
Discussion Papers 
Department of Economics 
University of Copenhagen 

  

 
 

 
 

 

 

 
Øster Farimagsgade 5, Building 26, DK-1353 Copenhagen K., Denmark 

Tel.: +45 35 32 30 01 – Fax: +45 35 32 30 00 
http://www.econ.ku.dk 

 
 

ISSN: 1601-2461 (E) 
 
 

No. 14-25 

 
 
 

Euler Equation Estimation: Children and Credit Constraints 
 

Thomas H. Jørgensen 
 

 

 
 
 

 
 

 

 

  
  
 

  
 

http://www.econ.ku.dk/


t

Euler Equation Estimation: Children and Credit
Constraints

Thomas H. Jørgensen†

September 5, 2014

Abstract

I show that conventional estimators based on the consumption Euler equation,

intensively used in studies of intertemporal consumption behavior, produce bi-

ased estimates of the effect of children on consumption if potentially binding credit

constraints are ignored. As a more constructive contribution, I supply a tractable

approach to obtaining bounds on the effect of children and estimate these bounds

using the Panel Study of Income Dynamics (PSID). Results suggest that children

might not affect household consumption in the same magnitude previously as-

sumed.
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1 Introduction

This study investigates what can be learned from Euler equation estimation of the
effect of children on household consumption when households are potentially credit
constrained. Although these estimators are now work horses in the analysis of in-
tertemporal consumption behavior, little is known about their performance when house-
holds face potentially binding credit constraints, invalidating the standard Euler equa-
tion. Particularly, the effect of demographics on consumption and the extent to which
children affect consumption behavior have received great attention the last two decades.
Through numerous Euler equation estimations, a consensus has been reached in the
literature that children are important drivers of consumption over the life cycle.1

The present study offers three contributions to this literature. First, I show how
conventional Euler equation estimation methods produce biased estimates of the effect
of children on consumption if consumers face possibly binding credit constraints. This
has not been subject to a thorough analysis and the volume of work in the field of
intertemporal consumption behavior merits one.2

Secondly, I supply a tractable approach to obtaining bounds on the effect of chil-
dren on consumption that allows households to be affected by constraints. Specifically,
if the effect of children on consumption is large, the credit constraint likely restrains
households from increasing consumption as much as desired had (additional) bor-
rowing been possible, producing a downwards bias. To the contrary, if the effect of
children is relatively low, conventional methods will overestimate the effect of chil-
dren. Even if children does not affect consumption, the inability to borrow against fu-
ture income growth produce a positive correlation between consumption growth and
changes in household demographics because children often arrive while households
are young and affected by credit constraints the most.

I propose to split the sample into young households, in which children might ar-
rive, and older households, in which children might move. Comparing older house-
holds with and without children produce a lower bound for the reason discussed
above. Using the cohort average number of children as instrument produces an upper
bound due to the positive correlation between the growth in the average number of
children and income growth of young households.

Finally, I find that the effects of children reported in the existing literature are

1Thurow (1969) might be the first study investigating the consumption age profile to mention both
children and constraints as potential explanations for the hump. Some important contributions to the
literature on the effect of children are due to Browning, Deaton and Irish (1985); Blundell, Browning and
Meghir (1994); Attanasio and Weber (1995); Attanasio and Browning (1995); Attanasio, Banks, Meghir
and Weber (1999); Fernández-Villaverde and Krueger (2007) and Browning and Ejrnæs (2009).

2The fact that ignoring credit constraints produce biased Euler equation estimates is not new. Adda
and Cooper (2003) show how Euler equation estimation of the intertemporal elasticity of substitution is
overestimated if credit constraints are ignored.
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above the proposed upper bound estimated from the Panel Study of Income Dynamics
(PSID). In contrast to what I find, it seems broadly accepted that children play an im-
portant role in generating the observed consumption profiles. In an influential study
by Attanasio, Banks, Meghir and Weber (1999), the number of children is found to be
important in order to describe the consumption behavior of US consumers, using the
Consumer Expenditure Survey (CEX). This is supported by the results in Attanasio
and Browning (1995) using the UK Family Expenditure Survey (FES). Browning and
Ejrnæs (2009) find that the number and age of children can explain completely the
hump in consumption in the FES. However, all existing studies apply Euler equation
estimation techniques ignoring potentially binding credit constraints. As I show, if the
effect of children is relatively low the applied estimators overestimates the effect of
children on consumption if households face potentially binding credit constraints.

The present study is related to a recent strand of literature investigating the va-
lidity of Euler equation estimation. For example, Carroll (2001) argues that using a
log-linearized Euler equation for estimation of the intertemporal elasticity of substi-
tution (IES) suffers from an omitted variable bias if consumers face sufficient income
uncertainty. Attanasio and Low (2004) find, however, that the critique in Carroll (2001)
is unwarranted. Recently, Alan, Atalay and Crossley (2012) investigate how measure-
ment error affects Euler equation estimation results and unify the seemingly contra-
dictory results of Carroll (2001) and Attanasio and Low (2004). They argue that the
contradictory results are due to differences in the time series dimension in the imple-
mented Monte Carlo studies and that the bias in Euler equation estimators might be
small when interest rates vary sufficiently over time and the time dimension is (un-
realistically) long, as in Attanasio and Low (2004). All these studies focus on the IES
and, contrary to the present study, ignore potentially binding credit constraints.

A growing empirical literature finds evidence consistent with credit constrains be-
ing important for observed behavior. Interpreting the “excess sensitivity” in consump-
tion growth to income as evidence of credit constraints, Hall and Mishkin (1982) es-
timate that around 20 percent of households in the PSID are credit constrained. If
the excess sensitivity is due to credit constraints, households with high wealth lev-
els should display significantly less effect of lagged income on consumption growth
compared to low wealth households. This is what Zeldes (1989a) finds while Runkle
(1991) does not find significant differences.

A second strand of literature exploits random variation to identify the importance
of credit constraints. Using the random receipt timing of the 2001 federal income tax
rebate in the US, Johnson, Parker and Souleles (2006) find that consumption in the
CEX responds to the transitory income increase generated by the rebate. Including
also the 2008 tax rebate, Gross, Notowidigdo and Wang (2014) show that low wealth
and low income households used their tax rebates to file for bankruptcy. Both results
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are consistent with an important role for credit constraints. Gross and Souleles (2002)
analyze how changes in credit card debt limits increase debt holdings. They find that
debt increases with 13 percent of the change in the debt limit. Using Danish register
data, Leth-Petersen (2010) estimates the effect of an unanticipated reform in 1992 that
allowed Danish house owners to use their house as collateral to take up consumption
loans. He estimates that around 12 percent of Danish households, many of which were
young households, were affected by credit constraints.

A third strand of literature identifies credit constrained households from direct sur-
vey measures on credit availability. Using information on whether a request for credit
had been declined Jappelli (1990) estimates that around 19 percent of households in
the Survey of Consumer Finances (SCF) are credit constrained. Jappelli, Pischke and
Souleles (1998) extrapolate the likelihood of being credit constrained in the SCF to the
PSID. Based on observable characteristics in both the SCF and the PSID, they find that
the excess sensitivity of (food) consumption to lagged income of households who are
more likely to be constrained is three times that of households who are less likely to
be credit constrained. Recently, Crossley and Low (forthcoming) find that around 6-14
percent of job losers in the Canadian Out of Employment Panel (COEP) survey are
credit constrained, depending on how households are classified as being constrained.

The present results generalize to cases in which consumers do not face explicit
credit constraints. If there instead is a probability of receiving a zero-income shock
(as in Carroll, 1997 and Gourinchas and Parker, 2002), most results still hold. This is
because risk averse consumers will instead face a “self-imposed” no-borrowing con-
straint stemming from the fear of receiving zero income in all future periods with
consumption of zero as a consequence (Schechtman, 1976; Zeldes, 1989b). In turn, con-
sumption will respond substantially to transitory income shocks and the log-linearized
Euler equation will be a poor approximation.3

The rest of the paper proceeds as follows. The following section presents the con-
strained consumption Euler equation and discusses the most commonly applied es-
timators derived from it when ignoring credit constraints. Section 3 illustrates how
these estimators fail to uncover the effect of children on consumption when house-
holds face potentially binding credit constraints and suggests how bounds can be es-
timated using these methods. Section 4 shows that existing estimates of the effect of
children on consumption are above the proposed upper bounds estimated using the
PSID. Section 5 discusses the robustness of the bounds and section 6 concludes.

3This is the point of Carroll (2001) where he illustrates how this poor first (and second) order ap-
proximation of the non-linear Euler equation results in poor estimates of the intertemporal elasticity of
substitution. His result shows that the result in Adda and Cooper (2003) using an explicit no-borrowing
constraint generalizes to cases with a self-induced constraint.

