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Abstract

I study the implications of agency frictions for the pricing policy of
institutional market makers. In a setting where a market maker cannot
observe the actions of an employed trader, I derive the optimal compensation
structure and pricing policy. The theory demonstrates that incentive
contracting and the price for immediacy are inherently linked. When the
trader’s compensation is optimally deferred according to order flow, market
making efficiency is improved and the quoted spreads are minimized. In
other words, optimizing trader compensation leads to a liquidity gain.
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1 Introduction

The recent trading losses incurred by dealer banks and the implementation of the
“Volcker Rule”, has led to a renewed interest in the pricing and risk management
policies of institutional market makers. Despite the important role played by
these financial institutions, the internal organization of market maker firms has
been largely ignored by the literature. The theoretical market microstructure
literature pioneered by Garman (1976) has so far focused on four sources of
frictions: inventory effects, fixed costs, asymmetric information and more recently
search and bargaining.1 The present paper studies an important yet unexplored
source of frictions: internal agency problems.

An institutional market maker provides immediacy by absorbing a customer’s
demand and supply of assets into its own inventory. In order to make a profit on
the bid-offer spread the market maker must successfully manage the risk associated
with the transactions. Traders manage the risk by analyzing the trade to identify
what instruments may be used as a hedge, and dynamically adjust the hedge
until the risk is laid off. Managing residual risk from market making therefore
requires consistent effort from traders. While profits and losses are perfectly
observable, the underlying trading effort driving profits and losses is to a large
extent unobservable. This creates a moral hazard problem.

This paper studies how an institutional market maker must design trader
compensation in order to mitigate agency problems. The paper addresses the
following questions: What is the best way to design incentives for traders in
market maker firms? How is incentive compensation connected with the pricing
and risk management policy of the market maker? What are the implications of
optimal trader compensation for market liquidity?

In order to speak to these issues, I build a continuous-time model of a market
maker concerned with managing risk from transactions in the presence of internal
agency frictions. While it is intuitive that agency conflicts can be mitigated by
optimizing the compensation practice, the effect of incentive compensation on
the market maker’s pricing policy is less obvious. It turns out that the optimal
contract has striking implications for the market maker’s pricing of risk. In
particular, the model shows that deferring the trader’s compensation optimally

1See O’Hara (1995) for a survey of several theoretical models. Duffie, Gârleanu, and Pedersen
(2005) were the first to model trading frictions using search theory.

2



according to order flow, minimizes the spreads quoted by the market maker. Thus,
optimizing trader compensation leads to a liquidity gain.

I consider the following setup: A risk neutral market maker takes positions
dictated by customers who seek liquidity. The order flow is represented by doubly
stochastic Poisson processes, with intensities that depend on the market maker’s
pricing policy. A trader is hired by the market maker to manage the residual
risk in the dealer book2. The profit and loss on holding risk is determined by the
trader’s unobservable effort giving rise to a principal-agent problem. The agency
model matches a standard setting in which the trader affects the mean rate of
return on the risk in the dealer book and builds on the continuous time techniques
introduced in Sannikov (2008) and Demarzo and Sannikov (2006). The profits
and losses per unit of risk follows a Brownian motion with a drift that depends
positively on the hidden effort.

A market making policy consists of a compensation policy, a pricing policy
and a stochastic termination time. The optimal market making policy maximizes
the expected value that the market maker derives from making markets with an
incentive compatible effort process. It is characterized using two state variables:
the risk in the dealer book and the trader’s continuation utility. These two
state variables summarize the relevant history of the market maker. Under the
optimal contract the trader finds it optimal to exert full hedging effort at all times.
When the trader’s continuation utility hits zero for the first time, the contract is
terminated and the market maker experiences a loss due to costly liquidation.

In order to motivate the trader, the optimal contract relies on the promise of
payments for hedging effort. As is the case in the standard setting introduced
by Sannikov (2008), compensation needs to be deferred and exposed to profits
and losses in order to provide the trader with incentives for exerting hedging
effort. Specifically, the sensitivity of continuation utility to profits and losses needs
to be greater than the private benefits that the trader gains from shirking. In
addition to the standard sensitivity to the output driven by the trader’s action, the
martingale representation theorem produces a sensitivity of continuation utility
to customer flow. In the optimal contract the market maker will adjust the flow
sensitivity to optimize market making efficiency. The crux of the analysis is that
the optimal spreads quoted by the market maker are linked to the way in which

2The “dealer book” or simply “the books” is the term used by institutional market makers
to describe the system that keeps track of open trades and risk from customer transactions.
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the trader’s continuation utility is adjusted for order flow. This is due to the fact
that compensation and pricing are two complementary tools for managing the risk
of costly termination of employment. Without proper incentive compensation, the
market maker must manage the risk of costly termination by keeping risk in check
through pricing primarily. However, when compensation is properly deferred and
adjusted optimally according to order flow, the risk of termination is minimized
and the market maker’s pricing strategy becomes less conservative. Hence, letting
trader compensation be optimally sensitive to fluctuations in risk will benefit
customers by minimizing spreads.

The model also shows that the market maker adjusts prices in response to
changes in the trader’s continuation utility. Since continuation utility mirrors past
profitability this essentially means that the market maker will change prices in
response to profits and losses. In a survey of the market microstructure literature,
Biais, Glosten, and Spatt (2005) emphasize3 that the first generation inventory
models do not fully explain why financial institutions employing dealers would be
averse to diversifiable risk:

....While individuals are indeed likely to exhibit risk aversion, it is less
obvious why the banks, securities houses and other financial institutions
employing dealers would be averse to diversifiable risk.

In the present paper institutional risk aversion is driven by the threat of costly
termination of employment. When the market maker experiences a loss on
residual risk from market making, the trader’s continuation utility must be
adjusted accordingly in order to induce full hedging effort. This increases the
likelihood of terminating employment with unhedged risk in the dealer book and
it is therefore optimal to adjust customer arrival intensities in order to rebalance
risk. Losses on holding inventory can therefore lead to a decrease in the ask-price
as well as a decrease in the bid-price. Since the market maker trades off the risk
of costly liquidation against the expected upside of retaining risk, prices and order
flow intensities will depend on the level of risk in the dealer book. How much
prices and order flow intensities will change after a profit or loss or a transaction
generally depends on the risk of termination and thus the level of the trader’s
continuation utility.

3See Biais et al. (2005), page 222.
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Biais et al. (2005) then go on to suggest an analysis of an institutional market
maker in spirit of the model in this paper:

.... To speak to this issue it could be fruitful to analyze theoretically
the internal organization of these financial institutions. For example,
suppose the dealers need to exert costly but unobservable effort to be
efficient and take profitable inventory positions. To incentivize them
to exert effort, it is necessary to compensate them based on the profits
they make. In this context, even if diversifiable risk does not enter
the objective function of the financial institution, it plays a role in the
objective function of an individual dealer quoting bid and ask prices.

