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Abstract

How can a single player defend against the threat of a coordinated attack by a group?
For example, how can a central bank defend a currency peg against speculators, a gov-
ernment against a revolution or a prison warden against a breakout? Bentham (1787)
proposed an innovative prison concept based on information asymmetries – the “panop-
ticon” – as an answer to this question. We consider different information structures in a
stylized model of a prison, in which a warden chooses a costly guard level with the goal
of avoiding breakouts. Successful breakouts require coordination among prisoners. We
show that the information structure corresponding to the panopticon often performs
best, especially if there are many prisoners.
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Morals reformed – health preserved – industry invigorated – instruction dif-

fused – public burthens lightened – Economy seated, as it were, upon a rock –

the gordian knot of the Poor-Laws not cut, but untied – all by a simple idea in

Architecture! (Bentham, 1787)

1. Introduction

We analyze situations in which a single player is in conflict with a group of others, and the

group members’ actions are strategic complements. Consider, for example, a government

threatened by a revolution: Each potential revolutionary has to decide whether to show

up for a demonstration, and larger demonstrations are more likely to succeed – but no one

wants to be the only one to show up. A speculative attack on a currency peg requires the

participation of many speculators – but if the attack fails because not enough speculators

participate, those who participated will lose money.

In each of these cases, the single player would like to prevail with a minimum use of

resources (security forces, currency reserves) by discouraging the group from acting in the

first place. In this paper, we consider how he can accomplish this goal by choosing the right

information structure. The information structure determines which information about his

own strength will be revealed when he chooses a costly strength level at a later stage. Our

surprising result is that in many situations, complete secrecy is optimal. That is, the single

player foregoes the option to publicly commit himself to a strength level. Complete secrecy

mirrors the idea of the “Panopticon” proposed by Bentham (1787) – an innovative prison

concept in which prisoners were to be kept unable to see the guards as well as separated from

each other.

The general problem that we consider has many applications, some of which we discuss

later in the paper. Our main analysis concentrates on a succinct and graphic example close to

Bentham’s idea: The question of how to construct a prison.1 The prison warden faces a trade-

off, as guards are costly but more guards offer more protection. The prison design allows

a choice over how much information about the guard strength is available to the prisoners.

This can make coordination among individual prisoners, in the absence of institutions that

allow for explicit coordination, easier or harder. Ideally, the prison warden would prefer to

maintain order in the prison and prevent revolts and breakouts while using a minimum of

guards. The optimal prison design will exploit the prisoners’ coordination problem in order

1Bentham tried to construct the actual Panopticon after his plans, using considerable time on the purpose
while trying to convince successive governments of the idea. Unlike him, we mostly see the prison as a
metaphor for the mechanisms we want to analyze. Taking our formal model as a practical guide to prison
construction is done at the reader’s own risk.
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to prevent them from revolting.

Bentham proposed that the isolation of the prisoners, together with their lack of knowledge

of how many guards (if any) were on duty, would make coordination and thus a successful

revolt impossible.2 Through the lense of game theory, this argument appears unconvincing.

Rational prisoners should be able to implicitly coordinate, and in equilibrium they should

be able to infer the choice of the prison warden about guard strength. We find, however,

that Bentham’s intuition plays out: In a large prison, where prisoners have no information

about guard strength before independently choosing whether to revolt or not, there is only

one equilibrium in which the warden randomizes between minimal guard levels and prisoners

almost never revolt.

We compare four different information structures, also shown in table 1: (1a) Prisoners

can observe the guard level and coordinate (“benchmark model”). (1b) Prisoners cannot

observe the guard level but can coordinate (“benchmark model”). (2) Prisoners can observe

the guard level but face a coordination problem (“infection model”). (3) Prisoners cannot

observe the guard level and face a coordination problem (“panopticon”).

In cases (1a) and (1b), preventing a revolt is only possible when choosing the guard

level such that a revolt by all prisoners would not be successful. In (2), “a union of hands”

is required for a successful revolt for any intermediate guard level. As the actions of the

prisoners are strategic complements, there are two equilibria in the prisoners’ subgame (after

the warden has chosen an intermediate guard level): All prisoners revolt, or none does.

One of these subgame equilibria (the successful revolt) is preferred by the prisoners, but in

this equilibrium each of them puts himself at the mercy of the others – he does not want

to be caught as the only one revolting. Following the global games literature, we assume

that the prisoners, being isolated from each other, do not achieve common knowledge of

the guard level. Without common knowledge, their higher-order beliefs will then be infected

(Rubinstein, 1989; Carlsson and van Damme, 1993): ’I believe that a revolt can be successful,

but what if the others think that I think that it cannot? Then they would not revolt, and

neither should I.’ This infection makes it possible to reliably prevent a revolt with a much

lower guard level than in the benchmark model. While the number of guards needed to deter

revolts still rises linearly in the number of prisoners, the factor is usually much lower than 1.

Finally, in the fourth model, the panopticon, it is not immediately obvious what kind of

equilibria there are. Knowing that the guard level will not be observed, the warden has an

incentive to choose a low guard level, but that will make him very vulnerable to revolts by

2Bentham (p. 46): “Overpowering the guard requires an union of hands, and a concert among minds.
But what union, or what concert, can there be among persons, no one of whom will have set eyes on any
other from the first moment of his entrance? ... But who would think of beginning a work of hours and days,
without any tolerable prospect of making so much as the first motion towards it unobserved?”
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Guard level observable
Yes No

Coordination problem between prisoners
No (1a) Benchmark (1b) Benchmark
Yes (2) Infection (3) Panopticon

Table 1: The four information structures we consider.

even a few prisoners. Especially if there are many prisoners, it might seem sensible to always

set a sufficiently high guard level to prevent substantial revolts.

Instead, we find that – if the number of prisoners is large – there is a unique equilibrium

in mixed strategies in which the warden randomizes between the lowest possible guard levels,

and each prisoner randomly chooses whether to revolt or not. The individual probability

of revolting and the probability of a successful breakout are very small if the number of

prisoners is large. This guarantees that revolts can be prevented almost surely with just one

guard, as Bentham predicted. No other equilibria exist – neither pure nor mixed, symmetric

or asymmetric. There can be no pure-strategy equilibria since breakout would then occur

in equilibrium with probability 0 or 1. In the former case, either the warden would want

to deviate to a lower guard level or the prisoners would want to deviate to attempting a

breakout; in the latter case, the warden would want to deviate to a higher guard level.

In mixed equilibria, the distribution of the number of revolting prisoners matters for the

chance of a successful breakout, which is the determining factor in both the warden’s and

the prisoners’ strategic considerations. Technically, our argument is closely related to the

law of large numbers and the tail bounds of probability distributions. If there are many

prisoners, all of whom revolt with some probability, the actual number of revolting prisoners

is more and more closely distributed around the expected number of revolting prisoners. If

this expected value is close to the actual guard levels so that a successful revolt becomes

likely, the warden will want to increase the guard level. If the guard level is much higher

than the expected value, the probability of successful revolts is too low to induce prisoners to

revolt. Together, these effects preclude the existence of any equilibria in which the warden

chooses a guard level higher than the two minimal levels with positive probability. This fact

makes the panopticon the optimal information structure for large groups of prisoners, where

it performs far better than the other structures.

This result is close to what Bentham proposed. He envisioned the impossibility of a

”concert among minds” to such a degree that prisoners would not even think about revolting

together with other prisoners, and would simply concentrate their thinking on the possibility

of being watched and disciplined. If the number of prisoners is large, our model exhibits the

same property: For any prisoner, the probability that any of the other prisoners will revolt
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is close to zero, and the prisoner de facto finds himself in a game only between himself and

the warden – where the warden chooses a mixing between having one guard and having no

guards at all that just assures the prisoner’s docility. This result also has significance in

understanding the social science literature that followed.

In the 230 years since Bentham, many scholars have interpreted the panopticon as a

metaphor for modern society. Most prominently, Foucault (1975) points out that panop-

ticism, a system in which individuals self-discipline because of the omnipresent possibility

of being disciplined, has made modern society possible. Order is no longer maintained by

overwhelming force or a contest of violence between those opposing and those defending it, as

in our first model. Instead, the docility of individuals allows for cost-saving minimal enforce-

ment.3 This allows for the establishment of organizations, firms, schools in which individuals

have internalized the rules and behave in the desired way without constant supervision. It

was this “accumulation of men” (p. 220) that, besides the accumulation of capital, allowed

the industrial take-off of the early 18th century. Our result captures some of the intuition on

how and why panopticism would work in a formal, game-theoretical model.

Moreover, modern society has at its center the individual, not the family or tribe or any

other unit. This is crucial for maintaining the self-disciplining aspect of the panopticon,

which relies on every prisoner reasoning on his own and choosing what is optimal for him.

Others (e.g. Zuboff, 1988) have suggested that modern computers and indeed the internet are

panoptica, where everyone can at any time be under surveillance – an idea that has gained

credence by recent revelations of mass surveillance by intelligence agencies. Our results,

especially the comparison of information structures 2 and 3, suggest that if the true level of

surveillance is revealed (or there is a danger of revelation), efficacious enforcement becomes

much more expensive in equilibrium – a reason why whistleblowers might indeed pose a

threat to enforcement by panopticon. These results show that “order” as used by Foucault,

or the central prison metaphor of our theory, are neutral concepts: The free, democratic

society might defend itself against an uprising for the sake of social welfare, while a repressive

dictatorship might deploy secret surveillance methods to suppress dissent and rebellion. We

are interested in the mechanisms by which this is done, and our results are positive, not

normative.

Our results also have much more direct applications to situations where one actor can

use the coordination problem of his opponents against them. In section 4.1, we discuss the

problem of a central bank defending a currency peg against speculators – a question that has

3“Hence the major effect of the Panopticon: to induce in the inmate a state of conscious and permanent
visibility that assures the automatic functioning of power. So to arrange things ... that the perfection of
power should tend to render its actual exercise unnecessary, ... that the inmates should be caught up in a
power situation of which they are themselves the bearers.” (Foucault, 1975)
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received much attention in the economic literature (e.g. Flood and Garber, 1984; Obstfeld,

1986; Morris and Shin, 1998). The central bank can – in our model – endogenously build up

a costly foreign exchange reserve and decide which information to release about the size of

that reserve. We find that the central bank exploits the coordination problem of large groups

optimally by maintaining absolute secrecy about its own strength. Similar applications to

bank runs and other coordination problems are possible. Our model is also related to works

on coordination and revolution, such as Chassang and Miquel (2010) and Edmond (2013).

Edmond develops a model in which a government can release biased information about its

(exogenously determined) strength – a question that is complementary to our study.

In addition to the mentioned studies, our paper is related to the game-theoretic literature

on global games and common knowledge. In the model where the guard level is known, but

not common knowledge, we make use of the seminal results on global games; see Carlsson

and van Damme (1993), Morris and Shin (1998) and Morris and Shin (2003) for a survey.

The “infection” that occurs among prisoners was already described by Rubinstein (1989). We

build on this literature but endogenize the ”state of nature” as an active choice of the central

player, by adding an extra perturbation to the model.

Chwe (2003) provides a discussion of the panopticon and higher-order knowledge. The

panopticon, he argues, creates common knowledge among prisoners of being in the same situ-

ation – an idea that is connected to Bentham’s plan of having a chapel above the watchtower

in his panopticon. Indeed we find that no asymmetric equilibria exist in our panopticon

model, i.e. all the prisoners behave exactly the same in equilibrium.

2. Model

This section describes the general setup common to all three models. Details concerning

the information structure that differ across the three models are described in the following

section.

