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1 Introduction

Dynamic games have had a major impact on both economic theory and applied work over the

last four decades, and much of it has been inspired by the Markov perfect equilibrium (MPE)

solution concept due to Maskin and Tirole (1988). While there has been considerable progress in

the development of algorithms for computing or approximating an MPE of these games, including

the pioneering work by Pakes and McGuire (1994) and recent progress on homotopy methods for

finding multiple equilibria of both static and dynamic games (Borkovsky et. al. 2010 and Besanko

et. al. 2010), as well as algebraic approaches for finding equilibria in cases where the equilibrium

conditions can be expressed as certain classes of polynomial equations (Datta, 2010 and Judd et.

al. 2012), it still remains an extremely challenging computational problem to find even a single

MPE of a dynamic game, much less all of them.

This paper reports progress on a different approach for computing all MPE that is based on

decomposition of the overall dynamic game into more tractable “stage games”, and is applicable

to a class of dynamic Markovian games that we refer to as directional dynamic games or DDG’s.

We show that many dynamic games exhibit a type of directionality that is not directly linked to the

passage of calendar time (which of course makes every dynamic game inherently directional), but

rather pertains to the stochastic evolution of the state of the game. In this paper we formalize this

concept and present algorithms that allow for computation of all MPE in the class of DDG’s.1

A DDG is a game where some of the state variables evolve in a manner that satisfies an intu-

itive notion of “directionality.” Examples of DDGs include chess with monotonically decreasing

number of pieces on the board, Rubinstein’s (1982) model of bargaining assuming that the pie is

stochastically shrinking, and many examples in industrial organization such as patent races where

part of the state of the game represents “technological progress” that improves over time. We solve

a model of Bertrand pricing with leapfrogging investments that is an example of this type.

When the state space is finite we can exploit directionality and partition it into a finite number

of elements we call “stages”. Similar to the “arrow of time” the evolution of the directional com-

ponent of the state space is unidirectional, although it does not necessarily have to be linear, i.e.

there may be various routes that the game may take. Yet, if we index the stages by τ and order

them from 1 to T , it holds that once the game reaches stage τ there is zero probability of returning

to any earlier stage τ′ < τ under any feasible Markov strategy of the game. The partition of the

1The idea of exploiting the directionality of the state space had been used in specific applications before, i.e. Cabral,
Riordan (1994), Cabral (2011), Judd, Renner, Schmedders (2012). A similar idea is central to the upwind Gauss-Seidel
method for solving Bellman equations in single agent finite state models (Judd, 1998, p.418).

1



state space into stages implies a corresponding partition of the overall DDG into a finite number of

stage games. Our concept of stage game is different than the traditional notion of a single period

static stage game in the literature on repeated games. In our setting the stage games will generally

be dynamic, though on a much reduced state space that makes them much simpler than the overall

DDG.

We show that a MPE for the overall dynamic game can be recursively constructed from the

MPE selected for each of the component stage games. We propose a state recursion algorithm

that computes a MPE of the overall game in a finite number of steps. State recursion is a form of

backward induction, but one that is performed over the stages of the game τ rather than over time

t. We start the backward induction by computing an MPE of the last stage of the DDG, T , which

we refer to as the end game.

State recursion can be viewed as a generalization of the method of backward induction that

Kuhn (1953) and Selten (1965) proposed as a method to find subgame perfect equilibria of finite

extensive form games. However, the backward induction that Kuhn and Selten analyzed is per-

formed on the game tree defined in the extensive form representation of the game. State recursion

is not performed on the game tree, but rather can be viewed as a type of backward induction that is

performed on a different object, a directed acyclic graph (DAG) that can be used to visualize the

partial order on the state space instead of the temporal order implied by the game tree.

If a dynamic game exhibits directionality in the state space, state recursion can be a much more

effective method for finding a MPE than traditional time-based backward induction methods. For

example, in an infinite horizon DDG there is no last period for performing backward induction in

time, as required to do backward induction on the game tree. The usual method for finding a MPE

for these problems involves a variant of the method of successive approximations to find a fixed

point of the system of Bellman equations of the players. However, it is well known that in dynamic

games the Bellman equations generally do not satisfy the requisite continuity conditions to consti-

tute a contraction mappings. As a result, there is no guarantee that successive approximations will

converge to a fixed point and hence a MPE of the game.2

State recursion, however, does not suffer from this problem: conditional on the availability

of the solution method for stage games it will return a MPE of the full dynamic game in a finite

number of steps T which equals the total number of stages in the game. State recursion will

2Note that the contraction property does hold in single agent games which we can view as Markovian games against nature.
This implies that traditional time-based backward induction reasoning will compute an approximate MPE for these problems,
where the MPE is simply an optimal strategy for the single agent, his “best reply to nature”. Nevertheless, we show that
when there is directionality in single agent dynamic programming problems, state recursion will be far faster than time-based
backward induction, and will actually converge to the exact solution of the problem in a finite number of steps.
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not cycle or fail to converge, or approach a candidate MPE only asymptotically as the number

of iterations or steps tends to infinity, unlike what happens with time-based recursions such as

successive approximations on the players’ Bellman equations.

State recursion finds a single MPE of the overall DDG, but when the game has multiple equilib-

ria the selected MPE depends on which equilibrium is chosen in the end game and all other stages

of the game by the state recursion algorithm. Assume that there is an algorithm that can find all

MPE of each of the stage games of the DDG and that the number of MPE in each stage is finite.

We introduce the Recursive Lexicographical Search (RLS) algorithm that repeatedly invokes state

recursion in an efficient way to compute all MPE of the DDG by systematically cycling through

all feasible equilibrium selection rules (ESRs) for each of the component stage games of the DDG.

The general idea of how the presence of multiple equilibria of a stage game can be used to

construct a much larger set of equilibria in the overall game was used by Benoit and Krishna

(1985) to show that a version of the “Folk Theorem” can hold in finitely repeated games. The

prevailing view prior to their work was that the sort of multiplicity of equilibria implied by the

Folk Theorem for infinitely repeated games cannot happen in finitely repeated games because a

backward induction argument from the last period of the game was thought to generally result in a

unique equilibrium of the overall repeated game. However, Benoit and Krishna did not propose an

algorithm or a constructive approach for enumerating all possible subgame perfect equilibria of a

finitely repeated game, whereas the RLS algorithm we propose can be used to find and enumerate

all such equilibria.

We use the RLS algorithm to find all MPE of two variants of a dynamic duopoly model of

Bertrand price competition with leapfrogging investments that we analyse in a companion paper

Iskhakov, Rust and Schjerning (2013). The RLS algorithm revealed important new insights into

the nature of long run price competition between duopolists who have equal access to an improving

state of the art technology — a class of models that have not been well understood before.

