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Abstract

We derive the optimal hedging ratios for a portfolio of assets driven by a Coin-
tegrated Vector Autoregressive model (CVAR) with general cointegration rank. Our
hedge is optimal in the sense of minimum variance portfolio.

We consider a model that allows for the hedges to be cointegrated with the hedged
asset and among themselves. We find that the minimum variance hedge for assets
driven by the CVAR, depends strongly on the portfolio holding period. The hedge
is defined as a function of correlation and cointegration parameters. For short hold-
ing periods the correlation impact is predominant. For long horizons, the hedge ratio
should overweight the cointegration parameters rather then short-run correlation in-
formation. In the infinite horizon, the hedge ratios shall be equal to the cointegrating
vector. The hedge ratios for any intermediate portfolio holding period should be based
on the weighted average of correlation and cointegration parameters.

The results are general and can be applied for any portfolio of assets that can be
modeled by the CVAR of any rank and order.

Keywords: hedging, cointegration, minimum variance portfolio

JEL Classification: C22, C58, G11

∗The first author is grateful to National Science Center Poland for funding with grant Preludium No.
2013/09/N/HS4/03751. The second author is grateful to CREATES - Center for Research in Econometric
Analysis of Time Series (DNRF78), funded by the Danish National Research Foundation.
†Econometric Institute and Tinbergen Institute, Erasmus University Rotterdam, P.O. Box 1738, NL-3000

DR Rotterdam, The Netherlands. E-mail: gatarek@tlen.pl
‡Department of Economics, University of Copenhagen and CREATES, Department of Economics and

Business, Aarhus University, DK-8000 Aarhus C. E-mail: soren.johansen@econ.ku.dk.

1



1 Introduction

The idea of minimum variance portfolio dates back to [Markowitz, 1952]. It is defined as a
portfolio of individually risky assets that, when taken together, result in the lowest possible
risk level for return. Such a portfolio hedges each investment with an offsetting investment;
the individual investor’s choice on how much to offset investments depends on the level of
risk and expected return he/she is willing to accept. The investments in a minimum variance
portfolio are individually riskier than the portfolio as a whole. The name of the term comes
from how it is mathematically expressed in Markowitz Portfolio Theory, in which volatility
is used as a replacement for risk, and in which less variation in volatility correlates to less
risk in an investment. Since the seminal paper of [Markowitz, 1952], the notion of minimum
variance portfolio and minimum variance hedging has been explored and extended heavily
in both financial and econometric literature, see [Grinold and Kahn, 1999]. However, the
common denominator of those methods remain the same. They either aim at minimizing
volatility of a portfolio itself or volatility of some function of a portfolio. This function often
represents the evolution of the portfolio over time. This is also the purpose of the hedging
problem we define.

In general, the hedging methods can be divided in two classes: static and dynamic
methods. The static hedging techniques assume that the hedged portfolio is selected given
information available in period t, and remains unchanged during the entire holding period
t, . . . , t + h. On the contrary, the dynamic hedging methods allow for rebalancing of the
portfolio during the holding period.

Our method is static. We find the optimal hedging ratios for a portfolio of assets driven
by a Cointegrated Vector Autoregressive model (CVAR). We start with an example of a
simple process, which relates the hedged asset to hedges via a cointegrating relation. The
hedges are exogenous and are modeled by random walks.

The general results that we find, define the optimal hedging ratios as a function of
correlation and cointegration parameters in the model. We find that a minimum variance
portfolio held for one period should be based on the hedge ratios driven only by correlation.
At the infinite horizon, the hedge ratios will be equal to a cointegrating vector. The hedge
ratios for any intermediate portfolio holding period should be based on the weighted average
of the correlation and cointegration parameters. Our result are general and can be applied
to a CVAR model of any rank and order.

2 A simple example of hedging cointegrated variables

2.1 The model

We consider a bivariate cointegration regression model with an endogenous variable y1t

cointegrated with an exogenous variable y2t

y1t = βy2t + u1t,

y2t = y2,t−1 + u2t,
(1)

where ut = (u1t, u2t)
′ are independent identically distributed (i.i.d.) random errors with

mean zero and variance

Φ =

(
φ11 φ12

φ21 φ22

)
.
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An alternative formulation of this model is the error correction form which we find by
substituting y2t = y2,t−1 + u2t into the first equation of (1) to obtain

∆y1t = −(y1t−1 − βy2,t−1) + v1t,

∆y2t = v2t,
(2)

where v1t = βu2t + u1t and v2t = u2t, so that vt are i.i.d. with mean zero and variance

Ξ =

(
φ11 + β2φ22 + 2βφ12 φ12 + βφ22

φ21 + βφ22 φ22

)
=

(
ξ11 ξ12

ξ21 ξ22

)
.