First, the warden chooses a guard level γ ∈ R+. Second, N prisoners decide simulta-

neously and independently whether to revolt (r) or not revolt (n). All revolting prisoners

break out if the number of revolting prisoners is strictly larger than γ. Otherwise, no prisoner

breaks out. The payoffs are as follows: Each prisoner values breaking out by b > 0. If the

prisoner revolts but cannot break out, he bears a cost −q < 0. This cost can be interpreted

in two ways: It could either represent a punishment for prisoners who unsuccessfully try to

escape or it could denote a cost of effort (in the latter case b should be interpreted as the

benefit of breaking out net of this effort cost). If a prisoner does not revolt, his utility is 0;

see table 2 for a summary of these payoffs.
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breaks out does not break out
r b −q
n 0 0

Table 2: Payoff prisoner conditional on breaking out or not

The warden experiences a disutility denoted by −B whenever a breakout occurs; apart

from that he only cares about the costs of the guards. The costs of the guards are linear

in γ with slope normalized to 1, i.e. guard costs are −γ. Consequently, the utility of the

warden is −B−γ if a breakout occurs and −γ otherwise. Prisoners’ and warden’s payoffs are

assumed to be additive in their components and every player maximizes his expected utility.

Finally, we make an assumption on the size of the disutility B. The assumption implies that

the warden would prevent a revolt (by setting γ = N) if he knew that all prisoners play r for

sure.

Assumption 1. B ≥ N + 1.

The reasoning behind this assumption is as follows. If B < N , there is – independent of

the specific information structure – a very robust equilibrium in which the guard level is zero

and all prisoners revolt. This is a somewhat uninteresting case that we want to neglect. For

technical reasons, we assume B ≥ N + 1 (instead of B > N) as it significantly simplifies the

analysis.

We want to point out two other modeling choices we made: First, the warden’s utility

depends only on whether there is a breakout and not on how many prisoners break out (or

by how much the number of revolting prisoners exceeds the guard level). In this sense, the

disutility B corresponds to an image or reputation concern, or a regime preference. Also in

the other applications mentioned in the introduction this assumption appears reasonable: A

central bank will mainly care about whether it was able to hold the announced peg (and less

about how many speculators attacked the peg in case of an successful attack), a government

about whether it can stay in power or not. Second, prisoners that do not revolt will not

break out (or have at least no benefit from doing so). Think of a prisoner sitting calmly in

his cell who will not escape even if others do. Again this fits also the example of speculating

against a currency peg: If one does not speculate against the peg, one cannot benefit from a

successful attack. It should be noted, however, that our model is robust to deviations from

this assumption as long as they do not destroy the strategic complementarity which is at the

core of our model – see section 4.2 for details.
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3. Analysis

3.1. Benchmark model: Perfect coordination

The first model is a benchmark where we assume the coordination problem of the prisoners

away. We distinguish two possibilities: First, the prisoners observe the guard level set by

the warden before they have to choose their actions. Assuming the coordination problem

away means here that – given the guard level – the prisoners can coordinate on the prisoner

optimal Nash equilibrium. Hence, all prisoners play r if γ < N and all play n otherwise.

Given assumption 1, it is then optimal for the warden to choose γ = N . The payoff of the

warden is −N while the payoff of each prisoner is zero.

Second, we consider the possibility that the prisoners do not observe the guard level.

As we allow perfect coordination between the prisoners, prisoners will either all revolt or

all not revolt. This is due to the strategic complementarity between prisoners: Revolting is

relatively better for a given prisoner if other prisoners revolt too. Given that either all or

no prisoners revolt, the only two guard levels that can be best responses by the warden are

zero and N . Furthermore, the game has no pure strategy equilibrium because of the non-

observability of the guard level: If the warden chose a guard level of zero (N), the prisoners

would best respond by revolting (not revolting). But then the guard level of zero (N) is not

a best response. Therefore, we only have a mixed equilibrium in which the warden mixes

between the two guard levels of zero and N and the prisoners mix between “all revolt” or “no

one revolts”. The mixing probabilities are such to keep the other side indifferent. Note that

the expected warden payoff is −N since the warden is indifferent between the equilibrium

strategy and choosing a guard level of N for sure (which guarantees a payoff of −N). The

prisoners have an expected payoff of zero as they are indifferent between their equilibrium

strategy and not revolting for sure which gives every prisoner a payoff of zero.

Both possibilities of our benchmark lead therefore to the same equilibrium payoffs for

all players. In this benchmark model, the warden has to use a large amount of resources

to prevent a revolt. The reason is that we assumed that the prisoners had no coordination

problem. In the following model, we introduce the coordination problem and show how the

warden can exploit this problem to his advantage. In terms of prison design, one might

view the benchmark model as a prison in which all prisoners are kept in the same room and

find it easy to resolve their coordination problem by communicating with each other. In

this interpretation, prisoners are – as Bentham suggested – kept separately in the following

models and will therefore face a coordination problem.
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3.2. The infection model

In the second model, prisoners choose simultaneously and independently whether to revolt

or not. If the guard level is weakly above N , it is a dominant action for each prisoner to

play n. If the guard level is strictly below 1, it is a dominant action for each prisoner to play

r. For guard levels between 1 and N , the optimal choice of a prisoner depends on what the

other prisoners choose: If strictly more than γ − 1 other prisoners revolt, a given prisoner

best chooses r himself. It is, however, optimal to choose n if less than γ − 1 other prisoners

revolt. There are two equilibria in the subgames in which γ ∈ [1, N): All prisoners revolt

or no prisoner revolts. Consequently, the prisoners face a coordination problem. Following

the approach in the global games literature, we select one of the two equilibria by relaxing

the assumption that γ is common knowledge among the prisoners. More precisely, we show

that introducing an arbitrarily small amount of noise into the actual and observed guard level

leads to a unique equilibrium prediction. Figure 1 shows the intuition behind this equilibrium

selection through infection.

γ

N

1

θ∗

(r dominates)

(n dominates)

(infection)

(infection)

Figure 1: Infection of beliefs among prisoners: If γ ≥ N , not revolting is a strictly dominant
strategy for all prisoners. If γ < 1, revolting is strictly dominant. If γ ∈ [1, N) and γ
is common knowledge, there are two pure equilibria: Everybody revolts or no one revolts.
When common knowledge is destroyed by the perturbation, beliefs get infected so that for
γ < θ∗, n is the unique equilibrium action, and r is the unique equilibrium action for γ ≥ θ∗.

The perturbation works in the following way: The warden chooses an intended guard level

γ̃. The true guard level is then drawn from a normal distribution with mean γ̃ and variance

ε′ > 0.4 That is, the warden has a “trembling hand”. Each prisoner receives a noisy signal

of γ: This signal is drawn from a uniform distribution on [γ − ε, γ + ε] with ε > 0. We are

interested in the Bayesian Nash equilibrium of this game as ε→ 0. In fact, we show that this

Bayesian game has generically a unique Bayesian Nash equilibrium as ε → 0. Furthermore,

4In the context of a prison, one might think here of a normal distribution truncated at zero. The truncation
affects neither results nor derivation.
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this equilibrium does not depend on ε′ > 0. We select this equilibrium in the original game.5

Note that this setup eliminates common knowledge of the guard level. A prisoner observ-

ing signal θ knows that the true guard level is in [θ − ε, θ + ε]; he knows that each other

prisoner knows that γ ∈ [θ − 3ε, θ + 3ε]; he knows that each other prisoner knows that he

knows that γ ∈ [θ−5ε, θ+ 5ε] etc. Higher order beliefs will therefore play a role in determin-

ing the equilibrium. This appears to be a natural feature in a coordination game where the

driving force of one’s choice are exactly the expectations over what others do (which itself is

driven by what others believe I do and therefore beliefs over beliefs and beliefs over beliefs

over beliefs etc.).

The following lemma contains the main technical result for the Bayesian game.

Lemma 1. Let ε′ > 0. Assume that bN/(q + b) 6∈ N and define6

θ∗ =

⌈
bN

q + b

⌉
.

Then for any δ > 0, there exists an ε̄ > 0 such that for all ε ≤ ε̄, a player receiving a signal

below θ∗ − δ will play r and a player receiving a signal above θ∗ + δ will play n.

The proposition states that for generic parameter values – whenever bN/(q+ b) is not an

integer – prisoners in the Bayesian game will revolt when they observe a signal below θ∗ − δ
and will not revolt if they observe a signal above θ∗ + δ. In the limit – as the prisoners’

observation noise ε approaches zero – δ approaches zero as well. Put differently, prisoners

play a cutoff strategy with cutoff value θ∗ in the limit: Whenever they receive a signal below

the cutoff, they play r and whenever they receive a signal above the cutoff they play n.

Now consider the warden’s decision problem (in the limit as ε→ 0). If the guard level is

strictly above θ∗, then all prisoners will receive signals above θ∗ and will therefore not revolt.

If the guard level is strictly below θ∗, then all prisoners will receive a signal below θ∗ and

will revolt. Consequently, the optimal guard level for the warden is θ∗ (or slightly above and

arbitrarily close θ∗). In the limit as ε′ → 0, the warden can ensure this guard level by simply

choosing γ̃ = θ∗. This gives us the following outcome for our second model.

Result 1. The equilibrium outcome selected by the perturbation is the following: The warden

chooses a guard level equal to θ∗ and every prisoner plays n.

5The reader familiar with the global games literature might wonder why we introduce a “tremble” in the
warden’s action. The reason is that the parameter which is observed with noise (the guard level γ) is an
endogenous choice in our model while the usual global game approach would assume noisy observation of an
exogenous parameter chosen randomly by nature. Since γ is a strategic choice (made before the prisoners
act), prisoners could infer γ correctly in equilibrium despite the noisy observation if the warden did not
“tremble”. Consequently, prisoners would have common knowledge of γ despite the noise.

6The ceiling dxe is the lowest integer above x, i.e. dxe = min{n : n ∈ N and n > x}.
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Clearly, the warden does better in this equilibrium than in the benchmark model: He

prevents a revolt for sure while using guard level θ∗ instead of the guard level N . The reason

is that he can utilize the coordination problem among prisoners in his favor. More technically,

the so-called “infection argument” is at work: Consider a prisoner receiving a noisy signal

above N . It is then quite likely that the guard level is above N and also quite likely that

one other prisoner receives a signal above N + ε (where it is a dominant action to play n).

Consequently, a prisoner receiving a signal above N finds it optimal to not revolt. Now

consider a prisoner receiving a signal just below N : This prisoner will consider it quite likely

that at least one other prisoner receives a signal above N in which case this prisoner will

play n (as we just established). So, even if the guard level is below N , it is unlikely that all

other prisoners revolt and therefore a prisoner receiving a signal just below N will still play

n. In this way, the dominance region (signals above N + ε) “infects” lower and lower signals

in the sense that players with these lower signals also find it optimal to play n. A similar

infection starts from signals below 1 where it is optimal to play r. Eventually (in the limit),

this infection from both sides leads to the unique equilibrium.

3.3. The Panopticon

The third model is the one that comes closest to Bentham’s original idea. Now the warden

chooses γ, but it cannot be observed by the prisoners, who also face a coordination problem.78

We concentrate on equilibria in which all prisoners play r with the same probability p in

equilibrium. In the supplementary material, we show that this is without loss of generality,

i.e. no prisoner asymmetric equilibria exist in this game.

Equilibria only exist in mixed strategies: If the prisoners revolted for sure, the warden

would best respond by setting the guard level to γ = N . Consequently, the revolt is un-

successful and revolting is not a best response for the prisoners. Alternatively, the warden

would best respond with γ = 0 if the prisoners played n for sure. But in this case revolting

is a best response. Consequently, the prisoners (and possibly also the warden) will mix and

revolts will succeed with some probability in equilibrium.

Since every prisoner plays r with probability p and the prisoners’ choices are independent,

the warden faces a binomial distribution of the number of prisoners playing r. Call this

7Bentham (1787) emphasized the lack of communication possibilities (leading directly to a coordination
problem): “These cells are divided from one another, and the prisoners by that means secluded from all
communication with each other, by partitions in the form of radii issuing from the circumference towards the
center, and extending as many feet as shall be thought necessary to form the largest dimension of the cell.”