3



2 Euler Equation Estimation of Demographic Effects

Consider a life cycle model where consumers have time-separable utility over (a sin-
gle) consumption good and are restricted in how much negative wealth they can
accumulate. As most of the existing literature, I follow Attanasio, Banks, Meghir
and Weber (1999) and let children affect the marginal value of consumption through a
multiplicative taste shifter, v(zt; θ), in which zt contains variables describing house-
hold demographics and θ is their loadings. As is standard in the literature, I let
v(zt; θ) = exp(θ′zt) throughout. Alternatively, the household composition could be
included as a scaling of resources and consumption (equivalence scaling), as done in,
e.g., Fernández-Villaverde and Krueger (2007).4

The constrained Euler equation is

u′(Ct)v(zt; θ)− λt = RβEt
[
u′(Ct+1)v(zt+1; θ)− λt+1

]
⇓

Rβ
u′(Ct+1)

u′(Ct)

v(zt+1; θ)

v(zt; θ)
= ε1,t+1 + ε2,t+1︸ ︷︷ ︸

≡εt+1

, (1)

where Et[·] denotes expectations conditional on information available in period t, λt

is the shadow price of resources in period t, R is the real gross interest rate, β is the
discount factor, Ct denotes consumption, u(Ct) = C1−ρ

t /(1− ρ) is the utility function,
assumed to be constant relative risk aversion (CRRA) where ρ is the inverse of the IES.
The structural Euler error, εt+1, satisfies

Et[ε1,t+1] = 1,

Et[ε2,t+1] = −λt − RβEt[λt+1]

u′(Ct)v(zt; θ)
.

From the Kuhn-Tucker conditions we know that λt ≥ 0 in all time periods. Hence,
the mean expectational errors in (1) equals one only if consumers are not constrained in
the current period and know with perfect certainty that the borrowing constraint will
not bind in the future. In such a case, Et[ε2,t+1] = 0∀t. Generally, however, consumers
are not certain that they will be unaffected by constraints and the expectational error
in (1) is a function of information today,

Et[εt+1] = f (Ct, zt) 6= 1,

and serially correlated through the presence of λt and λt+1 in ε2,t+1.

4See Bick and Choi (2013) for an analysis of different approaches to and implied behavior from
inclusion of household demographics in life cycle models. Alternative parametrizations would require
reformulating the estimable equations accordingly.
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In the existing literature on intertemporal consumption allocation and the effect of
children on consumption, credit constraints are often ignored or assumed away. It is
clear from (1), that estimators ignoring credit constraints suffer from something similar
to an “omitted variable bias”. Below, I discuss the two most common estimators.

2.1 Conventional Euler Equation Estimators: Ignoring Constraints

Consider having longitudinal information on consumption and demographics for house-
holds i = 1, . . . , N in time periods t = 1, . . . T. Ignoring potentially binding credit
constraints (i.e., imposing λs = 0 ∀s) and inserting the standard functional form as-
sumptions mentioned above, a non-linear GMM estimator of θ could be

θGMM = argmin
θ

[
1

NT

N

∑
i

T

∑
t

(
Rβ

(
Ci,t+1

Ci,t

)−ρ

exp(θ∆zi,t+1)− 1

)
· Zi,t+1

]2

, (2)

such that θGMM is the parameter that satisfy the sample equivalent of E[(ε− 1)′Z] = 0,
where Z contain instrument(s) assumed uncorrelated with the Euler residual. Ignor-
ing measurement error, the estimator in (2) produce consistent estimates if a suitable
instrument is available and, importantly, households do not face credit constraints.5

Using food consumption from the PSID, Alan, Attanasio and Browning (2009) esti-
mate the effect of children to be around .18 from a similar estimator as (2) and as large
as .9 using estimators allowing for measurement error in consumption.

Most existing studies work with a log-linearized version of the Euler equation since
it yields estimable equations linear in parameters which can easily be estimated with
synthetic cohort panels (Browning, Deaton and Irish, 1985) and handle measurement
error through instrumental variables estimation. The log-linearized Euler equation is

∆ log Cit = constant + ρ−1θ′∆zit + ε̃it, (3)

where the first term is a constant as a function of structural parameters (β, ρ) and the
interest rate (assumed constant throughout), the second term is the effect of children
(times the IES) and the last term is a reduced form residual, ε̃t = −ρ−1 log εt.

In the influential study by Attanasio, Banks, Meghir and Weber (1999), θ and ρ is
estimated from the CEX by a log-linearized Euler equation using lagged changes in zt

as instruments along with lagged changes in income and consumption. The effect of
the number of children is found to be around θ ≈ .33. Several studies use food con-
sumption from the PSID to estimate versions of the log-linearized Euler equation, see,
e.g., Hall and Mishkin (1982); Runkle (1991) and Lawrance (1991). The latter reports

5Alan, Attanasio and Browning (2009) supply modified GMM estimators to allow for measurement
error while still ignoring possibly binding credit constraints.
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estimates suggesting a value of θ of around 0.5. Dynan (2000), also using the PSID,
estimates the effects of children to be around .7. Browning and Ejrnæs (2009) allow
for a more flexible functional form of v(zt; θ) when estimating the effect of children
consumption using the FES and find that the number and age of children can explain
completely the hump in consumption.

Other estimators have been proposed to estimate Euler equations. For example,
Alan and Browning (2010) propose a method in which they fully parameterize the
Euler residuals and simulate these residuals and consumption paths simultaneously.
Their Synthetic Residual Estimation (SRE) procedure does not allow for credit con-
straints in a coherent way. Since the GMM and log-linearized estimation methods are
the conventional methods used in the literature, I focus exclusively on these.

Some empirical studies of intertemporal consumption behavior do recognize that
credit constraints might affect household behavior. Potentially binding credit con-
straints are often handled by discarding households in which nothing is carried over
from period t to t + 1 (see, e.g., Alan, Attanasio and Browning, 2009). This strategy is
clearly not a satisfactory approach because expectations about the credit constraint po-
tentially binding in future periods still affect present consumption behavior through
Et[λt+1]. Determining at which level of wealth households are completely free of the
credit constraint is not trivial.

3 Bias and Bounds from Euler Equation Estimation

In this section, I illustrate how conventional Euler equation estimators, (2) and (3),
produce biased estimates of the effect of children on consumption and can be used to
construct bounds of this parameter. I first formulate a four-period model from which
I can derive analytical expressions for the log-linearized Euler equation estimator and
show how bounds can be calculated from splitting the sample into young and older
households. To confirm the results from the four-period model, I formulate and nu-
merically solve a standard life cycle model of buffer-stock savings behavior. By sim-
ulating data from this model, I estimate the proposed bounds and show that they are
very similar to the bounds from the four-period model.

The present exposition is based on the absolutely best of all circumstances in which
i) a panel of consumers is available, ii) consumption is observed without measurement
error, iii) researchers know the underlying model consumers solve, and iv) researchers
know the preferences of consumers except the effect of children on consumption.
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3.1 Evidence from A Four Period Model

Here, I setup a four-period model with an analytical solution to illustrate how Euler
equation estimation performs when households face potentially binding credit con-
straints. In the initial period, t = 0, all households are childless. In period t = 1, the
“young” stage, a child arrives, z1 = 1, in p percent of the households and the remain-
ing 1− p percent remain childless, z1 = 0. In period t = 2, the “old” stage, the child
moves (if present in period one) such that z2 = 0 for all households. Households die
with certainty in the end of period t = 3 and consume all available resources in this
terminal period.

Utility is CRRA and the taste shifter is assumed to be given by v(zt; θ) = exp(θzt)

with zt ∈ {0, 1}, and with baseline parameters of ρ = 2 and θ = 0.5. To reduce
unnecessary cluttering, the gross real interest rate and the discount factor both equal
one, R = β = 1. Households receive a deterministic income of Yt in beginning of every
period. Income grows with G1 between period zero and period one (Y1 = G1Y0) and is
constant otherwise (Yt = Yt−1, t = 2, 3). The beginning-of-period resources available
for consumption is the sum of household income and end-of-period wealth carried
over from last period, Mt = At−1 + Yt.

Formally, households solve, for a given value of z1 ∈ {0, 1}, the problem,

max
C0,C1,C2

C1−ρ
0

1− ρ
+ exp(θz1)

C1−ρ
1

1− ρ
+

C1−ρ
2

1− ρ
+

(M2 − C2 + Y3)
1−ρ

1− ρ
,

subject to a no-borrowing constraint, At ≥ 0, ∀t. Appendix A in the online supple-
mentary material solves the model analytically and reports the resulting optimal con-
sumption functions.

Using the optimal consumption behavior from this model, Figure 1 presents con-
sumption and wealth profiles for households initiated with no wealth in the initial pe-
riod, A−1 = 0, period t = 0 income normalized to one (Y0 = 1), and early life income
growth of eight percent, G1 = 1.08. Panel 1a presents consumption profiles for models
with a credit constraint (solid) and without constraints (dashed) for households with
children in period one (black) and without children (red). Panel 1b illustrates the as-
sociated wealth profiles. Potentially binding credit constraints affect the consumption
and wealth profiles significantly.

Childless households increase consumption exactly as much as income grows and
is in effect only potentially credit constrained in period t = 0 because they are unable
to borrow against future income growth. Households in which a child arrives in pe-
riod t = 1, on the other hand, might also be credit constrained in period t = 1 since
they might want to increase consumption by more than their available resources.