Our first example is a dynamic duopoly model of Bertrand price competition with cost-reducing

investments, where the duopolists can invest in an exogenously improving state of the art produc-

tion technology in an attempt to gain a production cost advantage over their rival, at least temporar-

ily. We assume that both pricing and investment decisions are made simultaneously in each time

period. The directionality of the game results from the facts that on one hand the state of the art

marginal cost of production only decreases over time (stochastically or deterministically) but never

increases, and that the existing marginal costs of firms 1 and 2 never increase but only decrease

when firms decide to acquire the state of the art technology. If we assume that the costs can only
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take one of a finite number of possible values, we can show that this game satisfies our definition

of a finite state DDG.

We show that the stage games in this problem are anti-coordination games that typically have

either one, three, or five MPE, and we provide an algorithm that efficiently computes all of them.

We then show how state recursion algorithm is used and provide a detailed explanation of how

RLS can be applied to find all MPE. We show that even for problems where the state space has a

relatively small number of points, there can be hundreds of millions of MPE in the overall duopoly

pricing and investment game, while it is typically impossible to find even a single MPE using the

traditional successive approximation of the Bellman equations.

Our second example is the alternating move version of the same model. The state variable

that is indicating which firm has the right of move in each time period becomes a non-directional

component of the state space. We show that this game is still a DDG, the state space of which

can be partitioned into directional and non-directional components. Consequently, we can still

solve the alternating move version of the leapfrogging model by state recursion and find all MPE

using the RLS algorithm. We show that in the alternating move case the structure of MPE are very

different compared to the simultaneous move case. Generally there are fewer equilibria and certain

“extremal” equilibria such as a zero profit mixed strategy equilibrium or two asymmetric monopoly

equilibria no longer exist in the alternating move version of the game. The RLS algorithm reveals

that if the state of the art technology improves in every period with certainty, then the model with

alternating moves has a unique MPE.

The rest of the paper is organized as follows. In section 2 we define a notion of directionality

and the class of DDGs, introduce the new concepts of stages, introduce the state recursion algo-

rithm and prove that it finds a MPE of the overall DDG in a finite number of steps. In section 3

we introduce the RLS algorithm and provide sufficient conditions under which this algorithm finds

all MPE of the DDG. In section 4 we illustrate the state recursion and RLS algorithms by using

them to find all MPE of the two variants of the duopoly Bertrand investment and pricing game

described above. Section 5 concludes by summarizing our results, and discussing some extensions

and limitations of the RLS algorithm.

2 Finite state directional dynamic games and state recursion

In this section we define a class of Markovian games that have the property of directionality,

and we refer to games that have this property as dynamic directional games or DDGs. We use
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directionality to simplify the problem of finding equilibria of these games using a state recursion

algorithm that is a generalization of the standard backward induction algorithm that is typically

used to find equilibria of dynamic games. However, the traditional approach is to use time as the

index for the backward induction, whereas the state recursion algorithm uses an index derived from

the directionality in the law of motion for the states. The state recursion algorithm finds a single

MPE of the game in a finite number of steps, but it requires the user to specify an equilibrium

selection rule (ESR) that selects one equilibrium out a set of multiple equilibria at a sequence of

recursively defined stage games of the overall directional game.

2.1 Finite State Markovian Games

Following Kuhn (1953) and Shapley (1953), consider a dynamic stochastic game G with n players

indexed by i ∈ {1, . . . ,n} and T periods indexed by t ∈ {1, . . . ,T}, where unless otherwise stated

we assume T = ∞. We assume the players’ payoffs in any period of the game are given by von-

Neumann Morgenstern utility functions ui(st ,at), where player i’s payoff in any period t of the

game depends both on the state of the game at time t, st , and the vector of actions of all players

is given by at = (a1,t , . . . ,an,t), where ai,t is the action chosen by player i at time t. Assume that

the players maximize expected discounted utility and discount their stream of payoffs in the game

using player-specific discount factors (β1, . . . ,βn) where βi ∈ (0,1), i = 1, . . . ,n.

Let p(s′|s,a) denote a Markov transition probability that provides the probability distribution

of the next period state s′ given the current period state s and vector of actions a taken by the

players. If we view s as the move by ”Nature”, the Markovian law of motion for Nature’s moves

makes it natural to focus on the Markov perfect equilibrium (MPE) concept of Maskin and Tirole

(1988) where we limit attention to a subset of all subgame perfect Nash equilibria of the game G ,

namely equilibria where the players use strategies that are Markovian, i.e. they are functions only

of the current state st and not the entire past history of the game.3

In this paper we follow Haller and Lagunoff (2000) and focus on games G that have a finite

state space, since they provide general conditions under which the set of MPE of such games are

generically finite. To this end, let S denote the set of all states the game may visit at any time period

and assume that S is a finite subset of Rk for some k ≥ 1. In every period each player i chooses an

3Though we do not take the space to provide a full extensive form description of the game G we do assume that the
players have perfect recall (see Ritzberger, 1999, 2002 for further discussion and its importance in the analysis of equilibria of
extensive form games). Thus, players can condition on the entire history of states in actions at each time t to determine their
choice of action. However it is not difficult to show that if both Nature and all of player i’s opponents are using Markovian
strategies, player i can find a best reply to these strategies within the subclass of Markovian strategies. Given this, we can
provide a fully rigorous definition of Markov perfect equilibrium using Bellman equations for the players without having to
devote the space necessary to provide a complete extensive form description of G .

5



action ai from a set of feasible actions Ai(s) for player i when the state of the game is s.4 Assume

that for each s ∈ S and for each i we have Ai(s) ⊆ A where A is a compact subset of Rm for some

m≥ 1.

Assume that the current state s ∈ S is known to all the players, and that their past actions are

observable (though current actions are not observed in simultaneous move versions of G). We

can also allow for players to have and condition their decisions on private information in the form

of idiosyncratic shocks, perhaps dependent on the state5 though to keep notation simple we do

not cover this case here. We assume that all objects in the game G , the players’ utility functions,

discount factors, the constraint sets Ai(s), and the law of motion p(s′|s,a), is common knowledge.

Let σ denote a feasible set of Markovian behavior strategies of the players in game G , i.e. an

n-tuple of mappings σ = (σ1, . . . ,σn) where σi : S→ P (A) and P (A) is the set of all probability

distributions on the set A. Feasibility requires that supp(σi(s)) ⊆ Ai(s) for each s ∈ S, where

supp(σi(s)) denotes the support of the probability distribution σi(s). A pure strategy is a special

case where σi(s) places a unit mass on a single action a ∈ Ai(s). Let Σ(G) denote the set of all

feasible Markovian strategies of the game G .

If σ is a feasible strategy n-tuple, let σ−i denote an (n− 1)-tuple of feasible strategies for all

players except player i, σ−i = (σ1, . . . ,σi−1,σi+1, . . . ,σn), and let (a,σ−i(s)) denote a strategy

where player i takes action a ∈ Ai(s) with probability one in state s, whereas the remaining players

j 6= i chose their actions taking independent draws from the distributions σ j(s).