Let It denote the information in the process ys for s ≤ t, then the best linear predictor of
y1,t+1 from y2,t+1 and It solves the problem

min
δ
V ar(y1,t+1 − δy2,t+1|It, y2,t+1).

The solution is

δ∗ =
Cov(y1,t+1, y2,t+1|It)

V ar(y2,t+1|It)
= ξ−1

22 ξ21 = β + φ−1
22 φ21 = βCorr, (3)

and the minimal variance is

ξ11 − ξ12ξ
−1
22 ξ21 = φ11 − φ12φ

−1
22 φ21.

we call βCorr the β-correction parameter.

2.2 The hedging problem and its solution in (1)

In financial market one can consider a long or a short position in a given security. The long
position means the holder of the position owns the security and will profit if the price of the
security goes up. The short position is defined as the sale of a borrowed security, with the
expectation that the asset will fall in value. Then, the investor must eventually return the
borrowed security by buying it back from the market. Because it can be purchased cheaper
than at the time of borrowing, the difference in price results in profit for the investor.

With two assets with prices y1t and y2t, we want to hedge one unit of the first asset using
βh of the second asset, and create a portfolio with value

st = y1t − βhy2t. (4)

Her h indicates that we want to keep the portfolio for h periods and determine βh to minimizes
the conditional variance of the value at time t + h given the information up to time t,
It = σ(ys, s ≤ t), that is

min
βh

V ar(st+h|It) = min
βh

V ar(y1,t+h − βhy2,t+h|It). (5)

In portfolio hedging, traditionally a long position in asset y1t is hedged with a short
position in another asset y2t. Thus the sign in front of the weight, or hedging parameter, βh
symbolizes the market convention regarding hedging practice.

The optimal portfolio is selected in period t and it is held up to period t+h. It is a static
hedge, as the portfolio is not rebalanced during periods t, . . . , t+ h.

We present an optimal hedge which explores both the long term cointegration parameter
β, but also the correlation between the random errors in y1t and y2t, and formulate it as
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Theorem 1 Let yt, t = 1, . . . , T, be bivariate and given by

y1t = βy2t + u1t,

y2t = y2,t−1 + u2t,

where ui are i.i.d. (0,Φ). Then the optimal hedge coefficient for the portfolio st = y1t−βhy2t

at time horizon h is given by

β∗h = β + h−1φ−1
22 φ21 = h−1(β(h− 1) + βCorr), (6)

and the minimal variance is

V ar(y1,t+h − β∗hy2,t+h|It) = φ11 − h−1φ12φ
−1
22 φ21.

Proof. We find from (1) that

y1,t+h − βhy2,t+h = y1,t+h − βy2,t+h − (βh − β)y2,t+h = u1,t+h − (βh − β)y2,t+h

and
y2,t+h = y2t + u2,t+1 + · · ·+ u2,t+h.

This implies that

V ar(st+h|It) = φ11 + (βh − β)2hφ22 − 2φ12(βh − β)

which is minimized for βh = β + h−1φ−1
22 φ21, which proves the result.

The hedge defined in (6) is a weighted average of the correlation correction, βCorr, and
the cointegration parameter with weights: 1/h and (h−1)/h. The resulting formula complies
with the stylized facts about the short- and long-term hedging in the sense that for a short
period, h = 1, we hedge only based on the correlation

β?h = βCorr,

whereas for a long period, when h→∞, we hedge only based on cointegration

β?h = β.