The OLS estimator of the effect of children using consumption growth from t− 1
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Figure 1 – Consumption and Wealth Profiles from the Four-period Model.

Notes: Figure 1 illustrates the consumption and wealth age profile from the four period model with
paramters ρ = 2, G1 = 1.08, and θ = 0.5. Households are initiated with zero wealth and initial income
is normalized to one, A−1 = 0 and Y0 = 1, respectively. Panel a presents the income and consumption
profiles for models with credit constraints (solid) and without constraints (dashed) for households with
children in period one (black) and without children (red). Panel b illustrates the associated wealth
profile.

to t from the log-linearized Euler equation (3) is given by

θ̂t
OLS = (∆ log Ct|z1=1 − ∆ log Ct|z1=0)ρ.

Using the (cohort) average number of children as instrument (Z = p) should be less
affected by idiosyncratic uncertainty and, thus, credit constraints. The IV estimator is6

θ̂t
IV =

1
p
(p∆ log Ct|z1=1 + (1− p)∆ log Ct|z1=0)ρ.

Appendix A in the online supplementary material derives explicit formulas for
each estimator when using either young households or old households to estimate the

6Since there is only one cohort here (p is constant) no constant is included in the regression. Of
course, in general, there will also be included a constant in such a regression.
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effect of children on consumption. The resulting estimators are

θ̂
young
OLS =

{
θ − log(G1)ρ if θ > log(G1)ρ,

0 if 0 ≤ θ ≤ log(G1)ρ,
≤ θ,

θ̂
young
IV =

{
θ + (1− p)/p log(G1)ρ if θ > log(G1)ρ,

log G1ρ/p if 0 ≤ θ ≤ log(G1)ρ,
≥ θ,

θ̂old
OLS =

{
ρ log(1+G1

G1
)− ρ log(1 + exp(−ρ−1θ)) if θ > log(G1)ρ,

0 if 0 ≤ θ ≤ log(G1)ρ,
≤ θ,

θ̂old
IV = θ̂old

OLS ≤ θ.

It is immediately clear from these estimators that neither OLS nor IV estimators
will in general yield consistent estimates of the true θ.7 Interestingly, as the effect of
children goes towards zero, the OLS (and IV) estimator using only older households
comes close to the true value of θ. Similarly, as the effect of children on consumption
gets increasingly large, the bias-part, (1 − p)/p log(G1)ρ, of the young-IV estimate,
θ̂

young
IV , becomes relatively less important. Therefore, I propose to split the sample into

“young” households, in which children arrive, and “older” households, in which chil-
dren leave, and use the IV estimate from the young sample as an upper bound and
use the OLS estimate from the older sample as a lower bound.

The OLS estimate using young households could alternatively be used as a lower
bound. However, as I show in the robustness exercise, if children arrive probabilis-
tically, OLS from the young sample will underestimate the effect of children on con-
sumption even if there is no credit constraint. I have chosen a lower bound that deliv-
ers the true effect of children on consumption when either there is no effect of children
or no credit constraint, irrespectively if children arrive deterministically or probabilis-
tically.8

The results are intuitive. Young households will accumulate wealth in the initial
period zero, but not necessarily enough to ensure that the credit constraint is not bind-
ing in period one, in which a child arrives. Even if they do accumulate enough wealth,
the fact that the childless households also increase consumption create a downwards
bias in the estimate. When children subsequently leave, households with children are

7The bias is constant, independent of the observations and does, therefore, not vanish asymptotically.
Hence, this suggests that the estimators might not even be consistent. In the more realistic life cycle
model studied below, no closed form expressions can be derived and arguments are made through
Monte Carlo simulation of finite samples and only the bias can be illustrated.

8Note, as I will show in the robustness exercise, this is only correct for the non-linear GMM estima-
tor. The log-linear estimator will not be able to uncover the true effect of children if there is no credit
constraint but instead a probability of a low income shock.
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likely to go from being constrained in period one to unconstrained in period two (since
they prefer consumption when children are present). The resulting drop in consump-
tion will be smaller compared to the situation without a constraint, resulting in the
OLS estimator being downwards biased. The fact that income and the the average
number of children are positively correlated in the early part of the life cycle produce
an upwards bias in the IV estimator.

Interestingly, for low levels of θ (0 ≤ θ ≤ log(G1)ρ) the bounds are flat illustrating
how the inability to borrow against future income growth prevents identification of
the effect of children on consumption. The bounds are tightened for lower levels of
income growth (G1) and lower levels of intertemporal smoothing (ρ).

The importance of the combination of income growth and a credit constraint is
clear from the analysis of the four period model. If income is constant, the OLS
and IV estimators using young households deliver the correct θ. The same is true
if households do not care about intertemporal smoothing of marginal utility (ρ = 0
and IES = ∞). The assumptions of income growth and finite intertemporal elasticity
of substitution seem reasonable, however.

3.2 Evidence from a Multi-Period Life Cycle Model

To confirm the results from the four-period model, I setup a standard life cycle (buffer-
stock) model, used intensively for analysis of intertemporal consumption behavior.
The model captures the main consumption and savings incentives of households over
the life cycle prior to retirement. Specifically, the model is similar to those in Attanasio,
Banks, Meghir and Weber (1999); Gourinchas and Parker (2002) and Cagetti (2003).

Households work until an exogenously given retirement age, Tr, and die with cer-
tainty at age T where they consume all available resources. In all preceding periods,
households solve the optimization problem

max
Ct

Et

[
Tr−1

∑
τ=t

βτ−tv(zt; θ)u(Cτ) + γ
T

∑
s=Tr

βs−tv(zt; θ)u(Cτ)

]
. (4)

Following Gourinchas and Parker (2002), survival and income uncertainty are omit-
ted post retirement and the parameter γ (referred to as the retirement motive) in equa-
tion (4) is a parsimonious way of adjusting for these elements. Gourinchas and Parker
(2002) ignore the post-retirement consumption decisions and adjust the perfect fore-
sight approximation by a parameter similar to γ through a retirement value function.
Although I focus on consumption behavior prior to retirement, the potential presence
of children at retirement forces the model to be specific about post retirement behavior.

Households solve (4) subject to the intertemporal budget constraint, Mt+1 = R(Mt−
Ct) + Yt+1, where Mt is resources available for consumption in beginning of period t
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and Yt is beginning-of-period income. End-of-period wealth, At = Mt − Ct, must be
greater than a fraction −κ of permanent income in all time periods, At ≥ −κPt ∀t, κ ≥
0. Following Gourinchas and Parker (2002), retired households are not allowed to be
net borrowers, At ≥ 0, ∀t ≥ Tr.

Prior to retirement, income follows a transitory-permanent income shock process,

Yt = Ptεt, ∀t < Tr,

Pt = GtPt−1ηt, ∀t < Tr,

where Gt is the real gross income growth, Pt denotes permanent income and ηt ∼
logN (−σ2

η/2, σ2
η) is a mean one permanent income shock. εt is a mean one transitory

income shock taking the value µ with probability ℘ and otherwise distributed (1−
℘)εt ∼ logN (−σ2

ε /2− µ℘, σ2
ε ).9 When retired, the income process is a deterministic

fraction κ ≤ 1 of permanent income and permanent income grows with a constant
rate of Gret once retired, Yt = κPt, ∀t ≥ Tr, and Pt = GretPt−1, ∀t ≥ Tr.

Households can have at most three children and no infants arrive after the wife
turns 43 years old. For notational simplicity, the age of each child is contained in zt,

zt = (age of child 1t, age of child 2t, age of child 3t) ∈ {NC, [0, 20]}3,

where “NC” refers to “No Child” and the oldest child is denoted child one, the second
oldest child as child two and the third oldest child as child three. When a child is
aged 21 the child does not influence household consumption in subsequent periods
regardless of the value of θ. Following Browning and Ejrnæs (2009), the arrival of an
infant is deterministic in the sense that households know with perfect foresight how
many children they will have and when these children arrive.10

Unlike the simple four-period model, the life cycle model does not have an an-
alytical solution. Therefore, to simulate synthetic data, I solve the model using the
Endogenous Grid Method (EGM) proposed by Carroll (2006) with “standard” param-
eters presented in Table 1. The technical details of the solution method are provided in
Appendix B in the online supplemental material. The solution is then used to generate
data for 50, 000 households from age 22 to 59 in each of the 1, 000 Monte Carlo (MC)
runs. All households are initiated at age 22 with zero wealth, A21 = 0, permanent in-

9This formulation allows for both an explicit and self-imposed credit constraint. Depending on the
value of κ and ℘ and µ, either the explicit or the self-imposed constraint will be the relevant one. This
is discussed further in Appendix B in the supplemental material. In the baseline specification, κ = 0,
℘ = 0 and µ = 0 such that only the explicit credit constraint matters. I show in the robustness exercise,
that the results regarding the log-linarized Euler equation is robust to letting ℘ = 0.003 and µ = 0 such
that the self-imposed no-borrowing constraint is the relevant one rather than the explicit constraint.