Something similar happens in this model: even though both players are risk
neutral, the residual risk from market making enters the market maker’s value
function and therefore plays a role in the optimal contract. The main difference
between the analysis suggested above and the approach taken in this paper
concerns the way prices are quoted. In practice the trader is responsible for
quoting prices. However, in the analysis that follows, the market maker dictates
the pricing policy rather than letting the trader quote the prices. This assumption
rests on the fact that in most financial institutions, the quoted prices will be
publicly known within the firm which makes it possible for senior management to
monitor and control the firm’s pricing policy.4

The market microstructure theory can be roughly divided into three genera-
tions. The first generation market microstructure models that followed the work
of Garman (1976) dealt with inventories and order handling costs. Liquidity
provision with inventory considerations has been studied by Ho and Stoll (1981),
Ho and Stoll (1983) and Amihud and Mendelson (1980), Grossman and Miller
(1988) and Mildenstein and Schleef (1983). Roll (1984) studies a model where
market makers incur a fixed cost trading shares. The second generation market
microstructure models is concerned with asymmetric information. Specifically,
Glosten and Milgrom (1985) and Kyle (1985) study the implications of adverse
selection on the bid and ask prices quoted by the market maker. The recent third

4If the trader holds private and useful information about market conditions it might be
suboptimal for the market maker to dictate a pricing policy. In this case the market maker is
facing a delegation problem. An analysis of this situation would take the analysis in an entirely
different direction and is beyond the scope of this paper.
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generation models pioneered by Duffie et al. (2005) studies the implications of
search frictions for market liquidity. Building on this search-theoretic framework
Lagos and Rocheteau (2009) and Weill (2007) study the distribution of asset
holdings and market making under selling pressure respectively. The present
paper contributes to the market microstructure literature by considering dynamic
agency as a source of market making frictions. To my knowledge, this work is the
first to integrate financial intermediation with dynamic incentive contracting.5

The paper is also related to the growing literature on dynamic moral haz-
ard that uses recursive techniques to characterize the optimal contract. This
literature began with Green (1987), Abreu, Pearce, and Stacchetti (1990) and
Spear and Srivastava (1987). By characterizing incentive compatibility using mar-
tingale techniques Sannikov (2008) and Demarzo and Sannikov (2006) were the
first to provide a tractable dynamic principal-agent model, in which it is possible to
explicitly characterize the optimal contract using a differential equation. Using the
same martingale technique Biais, Mariotti, Rochet, and Villeneuve (2010) study
a continuous-time agency model in which an agent with limited liability must exert
unobservable effort to reduce the likelihood of losses. Biais, Mariotti, and Rochet
(2007) study agency problems and the optimal design of securities. In a distantly
related paper Demarzo, Fishman, He, and Wang (2012) study the implications of
agency problems for a firm’s investment decision. The main contribution of the
present paper relative to the dynamic agency literature is to analyze the interplay
between incentive compensation and liquidity provision.

The remainder of this paper is organized as follows. Section 2 specifies the
model and characterizes incentive compatibility. I derive the market maker’s value
function and solve for the optimal market making policy in section 3. Section 4
studies the implications of the optimal contract for prices quoted in the optimal
policy. Section 5 analyzes an example of inventory liquidation which is the simplest
special case of the general model. Section 6 studies dealing with inventory as
a special case of the general model. The empirical implications of the model
are discussed in section 7 and section 8 concludes. Proofs are included in the
Appendix.

5This paper is a revised version of a chapter in Falkeborg (2013). Another chapter studies
an agency model of an over-the-counter market where the agent is generating order flow.
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2 The Model

This section presents a model of financial intermediation where a market maker
faces an agency problem. There are two players: a market maker and a trader.
The market maker dictates the firms pricing policy and the trader is responsible
for managing risk from order flow by exerting unobservable effort.

2.1 Environment

Fix a probability space (Ω,F , P ). Time is continuous and the market maker
determines the price for immediacy by continuously proposing prices for taking
on risk from liquidity seekers. Transactions occur according to a family of point
processes N t = (Nit)i∈I where I is the set of possible transactions. The market
maker determines the price for immediacy at any given time. Specifically, the
market maker proposes spreads St = (Sit)i∈I where Sit is the spread charged
for transaction i ∈ I.6 The intensities of the customer arrival times depend
on the prices set by the market maker. Formally, assume that for a function
Λ = (Λit)i∈I : [0,∞)I → [0,∞)I a martingale Mi is defined by

Mit = Nit −
∫ t

0
Λi(Siu)du (1)

for each i ∈ I. Customer arrival intensities are decreasing in the spread proposed
by the market maker. Moreover, I will assume throughout the paper that the
following condition is satisfied.

Condition 1. The function Λ = (Λi)i∈I is bounded and differentiable with
Λi(Si) ≡ 0 for Si greater than some value Smax. Furthermore Λ′i(Si) < 0 and
Λ′′i (Si) ≤ 0 for Si < Smax.

Assuming that Λi(Si) ≡ 0 for large enough Si captures the idea that if the spread
proposed by the market maker is large enough, no customer will arrive to trade.
In a market with some degree of competition this can be expected. In general, a

6For instance, if the market maker is dealing a single asset by proposing bid and ask prices
we may take I = {a, b}. In this case Na represents the number of transactions on the ask side
and Nb represents the number on transactions on the bid side. In this case, we can let P denote
the fundamental exogenous value of the asset as in Ho and Stoll (1981). The market maker will
then propose bid and ask prices P + Sat and P − Sbt. Assuming assets enter the dealer book
with value P the change in value for the market maker becomes SatdNat + SbtdNbt.
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higher degree of competition, means that the customer arrival intensities will be
more sensitive to price changes.

2.2 The Dealer Book

Whenever a customer arrives to trade and dNit > 0, the trade is recorded and
enters the dealer book. The dealer book reflects the inevitable residual risk from
market making and must be actively managed by the trader.7 The profits and
losses from holding risk and therefore the value of the dealer book Bt is driven
by the trader’s action as well as a standard Brownian motion Z on (Ω,F , P ).
Specifically, letting A ∈ {0, 1} denote the trader’s effort level, the profits and
losses in the dealer book evolves according to

dBt(N t, At) = K(N t)
(
µ(N t, At) + σdZt

)
(2)

where K : RI → (0,∞) with K(0) = 0 is a function that reflects the size of
the book and µ : RI → R is a bounded function that measures the difficulty of
managing the risk in the book. Thus, the value of the dealer book at any given
time is a function of all previous trading activity as well as the trader’s hedging
effort up until that time. For a given pricing strategy St = (Sit)i∈I the total profit
and loss Xt from market making evolves as

dXt =
∑
i∈I

SitdNit + dBt(N t, At). (3)

The trader possesses the unique and necessary skills for hedging and managing
risk in the dealer book. Managing risk is costly for the trader which is modeled as
a private benefit from shirking: if the trader shirks, i.e. At = 0, in the time interval
(t, t+dt) he obtains a private benefit of ϕdt where ϕ > 0; on the other hand, if the
trader exerts a hedging effort At = 1, he obtains no private benefit. The trader’s
hedging effort has a positive impact on the drift ∆µt ≡ µ(N t, 1)− µ(N t, 0) > 0.
Since K(N t) ∈ [0,∞), hedging effort therefore increases the expected return to
holding securities in the dealer book.

7The probability of finding two opposing trades simultaneously is zero. For instance, if
I = {a, b} the event that dNas > 0 and dNbs > 0 for some s > 0 is a null event.

8



2.3 The Market Maker’s Problem

Hedging activities undertaken by the trader are unobservable by the market maker.
The trader is protected by limited liability, and hence can only receive positive
transfers from the market maker. By contrast, the market maker has unlimited
liability and must therefore cover all potential losses from market making. Both
players are risk neutral. The market maker discounts the future at rate r > 0 and
the trader discounts at rate γ > r. This introduces a wedge between the valuation
of future transfers by the market maker and the trader, and rules out indefinitely
postponement of payments in the optimal contract.

