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Abstract: We present a fast and accurate computational method for solving and estimating a class of
dynamic programming models with discrete and continuous choice variables. The solution method we
develop for structural estimation extends the endogenous gridpoint method (EGM) to discrete-continuous
(DC) problems. Discrete choices can lead to kinks in the value functions and discontinuities in the optimal
policy rules, greatly complicating the solution of the model. We show how these problems are ameliorated
in the presence of additive choice-specific IID extreme value taste shocks. We present Monte Carlo
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1 Introduction

This paper develops a fast new solution algorithm for structural estimation of dynamic program-

ming models with discrete and continuous choices. The algorithm we propose extends the Endoge-

nous Gridpoint Method (EGM) by Carroll (2006) to discrete-continuous (DC) models. We refer to

it as the DC-EGM algorithm. We embed the DC-EGM algorithm in the inner loop of the nested

fixed point (NFXP) algorithm (Rust, 1987), and show that the resulting Maximum Likelihood

estimator produces accurate estimates of the structural parameters at low computational cost.

A classic example of a DC model is a life cycle model with simultaneous discrete retirement

and continuous consumption decisions. While there is a well developed literature on solution and

estimation of dynamic discrete choice models, and a separate literature on estimation of life cycle

models without discrete choices, there has been far less work on solution and estimation of DC

models.1

There is good reason why DC models are much less commonly seen in the literature: they

are substantially harder to solve. The value functions of models with only continuous choices are

typically concave and the optimal policy function can be found from the Euler equation. The EGM

avoids the need to numerically solve the nonlinear Euler equation for the optimal policy at each

grid point in the state space. Instead, the EGM specifies an exogenous grid over an endogenous

quantity, e.g. savings, to analytically calculate the optimal policy rule, e.g., consumption, and

endogenously determine the pre-decision state, e.g., beginning-of-period resources.2 The DC-EGM

retains the main desirable properties of the EGM, namely it avoids all root-finding operations and

handles borrowing constraints in an efficient manner.3

Dynamic programs that have only discrete choices are substantially easier to solve, since the

1There are relatively few examples of structural estimation or numerical solution of DC models. Some promi-
nent examples include the model of optimal non-durable consumption and housing purchases (Carroll and Dunn,
1997), optimal saving and retirement (French and Jones, 2011), and optimal saving, labor supply and fertility
(Adda, Dustmann and Stevens, 2015). These applications approximate the solution by discretizing the continuous
choice variables.

2The EGM is in fact a specific application of what is referred to as “controlling the post-decision state”
in operations research and engineering (Bertsekas, Lee, van Roy and Tsitsiklis, 1997). Carroll (2006) introduced
the idea in economics by developing the EGM algorithm with the application to the buffer-stock precautionary
savings model. Since then the idea became widespread in economics. Further generalizations of the EGM in-
clude Barillas and Fernández-Villaverde (2007); Hintermaier and Koeniger (2010); Ludwig and Schön (2013); Fella
(2014); Iskhakov (2015). Jørgensen (2013) compares the performance of the EGM to Mathematical Programming
with Equilibrium Constraints (MPEC).

3The DC-EGM has been implemented in several recent empirical applications, Jørgensen (2014);
Yao, Fagereng and Natvik (2015); Ejrnæs and Jørgensen (2015); Druedahl and Jørgensen (2015); Druedahl (2015);
Iskhakov and Keane (2015).

1



optimal decision rule is simply the alternative with highest choice-specific value. However, solving

dynamic programming problems that combine continuous and discrete choices is substantially more

complicated, since discrete choices introduce kinks and non-concave regions in the value function

that lead to discontinuities in the policy function of the continuous choice (consumption). There-

fore, the Euler equation for consumption is only necessary but not sufficient (Clausen and Strub,

2013). This complication is a feature of the problem itself and complicates the use of any method

for solving DC models.

We illustrate this issue by solving and estimating a life cycle problem with continuous consump-

tion and binary retirement decisions. Our example is a simple extension of the classic life cycle

model of Phelps (1962) where, in the absence of a retirement decision, the optimal consumption

rule could hardly be any simpler — a linear function of resources. However, once we make what

appears to be a slight change to Phelp’s problem — allowing a worker with logarithmic utility to

also make a binary irreversible retirement decision — the optimal consumption function becomes

unexpectedly complex, with multiple discontinuities and non-monotonicities in the optimal con-

sumption rule. We were able to derive an analytic solution for the optimal consumption rule of this

model, which serves as an illustrative test problem throughout the paper. The complexity in the

solution is due to the fact that the value function is a maximum of choice-specific value functions,

e.g. the maximum of the value of retiring and not-retiring. The max operator creates kinks (and

therefore non-concave regions) in the value function that cause the Euler equation to have mul-

tiple solutions posing a significant challenge to any numerical method to accurately approximate

consumption functions that have multiple discontinuities and non-monotonicities.

Fella (2014) generalizes the EGM to solve non-concave problems, including models with discrete

and continuous choices. However, in this paper we show that introducing IID Extreme Value Type

I choice-specific taste shocks4 not only facilitates the maximum likelihood estimation, but also

ameliorates the difficulties which are inherent to the solution of DC models. This approach results

in conditional choice probabilities that have the multinomial logit form and closed form expressions

for the conditional expectation of the value function. In econometric applications these extreme

value taste shocks are essential for generating predictions from dynamic programming models that

4Though there are many ways that stochastic shocks and state variables can be introduced into DC models, we
focus on a particularly tractable approach to including multidimensional stochastic taste shocks into discrete choice
models that is well known in the econometrics literature (McFadden, 1973; Rust, 1987). In principle, this assumption
could be relaxed to allow for other distributions at the cost of numerical approximation of choice probabilities and
the conditional expectation of the value function.
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are “statistically non-degenerate” — that is, they imply that the probability of choosing any of the

alternatives is always positive. These shocks are interpreted as “unobserved state variables” — i.e.

idiosyncratic shocks observed by agents but not by the econometrician. However, in numerical or

theoretical applications these shocks can serve as a smoothing device or “homotopy perturbation”

that facilitates the solution of models that are not sufficiently smooth or concave to be solvable by

the traditional methods with the desired reliability and accuracy.

At first glance, the addition of stochastic shocks would appear to make the problem harder to

solve, since both the optimal discrete and continuous decision rules will necessarily be functions

of these stochastic shocks. However, we show that a variety of stochastic variables in DC models

smooth out the kinks in the value functions and the discontinuities in the optimal consumption

rules. In the absence of smoothing, we show that every kink induced by the comparison of the

discrete choice specific value functions in any period t propagates backwards in time to all previous

periods as a manifestation of the decision maker’s anticipation of the future discrete action. The

resulting accumulation of kinks during backward induction presents the most significant challenge

for the numerical solution of DC models. The combination of taste shocks and the stochastic

variables in the model is a powerful device to prevent the propagation and accumulation of kinks.

The Extreme Value distributed taste shocks can either be interpreted as structural unobserved

state variables or as a logit smoothing device of an underlying deterministic model of interest. Let

σ ≥ 0 denote the scale parameter of the corresponding Extreme Value distribution. We show that

in the latter case σ can be interpreted as a homotopy or smoothing parameter, that can be chosen

in such a way that the deterministic model without taste shocks is approximated by the smoothed

model to any desirable degree of precision.

We show that when σ is sufficiently large, the non-concave regions near the kinks in the non-

smoothed value function disappear and the value functions become globally concave. But even

small values of σ smooth the kinks in the value functions and suppress their accumulation in

successive backward induction steps. As noted above, in combination with other structural shocks

in the model (i.e. income uncertainty or random returns on savings) taste shocks can completely

eliminate the problems that render exact solution of the deterministic model to be cumbersome

and unpractical. An additional benefit of the taste shocks is that standard integration methods,

such as quadrature rules, apply when the expected value function is a smooth function.

We run a series of Monte Carlo simulations to investigate the performance of DC-EGM for
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structural estimation of the life cycle model with the discrete retirement decision. We find that

Maximum Likelihood estimator that nests the DC-EGM algorithm performs well. It quickly pro-

duces accurate estimates of the structural parameters of the model even when fairly coarse grids

over wealth are used. We find the cost of “oversmoothing” to be negligible in the sense that the

parameter estimates of a perturbed model with stochastic taste shocks are estimated very accu-

rately even if the true model does not have taste shocks. Thus, even in the case where the addition

of taste shocks results in a misspecification of the model, the presence of these shocks improves the

accuracy of the solution and reduces computation time without increasing the approximation bias

significantly. Even when very few grid points are used to solve the model, we find that smoothing

the problem improves the root mean square error (RMSE). Particularly, with an appropriate de-

gree of smoothing (σ), we can reduce the number of gridpoints by an order of magnitude without

much increase in the RMSE of the parameter estimates.

In the next section we present a simple extension of the life cycle model of consumption and

savings with logarithmic utility studied by Phelps (1962) to allow for a discrete retirement decision.

