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Abstract

Testing the validity of Value-at-Risk (VaR) forecasts, or backtesting, is an integral part of modern market

risk management and regulation. This is often done by applying independence and coverage tests developed

in Christoffersen (1998) to so-called hit-sequences derived from VaR forecasts and realized losses. However,

as pointed out in the literature, see Christoffersen (2004), these aforementioned tests suffer from low rejection

frequencies, or (empirical) power, when applied to hit-sequences derived from simulations matching empirical

stylized characteristics of return data. One key observation of the studies is that non-Markovian behavior in

the hit-sequences may cause the observed lower power performance. To allow for non-Markovian behavior,

we propose to generalize the backtest framework for Value-at-Risk forecasts, by extending the original first

order dependence of Christoffersen (1998) to allow for a higher, or k’th, order dependence. We provide

closed form expressions for the tests as well as asymptotic theory. Not only do the generalized tests have

power against k’th order dependence by definition, but also included simulations indicate improved power

performance when replicating the aforementioned studies.

Keywords: Value-at-Risk, Backtesting, Risk Management, Markov Chain, Duration-based test, quantile, like-
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1 Introduction

Since its introduction in the 90s Value-at-Risk (VaR), as measured by the p’th quantile of a forecasted distribution

of losses, has become widely used when reporting aggregate market risk. This again has prompted a rich literature

on validation of VaR forecasts, so-called backtesting, as much applied empirically by regulatory authorities,

academics and financial institutions. See Campbell (2007) for a review of the backtesting procedures and an

economic motivation for the backtesting criteria.

The leading reference on backtesting is Christoffersen (1998), wherein the evaluation of accurate VaR forecasts

was first formalized. Specifically it was shown that the occurrences of losses beyond a specified VaR level, termed

violations or hits, should occur independently and with a constant probability matching the p’th quantile. Based

on this, the widely applied conditional coverage and independence tests were proposed. However, as documented

in Christoffersen (2004) and Berkowitz et al. (2011) the tests have low empirical power in simulation studies

matching empirical stylized facts of returns data.

To address this we propose to derive tests in a more general setting than the original framework of Christof-

fersen (1998). Specifically, we propose tests within a general backtest framework extending the underlying

Markovian model of Christoffersen (1998) to allow for higher, or k’th, order dependence. Within the quite

general k’th order dependence model, we consider two structures, or specifications: one which we label as the

generalized Markov specification, and the other as the generalized Markov duration specification. Preceding

the details given in Section 2.2, the generalized Markov specification can be viewed as similar to the extension

of autoregressive models from order one to order k when testing for white noise, while the Markov duration

specification mimic duration modeling approaches to backtesting of Christoffersen (2004), Haas (2006) and Wei

and Pelletier (2014).

We provide asymptotic theory and closed form expressions for the implied tests for conditional coverage and

independence within these generalized specifications. Moreover, simulations illustrate that the new generalized

tests solve some of the leading issues with regards to low empirical power.

Note in this respect, that by definition the proposed tests will have power against higher order dependence,

and in particular so when compared to the tests derived in the Markovian framework. That the tests seem to

perform well in empirically stylized simulations is additional reason to prefer these.

The rest of the paper is organized as follows. Section 2 sets out the backtesting criteria i.e. Unconditional

Coverage, Independence, and Conditional Coverage. Subsection 2.1 reviews the popular classic Markov backtests

due to Christoffersen (1998) and Kupiec (1995). Subsection 2.2 introduces our new framework. We consider

two specifications from this framework, the generalized Markov and the Markov duration specifications. From

these we derive tests of unconditional coverage, independence and conditional coverage. Section 3 examines the

power and size properties of the various tests using a simulation framework. Section 4 concludes.
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2 Hit-sequence Based Backtesting

Let Rt denote the realization of a return of an asset or a portfolio of assets at time t. The ex ante VaR for

time t and coverage rate p, denoted as VaRt|t−1(p), conditional on all information, Ft−1, available at time

t− 1 (for example past returns and macroeconomic indicators) is defined as the p’th conditional quantile of the

distribution of Rt:

P (Rt < VaRt|t−1(p)|Ft−1) = p, t = 1, ..., T.

Typically the coverage rate used is 1% or 5%. Several parametric (for example GARCH models) and non-

parametric (for example Historical Simulation) methods are used to forecast VaRt|t−1(p), see McNeil et al.

(2005).

Backtesting is the procedure of comparing realized losses to the forecasted VaR. To implement backtesting

of a VaR forecast, we follow Christoffersen (1998) in defining the hit-sequence, {It}Tt=1, as follows:

Definition 1. The hit-sequence, {It}Tt=1, for a sequence of VaR forecast,
{
VaRt|t−1(p)

}T
t=1, is defined as,

It ..= 1
(
Rt < VaRt|t−1(p)

)
, t = 1, ...T (2.1)

Where 1(·) is the indicator function. Thus, the hit-sequence is by construction a binary time series indicating

whether a loss at time t greater than the VaR, termed a violation or a hit, was realized.

A VaR forecast is valid, in the sense of actually having forecasted the desired quantile, only if the associated

hit-sequence satisfies the following criteria due to Christoffersen (1998):

• The unconditional coverage criteria The unconditional probability of a violation must be exactly

equal to the coverage rate p:

HUC : P (It = 1) = p

• The independence criteria: The conditional probability of a violation must be constant:

HInd : P (It = 1|Ft−1) = P (It = 1)

Combining these criteria we obtain the conditional coverage criteria:

• The conditional coverage criteria: The probability of a violation must be constant and equal to the

coverage rate:

HCC : P (It = 1|Ft−1) = P (It = 1) = p

It follows, see Christoffersen (1998), that the hit-sequence of a valid VaR forecast, is in fact a sequence of

i.i.d. Bernoulli distributed variables:
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It ∼
i.i.d.

Bernoulli(p), t = 1, ..., T. (2.2)

The classic Markov framework of Christoffersen (1998) models the hit-sequence of (2.2) as a first order

Markov chain. As detailed in the following subsection 2.1 this allows testing of both the unconditional coverage

and independence criteria using likelihood-ratio tests. Furthermore, these tests have closed form expressions,

standard asymptotics and are easy to implement. However, as previously mentioned in the introduction, the

tests have also been found to suffer from low power when dependence is not Markovian.

In subsection 2.2, we extend the classic Markov framework to allow for higher, or k’th order, dependence.

We detail how our approach preserves all of the aforementioned advantages of the classic Markov testing, but

also have power against more general forms of dependence.

2.1 Classic Markov Testing

The first backtest by Kupiec (1995), models the hit-sequence as an i.i.d. Bernoulli sequence with an unknown

probability parameter π1 ∈]0, 1[, that is:

It ∼
i.i.d.

Bernoulli(π1), t = 1, ..., T (2.3)

The likelihood for the Bernoulli sequence (2.3) is given by LT (π1) = πT1
1 (1 − π1)T0 where T1 =

∑T
t=1 It,

T0 = T − T1 and the maximum likelihood (ML) estimate of π1 is given by π̂1 = T1/T .