I assume that customer transactions N as well as changes in the value of
the dealer book B are observable and contractible. The market maker will offer
the trader a contract that specifies a compensation policy and a termination
time written on the observable market making history. A contract Γ = (L, τ),
specifies a compensation policy Lt and an endogenously determined random time
τ when the contract is terminated and employment ends. The process Lt describes
cumulative transfers from the market maker to the trader and is non-negative
and increasing due to the limited liability constraint. The timing of events in the
time interval (t, t+ dt) is as follows:

1. The market maker sets the spreads Sit for all i ∈ I.

2. The trader decides on effort At ∈ {0, 1}.

3. With probability Λi(Sit)dt transaction i ∈ I occurs.

4. The trader receives a non-negative transfer dLt from the market maker.

5. Employment ends or continues.

With this timing of events the information setup can be described as8

Gt = σ
{
N s; 0 ≤ s ≤ t

}
,

Ht = σ
{
Zs; 0 ≤ s ≤ t

}
,

Ft = Gt ∨Ht.

8Here I use the boldface symbol σ to denote a sigma-algebra generated by a given stochastic
process and ∨ to denote the join of to sigma-algebras.
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The pricing decision of the market maker is taken before knowing the realization
of customer arrival processes while payments are made after knowing whether
there has been a transaction. Hence, the pricing process St is Ft-predictable and
the compensation process Lt is Ft-adapted. Given a contract Γ = (L, τ) and an
effort process At the trader’s expected discounted payoff is

W0 = EA
[ ∫ τ

0
e−γt

(
dLt + ϕ(1− At)dt

)]
(4)

and the expected discounted profits for the market maker is

EA
[ ∫ τ

0
e−rt

(
dXt − dLt

)]
(5)

where the expectation EA is taken with respect to the measure PA generated by
the trader’s action A. In the following E is the expectation operator under the
measure induced by the trader’s action, unless otherwise stated.

2.4 Termination

Assume that K(N 0) > 0 so that the trader’s action is needed from the outset.
Employment ends when the trader is fired at time τf , or when the dealer book
reaches the empty state K(N ) = 0 at time τe when the trader’s hedging effort is
no longer needed. Both stopping times are determined endogenously in the model.
Hence, the contract is terminated at time τ given by

τ = τf ∧ τe.

Terminating the trader’s employment whenever K(N) 6= 0 is costly for the
market maker: without someone running the dealer book the market maker is
sitting on unhedged risk. If employment ends before the risk is liquidated, i.e.
if K(N τf ) 6= 0, the market maker realizes a liquidation loss `(N) < 0. I will
let `(N) be exogenous and unspecified but one could assume that in case of
termination, the market maker must liquidate the position without the traders
hedging effort.9

9 Thus, after employment ends the market maker experiences a period of costly liquidation
with a payoff of

` = E
∫ T

0
e−rt(µ(N t, 0)dt+ σdZt)
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2.5 Incentive Compatibility

An effort process A is incentive compatible with respect to a contract Γ if it
maximizes the trader’s expected payoff given Γ. In order to solve for the optimal
contract and pricing policy we need to characterize incentive compatibility first.
The optimal contract can be written recursively with the trader’s continuation
utility as a state variable and will be derived using dynamic programming. For a
contract Γ and a effort process At, denote by Wt(Γ, A) the trader’s continuation
utility defined as

Wt(Γ, A) ≡ E
[ ∫ τ

t
e−γ(u−t)

(
dLu + ϕ(1− Au)du

)
|Ft
]
. (6)

The continuation utility is the trader’s expected discounted payoff from time t and
onwards, given that he will follow the strategy A. In other words, the continuation
utility is the level of deferred compensation. Note that the continuation utility
Wt(Γ, A) is an Ft-adapted stochastic process by construction. The martingale
representation theorem therefore yields that the trader’s continuation utility
evolves in response to the stochastic changes in the dealer book.

Proposition 1. There exists predictable processes Yt and H t = (Hit)i∈I such
that the trader’s continuation utility Wt = Wt(Γ, A) evolves according to

dWt =
(
γWt − ϕ(1− At)

)
dt− dLt + YtσdZt.+

∑
i∈I

HitdMit (7)

where Mi is the martingale

Mit = Nit −
∫ t

0
Λi(Su)du.

Furthermore, effort At = 1 is incentive compatible if and only if

Yt ≥
ϕ

∆µt
. (8)

The representation (7) implies that the continuation utility of the trader
evolves in response to the jumps of the compensated transaction process M t.
Furthermore, to ensure that the trader chooses At = 1 for all t > 0, the market

where T = inf{t > τ : K(N) = 0}. The cost of liquidation will then depend on drift in the
dealer book when there is no hedging being done.
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maker must expose the trader to the risk dZt. Intuitively, incentive compatibility
requires that the trader is sufficiently exposed to the realized return of holding
risk in the dealer book. It will follow in the next section that the incentive
compatibility constraint (8) binds. This due to the fact that the trader has limited
liability and thus termination is required in the optimal contract whenever Wt = 0.
The market maker will therefore set Yt = ϕ

∆µt since unlucky realizations of dZt
will increase the probability of termination.

One of the main insights of Sannikov (2008) is that there is a one-to-one
correspondence between a strategy that is incentive compatible with respect to
a contract Γ and controlled processes of the form (7). Hence, even though the
martingale representation theorem is not constructive, this insight allows us to
solve for the optimal contract by solving a stochastic control problem with controls
L, Y and H . While Yt is used to control the trader’s time-t-incentives for hedging,
the sensitivities H t = (Hit)i∈I will be chosen to optimize market making efficiency.
It will follow from the analysis in the next section, that the optimal choice of Hit

is inherently linked to the optimal choice of Sit.

3 The Optimal Market Making Policy

The market maker’s problem is to find the contract and price process that maximize
expected discounted profits (5) subject to incentive compatibility and subject to
delivering the trader a required utility level W0. The solution to this problem is
the optimal market making policy. In the following we shall focus on implementing
hedging effort. That is, we will solve for the optimal contract that induces At = 1
at all times. The optimal contract that delivers maximal trading effort can be
derived by dynamic programming. Define the left limit of the trader’s continuation
utility by Wt− = lims↗tWs and similarly for the history of customer transactions
N t− = lims↗tN s. These two variables will serve as state variables. Define the
optimal value function F (Wt−,N t−) for the market maker as the highest expected
payoff the market maker can obtain from a contract that provides the trader with
the payoff Wt− given that the current transaction history is N t−. Assume for
now that the value function W → F (W,N) is globally concave. This will follow
formally from Theorem 1.

The market maker can always compensate the trader by paying a transfer
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dL > 0 at a marginal cost of −1 and moving to the optimal contract with payoff
W −dL. However, delaying compensation might be valuable for the market maker
and therefore it must be the case that

F (W,N ) ≥ F (W − dL,N )− dL.

Optimizing with respect to dL shows that dL > 0 if and only if FW (W,N ) < −1.
That is, it is optimal to delay payments as long as they are more costly than
utility promises. For any N with K(N ) 6= 0 let

WN ≡ inf{W > 0 : FW (W,N ) = −1}.

Concavity of the market maker’s value function implies the following standard
property: payments to the trader are made only if his continuation utility is
at least WN and the payment must bring the continuation utility back to the
reflection point

dL = max{W −WN , 0}.

The payments to the trader must be delayed so as to provide incentives to hedge
so the trader’s continuation utility is kept in the range [0,WN ].

By Itô’s lemma we get that the market maker’s value function over the interval
[0,WN ] is given by the following HJB-equation

rF (W,N ) = K(N )µ(N , A) + max
S,H,Y

{∑
i∈I

Λi(Si)Si + γWFW (W,N ) (9)

+ 1
2Y

2σ2FWW (W,N )−
∑
i∈I

Λi(Si)Gi(W,N , Hi)
}

where

Gi(W,Hi,N ) ≡ F (W,N ) +HiFW (W,N )− F (W +Hi,N + ei) (10)

and ei denotes the unit vector in RI with the i’th entry equal to 1. Given the
HJB-equation, we can now derive the optimal pricing policy and the evolution
of W in the optimal contract. Since the function W → F (W,N) is strictly
concave, it is optimal for the market maker to set Yt = ϕ

∆µt . The optimal choice
of sensitivity to changes in the dealer book Hi is determined by the first order
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condition
FW (W +Hi,N + ei) = FW (W,N ). (11)

Similarly, the optimal spread Si is given by the first order condition

Λ′i(Si)
(
Si −Gi(W,Hi,N )

)
+ Λi(Si) = 0. (12)

Condition 1 now ensures that spreads that satisfy (12) are indeed optimal.