10In the robustness analysis in Section 5, I allow children to arrive probabilistically, as in Blundell,
Dias, Meghir and Shaw (2013), and find that the bounds are robust to this alternative fertility process.
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come of one (normalization), P22 = 1, and no previous children, z21 = (NC,NC,NC).
Children are distributed across households and age according to the observed arrival
of children in the PSID, as illustrated in Figure 2b, and the income profile is calibrated
to be concave (Figure 2a) and constant from age 40 to mimic empirical income profiles.

Table 1 – Parameter Values Used to Simulate Data.

Gt R σ2
ε σ2

η κ ℘ µ β ρ γ κ Gret θ

Fig. 2a 1.03 .005 .005 0 0 0 .95 2 1.1 .8 1.0 ∈ [0, 1]

(a) Income Growth
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(b) Infant Arrival Frequencies, PSID
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Figure 2 – Calibrated Income Growth and Arrival of Children.

Notes: Figure 2a reports how permanent income grows in the life cycle model while panel b shows how
the arrival of children is calibrated using the PSID. The arrival of children is based on the PSID data
described in Section 4.

Figure 3 presents simulated age profiles for income, consumption and wealth for
different values of θ. All consumption profiles (even if children do not affect con-
sumption) exhibit a hump when households are in the mid-40s, as typically observed
in real data. If children affect consumption, the hump is more pronounced by a steeper
consumption profile for young households and a subsequent larger decrease in con-
sumption after the mid-40s. Income uncertainty, income growth and credit constraints
produce an increasing consumption profile early in life, even if children do not affect
consumption. The retirement motive produces an incentive (depending on the size
of γ) to accumulate wealth for retirement later in life producing a downward sloping
consumption profile after the mid-40s.

The consumption profiles are very similar for young households across θ-values.
This is because credit constraints prevent households from borrowing against future
income growth to increase consumption when children arrive – despite they would
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(a) Simulated Income and Consumption
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(b) Simulated Wealth
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Figure 3 – Simulated Income, Consumption and Wealth Profiles.

Notes: Figure 3 illustrates the average age profile of income, consumption and wealth for 50,000 simu-
lated households for different values of θ. Panel a shows how consumption profiles change relatively
little across models with no effects of children, θ = 0, through a model in which children are important,
θ = 0.5. Panel b shows how the wealth accumulation, on the other hand, is greatly affected by the
importance of children. Particularly, a hump in the wealth profile emerges as children becomes more
important.

want to, had unlimited borrowing been possible. Hence, the effect of children would
in general be underestimated using young households, as shown earlier. Noticeably,
young households accumulate large amounts of wealth in anticipation of children ar-
riving in the future. When children subsequently arrive, wealth is almost depleted
such that the credit constraint is binding for many households when children even-
tually leave. The relative drop in consumption from a constrained level to an (poten-
tially) unconstrained level, when children leave, will in general be less than the relative
change if households had never been constrained. Hence, the effect of children would
be underestimated when only using older households as shown using the simple four-
period model above.

Empirical age profiles of observed household wealth is typically not hump-shaped
as illustrated in Figure 3 but rather monotonically increasing (Cagetti, 2003). This
suggests that children might not be as important for consumption over the life cycle
as previously found in the existing literature. I confirm this in section 4 below where I
estimate the proposed bounds using the PSID.

Table 2 reports the average estimate of θ using all households, both young and old,
from 1,000 MC runs and the standard deviation across these runs. For each run, data
are simulated from the life cycle model for 50,000 households from age 22 through 59
and 20 random adjacent time-observations are drawn for each household from this
simulation. It is clear that for low levels of θ, both the log-linearized and non-linear
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GMM estimators overestimate the effect of children on consumption while they un-
derestimate the effect if θ is large. This is true irrespectively if the actual change in
number of children (∆zt) are used in the estimation or the cohort average number of
children (∆zt) is used as instrument.

Table 2 – Monte Carlo Results, Both Young and Old Included.

θ = 0.0 θ = 0.1 θ = 0.5 θ = 1.0

Instr. LogLin GMM LogLin GMM LogLin GMM LogLin GMM
∆zt 0.015 0.006 0.086 0.078 0.227 0.221 0.397 0.374

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.002) (0.002)
∆zt 0.125 0.038 0.156 0.075 0.255 0.166 0.475 0.310

(0.002) (0.001) (0.002) (0.001) (0.002) (0.002) (0.003) (0.003)

Notes: The average of all MC estimates and standard deviations (in parenthesis) across Monte Carlo runs
are reported. All results are based on 1,000 independent estimations on simulated data from the life
cycle model described in Section 3.2 with the parameters presented in Table 1. For each run, data are
simulated for 50,000 households from age 22 through 59 and a random adjacent period of length time-
observations are drawn from this simulation. All individuals are initiated at age 22 with zero wealth,
A21 = 0, permanent income of one, P22 = 1, and no children. Children are assigned following the
estimated arrival probabilities estimated from the PSID, reported in Figure 2b.

Figure 4 illustrates the proposed bounds based on the four period model in panel
4a and the multi-period life cycle model in panel 4b. The 45◦–line represents the
true value of θ while blue lines represent lower bounds and red lines represent upper
bounds using the (cohort) average number of children as instrument. Young house-
holds are defined as those younger than 41.

The bounds derived from the simple four period model are very similar to the nu-
merical bounds from the richer life cycle model. The bounds are fairly narrow for
lower values of θ and the lower bound equals the true effect when θ = 0 as expected.
As the effect of children becomes larger, the bounds become wider and the upper
bound is closest to the truth. The non-linear GMM estimator produces almost iden-
tical bounds as the log-linearized Euler equation, indicating that the nonlinear Euler
equation ignoring credit constraints is an equally poor approximation to the true con-
strained Euler equation as the log-linearized Euler equation is.

The results show that the standard Euler equation estimators cannot in general esti-
mate the effect of children on consumption when households face potentially binding
credit constraints. Further, the multi-period life cycle model confirms that the pro-
posed bounds are sensible in a more realistic framework. Below, I apply the bounds
to the PSID and in section 5 I discuss the robustness of the proposed bounds.
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(a) Four Period Model
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(b) Life Cycle Model
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Figure 4 – Proposed Bounds, Four-Period Model and Life Cycle Model.

Notes: Figure 4 illustrates the proposed bounds based on the four period model in panel a and the life
cycle model in panel b. The 45◦–line represents the true value of θ while blue lines represent lower
bounds and red lines represent upper bounds using the (cohort) average number of children as instru-
ment. Solid lines are based on the log-linearized Euler equation (3) and dashed lines are based on the
non-linear Euler equation estimated with the GMM estimator (2). Young households are defined as
younger than 41.

4 Empirical Results from the PSID

The Panel Study of Income Dynamics (PSID) contains information on food consump-
tion and has been used for a wide range of studies, including estimation of the effect
of children on consumption. To study the evolution and link between income and
consumption inequality over the 1980s, Blundell, Pistaferri and Preston (2008) impute
total non-durable consumption for PSID households using food consumption mea-
sures in the CEX and the PSID. I use their final data set and refer the reader to their
discussion of the PSID data.

The sample period is 1978 to 1992 and only male headed continuously married cou-
ples are used. The years 1987 and 1988 are not used because consumption measures
were not collected those years. Since the present study focus on the effect of children
on household consumption, I restrict the sample to cover households in which the
wife is aged 20 to 59.11 The supplementary low-income sub sample (SEO) is excluded
from the analysis. All sample selection criteria leaves an unbalanced panel of 1,808
households observed for at most 13 periods in the final sample of in total 13,516 non-
missing observations.12 Households are classified as high skilled if the male head has

11Blundell, Pistaferri and Preston (2008) use households in which the husband is aged 30 to 65.
12In an earlier working paper (Jørgensen, 2014), for tractability of an alternative estimation procedure,

I restricted the sample further and removed year trends prior to estimation. The results presented here
will, therefore, differ slightly from those reported in the earlier working paper.
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ever enrolled in college, including college drop-outs.

Table 3 – Log-Linear Euler Equation Estimates, PSID.

Low skilled High skilled

OLS, age≥ 45† IV, age≤45‡ OLS, age≥ 45† IV, age≤45‡

Food consumption

∆#kids 0.031 0.122 0.035 0.127
(0.037) (0.057) (0.028) (0.048)

Constant -0.097 -0.049 -0.046 -0.016
(0.032) (0.018) (0.027) (0.023)

Obs 1304 4425 1700 3351
R2 0.005 0.020 0.009 0.018

Non-durable consumption (imputed)

∆#kids 0.058 0.130 -0.033 0.047
(0.063) (0.079) (0.026) (0.048)

Constant -0.668 -0.101 -2.011 -1.993
(0.116) (0.073) (0.028) (0.023)

Obs 1304 4425 1700 3351
R2 0.062 0.002 0.708 0.675

Notes: Reported are estimates of ρ̂−1θ and a constant from a log-linear Euler equation
estimation of food consumption in the top panel and total non-durable consump-
tion, imputed by Blundell, Pistaferri and Preston (2008). Robust standard errors in
parenthesis. All regressions include year-dummies. Households are classified as high
skilled if the male head has ever enrolled in college, including college drop-outs. Age
refers to the wife’s age.