We show there is a closed-form solution to this problem even though it is exceptionally complex

relative to the original version of the problem without the discrete retirement decision. Using this

simple model we illustrate how DC-EGM works and demonstrate its accuracy. We then introduce

extreme value taste shocks and show how the implied smoothing affects the consumption and

retirement decision rules. Section 3 presents the DC-EGM algorithm. Section 4, shows how it

is incorporated in the Nested Fixed Point algorithm for maximum likelihood estimation of the

structural parameters in the retirement model. We present the results of a series of Monte Carlo

experiments in which we explore the performance of the estimator in a variety of settings. We

conclude with a short discussion of the range of other problems and models that DC-EGM is

applicable to.

2 An Illustrative Problem: Consumption and Retirement

This section extends the classic life-cycle consumption/savings model of Phelps (1962) to allow for

a binary retirement decision. We derive an analytic solution to the simplistic life cycle problem

with logarithmic utility that serves both to illustrate the complexity caused by the addition of a

discrete retirement choice and how the DC-EGM can be applied. While we focus on this simple
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illustrative example for expositional clarity, the DC-EGM method can be applied to a much more

general class of problems that we discuss in the conclusion - including the extended version of

the retirement model that we use in the Monte Carlo exercise. While we initially illustrate the

complexity of the solution without any stochastic elements, we include both taste and income

shocks to this simple model and discuss how the complexity of the solution reduces.

2.1 Deterministic model of consumption/savings and retirement

Consider the discrete-continuous (DC) dynamic optimization problem

max
{ct,dt}Tt=1

T∑
t=1

βt(log(ct)− dt) (1)

where agents choose consumption ct and whether to retire to maximize the discounted stream of

utilities. Let dt = 0 denote the choice to retire and dt = 1 the continue working. We therefore

implicitly normalize the disutility of work to 1. To keep the solution as simple as possible, we

assume that retirement is absorbing, i.e. once workers retire they are unable to return to work.

Agents solve (1) subject to a sequence of period-specific borrowing constraints, ct ≤ Mt where

Mt = R(Mt − ct) + ytdt−1 is the consumer’s resources available for consumption in the beginning

of period t. We assume a fixed gross interest rate, R, and a deterministic constant labor income yt

realized in the beginning of period t. Income is a function of the previous period’s end-of-period

labor market choice, dt−1.

Denote Vt(Mt) the maximum expected discounted lifetime utility of a worker, and Wt(Mt) that

of a retiree. The choice problem of the worker can be expressed recursively through the Bellman

equation

Vt(Mt) = max{vt(Mt|dt = 0), vt(Mt|dt = 1)}, (2)

where the choice-specific value functions are given as

vt(Mt|dt = 0) = max
0≤ct≤Mt

{log(ct) + βWt+1

(
R(Mt − ct)

)
}, (3)

vt(Mt|dt = 1) = max
0≤ct≤Mt

{log(ct)− 1 + βVt+1

(
R(Mt − ct) + yt+1

)
}. (4)

5



The choice problem of the retiree is given by the Bellman equation

Wt(Mt) = max
0≤ct≤Mt

{log(ct) + βWt+1

(
R(Mt − ct)

)
}. (5)

It follows from (3) and (5) that vt(Mt|dt = 0) = Wt(Mt). The value function Wt(Mt) is given

by Phelps (1962, p. 742) who solves the corresponding optimal consumption problem. In the

following we therefore only focus on deriving formulas for vt(Mt|dt = 1) and finding optimal

consumption rules ct(Mt|dt = 0) and ct(Mt|dt = 1) for a worker who chooses to retire and to

continue working, respectively. It follows that the optimal consumption rule for the retiree is

identical to ct(Mt|dt = 0).

Note that even if vt(Mt, 0) and vt(Mt, 1) are concave functions of Mt, because Vt(Mt) is the

maximum of the two, it is generally not concave (Clausen and Strub, 2013). It is not hard to show

that Vt will generally have a kink point at the value of resources where the two choice-specific value

functions cross (M t), i.e. where vt(M t, 1) = vt(M t, 0). We refer to these points as primary kinks.

This kink point at M t is also the optimal retirement threshold — the optimal decision for

a worker whose resources satisfy Mt ≤ M t is to keep working (not to retire) and to use the

consumption rule ct(Mt|dt = 1), whereas the optimal decision for a worker whose wealth exceeds

M t is to retire and to consume ct(Mt|dt = 0). The optimal consumption rule of the worker ct(Mt)

is then a combination of the two.

At each primary kink point the worker is indifferent between retiring and continuing to work,

and the value function is non-differentiable. However the left and right hand derivatives do exist

and we have V −
t (M t) < V +

t (M t). The discontinuity in the derivative of Vt(Mt) at the primary kink

point creates a discontinuity in the optimal consumption function in the previous period t−1, and

a corresponding kink in the value function Vt−1(Mt−1). In effect, the primary kinks propagate back

in time. These kinks do not correspond to the points of indifference between the current discrete

alternatives, but instead appear as reverberations of the primary kinks in the future. We refer to

these points as secondary kinks.

Theorem 1 illustrates the complexity in the optimal solution introduced by the seemingly minor

change to Phelps’ problem of allowing a discrete retirement decision.

Theorem 1 (Analytical solution to the retirement problem). Let cT−τ (M) denote the optimal

consumption function τ periods before the horizon T in the workers decision problem given by
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(2)-(4) with constant income yt = y. The optimal retirement threshold is MT−τ given by

MT−τ =
(y/R)e−K

1− e−K
, (6)

where

K = dT−τ

(
τ∑

i=0

βi

)−1

. (7)

The optimal consumption function is given by:

cT−τ (M) =



M if M ≤ y/Rβ,

[M + y/R]/(1 + β) if y/Rβ ≤ M ≤ M
l1
T−τ ,

[M + y(1/R + 1/R2)]/(1 + β + β2) if M
l1
T−τ ≤ M ≤ M

l2
T−τ ,

· · · · · · · · ·[
M + y

(∑τ−1
i=1 R−i

)] (∑τ−1
i=0 βi

)−1
if M

lτ−2

T−τ ≤ M ≤ M
lτ−1

T−τ ,

(M + (
∑τ

i=1 R
−i)) (

∑τ
i=0 β

i)
−1

if M
lτ−1

T−τ ≤ M ≤ M
r1
T−τ ,[

M +
(∑τ−1

i=1 R−i
)]

(
∑τ

i=0 β
i)
−1

if M
r1
T−τ ≤ M ≤ M

r2
T−τ ,

· · · · · · · · ·

[M + y(1/R + 1/R2)] (
∑τ

i=0 β
i)
−1

if M
rτ−2

T−τ ≤ M ≤ M
rτ−1

T−τ ,

[M + y/R] (
∑τ

i=0 β
i)
−1

if M
rτ−1

T−τ ≤ M ≤ MT−τ ,

M (
∑τ

i=0 β
i)
−1

if MT−τ < M.

(8)

The value function VT−τ (M) is piecewise logarithmic, that is, it can be written as VT−τ (M) = BT−τ log(cT−τ (M))+CT−τ

for constants (BT−τ , CT−τ ).

For τ ≥ 1, the value function has one primary kink at the optimal retirement threshold,

M = MT−τ . For τ > 1, in addition the value function has τ − 1 secondary kinks points as-

sociated with future retirement {M r1
T−τ , . . . ,M

rτ−1

T−τ }. If Rβ < 1, the value function also has one

kink at M = y/R associated with binding liquidity constraints in period T − τ and τ − 1 kinks

{M l1
T−τ , . . . ,M

lτ−1

T−τ} associated with the binding liquidity constraints in the future. If Rβ = 1, we

have y/Rβ = M
l1
T−τ = · · · = M

lτ−1

T−τ .

Proof. The proof of Theorem 1 is by mathematical induction. The proof is omitted here for space

considerations and is available upon request.

The left panel of Figure 1 illustrates the optimal consumption rule given in Theorem 1 while
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Figure 1: Optimal Consumption Functions.

(a) Analytical Solution
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(b) Relative Error of DC-EGM solution
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Notes: The plots show optimal consumption rules of the worker in the consumption-savings model with R = 1,

β = 0.98, y = 20, and T = 20. The left panel illustrates the analytical solution while the right panel illustrates the

numerical error from the solution found by applying the DC-EGM algorithm as discussed in the text.

relative error of the numerical solution found by applying the DC-EGM as described below in

Section 3 is illustrated in the right panel.5 The analytical and numerical solution are practically

identical. Only minor differences are found around the piece-wise linear part between the credit

constrained region and the discontinuities because the numerical solution applies linear interpola-

tion over this region ignoring the piece-wise nature while the analytical solution explicitly accounts

for this feature as described in Theorem 1.