4This formulation includes both simultaneous and alternating move games: in the latter case Ai(s) is a singleton for all
players but the one who has the right to move, where one of the components of the state s denotes which of the n players has
the right to move.

5In this case the conditional independence assumption of Rust (1987) holds, allowing the players to compute the expecta-
tions over the actions of their opponents in Bellman equations (1).
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Definition 1. A Markov perfect equilibrium of the stochastic game G is a pair of feasible strategy

n-tuple σ∗ and an n-tuple of value functions V (s) = (V1(s), . . . ,Vn(s)) where Vi : S→ R, such that

the following conditions are satisfied:

1. the system of Bellman equations

Vi(s) = max
a∈Ai(s)

[
E
{

ui(s,(a,σ∗−i(s))
}
+βiE

{
∑
s′∈S

Vi(s′)p(s′|s,(a,σ∗−i(s)))

}]
, (1)

is satisfied for every i = 1, . . . ,n, with the expectation in (1) taken over the IID probability

distributions given by the opponents’ strategies σ∗j , j 6= i, and

2. for i = 1, . . . ,n, if the maximizer in the Bellman equation

a∗i (s) = argmax
a∈Ai(s)

[
E
{

ui(s,(a,σ∗−i(s))
}
+βiE

{
∑
s′∈S

Vi(s′)p(s′|s,(a,σ∗−i(s)))

}]
, (2)

is a single point, σ∗i is a probability distribution that places probability 1 on a∗i (s), and if a∗i (s)

has more than one point, σ∗i (s) is a probability distribution with support that is a subset of

a∗i (s). The expectation in (2) taken in the same way as in (1).

Let E(G) denote the set of all Markov-perfect equilibria of the game G .

In definition 1 the notion of “subgame perfectness” is reflected by the restriction implicit in

equation (2) and the “Principle of optimality” of dynamic programming which require for each

player’s strategy σ∗i , “that whatever the initial state and initial decision are, the remaining deci-

sions must constitute an optimal policy with regard to the state resulting from the first decision”

(Bellman, 1957). Thus, equation (2) implies that each player’s strategy must be a best reply to their

opponents’ strategies at every point in the state space s ∈ S, but since the process is Markovian, it

follows that the strategy σ∗ constitutes a Nash equilibrium for all possible histories of the game G ,

see Maskin and Tirole 2001, p. 196.

2.2 Directional Dynamic Games

Before we formally define dynamic directional games, it is useful to provide intuitive examples of

what we mean by a direction in a Markovian game. Roughly speaking, a game G is directional if

we can single out some dimensions of the state space S such that the transitions between the points

in these dimensions can be represented as a directed acyclic graph (DAG), where each vertex

7



represents a point d which is a part of state vector, and the arrows (directed edges) connecting the

vertices correspond to positive probabilities of transiting from one value of d to another.6 We will

refer to d as the “directional” component of the state vector s below.

Figure 1 presents two directed graphs representing transitions in space state of two examples

of dynamic Markov bargaining games we discuss below. In these games state space is one dimen-

sional, and is given by S = {d1,d2,d3,d4}with d1 > d2 > d3 > d4. We can interpret di as the size of

the “pie” the players are bargaining over. The game presented in the left panel starts at d1 and the

size of the pie evolves stochastically according to the indicated transition probabilities. To qualify

as a directional game, it is essential that whatever the current state di is, there is zero probability

of returning to any state d j such that d j > di — i.e. the pie only shrinks (or remains the same size)

and never increases. This intuitive notion of directionality is violated in the right panel, where the

state can oscillate between d2 and d3. Consequently, the directed graph representing the transitions

among the states of this game is not acyclical, i.e. not a DAG.

Directionality in the stochastic evolution of the states in a game G can be captured by defining

a partial order over the state space S. This partial order of the states will generally be strategy-

specific since the stochastic evolution of the states will generally depend on the strategies σ used by

the players, and we use the symbol�σ to emphesise this dependence. Most games that we analyze

will exhibit directionality only in a subvector of the full vector of state variables. Therefore our

definition assumes there is a decomposition of S as a cartesian product of two sets D and X , so a

generic element of the state space is written as s = (d,x) where we refer to d as the directional

component of the state space, and x as the non-directional component. The partial order �σ is

defined over the directional component D of the state space S.

In the definition below, we let ρ(d′|d,x,σ) denote the conditional hitting probability, i.e. the

conditional probability that a state with directional component d′ is eventually reached given that

the process starts in state s = (d,x) and the players use strategy σ.7

Definition 2 (Strategy-specific partial order over states). Let σ be a feasible n-tuple of strategies

for the players in the dynamic game G . Suppose S is a finite subset of Rk that can be decomposed

as a cartesian product S = D×X where D ⊂ RN and X ⊂ Rk−N where N ≤ k. A typical element

6Note that while the extensive form representation of a game, the game tree, is also an example of a DAG, it is different
from the DAG over state space. In particular, the game tree can not have “self-loops” (transitions from a node back to itself)
as in Figure 1, and its edges represent actions for each player rather than possible transitions between the points in the state
space.

7Note that ρ(d′|d,x,σ) is different from a single step transition probability. In the terminology of Markov chains,
ρ(d′|d,x,σ) is the probability that the hitting time of the set (d′×X) = {(d′,x′)|x′ ∈ X} is finite conditional on starting in
state (d,x) under strategy σ. The hitting time (or first passage time) is the smallest time it takes for the state to travel from
state s = (d,x) to some state (d′,x′) where x′ ∈ X .
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of S is a point s = (d,x) ∈ D×X , where we allow for the possibility that D or X is a single point

(to capture the cases where S has no directional component and the case where S has no non-

directional component, respectively). Then a binary relation �σ over the directional components

d ∈ D induced by the strategy profile σ is defined as

d′ �σ d iff ∃x ∈ X ρ(d′|d,x,σ)> 0 and ∀x′ ∈ X ρ(d|d′,x′,σ) = 0. (3)

Lemma 1 (Partial order over directional component of the state space). The binary relation �σ is

a partial order of the set D.

Proof. The proofs of the lemma above and all subsequent results (except those that are short and

intuitive) are provided in Appendix A.

The partial order of the states captures the directionality in the game implied by the strategy

σ. The statement d′ �σ d can be interpreted intuitively as saying that the directional component d′

comes after the directional state d in the sense that there is a positive probability of going from d to

d′ but zero probability of returning to d from d′. Note that�σ will generally not be a total order of

the directional components D because there may be pairs (d′,d) ∈D×D that are non-comparable

with respect to the partial order �σ. There are two ways in which a pair of points (d′,d) can be

non-comparable (a situation that we denote by d′ 6� d): there may be no communication between

d and d′, i.e. zero probability of hitting state d′ from d and vice versa, or there may be a two way

transition (a loop) connecting d and d′, i.e. d′ can be reached with positive probability from d and

vice versa.