From this a likelihood-ratio test of the restrictionHUC : π̂1 = p, corresponding to the criteria of unconditional

coverage, can be constructed in the usual way. It follows that the likelihood-ratio statistic, under the hypothesis

stated in the parenthesis, for unconditional coverage satisfies, as T →∞,

QUC(π1 = p) = −2log
(
pT1(1− p)T0

π̂T1
1 (1− π̂1)T0

)
d−→ χ2(1). (2.4)

This test is often termed the proportion of failures (PF) test. Because the model from which the test was

derived, see equation (2.3), does not allow for any dependence structure in the hit-sequence it is clear that the

test is unsuited to detect dependence in the hit-sequence.

The need to also test the independence criteria led Christoffersen (1998) to develop the Markov tests of

independence and conditional coverage. To do so it was proposed to model the conditional distribution of It

given It−1, It|It−1 as a first order Markov chain. We write this first order Markov chain as

It|It−1 ∼
i.i.d

Bernoulli(pt(θ)),

with transition probability,
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pt(θ) = It−1π11 + (1− It−1)π01, θ = (π11, π01)′ ∈]0, 1[2.

Here πij is the probability of observing i on day t − 1 being followed by observing j on day t for i, j = 0, 1.

Equivalently this may be expressed in terms of the transition probability matrix given by

Π =

 1− π01 π01

1− π11 π11

 . (2.5)

In terms of Π, independence is implied by the restriction HInd : π01 = π11 while the combined hypothesis of

conditional coverage can be tested by the additional restriction HCC : π01 = π11 = p.

The likelihood for the unrestricted Markov chain {It}Tt=1, with the first observation (I0) fixed, is given by

LT (π01, π11) = (1− π01)T00πT01
01 (1− π11)T10πT11

11 .

Here Tij indicates the number of observations of the hit-sequence where a j follows an i. Noting that T1 =

T11 + T10 and T1 = T11 + T10, the ML estimates are π̂01 = T01/T0, π̂11 = T11/T1. It follows that the likelihood-

ratio test statistic of independence, as T →∞, satisfies,

QInd(π01 = π11) = −2log
(

(1− π̂1)T00 π̂T01
1 (1− π̂1)T10 π̂T11

1

(1− π̂01)T00 π̂T01
01 (1− π̂11)T10 π̂T11

11

)
d−→ χ2(1).

Likewise, the likelihood-ratio test statistic for conditional coverage (the so-called joint test), satisfies,

QCC(π01 = π11 = p) = −2log
(

(1− p)T00pT01(1− p)T10pT11

(1− π̂01)T00 π̂T01
01 (1− π̂11)T10 π̂T11

11

)
d−→ χ2(2).

The tests of Christoffersen (1998) have standard asymptotics, closed form expressions and remain popular

in the applied literature. However, because they only model the hit-sequence as a first order Markov chain the

ability to detect higher order dependence may be limited. Furthermore, simulation studies have shown them to

have a low power in realistic settings. In the following subsection 2.2 we extend the model to allow for higher

order dependence, in order to remedy the shortcomings of the classical framework but still derive tests that are

easy to implement and interpret.

5



2.2 Generalized Markov framework

As detailed in the first part of the section, we now extend the classic Markov framework to a k’th order Markov

chain. Specifically, let the Markov chain be given by,

It|Ft−1,k ∼
i.i.d

Bernoulli(pt(θ)), Ft−1,k = It−1, ..., It−k, t = 1, ..., T. (2.6)

The transition probabilities of (2.6) are given by,

pt(θ) = P (It = 1|Ft−1,k), t = 1, ..., T, (2.7)

With θ a 2k vector of the individual parameters, corresponding to the possible permutations of It−1, It−2, ..., It−k.

Equivalently, one could specify a k-tuple Ĩt = (It, ..., It−k+1)′ which would then follow a Markov chain

governed by a 2k × 2k transition matrix P . Since the rows of P must sum to 1 and each state is only accessible

from 2 other states, this implies that each row has two non-zero elements1, which restricts it to the 2k parameters

also found in θ.

The likelihood for this model conditioned on k observations prior to t = 1 fixed, is given by,

LT (θ) =
T∏
t=1

pt(θ)It(1− pt(θ))1−It ,

and the log-likelihood by, LT (θ) =
∑T
t=1 log(pt(θ))It + log(1− pt(θ))(1− It).

The principal motivation was to allow for dependence of order k > 1. However since the number of parameters

increase at the geometric rate of 2k, estimating the model quickly becomes infeasible for larger values of k. In

order to have a feasible number of parameters we therefore impose parametric structures on the model of

equation (2.7). Examples of such structures or restrictions are presented in the following subsections 2.2.1 and

2.2.2. The criteria of independence and conditional coverage impose further restrictions, which are used to create

likelihood-ratio tests. Specifically if the restriction pt(θ) = p holds for all t, then the Markov chain of equation

(2.6) reduces to the i.i.d. Bernoulli sequence of equation (2.2).

There is no clear choice of k. A too low value might not adequately allow for the modeling of higher order

dependence. While a too high k conditions on too many observations making the effective sample size small.

For k = 1 the tests suggested in the following subsections reduce to the tests of Christoffersen (1998) described

in section 2. A natural choice of k is to use 5, 10 or 20, corresponding to testing for a change in the probability

of a hit in the week, two weeks or 1 month following a hit.

2.2.1 The Generalized Markov Test

In terms of the unrestricted model in (2.6), we first consider the restriction that the probability of a hit at time t,

pt(θ), is a function of only whether or not a hit has occurred in It−1, It−2, ..., It−k. This reduces the parameters
1Intuitively, if k = 1, one can recall that the two permutations of It−1 (either 1 or 0) meant that the classical tests of Christoffersen

(1998) are based on a Markov chain with 2 parameters in θ which are gathered into a 2× 2 transition matrix.
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of the model to two, or equivalently,

pt(θ) = Jt−1pE + (1− Jt−1)pS , Jt−1 ..= 1
(

k∑
i=1

It−1 > 0
)
.

The bivariate parameter vector θ = (pE , pS)′ belongs to the parameter space Θ =]0, 1[2. Intuitively, this corre-

sponds to an excited (pE) and a steady (pS) probability. Because the restricted model retains the interpretation

of two categories similar to the Markov tests of Christoffersen (1998), we will refer to it as the the generalized

Markov specification.

The likelihood is then given by,

LT (θ) = (1− pS)T00pT01
S (1− pE)T10pT11

E ,

where Tij are the counts; T11 ..=
∑T
t=1 ItJt−1, T01 ..=

∑T
t=1 It(1 − Jt−1), T10 ..=

∑T
t=1(1 − It)Jt−1, T00 ..=∑T

t=1(1− It)(1− Jt−1). That is, T11 (T10) is the number of hits (no hits) observed where one or more hits were

observed in the preceding k observations. T01(T00) is the number of hits (no hits) observed where there was not

observed a hit in the prior k observations.

This leads to the ML estimates (see Appendix A),

p̂S = T01

T01 + T00
and p̂E = T11

T11 + T10
.