2.3 Hedging in a simple multivariate model

This result generalizes immediately to the case of many possibly correlated hedges as given
by the model with n assets, from which n − 1 are exogenous, and are used as hedges. Let
yt = (y1t, y

′
2t)
′ ∈ R1+(n−1), t = 1, . . . , T be given by

y1t = β′y2t + u1t

y2t = y2,t−1 + u2t,
(7)

where ut are i.i.d. with mean zero and variance

Φ =

(
φ11 Φ12

Φ21 Φ22

)
.
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The main difference between the univariate case (with one hedge modeled as a random walk
y2t) and the multivariate case, is the possibility of correlation between the innovations of
the random walks y2t, y3t, . . . , ynt. Two hedges modeled by correlated random walks are
substitutes. In the extreme case that two potential hedges are fully correlated, having only
one of them to hedge y1t is enough for an optimal portfolio. The optimal hedges that we
derive for the portfolio based on assets modeled according to (7) takes into account not
only the cointegration parameters, but also the correlation in order to account for optimal
amount of hedges in a portfolio. By comparing the variance of the optimal portfolio, for
the multivariate case with the result for the univariate case we can see what is gained by
including more hedges.

Theorem 2 Let yt = (y1t, y
′
2t)
′ ∈ R1+(n−1), t = 1, . . . , T be given by

y1t = β′y2t + u1t,

y2t = y2,t−1 + u2t,

where ut are i.i.d. (0,Φ). Then the optimal hedge coefficient for the portfolio st = y1t−β′hy2t

at time horizon h is given by

β∗h = β + h−1Φ−1
22 Φ21 = h−1(β(h− 1) + βCorr),

and the minimal variance is

V ar(y1,t+h − β∗′h y2,t+h|It) = φ11 − h−1Φ12Φ
−1
22 Φ21.

Proof. The proof is the same as for Theorem 1.
It is seen that the variance of the optimal portfolio increases with the horizon h, from

the conditional variance of u1t given u2t, φ11 − Φ12Φ
−1
22 Φ21 for h = 1, to the variance of the

cointegrating relation φ11 for h→∞. It is also seen that including more correlated hedges,
the variance of u1t given u2t will decrease, because φ11 − Φ12Φ

−1
22 Φ21 can be interpreted as

a conditional variance of u1t given u2t, and conditioning on more variables decreases the
conditional variance. The limit for h→∞ is always given by φ11.

3 Hedging in the general cointegration model

The analysis of exogenous hedges is now generalized to the general cointegration model, see
[Johansen, 1996], where we use the error correction formulation. For notational convenience
we give the result for the model with one lag, but the result for more lags can be derived from
the companion form. Thus, we consider a model that allows the hedges to be cointegrated
with y1t and among themselves such that the number of cointegrating relations could be
more than one. The assumption of full mean reversion of models (1) and (7) is dropped and
general adjustment coefficients are allowed.

Theorem 3 Let yt ∈ Rn, t = 1, . . . , T be given by

∆yt = αγ′yt−1 + vt,
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where vt are i.i.d.(0,Ξ) and α and γ are r× n matrices, and the eigenvalues of ρ = Ir + γ′α
have absolute value less than 1. Then for C = γ⊥(α′⊥γ⊥)−1α′⊥ we find

Σh = V ar(yt+h|It) = hCΞC ′ + α(γ′α)−1[
h−1∑
i=0

ρiγ′Ξγρ′i](α′γ)−1α′ (8)

− α(γ′α)−2(Ir − ρh)γ′ΞC ′ − CΞγ(Ir − ρ′h)(α′γ)−2α′.

Proof. See Appendix.
In the following we assume yt = (y1t, y

′
2t)
′ ∈ R× Rn−1, and that there is a cointegrating

relation of the form y1t+β
′
1y2t, and that the cointegrating vectors have been written, without

loss of generality, as

γ = (γ1, γ2) =

(
1 0
β1 β2

)
(9)

for γ1 ∈ Rn and γ2 ∈ Rn×(r−1). We define the variance of the stationary variables γ′yt as

Γ = V ar(γ′yt) = V ar

(
y1t + β′1y2t

β′2y2t

)
=

(
Γ11 Γ12

Γ21 Γ22

)
. (10)

If the portfolio is chosen as a cointegrating relation, we find the optimal portfolio in the
next Theorem.

Theorem 4 Let yt = (y1t, y
′
2t)
′ ∈ R× Rn−1. If the cointegrating relations are normalized as

in (9), then the variance of the stationary relation y1t − β′y2t is minimized for β ∈ Rn−1 by

β∗coint = −β1 + β2Γ
−1
22 Γ21. (11)

Proof. The cointegrating vector (1,−β′)′ is a linear combination of the vectors in γ, and
therefore there exists a vector ξ(r−1)×1 such that(

1
−β

)
=

(
1
β1

)
+

(
0
β2

)
ξ =

(
1

β1 + β2ξ

)
,

so that y1t − β′y2t = y1t + β′1y2t + ξ′β′2y2t, which has variance Γ11 + ξ′Γ21 + Γ12ξ + ξ′Γ22ξ,
which is minimized for

ξ∗ = −Γ−1
22 Γ21

see (10), giving the optimal cointegrating portfolio

y1t − β∗′cointy2t = y1t + β′1y2t − Γ12Γ
−1
22 β

′
2y2t.