8If we allowed prisoners to communicate in a cheap talk way and selected the prisoner optimal equilibrium
in this communication game, we would be back in the benchmark model. Such communication is usually not
considered in stag hunt type coordination problems as every prisoner weakly benefits if the other prisoner
plays revolt; messages are therefore not very credible.
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distribution G and its probability mass function g. More precisely, g(m) =
(
N
m

)
pm(1− p)N−m

is the probability that m prisoners revolt given that each prisoner revolts with probability p.

Clearly, the warden’s best response puts positive probability only on integers between 0

and N for γ. Therefore, the warden’s maximization problem is

max
γ∈{0,1,...,N}

−(1−G(γ))B − γ. (1)

Denote the warden’s (mixed) strategy by the distribution F with probability mass function

f . The warden has to be indifferent between any two γ0 and γ1 in the support of F which

means that the following equation has to hold

B (G(γ0)−G(γ1)) = cγ0 − γ1 (2)

for any γ0 and γ1 in the support of F . Note that G is S-shaped because it is a binomial dis-

tribution, i.e. g is first strictly increasing (up to the mode of G) and then strictly decreasing.

This property leads – together with assumption 1 – to the following result.

Lemma 2. In any mixed strategy equilibrium, the support of F consists of at most two

elements and these two elements are adjacent, i.e. the warden mixes between γ1 and γ1 + 1

with γ1 ∈ {0, . . . , N−1}. For any γ1 ∈ {0, . . . , N−1}, there exists a unique p ∈ (0, (γ1+1)/N)

such that γ1 and γ1 + 1 are the two global maxima of the warden’s utility.

γN

B ∗G 45-degree

γ1γ1 + 1

Figure 2: Equilibrium in the panopticon-model.

We illustrate the lemma using figure 2. For every individual revolt probability p, we get

a cumulative density function G(m) that gives the probability that m or fewer prisoners
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revolt – in other words, the probability that a guard level γ = m successfully prevents a

breakout. This function G is (multiplied by B) given by the dots (we concentrate on values

at integers). The dashed line gives the cost of setting a guard level γ, which is simply γ. The

warden optimally mixes between guard levels that maximize the difference between B ∗G(γ)

and γ. Intuitively, he trades off the additional cost of increasing the guard strength with

reducing the probability of a breakout. Choosing a higher γ than γ1 + 1, for example, would

increase the cost by much more than the probability of preventing breakouts (weighted by the

disutility of a breakout), and is therefore not optimal. If there are several guard levels where

the difference is equivalent, the warden is indifferent between them. The example illustrates

our two intermediate results: (a) The warden will never mix between more than two guard

levels, since the concavity of G (above the mode) means that the difference between G and

cost can not be equal in three or more points. (b) For every γ1, γ1 + 1 we can find a p

such that the warden is indifferent between the two guard levels, by finding a p such that

the resulting G has the maximum distance from the 45-degree line at γ1 and γ1 + 1. The

condition p < (γ1 + 1)/N is equivalent to saying that the γ1 is weakly above the mode of G.

That is, the optimal guard level will be in the concave part of G which is again in line with

figure 2.

In equilibrium, each prisoner must be indifferent between revolting and not revolting.

This indifference condition is given by

Eγ [−qGN−1(γ − 1) + b(1−GN−1(γ − 1))] = 0 (3)

where the expectation over γ is taken with respect to the warden’s optimal strategy F and

GN−1 is the binomial distribution with N−1 prisoners, i.e. gN−1(m) =
(
N−1
m

)
pm(1−p)N−1−m.

Note that the probability of revolting p and the guard level γ1 of a mixed equilibrium are

determined simultaneously by (1) and (2) as the warden’s own mixing probability does not

play a role in these conditions. Given these two values, (3) will determine the equilibrium

mixing probability of the warden.

We now turn to the question which guard levels can be chosen in equilibrium. Lemma 2

stated that we can concentrate on equilibria where the warden mixes over γ1 and γ1 + 1 for

γ1 ∈ {0, . . . , N − 1}. Furthermore, the warden’s incentives do not pose an obstacle for the

existence of such an equilibrium for any γ1 ∈ {0, . . . , N−1} as there is always a p for which γ1

and γ1 + 1 are optimal. Whether an equilibrium exists for γ1 ∈ {0, . . . , N − 1} is determined

by the prisoner’s indifference condition. More precisely, a mixed strategy equilibrium where

the warden mixes over γ1 and γ1 + 1 exists if and only if the prisoner strictly prefers to revolt

if the warden played γ1 for sure and strictly preferred not to revolt if the warden played γ1 +1
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for sure (holding fixed the probability p with which the other prisoners revolt). Defining

∆(γ) = −qGN−1(γ − 1) + b(1−GN−1(γ − 1)) (4)

as the utility difference of a prisoner between playing revolt and no revolt if the warden uses

γ guards for sure, this can be expressed as follows: An equilibrium in which the warden

mixes between γ1 and γ1 + 1 exists if and only if ∆(γ1) > 0 > ∆(γ1 + 1). In this case, the

equilibrium mixing probability with which the warden plays γ1 is

z =
−∆(γ1 + 1)

∆(γ1)−∆(γ1 + 1)
. (5)

Note that several equilibria can exist because ∆ is not necessarily monotone: While both

terms in (4) are directly decreasing in γ, there is an indirect effect through p: A higher γ is

only optimal for the warden if the revolt probability p is higher. This, however, implies that

∆ increases. Which of the two effects dominates (direct effect through γ or indirect effect

through p) is a priori unclear. However, ∆(0) > 0 as revolting is dominant if the guard level

is zero and ∆(N) < 0 as not revolting is dominant when the guard level is N . Consequently,

at least one equilibrium exists.

Given that potentially several equilibria exist, we are especially interested in the warden

optimal equilibrium. The following lemma shows that the warden optimal equilibrium is the

one with the lowest guard level. This equilibrium will also have the lowest revolt probability

p.

Lemma 3. Suppose there are two mixed equilibria: In equilibrium 1, the warden mixes

over γ1 and γ1 + 1 and in equilibrium 2 the warden mixes over γ2 and γ2 + 1. Then the

warden’s equilibrium payoff is higher in equilibrium 1 if and only if γ1 < γ2. Furthermore,

the prisoners’ equilibrium probability of playing r is lower in equilibrium 1 if and only if

γ1 < γ2.

So far, we focused on completely mixed equilibria. However, there can be semi-mixed

equilibria as well: the warden plays a pure strategy while the prisoners mix. Take a guard

level γ ∈ {1, . . . , N − 1}. There is a range of values for p such that γ is the warden’s optimal

choice. The prisoner is willing to mix if he is indifferent between revolting and not revolting,

that is, if ∆(γ) = 0. This indifference condition holds for exactly one p. If the p solving the

indifference condition is accidentally within the range of p values for which γ is the maximizer

of the warden’s utility we have an equilibrium. The following lemma, however, states that

semi-mixed equilibria are not warden optimal.
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Lemma 4. For every semi-mixed equilibrium, there is a completely mixed equilibrium in

which the expected warden payoff is higher.

We have therefore established the following for the panopticon model:

Result 2. In every equilibrium, the prisoners mix over r and n. The warden mixes between

some γ1 and γ1 + 1 in the warden optimal equilibrium. However, other equilibria (in which

the warden mixes over γ2 and γ2 + 1 with γ2 > γ1 or the warden does not mix) can exist.

3.4. Comparison of the models

The prisoners are indifferent between all models: In the infection model and benchmark 1a,

they did not revolt and therefore had a payoff of zero. In the panopticon and benchmark

1b, prisoners were indifferent between revolting and not revolting as they played a mixed

strategy. Hence, their expected utility was again zero as this is the payoff from playing n.

The warden optimal model will therefore also be the welfare optimal model. Clearly, the

benchmark model is worst for the warden: He can prevent a breakout for sure but at very

high cost, i.e. his payoff is −N . If he prevents communication, he can achieve the same

outcome at cost θ∗ ≤ N . In the panopticon model, he is also weakly better off than in the

benchmark, since he always has the option of setting a guard level of N and ensuring a payoff

of −N . He is indeed indifferent to doing so if the equilibrium in which the warden mixes over

N − 1 and N is the only existing mixed equilibrium. If other equilibria exist, the warden

will, however, be strictly better off in those than in the benchmark model.

The interesting comparison is between the infection model and the panopticon. Which

of these two models is warden optimal depends on the parameter values of the model. In

general, however, we can show that for large values of N , the panopticon model has a unique

equilibrium in which the warden’s payoff is bounded from below by a constant. In the

infection model, the warden payoff is given by −θ∗ = −
⌈
bN
q+b

⌉
, which falls linearly in N and

therefore becomes very small for large N . We can therefore always find an N such that

the panopticon is optimal for all N > N . Also, since the proof of the following proposition

establishes that G(0)→ 1 in the unique equilibrium for N →∞, the probability of successful

breakouts in the panopticon converges to zero.

Proposition 1. Take b and q as given. Let N be sufficiently large and B such that assumption

1 is satisfied. Then, the warden mixes between 0 and 1 in the unique equilibrium of the

panopticon model. The warden’s payoff is – for N sufficiently high – higher in this equilibrium

than in the infection model.

To get some intuition for the uniqueness result in the panopticon, consider an equilibrium

where the warden mixes over N − 1 and N . Assume B = N + 1 so that assumption 1 is
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satisfied. The warden is only indifferent between the two guard levels if the marginal cost of

adding the Nth guard, which is 1, equals the marginal benefit of reducing the probability of a

breakout by increasing the guard level by one. This marginal benefit is Bg(N) = (N + 1)pN .

Hence, pN = 1/(N + 1) and p = N
√

1/(N + 1) in this equilibrium. Now consider the problem

of a prisoner. In this equilibrium, he prefers to revolt only if all other prisoners revolt. The

probability that all other prisoners revolt is gN−1(N − 1) = pN−1. Since p = N
√

1/(N + 1)

by the warden’s indifference condition, we get gN−1(N − 1) = (N + 1)−
N−1
N . This term

converges to 0 for large N , so that it becomes extremely unlikely that there is a successful

revolt. The prisoner therefore strictly prefers not revolting to revolting, i.e. ∆(N − 1) < 0.

Consequently, there is no equilibrium where the warden mixes between N and N − 1 for N

sufficiently large. A similar logic applies to all other equilibria in which the warden mixes

between γ1 ≥ 1 and γ1 + 1: The warden’s indifference condition requires a revolt probability

p that is – for sufficiently large N – incompatible with the prisoner’s indifference condition.

Besides this central result for large groups, we present two results for small N . In this

case, either the warden’s or the prisoners’ payoffs sometimes allow us to say which information

structure is optimal.

Proposition 2. Take q, b, N as given. If θ∗ = 1, then the warden is best off in the infection

model. If θ∗ > 1, then there exists a B̄ such that for all B ≥ B̄ the warden’s payoff in the

unique equilibrium of the panopticon model is higher than in the infection model. The warden

mixes over the guard levels zero and one in this unique equilibrium.

Put differently, if the disutility of a breakout is relatively high compared to the cost of

the guards, the panopticon is warden optimal unless a guard level of 1 can completely deter

revolts in the infection model. Given that revolting is dominant for any guard level γ < 1,

θ∗ = 1 has to be viewed a bit as a special case. Indeed θ∗ = dbN/(q + b)e equals 1 only if

the disutility of an unsuccessful revolt is N − 1 times as high as the utility of a successful

breakout which seems somewhat implausible in the applications we have in mind. Hence,

the panopticon is – with a small caveat – warden optimal if warden incentives dominate.

This might be somewhat surprising as the breakout probability in the panopticon is strictly

greater than zero while the breakout probability in the infection model is zero. There are two

reasons explaining why cost savings compared to the infection model are therefore sizable if

θ∗ > 1. First, the warden mixes between guard levels of zero and one if B is high. Second,

the breakout probability in the panopticon – though not zero – is very small. The second

follows readily from the first: Given that the warden really dislikes breakouts (high B), he

will only be willing to mix between zero and one if the probability of revolt is very small.