† This corresponds to the suggested lower bound of ρ−1θ.
‡ This corresponds to the suggested upper bound of ρ−1θ. The number of children is

instrumented with the cohort-average number of children.

Table 3 reports the estimated bounds of ρ−1θ for the PSID data using the log-
linearized Euler equation (3) with year-dummies included in all regressions. Recall
that the suggested lower bound on θ can be estimated using the change in number of
children (∆zt) while restricting the sample to include only older households and an
upper bound can be found by using the cohort-average number of children (∆zt) as an
instrument while restricting the sample to younger households.

To illustrate how these bounds provide valuable information, imagine having esti-
mated the IES simultaneously (as done in, e.g., Attanasio, Banks, Meghir and Weber,
1999 using interest rate variation) or having information of this parameter from else-
where. For example, Gourinchas and Parker (2002) estimate ρ ≈ 0.87 for high school
graduates (low skilled by my definition) and ρ ≈ 2.29 for college graduates (high
skilled by my definition). Using these values, we could infer that the effect of children
on total non-durable consumption is between .05 and .11 for low skilled and between
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−.08 and .11 for high skilled.

(a) Food consumption
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(b) Total non-durable consumption (imputed)
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Figure 5 – Estimated Bounds of the Effect of Children on Consumption from the PSID.

Notes: Figure 5 reports the upper and lower bounds for low and high skilled households when varying
ρ, the inverse of elasticity of intertemporal substitution. The top panel a reports results when using
changes in log food consumption while the bottom panel b reports results when using changes in log
non-durable consumption, imputed by Blundell, Pistaferri and Preston (2008). "Lawrance (1991)" refers
to from Lawrance (1991), "ABMW (1999)" refers to Attanasio, Banks, Meghir and Weber (1999), "Dynan
(2000)" refers to Dynan (2000) and "AAB (2009)" refers to Alan, Attanasio and Browning (2009). Gray
dots illustrate that a different measure of consumption was used in the associated study.

Figure 5 reports how the upper and lower bounds for low and high skilled vary
with the coefficient of relative risk aversion (the inverse of the IES). The top panel
(panel 5a) reports results when using changes in log food consumption while the bot-
tom panel (panel 5b) reports results when using changes in log non-durable consump-
tion, imputed by Blundell, Pistaferri and Preston (2008).

The estimated effects of children on consumption reported in the existing litera-
ture are outside the proposed bounds. Specifically, the reported estimate of ρ−1θ in
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the influential study by Attanasio, Banks, Meghir and Weber (1999) of 0.21 and their
estimated ρ−1 of .64 produce an effect of children on non-durable consumption in the
CEX around .33. This is outside the upper bounds reported in Figure 5 for values of
ρ in a neighborhood of their estimated value of 1.56. Likewise, Figure 5 maps the im-
plied estimated effect of children on food consumption in the PSID reported in Lawrance
(1991); Dynan (2000) and Alan, Attanasio and Browning (2009). The latter is based on
a non-linear GMM estimator allowing for log-normal measurement error in consump-
tion while the two former studies are based on the log-linearized Euler equation. All
these estimates are outside the upper bound. Adding two times the standard error
of the estimated ρ̂−1θ reported in Table 3 widens the bounds significantly, but only
the estimate from Attanasio, Banks, Meghir and Weber (1999) is now included in the
bounds.

5 Robustness of Bounds

Choosing the age at which to split the sample into young and older households is not
obvious. One choice could be to choose the age at which the average number of chil-
dren starts to decline since the behavior of households should differ when children
arrive from when they leave, c.f. the above discussion. Simply estimating different
parameters related to when children arrive and move could be a route to pursue. Al-
ternatively, the age at which average net wealth is significantly larger than average
income could be chosen since around this point (on average) households are less af-
fected by credit constraints.

A crucial assumption when calculating the bounds above is that of the researcher
having knowledge on other structural parameters. Using the exact GMM estimation
approach, both the discount factor, β, and the relative risk aversion, ρ, should be esti-
mated simultaneously or qualified guesses on these parameters should be used. Log-
linearized Euler equation estimation requires information only on the risk aversion
parameter. This is a drawback but varying these preference parameters in “accepted”
ranges produces a set of bounds with information on the size of the effect of children
on consumption.

The bounds are robust to changing the calibrated parameters in Table 1. Figure
6 illustrates the bounds from models in which the discount factor, β, is .975 and .99.
The bounds are robust and for larger values of the discount factor the bounds become
increasingly tight. Especially for low values of θ, both the upper and lower bounds
are close to the true value when households are more patient. This stems from the fact
that more patient households put more emphasis on future marginal utility and, thus,
accumulate more wealth prior to the arrival of children. In turn, the credit constraint
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has less bite.

(a) β = 0.975
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(b) β = 0.990
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Figure 6 – Bounds, β = {0.975, 0.99} .

Notes: Figure 6 illustrates the proposed bounds based the life cycle model with a discount factor of .975
in panel a and .99 in panel b. The figures to the left illustrates the bounds from the baseline deterministic
model, in which children are perfectly foreseen and figures to the right illustrates the bounds from a
model in which children arrive probabilistically. The 45◦–line represents the true value of θ while blue
lines represent lower bounds and red lines represent upper bounds using the (cohort) average number
of children as instrument. Solid lines are based on the log-linearized Euler equation (3) and dashed
lines are based on the non-linear Euler equation estimated with the GMM estimator (2).

Below, I argue that the results are robust to alternative fertility processes, labor mar-
ket costs of children and to replacing the explicit credit constraint with a zero-income
shock. The robustness results are important since they stress that the true underlying
effect of children on consumption is in between the lower and upper bound in realistic
circumstances. An alternative route to estimating bounds could be to utilize the mo-
ment inequality rather than the equality in the GMM estimator (2). Assuming that an
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instrument is potentially positively correlated with the Euler residual, the inequality
E[(ε− 1)′Z] ≥ 0 could be used as a moment inequality to estimate bounds (Moon and
Schorfheide, 2009). This approach is very interesting for future research but I do not
pursue that strategy here.13

5.1 Alternative Fertility Processes

All results have been derived assuming that children are perfectly foreseen. This as-
sumption has primarily been deployed for tractability of the four period model since
that model could then be solved analytically. Versions of the model in which children
arrive probabilistically as in Blundell, Dias, Meghir and Shaw (2013) produce qualita-
tively unchanged results.

(a) Four Period Model
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(b) Life Cycle Model
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Figure 7 – Bounds, Probabilistic Arrival of Children.

Notes: Figure 7 illustrates the proposed bounds based on a model in which children arrive probabilis-
tically rather than being perfectly foreseen as in the "deterministic" baseline model. Panel a illustrates
the bounds from the four period model and the bounds from the life cycle model is illustrated in panel
b. The 45◦–line represents the true value of θ while blue lines represent lower bounds and red lines rep-
resent upper bounds using the (cohort) average number of children as instrument. Solid lines are based
on the log-linearized Euler equation (3) and dashed lines are based on the non-linear Euler equation
estimated with the GMM estimator (2). Young households are defined as younger than 41.

Figure 7 illustrates the proposed bounds based on the four period model in panel
7a and the life cycle model in panel 7b for the probabilistic version of the models. The
bounds are very similar to those presented from the baseline model and the upper
bound is close to the true effect of children when children arrive probabilistically.

In the probabilistic version, households are identical prior to arrival of children. In
the four period model, all households save exactly the same in period zero, prior to a

13I am grateful to Dennis Kristensen for pointing this out to me.
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child potentially arrives in period one. In period one, households who do not receive a
child increase consumption due to the fact that it has been revealed for them that they
will not have children. Their accumulated wealth from period zero is now distributed
across remaining periods. This increase in consumption of childless households will
bias the estimates downwards. This is true even if households do not face credit con-
straints and motivates the use of the OLS estimate from older households rather than
the OLS estimate from young households to estimate a lower bound.

Children could, alternatively, be chosen endogenously. Endogenous fertility would
significantly alter the economic environment and is typically not implemented in em-
pirical work on the effect of children on consumption. It is important to stress that
households in the deterministic life cycle model have strong incentives to accumulate
wealth to finance increased consumption when children arrive. Thus, the baseline
model is the one in which credit constraints has the least of an effect on the implied
consumption behavior, compared to the probabilistic version. Further, the biological
“constraint” on female fertility will interplay with the financial constraints and the
latter is, thus, still likely to be important for household behavior in a model in which
children are perfectly chosen by households (Almlund, 2013).

Importantly, the bounds will still be valid even if the financial credit constraint has
less bite when households perfectly chose when to have children. Specifically, in the
extreme case when households are perfectly able to break free of the constraint and
is never affected by constraints, the lower bound will overlap with the true effect of
children and the upper bound will be slightly above the true effect (see discussion in
section 5.3).

5.2 Children and the Labor Market

As in the rest of the literature on the effect of children on consumption, income is as-
sumed independent of household composition. If income depends on household com-
position, the results will change depending on in which ways children affect the labor
market income of household members. The focus on the present study is on how Eu-
ler equation estimation fails to uncover the underlying effect of children if potentially
binding credit constraints (either explicit or self-imposed) are ignored. Although al-
lowing income to vary with household composition is an interesting avenue for future
research, I have not pursued that here. The primary reason is that how children should
affect labor market outcomes is not obvious and the results, in turn, would be hard to
relate to existing estimates of the effect of children on consumption.