To test the hypothesis of independence, we consider the restriction HInd : pE = pS ..= φ, that is, whether

there is a constant probability of a hit. The restricted parameter space, ΘH , is in this case given by,

ΘH = {θ| θ = Hφ, φ ∈]0, 1[} ,

where H = (1, 1)′, with ML estimate of φ given by (see Appendix A)

φ̂ = T01 + T11

T01 + T11 + T00 + T10
= T1

T
. (2.8)

Defining the unrestricted estimator, the estimator restricted under HInd and the estimator restricted under

HCC as

θ̂ ..= argmax
θ∈Θ

LT (θ) = (p̂S , p̂E)′ , θ̃ ..= argmax
θ∈ΘH

LT (θ) = Hφ̂ and θ0 = Hp.

As was the case for the classic Markov tests of the previous section, the likelihood ratio test statistic of indepen-

dence conveniently factorizes, see Appendix A, into tests for conditional coverage and unconditional coverage as

follows (with the hypothesis of each test in parenthesis)

QG−Ind(θ = Hφ) = −2log
(
LT (θ̃)
LT (θ̂)

)
= QG−CC(θ = Hp)−QG−UC(Hφ = Hp)

=
(
−2
[
LT (θ0)− LT (θ̂)

])
−
(
−2
[
LT (θ0)− LT (θ̃)

])
7



Note the simple relation, QG−CC(θ = Hp) = QG−Ind(θ = Hφ) + QG−UC(Hφ = Hp). This provides a simple

way of analyzing a rejection of CC. If a rejection of conditional coverage is found one can examine if it was due

to dependence, an incorrect coverage or both, using the QG−Ind(θ = Hφ) and QG−UC(Hφ = Hp) tests.

The test statistic of independence has the following expression

QG−Ind(θ = Hφ) = −2log
(
LT (θ̃)
LT (θ̂)

)

= −2{log(1− φ̂)(T00 + T10) + log(φ̂)(T01 + T11)

− log(1− p̂S)T00 − log(p̂S)T01 − log(1− p̂E)T10 − log(p̂E)T11}

(2.9)

The test statistic of conditional coverage has the following expression

QG−CC(θ = Hp) = −2log
(
LT (θ0)
LT (θ̂)

)

= −2{log(1− p)(T00 + T10) + log(p)(T01 + T11)

− log(1− p̂S)T00 − log(p̂S)T01 − log(1− p̂E)T10 − log(p̂E)T11}

(2.10)

The test statistic for unconditional coverage, QG−UC(Hφ = Hp) is by definition simply the proportion of

failures test of section 2, where the first k observations are dropped from the sample.

The distribution of the generalized Markov tests of for independence, conditional coverage and unconditional

coverage are asymptotically χ2(1), χ2(2) and χ2(1). That is, We have the following results:

Theorem 1. For T →∞, and under the null-hypothesis that {It} is an i.i.d. Bernoulli sequence with probability

parameter p,

QG−Ind(θ = Hφ) d−→ χ2(1),

QG−CC(θ = Hp) d−→ χ2(2),

QG−UC(Hφ = Hp) d−→ χ2(1).

For a proof see Appendix A.

2.2.2 The Markov Duration Test

In terms of the unrestricted model in 2.6, we now consider the restriction that the probability of a hit at time t,

pt(θ), is a function of the number of observations since the last hit (the duration) in the preceding k lags, after

which the probability is a constant. This reduces the parameters of the model to k + 1, or equivalently,

pt(θ) = J(1)t−1pE1 + ...+ J(k)t−1pEk + (1−
k∑
i=1

J(i)t−1)pS ,

where

J(1)t−1 ..= 1 (It−1 = 1) , ..., J(k)t−1 ..= 1 (It−1 = 0, ..., It−k = 1) .
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Specifically this implies pE1 = P (It = 1|It−1 = 1), pEk = P (It = 1|It−1 = 0, ..., It−k = 1) and pS = P (It =

1|It−1 = 0, ..., It−k = 0). Because the restricted model is similar to the underlying models of the duration based

backtests of Christoffersen (2004), Haas (2006) and Wei and Pelletier (2014) we will refer to this as the Markov

duration specification.

The parameter vector θ = (pE1, ..., pEk, pS) belongs to the parameter space Θ =]0, 1[k+1. The Markov

duration specification is less restrictive than that of the generalized Markov specification and contains it as

the special case pE1 = ... = pEk. Despite being less restrictive, the specification ensures that the number of

parameters in (2.6) only grows linearly with k.

The likelihood is given by,

LT (θ) = (1− pS)T00pT01
S

k∏
i=1

(1− pEi)T10(i)p
T11(i)
Ei ,

where T10(i) =
∑T
t=1(1− It)J(i)t−1 is the number of zeros observed after having observed a hit in It−i, but not

in any It−j where i > j. T11(i) is the number of ones observed after having observed a hit It−i lags previously,

but not in any It−j where i > j.

This leads to the ML estimates (see Appendix B),

p̂S = T01

T01 + T00
and p̂Ei = T11(i)

T11(i) + T10(i) , i = 1, ..., k.

To test the hypothesis of independence, consider the restriction HInd : pE1 = ... = pEk = pS ..= φ, that is,

whether there is a constant probability of a hit. The restricted parameter space is given by

ΘH = {θ| θ = Hφ, φ ∈]0, 1[} ,

Where H = (1, ..., 1)′ is a k × 1 vector and with ML estimate φ̂ unchanged.

Defining the unrestricted estimator, the estimator restricted under HInd and the estimator restricted under

HCC as

θ̂ ..= argmax
θ∈Θ

LT (θ) = (p̂S , p̂E1, ..., p̂Ek)′ , θ̃ ..= argmax
θ∈ΘH

LT (θ) = Hφ̂ and θ0 = Hp.

The likelihood ratio test statistic factorizes as into tests of conditional coverage and unconditional coverage as

in the previous subsection (with the hypothesis of each test in parenthesis)

QD−Ind(θ = Hφ) = −2log
(
LT (θ̃)
LT (θ̂)

)
= QD−CC(θ = Hp)−QD−UC(Hφ = Hp)

=
(
−2
[
LT (θ0)− LT (θ̂)

])
−
(
−2
[
LT (θ0)− LT (θ̃)

])
,

We will refer to these tests as the Markov-Duration tests of independence, unconditional coverage and con-

ditional coverage. We again have the relation between the tests that QD−CC(θ = Hp) = QD−Ind(θ =

Hφ) +QD−UC(Hφ = Hp).
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Intuitively, QD−Ind(θ = Hφ) tests whether the hazard function can be reduced to a constant and QD−CC(θ =

Hp) tests if that constant is exactly p. They can be viewed as duration tests, with the hazard rate being entirely

free of restrictions except a truncation to a constant beyond the k’th lag.

The test statistic of independence has the following expression

QD−Ind(θ = Hφ) = −2log
(
LT (θ̃)
LT (θ̂)

)
(2.11)

= −2
(
log(1− φ̂)(T00 + T10)× log(φ̂)(T01 + T11)− log(1− p̂S)T00 − log(p̂S)T01

−
k∑
i=1

log(1− p̂Ei)T10(i)−
k∑
i=1

log(p̂Ei)T11(i)
)
.