The reason why no other equilibrium exists is the following. Given that B is very high, the

warden is only willing to use γ1 < N guards if the probability of a revolt is very small. But
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this implies that for each prisoner it is unlikely that other prisoners revolt. Consequently,

each prisoner strictly prefers not to revolt unless γ1 = 0.

Next, consider the prisoners’ incentives.

Proposition 3. Take N and B as given. For b/q high enough, the warden payoff equals −N
in all models. Furthermore,

• Suppose B
N−1
N > N : Then, for b/q ∈ (N − 1, B

N−1
N − 1), the warden’s payoff in every

equilibrium of the panopticon model is higher than in the equilibrium of the infection

model.

• Suppose N > B
N−1
N : Then, for b/q ∈ (B

N−1
N − 1, N − 1), there exists an equilibrium

in the panopticon model in which the warden’s equilibrium payoff is lower than in the

infection model.

If the prisoners have very high incentives to break out, the payoff of all models coincides:

The warden choosesN guards in the benchmark 1a and infection model, mixes betweenN and

N − 1 guards in the panopticon and between N and 0 in benchmark 1b. Hence, the warden

payoff is −N . For high (but not excessively high) incentives to break out, the comparison

between panopticon and infection model is hampered by the multiplicity of equilibria in the

panopticon model. Depending on parameter values, either all (!) equilibria in the panopticon

yield a higher warden payoff than the infection model or the infection model does better than

some equilibria in the panopticon.

4. Applications and Extensions

4.1. Central Bank Defending Against Speculators

Our results can be applied to many situations of conflict where an agent can use the coordi-

nation problem of his opponents against them. An example that has received much attention

in economics is the problem of defending a currency peg against speculators. The coordi-

nation aspect of this problem, which often leads to multiple equilibria, was pointed out by

Flood and Garber (1984) and Obstfeld (1986). The equilibrium multiplicity resulting from

the speculators’ coordination problem was contentious until Morris and Shin (1998) showed

that if speculators lack common knowledge about the strength of the currency, their beliefs

get infected and there is, for each parameter value, a unique equilibrium. This insight, which

builds on the seminal work of Carlsson and van Damme (1993), has since been applied to

other coordination problems like bank runs (Goldstein and Pauzner, 2005) or civil war (Chas-

sang and Miquel, 2010). These models, however, concentrate on the coordination problem
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of the opponents. That is, the underlying “strength” (of the currency, the bank etc.) is

exogenous in these models and the setup and information structure is taken as give. Our

model, on the other hand, allows us to ask how the agent should defend himself against the

coordinated threat and gives direct recommendations as to which information structure is

optimal.

Consider the situation of a central bank that has to defend a currency peg against spec-

ulation. For this purpose, it can build up foreign exchange holdings that it can then use to

counteract speculation. Holding foreign exchange is costly, however, since it requires holding

liquid bonds with low yields, so that the central bank would prefer to prevent a breaking of

the peg with a minimum of reserves.

The transfer from our prison model is pretty straightforward. Assume that there are N

speculators who can each decide to do nothing or take a costly speculative position against

the currency. Before the speculators make their choice, the central bank builds up foreign

exchange reserves of size γ at cost γ. If there is a speculative attack against the currency

and the central bank cannot defend the peg, its payoff is −B − γ with some B ≥ N + 1,

otherwise it receives −γ.

In this context, the assumption that B ≥ N + 1 means that our model only applies to

cases where, if the central bank knew exactly the strength of the speculative attack that was

coming, it would always prefer to build a large enough reserve to fight it off. We would argue

that this is usually the case in the real world, and that in most cases where a central bank

was overwhelmed by speculators it was because of the unexpected extent of the speculative

attack.

A speculative attack is successful if more than γ out of the N speculators speculate

against the currency. In that case, those who attacked the currency get a payoff of b >

0. If they speculate against the currency but the central bank can defend the peg, the

speculators lose q > 0 on their positions. This loss q denotes the transaction costs of taking

the speculating position and also includes the opportunity costs of forgoing an alternative

investment. This alternative payoff, which speculators get if they do not speculate against

the peg, is normalized to zero.

Now consider the question of whether the central bank should make γ public. Assuming

that the bank has the possibility to publicize γ without generating precise common knowledge

about it among speculators, this corresponds to a choice between the second and the third

information structure in our model.9 One way to think about the three information structures

is that the bank has the choice between making an official announcement (benchmark model),

9If any announcement makes γ common knowledge among speculators, the choice is between the first and
the third information structure and the choice is clear.
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leaking information without officially confirming it (infection model) or giving no information

(panopticon).

From our results in the previous sections, we can make several observations about which

information policy the central bank should choose in revealing the size γ of the foreign

exchange reserve. The optimal choice depends on the interplay of all parameter values, so

that the following observations are ceteris paribus :

• The central bank should never make a common-knowledge generating announcement

about the strength of its currency reserves, for example by using mass media. Such

an announcement would instantly solve a coordination problem among speculators and

allow them to launch a successful attack. (A common-knowledge generating announce-

ment can only be optimal if the reserve is so strong that it can withstand any attack,

in which case the information policy does not matter and the reserve holdings are

inefficiently high.)

• If speculators have a lot more to gain from breaking the peg than they can lose by

speculating against the peg (in relation to the next-best investment), it may be optimal

to keep the reserve level secret. This is especially the case if the cost (economic or

reputational) of giving up the peg is high.10 If the proportion between the speculators’

possible earnings and their potential losses grows without bonds, however, the choice

of information structure does not matter much since speculators are likely to speculate

in any case and the reserve level always has to be maximal.

• If there are many speculators, the central bank should always choose to keep the reserve

level secret.

Especially, the third point, which follows directly from our limit result on N , adds a new

perspective to the literature on this topic. The uniqueness result of Morris and Shin (1998)

has usually been understood to mean that a currency peg can be defended even in cases

where coordination among all speculators could bring it down – meaning that a central bank

can defend against speculative attacks even if, at this very moment, it doesn’t have the power

to do so.

But our result shows that while this is true, the central bank can make even better use

of the speculators’ coordination problem by keeping its own strength secret. Especially if

10While it may seem like speculators usually have little to lose by speculating against a peg (because they
can exchange their money back at the peg if they “lose”), this also includes the cost of transaction and any
interest rate differential. Also, re-converting might not be costless if all speculators want to get out at the
same time: When the pressure on the Danish krone/Euro peg let off in spring 2015, the Danish central bank
suddenly had to stabilize the market on the other side of the peg since so many traders reversed or unwound
their positions simultaneously.
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there are many speculators (i.e. the coordination problem is worse), that will, in the unique

equilibrium if N is large enough, guarantee an extremely low probability of losing the peg

with a minimal exertion of resources. It should be noted, however, that the massive savings

in costly reserves come at the cost of a strictly positive chance of the peg being broken.

Observing a central bank that kept its reserves secret being overwhelmed by speculators

would, therefore, not necessarily be a sign of a bad policy. While we know of no instance

where a central bank actually maintained complete secrecy about the size of its reserves,

secrecy about the existence and size of foreign exchange interventions is not uncommon. The

reasons for this have been debated in the literature (see Vitale (2007) for a discussion).

4.2. Uncertain punishment: Revolutions, surveillance and prisons

So far, we assumed that revolting leads to a payoff of −q for the prisoner if there was no

successful breakout. In particular, this payoff did not depend on the guard level. This is

in line with the interpretation of an effort cost in the prison or a transaction cost in the

speculation application. One could, however, imagine that revolting prisoners are punished.

In the application of a revolution, it is not unreasonable to assume that those that participated

in a failed coup d’état might face severe consequences. Punishment, however, requires that

the subversive activities are detected. One could argue that the probability of being detected

depends on the guard level; i.e. the guards might not detect all unsuccessful revolutionaries if

there are few guards monitoring a lot of“prisoners”. One way to capture this is to say that the

payoff of a revolting prisoner that does not break out is −q−ργ/N < 0 where ρ ≥ 0 denotes a

punishment and the probability of a punishment is proportional to the guard/prisoner ratio.

As we show in the supplementary material, our analysis covers this more general case.

While the specific threshold level θ∗ in the infection model and the precise equilibrium mixing

probabilities in the panopticon are different, the analysis remains qualitatively the same. In

particular, the result that the panopticon is much better than the infection and benchmark

model for large N remains true. Also the result that the equilibrium probability of revolting

in the panopticon is arbitrarily close to zero for large N holds. This captures one idea

sometimes mentioned in connection with the panopticon: The prisoners behave as if they are

watched because there is a slight chance that they are watched.11 One could interpret γ/N

as the fraction of prisoners that are watched or the chance of being discovered. With q = 0

and ρ > 0, the only reason not to riot is the possibility of being watched (and punished if

caught). Since prisoners almost always do not riot in equilibrium, they arguably behave as

if they were watched because they are afraid that they might be watched.

11This idea dates back to Bentham (1787) who writes “You will please to observe, that though perhaps
it is the most important point, that the persons to be inspected should always feel themselves as if under
inspection, at least as standing a great chance of being so, yet it is not by any means the only one.”
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Another possible extension of our model allows the payoff of a non-revolting prisoner to

depend on whether a breakout occurs or not. Say, the payoff of a non-revolting prisoner is

w 6= 0 if a breakout occurs (and zero if no breakout occurs). In the revolution example, w

could be negative: If there is a successful coup, the new rulers might punish those that did

not participate in the revolt. While the equilibria change quantitatively, all our qualitative

results still hold in this setting. The crucial part is that w < 0 preserves the supermodular

structure of the coordination game: A prisoner is more willing to revolt if other prisoners are

more likely to revolt. If, on the other hand, w > 0, i.e. if there is a free riding problem, then

our results only hold if w is not too big. More precisely, our derivations go through unless the

free riding possibility destroys the supermodularity: A prisoner would then be less willing

to revolt if others are more likely to revolt because he is more likely to get a high free rider

benefit w when not revolting.

5. Conclusion

This paper analyzes how a single player can subdue a group of opponents by making use of

their coordination problem. Our model formalizes and replicates earlier results showing that

“infection” in the absence of common knowledge can be used for this purpose, but our results

go further in arguing that absolute secrecy is often optimal. While secrecy is optimal for all

larger groups, the infection model may be optimal for smaller groups of opponents.

In the general debate between secrecy and transparency, this reminds us that we have to

think clearly about the purpose and effect of information revelation. Revealing information

to a single actor has the effect of informing and influencing that actor, but if that actor is

part of a group it will also make him consider what kind of information the others have

received, how they reason about his information and so on. These higher-order effects have

to be considered and can be substantial.

Our model suggests which is the optimal information structure in a conflict between one

central player and a group. However, other situations are conceivable for which our model

offers only limited guidance. For example, the idea of transparency and forward guidance by

central banks is not necessarily at odds with our result that secrecy is optimal: While our

result is based on a conflict between the central bank and speculators, one could imagine other

situations in which the interests of central bank and market participants are not opposed.

In such a situation with aligned interests, transparency might indeed be an optimal policy.

Our results show that the optimal information policy depends crucially on the degree of

(mis-)alignment of interests between central bank and market participants.

We have seen that for a large number of prisoners, minimal enforcement with secrecy is
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optimal. This is in line with Bentham’s original concept. But while prisons indeed rely more

on cameras and prisoner separation than on massive numbers of guards, one might wonder

why in many other situations massive presence of enforcement is publicly observable. For

example, large numbers of police officers are deployed to uphold the public order during (po-

tentially violent) demonstrations and sport events. This is not in contradiction to our theory.

Demonstrators (or football hooligans) do not face a large coordination problem. By being

in the same place, being able to observe each other and possibly even having some hierarchy

among them, they can condition their choices upon each other’s behavior and thereby achieve

coordination. And, as we have shown in our benchmark model: when coordination problems

do not matter, the warden chooses maximum enforcement in equilibrium.
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Appendix

Proofs infection model

Proof of lemma 1. The proof is in three steps.