The asymmetry and transitivity conditions guarantee that there cannot be any loops between

any of the comparable pairs (d′,d) of a strict partial order �σ. However, loops that may exist

between non-comparable pairs (d′,d) that are not elements of the binary relation �σ, also need to

be ruled out.

Definition 3 (No Loop Condition). Let σ be a feasible n-tuple of strategies for the players in the

dynamic game G . We say that σ has no loops in the directional component D if the following

condition is satisfied for all d′ 6= d ∈ D

d′ 6�σ d =⇒∀x ∈ X ρ(d′|d,x,σ) = 0 and ∀x′ ∈ X ρ(d|d′,x′,σ) = 0. (4)
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It is not hard to show that when No Loop Condition is satisfied for a feasible strategy σ, the

transitions among the directional components of the state vector d induced by this strategy can be

visualized with a DAG. Let D(G ,σ) denote a directed graph with nodes corresponding to elements

of D and edges connecting the points d and d′ if the hitting probability ρ(d′|d,x,σ) is positive.

Then if d and d′ are comparable with respect to �σ, there can only be an edge from d to d′ or

vise versa, and otherwise if d and d′ are not comparable there is no edge between them due to no

communication by No Loop Condition. Therefore, directed graph D(G ,σ) does not have loops,

thus it is a DAG.

Example 1 (Finite horizon). Consider a finite horizon Markovian game G which lasts for T < ∞

periods. We can recast this in the notation of a stationary Markovian game by writing the state

space as S = D×X where D = {1,2, . . . ,T} is the directional component of the state space and

X are the other potentially non-directional components of the state space. The time index t is the

directional component of the state space, i.e. d = t and we define the partial order �σ by d′ �σ d

if and only if d′ > d. Note that �σ in this example is a total order of D, and thus there are no pair

of non-comparable states (implying that No Loop condition is also satisfied). Note as well that the

ordering �σ holds for every strategy, and is thus independent of σ.

In this simple case, no additional steps are needed to perform the state recursion algorithm that

we define below, which reduces here to ordinary backward induction in time. In more complicated

examples, a strategy-independent total ordering of a partition of the state space is needed to do

state recursion. This total ordering has to be specifically constructed and we explain how to do this

below.

Example 2 (Bargaining over a stochastically shrinking pie). Consider an extension of the Rubin-

stein (1982) infinite horizon alternating offer bargaining game G where two players make alternat-

ing offers and the size of the amount the players are bargaining over (the “size of the pie)”, is given

by d which can take four possible values d ∈ {d1,d2,d3,d4} with 0 < d4 < d3 < d2 < d1 as dis-

cussed above. Suppose that d evolves as a Markov chain with an exogenous (strategy independent)

transition probability p(d j|di), i, j ∈ {1,2,3,4} with values such as in the left panel of Figure 1.

Thus, if the pie starts out at its largest size d1, it has a positive probability that it will remain this size

for a geometrically distributed period of time, and there is a positive probability that it will either

decrease to size d3 or d2 but zero probability that it will shrink directly from size d1 to its smallest

size d4. It is evident from the left panel of Figure 1 that the transition diagram for the pie is a DAG.

The transitions hold for all feasible σ and thus imply a strategy-independent partial order �σ (∀σ)

over the d variable which consists of the ordered pairs {(d4,d3),(d4,d2),(d4,d1),(d3,d1),(d2,d1)}.
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Figure 1: Bargaining over a stochastically shrinking pie (Example 2: left panel, Example 3: right panel)

Notice that d2 6�σ d3 and d3 6�σ d2, i.e. the ordered pairs (d3,d2) and (d2,d3) are non-comparable

under the partial order �σ since there is zero probability of going from d2 to d3 and vice versa.

Let x ∈ {1,2} denote which of the players has the turn to make an offer, so player x proposes

a division of the pie, which has size d, and the other player then either accepts or rejects the

proposed division. If the proposed division of the pie is accepted, the game ends and the players

consume their respective shares of the pie. Otherwise the game continues to the next stage. The m

variable may alternate deterministically or stochastically. In terms of our setup, the game involves

a two dimensional state space s = (d,x) where directional variable is the size of the pie d and

the non-directional variable x is the index of the player who has the turn to move first. A version

of this game was solved by Berninghaus, Güth and Schosser (2012) using a backward induction

calculation in the d variable that is an example of the state recursion algorithm we define below.

Example 3 (Bargaining over pie that can shrink or increase in size). Consider a game similar to the

one in example 2, but slightly modify the transition probabilities for the directional state variable

d as shown in the right panel of Figure 1. It is easy to verify that the shown transition probability

induces the same partial order �σ over D as the transition probabilities in Example 2. However,

in this case there is a loop connecting the non-comparable points d2 and d3. This cycle implies

that the directed graph in the right panel of Figure 1 is not a DAG. This game will also fail to be

a directional dynamic game by the definition we provide below, because the existence of the loop

between d2 and d3 makes it impossible to devise a total order to index the induction steps in the

state recursion algorithm.8

Different strategies σ can potentially induce different partial orders of the directional compo-

nent of the state space D. To be able to construct a common total order for the state recursion

algorithm, it is important to ensure that strategy-specific partial orders are consistent with each

8However, because the state space is finite, it is possible to reorganize the game so that the loop between d2 and d3 is
“hidden away” in a separate dimension of the state space. With such manipulation, it would be possible to run state recursion
using the directionality over the three states (d1, joint (d2,d3) and d4) but as it will be evident below, the points d2 and d3
would not be treated independently in any of the solution algorithms.
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other, i.e. that there is no pair of states for which d′ follows from state d under strategy σ but d

follows from d′ under σ′.

Definition 4 (Consistent partial orders). Let σ and σ′ be any two feasible n-tuple of strategies for

the players in the dynamic game G and let �σ and �′σ be the two corresponding induced partial

orders of the directional component of the state space D. We say that �σ and �σ′ are consistent

partial orders if and only if for any d′,d ∈ D we have

if d′ �σ d then d 6�σ′ d′, (5)

or equivalently that �σ⊂6�σ′ with inclusion operator defined as inclusion of the sets of ordered

pairs that constitute the binary relations.

It is worth noting that the definition of consistency is silent about the non-directional component

of the state space, allowing for various strategies to induce any transitions between points that only

differ in non-directional dimensions. Given the concept of consistent partial orders, we can define

the concept of a directional dynamic game (DDG).

Definition 5 (Directional Dynamic Games). We say that a dynamic Markovian game G with state

space S is a directional dynamic game (DDG) if given the decomposition of the state space into

directional and non-directional components S = D×X , the following conditions hold:

1. every strategy σ ∈ Σ(G) has no loops in directional component D according to Definition 3,

and

2. the set of induced partial orders on D, {�σ |σ ∈ Σ(G)}, are pairwise consistent according to

Definition 4,

where Σ(G) is the set of all feasible strategies of the dynamic Markovian game G .