The test statistic of conditional coverage has the following expression

QD−CC(θ = Hp) = −2log
(
LT (θ0)
LT (θ̂)

)
= −2(log(1− p)(T00 + T10)× log(p)(T01 + T11)− log(1− p̂S)T00 − log(p̂S)T01

−
k∑
i=1

log(1− p̂Ei)T10(i)−
k∑
i=1

log(p̂Ei)T01(i)). (2.12)

Lastly, QD−UC(Hφ = Hp) is simply the proportion of failures test of section 2, where the first k observations

are dropped from the calculations (equivalent to the QG−UC(Hφ = Hp) test statistic).

The distribution of the Markov duration tests of for independence, conditional coverage and unconditional

coverage are asymptotically χ2 distributed. That is, we have the following results:

Theorem 2. For T →∞, and under the null-hypothesis that {It} is an i.i.d. Bernoulli sequence with probability

parameter p,

QD−Ind(θ = Hφ) d−→ χ2(k − 1),

QD−CC(θ = Hp) d−→ χ2(k),

QD−UC(Hφ = Hp) d−→ χ2(1).

For a proof see Appendix B.

In section 3.1 we demonstrate in a simulation study that using the asymptotic distributions of Theorems 1

and 2 to calculate p-values can cause a distortion of the size. Instead the Monte Carlo Method of Dufour (2006)

can be used to simulate the exact distribution under the null hypothesis and obtain valid p-values. It is the tests

using the Monte Carlo Method of Dufour (2006) which should be used in practice and it is what is used in our

empirical power simulations found in sections 3.2 and 3.3.
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3 Simulation Study of Size and Power

In this section we conduct a simulation study to investigate the empirical size and power properties of the

generalized Markov and duration tests of conditional coverage developed in section 2.2. Further, we evaluate the

empirical rejection frequency (ERF) of the tests using a simulation setup not contained in the general model of

equation (2.6), generating the returns using a GARCH model and forecasting the VaR using historical simulation

(HS). This later simulation is commonly included in papers which develop VaR backtests and we refer to it as

scenario power.

We use k = 1, 5, 10 and 20 lags for each of the conditional coverage tests, see equations (2.10) and (2.12)

from section 2.2, where we note that for k = 1, the generalized Markov and generalized duration tests both

reduce to the original joint test of Christoffersen (1998). We use sample sizes T = 500, 1, 000, 1, 500, 2, 500,

5, 000 and N = 100, 000 replications for each sample size. For the size simulations we use p = 1%, 5% and

10%, where the latter is included to illustrate the improved size properties for larger values of p. For the power

simulations we use only p = 1% and 5% reflecting empirically relevant cases. We use a significance level of 5%

for all simulations. In the empirical power and scenario power simulations in subsections 3.2 and 3.3 we use the

Monte Carlo testing technique of Dufour (2006) (see Appendix C) to obtain tests with a size of 5%.

3.1 Empirical Size

It is a well established fact of the backtest literature that the use of asymptotic distributions critical values can

create significant size distortions in existing tests, see Christoffersen (2004). To examine the size distortion of the

tests developed in this paper, and to examine when the asymptotic critical values can be used, we simulate the

hit-sequence, {It}Tt=1, under the null hypothesis of Conditional Coverage as an independent Bernoulli sequence.

Recalling equation (2.2), we simulate the hit-sequence, {It}Tt=1, using the data generating process (DGP):

It ∼
i.i.d

Bernoulli(p), t = 1, ..., T

ERFs of the generalized Markov and generalized duration tests of conditional coverage, when using the

asymptotic distributions critical value are presented in Table 1. From the table it is clear that using the critical

values of the asymptotic distributions can cause size distortion, especially when testing a low p or when using a

small sample. In general most tests appear to be undersized when using the low p = 1%. Though the generalized

Markov test, of equation (2.10), is only slightly undersized for k > 5 and T > 1, 000. When the higher p = 5%

or 10%, is used, the size properties are generally much improved for the generalized Markov tests. Especially

so for k > 5. The generalized duration test, of equation (2.12), has somewhat varying size properties. For the

low p = 1% it is undersized while for p = 5% or 10% it is oversized, though not to high degree when T = 5, 000

observations are used.

Because of the size distortion the empirical power and scenario power simulations in subsections 3.2 and 3.3

11



use the Monte Carlo testing technique of Dufour (2006) (see Appendix C) to obtain tests with a size of 5%.
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Sample size Markov-1 Markov-5 Markov-10 Markov-20 Duration-5 Duration-10 Duration-20
500 1.08 2.31 2.69 2.46 0.51 0.13 0.02
1000 2.63 3.05 3.77 4.19 0.73 0.26 0.05
1500 3.08 3.72 4.22 5.13 0.94 0.39 0.09
2500 2.75 4.20 5.04 5.64 1.25 0.72 0.27
5000 3.34 5.50 5.29 5.36 2.12 1.64 1.20

(a) p = 1%

Sample size Markov-1 Markov-5 Markov-10 Markov-20 Duration-5 Duration-10 Duration-20
500 4.04 4.97 5.21 5.28 4.00 4.04 3.38
1000 5.56 5.34 5.09 5.22 6.94 7.75 8.79
1500 6.33 5.04 5.02 4.99 6.80 7.83 9.55
2500 5.62 4.99 5.11 5.15 6.04 6.90 8.51
5000 5.01 4.95 4.93 4.99 5.30 5.52 6.16

(b) p = 5%

Sample size Markov-1 Markov-5 Markov-10 Markov-20 Duration-5 Duration-10 Duration-20
500 5.04 5.16 5.12 5.31 6.78 7.79 8.15
1000 5.28 5.15 5.06 5.06 5.66 6.40 8.16
1500 5.12 4.93 4.96 5.01 5.33 5.73 7.42
2500 5.22 5.08 4.99 5.23 5.29 5.36 6.29
5000 5.01 4.91 5.05 5.01 5.15 5.14 5.53

(c) p = 10%

Table 1: ERF when simulating under the null hypothesis of Conditional Coverage (the empirical size) and using
the asymptotic distributions 95% critical value. The hit-sequences were drawn as i.i.d. Bernoulli(p) sequences.
The results reported are based on 100, 000 replications for each test and sample size. The test names refer to
the generalized Markov and generalized Duration tests developed in this paper, the Markov-1 test is also found
in Christoffersen (1998) as the joint test.
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3.2 Empirical power

To evaluate the power, the probability of rejecting θ ∈ Θ0 when θ /∈ Θ0, of the tests of conditional coverage

we specify a DGP using the generalized Markov specification, which is itself a special case of the generalized

duration specification. Let the Markov chain be given by,

It|Ft−1,k ∼
i.i.d

Bernoulli(pt(θ)), Ft−1,k = It−1, ..., It−k, t = 1, ..., T. (3.1)

with transition probabilities of (3.1) given by

pt(θ) = Jt−1pE + (1− Jt−1)pS , Jt−1 ..= 1
(

k∑
i=1

It−1 > 0
)
.