Strategic complementarity: A player finds revolting more attractive if other play-

ers are more likely to play revolt. A prisoner’s strategy maps from signals into actions.

If there are strategy profiles s and s′ such that for every signal for which a player j 6= i) plays

revolt under s he will also play revolt in s′, then playing revolt is relatively more attractive

for player i given s′−i compared to s−i: Define ∆(γ) = −qGN−1(γ − 1) + b(1−GN−1(γ − 1))

as the utility of revolting minus the utility of not revolting for a given guard level γ. If other

players have a higher probability of revolting, then GN−1(γ−1) is weakly lower and therefore

∆(γ) is higher. That is, for a given γ revolting is more attractive. Since this is true for any

given γ, it is also true in expectation.

Suppose everyone follows a cutoff strategy with cutoff θ. For a given δ > 0, there

exists an ε̄ > 0 such that the utility of revolting for a prisoner with signal θ is

higher (lower) than the utility from not revolting if θ ≤ θ∗ − δ (θ ≥ θ∗ + δ). The

probability that a player observing himself the cutoff signal θ assigns to the event “exactly k

other players receive a signal below θ” is

gN−1(k) =

∫ θ+ε

θ−ε

(
N − 1

k

)(
γ − θ + ε

2ε

)k (
1− γ − θ + ε

2ε

)N−1−k
φ(γ)

Φ(θ + ε)− Φ(θ − ε)
dγ.

We will now derive a convenient approximation for gN−1(k). Note that for ε small the

term φ(γ)/(Φ(θ + ε) − Φ(θ − ε)) is approximately constant (and equal to 1/(2ε)) as φ is

continuous and has a bounded first derivative. More precisely, fix θ and define φmax(ε) =

maxγ∈[θ−ε,θ+ε] φ(γ) and φmin(ε) = minγ∈[θ−ε,θ+ε] φ(γ). Then gN−1(k) and its approximation

(where the average 1/(2ε) is used instead of φ(γ)/(Φ(θ + ε) − Φ(θ − ε))) are necessarily

between the two values (note that the integrand is non-negative for all γ in the integration

range)

ḡ(ε) =

∫ θ+ε

θ−ε

(
N − 1

k

)(
γ − θ + ε

2ε

)k (
1− γ − θ + ε

2ε

)N−1−k
φmax(ε)

Φ(θ + ε)− Φ(θ − ε)
dγ,

g(ε) =

∫ θ+ε

θ−ε

(
N − 1

k

)(
γ − θ + ε

2ε

)k (
1− γ − θ + ε

2ε

)N−1−k
φmin(ε)

Φ(θ + ε)− Φ(θ − ε)
dγ.

By showing that limε→0 ḡ(ε) − g(ε) = 0, we show that the approximation of g becomes
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arbitrarily close to g for ε small enough:

ḡ(ε)− g(ε) =

∫ θ+ε

θ−ε

(
N − 1

k

)(
γ − θ + ε

2ε

)k (
1− γ − θ + ε

2ε

)N−1−k
φmax(ε)− φmin(ε)

Φ(θ + ε)− Φ(θ − ε)
dγ

≤
(
N − 1

k

)∫ θ+ε

θ−ε

φmax(ε)− φmin(ε)

Φ(θ + ε)− Φ(θ − ε)
dγ =

(
N − 1

k

)
2ε(φmax(ε)− φmin(ε))

Φ(θ + ε)− Φ(θ − ε)
.

From L’Hopital’s rule and the fact that limε→0 φ
max(ε) = limε→0 φ

min(ε) = φ(θ), it follows

that the last term converges to zero as ε → 0. Therefore, the approximation of gN−1(k)

converges to gN−1(k) as ε→ 0. Hence, the approximation is arbitrarily exact for ε sufficiently

small (and is totally exact for ε = 0). We will use this result later.

Using the approximation we get

gN−1(k) ≈
(
N − 1

k

)∫ θ+ε

θ−ε

1

2ε

(
γ − θ + ε

2ε

)k (
1− γ − θ + ε

2ε

)N−1−k

dγ

=

(
N − 1

k

)∫ θ+ε

θ−ε

N − 1− k
k + 1

(
γ − θ + ε

2ε

)k+1
1

2ε

(
1− γ − θ + ε

2ε

)N−2−k

dγ

=

(
N − 1

k + 1

)∫ θ+ε

θ−ε

(
γ − θ + ε

2ε

)k+1
1

2ε

(
1− γ − θ + ε

2ε

)N−2−k

dγ

where the step from the first to the second line uses integration by parts (with [(γ − θ +

ε)/(2ε)]k/(2ε) as “first part” and [1 − (γ − θ + ε)/(2ε)]N−1−k) as “second part”). Using

integration by parts for N − 1− k times gives

gN−1(k) ≈
∫ θ+ε

θ−ε

(
γ − θ + ε

2ε

)N−1
1

2ε
dγ =

[
1

N

(
γ − θ + ε

2ε

)N]θ+ε
θ−ε

=
1

N
.

Hence, we have obtained that a player receiving the cutoff signal has (approximately) uniform

beliefs over the number of players that have received a signal lower than him.

Now we want to consider the expected utility difference between revolting and not revolt-

ing of a player receiving cutoff signal θ. If there is no integerm ∈ N such that θ−ε ≤ m ≤ θ+ε,

then this utility difference equals b− (q + b)bθc/N because a breakout cannot succeed if less

than bθc other prisoners play revolt.12 Given the uniform beliefs derived above, the proba-

bility that less than bθc players play revolt is bθc/N .

If there is an integer m ∈ [θ − ε, θ + ε], then the expected utility difference is

b− (q + b)

[
(θ + ε−m)

2ε

(m+ 1)

N
+

(
1− θ + ε−m

2ε

)
m

N

]
.

12Recall that bxc = max{n : n ∈ N and n ≤ x}, i.e. bxc is the highest integer below x.

24



Viewed as a function of θ, the expected utility difference is, therefore, flat on intervals (θ1, θ2)

such that bθ1 − εc = bθ2 + εc and strictly decreasing in an ε-ball around each integer.

Hence, there is a unique θ at which the expected utility difference is zero unless the equation

b − (q + b)x/N = 0 is solved by an integer x, i.e. unless bN/(q + b) ∈ N, which we ruled

out by assumption.13 As bN/(q + b) ∈ N is clearly not true for generic parameter values

(q, b,N), there exists a unique θ at which the expected utility difference is zero for generic

parameter values. In the limit as ε = 0, we then have – for generic parameter values – that

(i) the expected utility difference is strictly positive for θ < θ∗ and (ii) the expected utility

difference is strictly negative for θ > θ∗. Note that (in the limit ε = 0) the expected utility

difference (as a function of θ) is discontinuous at θ∗.

The results of the previous paragraph were derived using the approximation of gN−1(k).

Now we relax the use of the approximation to obtain the statement we want to show. Take

any θ < θ∗. As the approximation of gN−1(k) converges to gN−1(k), one can find an ε̄(θ) > 0

such that the expected utility difference is strictly positive for θ for all ε ≤ ε̄(θ) (let ε̄(θ) be

the supremum of all such noise level). Similarly, for each θ > θ∗ an ε̄(θ) can be found such

that the expected utility difference at θ is strictly negative for each ε ≤ ε̄(θ). Note that ε̄(θ)

is continuous in θ on [0, θ∗ − δ] for any given δ > 0: Take ε < ε̄(θ′) as given. Since beliefs

– i.e. gN−1(k) – change continuously in θ, the expected utility difference is positive not only

for θ′ but for all θ in some open neighborhood around θ′ (given ε). Consequently, ε < ε̄(θ)

for every θ in this open neighborhood. A similar argument shows that ε̄(θ) is continuous on

[θ∗ + δ,N ].

For a given δ > 0, let ε̄ = min{1/2,minθ∈[0,θ∗−δ]∪[θ∗+δ,N ] ε̄(θ)}. Note that minθ∈[0,θ∗−δ]∪[θ∗+δ,N ] ε̄(θ)

exists and is strictly greater than zero as it is the minimum over a compact set of an every-

where positive and continuous function. Since revolting is a dominant strategy for signals

below 1/2 (given that ε < 1/2) and not revolting is dominant for signals above N − 1/2

(given that ε < 1/2), the expected utility difference is automatically positive (negative) for

signals below zero (above N). This concludes the proof of the second step.

For any given δ > 0, there is an ε̄ > 0 such that a player with signal below θ∗ − δ
(above θ∗ + δ) plays revolt (not revolt) for all ε ≤ ε̄ in any equilibrium. Hence,

each prisoner follows a cutoff strategy with cutoff θ∗ in the limit as ε → 0. We

use the ε̄ determined in step 2. Take an arbitrary equilibrium. Denote by θ1 the infimum

of all signals for which some prisoner does not play revolt for sure. Such a θ1 exists because

of the dominance regions, i.e. revolting (not revolting) is a dominant action for a signal

below 1− ε̄ (above N − 1 + ε̄). Then a prisoner receiving any signal below θ1 should prefer

13In this case, the expected utility would be zero on one of the flat parts.
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revolting (expected utility difference weakly positive) while there are signals above θ1 but

arbitrarily close to θ1 where the prisoner prefers not revolting (expected utility difference

weakly negative). We will now show that θ1 ≥ θ∗ − δ: Change all other players strategies

such that every player does not revolt if and only if he receives a signal above θ1. By the

first point, this will make revolting less attractive (decrease the expected utility difference).

Hence, a player receiving signal θ1 will (given that all players use a cutoff strategy with cutoff

θ1) prefer not revolting to revolting. Therefore, by the second step, θ1 ≥ θ∗ − δ.
Similarly, let θ2 be the supremum of all signals such that some player plays revolt (with

non-zero probability), i.e. for all signals above θ2 all players prefer not revolting but for some

signals below and arbitrary close to θ2 player i prefers revolting and change the strategies of

all other players to cutoff strategies with cutoff θ2. Player i will then prefer revolting when

receiving signal θ2 (first step). The second step then implies that θ2 ≤ θ∗ + δ.

In the limit as δ, ε→ 0, we clearly get θ1 = θ2 = θ∗.

Proofs and limit results: Panopticon

After the proofs of the results in the main text, we derive another limit result (lemma 5) that

we will use when comparing the different models.

Proof of lemma 2. We start with the first part of the lemma. As a first step, we show

a weaker result: The support of the warden can consist of at most three elements. Denote

the mode of G by γm (for a given p).14 The binomial distribution G has the property that

G is convex on {0, . . . , γm} and G is concave on {γm, . . . , N}. Therefore, the maximization

problem of the warden over the domain {0, . . . , γm} is convex and consequently only the

boundary values 0 and γm can be local maxima (on this restricted domain). If we take

{γm, . . . , N} as domain of the warden’s maximization problem, the problem is concave and

therefore (because γ takes integer values) this problem can have at most two local maxima

γ1 and γ2 such that γ2 = γ1 + 1 (clearly, it could have only one local maximizer as well in

which case we are already done). This implies that (1) has (at most) three local maxima:

one at γ0 = 0, γ1 weakly above γm and possibly γ2 = γ1 + 1. Therefore, f ’s support will

contain at most three elements.