The Figure illustrates that the primary kinks propagates backward in time into secondary

kinks . For example, VT−2(M) has one secondary kink. This represents a critical level of resources

where workers, who do not have enough wealth to retire at T − 2, can forecast that they will have

enough resources at the beginning of period T − 1 provided they consume at the lower amount

cT−2(M) = (M + y/R)/(1 + β + β2). Instead, the consumer can consume at the higher level

cT−2(M) = (M + y/R + y/R2)/(1 + β + β2) but will then not have enough resources at the

beginning of period T − 1 to retire at that time. So the secondary kink M
r1
T−2 represents the

5Although the DC-EGM was implemented with 2000 discrete grid-points to approximate the (complex) con-

sumption function, it only took around 0.17 seconds on a Lenovo ThinkPad laptop with Intel R⃝ Core
TM

i7-4600M
CPU @ 2.10 GHz and 8GB RAM to generate the numerical solution in Figure 1.
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critical level of wealth where the worker is indifferent between consuming a higher amount and not

retiring next period, and consuming a lower amount and being able to retire next period. The kink

in VT−2(M) at M = M
r1
T−2 corresponds to the discontinuity in the consumption function cT−2(M)

at this same value of M . The blue line in Figure 1 is the consumption function cT−2(M) = c18(M).

We see that it has two discontinuities, one at M = 30.56 = M
r1
T−2 (the secondary kink point in

VT−2) and another at M = 49.37 = MT−2 (the primary kink point in VT−2).

Before we describe in detail how the DC-EGM works, we turn to a slightly more realistic

situation in which consumers face income and taste uncertainty. Uncertainty will tend to smooth

the problem and reduce the complexity of the optimal consumption function.

2.2 Adding Taste Shocks and Income Uncertainty

Consider now an extension of the model presented above, where the decision makers receive choice-

specific taste shocks and face income uncertainty. More specifically, assume that income when

working is yt = yηt, where ηt is log-normally distributed multiplicative idiosyncratic income shock,

log ηt ∼ N (−σ2
η/2, σ

2
η).

6

The additively separable choice-specific random taste shocks, σεεt(dt), are i.i.d. Extreme Value

type I distributed with scale parameter σε. In this formulation, the extreme value taste shock

enters as a structural part of the problem. If the true model does not have taste shocks, σε can be

interpreted as a (logit) smoothing parameter.

As before, we focus solely on the worker’s problem. The Bellman equation (2) has to be

rewritten to include the taste shocks,

Vt(Mt) = max{vt(Mt|dt = 0) + σεεt(0), vt(Mt|dt = 1) + σεεt(1)}, (9)

where the value function conditional on the choice to retire vt(Mt|dt = 0) is given by (3). However,

the value function conditional on the choice to remain working, vt(Mt|dt = 1), is modified to

account for the taste and income shocks in the following period,

vt(Mt|dt = 1) = max
0≤ct≤Mt

{
log(ct)− 1 + β

∫
EVt+1(R(Mt − ct) + yηt+1)f(dηt+1)

}
. (10)

6We follow the literature in the assumption that idiosyncratic income shocks are realized after the labor supply
choice is made, which is equivalent to allowing income to be dependent on a lagged choice of labor supply.
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Because the taste shocks are independent Extreme Value distributed random variables, the ex-

pected value function, EVt+1, is given by the well-known logsum formula

EVt+1(Mt+1) = E
[
max

{
vt+1(Mt+1|dt = 0) + σεε(0), vt+1(Mt+1|dt = 1) + σεε(1)

}]
= σε log

{
exp

[
vt+1(Mt+1|dt = 0)

σε

]
+ exp

[
vt+1(Mt+1|dt = 1)

σε

]}
. (11)

The immediate effect of introducing the taste shocks is complete elimination of the primary

kinks due to logit smoothing: the expected value function in (11) is a smooth function of Mt

around the point where vt(Mt|dt = 1) = vt(Mt|dt = 0). With large enough σε, the value function,

vt(Mt|dt = 1), becomes globally concave.7 Even when σε is not large enough to “concavify” the

value function completely, it may still eliminate at least some of the secondary kinks.

Figure 2 shows the consumption function ct(Mt|dt = 1) for a worker conditional on the choice

to continue working, for different values of smoothing parameter σε ∈ {0, 0.01, 0.05, 0.10, 0.15}.

The left panel plots the optimal consumption in the absence of income uncertainty (ση = 0) while

income uncertainty (ση =
√
0.005) is added in the right panel. The plots are drawn for the period

T − 5. Focusing first on the case without income uncertainty, in the absence of taste shocks the

choice-specific consumption function has four discontinuities corresponding to the four secondary

kinks in the value function VT−5 (see Theorem 1). These discontinuities mirror all four (primary

and secondary) kinks in the value function in period t = T − 4.

It is evident that taste shocks of large scale (σε ≥ 0.05) manage to smooth the function com-

pletely, eliminating all four discontinuities (and thus, eliminating the non-concavity of the value

function in period T − 4). Yet, for σε = 0.01 only the rightmost discontinuity is distinctively

smoothed out. This implies that even when complete “concavitication” is not achieved, the accu-

mulation of the secondary kinks is reduced.

7To see this, note that as the variance of the taste shocks increases, the choice-specific value functions are
dominated by the noise and the disutility of work becomes relatively less important. In turn, the choice-specific
value functions become similar, limσε→∞ vt(Mt, 1) = vt(Mt, 0). As a result, the corresponding value functions will
be globally concave.
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Figure 2: Optimal Consumption Rules for Agent Working Today (dt−1 = 1).

(a) Without income uncertainty, ση = 0
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(b) With income uncertainty, ση =
√
.005
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Notes: The plots show optimal consumption rules of the worker who decides to continue working in the consumption-

savings model with retirement in period t = T − 5 for a set of taste shock scales σε in the absence of income

uncertainty, ση = 0, (left panel) and in presence of income uncertainty, ση =
√
.005, (right panel). The rest of the

model parameters are R = 1, β = 0.98, y = 20.

Figure 3: Artificial Discontinuities in Consumption Functions, σ2
η = 0.01, t = T − 3.
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(b) σε = 0.05
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Notes: Figure 3 illustrates how the number of discrete points used to approximate expectations regarding future

income affects the consumption functions from value function iteration (VFI) and the DC-EGM. Panel (a) illustrates

how using few (10) discrete equiprobable points to approximate expectations produce severe approximation error

when there is no taste shocks. Panel (b) illustrates how moderate smoothing (σε = .05) significantly reduces this

approximation error.
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When the model has other stochastic elements such as wage shocks or random market returns,

the accumulation of secondary kinks may be less pronounced due to the smoothing of the problem.

Yet, in the absence of taste shocks, the primary kinks cannot be avoided even if all secondary

kinks are eliminated by a sufficiently high degree of uncertainty in the model. It is in this setup

which also appears to be mostly used in practical applications, where introduction of the Extreme

Value distributed taste shocks is especially beneficial. The taste shocks and other structural shocks

together contribute to the reduction of the number of secondary kinks and to the alleviation of

the issue of their multiplication and accumulation. It is clear from the right panel of Figure 2 that

the non-concavity of the value function can be eliminated with a smaller taste shock (σε = 0.01)

when additional smoothing, through uncertainty, is present in the model.

An additional benefit of the inclusion of taste shocks is that the expected value function EVt

is a smooth function of the continuous state variables. This facilitates standard numerical inte-

gration with respect to other stochastic shocks in the model. In particular, standard quadrature

rules apply and there is no need to break up the integrals into separate numerical integrals over

intervals defined by the kinks in the value function. When σ = 0, the numerical integrals may not

necessarily eliminate the kinks, even if all kinks are eliminated in the true (exact) integral of the

value function. This creates the problem that there may be artificial discontinuities introduced

into the numerically calculated consumption functions when the true consumption functions are

continuous in Mt. This problem is illustrated in the left panel of Figure 3. The right illustrates

how moderate smoothing (σε = .05) significantly reduces this approximation error and knocks out

the artificial kinks.

Taste shocks, εt, can have a structural interpretation as unobserved state variables, or a smooth-

ing interpretation as a technical device to simplify the problem. In the former interpretation, σε is

a scale parameter of taste shocks, and has to be estimated along with other structural parameters.

In the latter case, σε is the amount of smoothing and has to be chosen and fixed before the estima-

tion. It can be shown that if the true model does not have taste shocks, the level of σε can always

be chosen is such a way, that the perturbed model approximates the true deterministic model

with an arbitrary degree of precision. Figure 2 illustrates this idea graphically. As σε approaches

zero, the optimal consumption rule approaches the policy function of the original problem in every

point.
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3 The DC-EGM Algorithm

In this section, we describe the generalization of the EGM algorithm for solving discrete-continuous

problems that we call the DC-EGM algorithm.

The DC-EGM is a backward induction algorithm that iterates on the Euler equation and

sequentially computes the discrete choice specific value functions vt(Mt|dt) and the corresponding

consumption rules ct(Mt|dt) stating at terminal period T . The DC-EGM uses the standard EGM

algorithm by Carroll (2006) to find all solutions of the Euler equation conditional on the current

discrete choice, dt. We describe this subroutine first.