Lemma 1. The first order condition (12) is also a sufficient condition for opti-
mality.

Proof. Differentiating the market maker’s value function twice with respect to Si
yields

Λ′′i (Si)
(
Si −Gi(W,Hi,N )

)
+ 2Λ′i(Si). (13)

From condition 1 we know that Λ′i(Si) < 0 for Si < Smax and hence that if Si
satisfy (12) we must have

Si −Gi(W,Hi,N ) > 0.

Since Λ′′i (Si) ≤ 0 the expression in (13) is therefore negative. QED

To pin down a solution to the HJB-system we need the smooth pasting and
the super contact conditions.10 These conditions take the form

FW (WN ,N ) = −1 FWW (WN ,N ) = 0 (14)

and the system of conditions at the boundary W = 0 which is determined by the
cost of liquidation `(N ) is given by

F (0,N ) = `(N ). (15)

The following result formalizes our findings. A formal proof of the result is given
in the appendix.

Theorem 1. The optimal market making policy that induces hedging effort for all
0 < t < τ involves two state variables: the beginning-of-period history of customer

10See, for example, Dixit (1993).
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transactions N t− and the beginning-of-period level of the trader’s continuation
utility Wt−. The value of the market maker’s policy is F (Wt−,N t−) where the
value function F (W,N ) solves the system of ODE’s

rF (W,N ) = K(N )µ(N , A) +
∑
i∈I

Λi(Si)
(
Si −Gi(W,N , Hi)

)
(16)

+ γWFW (W,N ) + 1
2( ϕ∆µ)2σ2FWW (W,N )

for W ∈ [0,WN ] with boundary conditions (14) and (15), where Hi and Si

solve (11) and (12) respectively. For W > WN the value function is given by
F (W,N) = F (WN ,N) − (W −WN ). The function W → F (W,N) is globally
concave and strictly so in the region [0,WN ]. The trader’s continuation utility
evolves according to

dWt = γWtdt− dLt +
∑
i∈I

HitdMit + ϕ

∆µ t
σdZt. (17)

Payments to the trader are made whenever the continuation utility W exceeds the
payment threshold WN , in which case the payment amounts to dL = max{W −
WN , 0}. Employment ends and the contract is terminated at time τf when Wt = 0
or at time τe when K(N ) = 0.

Let us briefly discuss the optimal before we move on to study the implications.
The evolution of the trader’s continuation utility consists of several terms. The
first two term is due to promise keeping and shows that the trader’s continuation
utility has to grow at the rate γ but decrease with direct payments to the trader
dLt. The second term captures the effect of a customer transaction on the trader’s
continuation utility. The last term provides the trader with incentives to exert
hedging effort at all times. Because of inefficiencies resulting from terminating
employment when the dealer book is non-empty, minimizing the risk in the trader’s
continuation utility while still maintaining incentive compatibility is optimal. The
concavity of the market maker’s value function reflects the risk aversion that the
agency problem induces. The market maker is averse to fluctuations in the trader’s
continuation utility because of the risk of costly termination. While a higher W
decreases the risk of termination, the benefit declines as deferring compensation
is costly since γ > r. Overall these two effects yield a concave value function.
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4 Implications for Prices

Having established the main properties of the value function we can analyze the
implications for the optimal pricing policy. It followed from Theorem 1 that
optimal spreads and the sensitivities to flow are functions of transactions and
the trader’s continuation utility. Let in the following Si(W,N , Hi) and Hi(W,N )
denote the optimal spread and sensitivity respectively for transaction i ∈ I.

4.1 Risk Premium

In the optimal contract, prices are set at the level that maximizes expected profits
and involves the term Gi(W,N , Hi). This term can be thought of as a risk
premium which is a function of transactions as well as the trader’s continuation
utility and reflects the possible trading upside as well as the threat of termination.
We can rewrite Gi(W,N , Hi) as

Gi(W,N , Hi) = vi(W,N , Hi)︸ ︷︷ ︸
Value adjustment

+ κi(W,N , Hi)︸ ︷︷ ︸
Convexity adjustment

where
vi(W,N , Hi) ≡ F (W +Hi,N )− F (W +Hi,N + ei) (18)

and

κi(W,N , Hi) ≡ F (W,N ) +HiFW (W,N )− F (W +Hi,N ) (19)

=
∫ W+Hi

W
−FWW (W̃ ,N )(W +Hi − W̃ )dW̃ .

From this we see that the function risk premium function driving the changes
in the prices and order flow can be decomposed into two terms. One is a value
adjustment term vi, representing the change in the market maker’s value due to
a customer transaction. The difference in the value functions are evaluated at
W +Hi since this is the where continuation utility will be after the transaction
i ∈ I. The other term κi, adjusts for the change in the market makers value due
to changes in the trader’s continuation utility. I refer to this term as the convexity
adjustment since −F (·,N) is convex.11 A more concave value function due to

11Note that the convexity adjustment corresponds to the remainder term of the first order
Taylor approximation of the market maker’s value function at the point W .

16



higher risk and higher payoff leads to a higher convexity adjustment.
Since the value function is concave, we see that the convexity adjustment will

have the same sign as the sensitivity Hi. If a transaction is accompanied by a
positive bump in continuation utility the convexity adjustment will be positive
since deferring compensation is costly for the market maker. The sign of the value
adjustments depends on the gain from moving the dealer book from N to N + ei

relative to the associated change in liquidation cost. If the potential downside
is sufficiently high compared to the expected upside, the value adjustment will
be positive. These two effects will add up to determine the overall risk premium
embedded in the quoted prices.

4.2 Compensation and Liquidity

An important implication of the optimal contract, is that optimal spreads will be
affected by the market maker’s compensation policy. To see this, note that for a
given sensitivity Hi, the optimal spread will be a function of W , N and Hi since
the market maker will choose a pricing policy Si(W,N , Hi) such that

Si(W,N , Hi) = arg max
Si

Λi(Si)
(
Si −Gi(W,N , Hi)

)
. (20)

A concave value function and the fact that spreads are increasing in risk premium
yields the following fundamental result.

Theorem 2. Optimally adjusting the trader’s continuation utility according to
transactions leads to lower spreads. Specifically, for each i ∈ I the optimal
sensitivity Hi(W,N ) is chosen such that

Hi(W,N ) = arg min
Hi

Si(W,N , Hi). (21)

where Si(W,N , Hi) is given by (20).

Theorem 2 shows that letting trader compensation be optimally sensitive to
fluctuations in the dealer book will minimize the quoted spreads. The intuition for
this result is that pricing and compensation are complimentary tools for reducing
the risk of liquidation. Without proper incentive compensation the market maker
must control the risk in the dealer book through the pricing primarily. However
by optimally shifting the trader’s compensation according to transactions, the
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agency cost is mitigated. This allows the market maker to enjoy a stronger flow
through sharper pricing. The efficiency gain from proper incentive compensation
will therefore benefit the market maker’s customers.