Next we will show that the case where the warden is indifferent between γ0 = 0, γ1 ≥ γm

and γ2 = γ1 + 1 is impossible. To see this, note that the fact that the warden is indifferent

between γ1 and γ1 +1 implies that g(γ1 +1) = 1/B. The warden is indifferent between γ1 and

γ0 if and only if (G(γ1)−G(0))/γ = 1/B. This is equivalent to saying that the average g(γ) for

γ ∈ {1, . . . , γ1} equals 1/B. Since γ2 > γm and as g(γ2) = 1/B, we know that g(γ) < 1/B for

all γ > γ2 (this is true as g is decreasing above the mode). Since
∑N

γ=0 g(γ) = 1 ≥ (N +1)/B

14In the non-generic case that G has two modes, let γm be the smaller one.
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(i.e. the average g(γ) is at least 1/B), this implies that g(0) ≥ 1/B. But then the single

peakedness of g implies that g(γ) > 1/B for all γ ∈ {1, . . . , γ1} (recall that g(γ1 + 1) = 1/B)

which contradicts our earlier result that the average g(γ) for γ ∈ {1, . . . , γ1} is at most 1/B.15

Last we reuse the argument of the previous paragraph to show that there cannot be an

equilibrium in which the warden mixes between γ0 = 0 and γ1 > 1. Suppose there was such

an equilibrium. Since the warden prefers γ1 to γ1 +1, we must have g(γ1 +1) ≤ 1/B.16 As γ1

has to be at least as high as the mode γm, we know that g(γ) ≤ g(γ1 + 1) for all γ ≥ γ1 + 1.

The warden prefers γ1 to γ1 − 1 which implies g(γ1) ≥ 1/B. Furthermore, the warden has

to be indifferent between γ0 and γ1 which implies that the average g(γ) for γ ∈ {1, . . . , γ1}
equals 1/B. As

∑N
γ=0 g(γ) = 1 ≥ (N + 1)/B, we obtain that g(0) ≥ 1/B. But the single

peakedness of g and the fact that g(γ1) ≥ 1/B would then imply that the average g(γ) for

γ ∈ {1, . . . , γ1} is strictly above 1/B contradicting that the warden is indifferent between γ0

and γ1.

Finally, we turn to the second part of the lemma. Note that π(γ1) = π(γ1 + 1) holds iff

g(γ1 + 1) = 1/B.

This equation (viewed as an equation in p which indirectly determines g) has a solution

p < (γ1 + 1)/N : To see this note that g(γ1 + 1) viewed as a function of p is 0 for p = 0 and

single peaked with its maximum at p = (γ1 +1)/N . Furthermore, g(γ1 +1) is continuous in p.

Hence, it is sufficient to show that g(γ1 + 1)|p=(γ1+1)/N > 1/(N + 1) as 1/(N + 1) ≥ 1/B by

assumption. Note that for p = (γ1 + 1)/N , γ1 + 1 is the mode and therefore the maximum of

g (viewed as function over γ). If g(γ1 + 1)|p=(γ1+1)/N ≤ 1/(N + 1), then g(γ) ≤ 1/(N + 1) for

all γ (with strict inequality for some) which contradicts that g is a probability mass function

(it cannot sum to 1!). Hence, g(γ1 + 1)|p=(γ1+1)/N > 1/(N + 1) which proves that there is a

p < (γ1 + 1)/N such that g(γ1 + 1) = 1/B.

The fact that p < (γ1 + 1)/N implies that γ1 + 1 will be above the mode. As π is concave

on {γm, . . . , N}, it follows that γ1 and γ1 + 1 yield a higher warden payoff than any other γ

weakly above the mode. Since π is convex on {0, . . . , γm}, it follows that γ1 and γ1 + 1 are

global maximizer of π iff π(0) ≤ π(γ1 + 1). This last inequality can be written as

G(γ1 + 1)−G(0)

γ1 + 1
≥ 1

B
(6)

15This last argument can be easily extended using inequalities to show that whenever there are γ1 and
γ2 = γ1+1 forming a local maximum of the warden’s profit this local maximum must be the global maximum;
i.e. is preferred to γ0 = 0.

16For γ1 = N , this step can be skipped and the rest of the argument works analogously.
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(where G is the cumulated binomial distribution for the p < (γ1 + 1)/N solving g(γ1 + 1) =

1/B). The same argument as above shows that (6) holds: Suppose it did not. Then the

average g(γ) for γ ∈ {1, . . . , γ1 +1} would be strictly less than 1/B and as γ1 +1 is above the

mode and g(γ1 + 1) = 1/B the same holds for γ > γ1 + 1. Using the assumption B ≥ N + 1

and the fact that g(γ) has to sum to 1 over all γ ∈ {0, . . . , N}, it follows that g(0) ≥ 1/B.

But then the single peakedness of g and g(γ1 + 1) = 1/B contradict that the average g(γ)

over {1, . . . , γ1 + 1} is less than 1/B.

Proof of lemma 3. Let γ1 < γ2. We first show that the equilibrium revolting probability

p is lower in equilibrium 1. Suppose otherwise, i.e. suppose p1 > p2. As the warden prefers

γ2 + 1 over γ1 + 1 given p2, we have G2(γ2 + 1)−G2(γ1 + 1) ≥ (γ2 − γ1)/B where G2 is the

binomial cdf under p2. This last inequality is equivalent to
∑γ2+1

γ=γ1+2 g
2(γ)− (γ2− γ1)/B ≥ 0.

Note that γ1 + 1 is strictly above the mode of g2: We know that γ1 + 1 is above the mode

of g1 and as p1 > p2 the mode of g2 is lower than the mode of g1. Similarly, any γ ≥ γ1 + 1

is strictly above the mode of any binomial distribution g(p) with p ∈ [p2, p1]. This implies

that
∑γ2+1

γ=γ1+2 g
(p)(γ) − (γ2 − γ1)/B is strictly increasing in p for p ∈ [p2, p1] and therefore

p1 > p2 and
∑γ2+1

γ=γ1+2 g
2(γ)− (γ2 − γ1)/B ≥ 0 imply that

∑γ2+1
γ=γ1+2 g

1(γ)− (γ2 − γ1)/B > 0.

But this is equivalent to saying that the warden strictly prefers γ2 + 1 over γ1 + 1 under p1

contradicting that γ1 + 1 is the warden’s equilibrium choice. Hence, p1 > p2 cannot hold and

we have p2 ≥ p1 whenever γ2 > γ1. In fact, p2 > p1 as otherwise the warden would have to

be indifferent between at least three guard levels above the mode which is impossible by the

concavity of G on {γm, . . . , N}.
Given that p2 > p1, G2 first order stochastically dominates G1. Therefore, the warden’s

payoff −(1−G(γ))B− γ in equilibrium 1 is higher than his payoff in equilibrium 2 (i.e. if he

played γ2 under p1, he would have a higher payoff than in equilibrium 2 and he can do even

better by playing γ1).

Proof of lemma 4. Denote by p(γ) for γ ∈ {0, . . . , N − 1} the value of p for which the

warden’s payoff is maximized by γ and γ + 1. The proof of the previous lemma showed that

p(γ) is strictly increasing in γ. Denote by p̃(γ) the value of p such that ∆(γ) = 0.

Now let there be a semi-mixed equilibrium at γ′. This implies that the p̃(γ′) is between

p(γ′−1) and p(γ′). If p̃(γ′−1) is below p(γ′−1), then there is a completely mixed equilibrium

where the warden mixes between γ′− 1 and γ′ which leads to a higher payoff for the warden

than the γ′ equilibrium. Therefore, let’s proceed by supposing that p̃(γ′−1) is above p(γ′−1).

This implies that p̃(γ′ − 1) is also above p(γ′ − 2).17 If p̃(γ′ − 2) is below p(γ′ − 2), then

there is a completely mixed equilibrium where the warden mixes between γ′ − 1 and γ′ − 2

17If p̃(γ′ − 2) does not exist, then the prisoner prefers not revolting to revolting for all values of p where
γ′ − 2 is weakly above the mode (in particular for p(γ′ − 2) and p(γ′ − 3)) and the same argument as follows
still applies.
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which gives him a clearly higher payoff than the γ′ equilibrium. Therefore, let us proceed by

assuming that p̃(γ′− 2) is above p(γ′− 2) which implies that p̃(γ′− 2) is also above p(γ′− 3).

Iterating further in this way, we finally reach the case where p̃(1) is above p(0). But this

implies that there is an equilibrium where the warden mixes over 0 and 1 and p = p(0): Since

p̃(1) > p(0), ∆(1) < 0 while obviously ∆(0) > 0.

Lemma 5. For sufficiently high b or low q, only the equilibrium in which the warden mixes

over N and N − 1 exists. For sufficiently high B, the equilibrium in which the warden mixes

between 0 and 1 is the only mixed equilibrium.

Proof. As pointed out in the main text, equilibrium p and γ1 are determined simulta-

neously by (2) and (1) as the warden’s own mixing probability does not play a role in these

conditions. Given these two values, (3) will determine the optimal mixing probability of the

warden. This insight shows that b and q will not affect the optimal γ1 or the equilibrium

revolt probability p because these parameters do not play a role in (2) and (1). Note that

∆ is linearly increasing in b and linearly decreasing in q. Both variables are not part of the

warden’s maximization problem. Hence, changes in b and q do not affect the equilibrium

mixing probability p for a given support of the warden. This implies that for b high enough

(q low enough) ∆(γ) is positive for all γ ∈ {0, . . . , N −1}. Hence, only the equilibrium where

the warden mixes between N − 1 and N exists if b is sufficiently high (or q sufficiently low).

The payoff of the warden when using N guards is −N while his payoff when using γ < N

guards is −B(1 − G(γ)) − γ. In any mixed equilibrium, the warden has to play an action

γ < N with positive probability and therefore he must prefer this action (weakly) to the

action γ = N . For B → ∞, this can only be true if limB→∞p = 0. Put differently, the

equilibrium mixing probability of the prisoner p in a mixed equilibrium becomes arbitrarily

small as B increases. Note that very small p imply high GN−1(γ−1) for γ ≥ 1. Consequently,

∆(γ) is negative for sufficiently low p for all γ ≥ 1. As a mixed equilibrium in which the

warden mixes over γ1 and γ1 + 1 can only exist if ∆(γ1) > 0 > ∆(γ1 + 1), it follows that for

sufficiently high B the mixed equilibrium in which the warden mixes over 0 and 1 is the only

mixed equilibrium that exists.

Proofs model comparison

Proof of proposition 1. It will be convenient to denote B = α(N+1) for some α ≥ 1 which

can be done by assumption 1. In a mixed equilibrium where the warden mixes over 0 and 1,

the riot probability p is determined by the warden’s indifference condition 1 = BNp(1−p)N−1.

As pointed out in the proof of lemma 2, this p is below 1/N . The first and main step of

in establishing existence of the mixed equilibrium with γ1 = 0 (for large N) is to show that
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p < 1/N2. By B = α(N + 1) with α ≥ 1, the indifference condition can be written as

p(1− p)N−1 − 1/(α(N2 +N) = 0. Note that the left hand side of this equation is increasing

in p by p < 1/N . To show p < 1/N2, it is therefore sufficient to show that the left hand

side is greater than 0 for p = 1/N2. This is (after multiplying through by N2) equivalent to

showing that (
1− 1

N2

)N−1

>
1

α
(
1 + 1

N

)
which can be rewritten as(

1− 1

N2

)N
>

1− 1/N2

α
(
1 + 1

N

) =
N2 − 1

αN(N + 1)
=

1− 1/N

α
.

This inequality holds true as (1− 1/N2)
N

= 1−1/N+
∑N

i=2

(
N
i

)
(−1/N2)i and

∑N
i=2

(
N
i

)
(−1/N2)i >

0 because each positive term in the sum is higher than the immediately following negative

term (recall that
(
N
i+1

)
≤
(
N
i

)
N). Given α ≥ 1, the inequality above therefore holds for all

N .

To show that the mixed equilibrium with mixing over 0 and 1 exists, we have to establish

that ∆(1) < 0. Given p < 1/N2, GN−1(0) = (1 − p)N−1 > (1 − 1/N2)N−1. As limN→∞(1 −
1/N2)N−1 = 1, this implies that GN−1(0) → 1 as N → ∞.18 Consequently, ∆(1) < 0 for N

sufficiently high; i.e. the 0-1 mixed equilibrium exists. Lemma 3 establishes that this is the

warden optimal equilibrium in the panopticon.