We use pS = 1% and pE = 3% with k = 5 for the first DGP, this corresponds to the hit-sequence of a VaR

forecast of coverage rate 1% which is misspecified in such a way that for 5 days following a hit the actual quantile

modeled is the 3% quantile. The second DGP is identical, except pE = 4%. We repeat these simulations using

k = 10, giving a total of 4 DGPs. The resulting empirical power2 of the backtests are presented in figure 4.1.

Note that we use the Monte Carlo testing technique of Dufour (2006) rather than the critical values implied by

the asymptotic distributions in evaluating the tests.

From the first row of figure 4.1 it can be seen that for pS = 1% and pE = 3% the attained power can be quite

limited, for example, when 1, 000 observations are available the empirical power never exceeds 50%. The DGP

with the lowest order of dependence, k = 5, also has a lower empirical power compared to the DGP with k = 10

order dependence. Further, the tests which correctly specify the DGP as the alternative-hypothesis attain the

highest power. The second row of figure 4.1, displaying results for the pS = 1% and pE = 4% cases, shows

markedly higher empirical power, indicating that a more incorrectly specified VaR model, as measured by the

difference between the intended quantile and the actually forecasted quantile, will be easier to identify. Lastly

we see that using the tests with the highest empirical power can greatly improve the empirical power compared

to the joint test of Christoffersen (1998).

2Strictly speaking, the term empirical power is only appropriate for those tests based on models which contain the DGP as a
special case, eg. for k = 5 the simulations indicate the empirical power of the Markov-5, Duration-5, Duration-10 and Duration-20
tests.
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3.3 Scenario Power Using GARCH Returns and Historical Simulation

The scenario power simulation consists of two elements, a model with parameters matching those found in

empirical studies for generating non-i.i.d. returns and a forecast method which does not produce a valid forecast.

Similar to Christoffersen (2004), Haas (2006), Berkowitz et al. (2011) and Candelon et al. (2011), we thus simulate

a series of returns from a GARCH model and estimate VaR using the popular HS method3.

Specifically, let the returns, Rt, be generated by a GARCH(1, 1)− t(d) with a skew and a conditional t distri-

bution as:

Rt = σtzt

√
d− 2
d

, (3.2)

where the conditional variance is given by,

σ2
t = ω + ασ2

t−1

(√
d− 2
d

zt−1 − θ

)2

+ βσ2
t−1. (3.3)

Here zt is an i.i.d. draw from a student t-distribution with d degrees of freedom. The parameter values are

similar to estimates of this GARCH model on daily S&P500 returns, see Christoffersen (2004). Specifically,

we set d = 8 degrees of freedom with parametrization of the coefficients as α = 0.1, θ = 0.5, β = 0.85 and

ω = 3.9683e−6. The value of ω was set to target an annual standard deviation of 0.20 and the parametrization

implies a daily volatility persistence of 0.975. We use a burn-in period of 5, 000 observations for each simulation

to remove traces from initialization of the process. For more details see Christoffersen (2004) which presents

figures of the generated returns, estimated VaR using HS and hazard functions of the hit-sequence from a similar

simulation experiment.

Forecasting VaRt|t−1(p) is done using HS, see equation (3.4). HS is known to be under-responsive to changes

in conditional risk as it assigns an equal probability weight of 1/TW to all past observations, ignoring the

temporal ordering. Furthermore, the method responds asymmetrically, increasing risk (as measured by VaR)

following large losses but not following large gains. See Pritsker (2006) for a thorough discussion of the problems

associated with HS. HS generates a hit-sequence which violates conditional coverage, both due to dependence

and an incorrect coverage rate approximately 1% point larger than p.

The forecast is found by taking the negative empirical p percentile, of a rolling window of the TW latest

returns. We set TW to be either 250 or 500, both lengths are used so that we may evaluate the robustness of

the results with respect to changes in the data generating process.

VaRt|t−1(p) = −percentile
(
{Rj}t−1

j=t−TW
, p
)
, t = 1, ..., T (3.4)

Because the forecast is slow to update to changes in volatility, this will generate clusters of violations. We then

use the returns and VaR forecasts to create the hit-sequence as specified in definition 2.1, that is to say {It}Tt=1

is
3Perignon and Smith (2010) find that 73% of banks that disclosed their VaR forecast method used HS.
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It ..= 1(Rt < VaRt|t−1(p)), t = 1, ...T

The resulting ERFs of the backtests are presented in figure 4.2. Note that we use the Monte Carlo testing

technique of Dufour (2006) rather than the critical values implied by the asymptotic distributions in evaluating

the tests.

Inspecting figure 4.2, it is clear that the duration and generalized Markov tests improve the ERF compared

with the original joint test. For example, when 1, 000 observations are available, using either the generalized

Markov test or generalized duration tests with k = 10 lags will roughly double the ERF for either coverage rate.

For the lower coverage rate, the Markov Duration test appears to perform slightly better than the generalized

Markov test. However for the higher coverage rate the duration test can perform much worse, indicating its

power is less robust (though still better than the original test). The results seem quite robust to the choice of

TW , although in general slightly better power was found when using TW = 500 for all tests. This last result is

as expected, since a longer window would be expected to increase the dependence in the hit-sequence.

4 Concluding Remarks

To summarize, we have introduced the generalized Markov framework for deriving Value-at-Risk backtests.

Using the generalized Markov framework we suggested two specifications within this framework, the generalized

Markov specification and the Markov Duration specification, inspired by the original backtests of Christoffersen

(1998) and of the duration based backtests due to Christoffersen (2004), Haas (2006) and Wei and Pelletier

(2014).

Based on these specifications we derived likelihood-ratio test statistics for the criteria of independence,

unconditional coverage and conditional coverage. We provided closed form expressions for the tests as well as

asymptotic theory. Our tests have the advantage, compared to the original tests of Christoffersen (1998). That

they possess power against k’th order dependence. Furthermore, the tests of conditional coverage is equivalent

to the sum of the tests for independence and unconditional coverage. This allows one to evaluate rejection of

conditional coverage as being caused by either dependence, an incorrect coverage rate or both.

Using a simulation study we found evidence of improved size properties for the generalized Markov test

compared to the original Markov test of Christoffersen (1998), though worse size properties for the Markov

duration test. Simulations also indicated much improved empirical power while correcting for size distortions

for the tests of conditional coverage based on either the generalized Markov or Duration specification compared

to the original Markov test of Christoffersen (1998).
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(a) k = 5 and pE = 3% (b) k = 10 and pE = 3%

(c) k = 5 and pE = 4% (d) k = 10 and pE = 4%

Figure 4.1: Empirical power in percent for the conditional coverage tests. The hit-sequences were simulated
using the Markov chain described in section 3.2. The tests are the generalized Markov and generalized Duration
tests developed in this paper, the Markov-1 test is also found in Christoffersen (1998) as the joint test. The
Monte Carlo testing technique of Dufour (2006) was used to ensure a size of 5%.
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(a) p = 1% and TW = 500 (b) p = 1% and TW = 250

(c) p = 5% and TW = 500 (d) p = 5% and TW = 250

Figure 4.2: ERFs in percent for conditional coverage tests. The hit-sequences were simulated using a GARCH
DGP with V aRt|t−1(p) estimated by historical simulation, using a rolling window of length TW . The tests are
the generalized Markov and generalized Duration tests developed in this paper, the Markov-1 test is also found
in Christoffersen (1998) as the joint test. The Monte Carlo testing technique of Dufour (2006) was used to
ensure a size of 5%.
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A Derivation of the Generalized Markov Test Distributions

A.1 Proof of Asymptotic Distribution for the Conditional Coverage Test

The proof verifies the conditions in Lemma 1 of Jensen and Rahbek (2004) for asymptotic inference, see also

Theorem 7.7.3 of Lehmann (1999) or Billingsley (1962).