Children might, however, affect the number of hours worked. Calhoun and Es-
penshade (1988) estimate a substantial decrease in labor market hours of American fe-
males in response to childbearing. In a more recent working paper, Adda, Dustmann

21



and Stevens (2012) analyze in a life cycle model of German households, the career cost
of children and find that children can explain a substantial portion of the male-female
gender wage gap. In their model of fertility, occupational choice and labor supply,
consumption is assumed linear in income. In turn, all households are constrained in
their model illustrating that implementing all features into one model is not nearly as
feasible as it is interesting.

(a) Deterministic arrival of children
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(b) Probabilistic arrival of children
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Figure 8 – Bounds if Children Reduce Labor Market Income.

Notes: Figure 8 illustrates the proposed bounds from the four period model when children reduce la-
bor market income with 2 percent. Panel a illustrates the bounds from the model in which children
arrive deterministically and the probabilistic version is illustrated in panel b. The 45◦–line represents
the true value of θ while blue lines represent lower bounds and red lines represent upper bounds us-
ing the (cohort) average number of children as instrument. Solid lines are based on the baseline case
where children does not affect labor market income and dashed lines represent the extreme case where
children reduce labor market income with 2 percent.

The bounds are still valid if children reduce permanent income, as suggested by the
results above. This is true as long as children does not reduce permanent income by
more than the permanent income growth as illustrated in Figure 8a. If children arrive
deterministically and children reduce income to a degree that only childless house-
holds experience income growth, the upper bound equals the true effect. If children
arrives probabilistically, however, the upper bound might be below the true effect, as
illustrated by panel 8b.

5.3 Self-imposed No-borrowing vs. Explicit Credit Constraint

The results generalize to cases in which consumers do not face credit constraints. If
risk averse consumers instead face a positive probability of receiving a zero-income
shock (as in Carroll, 1997 and Gourinchas and Parker, 2002), all results concerning the
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log-linearized Euler equation (3) still hold. This is basically because risk averse con-
sumers will instead face a “self-imposed” no-borrowing constraint stemming from the
fear of receiving zero income in all future periods with consumption of zero as a conse-
quence (Schechtman, 1976; Zeldes, 1989b; Carroll, 1992). In turn, consumption will re-
spond substantially to negative income shocks if either explicit or self-imposed credit
constraints affect consumers, increasing the variance in consumption growth. Because
higher order moments (such as something like the variance of consumption growth,
Carroll, 2001) enters the reduced form residual, ε̃, log-linearized Euler equation esti-
mation will not be able to uncover the effect of children on consumption. This result
supports and extends the critique in Carroll (2001) on the inability of log-linearized
Euler equation estimation to uncover the IES to the inability to uncover demographic
effects on consumption.

(a) Deterministic arrival of children
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(b) Probabilistic arrival of children
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Figure 9 – Bounds, No Explicit Constraint but Self-Imposed No-borrowing.

Notes: Figure 9 illustrates the proposed bounds based on a model in which there is unlimited borrowing
but a positive probability of receiving zero income. Panel a illustrates the bounds from the baseline
deterministic model, in which children are perfectly foreseen and panel b illustrates the bounds from a
model in which children arrive probabilistically. The 45◦–line represents the true value of θ while blue
lines represent lower bounds and red lines represent upper bounds using the (cohort) average number
of children as instrument. Solid lines are based on the log-linearized Euler equation (3) and dashed lines
are based on the non-linear Euler equation estimated with the GMM estimator (2). Young households
are defined as younger than 41.

In absence of “explicit” credit constraints, the Euler equation in (1) has mean one
because λt = 0, ∀t and the exact GMM estimator is expected to produce unbiased es-
timates of the effect of children. Figure 9 illustrates the log-linearized Euler equation
bounds along with GMM estimates from a model with a .3 percent risk of zero house-
hold income (as calibrated in Gourinchas and Parker, 2002). Panel 9a illustrates the
bounds from the deterministic model while panel 9b illustrates the bounds from the
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probabilistic version of the model. It is clear that when children are perfectly foreseen
(panel 9a), the non-linear GMM produces the correct estimate.

Interestingly, if children arrive probabilistically, using young households to un-
cover the effect of children on consumption is impossible even if there is no explicit
constraint on borrowing, as shown by the fact that the blue dashed (GMM on young)
in Figure 9b is significantly below the 45◦–line. This stems from the feature of the
probabilistic model that households who turn out childless have accumulated as much
wealth in their youth as those households who eventually had children. Comparing
consumption growth of households with and without children will, thus, underesti-
mate the true effect of children, if children arrive probabilistically. Appendix A.4 in
the online supplemental material proves this result (using the four period model): If
children arrive probabilistically, using the cohort average number of children as in-
strument when estimating the log-linearized Euler equation (proposed upper bound)
overestimates the effect of children even if there is no explicit credit constraint.

Table 4 – Monte Carlo Results, No Explicit Constraint.

θ = 0.0 θ = 0.1 θ = 0.5 θ = 1.0

Instr. LogLin GMM LogLin GMM LogLin GMM LogLin GMM

Deterministic arrival of children

∆zt 0.015 −0.000 0.099 0.100 0.358 0.500 0.580 0.995
(0.001) (0.003) (0.001) (0.003) (0.001) (0.011) (0.002) (0.024)

∆zt 0.118 −0.000 0.167 0.104 0.311 0.518 0.530 1.024
(0.002) (0.007) (0.002) (0.008) (0.002) (0.017) (0.003) (0.031)

Probabilistic arrival of children

∆zt 0.015 −0.000 0.086 0.084 0.283 0.424 0.447 0.852
(0.001) (0.003) (0.001) (0.003) (0.001) (0.011) (0.001) (0.023)

∆zt 0.118 −0.000 0.166 0.100 0.272 0.501 0.497 1.000
(0.002) (0.007) (0.002) (0.008) (0.002) (0.017) (0.002) (0.028)

Notes: The average of all MC estimates and standard deviations (in parenthesis) across Monte Carlo runs
are reported. All results are based on 1,000 independent estimations on simulated data from the life
cycle model described in Section 3.2 with the parameters presented in Table 1. For each run, data are
simulated for 50,000 households from age 22 through 59 and a random adjacent period of length 20 time-
observations are drawn from this simulation. All individuals are initiated at age 22 with zero wealth,
A21 = 0, permanent income of one, P22 = 1, and no children. The results are based on a life cycle model
in which there is no explicit constraint but instead a .3 percent risk of a zero income shock, producing a
self-imposed no-borrowing constraint. In the top panel, children arrive with perfect foresight while in
the bottom panel children arrive probabilistically, following the estimated arrival probabilities estimated
from the PSID, reported in Figure 2b.

Table 4 reports the Monte Carlo results from pooling young and older households,
using the life cycle model without an explicit credit constraint. Th top panel reports
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results from the baseline model and the bottom panel reports the results if children
arrive probabilistically. It is clear than the non-linear GMM estimator can uncover the
correct estimate while the log-linearized Euler equation cannot when children are per-
fectly foreseen. The results in the bottom panel, where children arrive probabilistically,
confirm that in this case, the GMM estimator using both young and older households
cannot uncover the true effect of children on consumption (unless it is zero). Using
only older households, in which children leave, will, however, lead the GMM estima-
tor to produce unbiased estimates when children arrive probabilistically (Figure 9b).

6 Concluding Discussion

Many studies use estimators derived from the consumption Euler equation. Especially
the log-linearized Euler equation is popular since it yields estimable equations linear
in parameters which can easily be estimated with synthetic cohort panels and handle
measurement error through instrumental variables estimation. Although these esti-
mators have now become work horses in the analysis of intertemporal consumption
behavior, little is known about their performance when households face potentially
binding credit constraints and the standard Euler equation, thus, no longer holds.

I have showed how both the non-linear and the log-linearized Euler equation es-
timators fail to uncover the true underlying effect of children on consumption when
potentially binding credit constraints are ignored. Through splitting the sample into
young households, in which children arrive, and older households, in which children
leave, I propose a tractable approach to uncovering bounds of the effect of children on
consumption using these conventional estimators.

Estimating the proposed bounds on PSID data indicates that all, to the best of my
knowledge, existing estimates of the effect of children on consumption are above the
upper bound. In turn, these results suggest that the importance of children in in-
tertemporal consumption behavior, found in previous studies, might simply proxy for
the inability of households to borrow against future income growth.