The warden’s payoff in the 0-1 mixed equilibrium is −B(1− (1− p)N) = −α(N + 1)(1−
(1 − p)N) > −α(N + 1)(1 − (1 − 1/N2)N). We now show that the latter term converges to

−α as N gets large: This is equivalent to showing that lim
N→∞

N − (N + 1)
(
N2−1
N2

)N
= 0. The

term in the limit can be written as

N2N+1 − (N + 1)(N2 − 1)N

N2N
.

Using the binomial expansion and making use of the fact that
(
N
1

)
= N , we can see that this

is
N2N+1 −N2N+1 −N2N +N2N +N2N−1 − . . .

N2N

where the first four terms cancel each other out and the remaining expression only contains

powers of N smaller than 2N in the numerator, so that the expression goes to zero as N gets

large. Therefore, limN→∞(N + 1)(1− (1− 1/N2)N) = 1 and the warden’s payoff is bounded

below by −α in the warden 0-1 mixed equilibrium for N sufficiently large. As the warden’s

18Just to be precise, the limit is 1 as (1− 1/N2)N−1 = 1−N/N2 +
(
N
2

)
1/N4− . . . where all terms but the

first approach 0 as N grows large.

30



payoff is −θ∗ = −dNb/(q + b)e in the infection model, the warden has a higher payoff in the

panopticon for N high enough.19

Finally, we show uniqueness of the mixed equilibrium with γ1 = 0 in the panopticon

(for large N). To do so, we need two intermediate results that are stated as lemmas below

(lemma 6 and 7). To start with, define an equilibrium candidate as a (p, γ) such that the

warden’s indifference condition holds, that is g(γ + 1) = 1
α(N+1)

, and p < (γ + 1)/N . An

equilibrium candidate leads to an equilibrium if ∆(γ) ≥ 0 and ∆(γ + 1) < 0, that is if

GN−1(γ− 1) ≤ b/(q+ b) ≤ GN−1(γ). We will show that for large N , there are no equilibrium

candidates with γ ≥ 1 that satisfy the equilibrium condition GN−1(γ − 1) ≤ b/(q + b).

In the following, we make use of known results on the shape and the tail bounds of the

binomial distribution. Recall that gN(γ) =
(
N
γ

)
pγ(1 − p)N−γ, i.e. the probability mass of

the binomial distribution B(N, p) at γ. GN is the corresponding cumulative distribution

function; the definitions of gN−1 and GN−1 are analogous.

Lemma 6. The probability 1−GN(γ) that γ+ 1 or more prisoners revolt in any equilibrium

candidate (and therefore the probability of a breakout) converges to zero as N grows large.

Proof. Using the Chernoff bound (Chernoff, 1952), we get

1−GN(γ) ≤
(

N

γ + 1

)γ+1(
N

N − γ − 1

)N−γ−1

pγ+1(1− p)N−γ−1. (7)

For any equilibrium candidate in which the warden mixes over γ and γ + 1, it is therefore

1−GN(γ) ≤
(

N

γ + 1

)γ+1(
N

N − γ − 1

)N−γ−1
1

α(N + 1)
(
N
γ+1

)
where we plug the warden’s indifference condition into (7). It is convenient to define m = γ+1

as this allows to write the previous expression as

1−GN(γ) ≤ NN(
N
m

)
mm(N −m)N−mα(N + 1)

. (8)

We are going to show that the RHS term converges to zero as N grows large. We have to

show this for any m ∈ {1, . . . , N} and in particular m might depend on N . That is, we want

to show that the expression above converges to zero for any m(N). To do so, let m∗(N) be

19Note that the result does not depend on using a fixed α. More precisely, take a sequence of N and
BN = αN (N + 1) with αN ≥ 1 for all N . The previous steps above still apply (for each given N) and the
warden will prefer the no information 0-1 mixed equilibrium to −θ∗ for N high enough as long as the sequence
of αN is bounded by some ᾱ.
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the m maximizing the expression above. We show that the expression converges to zero even

if we plug in m = m∗(N).

Note that the term in (8) is maximal (for a given N) if m minimizes
(
N
m

)
(m/N)m(1 −

m/N)N−m. Note that
(
N
m

)
(m/N)m(1 − m/N)N−m is the probability mass of a binomial

distribution with probability p = m/N evaluated at its mode m. Hence, to minimize(
N
m

)
(m/N)m(1 − m/N)N−m we have to find the probability p = m/N for which the modal

density of a binomial distribution is minimized. This is the case for p = 1/2, i.e. m = N/2.20

Consequently, ∀m(N) :
(
N
m

)
mm(N −m)N−m ≤

(
N
N
2

) (
N
2

)N
and (8) becomes

1−GN(γ) ≤ NN(
N
N/2

)
(N/2)Nα(N + 1)

=
2N(

N
N/2

)
α(N + 1)

. (9)

Since the central binomial coefficient
(
N
N/2

)
is bounded from below by 2N/

√
2N (see the

supplementary material for an elementary proof of this), we obtain that 1−G(γ) converges

to zero in any equilibrium candidate.

We will now use this result to show that not only the probability of successful revolts

converges to zero, but also the probability for each prisoner that a revolt will be successful

if he decides to revolt. This is given by 1−GN−1(γ − 1), i.e. the probability that at least γ

other prisoners revolt (so that the remaining prisoner can push the number to γ+1 or higher

by revolting himself).

Lemma 7. In any equilibrium candidate with γ ≥ 1, 1 − GN−1(γ − 1) converges to zero as

N grows large.

Proof. Note that 1 − GN−1(γ − 1) = 1 − GN−1(γ) + gN−1(γ) ≤ 1 − G(γ) + gN−1(γ).

From lemma 6 we know that 1−G(γ) converges to zero in any equilibrium candidate. It is

therefore sufficient to show that gN−1(γ) converges to zero in any equilibrium candidate as

N grows large. We distinguish two cases. First, gN−1(γ) converges to zero as N grows large.

In this case, we are done. Second, gN−1(γ) does not converge to zero. We will show directly

that 1−GN−1(γ − 1) converges to zero for large enough N in this case.

By the warden’s indifference condition, gN(γ + 1) = 1
α(N+1)

, and we can write

gN−1(γ) = gN(γ + 1)
γ + 1

pN
=
γ + 1

αpN2
.

20If N is odd, both m = bN/2c and m = dN/2e will lead to minimal modal density. We concentrate on
the case where N is even for notational convenience. Obviously, our results also hold for odd N .
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If this does not converge to zero, there is a sequence of tuples (N, p, γ) which is strictly

increasing in N such that (i) (p, γ) is an equilibrium candidate for each tuple (N, p, γ) and

(ii) γ + 1 ≥ µpN2 for each tuple in the sequence and some µ > 0.

Rearranging the latter condition gives

γ − pN + p ≥ µpN2 − pN + p− 1 = pN5/4(µN3/4 − 1

N1/4
) + p− 1. (10)

We will look at two cases. First, pN5/4 does not converge to zero. Then the right hand

side of (10) is weakly larger than µ̃N3/4 for some µ̃ > 0 and N sufficiently large. Therefore,
(γ−pN+p)2

N−1
≥ (µ̃N3/4)2

N−1
> µ̃2

√
N for large N which implies that (γ−pN+p)2

N−1
will grow without

bound as N gets large. Hoeffding’s inequality (Hoeffding, 1963, Thm. 1) gives the following

upper bound for 1−GN−1(γ − 1):

1−GN−1(γ − 1) ≤ e−
2(γ−p(N−1))2

N−1 .

As we have just shown, this upper bound tends to zero as N grows large. Consequently,

we have shown directly that 1 − GN−1(γ − 1) converges to zero. It remains to check the

second case in which pN5/4 converges to zero. If pN5/4 converges to zero, then p ≤ 1/N5/4

for sufficiently high N . Consequently, GN−1(0) = (1 − p)N ≥ (1 − 1/N5/4)N and the latter

converges to 1. As GN−1(0) ≤ GN−1(γ − 1) for γ ≥ 1, this implies that 1 − GN−1(γ − 1)

converges to zero.

Lemma 7 implies that GN−1(γ − 1) converges to one for any equilibrium candidate with

γ ≥ 1 as N gets large. Put differently, for any ε > 0, we can find an N̄(ε) such that

GN−1(γ1) > 1− ε for all N ≥ N̄(ε) and all equilibrium candidates with γ ≥ 1. In particular,

we can find such an N̄(ε) for ε = 1 − b/(q + b). For N ≥ N̄(1 − b/(q + b)), we have

GN−1(γ − 1) > b/(q + b) for all equilibrium candidates with γ ≥ 1. Hence, no equilibrium

candidate with γ ≥ 1 satisfies the equilibrium condition GN−1(γ − 1) ≤ b/(q + b) for N

sufficiently high. This means that the equilibrium in which the warden mixes over zero and

one is the unique equilibrium for N sufficiently high.

Proof of proposition 2. Lemma 5 establishes that for B high enough the only mixed

equilibrium is the one where the warden mixes over 0 and 1. The proof of the lemma also

establishes that ∆(γ) < 0 for γ ≥ 1 if B is sufficiently high. Consequently, also no semi-

mixed equilibrium exists for B high enough. Let B̂ be such that only the mixed equilibrium

in which the warden mixes over 0 and 1 exists for any B ≥ B̂. For the rest of the proof,

consider only B ≥ B̂.

In this mixed equilibrium the warden is indifferent between 0 and 1 which means Bg(1) =

1 or equivalently N(1 − p)N−1p = 1/B. Therefore, limB→∞ p(B) = 0 where p(B) is the
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prisoners’ equilibrium probability of playing r when the warden’s utility is B. Since the

warden is indifferent between playing 0 and 1 in equilibrium, his equilibrium payoff equals

π(0) = −(1−(1−p)N)B. Plugging in the indifference condition N(1−p)N−1p = 1/B derived

above yields the warden’s equilibrium payoff

π∗ =
(1− p)N − 1

N(1− p)N−1p
.

Applying L’Hôpital’s rule, gives limp→0 π
∗ = −1. As we established above, p approaches 0

when B → ∞. Consequently, the warden’s payoff in the mixed equilibrium approaches −1

as B →∞. Furthermore,

∂π∗

∂p
=
−N2(1− p)2N−2p− ((1− p)N − 1)(−N(N − 1)(1− p)N−2p+N(1− p)N−1)

N2(1− p)2N−2p2

=
1−Np− (1− p)N

N(1− p)Np2
.

Using L’Hôpital’s rule, gives ∂π∗/∂p|p=0 = −(N − 1)/2 < 0. Hence, the warden’s payoff

approaches −1 from below as B → ∞ and the warden’s payoff in the equilibrium where he

mixes over 0 and 1 is bounded from above by −1. This proves the proposition because in the

infection model the warden’s equilibrium payoff is −θ∗ for any value of B.21

Proof of proposition 3. It was shown before that for b/q high enough, the unique

equilibrium in the panopticon model is a mixed equilibrium in which the warden mixes over

N − 1 and N and his payoff is −N . A similar result holds for the infection model: θ∗ = N if

and only if b/(q + b) > (N − 1)/N or equivalently if (b/q) > N − 1. Clearly, θ∗ = N implies

that the warden’s equilibrium payoff is −N . This establishes the result that for b/q high

enough all models lead to a warden payoff of −N .

Now consider the panopticon. In an equilibrium in which the warden mixes over N − 1

and N , he has to be indifferent between these two options which implies 1 = BpN , i.e. the

mixing probability of the prisoner has to be p = (1/B)1/N in such an equilibrium. To have

such an equilibrium, the condition ∆(N − 1) > 0 has to be satisfied. Given p = (1/B)1/N ,

this condition becomes −q
(
1− (1/B)(N−1)/N

)
+ b(1/B)(N−1)/N > 0. This can be rewritten

as b/q > (1/B)(N−1)/N − 1.