4.3 Profits and Losses

When the market maker experiences a profit or loss, the trader’s continuation
utility must be adjusted accordingly. This changes the likelihood of terminating
employment and it is therefore optimal to adjust the arrival intensity according
to the perceived risk. A consequence of (11) is that the market maker will adjust
prices and therefore intensities in response to changes in continuation utility
according to the flow adjustments Hi. We can directly derive the effect of changes
in the trader’s continuation utility on the risk premium term. Differentiating
Gi(W,N , Hi(W,N )) shows how the risk premium term changes with continuation
utility.

Theorem 3. The optimized risk premium Gi(W,N , Hi(W,N)) changes in re-
sponse to changes in continuation utility and

∂

∂W
Gi(W,N , Hi(W,N )) = Hi(W,N )FWW (W,N ). (22)

Consequently, when Hi > 0 (Hi < 0), the spread Si(W,N , Hi(W,N)) is a de-
creasing (increasing) function of W .

Equation (22) shows that when a transaction is accompanied by an adjustment in
continuation utility, the risk premium term will be either decreasing or increasing
in continuation utility depending on the sign of Hi since the value function is
concave. To see why price changes are linked to adjustments in continuation utility,
note that the sensitivities Hi, if interior, are set such that a marginal change
in the market maker’s expected value with respect to the trader’s continuation
utility is equalized before and after a transaction. If the market maker bumps
the trader’s continuation utility in responds to transaction i ∈ I, it must be
because FW (W,N + ei) 6= FW (W,N), which means that the risk profile in the
dealer book changes with that transaction. If a transaction i ∈ I is accompanied
by a positive bump in continuation utility, i.e. Hi > 0, it means that the the
market maker finds it optimal to decrease the likelihood of costly termination
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of employment after that transaction. In other words, it is more costly for the
market maker to terminate employment holding N + ei than simply holding N .
When this is the case, the market maker will optimally control the likelihood of
the transaction through spreads in such a way that the probability increases as
continuation utility increases.

The first generation market microstructure models generally assume that
market makers are risk averse or face capital constraints. These models predict
that bid-ask prices are set according to inventory levels in order to keep the
inventory within a preferred range. In this model, a form of risk aversion arises
endogenously. Although the market maker is risk neutral and maximizes expected
lifetime wealth, risk from market making is kept in check through the adjustment
of prices. Price changes are driven by the threat of ex-post inefficient termination,
which is needed to maintain incentive compatibility, as the trader is protected by
limited liability. From (2) and (17) we see that a profit or loss dB(N t, At) from
holding risk in the dealer book will induce a change in continuation utility ∆W

given by
∆W ≡

ϕ

∆µ t

( 1
K(Nt)

dB(N t, At)− µ(N t, At)
)
.

From (22) it then follows that for a given level of continuation utility W , a profit
or loss of dB(N t, At) will induce an adjustment of the risk premium ∆Gi that
amounts to

∆Gi ≈ Hi(W,N )FWW (W,N )∆W .

Thus, in contrast to the model analyzed in Ho and Stoll (1981), risk aversion
arises endogenously in this setup and the risk aversion is reflected in the risk
premium through the concavity of the market maker’s value function.

The next two sections explores the implications of the model based on numerical
examples.

5 Example: Liquidating an Asset Position

We first consider the simplest special case of the model. In this example, the
market maker starts out with one unit of the asset, and must determine how
and when to offload the asset. The market maker must continuously determine
the ask price St, i.e. the price for offloading the asset and the intensity of the
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customer arrival time depends on the prices set by the market maker. Specifically,
a customer arrives to buy the asset when dNt > 0 where N is a doubly stochastic
Poisson process with intensity Λ(S) given by

Λ(St) = η − λSt (23)

where η, λ > 0. The market maker can choose any spread St ∈ [0, η/λ].
Assume that the observable incremental profit and loss from holding the asset

over time interval dt is given by dΠt, where Π is the process that represents the
value gained or lost from trading activities. For a given spread St provided by the
market maker, the revenue evolves as

dXt = StdNt + dΠt. (24)

The profit and losses on from holding the asset is determined by the trader’s
unobservable hedging action At ∈ {0, 1}. The trader’s action determines the
expected change of inventory value, so that

dΠt = −(1− At)µldt+ Atµgdt+ σdZt (25)

where µl, µg ≥ 0. This setting corresponds to letting I contain a single asset with
K(N t) = 1−Nt ≥ 0 and dBt(N t, At) = (1−Nt)dΠt in the general model.

The market maker’s problem leads to the following HJB equation:

rF (W ) = µg + max
S,H,Y

{
SΛ(S) + [γW −HΛ(S)

]
FW (W )

+ 1
2Y

2σ2FWW (W )

+ Λ(S)
[
− (W +H)− F (W )

]}

where H and Y are the sensitivities produced by the martingale representation
theorem. Given the concavity of F (W ), setting Y = ϕ/(µg + µl) is optimal for
the market maker. From the HJB we see that the optimal choice of sensitivity to
the transaction H maximizes

HΛ(S)(−FW (W )− 1).
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Since FW (W ) ≥ −1 for all W , whenever Λ(S) > 0, it is optimal to set H = 0.
Elementary calculations show that the optimal price as a function of the trader’s
continuation utility is

S(W ) = η − λ(−W − F (W ))
2λ

whenever
− η

λ
≤ −W − F (W ) ≤ η

λ
.

To ease notation it will useful to define the following function

Ψ(x) = max(min(x, η
λ

),−η
λ

) (26)

and let
G(W ) ≡ Ψ(W + F (W )). (27)

The value function is then the solution to the ODE

rF (W ) = µg + λ

4
(η
λ
−G(W ))

)2

+ γWFW (W ) + 1
2ϕ

2/(µg + µl)2FWW (W ).

The value function is illustrated in Figure 1. The dotted line represents the
reflection point W1 where FW (W1) = −1 and FWW (W1) = 0. The optimal spread
and transaction intensity as a function of continuation utility are illustrated in
Figure 2. When W is low, costly termination becomes more likely and it is
optimal for the market maker to decrease the ask price and thus increase the
transaction intensity in order to offload the risk before the trader’s employment is
terminated. Note that price and transaction intensity are less sensitive to changes
in continuation utility near the threshold W1, due to the super contact condition
FWW (W1) = 0. In this example the sensitivity to customer flow H is set at zero,
since employment ends when the asset position is liquidated. In the next example
the sensitivity can be set to optimize liquidity.
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Figure 1: The market maker’s value function. Parameters are r = 0.1, γ = 0.3,
σ = 0.8, η = 1, λ = 2, F (0) = −2, µl = 0 and µg = 0.8.

Figure 2: The optimal spread (solid line) and the optimal transaction intensity
(dashed line) as a function of the trader’s continuation utility.
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6 Example: Dealing with Inventory

In order to illustrate the effect of properly adjusting deferred compensation
according to flow, we will now turn to look at a problem where the market maker
is restricted by a given level of inventory. To avoid computational difficulties, I
assume that the market maker must keep inventory levels below 3 units at all
times. This assumption ensures that we only have to solve a boundary value
problem with 3 coupled ordinary differential equations in order to find the optimal
market making policy. The arrival of clients is now modeled as a set of doubly
stochastic Poisson processes N t = (Nit)i∈{a,b}. That is, dNa > 0 when clients
arrive on the ask-side and similarly dNb > 0 represents the arrival of clients on
the bid-side. The market maker starts out with inventory I0 > 0 and inventory
levels It evolves as

dIt = dNbt − dNat.