I. The score of the likelihood evaluated at the true value θ0 satisfies 1√
T
ST (θ0) d→ N(0,Σ) as T →∞

II. The observed information of the likelihood evaluated at the true value θ0 satisfies 1
T iT (θ0) p→ Σ as T →∞

III. Sup
θ∈N(θ0)

1
T

∣∣∣ ∂3LT (θ)
∂θi∂θj∂θk

∣∣∣ ≤ CT
p→ C ≤ ∞ as T →∞ and where N(θ0) is a compact neighborhood around the

true value θ0 and θi, θj , θk = {pE , pS}.

Condition (I): Recalling that Jt−1 = 1
(∑k

i=1 It−1 > 0
)
, the log-likelihood conditional on first k observations

fixed is given by

LT (θ) =
T∑
t=1

Lt(θ) =
T∑
t=1

Itlog (Jt−1pE + (1− Jt−1)pS) + (1− It)log (1− (Jt−1pE + (1− Jt−1)pS))

Next, the score with respect to θ is given by,

ST (θ) =
T∑
t=1

st(θ) =
T∑
t=1

∂Lt(θ)
∂θ

=
T∑
t=1

 ItJt−1
Jt−1pE+(1−Jt−1)pS

− (1−It)Jt−1
1−(Jt−1pE+(1−Jt−1)pS)

It(1−Jt−1)
Jt−1pE+(1−Jt−1)pS

− (1−It)(1−Jt−1)
1−(Jt−1pE+(1−Jt−1)pS)

 =

 T11
pE
− T10

1−pE

T01
pS
− T00

1−pS


Here T11 ..=

∑T
t=1 ItJt−1, T01 ..=

∑T
t=1 It(1 − Jt−1), T10 ..=

∑T
t=1(1 − It)Jt−1, T00 ..=

∑T
t=1(1 − It)(1 − Jt−1).

Recalling the definition of θ̂ we have that

θ̂ =

 T11
T10+T11

T01
T00+T01

 =

 T11
T1

T01
T0

 ,
with T1 ..= T11 + T01, T0 ..= T10 + T00.

The distribution of ST (θ0), where θ0 is the true value of θ ∈ ΘH , can be found as

ST (θ0) =
T∑
t=1

st(θ0) =
T∑
t=1

1
p(1− p) (It − p)

 Jt−1

1− Jt−1

 .
Since st(θ0) is a vector of martingale difference sequences with respect to Ft−1, with conditional covariance

matrix

E(st(θ0)st(θ0)′) = E

 (It−p)2Jt−1
p2(1−p)2 0

0 (It−p)2(1−Jt−1)
p2(1−p)2

 =

 (1−(1−p)k)
p(1−p) 0

0 (1−p)k

p(1−p)

 =.. Σ
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and as st(θ0) is stationary with finite third order moments, it follows from the martingale difference central limit

theorem in Brown (1971) that as T →∞

1√
T
ST (θ0) d→ Σ1/2U

where U ..= wlim

Σ−1/2 1√
T

∑T
t=1

1
p(1−p) (It − p)

 Jt−1

1− Jt−1


 = N(0, I2) and where I2 is the identity matrix.

Condition (II): The observed information is given by

iT (θ) ..= −∂
2LT (θ)
∂θ∂θ′

=

 T11
p2

E

+ T10
(pE−1)2 0

0 T01
p2

S

+ T00
(pS−1)2

 .
It follows that as T →∞

1
T
iT (θ0) p→

 p(1−(1−p)k)
p2 + (1−p)(1−(1−p)k)

(p−1)2 0

0 p(1−p)k

p2 + (1−p)(1−p)k

(p−1)2


=

 1−(1−p)k

p(1−p) 0

0 (1−p)k

p(1−p)

 = Σ,

By using the law of large numbers for i.i.d. observations. Observe in particular that as T → ∞, 1
T T11 =

1
T

∑T
t=1 ItJt−1

p→ p
(
1− (1− p)k

)
, 1
T T10 = 1

T

∑T
t=1(1 − It)Jt−1

p→ (1− p)
(
1− (1− p)k

)
, 1
T T00 = 1

T

∑T
t=1(1 −

It)(1− Jt−1) p→ (1− p) (1− p)k and 1
T T01 = 1

T

∑T
t=1 It(1− Jt−1) p→ p(1− p)k.

Condition (III): Define 0 < pLE ≤ pE ≤ pUE < 1 and 0 < pLS ≤ pS ≤ pUS < 1 such that max(pLS , pLE) ≤ p ≤

min(pUS , pUE). We verify, using the above results, that since ∂2LT (θ)
∂pE∂pS

= 0 it follows that

1
T

∣∣∣∣∂3LT (θ)
∂3pE

∣∣∣∣ = 1
T

∣∣∣∣∣ 2T11(
pLE
)3 + 2T10(

pUE − 1
)3
∣∣∣∣∣ ≤ 1

T

(
2T11(
pLE
)3 + 2T10(

pUE − 1
)3
)

= CT
p→ c, for T →∞

1
T

∣∣∣∣∂3LT (θ)
∂3pS

∣∣∣∣ = 1
T

∣∣∣∣∣ 2T01(
pLS
)3 + 2T10(

pUS − 1
)3
∣∣∣∣∣ ≤ 1

T

(
2T01(
pLS
)3 + 2T10(

pUS − 1
)3
)

= CT
p→ c, for T →∞

Having verified the conditions we can derive the QG−CC test statistics asymptotic distribution for T →∞ as
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QG−CC = −2
(
LT (θ0)− LT (θ̂)

)
= (θ̂ − θ0)

′
i(θ0)(θ̂ − θ0) + op(1)

= 1√
T
ST (θ0)

′
(

1
T
i(θ0)

)−1 1√
T
ST (θ0) + op(1)

d→ U
′
Σ1/2Σ−1Σ1/2U = U

′
U ∼ χ2(2)

A.2 Proof of Asymptotic Distribution for the Unconditional Coverage Test

The asymptotic distribution of the QG−UC test is found in the same fashion using

∂L(θ)
∂p

= ∂L(θ)
∂θ

∂θ

∂p
= ST (θ)

′
H, −∂

2L(θ)
∂p∂p

= H
′
i(θ0)TH

where we recall that H = (1, 1)′and the definition of θ̃, it then follows that

θ̃ = T1

T0 + T1
.