Arguably, the proposed bounds suffer from many of the same assumptions as most
existing empirical literature analyzing the intertemporal consumption behavior. Par-
ticularly, it has been assumed throughout (and in the related literature) that fertility
is exogenous and children do not affect labor market outcomes. Although the bounds
are somewhat robust to these assumptions, they have been invoked for tractability and
comparability with existing studies of the effect of children on consumption. Allowing
for endogenous fertility and endogenous labor market supply with children affecting
the dis-utility from work is extremely interesting for future research.
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A Solving the Four-Period Model

All variables are normalized with income such that small letter variables are normal-
ized ones. Hence, e.g., m1 = (A0 + Y1)/Y1 = G−1

1 a0 + 1 since Y1 = G1Y0. In all other
periods, income is constant. This normalization facilitates solving the model analyti-
cally for all possible values of income. The resulting consumption function should be
multiplied with current period income to give the un-normalized level of consump-
tion, C?

t = Ytc?t . The consumption functions in periods t = 1, 2, 3 are independent of
whether children arrive deterministically or probabilistically since it is assumed that
children, if present in period t = 1, will move with certainty in period t = 2. Therefore,
I first solve for optimal consumption in period t = 1, 2, 3 which are identical for the
deterministic and probabilistic versions and then turn to the initial period consump-
tion, prior to potential arrival of children. This analysis is split between the model in
which children arrive deterministically and the model in which children arrive prob-
abilistically.

In the terminal period, period three, all resources are consumed (c?3 = m3) and the
unconstrained Euler equation linking period two and period three consumption is then

c−ρ
2 = m−ρ

3

such that inserting normalized resources, m3 = m2 − c2 + 1 and re-arranging shows
that optimal consumption in period two is the minimum of available resources, m2,
and 1

2(m2 + 1). Since income does not fall between period one and two and because
negative wealth is not allowed, m2 ≥ 1 and optimal consumption is then

c?2(m2) =
1
2
(m2 + 1). (A.1)

In period one, a child may be present and the unconstrained Euler equation is given
by

c−ρ
1 exp(θz1) = c−ρ

2 ,

such that inserting normalized resources and re-arranging yields,

c?1(m1|z1) = min
{

m1 ,
m1 + 2

1 + 2 exp(−ρ−1θz1)

}
, (A.2)

where the constraint is binding if m1 ≤ m1 ≡ exp(ρ−1θz1). Note, this is certainly the
case if nothing is saved from period zero.
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Optimal consumption in period t = 0 depends on whether children arrive deter-
ministically or probabilistically in period one. I first derive optimal consumption in
the case where children arrive deterministically and then turn to the probabilistic ar-
rival of children.

A.1 Initial Period Consumption: Deterministic Arrival of Children

In the first period, the unconstrained Euler equation is

c−ρ
0 = G−ρ

1 exp(θz1)c
−ρ
1 ,

since income grows with a factor G1 from period zero to period one. Since consump-
tion in period one is potentially constrained, this has to be explicitly taken into ac-
count. First, assuming that period one consumption is less than available resources,
c1 < m1, inserting the optimal consumption found in (A.2) and tedious re-arranging
yields optimal consumption in this case,

c?0(m0|z1)
det|c1<m1 =

m0 + 3G1

3 + exp(ρ−1θz1)
. (A.3)

If, on the other hand, consumption in period one is constrained (c1 = m1), inserting
this in the Euler equation and re-arranging yields,

c?0(m0|z1)
det|c1=m1 =

m0 + G1

1 + exp(ρ−1θz1)
. (A.4)

To determine which of the consumption functions is relevant, note that equation
(A.3) would imply a too high level of consumption in period zero if ignoring, that at
some point, consumption in period one would be constrained because “too little” is
saved in period zero. Hence,

c̃?0(m0|z1)
det = min

{
m0 ,

m0 + G1

1 + exp(ρ−1θz1)
,

m0 + 3G1

3 + exp(ρ−1θz1)

}
,

where the level of period t = 0 resources implying that consumption in period one is
constrained is the level of resources, m1

0 = exp(ρ−1θz1)G1, that makes the expression
in (A.4) to be less than that in (A.3). Hence, when m0 ≤ m1

0 optimal consumption in
period t = 0 is given by equation (A.4) and when m0 > m1

0 optimal consumption is
given by equation (A.3).

When households are initiated with zero wealth (a−1 = 0) available normalized
resources in period zero is one, m0 = 1, and only equation (A.4) is relevant since
m0 = 1 ≤ m1

0 for all values of θ ≥ 0 and G1 ≥ 1. Therefore, assuming no initial wealth
and deterministic arrival of children, optimal consumption in period zero is given by

c?0(m0|z1)
det = min

{
m0 ,

m0 + G1

1 + exp(ρ−1θz1)

}
, (A.5)

where for m0 ≤ m2
0 ≡ exp(−ρ−1θz1)G1, the constraint is binding and it is optimal to

consume everything. This is very intuitive: If income growth is very high, resources
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next period is much higher and saving today is less attractive. On the other hand, if
children affect marginal utility a lot (θ large), the level of resources should be very low
before it is optimal not save anything for next period, in which a child arrives.

Note, focusing on the situation in which a child arrives in period one, if m0 ≤ m2
0

next-period resources is m1 = G−1
1 (m0 − m0+G1

1+exp(ρ−1θ)
) + 1 and we can check whether

this is less than m1 which is the case as long as θ ≥ 0 and G1 ≥ 1. Hence, if m0 =
1 ≤ m0 we know that m1 ≤ m1 and c?1(m1|z1 = 1) = m1. If a child do not arrive,
optimal consumption in all periods would be to consume available resources, since in
period t = 0, borrowing against future income growth is not allowed. This is used
when calculating the OLS and IV estimators below.

A.2 Initial Period Consumption: Probabilistic Arrival of Children

The analysis, if children arrive probabilistically, is slightly more complicated than the
above where children arrive deterministically. The unconstrained Euler equation is here
given by

c−ρ
0 = G−ρ

1 c−ρ
1 (p exp(θ) + 1− p),

such that in case where period one consumption is unconstrained (c1 < m1), inserting
optimal consumption from equation (A.2) and re-arranging yields

c?0(m0)|c1<m1 =
m0 + 3G1

1 +
[
p (exp(ρ−1θ) + 2)ρ

+ (1− p)3ρ
] 1

ρ

. (A.6)

However, if households are potentially credit constrained if a child arrives next
period, the model has in general no analytical solution because the Euler equation is

c−ρ
0 = G−ρ

1

[
c−ρ

1 (1− p) + p exp(θ)m−ρ
1

]
,

= G−ρ
1

[
[
1
3
(G−1

1 (m0 − c0) + 3)]−ρ(1− p) + p exp(θ)
[

G−1
1 (m0 − c0) + 1

]−ρ
]

,

with no general analytical solution for c0. To complete arguments, I solve for the opti-
mal consumption numerically using the EGM proposed by Carroll (2006), and use that
solution, denoted c?0(m0)|num

c1=m1
. In turn, optimal period zero consumption is given by

c?0(m0) = min

m0 , c?0(m0)|num
c1=m1

,
m0 + 3G1

1 +
[
p (exp(ρ−1θ) + 2)ρ

+ (1− p)3ρ
] 1

ρ

 . (A.7)

Figure A.1a reports the consumption function in the deterministic case for the base-
line parameters used herein (p = 0.5, ρ = 2, and θ = 0.5) and Figure A.1b reports the
consumption function in the probabilistic case. The numerical solutions to both mod-
els are reported to complete the solution and confirm the analytical results.
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(a) Deterministic Arrival of Children
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(b) Probabilistic Arrival of Children
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Figure A.1 – Period Zero Optimal Consumption Functions.

A.3 OLS and IV Estimates from the Four Period Model

We have that optimal consumption is given by

c?0(m0|z1) =

{
m0 if m0 ≤ exp(−ρ−1θz1)G1

m0+G1
1+exp(ρ−1θz1)

else

c?1(m1|z1) =

{
m1 if m1 ≤ exp(ρ−1θz1)

m1+2
1+2 exp(−ρ−1θz1)

else

c?2(m2) =
1
2
(m2 + 1)

c?3(m3) = m3.

The OLS estimator is given as

θt
OLS = (∆ log Ct|z1=1 − ∆ log Ct|z1=0)ρ,

while the IV estimator, using the (cohort) average number of children as instrument,
Z = p, is

θt
IV =

E[∆ log C′t p]
E[p′p]

ρ,

=
1
p
(p∆ log Ct|z1=1 + (1− p)∆ log Ct|z1=0)ρ.

Inserting the optimal consumption for given set of parameters. Let m0 > exp(−ρ−1θz1)G1
(saves in period zero) and note that m0 = 1, such that this implies that θ > log(G1)ρ.
The growth in log consumption is then (using the result that consumption is, then,
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constrained in period one)

θ
young
OLS =

{
θ − log(G1)ρ if θ > log(G1)ρ

0 if 0 ≤ θ ≤ log(G1)ρ

≤ θ

Hence, OLS estimates will under estimate the true effect of children on consumption.
The IV estimator is

θ
young
IV =

{
θ + (1− p)/p log(G1)ρ if θ > log(G1)ρ

log G1ρ/p if 0 ≤ θ ≤ log(G1)ρ,
≥ θ

such that IV estimation over-estimates the effect. However, as θ increases - for a fixed
p and G1 - the over estimation becomes potentially small.