When It = 0 the contract is terminated and market making ends. Since inventory
is restricted to It ≤ 3, the market maker is forced to lay off risk whenever It = 3.
The market maker determines the price for immediacy by continuously proposing
bid and ask prices. Let P denote the fundamental value of the asset. The
fundamental value P is exogenous and represents the markets opinion of the true
price.12 The market maker will propose bid and ask spreads denoted by Sat and
Sbt around P . For a given pair of spreads (Sat, Sbt) provided by the market maker
the revenue evolves as

(Sat + P )dNat − (P − Sbt)dNbt. (28)

Assets are marked at mid price and enter holdings with a value of P . The market
maker faces return uncertainty described by the stochastic process Π given by
(25) which is driven by the trader’s hedging action. The profits and losses from
holding inventory therefore evolves as

PdNbt − PdNat + ItdΠt. (29)
12We can think of P as being the mid price of the asset.
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The evolution of the total profits Xt from market making is found by adding (28)
and (29) and is given by

dXt = SatdNat + SbtdNbt + ItdΠt. (30)

Note that this corresponds to letting I = {a, b} with K(N t) = Nb −Na ≥ 0 and
therefore dBt(N t, At) = ItdΠt in the general model. As in the previous section,
the intensities of the doubly stochastic Poisson processes depend on the prices set
by the market maker. For a given pair of prices Sat and Sbt the intensities are

Λa(Sa) = η − λSat (31)

Λb(Sb) = η − λSbt

where η, λ > 0. To keep things simple, the parameters in the intensity specification
is the same on the bid and ask side, i.e. demand is symmetric.

The Value Function. In this example the relevant state variables are W and I.
Since I can only take 3 different values let F1, F2 and F3 denote the corresponding
value functions. Setting up the HJB and optimizing over spreads and sensitivities
we find that the optimal value function under effort At = 1 is given by the solution
to the following system of coupled ODE’s:

rF1(W ) = λ

4

(
η

λ
+ Ψ

(
W + F1(W )

))2
(32)

+ λ

4

(
η

λ
+ Ψ

(
F2(W +H1)− F1(W ) +H1F

′
1(W )

))2
+ µg

+ γWF ′1(W ) + 1
2ϕ

2/(µl + µg)2F ′′1 (W ),

rF2(W ) = λ

4

(
η

λ
+ Ψ

(
F1(W +H2a)− F2(W ) +H2aF

′
2(W )

))2
(33)

+ λ

4

(
η

λ
+ Ψ

(
F3(W +H2b)− F2(W ) +H2bF

′
2(W )

))2
+ 2µg

+ γWF ′2(W ) + 1
2ϕ

2/(µl + µg)2F ′′2 (W ),
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Figure 3: The market maker’s value functions for r = 0.1, γ = 0.25, σ = 0.2,
η = 1, λ = 8, (F1(0), F2(0), F3(0)) = (−1,−2,−4) and µl = 0, µg = 0.4.

rF3(W ) = λ

4

(
η

λ
+ Ψ

(
F2(W +H3)− F3(W ) +H3F

′
3(W )

))2
+ 3µg (34)

+ γWF ′3(W ) + 1
2ϕ

2/(µl + µg)2F ′′3 (W ),

where the function Ψ is defined by (26) and the sensitivities H1b, H2a, H2b and H3a

are set to maximize the right-hand side of (32)-(34). Note that as in the previous
example, Ha1 = 0 as employment ends when inventory reaches zero. Since the
market maker must lay off risk when I = 3, the drift on the bid side in this state
must be set to zero. The boundary conditions are

F ′θ(Wθ) = −1 F ′′θ (Wθ) = 0 Fθ(0) = `θ, θ ∈ {1, 2, 3}. (35)

Figure 3 depicts the optimal value functions for the three levels of inventory.
The value functions cross in this example reflecting the fact that a higher level of
inventory leads to more downside risk as well as more upside potential. When
continuation utility is low, the market maker prefers to keep inventory low to
avoid a costly liquidation. As continuation utility increases the risk of liquidation
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decreases and the market maker prefers to benefit from the positive drift. The
optimal pricing and compensation policy reflects this trade-off. Since inventory is
restricted to be less than 3 units, the interesting state is I = 2 when the market
maker can freely choose between taking on more risk or instead offloading risk.
The optimal ask spread in the state I = 2 is given by

Sa(W, 2, Ha) = η − λ(F1(W +H2a)− F2(W ) +H2aF
′
2(W ))

2λ (36)

and the optimal bid spread in the same state is given by

Sb(W, 2, Hb) = η − λ(F3(W +H2b)− F2(W ) +H2bF
′
2(W ))

2λ . (37)

Liquidity Gain from Flow-based Compensation. In this example, the
implication of Theorem 2 follows directly from equation (36) and (37): when
the sensitivities Ha2 and Hb2 are chosen to maximize the market maker’s value
function, the bid and ask spreads are both minimized. Figure 4 illustrates the
optimal bid and ask spreads when compensation is not adjusted for order flow,
i.e. when the spread is Sθ(W, 0). Figure 5 shows the compensation-optimized
spreads Sθ(W, 2, Hθ(W, 2)) = arg minHθ Sθ(W,N , Hθ). Comparing the two figures
we clearly see that both the bid-spread and the ask-spread are decreased when
the trader’s continuation utility is optimally adjusted for order flow.

With the parameters chosen in this example, the market maker quotes conser-
vatively on the bid-side for small W when compensation is not adjusted for flow.
On the other hand, when compensation is optimized the market maker quotes
aggressively on the bid-side for all levels of continuation utility. Comparing the
ask-spread in Figure 4 with the ask-spread in Figure 5 we see, perhaps surprisingly,
that the market maker is more aggressive on the ask-side in the compensation-
optimized case. Hence, optimal compensation makes the market maker more
prudent when it comes to offloading risk. Intuitively, when compensation is
optimized the market maker finds it more attractive to reduce inventory due to
the value gained from decreasing costly deferred compensation (since H2a < 0).

In this example the bid-ask spread is positive for the chosen set of parameters
and the non-optimized spread has a peak around 0.2. To understand why the
non-optimized spread peaks in this example, note from Figure 4 that the market
maker will increase the ask-spread before decreasing the bid-spread as continuation
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Figure 4: The market maker’s bid and ask spread for I = 2 as a function
of continuation utility when continuation utility is not adjusted for order flow.
The dashed line shows the bid spread and the solid line shows the ask spread.
Parameters are the same as in Figure 3.

Figure 5: The market maker’s compensation-optimized bid and ask spread as
a function of continuation utility when I = 2. The dashed line shows the
compensation-optimized bid spread and the solid line shows the compensation-
optimized ask spread. Parameters are the same as in Figure 3.
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Figure 6: The market maker’s total spread as a function of continuation utility
when I = 2. The dotted line shows the case when continuation utility is not
adjusted for order flow and the solid line shows the optimized spread. The area
L between the two graphs represents the liquidity gain from optimizing trader
compensation. Parameters are the same as in Figure 3.

utility increases from zero. When the sensitivities are optimized, we see from
Figure 5 that both spreads are lowered. One way to measure the liquidity gained
from adjusting the trader’s continuation utility according to flow, is to calculate
the area L between the two graphs in Figure 6:

L =
∫ W2

0
Sa(W, 2, 0) + Sb(W, 2, 0) (38)

− Sa(W, 2, Ha(W, 2))− Sb(W, 2, Hb(W, 2))dW.

Strict concavity of the value function on [0,W2] implies that L > 0. The size of the
liquidity gain will generally depend on the parameters η and λ determining how
much flow will change when prices are adjusted. A higher market depth measured
by η/λ relative to the drift µg means that market making is more attractive than
holding on to inventory. In this case the gain from properly adjusting continuation
utility is high.
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7 Discussion and Extensions

This section discusses the main predictions of the model as well as some possible
extensions.