Note that in the result in Theorem 4 the parameter β1 is not identified, because

γξ =

(
1 0

β1 + β2ξ β2

)
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spans the same space as γ. The result in (11), however, is invariant to identification because
if γξ were the cointegrating relations, then using the expression in (11) we find

β∗coint,ξ = −(β1 + β2ξ) + β2V ar(β2y2t)
−1Cov(β′2yt, y1t + (β1 + β2ξ)y2t)

= −(β1 + β2ξ) + β2Γ
−1
22 (Γ21 + Γ22ξ) = −β1 + β2Γ

−1
22 Γ21 = βcoint.

Thus the result does not depend on the identification of β1.
In the case of n − 1 exogenous random walks, the optimizing portfolio approaches the

cointegrating vector. In general case, the cointegration rank r might deviate from 1, but we
show that in general the optimal portfolio converges to the optimal cointegrated portfolio,
see (11).

Theorem 5 Let yt = (y1t, y
′
2t)
′ ∈ R× Rn−1 and decompose Σh, see (8), as

Σh =

(
Σh11 Σh12

Σh21 Σh22

)
.

Then the optimal hedge for the portfolio st+h = y1,t+h − β′hy2,t+h = (1,−β′h)′yt+h at time
horizon h is given by

β∗h = Σ−1
h22Σh21, (12)

and the minimal variance is

V ar(y1,t+h − β∗hy2,t+h|It) = Σh11 − Σh12Σ
−1
h22Σh21.

Moreover it holds that, with βcoint defined by (11), we have

β∗h → β∗coint for h→∞. (13)

Proof: See Appendix.

3.1 A special case

The results in Theorem 5 cover the cases considered so far, and we give here a simple special
case with one cointegrating relation and n− 1 exogenous hedges, but we do not assume full
mean reversion. Thus, the equations can be written in error correction form as

∆y1t = α1(y1,t−1 − β′y2,t−1) + β′u2t + u1t

∆y2t = u2t

where ut are i.i.d.(0,Φ). For α1 = −1 we find model (7). We find the covariance matrix

Ξ = V ar

(
β′u2t + u1t

u2t

)
=

(
φ11 + β′Φ21 + Φ12β + β′Φ22β β′Φ22 + Φ12

Φ21 + Φ22β Φ22

)
,

and the parameters α = (α1, 0, . . . , 0)′ = α1e
′
1, γ = (1,−β′)′, γ′⊥ = (β, In−1) and α⊥ = e1⊥,

where e1 = (1, 0, . . . , 0)′ , but also

C = In − α(γ′α)−1γ′ =

(
0 β′

0 In−1

)
.
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Inserting into the general expression (8), we first find that because α⊥ = e1⊥ we get

Σh22 = he′1⊥Ξe1⊥ = hΦ22.

Next we see that e′1⊥C = e′1⊥, ρ = 1 + γ′α = 1 + α1, C
′e1 = (0, β′) and we find

Σh21 = e′1⊥Σhe1 = he′1⊥Ξ(0, β′)− e′1⊥Ξγ(1− (1 + α1)
h)α−1

1

= hΦ22 − (Φ21 + Φ22β − Φ22β)(1− (1 + α1)
h)α−1

1

= hΦ22 − Φ21(1− (1 + α1)
h)α−1

1

and therefore
β∗h = β + h−1Φ−1

22 Φ21((1 + α1)
h − 1)α−1

1 . (14)

In particular we can take α1 = −1, see (1), and find the full mean reversion case which gives

β∗h = β + h−1Φ−1
22 Φ21,

see Theorem 2, but in general the result for β∗h depends in a complicated way on the param-
eters of the model.