However, because the problem is generally not convex and the first order conditions are not

sufficient, some of the found solutions of the Euler equation do not correspond to the optimal

consumption choices. Consequently, the DC-EGM includes a procedure to remove the suboptimal

points from the endogenous grids created at the EGM step. We present this subroutine afterwards.

Finally, we demonstrate how the DC-EGM efficiently handles credit constraints.

3.1 Finding all solutions to the Euler equation

Because retirement is an absorbing state and retirees only choose consumption, invoking the DC-

EGM algorithm is only necessary for solving the workers problem. The consumption/savings

problem of the retirees can be solved using the standard EGM method (Carroll, 2006) at very low

computational cost. The Euler equation for the worker’s problem is defined by equations (3), (9)

and (10) and is given by8

u′(ct) = βREt

[ ∑
j=0,1

u′(ct+1(Mt+1|dt+1 = j)
)
Pt+1(dt+1 = j|Mt+1),

]
(12)

where Pt+1(dt+1|Mt+1) denote conditional choice probabilities over the discrete retirement decision

in the following period, dt+1. With the assumption of extreme value type I distributed unobserved

taste shocks, these choice probabilities have the simple logistic form. If there is no taste shocks,

σε = 0, the choice probabilities reduce to indicator functions.

Conditional on a particular value of the current decision, dt, we follow the EGM algorithm

and form an exogenous ascending grid over end-of-period wealth,9 A⃗ = {A1, . . . , AG} where

8See Appendix A for derivation.
9Referred to as the post-decision state in the operations research literature, Powell (2007).

13



Aj > Aj−1, ∀j ∈ {2, . . . , G} and G is the number of discrete grid points used to approximate the

continuous consumption policy function. Because the end-of-period wealth is a sufficient statistic

for the consumption decision in the current period, the next period resources are given by

Mt+1(A⃗) = RA⃗+ dtyηt+1. (13)

The utility function in (1) is analytically invertible, therefore the current period consumption can

be calculated directly using the inverted Euler equation

ct(A⃗|dt) = (u′)−1
(
βrhs

(
Mt+1(A⃗)

))
, (14)

where rhs
(
Mt+1(A⃗)

)
is the right hand side of (12) evaluated at the points Mt+1(A⃗) using the next

period optimal consumption rules ct+1(Mt+1|dt+1). Finally, combining the current consumption

ct(A⃗|dt) found in (14) with the points of A⃗ we get the endogenous grid over the current period

wealth

Mt(A⃗) = ct(A⃗|dt) + A⃗. (15)

Further, evaluating the maximand of the equation (10) at the points ct(A⃗|dt), we compute the

choice specific value function vt
(
Mt(A⃗)|dt

)
. Algorithm 1 provides a pseudo-code of the described

part of the DC-EGM which we call the EGM step. The current period discrete choice, dt, and

the next period policy and value functions are inputs to this routine, while the endogenous grid

M⃗t = Mt(A⃗|dt) and the dt-specific consumption and value functions, ct(M⃗t|dt) = ct(A⃗t|dt) and

vt
(
M⃗t|dt

)
= vt

(
Mt(A⃗)|dt

)
computed on this grid are the outputs.

Figure 4 plots a selection of values of vt
(
M⃗t|dt

)
and ct(M⃗t|dt) against the endogenous grid M⃗t.

The points are indexed in the ascending order of the end-of-period wealth forming the grid A⃗. The

solid lines approximate the corresponding functions with linear interpolation. It is evident that

the interpolated discrete choice specific value function vt
(
M |dt

)
is a correspondence rather than a

function of M because of the existence of the region where multiple values of vt
(
M |dt

)
correspond

to a single value of M . The same is true for the interpolated discrete choice specific consumption

function. The right and the left panels of Figure 4 illustrate the setting with and without the taste

shocks respectively. Adding taste shocks with a relatively low variance, σε = 0.03, reduces the size

of the regions with multiple corresponding values. Dashed lines illustrate discontinuities.

The region where multiple values of vt
(
M |dt

)
correspond to a single value of M is the clear
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Figure 4: Non-concave regions and the elimination of the secondary kinks in DC-EGM.
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(d) σε = 0.03
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Notes: The plots illustrate the output from the EGM-step of the DC-EGM algorithm (Algorithm 1) in a non-concave

region. The dots are indexed with the index j of the ascending grid over the end-of-period wealth A⃗ = {A1, . . . , AG}
where Aj > Aj−1, ∀j ∈ {2, . . . , G}. The connecting lines show the dt-specific value functions vt(M⃗t|dt) and the

consumption function ct(M⃗t|dt) linearly interpolated on the endogenous grid M⃗t. computed on this grid are the

outputs. The left panels illustrate the deterministic case without taste shocks, while in the right panels σε = 0.03.

The “true” solution, after applying the DC-EGM algorithm is illustrated with a solid red line. Dashed lines illustrate

discontinuities. The solution is based on G = 70 grid points in A⃗, R = 1, β = 0.98, y = 20, ση = 0.
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Algorithm 1 The EGM-step: dt choice-specific consumption and value functions

1: Inputs: Current decision dt. Choice-specific consumption and value functions ct+1(M⃗t+1|dt+1) and

vt+1(M⃗t+1|dt+1) associated with the endogenous grid in period t+ 1, M⃗t+1

2: Let η⃗ = {η1, . . . , ηQ} be a vector of quadrature points with associated weights, ω⃗ = {ω1, . . . , ωQ}
3: Form an ascending grid over end-of-period wealth, A⃗t = {A1

t , . . . , A
G
t } where Aj

t > Aj−1
t , ∀j ∈ {2, . . . , G}

4: for j = 1, . . . , G do (Loop over points in A⃗)
5: for q = 1, . . . , Q do (Loop over quadrature points in η⃗)
6: Compute Mq

t+1(A
j) = RAj + dtyη

q
t+1

7: for dt+1 = 0, 1 do

8: Compute ct+1(M
q
t+1(A

j)|dt+1) by interpolating ct+1(M⃗t+1|dt+1) at the point Mq
t+1(A

j)

9: Compute vt+1

(
Mq

t+1(A
j)|dt+1

)
by interpolating vt+1(M⃗t+1|dt+1) at the point Mq

t+1(A
j)

10: end for
11: Compute ϕt+1

(
Mq

t+1(A
j)
)
= σε log

(∑
j=0,1 exp(vt+1

(
Mq

t+1(A
j)|dt+1 = j

)
)/σε

)
12: Compute Pt+1(dt+1|Mq

t+1(A
j)) = exp(vt+1

(
Mq

t+1(A
j)|dt+1

)
/σε)(

∑
j=0,1 exp(vt+1

(
Mq

t+1(A
j)|dt+1 = j

)
)/σε)

−1

13: end for
14: Compute rhs

(
Mt+1(A

j)
)
= βR

∑Q
q=1

∑
j=1,2 ω

q · u′(ct+1(M
q
t+1(A

j)|dt+1 = j)
)
· Pt+1(dt+1 = j|Mq

t+1(A
j))

15: Compute expected value function EVt+1

(
Mt+1(A

j)
)
=
∑Q

q=1 ω
q · ϕt+1

(
Mq

t+1(A
j)
)

16: Compute current consumption ct(A
j |dt) = u′−1

(
rhs

(
Mt+1(A

j)
))

17: Compute value function vt
(
Mt(A

j)|dt
)
= u(ct(A

j |dt)) + βEVt+1

(
Aj
)

18: Compute endogenous grid Mt(A
j |dt) = ct(A

j |dt) +Aj
t

19: end for
20: Collect the points Mt(A

j |dt) to from the endogenous grid M⃗t = {Mt(A
j |dt), j = 1, . . . , G} associated

with the choice-specific consumption and value functions: ct
(
M⃗t|dt

)
= {ct

(
Mt(A

j)|dt
)
, j = 1, . . . , G} , and

vt
(
M⃗t|dt

)
= {vt

(
Mt(A

j)|dt
)
, j = 1, . . . , G}

21: Outputs: M⃗t, ct(M⃗t|dt) and vt
(
M⃗t|dt

)
Notes: The pseudo code is written under the assumption that quadrature rules are used for calculating the expec-

tations, whereas particular implementations can employ other methods for computing the expectation. It is also

assumed that interpolation rather than approximation is used in Steps 8 and 9, although the latter is also possible.

evidence of non-concavity of the value function in the following period, and subsequent multiplic-

ity of solutions of the Euler equation. The EGM step approximates all solutions to the Euler

equation (see Lemma 2 in Appendix A), but because some of these solutions do not correspond to

the optimal choices, it produces a value function correspondence which has to be cleaned of the

suboptimal points to obtain actual value function. We should emphasize, however, that the points

produced by the EGM step necessarily contain the true solutions. This is a notable contrast to the

standard solution methods based on an exogenous grid over wealth, which may struggle to find

the points of optimality and have to deploy computationally costly global search methods to solve

the optimization problem in the Bellman equation.