2.3 Stage games and subgame perfection

Even though the different strategy-specific partial orders �σ are consistent with each other, they

may nevertheless be different from each other. In order to define the state recursion algorithm

for computing a MPE of the game G , we need to introduce a concept of strategy independent

common directionality. In doing so, we invoke the notion of the coarsest common refinement (i.e.

join) of the set of all strategy-specific partial orders {�σ |σ ∈ Σ(G)}. In this section we prove

its existence and use this partial order to define the stages of the overall DDG. We show how the
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stages of the game are totally ordered by construction, enabling the backward induction in state

space. Moreover we prove that this ordering allows for the overall game G to be decomposed into

a recursive sequence of subgames, the equilibria to which we use to construct a Markov perfect

equilibrium of the overall game. We start with the definition of a refinement of a partial order.

Definition 6 (Refinement of a partial order). Let �σ and �σ′ be two partial orders of the elements

of the set D. We say that �σ′ is a refinement of �σ if and only if for any d′,d ∈ D we have

d′ �σ d =⇒ d′ �σ′ d, (6)

or equivalently using the inclusion operation on partial orders, �σ⊂�σ′ .

It is possible for two strategy specific partial orders to be consistent, but neither to be the refine-

ment of the other. In this case the information on the possible transitions in the state space under

both strategies has to be aggregated into a common (strategy independent) notion of directionality.

This is achieved with the help of refinements which by definition preserve such information.

Given a set of partial orders {�σ |σ ∈ Σ(G)}, let �G denote the coarsest common refinement

(join) of the partial orders �σ induced by all feasible strategies σ ∈ Σ(G). The following theorem

guarantees the existence of the join and characterizes it as (the transitive closure of) the union of

the strategy-specific partial orders �σ, σ ∈ Σ(G).

Theorem 1 (Strategy independent partial order). Let G be a directional dynamic game, and let

{�σ |σ∈ Σ(G)} be the set of pairwise consistent partial orders of D induced by all feasible Marko-

vian strategies in the game. Then the join of this set is given by

�G= TC(∪σ∈Σ(G) �σ), (7)

where TC(·) denotes the transitive closure operator, i.e. the smallest transitive binary relation that

includes the binary relation in the argument.

Definition 7 (Induced DAG for a DDG). Let G be a DDG with state space S = D×X where D

is the directional component of the state space. Let D(G) denote the DAG whose vertices are the

elements of D and whose edges d→ d′ correspond (one-to-one) to d �G d′ for every pair d,d′ ∈D.

Then we say that D(G) is the DAG induced by the DDG G .

Consider a vertex d ∈ D of the DAG induced by G . We say that d has no descendants if there

is no d′ ∈ D such that d′ �G d. The terminal nodes of D(G), given by N (D(G)) is a subset of
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Figure 2: DAG recursion and stages of the DDG in Example 2 (T = 3).

vertices d ∈ D that have no descendants. We can consider N to be an operator which returns the

terminal nodes of a DAG. Now let D1(G) = D(G) and define D2(G) by

D2(G) = D(G)−N (D(G)), (8)

where the “−” sign denotes the set difference operator, i.e. the set of points that belong to the first

argument but not to the second. If follows that D2(G) is also a DAG, but it is a “sub-DAG” of

the original DAG D(G) created by removing the terminal vertices of D(G). Since a DAG has no

cycles, it is not hard to see that N (D(G)) 6= /0 for every DAG, i.e. every finite DAG must have at

least one terminal node. Moreover the nodes of every DAG induced by a finite state DDG G can

be exhausted after a finite number of iterations of the recursive operator

D j+1(G) = D j(G)−N (D j(G)). (9)

Lemma 2 (DAG recursion). Let G be a finite state DDG with the induced DAG D(G). Let

D1(G) = D(G) and define the sequence {D j(G)} = {D1(G),D2(G), . . . ,DT (G)} by the recur-

sion (9). This sequence will terminate in a finite number of steps, i.e. T < ∞.

All the nodes in the DAG DT (G) have no descendants, and thus it represents the set of initial

nodes of the original DAG D(G). The corollary to Lemma 2 presented in the Appendix shows that

the recursion (9) can also be used to check if an arbitrary directed graph is a DAG.

Example 4. Figure 2 provides an illustration of the DAG recursion for a game we considered

in Example 2. Applying operator (9) to the DAG induced by this game (shown in left panel

of Figure 1) yields in step 1 the left-most sub-DAG where node d4 is removed. Terminal node

d4 is identified by the fact that all edges (except the loop to itself) point in and none point out.

Applying the same principle in step 2 to the sub-DAG obtained in step 1, we find two new terminal

nodes, namely d2 and d3. Removing these two nodes produces the new sub-DAG shown in the
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middle panel of Figure 2. Because the new sub-DAG contains only a single point d1, the recursion

terminates on the third step, inducing the partition of the directional component of the state space{
{d1},{d2,d3},{d4}

}
as shown in the right panel of Figure 2.

Given the whole sequence of DAGs {D1(G),D2(G), . . . ,DT (G)} generated by the recursion

(9) in Lemma 2, let {D1, . . . ,DT } denote the partition of the directional component D, which is

indexed with the inverted index τ, such that Dτ contains the points corresponding to the vertices of

DAG DT − j(G). (The right-most panel of Figure 2 presents this partition graphically for the game

in Example 2.) We are now ready to define the stages of the game G using this partition.

Definition 8 (Stages of a DDG). Let G be finite state DDG, and let {D1, . . . ,DT } be the partition

of the directional component of the state space D induced by the DAG recursion (9) as explained

above. Let

Sτ = Dτ×X (10)

denote the stage of the game G , and index τ denote the index of the stage. Note that τ is the

reverse of the original index j, so that S1 denotes the initial stage of the game G and ST denotes

the terminal stage.

We have shown how to partition the state space S of a DDG G into stages {S1, . . . ,ST }. Recall

that the DAG induced by the DDG G represents all possible transitions between the elements of

the directional component of the state space D under any feasible strategies. Therefore by virtue of

the way the stages are constructed, once the state of the game reaches some point s at stage τ, i.e.

s ∈ Sτ, there is zero probability that the state will return to any point s′ ∈ Sτ′ at any previous stage

τ′ < τ under any feasible strategy σ ∈ Σ(G). This ordering will allow us to define a new concept

of “stage game” that provides the basis for the backward induction solution method for the overall

DDG G that we refer to as state recursion.