Speculating with Inventory. The Volcker Rule prohibits a financial institution
from engaging in proprietary trading not related to the provision of immediacy.13

While some forms of proprietary trading can be identified, it is generally more
difficult to determine whether inventory risk has been retained in order to profit
from price movements or because the retention is necessary to provide efficient
intermediation. The model analyzed in this paper shows that efficient institutional
market making involves “speculating with inventory” in the sense that the price
for taking on a trade is set according to the profit potential from warehousing
the risk from the trade. This is perhaps best illustrated in Figure 5 where it is
evident that the market maker holds on to inventory by raising the ask-spread
when continuation utility is high enough in order to benefit from the positive
expected return to holding risk.

Flow-based Compensation. One of the key predictions of the model is that
letting trader compensation be optimally sensitive to fluctuations in the dealer
book will increase liquidity by minimizing the spread. This is due to the fact that
the pricing and the compensation are complimentary tools for reducing the risk of
liquidation. This result rests on the assumption the transaction intensities Λi(Si)
are exogenously specified as a function of price and hence that sensitivities can
be set freely set to optimize market making. A more realistic assumption would
be that transactions have to be generated by effort. Specifically, instead of letting
λ and η determine demand we could let

Λi = Λi(Si, Ai) (39)

where Ai ∈ A is an action taken by the agent that increases the probability that
transaction i ∈ I occurs. We are then be faced with a multitask agency problem
where {0, 1} ×A|I| is the action space. In this case the sensitivity Hi controls the
agent’s incentives for increasing the probability of a transaction. A full analysis of

13For a discussion of the Volcker Rule and institutional market making see Duffie (2012).
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endogenous flow is beyond the scope of this paper, but in order to induce effort,
the sensitivity of continuation utility to the transaction Ni has to exceed the
private benefits from shirking. Hence, the sensitivity Hi cannot be set freely to
optimize liquidity in this case.14

Optimal Effort. So far, the analysis has focused on the optimal contract under
maximal trading effort and also relies on the assumption that the agency problem
is orthogonal to the market making problem in the sense that private benefits do
not depend on the risk in the dealer book. Both these assumptions can be relaxed
by analyzing the optimal contract under optimal effort when private benefits are
risk dependent. Letting effort A ∈ [0, 1] the private benefits from shirking could
be specified by function

Φ : NI × [0, 1]→ (0,∞).

In this case we know from Sannikov (2008), that in order to induce a given level
of effort A, the sensitivity to profit and losses is set at the minimum level that
induces A, which is given by

H(N , A) = min{h ∈ [0,∞) : A ∈ arg max
A′∈[0,1]

hµ(N t, A
′
t) + Φ(N , A′)}.

In this setting the HJB equation is given by

rF (W,N ) = max
A∈[0,1]

{
K(N )µ(N , A) +

∑
i∈I

Λi(Si)
(
Si −Gi(W,N , Hi)

)
(40)

+ (γW − Φ(N , A))FW (W,N ) + 1
2H(N , A)2σ2FWW (W,N )

}
.

where Si and Hi are determined by the same first order conditions.

8 Conclusion

This paper introduces dynamic agency into a continuous-time model of market
making. Profits and losses on residual risk from customer flow is determined

14Falkeborg (2013) analyzes an agency model of market making where the agent induces order
flow and contains some initial results in this direction.
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by a trader’s unobservable effort. Using a recursive contracting methodology, I
characterize the impact of dynamic agency on quoted spreads.

The market maker’s pricing policy is driven by the fear of inefficient termination
of the trader’s employment as well as the expected upside from retaining risk in
the dealer book. Optimal contracting implies that agency costs are reflected in the
pricing policy of the market maker which is a function of the trader’s continuation
utility. Since continuation utility mirrors past profitability, the market maker
will keep risk in check by adjusting spreads in response to profits and losses.
The analysis highlights the importance of deferring compensation according to
transactions and shows that this will minimize the spreads set by the market
maker.

A Proofs

A.1 Stochastic Environment

Let (Ω,F , P ) be a probability space completed with null sets and let N denote
the collection of sets of F with P -measure zero (that is, the null sets of F).
In the sequel we work with the augmented natural-filtered probability space
(Ω,F , (Ft)t≥0, P ), i.e. the underlying probability space (Ω,F , P ) equipped with
the augmented natural filtration (Ft)t≥0 where Ft = σ

(
(Zs,N s), 0 ≤ s ≤ t

)∨N .
Note that since N is a doubly stochastic Poisson process, the process

Xt = (N , Z) (41)

is a process with conditionally independent increments, see Jacod and Shiryaev
(2002) Definition II.6.2.

A.2 Proof of Proposition 1

Proof. The trader’s lifetime expected payoff from a given contract Γ when he acts
according to A can be expressed as

Vt(Γ, A) =
∫ t

0
e−γu

(
dLu + ϕ(1− Au)du

)
+ e−γtWt(Γ, A). (42)
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By construction Vt(Γ, A) is an Ft-martingale under the probability measure PA.
The martingale representation theorem (see Jacod and Shiryaev (2002), Theorem
III.4.34) implies that there exists Ft-predictable processes Y and H = (Hi)i∈I
such that

eγtdVt(Γ, A) = YtσdZt +
∑
i∈I

HitdMit (43)

where Mit, i ∈ I are the compensated processes. From (42) and (43) we get the
representation (7).

Let A be the maximal effort process, i.e. At = 1 for all t and let A′t be an
arbitrary alternative effort process. Let V ′t denote the trader’s lifetime utility
when he acts according to A′t until time t and then reverts back to At. Then

V ′t =
∫ t

0
e−γu

(
dLu + ϕ(1− A′u)du

)
+ e−γtWt(Γ, A). (44)

From (42) we find that

V ′t = Vt(Γ, A) +
∫ t

0
e−γuϕ(1− A′u)du. (45)

Using the representation (43) and the fact that the Brownian Motions under the
two probability measures PA and PA′ are related by

σdZA
t = σdZA′

t + µ(N t, A
′
t)− µ(N t, At) (46)

we can express the evolution of the trader’s lifetime expected utility under the
probability measure PA′ as

eγtdV ′t =
(
ϕ(1− A′t)− Yt

(
µ(N t, At)− µ(N t, A

′
t)
))
dt (47)

+ YtσdZ
A′

t .+
∑
i∈I

HitdMit. (48)

From this we see that if

Yt ≥
ϕ

µ(N t, 1)− µ(N t, 0) = ϕ

∆µt

then V ′ is a supermartingale and a martingale only if A′t = 1 for all t. If Yt < ϕ
∆µt

on a set of positive measure then the trader can gain by shirking on that set
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and maximal effort is therefore suboptimal. Hence (8) is both a necessary and
sufficient condition for maximal effort At = 1 to be incentive compatible. QED

A.3 Proof of Theorem 1

Let Hi(W,N ) denote the value Hi that solves (11), Si(W,N ) denote the optimal
spread defined by (12) and Λi(W,N ) ≡ Λi(Si(W,N )).

Lemma A.1. For the function W → Gi(W,N , Hi(W,N )) it holds that

∂

∂W
Gi(W,N , Hi(W,N )) = Hi(W,N )FWW (W,N ). (49)

Proof. Differentiation directly yields:

∂

∂W
Gi(W,N , Hi(W,N )) = −(1 + ∂

∂W
Hi(W,N ))FW (W +Hi(W,N ),N + ei)

+ FW (W,N )

+ ∂

∂W
Hi(W,N )FW (W,N ) +Hi(W,N )FWW (W,N )

= Hi(W,N )FWW (W,N ).

QED

Lemma A.2. For any N with K(N) > 0 there exists an ε > 0 such that the
function W → F (W,N ) is strictly concave on [WN − ε,WN ].