Then as T →∞

QG−UC = −2
(
LT (θ0)− LT (θ̃)

)
= [ 1√

T
ST (θ)

′
H]
′
(

1
T
H
′
iT (θ0)H

)−1
[ 1√
T
ST (θ)

′
H] + op(1)

d−→ U
′
Σ1/2H(H

′
ΣH)−1HΣ1/2U

∼ χ2(1)

A.3 Proof of Asymptotic Distribution for the Independence Test

Using the projection I = Σ1/2H(H ′ΣH)−1H
′Σ1/2 + Σ−1/2H⊥(H ′⊥Σ−1H⊥)−1H

′

⊥Σ−1/2, where H⊥ designates

the orthogonal complement of H, we can now find the asymptotic distribution of QG−Ind as T →∞

QG−Ind = QG−CC −QG−UC
d→ U

′
U − U

′
Σ1/2H(H

′
ΣH)−1H

′
Σ1/2U

= U
′
(
I − Σ1/2H(H

′
ΣH)−1H

′
Σ1/2

)
U

= U
′
Σ−1/2H⊥(H

′

⊥Σ−1H⊥)−1H
′

⊥Σ−1/2U = A
′
A ∼ χ2(1),

where A ..= (H ′⊥Σ−1H⊥)−1/2H
′

⊥Σ−1/2U .
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B Derivation of the Markov Duration Test Distributions

B.1 Proof of Asymptotic Distribution for the Conditional Coverage Test

We proceed as in the proof for Theorem 1.

Condition (I): Recalling that J(k)t−1 = 1 (It−1 = 0, ..., It−k = 1), the log-likelihood conditional on first k

observations fixed is given by

LT (θ) =
T∑
t=1

Itlog

(
J(1)t−1pE1 + ...+ J(k)t−1pEk + (1−

k∑
i=1

J(i)t−1)pS

)

+(1− It)log
(

1−
(
J(1)t−1pE1 + ...+ J(k)t−1pEk + (1−

k∑
i=1

J(i)t−1)pS

))

Next, the score with respect to θ is given by,

ST (θ) =
T∑
t=1

st(θ) =
T∑
t=1

∂Lt(θ)
∂θ

=
T∑
t=1



ItJ(1)t−1
pE1

− (1−It)J(1)t−1
1−pE1

...

ItJ(k)t−1
pEk

− (1−It)J(k)t−1
1−pEk

It(1−
∑k

i=1
J(i)t−1)

pS
−

(1−It)(1−
∑k

i=1
J(i)t−1)

1−pS)


=



T11(1)
pE1

− T10(1)
1−pE1

...
T11(k)
pEk

− T10(k)
1−pEk

T11
pS
− T00

1−pS


Recalling the definition of θ̂ we have that

θ̂ =



T11(1)
T11(1)+T10(1)

...
T11(k)

T11(k)+T10(k)

T11
T11+T01


,

Recalling that Jt−1 ..= 1
(∑k

i=1 It−1 > 0
)
, the distribution of ST (θ0), where θ0 is the true value of θ ∈ ΘH , can

be found as

ST (θ0) =
T∑
t=1

st(θ0) =
T∑
t=1

1
p(1− p) (It − p)



J(1)t−1
...

J(k)t−1

1− Jt−1


.

Since st(θ0) is a vector of martingale difference sequences with respect to Ft−1, with conditional covariance
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matrix

E(st(θ0)st(θ0)′) =



1
(1−p) 0 0 0

0
. . . 0 0

0 0 (1− p)k−2 0

0 0 0 (1−p)k−1

p


=.. Σ

and as st(θ0) is stationary with finite third order moments, it follows from the martingale difference central limit

theorem in Brown (1971) that as T →∞

1√
T
ST (θ0) d→ Σ1/2U

where U ..= wlim


Σ−1/2 1√

T

∑T
t=1

1
p(1−p) (It − p)



J(1)t−1
...

J(k)t−1

1− Jt−1




= N(0, Ik+1) and where Ik+1 is the identity

matrix.

Condition (II): The observed information is given by

iT (θ0) ..= −∂
2LT (θ)
∂θ∂θ′

=



T11(1)
p2

E1
+ T10(1)

(1−pE1)2 0 0 0

0
. . . 0 0

0 0 T11(k)
p2

Ek

+ T10(k)
(1−pEk)2 0

0 0 0 T01
p2

S

+ T00
(1−pS)2


It follows that as T →∞

1
T
iT (θ0) p→



1
(1−p) 0 0 0

0
. . . 0 0

0 0 (1− p)k−2 0

0 0 0 (1−p)k−1

p


= Σ

Here we have used the law of large numbers for i.i.d. observations, and that as T →∞, 1
T T11(k)→ (1−p)k−1p2

and 1
T T01(k)→ (1− p)kp.

Condition (III): Define 0 < pLEk ≤ pEk ≤ pUEk < 1 and 0 < pLS ≤ pS ≤ pUS < 1 such that max(pLS , pLE) ≤ p ≤

min(pUS , pUE). Since ∂2LT (θ)
∂pE∂pS

= 0 it follows that we only need the following
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1
T

∣∣∣∣∂3LT (θ)
∂3pEk

∣∣∣∣ = 1
T

∣∣∣∣∣2T11(k)(
pLEk

)3 + 2T10(k)(
pUEk − 1

)3
∣∣∣∣∣ ≤ 1

T

(
2T11(k)(
pLEk

)3 + 2T10(k)(
pUEk − 1

)3
)

= CT
p→ c, for T →∞

1
T

∣∣∣∣∂3LT (θ)
∂3pS

∣∣∣∣ = 1
T

∣∣∣∣∣ 2T0,1(
pLS
)3 + 2T1,0(

pUS − 1
)3
∣∣∣∣∣ ≤ 1

T

(
2T0,1(
pLS
)3 + 2T1,0(

pUS − 1
)3
)

= CT
p→ c, for T →∞

Having verified the conditions we can derive the QD−CC test statistics asymptotic distribution for T →∞ as

QD−CC = −2
(
LT (θ0)− LT (θ̂)

)
= (θ̂ − θ0)

′
i(θ0)(θ̂ − θ0) + op(1)

= 1√
T
ST (θ0)

′
(

1
T
i(θ0)

)−1 1√
T
ST (θ0) + op(1)

d→ U
′
Σ1/2Σ−1Σ1/2U = U

′
U ∼ χ2(k + 1)

B.2 Proof of Asymptotic Distribution for the Unconditional Coverage Test

The asymptotic distribution of the QD−UC test is found in the same fashion using

∂L(θ)
∂p

= ∂L(θ)
∂θ

∂θ

∂p
= ST (θ)

′
H, −∂

2L(θ)
∂p∂p

= H
′
i(θ0)TH

where we recall that H = (1, ..., 1)′and the definition of θ̃, it then follows that

θ̃ = T1

T0 + T1
.