4 Summary

We derive the optimal hedging ratios for a portfolio of assets driven by a Cointegrated Vector
Autoregressive model with general cointegration rank. Our hedge is optimal in the sense of
minimum variance portfolio. For illustration we start with the exogenous case, in which the
hedged asset depends on hedges via a cointegration relation, and the hedges are exogenous,
modeled by random walks. Then we consider the CVAR, that allows for the hedges to
be cointegrated with the hedged asset and among themselves. We find that the minimum
variance hedge for assets driven by the CVAR, depends strongly on the portfolio holding
period. The hedge is defined as a function of correlation and cointegration parameters.
For short holding periods the correlation impact is predominant. For long horizons, the
hedge ratio should emphasize the cointegration parameters rather then short-run correlation
information. At the infinite horizon, the hedge ratios shall be equal to a cointegrating vector,
which is the optimal cointegrated portfolio. The hedge ratios for any intermediate portfolio
holding period should be based on the weighted average of correlation and cointegration
parameters.

Our results are general and can be applied for any portfolio of assets that can be modeled
by the CVAR of any rank and order. The further research aims at a dynamic version of the
developed methodology. In that case the static hedge kept for the entire portfolio holding
horizon shall be replaced by a hedge that is dynamically rebalanced during this period.
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5 Appendix

Proof of Theorem 3. From the equations we find that the cointegrating relation γ′yt is
an r−dimensional AR(1) process with autoregressive parameter ρ = Ir + γ′α, given by

γ′yt = ργ′yt−1 + γ′ut.

By forward recursion from i = t+ 1, . . . , t+ h we find

γ′yt+h = ρhγ′yt + ρh−1γ′ut+1 + · · ·+ ργ′ut+h−1 + γ′ut+h.

Similarly we find that α′⊥yt is a random walk

α′⊥yt+h = α′⊥yt + α′⊥ut+1 + · · ·+ α⊥ut+h.

We combine these results using the identity

In = γ⊥(α′⊥γ⊥)−1α′⊥ + α(γ′α)−1γ′ = C + α(γ′α)−1γ′,

where α⊥ is an n× (n− r) matrix of rank n− r for which α′α⊥ = 0. We find

yt+h = Cyt+h + α(γ′α)−1γ′yt+h

=
t+h∑
i=t+1

(Cui + α(γ′α)−1ρt+h−iγ′ui) + (C + α(γ′α)−1ρhγ′)yt = z1t + z2t,

where z1t is independent of z2t so that Σh = V ar(yt+h|It) = V ar(z1t). Using
∑h−1

i=0 ρ
i =

(Ir − ρ)−1(Ir − ρh) = −(γ′α)−1(Ir − ρh), we therefore find that

Σh = V ar(z1t) =
h−1∑
i=0

[C + α(γ′α)−1ρiγ′]Ξ[C ′ + γρ′i(α′γ)−1α′], (15)

which reduces to the expression in (8).

Proof of Theorem 5. The optimal portfolio β∗h is the best linear predictor of y1t+h given
y2t+h and It and is given by the coefficient

β∗h = Σ−1
h22Σh21,

and the minimal (conditional) variance is

V ar(y1,t+h − β∗hy2,t+h|It) = Σh11 − Σh12Σ
−1
h22Σh21.

We therefore have to discuss the limits of the matrices Σh22 and Σh21.We note that
h−1Σh → CΞC ′, which is singular, and that may also hold for the limit of h−1Σn22. Thus,
we have to analyse the matrix in more detail.
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We first note the expression for γ and γ⊥ given by

γ =

(
1 0
β1 β2

)
and γ⊥ =

(
−β′1β2⊥
β2⊥

)
,

so that for e1 = (1, 0, . . . , 0)′ ∈ Rn we find the first row of C is

C ′1 = e′1C = −β′1β2⊥(α′⊥γ⊥)−1α′⊥,

and we define the remaining rows as

C ′2 = e′1⊥C = β2⊥(α′⊥γ⊥)−1α′⊥.

Similarly we define the first row of α(γ′α)−1 by α′1 = e′1α(γ′α)−1, and the remaining rows
are α′2 = e′1⊥α(γ′α)−1.