The next section describes a procedure in DC-EGM algorithm that deals with selecting the

true optimal points among the points produced by the EGM step. The true solution found by the

full DC-EGM algorithm is illustrated in Figure 4 with a red line for reference.
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3.2 Calculation of the Upper Envelope

To distinguish between the optimal and suboptimal points produced by the EGM step, the DC-

EGM algorithm makes a direct comparison of the values associated with each of the choices. On

the plots of the discrete choice specific value function correspondences (panels a and b) in Figure 4,

this amounts to computing the upper envelope of the correspondence in the regions of Mt where

multiple solutions are found.

To provide deeper insight into this process, we plot the maximand of the equation (10) that

defines the discrete choice specific value function vt(Mt|dt) in Figure 5 as a function of consumption

cguess for various values of Mt. The value of vt(Mt|dt) is the global maximum of the this function.

The EGM step (Algorithm 1), however, recovers all critical points where the derivative of the

plotted function is zero.10 The same points in Figures 5 and 4 are indexed with the same indexes

for easy comparison.

Figure 5: Local maxima and multiple solutions of the Euler equation.

(a) σε = 0
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(b) σε = 0.03
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Notes: The figure plots the maximand of the equation (10), which defines the discrete choice specific value function

vt(Mt|dt = 1), for the case of σε = 0 (panel a) and σε = 0.03 (panel b). Horizontal lines indicate the critical points

found or approximated by the EGM step of DC-EGM algorithm. The points are indexed with the same indexes as

in Figure 4 and the black dots represent global maxima. Model parameters are identical to those of Figure 4.

10More specifically, because the grid A⃗ is finite, for every distinct point of the endogenous grid M⃗t = Mt(A⃗)
it recovers one of the local maxima that corresponds to one of the solutions to the Euler equation. The other
local maxima are approximated by interpolation of the value function correspondence between the points of the
endogenous grid M⃗t = Mt(A⃗).
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In the case without taste shocks, σε = 0 (panel a), two levels of consumption satisfy the Euler

equation (12) in the range Mt ∈ [27, 36]. From Figure 4 we know that points indexed 16 to 21 are

suboptimal. Panel (a) in Figure 5 illustrates that the maximand function computed for wealth

Mt in this range has two local maxima. For example, the 15th point from the EGM step is the

global maximum of the maximand computed at Mt ≈ 29.9, while the 16th point is not the global

maximum when resources are Mt ≈ 31.3.

At some point, the two solutions originating from the two segments of the value function

correspondence are both optimal. Around Mt ≈ 30.6 in panel (a) of Figure 5, the decision maker

is indifferent between the discrete choices (at the next or some future periods – depending on

whether the multiplicity of the solutions was caused by the primary or secondary kink of the next

period value function). At this point of indifference, the consumption function is discontinuous,

as illustrated with the red dashed line in panel (c) in Figure 4. The intersection point is not

necessarily found in the EGM-step outlined above and needs to be additionally computed.11

In the smooth case with σε = 0.03 the problem of multiplicity of local maxima in the maximand

of equation (10) is still present, as shown by panel (b) of Figure 5. Correspondingly, there is still a

discontinues drop in consumption around Mt around Mt ∈ [29, 31]. Note that in the smooth case

there can be three solutions to the Euler equation, only one of which is a global maximum. This

configuration is dealt with by the same upper envelope method.

It is clear, that selecting the global maximum among the critical points located by solving

the Euler equation during the EGM step amounts to comparing the values of the constructed

value function correspondence vt(Mt|dt) for each Mt. For comparison, the overlapping segments

of vt(Mt|dt) have to be re-interpolated on some common grid, and the upper envelope has to be

computed. Algorithm 2 presents the pseudo-code of this calculation. The key insight of the upper

envelope algorithm is to use the monotonicity of the end-of-period resources as a function of wealth

(this theoretical property is shown in Theorem 2, see Appendix A) to detect the regions where

multiple values of choice-specific value function v(Mt|dt) are returned for a single value of Mt (see

Step 3 of Algorithm 2). Around every such detected region, the value function correspondence is

broken into three segments (Steps 5 to 7), which are then compared point-wise to compute the

upper envelope (Step 12). The inferior points are simply dropped from the endogenous grid M⃗t.

Consequently, the consumption and value function correspondences are cleaned up and become

11In presence of taste shocks, finding the precise indifference points is not essential, but in deterministic settings
finding exact intersection points considerably increases the accuracy of the solution.
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Algorithm 2 Upper envelope refinement step

1: Inputs: Endogenous grid M⃗t = Mt(A⃗) obtained from the grid over the end-of-period resources

A⃗ = {A1, . . . , AG} where Aj > Aj−1, ∀j ∈ {2, . . . , G}; saving and value function correspondences ct(M⃗t|dt)
and vt

(
M⃗t|dt

)
computed on M⃗t

2: for j = 2, . . . , G do (Loop over the points of endogenous grid)
3: if Mt(A

j) < Mt(A
j−1) then (Criterion for detecting non-concave regions)

4: Find the first h ≥ j such that Mt(A
h) < Mt(A

h+1)
5: Let J1 = {j′ : j′ ≤ j − 1} (Points up to [19] in panel a and [17] in panel b of Figure 4)
6: Let J2 = {j′ : j − 1 ≤ j′ ≤ h} (Points [19], [20] in panel a and [17]-[20] in panel b of Figure 4)
7: Let J3 = {j′ : h ≤ j′} (Points [20] and up in both panel a and b of Figure 4)

8: Let M⃗ ′ = {Mt(A
j′) : mini∈J2 Mt(A

i) = Mt(A
h) ≤ Mt(A

j′) ≤ Mt(A
j−1) = maxi∈J2 Mt(A

i)}
9: for i = 1, . . . , |M⃗ ′| do where |M⃗ ′| is the number of points in M⃗ ′

10: Denote vt
(
M⃗t|dt, Jr

)
the segment of vt

(
M⃗t|dt

)
computed on the points in the set Jr

11: Interpolate the segments vt
(
M⃗t|dt, Jr

)
at the point Mt(A

i) if i /∈ Jr, r = 1, . . . , 3

12: if vt
(
Mt(A

i)|dt
)
< maxr vt

(
Mt(A

i)|dt, Jr
)
then

13: Drop point i from the endogenous grid M⃗t

14: end if
15: end for
16: Find the point M× : vt

(
M×|dt, J3

)
= vt

(
M×|dt, J1

)
[Optional]

17: Incert M× into M⃗t first with associated values vt
(
M×|dt, J3

)
and ct

(
M×|dt, J3

)
[Optional]

18: Incert M× into M⃗t then with associated values vt
(
M×|dt, J1

)
and ct

(
M×|dt, J1

)
[Optional]

19: Set j = h
20: else
21: Keep point j on the endogenous grid M⃗t as is
22: end if
23: end for
24: Outputs: Refined endogenous grid M⃗t, consumption and value functions ct(M⃗t|dt) and vt

(
M⃗t|dt

)
Note: The pseudo code is written using an elementary algorithm for calculation of the upper envelope for a collection

of functions defined on their individual grids. More efficient implementations could also be used, see for example

(Hershberger, 1989). Inserting the intersection point M× into the endogenous grid M⃗t two times in step 17 and 18

ensures an accurate representation of the discontinuity in consumption function ct(M⃗t|dt). If the optional steps 16-

18 are skipped, the secondary kink is smoothed out, but the overall shapes of the consumption and value functions

are correct.

functions.

Algorithm 3 presents the pseudo-code of the full DC-EGM algorithm. The algorithm invokes

the EGM step repeatedly to compute the value function correspondences for all discrete choice,

and then finds and removes all suboptimal points on the returned endogenous grids.

An important question of how the method handles the situations when the non-convex regions

go undetected due to relatively coarse grid A⃗ is addressed by the Monte Carlo simulations in the

next section. We show that even with small number of endogenous grid points the Nested Fixed

Point (NFXP) Maximum Likelihood based on the DC-EGM algorithm performs well and is able

to identify the structural parameters of the model.
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Algorithm 3 The DC-EGM algorithm

1: In the terminal period T fix a grid M⃗T over the consumable wealth MT . On this grid compute consumption
rules cT (M⃗T |dT ) = M⃗T and value functions vT (M⃗T |dT ) = (log(M⃗T )− dT ) for every value of discrete choice dT .
This provides is the base for backward induction in time

2: for t = T − 1, . . . , 1 do (Loop backwards over the time periods)
3: for j = {0, 1} do (Loop over the current period discrete choices)

4: Invoke the EGM step (Algorithm 1) with dt = j, ct+1(M⃗t+1|dt+1) and vt+1(M⃗t+1|dt+1) as inputs

5: Invoke upper envelope (Algorithm 2) using outputs from Step 4, M⃗t, ct(M⃗t|dt) and vt
(
M⃗t|dt

)
as inputs

6: The endogenous grid M⃗t and consumption and value functions ct(M⃗t|dt) and vt
(
M⃗t|dt

)
are now computed

7: end for
8: end for
9: The collection of the choice-specific consumption and value functions ct(M⃗t|dt) and vt(M⃗t|dt) defined on the

endogenous grids M⃗t for dt = {0, 1} and t = {1, . . . , T} constitutes the solution of the consumption/savings and
retirement model

3.3 Credit Constraints

Before turning to the Monte Carlo results, we briefly discuss how DC-EGM handles the credit

constraints, ct ≤ Mt.