Definition 9 (Subgames of a DDG). Let G be a finite state DDG, and let {S1, . . . ,ST } be the

partition of S into stages. Define Ωτ as a subset of S by

Ωτ = ∪T
t=τSt , (11)

and let Gτ denote the DDG with state space Ωτ and other elements of the game (number of play-

ers, time horizon, utility functions, discount factors, action sets and laws of motion) be properly

restricted for this state space versions of the element of the original game G . Then we say that Gτ

is the stage τ subgame of the DDG G .
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The state recursion algorithm, defined below, involves finding a MPE of the overall game G
inductively, starting by finding MPEs at all points in the endgame, i.e. the stage T subgame GT ,

and proceeding by backward induction over the stages of the game, from stage T −1 to stage T −2

until the initial stage 1 is reached and solved. When stage 1 is solved in this backward induction

procedure, effectively the whole G is also solved, as follows from the following lemma.

Lemma 3. If G is a finite state DDG, and G1 is its stage 1 subgame, then G = G1.

Note that if the partition elements Dτ contain more than one element of D, then there can be

no transitions between the various elements in Dτ by virtue of the way the partition {D1, . . . ,DT }
was constructed from the DAG recursion in Lemma 2. Suppose that Dτ = {d1,τ, . . . ,dnτ,τ} ⊂ D

where nτ is the number of distinct points in Dτ. It is useful to define an even finer grained notion

of subgames of G that we call a d-subgames Gτ(d). Since there is zero probability of transitions

between di,τ and d j,τ for i 6= j, these finer subgames can be solved independently of each other in

the state recursion algorithm below.

Definition 10 (d-subgames of G). Let τ be a stage of the finite state DDG G . Consider d ∈Dτ⊂D.

The d-subgame of G , denoted by Gτ(d), is the subgame of G defined in the similar way as subgame

Gτ on the state space Ωτ(d)⊂ S given by

Ωτ(d) = {d×X}∪
(
∪T

t=τ+1St

)
. (12)

With the definition of stages and substages of the DDG G at hand, the state dynamics of

the DDG G can be described in the following way. Imagine that the game starts at a point

s1 = (d1,x1) ∈ S1 ⊂ S at the initial stage S1. It may remain in the substage {d1×X} for some

time, moving freely between the points that only differ from s1 in non-directional dimensions. Yet,

while the game is in stage τ= 1, there can be no transitions to the points (d′1,x1)∈ S1⊂ S if d1 6= d′1
due to the No Loop condition (4) which rules out any transitions between the substages of the same

stage. At some time period a transition occurs to one of the subsequent stages Sτ, τ > 1, namely to

some point sτ = (dτ,xτ)∈ Sτ ⊂ S. Again, any transitions are possible within the substage {d1×X},
but the game will remain in the same substage until the state transitions to the next stage.

The DAG-recursion that constructs the stages of G does not rule out the possibility that a

substage of some stage Sτ for τ < T could be an absorbing class of states. While it is true that

such states will be identified as terminal nodes of the DAG D(G) of the DAG-recursion, (9),
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this is relative to the strategy-independent partial order �G . Once state recursion is used to find a

particular MPE, Sτ could be an absorbing class relative to�σ∗ for a particular MPE σ∗. But in many

cases Sτ will all be transient states and only the final stage ST of the game will be an absorbing

class of states. The final stage too will be partitioned into substages that do not communicate with

each other, so each substage of the terminal stage ST will constitute separate absorbing sets of

points.

Let E(G) denote the set of all MPE of G . In case there are multiple MPEs in some of the

d-subgames Gτ(d) in the stage τ, the equilibria in the d′-subgames at the earlier stages τ′ < τ from

which a transition is possible to d (d �G d′) will be dependent on which of the MPEs of the d-

subgames will eventually be played on the later stage. This implies that in case of multiplicity of

equilibria in G (and thus it’s subgames), the solution computed by backward induction depends

on the equilibrium selection rule (ESR) that selects one of the equilibria at every d-subgame of

G , and thus induces (or selects) a particular MPE in the whole game. Let e(G) ∈ E(G) denote a

particular selected MPE from the set of all MPE of G .

Definition 11 (Equilibrium selection rule). Let Γ denote a deterministic rule for selecting one of

the MPE from every d-subgame Gτ(d), i.e.

e(Gτ(d)) = Γ(E(Gτ(d))) ∀d ∈ D. (13)

By selecting an equilibrium in every d-subgame, ESR Γ also induces (or selects) an equilibrium

in every subgame Gτ, e(Gτ) = Γ(E(Gτ)). We can also interpret e(Gτ) as a MPE formed from the

union of the MPE at each d-subgame Gτ(d).

Recall from the Definition 1 of MPE, that an equilibrium consists of two objects: the n-tuple

of the players’ strategies and the n-tuple of the value functions, so e(G) = (σ∗,V ). Define the

projections eσ(G) = σ∗ and eV (G) =V that pick each of these objects from a given equilibrium.

The state recursion algorithm is a method for constructing a MPE for the overall DDG G
by calculating MPEs for a recursively defined sequence of “smaller games” that we refer to as

generalized stage games (though in what follows below, for brevity we refer to them simply as

“stage games”). Note that our definition of stage game is different from the definition that is

traditionally used in the theory of repeated games. In a repeated game, the stage game is a single

period game and the repeated game G is a finite or infinite repetition of these stage games. Each

stage game is itself generally a dynamic game. This dynamic game is played for a random length
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of time until the state of the system transits out of the substage (d×X) that defines the (restricted)

state space of this stage game.

A MPE of each stage game involves calculating the set of all equilibria on a much smaller

subset of the state space than the full state space S of the overall DDG G . The state space for each

of the stage games is (d×X) where d ∈Dτ for some stage of the game τ ∈ {1, . . . ,T }. Further, we

can restrict our search for MPE of the stage games to continuation strategies which only require

calculating all MPE (and then selecting a particular one of them) on the state space (d×X) of

the stage game, and then reverting to an already calculated and selected MPE for all subsequent

stages of the game after stage τ. The power of the state recursion algorithm comes from its ability

to decompose the problem of finding a MPE of the much larger and more complex overall DDG

G into the much more tractable problem of recursively finding a MPE for an appropriately defined

sequence of these stage games. This need only be done once, so that state recursion will find a

MPE of G using only one “pass” of a recursive, backward induction process that loops through

all of the d-stage games (which can be solved independently of each other at every stage of the

backward induction over τ) and sequentially over the various stages of the game τ starting at τ = T
and working backward.