Turning to older households, when children leave, the OLS estimate is

θold
OLS =

{
ρ log(1+G1

G1
)− ρ log(1 + exp(−ρ−1θz1)) if θ > log(G1)ρ

0 if 0 ≤ θ ≤ log(G1)ρ,

≤ θ

such that only if θ = 0 will OLS produce a consistent estimate. Since consumption
does not change between period one and two if there was no child in period one, the
IV estimator is identical to OLS,

θold
IV = θold

OLS.

A.4 Upwards Bias of IV using Young Households Without Credit
Constraints

Here, I show that in the model where children arrive probabilistically and there is
no explicit credit constraints, there is still a (small) positive bias from IV estimation.
Inserting optimal consumption in absence of credit constraints,

C0 = Y0
m0 + 3G1

1 +
[
p (exp(ρ−1θ) + 2)ρ

+ (1− p)3ρ
] 1

ρ

, C1(z1) = Y1
m1 + 2

1 + 2 exp(−ρ−1θz1)
,
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into the IV estimator yields

θ̂
young
IV = log

(
Y1

m1 + 2
1 + 2 exp(−ρ−1θ)

)
− log

Y0
m0 + 3G1

1 +
[
p (exp(ρ−1θ) + 2)ρ

+ (1− p)3ρ
] 1

ρ


+ (1− p)/p

log
(

Y1
1
3
(m1 + 2)

)
− log

Y0
m0 + 3G1

1 +
[
p (exp(ρ−1θ) + 2)ρ

+ (1− p)3ρ
] 1

ρ


= ρ−1θ − (log

(
exp(ρ−1θ) + 2

)
+ (1− p)/p log (3))

+p−1

[
log
(

m0 + 3G1 − c0

m0 + 3G1

)
+ log

(
1 +

[
p
(

exp(ρ−1θ) + 2
)ρ

+ (1− p)3ρ
] 1

ρ

)]
,

where inserting again c0 from equation (A.6) and re-arranging finally gives the IV
estimator as

θ̂
young
IV = θ + ωρ,

≥ θ,

where

ω ≡ p−1
[

ρ−1 log
(

p
(

exp(ρ−1θ) + 2
)ρ

+ (1− p)3ρ
)

−(p log
(

exp(ρ−1θ) + 2
)
+ (1− p) log (3))

]
≥ 0

such that defining ω1 ≡ (exp(ρ−1θ) + 2)ρ and ω2 ≡ 3ρ, the bias of the IV estimator
can be seen to be the difference in the log-expected value and the expected log value;

ω = p−1ρ−1(log(pω1 + (1− p)ω2)− (p log ω1 + (1− p) log ω2)),

which is always positive since the logarithm is a concave function.
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B Solving the Life Cycle Model

To reduce the number of state variables, all relations are normalized by permanent
income, Pt, and small letter variables denote normalized quantities (e.g., ct = Ct/Pt).
The model is solved recursively by backwards induction, starting with the terminal
period, T. Within a given period, optimal consumption is found using the Endogenous
Grid Method (EGM) by Carroll (2006).

The EGM constructs a grid over end-of-period wealth, at, rather than beginning-
of-period resources, mt. Denote this grid of Q points as ât = (at, a1

t , . . . , aQ−1
t ) in which

at is a lower bound on end-of-period wealth that I will discuss in great detail below.
The endogenous level of beginning-of-period resources consistent with end-of-period
assets, ât, and optimal consumption, c?t , is given by mt = ât + c?t (mt, zt).

In the terminal period, independent of the presence of children, households con-
sume all their remaining wealth, cT = mT. In preceding periods, in which households
are retired, consumption across periods satisfy the Euler equation

u′(ct) = max
{

u′(mt) , Rβ
v(zt+1; θ)

v(zt; θ)
u′(ct+1)

}
, ∀t ∈ [Tr, T],

where consumption cannot exceed available resources. When retired, households do
not produce new offspring and the age of children (zt) evolves deterministically.

The normalized consumption Euler equation in periods prior to retirement is given
by

u′(ct) = max
{

u′(mt + κ) , RβEt

[
v(zt+1; θ)

v(zt; θ)
u′(ct+1Gt+1ηt+1)

]}
, ∀t < Tr,

such that when ât > −κ optimal consumption can be found by inverting the Euler
equation

c?t (mt, zt) =

(
βREt

[
v(zt+1; θ)

v(zt; θ)
(Gt+1ηt+1)

−ρ č?t+1((Gt+1ηt+1)
−1Rât + εt+1︸ ︷︷ ︸

=mt+1

, zt+1)
−ρ

])− 1
ρ

,

where č?t+1(mt+1, zt+1) is a linear interpolation function of optimal consumption next
period, found in the last iteration. Since ât is the constructed grid, it is trivial to deter-
mine in which regions the credit constraint is binding and not. I will discuss this in
detail below.

The expectations are over next period arrival of children (zt+1) and transitory (εt+1)
and permanent income shocks (ηt+1). Eight Gauss-Hermite quadrature points are
used for each income shock to approximate expectations. Q = 80 discrete grid points
are used in ât to approximate the consumption function with more mass at lower lev-
els of wealth to approximate accurately the curvature of the consumption function.
The number of points was chosen such that the change i the optimized log likelihood
did not change significantly, as proposed in Fernández-Villaverde, Rubio-Ramírez and
Santos (2006).

The arrival probability of a child next period is a function of the wife’s age and
number of children today, πt+1(zt). No more than three children can live inside a
household at a given point in time and infants cannot arrive when the household is
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older than 43. The next period’s state is therefore calculated by increasing the age of
children by one and if the age is 21, the child moves. In principle, there is 223 = 10, 648
combinations three children can be either not present (NC) or aged zero through 20.
To reduce computation time, children are organized such that child one is the oldest
at all times, the second child is the second oldest and child three is the youngest child.
To illustrate, imagine a household which in period t has, say, two children aged 20 and
17, zt = (age1,t = 20, age2,t = 17, age3,t = NC), then, in period t + 1, only one child
will be present; zt+1 = (age1,t+1 = 18, age2,t+1 = NC, age3,t+1 = NC), given no new
offspring arrives. Had new offspring arrived, then age2,t+1 = 0.

B.1 Credit Constraint and Utility Induced Constraints

Since the EGM works with end-of-period wealth rather than beginning-of-period re-
sources, credit constraints can easily be implemented by adjusting the lowest point
in the grid, at. The potentially binding credit constraint next period is implemented
by the rule, c?t+1 = mt+1 if mt+1 is lower than some threshold level, m?

t+1. Including
the credit constraint as the lowest point, at+1 = −κ, the lowest level of resources en-
dogenously determined in the last iteration, mt+1, is the exact level of resources where
households are on the cusp of being credit constrained, i.e., m?

t+1 = mt+1. This ensures
a very accurate interpolation and requires no additional handling of shadow prices of
resources in the constrained Euler equation, denoted λt+1 in Section 2.

Besides the exogenous credit constraint, κ, a “natural” or utility induced self-imposed
constraint can be relevant such that the procedure described above should be modi-
fied slightly. This is because households want to accumulate enough wealth to buffer
against a series of extremely bad income shocks to ensure strictly positive consump-
tion in all periods even in the worst case possible.

Proposition 1. The lowest possible value of normalized end-of-period wealth consistent with
the model, periods prior to retirement, can be calculated as

at = −min{Ωt, κ} ∀t ≤ Tr − 2

where, denoting the lowest possible values of the transitory and permanent income shock as ε,
and η, respectively, Ωt can be found recursively as

Ωt =

{
R−1GTr εTr ηTr if t = Tr − 2,

R−1(min{Ωt+1, κ}+ εt+1)Gt+1ηt+1 if t < Tr − 2.

Proof. To see this, define Et[·] as the worst-case expectation given information in pe-
riod t and note that in the last period of working life, Tr − 1, households must satisfy
ATr−1 ≥ 0. In the second-to-last period during working life, households must then
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leave a positive amount of resources in the worst case possible,

ETr−2[MTr−1] > 0,
ETr−2[RATr−2 + YTr−1] > 0,

RATr−2 + GTr−1PTr−2εTr−1ηTr−1 > 0,
m

ATr−2 > −R−1GTr−1εTr−1ηTr−1︸ ︷︷ ︸ PTr−2

≡ΩTr−2

.

Combining this with the exogenous credit constraint, κ, end-of-period wealth should
satisfy

ATr−2 > −min{ΩTr−2, κ}PTr−2.

In period Tr− 3, households must save enough to insure strictly positive consump-
tion next period while satisfying the constraint above, in the worst case possible,

ETr−3[MTr−2] > −min{ΩTr−2, κ}ETr−3[PTr−2],
RATr−3 + GTr−2PTr−3εTr−2ηTr−2 > −min{ΩTr−2, κ}GTr−2PTr−3ηTr−2,

m
ATr−3 > −R−1(min{ΩTr−2, κ}+ εTr−2)GTr−2ηTr−2︸ ︷︷ ︸

≡ΩTr−3

PTr−3,

such that end of period wealth in period Tr − 3 should satisfy

ATr−3 > −min{ΩTr−3, κ}PTr−3.

Hence, we can find Ωt recursively by the formula in Proposition 1 and calculate the
lowest value of the grid of normalized end-of-period wealth as at = −min{Ωt, κ}.
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