Then as T →∞

QD−UC = −2
(
LT (θ0)− LT (θ̃)

)
= [ 1√

T
ST (θ)

′
H]
′
(

1
T
H
′
iT (θ0)H

)−1
[ 1√
T
ST (θ)

′
H] + op(1)

d−→ U
′
Σ1/2H(H

′
ΣH)−1HΣ1/2U

∼ χ2(1)

B.3 Proof of Asymptotic Distribution for the Independence Test

Using the projection I = Σ1/2H(H ′ΣH)−1H
′Σ1/2 + Σ−1/2H⊥(H ′⊥Σ−1H⊥)−1H

′

⊥Σ−1/2 we can now find the

asymptotic distribution of QD−Ind as T →∞
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QD−Ind = QD−CC −QD−UC
d→ U

′
U − U

′
Σ1/2H(H

′
ΣH)−1H

′
Σ1/2U, for T →∞

= U
′
(
I − Σ1/2H(H

′
ΣH)−1H

′
Σ1/2

)
U

= U
′
Σ−1/2H⊥(H

′

⊥Σ−1H⊥)−1H
′

⊥Σ−1/2U = A
′
A ∼ χ2(1),

where A ..= (H ′⊥Σ−1H⊥)−1/2H
′

⊥Σ−1/2U .

C The Monte Carlo Testing Technique Dufour (2006)

In this section we outline the Monte Carlo testing technique of Dufour (2006) used in the empirical power

simulations of section C. The technique used is given by the following algorithm:

I. Generate M i.i.d. hit-sequences of length T , {It}Tt=1, under the null of conditional coverage, HCC , by

drawing from a Bernoulli sequence, as:

It ∼
i.i.d

Bernoulli(p), t = 1, ..., T

II. Calculate the test statistic, Si, for each of the generated hit-sequence, i = 1, ...,M and denote by S0 the

original test value. Throughout this paper we use M = 99, 999.

III. Draw Ui for i = 0, ...,M from the uniform U(0, 1) distribution. Calculate the p-values as

p̂M (S0) = MĜM (S0) + 1
M + 1

where

ĜM (S0) = 1− 1
M

M∑
i=1

1 (Si ≤ S0) + 1
M

M∑
i=1

1 (Si = S0) 1 (Ui ≥ U0) .
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D Power Tables

Sample size Markov-1 Markov-5 Markov-10 Markov-20 Duration-5 Duration-10 Duration-20
500 8.40 10.15 8.20 7.95 14.00 10.85 9.30
1000 7.25 11.20 7.75 6.40 13.20 10.40 9.30
1500 9.45 13.05 8.35 6.00 17.65 13.35 11.05
2500 10.75 16.45 9.30 6.30 20.90 19.20 13.05
5000 13.70 21.95 14.65 11.20 27.00 23.45 15.80

(a) p = 1% and k = 5

Sample size Markov-1 Markov-5 Markov-10 Markov-20 Duration-5 Duration-10 Duration-20
500 9.65 11.65 12.20 9.85 14.70 17.30 12.65
1000 8.50 13.50 14.00 11.45 13.85 18.95 15.85
1500 8.85 13.90 15.10 9.45 18.75 23.25 18.40
2500 13.30 17.90 20.65 12.60 22.95 33.80 23.85
5000 16.05 23.85 39.80 24.20 27.35 40.60 29.10

(b) p = 1% and k = 10

Sample size Markov-1 Markov-5 Markov-10 Markov-20 Duration-5 Duration-10 Duration-20
500 6.25 6.75 6.15 5.45 6.25 5.35 4.55
1000 7.40 8.40 7.10 4.70 7.30 5.65 4.40
1500 5.45 10.10 7.10 5.70 6.85 5.05 5.35
2500 8.05 16.45 11.35 9.80 9.90 7.60 6.80
5000 12.75 24.40 15.20 11.00 15.85 11.60 9.00

(c) p = 5% and k = 5

Sample size Markov-1 Markov-5 Markov-10 Markov-20 Duration-5 Duration-10 Duration-20
500 7.00 7.50 7.05 8.25 8.45 8.10 6.30
1000 8.55 11.20 12.10 8.00 9.45 7.20 6.45
1500 7.70 12.15 13.85 10.95 8.60 7.75 7.40
2500 13.35 18.80 22.75 14.85 10.10 10.45 8.00
5000 20.40 27.75 39.80 27.20 17.40 19.00 13.95

(d) p = 5% and k = 10

Table 2: Empirical power in percent for conditional coverage tests. The hit-sequences were simulated using a
k’th order Markov chain specified in equation (3.1) of section 3. The tests refer to the generalized Markov and
generalized Duration tests developed in this paper, the Markov-1 test is also found in Christoffersen (1998) as
the joint test. The Monte Carlo testing technique of Dufour (2006) was used to ensure a size of 5%
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E Scenario Power Tables

Sample size Markov-1 Markov-5 Markov-10 Markov-20 Duration-5 Duration-10 Duration-20
500 25.56 36.39 40.94 39.81 41.42 44.58 41.70
1000 30.16 53.09 59.92 62.32 56.45 65.52 64.33
1500 38.47 65.02 72.61 75.72 69.61 78.74 78.36
2500 48.10 82.72 89.12 90.65 83.43 90.53 92.28
5000 74.27 97.01 99.26 99.59 96.69 98.79 99.25

(a) p = 1% and TW = 500

Sample size Markov-1 Markov-5 Markov-10 Markov-20 Duration-5 Duration-10 Duration-20
500 24.47 38.26 45.61 43.63 48.82 52.54 51.05
1000 38.05 57.04 62.72 63.85 61.84 72.05 73.21
1500 52.74 73.04 77.45 78.71 77.43 84.26 85.83
2500 73.35 90.31 93.10 93.30 89.44 94.59 95.48
5000 94.80 99.27 99.81 99.87 99.06 99.56 99.65

(b) p = 1% and TW = 250

Sample size Markov-1 Markov-5 Markov-10 Markov-20 Duration-5 Duration-10 Duration-20
500 44.48 64.55 69.72 66.98 57.36 57.22 45.65
1000 48.78 83.93 89.63 87.27 72.84 75.94 72.00
1500 54.50 93.86 96.93 95.84 86.60 89.19 87.06
2500 77.05 99.28 99.80 99.65 97.63 98.57 98.08
5000 96.61 100.00 100.00 100.00 99.99 100.00 100.00

(c) p = 5% and TW = 500

Sample size Markov-1 Markov-5 Markov-10 Markov-20 Duration-5 Duration-10 Duration-20
500 33.27 56.95 63.36 60.25 50.43 52.64 43.85
1000 43.15 80.02 86.60 83.93 68.09 71.72 68.28
1500 50.77 92.50 95.88 94.60 83.77 86.83 84.47
2500 76.29 99.03 99.72 99.48 97.02 98.14 97.38
5000 97.40 100.00 100.00 100.00 99.99 100.00 100.00

(d) p = 5% and TW = 250

Table 3: ERFs in percent for conditional coverage tests. The hit-sequences were simulated using a GARCH DGP
with V aRt|t−1(p) estimated by historical simulation, using a rolling window of length TW . The tests refer to the
generalized Markov and generalized Duration tests developed in this paper, the Markov-1 test is also found in
Christoffersen (1998) as the joint test. The Monte Carlo testing technique of Dufour (2006) was used to ensure
a size of 5%
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