Definition 12 (Continuation strategies). Let G be a finite state DDG, and consider a particular

stage of this game τ ∈ {1, . . . ,T }. If Gτ(d) is a d-subgame, define the d-continuation strategy

στ(s|(d×X),eσ(Gτ+1)) to be any feasible Markovian strategy for points s ∈ (d×X) and d ∈ Dτ

that reverts to a MPE strategy eσ(Gτ+1) in the stage τ+1 subgame Gτ+1. That is,

στ(s|(d×X),eσ(Gτ+1)) =

{
σ(s) if s ∈ (d×X), d ∈ Dτ

eσ(Gτ+1) otherwise,
(14)

where σ : (d × X)→ A is any feasible, Markovian strategy on (d × X), i.e. σi(s) ∈ Ai(s) for

s ∈ (d×X) and d ∈ Dτ. Similarly, define a stage τ continuation strategy στ(s|Sτ,eσ(Gτ+1)) to be

any feasible Markovian strategy for points s ∈ Sτ that reverts to a MPE strategy eσ(Gτ+1) in the

stage τ+1 subgame Gτ+1. That is,

στ(s|Sτ,eσ(Gτ+1)) =

{
σ(s) if s ∈ Sτ,

eσ(Gτ+1) otherwise.
(15)

Definition 13 (Stage game). Let G be a finite state DDG, and consider a particular stage of the
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game τ ∈ {1, . . . ,T } and d ∈ Dτ. A d-stage game, SG
τ
(d), is a d-subgame Gτ(d) where the set

of feasible strategies is restricted to continuation strategies, i.e. if Σ(SG
τ
(d)) is the set of feasible,

Markovian strategies of the stage game and Σ(Gτ(d)) is the set of feasible Markovian strategies of

the d-subgame Gτ(d), then we have

σ ∈ Σ(SG
τ
(d)) iff σ(s) = στ(s|(d×X),eσ(Gτ+1)), s ∈ (d×X)∪Ωτ+1. (16)

Similarly, we define SG
τ

to be the stage game at stage τ by restricting the set of all feasible Marko-

vian strategies in the stage τ subgame to continuation strategies. It follows that Σ(SG
τ
) ⊂ Σ(Gτ)

where we have

σ ∈ Σ(SG
τ
) iff σ(s) = στ(s|Sτ,eσ(Gτ+1)). (17)

Lemma 4. Let G be a finite state DDG, and consider the final stage of the game T . For each

d ∈ DT we have

SGT (d) = GT (d), d ∈ DT , (18)

and

SGT = GT . (19)

It follows that Σ(SG
τ
(d)) ⊂ Σ(Gτ(d)), i.e. the set of feasible Markovian strategies in a d-

stage game SG
τ
(d) is a subset of the set of feasible Markovian strategies in the d-subgame Gτ(d).

Similarly the set of feasible Markovian strategies in the stage game Gτ is a subset of the feasible

Markovian strategies in the stage τ subgame Gτ. By restricting strategies in this way, we reduce

the problem of finding MPE strategies of a stage game SG
τ
(d) to the much smaller, more tractable

problem of computing a MPE on the reduced state space (d×X) instead of the much larger state

space Ωτ(d) given in equation (12) of definition 10.

Theorem 2 (Subgame perfection). Let E(SG
τ
(d)) be the set of all MPE of the stage game SG

τ
(d)

and let E(Gτ(d)) be the set of all MPE of the d-subgame Gτ(d). Then we have

E(SG
τ
(d)) = E(Gτ(d)) (20)

i.e. there is no loss in generality from computing all MPE of every d-subgame Gτ(d) by restricting

the search for equilibria to finding all MPE of the corresponding stage game SG
τ
(d) using only

continuation strategies.
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Corollary 2.1. Let E(SG
τ
) be the set of all MPE of the stage game at stage τ and let E(Gτ) be

the set of all MPE equilibria of the stage τ subgame Gτ. Then we have

E(SG
τ
) = E(Gτ). (21)

Theorem 2 and its corollary 2.1 provide the foundation for the validity of the state recursion

algorithm. They justify a backward recursion process for computing a MPE of the DDG G that is

very similar in spirit to the use of backward induction to compute a subgame-perfect equilibrium

of an extensive form game. We require one final result before providing a formal statement of the

state recursion algorithm and proving the key result of this section, namely that this algorithm will

compute a MPE of the DDG G .

Theorem 3 (Decomposition of the stage game). Let G be a finite state DDG with T stages. At

each stage τ ∈ {1, . . . ,T }, let Dτ = {d1,τ, . . . ,dnτ,τ} be the set of possible values of the directional

state variable d that can occur at stage τ. We have the following decomposition of the MPE of the

stage game at stage τ, E(SG
τ
), as a partition of the equilibria of its d-stage games E(SG

τ
(d)):

E(SG
τ
) = ∪nτ

i=1E(SG
τ
(di,τ)) (22)

where

E(SG
τ
(di,τ))∩E(SG

τ
(d j,τ)) = /0, i ∈ j (23)

where the union of the possible equilibria in the various component d-stage games can be in-

terpreted as defining an equilibrium (σ,V ) whose domain is the union of the disjoint domains

(di,τ×X), for i = 1, . . . ,nτ. The stage games comprising stage τ are payoff-independent of each

other, i.e. the players’ payoffs in SG
τ
(di,τ) is unaffected by the choice of strategy σ∈ Σ(SG

τ
(d j,τ))

in any other stage game SG
τ
(d j,τ), d j,τ 6= di,τ, in the same stage τ of G .

2.4 State Recursion

Definition 14 (State Recursion Algorithm). Consider a finite state DDG G with T stages. The

state recursion algorithm consists of the following nested do-loop of operations:

for τ = T ,T −1, . . . ,1 do

for i = 1, . . . ,nτ do
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• compute E(SG
τ
(di,τ)).

• using an equilibrium selection rule Γ, select a particular MPE from E(SG
τ
(di,τ)),

e(SG
τ
(di,τ)) = Γ(E(SG

τ
(di,τ))).

• By Theorem 2, e(SG
τ
(di,τ)) is a MPE of the d-subgame Gτ(di,τ),

◦ End of i do-loop. Using the decomposition property (22) of Theorem 3, the union of the

MPEs for each d-stage game {e(SG
τ
(di,τ)|i = 1, . . . ,nτ} is a MPE for the overall stage game

at stage τ, e(SG
τ
).

◦ By Theorem 2 a MPE of the τ-stage game SG
τ

is also a MPE of the stage τ subgame, Gτ.

That is, e(SG
τ
) = e(Gτ).

Theorem 4 (Convergence of State Recursion). Let G be a finite state DDG. The state recursion

algorithm given in Definition 14 computes a MPE of G .

The state recursion algorithm given in definition 14 leads to a recursively defined MPE for each

stage τ stage game SG
τ
, τ = (1, . . . ,T ). By Theorem 2, these MPE also constitute MPE of the

stage τ subgames Gτ, τ = (1, . . . ,T ). However by Lemma 3 we have G1 = G , so it follows that

e(G1) = e(G), i.e. the state recursion algorithm has computed a MPE of the DDG G by computing

MPE for a total of

N =
T

∑
τ=1

nτ (24)

d-stage games of the game G . By Lemma 3 we have G1 = G , so it follows that e(G1) = e(G).

Thus, it follows that the state recursion algorithm has computed a MPE of the DDG G .

