ Ca(A+ 1), (A.21)

which can be made arbitrarily small for fixed A by choosing a small.
The martingale term Mnδ. Define the compact set K = (δ′δ = 1) ⊂ Rm+1, choose δ0 ∈ K,

let uni(δ) = 1(|z′iδ|≤a,|xi|≤A) − 1(|z′iδ0|≤a,|xi|≤A) so that uni(δ0) = 0 and write

Mnδ(a) =
1

n

n∑
i=1

[1(|z′iδ0|≤a,|xi|≤A) − E{1(|z′iδ0|≤a,|xi|≤A)|Gi−1}] +
1

n

n∑
i=1

[uni(δ)− E{uni(δ)|Gi−1}].

The first term does not depend on δ and vanishes by the Law of Large Numbers for martingales.
For the second term we apply Theorem 4.1 case 1 with η = 0 and ν = 1. To check condition
(4.5) we must bound

|uni(δ)− uni(δ̃)| = |1(|z′iδ̃|≤a,|xi|≤A) − 1(|z′iδ|≤a,|xi|≤A)|.
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Replacing δ̃ by δ + (δ̃ − δ) and using the triangle inequality we get, for |δ − δ̃| ≤ Qn−φ,

|uni(δ)− uni(δ̃)| ≤ 1(|z′iδ−a|≤Qn−φ|zi|,|xi|≤A|) + 1(|z′iδ+a|≤Qn−φ|zi|,|xi|≤A).

As before, we can write z′iδ = − sin θ+x′iγ cos θ for cos θ > 0 and |γ| = 1. Since |zi| ≤ 1+ |xi| ≤
1 + A we get

{|z′iδ ± a| ≤ Qn−φ|zi|, |xi| ≤ A} ⊂ {| − sin θ + x′iγ cos θ ± a| ≤ Qn−φ(1 + A), |xi| ≤ A}.
Then, (3.2) with c = a+Qn−φ(1 + A) < 1/2 shows (cos θ)−1 ≤ 2(A+ 1) so that

{|z′iδ ± a| ≤ Qn−φ|zi|, |xi| ≤ A} ⊂ {| − sin θ ± a
cos θ

+ x′iγ| ≤ 2Qn−φ(1 + A)2} = S±.

We can then bound

sup
δ̃:|δ−δ̃|≤Qn−φ

|uni(δ)− uni(δ̃)|p ≤ (1S− + 1S+)p ≤ C(1S− + 1S+).

Because (cos θ)−1 is bounded and the conditional density of γ′xi given Gi−1 is bounded in
|γ| = 1, it follows that

E{ sup
δ̃:|δ−δ̃|≤Qn−φ

|uni(δ)− uni(δ̃)|p|Gi−1} ≤ CQn−φ(1 + A)2,

so that (4.5) holds with Ani(δ) = C(1 +A)2, and hence (4.6) holds. Theorem 4.1, case 1, with
η = 0 and ν = 1 now shows

sup
|δ|=1
| 1
n

n∑
i=1

[uni(δ)− E{uni(δ)|Gi−1}]| = oP(1). (A.22)

Combining (A.20), (A.21), and (A.22) we find that for any ε > 0, we first take A so large
that P (sup|δ|=1R1nδ ≥ η/3) ≤ ε/3, and then a and Q so small that a + Q(1 + A) < 1/2, and
P (sup|δ|=1R2nδ ≥ η/3) ≤ ε/3, and finally n so large that P(sup|δ|=1 |Mnδ| ≥ η/3) ≤ ε/3. This
proves (2.4) and hence Theorem 3.3.
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