During the EGM step, the credit constraints are dealt with in exactly same manner as in

the standard EGM by Carroll (2006). Let the smallest possible end-of-period resources A1 = 0

be the first point in the grid A⃗. Assuming that the corresponding point of the endogenous grid

Mt(A
1|dt) is positive12, it holds that At(M |dt) = 0 for all M ≤ Mt(A

1|dt) due to the monotonicity

of saving function At(M |dt) = M − ct(M |dt) (see Theorem 2 in Appendix A). Therefore, the

optimal consumption in this region is then given by ct(M |dt) = M , and the choice-specific value

function is

vt(M |dt) = log(M)− dt + β

∫
EVt+1(dtyηt+1)f(dηt+1), M ≤ Mt(A

1|dt). (16)

Note that the third component of (16) is the expected value of having zero savings. It is calculated

within the EGM step for the point A1 = 0, and should be saved separately as a constant that

depends on dt but not on Mt. Once this constant is computed, vt(M |dt) essentially has analytical

form in the interval [0,Mt(A
1|dt)], and thus can be directly evaluated at any point.

When the per-period utility function is additively separable in consumption and discrete

choice like in the retirement model we consider, (16) holds for all dt ∈ Dt in the interval

0 ≤ M ≤ mindt∈Dt Mt(A
1|dt). In other words, the choice specific value functions for low wealth

have the same shape (in our case log(M)), which is shifted vertically with dt-specific coefficients.

12It is not hard to show that this holds as long as the per period utility function satisfies the Inada conditions.
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This implies that the logistic choice probabilities Pt(dt|Mt) are constant in this interval, and have

to only be calculated once.

4 Monte Carlo Results

In this section we investigate the properties of the approximate maximum likelihood estimator

(MLE) that we obtain using the DC-EGM to approximate the model solution in the inner loop

of the Nested Fixed Point algorithm. We specifically focus on role of income uncertainty and

taste shocks for the approximation bias induced by a numerical solution with a finite number of

grid-points; in particular how approximation bias depends on the number of grid points in smooth

as well as non-smooth problems. After a description of the data generating process (DGP), we

present the results from a series of Monte Carlo experiments, and show that models used in

typical empirical applications are sufficiently smooth to almost eliminate approximation bias using

relatively few grid points.

4.1 Data Generation Process

For the Monte Carlo we consider slightly more general formulation of the consumption/savings

and retirement problem defined in (1) with Constant Relative Risk Aversion (CRRA) utility

max
{ct,dt}T1

T∑
t=1

βt

(
c1−ρ
t − 1

1− ρ
− αdt

)
(17)

where ρ is the CRRA coefficient and α ia additional parameter that index the disutility of work.

In order to simulate synthetic data from the DGP consistent with the model and the vector

of true parameter values, we solve the model very accurately with 2,000 grid points using the

DC-EGM. We will refer to this solution as the true solution even though this is off course only an

accurate finite approximation of the value function.13

We consider several specifications of the model in the Monte Carlo experiments below to study

various aspects of the performance of the estimator. Table 1 presents the parameter values in

the baseline specification of the model. Deviations are given explicitly with every Monte Carlo

13As a spot check, we have also compared this to the traditional value function iteration approach, where we
used a grid search over 1,000 discrete points on the interval [0,Mt] to locate optimal consumption for each value of
wealth. We find that results are essentially unchanged.
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Table 1: Baseline true parameter values.

Description Value Description Value
Time horizon T = 44 Disutility of work α = 0.5
Gross interest rate R = 1.03 Discount factor β = 0.97
Full time employment income y = 1.0 CRRA coefficient ρ = 2.0
Income variance ση = 0 Taste shocks scale σε ∈ {0.01, 0.05}

separately.

For each specification of the model, 50,000 individuals are simulated for all T = 44 periods.

Each individual i is initiated as full-time worker sdi,1 = 1, where we have used sdi,t ∈ {0, 1} to denote

the labor market state, i.e. whether an individual is retired (sdi,t = 0) or working (sdi,t = 1). Each

workers initial wealth Md
i,1 is drawn from a uniform distribution on the interval [0, 100]. At the

beginning of each time period t, a random log-normal labor market income shock ηt with variance

parameter ση is drawn if the individual i is working and individual’s resources Md
t are calculated.

Given the level of resources, discrete-choice specific value functions and choice probabilities are

computed, and a random uniform draw determines which discrete labor market option ddit is cho-

sen. After one period lag, the labor force participation decision becomes the labor market state,

sdi,t+1 = ddit. The optimal level of consumption, cit, is then computed conditional on ddit, and the

end-of-period wealth is calculated and stored to be used for calculation of resources available in the

beginning of period t+ 1, Md
i,t+1. We then add normal additive measurement error with standard

deviation σξ = 1 to get the simulated consumption data, cdit. This produces simulated panel data

(Md
it, s

d
it, d

d
it, c

d
it) for each individual i ∈ {1, . . . , 50, 000} in all time periods t ∈ {1, . . . , 44}.

4.2 Maximum Likelihood Estimation

We implement a discrete-continuous version of the Nested Fixed Point (NFXP) Maximum Likeli-

hood estimator devised in Rust (1987, 1988), where we augment the original discrete-choice esti-

mator with a measurement error approach when assessing the likelihood of the observed continuous

choices.

Assume that a panel dataset is available, {(Md
it, s

d
it, d

d
it, c

d
it)}i={1,...,N}, t={1,...,Ti}, containing ob-

servations on wealth, other states, discrete and continuous choices of individuals i = 1 . . . , N in

time periods t = 1, . . . , Ti. Let ct(Mt, st, dt|θ) denote the consumption policy function computed

by the DC-EGM for a given vector of model parameters θ = (α, β, ρ, ση, σε). We assume that
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consumption is observed with additive Gaussian measurement error,

cdit = ct(M
d
it, s

d
it, d

d
it|θ) + ξit, ξit ∼ N(0, σξ), i.i.d. ∀i, t. (18)

Let ξdit(θ) = cdit − ct(M
d
it, s

d
it, d

d
it|θ) denote the difference between the predicted and the observed

consumption. We assume that the measurement error, ξit, is independent of the taste shocks,

εt(dt), and, thus, the joint likelihood of observation i in period t is given by

ℓit(θ, σξ) = P (ddit|Md
it, s

d
it, θ)

ϕ(ξdit(θ)/σξ)

σξ

, (19)

where ϕ(·) is the density function of standard normal distribution. We have ignored the controlled

transition probability for the retirement status sdit, since Ptr(s
d
it|sdi,t−1, d

d
i,t−1) is always 1 in the data

when retirement is absorbing and the labor market state is perfectly controlled by the decision.

The choice probabilities are standard logits

P (ddit|Md
it, s

d
it, θ) =

exp(vt(M
d
it, s

d
it, d

d
it|θ)/σε)∑1

j=0 exp(vt(M
d
it, s

d
it, j|θ)/σε)

(20)

and are computed from the discrete choice specific value functions vt(M
d
it, s

d
it, d

d
it|θ) found by the

DC-EGM given a particular value of the parameter vector θ, evaluated at the data.

The joint log-likelihood function is given by L̃(θ, σξ) = log
∏N

i

∏Ti

t ℓit(θ, σξ) where re-arranging

the first order condition with respect to σ2
ξ yields the standard ML estimator for the measure-

ment error variance, σ2
ξ (θ) =

∑N
i=1

1
NTi

∑Ti

t=1 ξ
d
it(θ)

2. The concentrated log-likelihood function is,

therefore, proportional to

L(θ) ∝
N∑
i=1

Ti∑
t=1

{
1

σε

(
vt(M

d
its

d
it, d

d
it|θ)− EVt(M

d
it, s

d
it|θ)

)
− 1

2
log

(
N∑
i=1

Ti∑
t=1

ξdit(θ)
2

)}
, (21)

where EVt(M
d
it, s

d
it|θ) is the the logsum given in (11) evaluated at parameter value θ. The parameter

vector θ̂ that maximizes (21) is the ML estimator of the model parameters.

4.3 Taste Shocks as Unobserved State Variables

We are now ready to investigate the effects of smoothing on the accuracy of the ML estimator

based on the DC-EGM algorithm. We conduct two Monte Carlo experiments where we vary the

23



degree of smoothing induced by extreme value taste shocks and income uncertainty respectively.

Throughout, we focus on estimating the parameter that index dis-utility of work, α, while keeping

all other fixed at their true values.