If B(N−1)/N −1 > b/q > N −1, then the warden’s payoff in the infection model is −N . In

the panopticon, however, the equilibrium in which the warden mixes between N and N − 1

does not exist which means the warden plays N with zero probability in any equilibrium of

21Note that for low values of B where other equilibria might exist the warden’s payoff is still bound from
below by −1: In any such equilibrium the warden finds it optimal to use a guard level of 1 or higher and the
breakout probability is positive. Consequently, the warden’s expected payoff is strictly lower than −1.
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this game. As the equilibrium guard levels are then strictly preferred to a guard level of N

(which would guarantee payoff −N), it follows that the warden’s payoff in the no information

game is strictly larger than −N .

If B(N−1)/N − 1 < b/q < N − 1, the no information game has an equilibrium in which the

warden mixes between N − 1 and N and therefore his expected payoff in this equilibrium is

−N . In the infection game, θ∗ < N and therefore the warden’s equilibrium payoff is strictly

above −N .
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Supplementary Material
not intended for publication

Panopticon: No asymmetric equilibria

When analyzing the panopticon model, we restricted attention to symmetric equilibria, i.e.

equilibria in which all prisoners revolt with the same probability p. We will now show that

this is without loss of generality, i.e. there are no equilibria in which prisoners revolt with

prisoner dependent probabilities pi and pi 6= pj for some prisoners i and j.

In the main text, we already argued that equilibria cannot be pure, i.e. there has to

be at least one prisoner who uses a mixed strategy pi with 0 < pi < 1. The argument is

simple: If all prisoners used a pure strategy in equilibrium, the warden would be certain of

the number of revolting prisoners, say k. In this case, the warden best responds by setting

γ = k which prevents a breakout for sure while any lower guard level would lead to a breakout

with probability 1. If k > 0, the revolting prisoners could profitably deviate to not revolting.

If, however, γ = k = 0, then each prisoner could profitably deviate by revolting. Since at

least one prisoner has a profitable deviation, we can conclude that there is no equilibrium in

which all prisoners use pure strategies. Without loss of generality, let us therefore assume

that prisoner 1 uses a completely mixed strategy, i.e. 0 < p1 < 1.

First, we will show the following: Take any equilibrium in the panopticon model. If

0 < pi ≤ pj < 1 holds for two prisoners i and j, then pi = pj. To see this, note that

both i and j have to be indifferent between revolting and not revolting because both use a

completely mixed strategy. If pj > pi and j is indifferent between revolting and not revolting,

then i would strictly prefer to revolt: For any γ > 0, the probability that at least bγc other

prisoners revolt is higher for i than for j if pj > pi. Since j was indifferent, i will then strictly

prefer to revolt. This contradicts that i is indifferent (because he plays a completely mixed

strategy) and we must therefore have pi = pj.

Note that the previous argument actually says that if two players are indifferent between

revolting and not revolting, then they must play revolt with the same probability. This is a

bit stronger than what we said before because it rules out the possibility that some prisoner

plays revolt with probability 0 or 1 while being indifferent between the two actions. (Recall

that prisoner 1 uses a completely mixed strategy.)

What remains to be shown is that no prisoner strictly prefers one of the two actions in

equilibrium. Suppose to the contrary that prisoner j strictly preferred to revolt and therefore

plays revolt with probability 1 in equilibrium. Now consider prisoner 1: Since p1 < pj = 1,

the probability that at least bγc other prisoners revolt is higher from prisoner 1’s perspective
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than from prisoner j’s perspective. Therefore, prisoner 1 strictly prefers to revolt given that

prisoner j strictly prefers to revolt. This contradicts that prisoner 1 plays a completely mixed

strategy in equilibrium. Consequently, there cannot be a prisoner j who strictly prefers to

revolt.

An analogous argument yields that there is no prisoner who strictly prefers not revolt.

This completes the proof.

Extension: Uncertain punishment

Here we consider a variation of the model in which a prisoner’s payoff when revolting un-

successfully is −q − ργ/N < 0 where q ≥ 0 is an effort cost and ρ ≥ 0 is a punishment

that happens with probability γ/N . It will become apparent that the the specific linear form

chosen here is irrelevant for the analysis, i.e. we could just as well use −q − h(γ,N) where

h ≥ 0 increases in its first and decreases in its second argument. Apart from this change in

payoff, the model is the same as in the main text.

Note that the arguments in the benchmark model go through without change.

In the infection model, lemma 1 holds with a slightly redefined threshold θ∗. Let θ∗ be

the unique θ such that

• either θ 6∈ N and

b−
(
q + b+

θ

N
ρ

)
bθc
N

• or θ ∈ N and

0 ≥ b−
(
q + b+

θ

N
ρ

)
θ

N

0 ≤ b−
(
q + b+

θ

N
ρ

)
θ − 1

N
.

The proof of lemma 1 has to be adjusted only at very few instances: In the first step,

∆(γ) = b−
(
q + b+

θ

N
ρ

)
GN−1(γ − 1)

and everything goes through accordingly.

In the second step, the derivation of the approximation and the resulting Laplacian beliefs

remains unaffected. The expected utility difference between rioting and not rioting if there

2



does not exist an m ∈ N such that θ − ε ≤ m ≤ θ + ε will now be

b−
(
q + b+

θ

N
ρ

)
bθc
N
.

If such an m exists, the expected utility difference is

b−
(
q + b+

(
m

2
+
θ + ε

2

)
ρ

N

)
θ + ε−m

2ε

m+ 1

N
−
(
q + b+

(
m

2
+
θ − ε

2

)
ρ

N

)(
1− θ + ε−m

2ε

)
m

N
.

Note that this expected utility difference is strictly decreasing in θ if ρ > 0. As rioting is

dominant for θ < 1 − ε and not rioting is dominant for θ > N + ε, there is a unique θ at

which the expected utility difference is zero. In the limit ε→ 0, we obtain that the expected

utility difference is strictly positive for every θ < θ∗ and strictly negative for every θ > θ∗.

Given this, the remaining parts of the proof of lemma 1 apply without change.

In the panopticon model, the indifference condition of the prisoner (3) has to be rewrit-

ten as

E
[
b−GN−1(γ − 1)

(
b+ q + ρ

γ

N

)]
= 0.

Lemmas 2 and 3 remain valid because they use only the warden’s problem which was not

changed. The proofs of lemmas 5 and 4 use the prisoners’ indifference condition without

using the specific form of the prisoner payoff. Consequently, the proofs go through without

change and the lemmas remain valid.

The most interesting comparison of the models is the result for large N (proposition

1). The proof of this result does again not use the specific form of the prisoners’ indifference

condition and consequently goes through without change. Hence, all the results for large N

mentioned in the main text remain valid.

Example: N=2

To illustrate the results of the paper, we give the solved model for the simple case where

N = 2.

Denoting the expected warden payoff by π(γ), we get for the N = 2 case

π(0) = −(2p+ p2)B

π(1) = −p2B − 1

π(2) = −2.

This implies that π(0) = π(1) iff p = 1/(2B). Given the assumption B ≥ N + 1 = 3,

3



π(0) = π(1) > π(2) holds if p = 1/(2B).

Furthermore, π(1) = π(2) iff p =
√

1
B

and B ≥ 3 implies in this case that π(1) = π(2) >

π(0). To determine the equilibrium we will have to check the prisoners’ indifference condition.

Denoting the utility difference from revolting and not revolting given γ guards by ∆(γ) we

get

∆(0) = b

∆(1) = −q(1− p) + bp

∆(2) = −q.

If ∆(1) < 0 with p = 1/(2B), then there is an equilibrium in which the warden mixes over

0 and 1 with probability z0,1 = −∆(1)
−∆(1)+∆(0)

= q−b/(2B−1)
q+b

. The inequality ∆(1) < 0 is, given

p = 1/(2B), equivalent to b/q < 2B − 1.

If ∆(1) > 0 with p =
√

1
B

, then there exists an equilibrium in which the warden mixes

over 1 and 2 with probability z1,2 = q
p(b+q)

=
√
B q
q+b

. Then the inequality ∆(1) > 0, given

p =
√

1/B, is b/q >
√
B − 1.

Note that
√

1
B
> 1/(2B) and 2B − 1 >

√
B − 1 by B ≥ N + 1 = 3. This implies the

structure in figure 3 for existence of the different equilibria.

b
q√

B − 1 2B − 1

mixed eq mixing over (0,1)

mixed eq mixing over (1,2)

semi mixed eq

Figure 3: Equilibria for N=2 case

The warden payoff in the 0,1 mixing equilibrium equals π(1) = −p2B − 1 = − 1
4B
− 1.

The warden payoff in the 1,2 mixing equilibrium equals π(2) = −2.

Last, we look at semi-mixed equilibria, i.e. the warden plays a pure strategy while the

prisoners play completely mixed strategies. Note that the warden cannot play the pure

strategies 0 or 2 in such an equilibrium because the prisoners would then have a dominant

action contradicting that they mix. Hence, we can focus on the equilibrium where the warden

plays γ = 1. Playing γ = 1 is optimal for the warden if p ∈
[
1/(2B),

√
1/B

]
. The prisoner

is willing to mix only if ∆(1) = 0, i.e. if b/q = (1 − p)/p = 1/p − 1. Note that 1/p − 1

equals 2B − 1 for p = 1/(2B) and 1/p− 1 equals
√
B − 1 for p =

√
1/B. Consequently, the

4



semi-mixed equilibrium exists if b
q
∈
[√

B − 1, 2B − 1
]
.

The warden payoff in the panopticon were already established above. In particular, the

mixed equilibrium with mixing over zero and one existed if b/q < 2B − 1 and the warden

payoff in this game was −1/(4B) − 1. For b/q > 2B − 1, only the mixed equilibrium with

mixing over 1 and 2 existed where the warden payoff is -2. In the infection model, θ∗ = 1

if b/q < 1 and θ∗ = 2 if b/q > 1. This implies that the warden payoff is higher in the

infection model than in the panopticon if b/q < 1. For 1 < b/q < 2B−1, the warden optimal

equilibrium of the panopticon gives the warden a higher payoff than the infection model. The

worst equilibrium in the panopticon model gives the warden the same payoff as the infection

model in this case. If b/q > 2B − 1, all models give payoff −2 to the warden.

Lower bound of the central binomial coefficient – Proof22

We will show the equivalent
(

2n
n

)
≥ 22n/(2

√
n) as it is notationally more convenient. The

first step is to see that(
2n

n

)
1

22n
=

1

22n

(2n)!

n!n!

=
1

2n
(2n)!

n! 2nn!

=
1

2n
(2n− 1)(2n− 3)(2n− 5) . . . 1

n!

=
1

2n−1

1

2n

(2n− 1)(2n− 3)(2n− 5) ∗ · · · ∗ 3

(n− 1)(n− 2) ∗ · · · ∗ 1

=
1

2n−1

1

2n

n−1∏
j=1

2j + 1

j

=
1

2n

n−1∏
j=1

(
1 +

1

2j

)
.

The second step is to get a lower bound on the square of the product:

n−1∏
j=1

(
1 +

1

2j

)2

=
n−1∏
j=1

(
1 +

1

j
+

1

4j2

)

≥
n−1∏
j=1

(
1 +

1

j

)
= n.

22The proof is a slightly more extensive version of a proof given by Byron Schmuland on http://math.

stackexchange.com/questions/58560/elementary-central-binomial-coefficient-estimates.
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Where the last equality can be easily shown by induction.23 Taking the first two steps

together shows that

((
2n

n

)
1

22n

)2

=
1

(2n)2

n−1∏
j=1

(
1 +

1

2j

)2

≥ 1

4n2
n =

1

4n
.

Taking square roots on both sides gives(
2n

n

)
1

22n
≥ 1

2
√
n

which is the desired result.

23Clearly, it holds for n = 2. For higher n, we get
∏n−1

j=1

(
1 + 1

j

)
=
(

1 + 1
n−1

)∏n−2
j=1

(
1 + 1

j

)
=(

1 + 1
n−1

)
(n− 1) = n where the second equality uses the induction hypothesis.
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