From (8) we find, multiplying by e1⊥ and its transposed, that

Σh22 = hC ′2ΞC2 + α′2

h−1∑
i=0

ρiγ′Ξγρ′iα2

− α′2(γ′α)−1(Ir − ρh)γ′ΞC2 − C ′2Ξγ(Ir − ρ′h)(α′γ)−1α2,

with a similar expression for Σh21. We introduce the coefficients, see (10),

Γh =
h−1∑
i=0

ρiγ′Ξγρ′i →
∞∑
i=0

ρiγ′Ξγρ′i = V ar(γ′yt) = Γ,

Θh = (Ir − ρh)γ′Ξα⊥ → γ′Ξα⊥ = Θ,

Ω = (α′⊥γ⊥)−1α′⊥Ξα⊥(γ′⊥α⊥)−1,

to simplify the reductions and find the expressions

Σh22 = hβ2⊥Ωβ′2⊥ + α′2Γhα2 − α′2Θhβ
′
2⊥ − β2⊥Θ′hα2

Σh21 = −hβ2⊥Ωβ′2⊥β1 + α′2Γhα1 + α′2Θhβ
′
2⊥β1 − β⊥2Θ

′
hα1.

In order to study the limits of Σh22 and Σh21 we introduce the non-singular (n− 1)× (n− 1)
matrices

A = (β2, β̄2⊥) and Ah = (β2, h
−1β̄2⊥),

and the rows of α
α1 = (α′γ)−1α′e1 and α2 = (α′γ)−1α′e1⊥.

Then, it holds that

Ir = γ′α(γ′α)−1 =

(
1 β′1
0 β′2

)(
α′1
α′2

)
=

(
α′1 + β′1α

′
2

β′2α
′
2

)
=

(
e1r
e1r⊥

)
(16)

and hence

β′2α
′
2Γα2β2 = e′1⊥Γe1⊥ = Γ22

β′2α
′
2Γ(α1 + α2β1) = e′1⊥Γe1 = Γ21.
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Inserting these results above we get

A′hΣh22A =

(
β′2α

′
2Γhα2β2 β′2α

′
2(Γhα2β̄2⊥ −Θh)

h−1(β̄′2⊥α
′
2Γh −Θ′h)α2β2 Ω + h−1(β̄′2⊥α

′
2Γhα2β̄2⊥ − β̄′2⊥α′2Θh −Θ′hα2β̄

′
2⊥)

)
→
(

Γ22 e′1⊥(Γα2β̄2⊥ −Θ)
0 Ω

)
and

A′hΣh21 =

(
β′2α

′
2(Γhα1 + Θhβ

′
2⊥β1)

−Ωβ′2⊥β1 + h−1(β̄′2⊥α
′
2Γhα1 + β̄′2⊥α

′
2Θhβ

′
2⊥β1 − β2⊥Θ′hα1)

)
→
(
e′1⊥(Γα1 + Θβ′2⊥β1)

−Ωβ′2⊥β1

)
.

This shows that

β∗h → (β2, β̄2⊥)

(
Γ22 e′1r⊥(Γα2β̄2⊥ −Θ)
0 Ω

)−1(
e′1r⊥(Γα1 + Θβ′2⊥β1)

−Ωβ′2⊥β1

)
= (β2, β̄2⊥)

(
Γ−1

22 −Γ−1
22 e
′
1r⊥(Γα2β̄2⊥ −Θ)Ω−1

0 Ω−1

)(
e′1r⊥(Γα1 + Θβ′2⊥β1)

−Ωβ′2⊥β1

)
= (β2, β̄2⊥)

(
Γ−1

22 e
′
1r⊥Γ(α1 + α2β̄2⊥β

′
2⊥β1)

−β′2⊥β1

)
= β2Γ

−1
22 e
′
1r⊥Γ(α1 + α2β̄2⊥β

′
2⊥β1)− β̄2⊥β

′
2⊥β1.

We now substitute β̄2⊥β
′
2⊥ = In − β2β̄

′
2 and find the expression

β2Γ
−1
22 e
′
1r⊥Γ(α1 + α2(In−1 − β2β̄

′
2)β1)− (In−1 − β2β̄

′
2)β1

= (β2Γ
−1
22 e
′
1r⊥Γ(α1 + α2β1)− β1)− β2Γ

−1
22 e
′
1r⊥Γα2β2β̄

′
2β1 + β2β̄

′
2β1

= (β2Γ
−1
22 Γ21 − β1)− β2Γ

−1
22 Γ22β̄

′
2β1 + β2β̄

′
2β1

= (−β1 + β2Γ
−1
22 Γ21)− (β2Γ

−1
22 Γ22 − β2)β̄

′
2β1 = −β1 + β2Γ

−1
22 Γ21,

see (16).
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