Taste Shocks and Approximation Error. Figure 6 displays the root mean square error

(RMSE) of the parameter estimates for the dis-utility of work, α̂. Results are shown for varying

degree of smoothing, σε ∈ {0.01, 0.05}, and different values of the disutility of work parameter,

α ∈ {0.1, 0.5}. With RMSE is around 1.0e−3, the proposed estimator is already accurate with 50

grid points and rapidly improves as the number of grid points increase from 50 through 1000. Note

that standard errors will of course increase with σε due to the increased amount of unexplained

variation in the error term and RMSE reflects this too. Bearing this is mind, it is evident that the

approximation bias decreases as the degree of smoothing increases, i.e., larger values of σε. For

higher levels of smoothing, problems with multiplicity of the Euler equation solutions disappear and

few grid points are needed to approximate the (smooth) consumption function. This is particularly

true when the dis-utility from work is large (α = .5) because the non-concave regions are larger

in this case. We also calculated the Monte Carlo Standard Deviation (MCSD)14, which is on the

order 1.0e−4 irrespectively of the number of grid points used.

Income Uncertainty. Additional uncertainty about, e.g., future labor market income tend

to smooth out secondary kinks stemming from multiple solutions to the Euler equations. To

illustrate how that additional smoothing affects the proposed estimator, Figure 7 display RMSE

when introducing income uncertainty. We report results from two different values of the income

variance, σ2
η ∈ {0.001, 0.05}. The first level, 0.001, does not completely smooth out secondary

kinks while the significantly more uncertain income process does (see the right panel of Figure 2).

Income uncertainty together with taste shocks smooth the problem to such a degree that

concave regions become few and unimportant and find that the RMSE drops by an order of

magnitude when increasing the income variance from .001 to 0.05. Hence, using only few grid

points when estimating such a model will result in only minor approximation errors.

As mentioned, standard errors will of course increase with σε due to the increased amount of

unexplained. The MCSD quite is small and unaffected by the degree of income uncertainty as well

as the number of grid points, but increases from 0.00023 to 0.00045 as σε increases from 0.01 to

14MCSD results not shown
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Figure 6: Monte Carlo results: disutility of work.
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(b) α = 0.5
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Notes: The plots illustrate the root mean square error (RMSE) of α̂. Results are shown for varying degree of

smoothing, σε ∈ {0.01, 0.05}, and different values of the disutility of work, α ∈ {0.1, 0.5}. The rest of the parameters

are at their baseline levels, see Table 1.

0.05. This is the main explanation for why RMSE is only smaller for a small number of grid points.

Sorting out this effect its clear that increasing σε decreases the amount of pure approximation bias

- especially when the number of grid points is small. Note that MCSD is very small, in part

due to a relatively large sample size, but also because the variance of the iid extreme value error

term are extremely small. In most empirical applications, σε would be larger; leading to an even

smoother problem than the one we consider here. Hence, with relatively few grid points we can

expect to obtain an even smaller approximation bias induced by the finite grid approximation in

the DC-EGM.

4.4 Taste Shocks as Logit Smoother

Until now we have assumed that the correct model with unobserved state variables, σε > 0, has been

estimated. To investigate how the proposed estimator performs if the data used for estimation

stems from a model in which there is no unobserved states, we estimate versions of the model

where we impose σε > 0 and, thus, estimate a misspecified model. This is interesting because if

researchers have reasons to believe that the underlying model has no shocks, the inclusion of these

shocks acts as a smooth approximation to the true deterministic model. As argued throughout,

solving the smoothed model is much faster since it requires fewer grid points and, thus, is much
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Figure 7: Monte Carlo results: income uncertainty.
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(b) σ2
η = 0.05
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Notes: The plots illustrate the root mean square error (RMSE). Results are shown for varying degree of smoothing,

σε ∈ {0.01, 0.05}, and different values of the income variance, σ2
η ∈ {0.001, 0.05}. The rest of parameters are at

their baseline levels, see Table 1.

faster to estimate.

Figure 8 illustrates the RMSE and MC std. when using 50, 100 and 500 grid points for various

levels of smoothing σε ∈ [0.001, 0.05] while the correct level is σε = 0. Intuitively, as the model

becomes ”more” misspecified (increasing the imposed σε), the RMSE and the MC std. increases.

Interestingly, for a given number of discrete grid points, the RMSE is minimized by a σε > 0.

While very low degree of smoothing induces significant approximation bias, the bias is initially

falling in σε until some point at which the RMSE increases again. The minimum of the RMSE is

attained for lower levels of smoothing if additional smoothing (i.e., income shocks) are included

in the model. This is natural because the income uncertainty smooths the problem and less logit

smoothing is ”required” to obtain the optimal smooth approximation.

These results show the potential for great speed gains by smoothing. Using only 50 grid points

and imposing σε = 0.01 produce a RMSE of around the same level as using 500 grid points and

imposing σε ≈ 0 close to the true model. We can reduce the number of gridpoints by an order

of magnitude without increasing the root mean square error significantly simply by choosing the

degree of smoothing appropriately.
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Figure 8: Monte Carlo results: true model without taste shocks (misspecified)
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(b) 100 grid points
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(c) 500 grid points
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Notes: The plots illustrate the root mean square error (RMSE) from estimation of a misspecified model. The model

from which data are simulated is deterministic, σε = 0, while the model used to estimate the disutility of work

imposes σε > 0. Results are shown for varying degree of imposed smoothing, σε ∈ [0.001, 0.05] on the horizontal

axes, different levels of income shocks, ση ∈ {0, 0.05}, and different number of grid points. The rest of parameters

are at their baseline levels, see Table 1.

5 Discussion and Conclusions

In this paper we have shown how an overcomplicated deterministic solution of a life cycle model

with discrete and continuous choices can be avoided by smoothing the problem and using the DC-

EGM algorithm. The proposed algorithm retains all the nice features of the original EGM method,

namely that it does not require any iterative root-finding operations, and is equally efficient in

dealing with borrowing constrains.

For expositional clarity, we focused on a simple illustrative example when explaining the details

of the DC-EGM algorithm. This also allows us to derive an analytical solution that we can compare

to the numerical one. The analytical solution provides economic intuition for why first and second

order kinks appear and permits direct evaluation of the precision of the DC-EGM algorithm.

Admittedly, the illustrative model of consumption and retirement is very stylized, and the reader

may wonder if DC-EGM can be used to solve and estimate larger, more complex and realistic

models with more state variables, multiple discrete alternatives, heterogeneous agents, institutional

constraints, etc.. The answer is positive. As shown in the Appendix, the DC-EGM method can

be applied to a much more general class of problems as long as the post decision state variable is a

sufficient statics for the continuous choice in the current period, and the marginal utility function is
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analytically invertible.15 The algorithms provided in the paper are easily generalized to alternative

model specifications including models with large state spaces and multinomial discrete choices.

The DC-EGM has already been implemented in several recent empirical applications, where it

has proven to be a powerfull tool for solving and estimating more complex DC models in various

fields: labor supply, human capital accumulation and wealth (Iskhakov and Keane, 2015); joint

retirement decision of couples (Jørgensen, 2014); consumption, housing purchases and housing debt

(Yao, Fagereng and Natvik, 2015); saving decisions and fertility (Ejrnæs and Jørgensen, 2015);

precautionary borrowing and credit card debt (Druedahl and Jørgensen, 2015).

We have demonstrated in the Monte Carlo experiments that the NFXP maximum likelihood

estimator based on the DC-EGM solution algorithm performs very well when decisions are made

under uncertainty, e.g. in the presence of extreme valued taste shocks and the existence of income

uncertainty. Even when the true model is deterministic, taste shocks can be used as a powerful

smoothing device to simplify the solution without much approximation bias due to over-smoothing.

The addition of extreme value taste shocks is not only a convenient smoothing device that

simplifies the solution of DC models, it is also an empirical relevant extension required to avoid

statistical degeneracy of the model. In empirical applications the variance of these shocks is

typically much larger compared to what we have considered here. This makes models smooth

enough to almost eliminate approximation bias in parameter estimates even with relatively few

grid points. We therefore conclude that DC-EGM is both practical and adequate for the real life

empirical applications.

A Theoretical foundations of DC-EGM

For the purpose of this Appendix we consider the following more general formulation of the con-
sumption/savings and retirement problem. Let Mt denote consumable wealth that is continuous
state variable with particular motion rule described below, and let st denote a vector of additional
discrete or discretized state variables. Let ct be the scalar continuous decision (consumption) and
dt be a scalar discrete decision variable with finite set of values that could encode multiple dis-
crete decisions if needed. Consider the dynamic discrete-continuous choice problem given by the
Bellman equation,

Vt(Mt, st) = max
0≤ct≤Mt,dt∈Dt

[
u(ct, dt, st) + σεεt(dt) + βtEt

{
Vt+1(Mt+1, st+1)|At, dt

}]
, (22)

15See Appendix for a precise formulation of the class of models that are solvable by DC-EGM.
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where t = 1, . . . , T − 1, and the last component of the maximand is absent for t = T . The choices
in the model are restricted by the credit constraint ct < Mt and feasibility sets Dt. The per period
utility includes scaled taste shocks σεεt(dt), where εt is a vector of i.i.d. Extreme Value (Type
I) distributed random variables. The dimension of εt is equal to the number of distinct options
that the discrete choice variable may take, εt(dt) denotes the component that corresponds to a
particular discrete decision. In the general case the discount factor βt is time-specific to allow
for the probability of survival. The expectation is taken over the taste shocks εt+1, transition
probabilities of the state process st as well as any serially uncorrelated (or idiosyncratic) shocks
that may affect Mt+1 and st+1. The expectation is taken conditional on the choices in period t
using the sufficient statistic At = Mt − ct in place of the continuous (consumption) choice.