Proof. Note that Si(W,N) only depends on W through Gi(W,N , Hi(W,N)).
Hence, differentiating F with respect to W and evaluating the expression at
W = WN using Lemma A.1 and the boundary conditions (14), we find that

FWWW (WN ,N ) = 2∆µ2
t

ϕ2 (γ − r) > 0

since γ > r. Because of the super contact condition FWW (WN ,N) = 0 we must
have FWW (W,N ) < 0 when W ∈ [WN − ε,WN ] for some ε > 0. QED

Proof of Theorem 1. We first show that the value function is strictly concave over
the entire interval [0,WN ]. Set W̃N = sup{W < WN : FWW (W,N) = 0} and
suppose W̃N < WN so that FWW (W̃N + ε,N) < 0 for ε > 0. By continuity
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FWWW (W̃N ,N ) < 0. By differentiating F and evaluating at W̃N it follows that

FW (W̃N ,N ) = −1
2(γ − r)

ϕ2

∆µ2
t

FWWW (W̃N ,N ) > 0.

Evaluating F at W̃N :

rF (W̃N ,N )−K(N )µ(N , A) =
∑
i∈I

Λi(W̃N ,N )
(
Si(W̃N ,N ) (50)

− Gi(W̃N ,N , Hi)
)

+ γW̃NFW (W̃N ,N ).

Since
Λi(W̃N ,N )

(
Si(W̃N ,N )−Gi(W̃N ,N , Hi)

)
≥ 0

this contradicts FW (W̃N ,N) > 0. Hence W̃N = WN and the value function
F (·,N ) is therefore strictly concave over the interval [0,WN ].

We now proceed to show that the contract given in Theorem 1 is indeed
optimal. That is, for any policy that induces maximal hedging effort for all t < τ ,
one has

F (W0−,N 0−) ≥ E
[ ∫ τ

0
e−rt

(
dXt − dLt

)]
. (51)

Take any incentive compatible contract-effort pair {Γ, A} and define the
cumulative gains process G as

Gt(Γ, A) =
∫ t

0
e−rs

(
dXs − dLs

)
+ e−rtF (Wt,N t). (52)

The continuation utility W of the trader evolves according to

dWt = Wtdt− dLt + YtσdZt.+
∑
i∈I

HitdMit
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where Y is such that Yt ≥ ϕ/∆µt. By Itô’s lemma we have that

dF (Wt−,N t−) =
[(
γWt −

∑
i∈I

ΛitHit

)
FW (Wt−,N t−) (53)

+ 1
2Y

2
t σ

2FWW (Wt−,N t−)
]
dt

− FW (Wt−,N t−)dLt + YtσFW (Wt−,N t−)dZt
+

∑
i∈I

[
F (Wt− +Hit,N t− + ei)− F (Wt−,N t−)

]
dNit.

By equation (52) we find that

ertdGt(Γ, A) = dXt − dLt − rF (Wt−,N t−)dt+ dF (Wt−,N t−) (54)

and therefore

ertdGt(Γ, A) =
[(
γWt −

∑
i∈I

ΛitHit

)
FW (Wt−,N t−) (55)

+ 1
2Y

2
t σ

2FWW (Wt−,N t−)− rF (Wt−,N t−)

+
∑
i∈I

Λit

(
Sit + F (Wt− +Hit,N t− + ei)− F (Wt−,N t−)

)
dt

+
[
σK(N t−) + YtσFW (Wt−,N t−)

]
dZt

−
[
1 + FW (Wt−,N t−

]
dLt

+
∑
i∈I

[
Sit + F (Wt− +Hit,N t− + ei)− F (Wt−,N t−)

]
dMit.

Recall that the value of the market maker under the optimal policy given
in Theorem 1 solves system of ODE’s (16) subject to the boundary conditions
given in (14) and (15) for W ∈ [0,WN ]. Plugging rF (Wt−,N t−) into (55) we see
that for t < τ the drift of (55) is non-positive because Y 2

t ≥ ϕ2/∆µ2
t , F (·,N) is

concave with FW ≥ −1 and dLt ≥ 0. From this it follows that the cumulative
gains process G(Γ, A) is an Ft-supermartingale up to time t. G(Γ, A) is an Ft-
martingale if and only if Y 2

t = ϕ2/∆µ2
t , Hit = Hi(Wt−,N t−), Sit = Si(Wt−,N t−)

and dLt > 0 only when Wt− > WN .
Let the total expected payoff for the market maker under an arbitrary incentive
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compatible contract (Γ, A) be denoted

F (Γ, A) = E
[ ∫ τ

0
e−rt(dXt − dLt)

]
.

Then F (Γ, A) can be written as

F (Γ, A) = E
[
Gτ
]

(56)

= E
[
Gt∧τ

]
+ E

[
1{t≤τ}

( ∫ τ

t
e−rs(dXs − dLs)− e−rtF (Wt−,N t−)

)]
≤ F (W0−,N 0−)

+ E
[
1{t≤τ}

( ∫ τ

t
e−rs(dXs − dLs)− e−rtF (Wt−,N t−)

)]
= F (W0−,N 0−)

]
+ e−rtE

[
1{t≤τ}

(
E
[ ∫ τ

t
e−r(s−t)(dXs − dLs)|Ft]− F (Wt−,N t−)

)
where the inequality follows from the fact that Gt∧τ is a supermartingale with
G0 = F (W0−,N 0−). Note that

E
[( ∫ τ

t
e−r(s−t)(dXs − dLs)

)
|Ft
]
≤ sup

N
µ(N , A) +

∑
i∈I

sup
Si

SiΛ(Si)−Wt−

and thus

F (Γ, A) ≤ F (W0−,N 0−) + e−rtE
[
1{t≤τ}

(
sup
N
µ(N , A) (57)

+
∑
i∈I

sup
Si

SiΛ(Si)−Wt− − F (Wt−,N t−)
)]

≤ F (W0−,N 0−)

+ e−rtE
[
1{t≤τ}(sup

N
µ(N , A) +

∑
i∈I

sup
Si

SiΛ(Si)− `(N ))
]

since FW (Wt−,N t−) ≥ −1 and therefore

−Wt− − F (Wt−,N t−) ≤ −F (0,N ) = −`(N ). (58)

Finally, letting t→∞ then yields

F (Γ, A) ≤ F (W0−,N 0−). (59)
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The result now follows by noticing that for the optimal policy the market maker
achieves F (W0−,N 0−) and thus (59) holds with equality.

QED

A.4 Proof of Theorem 2

Proof. Let Si(G) be the value Si that solves

Λ′i(Si)
(
Si −G

)
+ Λi(Si) = 0. (60)

Note that if Si solves (60) then we must have Si−G ≥ 0 since Λ′i(Si) < 0. Implicit
differentiation of Si(G) yields

S ′i(G) = Λ′i(Si)
Λ′′i (Si)

(
Si −G

)
+ 2Λ′i(Si)

> 0 (61)

since Λ′′i (Si) ≤ 0. This show that optimal spreads are increasing in risk premium.
The result now follows from noting from (11) that the optimal sensitivity Hi(W,N )
is chosen such that

Hi(W,N ) = arg min
Hi

Gi(W,N , Hi) (62)

since Gi(W,N , Hi) is a convex function of Hi. QED

A.5 Proof of Theorem 3

Proof. The first part of the Theorem follows from Lemma A.1. The second claim
follows from noting that Si(W,N) depends on W only through Gi. By Lemma
A.1, it follows that

∂Si
∂W

= S ′i(Gi)∂G
i(W,N , Hi(W,N )))

∂W
= S ′i(Gi)Hi(W,N )FWW (W,N ) (63)

and therefore ∂Si
∂W

= − sgn(Hi) by (61). QED
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