Using the well known representation of the expectation of the maximum of Extreme Value dis-
tributed random variables, the Bellman equation (22) can be written in terms of the deterministic
choice-specific value functions vt(Mt, st|dt) as

vt(Mt, st|dt) = max
0≤ct≤Mt

[
u(ct, dt, st) + βtEt

{
Vt+1(Mt+1, st+1)|At, dt

}]
(23)

= max
0≤ct≤Mt

[
u(ct, dt, st) + βtEt

{
ϕ
(
vt+1(Mt+1, st+1|dt+1), Dt+1, σε

)
|At, dt

}]
, (24)

where ϕ(xj, J, σ) = σ log
[∑

j∈J exp
xj

σ

]
is the logsum function. The expectation in (24) is now

only taken w.r.t. state transitions and idiosyncratic shocks, unlike in (22) and (23).
The crucial assumption for the DC-EGM method is that post decision state At constitutes the

sufficient statistic for the continuous choice in period t, i.e. that transition probabilities/densities
of the state process (Mt, st) depend on At rather thanMt or ct directly. It is also required that At as
a function of Mt is analytically invertible. For our case, assume for concreteness that At = Mt−ct,
and that Mt+1 = RAt+y(dt), where R is a gross return, and y(dt) is discrete choice specific income.
We also assume that the utility function u(ct, dt, st) satisfies the following condition.

Assumption 1 (Concave utility). The instantaneous utility u (ct, dt, st) is concave
16 in ct and has

a monotonic derivative w.r.t. ct that is analytically invertible.

Lemma 1 (Smoothed Euler equation). The Euler equation for the problem (22) takes the form

u′(ct, dt, st) = βtREt

 ∑
dt+1∈Dt+1

u′(ct+1(Mt+1, st+1|dt+1), dt+1, st+1

)
Pt+1

(
dt+1|Mt+1, st+1

) (25)

where u′(ct, dt, st) is the partial derivative of the utility function w.r.t. ct, ct+1(Mt+1, st+1|dt+1) is
the choice-specific consumption function in period t+1, and Pt+1(dt+1|Mt+1, st+1) is the conditional
discrete choice probability in period t+ 1, given by

Pt(dt|Mt, st) = exp
(
vt(Mt, st|dt)/σε

)/∑
d∈Dt

exp
(
vt(Mt, st|d)/σε

)
. (26)

Proof. Discrete choice specific consumption functions ct(Mt, st|dt) satisfy the the first order con-

16More precisely, a weaker condition is sufficient, namely for every x and arbitrary ∆1 > 0 and ∆2 > 0 it must
hold that u (ct +∆1, dt, st)− u (ct, dt, st) ≥ u (ct +∆1 +∆2, dt, st)− u (ct +∆2, dt, st), see Theorem 2.
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ditions for the maximization problems in (23) given by

u′(ct, dt, st) + βtE

{
∂Vt+1(Mt+1, st+1)

∂Mt+1

∂Mt+1

∂ct

}
= 0 (27)

for every value of dt ∈ Dt. The envelope conditions for (23)

∂vt(Mt, st|dt)
∂Mt

= βtE

{
∂Vt+1(Mt+1, st+1)

∂Mt+1

∂Mt+1

∂Mt

}
, (28)

and because ∂Mt+1(dt)
/
∂Mt = R = −∂Mt+1(dt)

/
∂ct, it holds for all dt and t = 1, . . . , T − 1

u′(ct, dt, st) =
∂vt(Mt, st|dt)

∂Mt

. (29)

The first order condition for (24) is

u′(ct, dt, st) = βtREt

 ∑
dt+1∈Dt+1

∂vt+1(Mt+1, st+1|dt+1)

∂Mt+1

Pt+1

(
dt+1|Mt+1, st+1

) , (30)

where choice probabilities Pt+1

(
dt+1|Mt+1, st+1

)
are given by (26). Plugging (29) into (30) com-

pletes the proof.

The DC-EGM algorithm outlined in Algorithm 3 is readily applicable to the general formulation
of the discrete-continuous problem (22), expect for the extra loop that has to be taken over all
additional states st in Step 3 (Algorithm 3). The expectation over the transition probabilities of
the state process is calculated together with the expectation over the other stochastic elements of
the model in Algorithm 1.

Lemma 2 (All solutions). As the auxiliary grid over end-of-period wealth A⃗ becomes dense on a
closed interval [0, Ā] for some upper bound Ā, in the sense that the maximum distance between two
adjacent points Aj and Aj+1 approaches zero, the EGM step of DC-EGM algorithm is guaranteed
to find all solutions of the Euler equation (25) that imply the end-of-period wealth on the interval
[0, Ā].

Proof. Following the Algorithm 1 denote rhs
(
Mt+1(A

j)|dt
)
the right hand side of the Euler equa-

tion (25) as a function of the points of the end-of-period wealth grid A⃗ conditional on discrete
choice dt in period t. The EGM step of the DC-EGM algorithm computesct(A

j|dt) = u′−1
(
rhs

(
Mt+1(A

j)
))

,

Mt(A
j|dt) = u′−1

(
rhs

(
Mt+1(A

j)
))

+ Aj.
(31)

Both equations in (31) are well defined functions of Aj provided that the utility function u(·)
satisfies the Assumption 1. Thus, the system constitutes a well defined parametric specification of
the curve composed of the solutions to the Euler equation c(Mt, st|dt) for all st, dt, where Aj plays
the role of a parameter. In the limit as Aj runs through all the values on the interval [0, Ā], all
solutions that imply the end-of-period wealth from this interval are found.
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The criteria for selecting the solutions of the Euler equation that correspond to the optimal
behavior in the model is based on the monotonicity of the savings function, which is established
with the following theorem17.

Theorem 2 (Monotinicity of savings function). Denote At(Mt, st|dt) = Mt−ct(Mt, st|dt) a discrete
choice specific savings function in period t. Under the Assumption 1, function At(M, st|dt) is
monotone non-decreasing in M for all t,st and dt ∈ Dt.

Proof. Theorem 2 is an application of Theorem 4 in Milgrom and Shannon (1994) to the current
problem. Conditional savings function At(Mt, st|dt) is a maximizer in the expression similar to
(23) for the discrete choice specific value function vt(Mt, st|dt). As a function of M and A, the
maximand in this expression is given by

f(A,M) = u(M − A, dt, st) + βtEt

{
Vt+1(Mt+1(A), st+1)

}
(32)

whereMt+1(A) is next period wealth as an increasing function of A. It is necessary and sufficient to
show that f(A,M) is quasisupermodular in A and satisfies the single crossing property in (A,M).
The former is trivial because A is a scalar. For the latter consider A′ > A′′, M ′ > M ′′ and assume
f(A′,M ′′) > f(A′′,M ′′). Then

f(A′,M ′)− f(A′′,M ′) =

= u (M ′ − A′, dt, st)− u (M ′ − A′′, dt, st)+

+βt [EVt+1 (Mt+1(A
′), st+1)− EVt+1 (Mt+1(A

′′), st+1)] ≥
≥ u (M ′′ − A′, dt, st)− u (M ′′ − A′′, dt, st)+

+βt (EVt+1 (Mt+1(A
′), st+1)− EVt+1 (Mt+1(A

′′), st+1)) =

f(A′,M ′′)− f(A′′,M ′′) > 0.

(33)

For the first inequality we use

u (M ′ − A′, dt, st)− u (M ′ − A′′, dt, st) ≥ u (M ′′ − A′, dt, st)− u (M ′′ − A′′, dt, st) ,

u (M ′ − A′, dt, st)− u (M ′′ − A′, dt, st) ≥ u (M ′ − A′′, dt, st)− u (M ′′ − A′′, dt, st) ,

u (z, dt, st)− u (z −∆M , dt, st) ≥ u (z +∆A, dt, st)− u (z +∆A −∆M , dt, st) ,

(34)

where z = M ′ − A′, ∆A = A′ − A′′ > 0, ∆M = M ′ − M ′′ > 0, and which is due to Assumption
1, i.e. concavity of the utility function. It follows then that f(A′,M ′) > f(A′′,M ′). Similarly,
assumption f(A′,M ′′) ≥ f(A′′,M ′′) leads to f(A′,M ′) ≥ f(A′′,M ′), and thus f(A,M) satisfies the
single crossing property, and monotonicity theorem in Milgrom and Shannon (1994) applies.
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