Example 5. Continuing with the DDG shrinking pie example (Example 2), Figure 3 illustrates

state recursion on the induced DAG D(G) that we introduced in the left panel of Figure 1, and

partitioned into stages in the right panel of Figure 2. Because the game has three stages (T = 3),

state recursion algorithm requires three steps of the outer loop over τ. In the first step, we solve

the end game which in this example is given by a single point d4. Note that because there are no

non-directional dimensions of the state space, d4 should be interpreted as a point of the state space

S. Thus, the terminal d-stage game constitutes the τ = T stage game, which is by Lemma 4 is also

a terminal subgame of the whole DDG. This subgame is essentially a repeated game in which the

same state d4 reappears in every period with probability 1 (as shown in the left panel of Figure 3).

By assumption, solution method exists for every d-stage game, and at the first step of the state

recursion algorithm it is applied to d4-stage game.
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Figure 3: Graphical illustration of state recursion on the DAG D(G) in Example 2.

Given the solution of the d4-stage game, the algorithm moves on to stage game τ = 2 shown

in middle panel of Figure 3. This stage consists of two points d2 and d3, so n2 = 2, which can be

solved in any order during two iterations of the inner loop of the state recursion algorithm. In both

cases, the continuation strategies are based on the equilibrium chosen in the d4-stage game solved

in step 1. After all MPE in the stage games are found, one particular equilibrium is chosen using

the exogenously fixed ESR.

Once stage τ = 2 is solved, the algorithm moves on to stage τ = 1 shown in the right panel of

Figure 3, where the last d-stage game, namely d1-stage game is solved using the already known

solutions in the rest of the points. By Lemma 3 the whole DDG is then solved.

3 Recursive Lexicographical Search

The state recursion algorithm described in section 2 finds a single MPE of the DDG G via a re-

cursion that involves (a) finding all equilibria among continuation strategies at each d-stage game

of the DDG G , and then (b) selecting a single equilibrium from this set using some equilibrium

selection rule Γ. The Recursive Lexicographical Search algorithm (RLS) presented in this section

finds all MPE of G by systematically examining all feasible ESRs while at the same time recog-

nizing the interdependency of choices of MPE for stage games in different stages of G . That is, a

choice of a particular MPE for any stage game at any stage τ of G can potentially alter the set of

possible MPE at all earlier stages τ′ < τ. For example, it is possible that the one choice of MPE for

a stage game of the end game τ = T of G might result in a unique MPE at a stage game at some

earlier stage τ < T , whereas a different choice of MPE of the same stage game of the end game of

G could result in multiple MPE existing at the same earlier stage game at level τ < T of G .
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3.1 Prerequisites

Note that our theoretical presentation of the RLS algorithm presumes the existence of a solution

method to find all MPE in every d-stage game (i.e. equilibria within the class of continuation

strategies). We show below that when this condition is satisfied RLS finds all MPE of the DDG G .

However, RLS also works if this algorithm can only find some of the equilibria of d-stage games.

In the latter case RLS is not guaranteed to find all MPE of G , but it can still find, potentially, very

many MPE of G . It is more likely that we can find all MPE of each of the stage games of G than

for G itself because the stage games have a state space {d×X} that is generally a small subset

of of the overall state space S for G itself, and also because we restrict our search for MPE in the

stage games to continuation strategies.

We can interpret RLS as a systematic way of directing the state recursion algorithm to “build”

all possible MPE of G by enumerating all possible equilibrium selection rules and constructing all

possible MPE of every stage game of G . Theorem 2 implies that this results in the set of all pos-

sible MPE for G itself. RLS is a remarkably efficient procedure for enumerating and building all

possible MPE of G . It achieves this efficiency by a) re-using solutions from previously computed

stage games of G wherever possible, and b) by efficiently and rapidly disregarding large numbers

of potential but infeasible combinations of stage game MPE of G .

RLS is applicable to DDGs that have a finite number of possible MPE. If we assume that the

algorithm that computes all of the d-stage game equilibria can also detect if a particular stage game

has an infinite number of equilibria then even though RLS will not be able to compute all MPE of

G , it will be able to establish that the game has infinite number of MPE. Otherwise, the RLS will

provide a complete enumeration of all of them.

Finally, we also assume that each d-stage game has at least one equilibrium, implying that the

whole DDG G also has at least one MPE.

3.2 Equilibrium Selection Strings (ESS)

Let K denote the least upper bound on the number of possible equilibria in any stage game of G .

We introduce K to simplify the explanation of the RLS algorithm, but we will show that is it not

necessary for the user to know the value K a priori. Instead, the RLS algorithm will reveal the

value K to the user when the algorithm terminates. Recall that N given equation (42) of section 2

represents the total number of substages of the DDG G . The state recursion algorithm must loop

over all N of these substages to find a MPE in the stage games that correspond to each of these N
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substages to construct a MPE of G .

Definition 15 (Equilibrium Selection Strings). An equilibrium selection string (ESS), denoted by

γ, is a vector in ZN
+ (the subset of all vectors in RN that have non-negative integer coordinates)

where each coordinate of γ is an integer expressed in base K arithmetic, i.e. each coordinate (or

“digit”) of γ takes values in the set {0,1, . . . ,K−1}. Further γ can be decomposed into subvectors

corresponding to the stages of G that is ordered from right to left in the same order of the stages of

G , i.e.

γ = (γT ,γT −1, . . . ,γ1), (25)

where γτ denotes a sub-vector (sub-string) of γ with nτ components where each digit, γi,τ,

i = 1, . . . ,nτ is also restricted to the set {0,1, . . . ,K−1}

γτ = (γ1,τ, . . . ,γnτ,τ) (26)

where nτ equals the number of substages of stage τ of the DDG G .

We use the subscripts notation γi,τ and γτ to denote a subvector (substring) of the ESS γ , and

superscript to denote elements of a sequence of ESSs. Hence, γ j will represent the jth ESS in a

sequence rather than the jth component of the ESS γ. In particular, we let γ0 = (0, . . . ,0) denote

the initial ESS that consists of N zeros.

We assume that the user fixes some ordering of the set of all equilibria at each d-stage of G ,

so that they can be indexed from 0 to at most K−1. The individual components or “digits” of the

ESS γ j,τ index (in base K) which of the K possible MPE are selected in each of the d-stage games

SG
τ
(d j,τ) of every stage τ of G . Thus, there is a one-to-one correspondence between an ESS γ and

an ESR Γ at least when the number of MPE of the game G is finite (K < ∞). The initial ESS γ0 is

the selection rule that picks the first equilibrium in every d-stage game (which is always possible

due to our assumption of existence of at least one MPE in every stage game).

It is very important to note that the grouping of equilibrium strings into substrings or “sections”

γτ corresponding to a right to left ordering of the stages of G as given in equation (25) is essential

for the RLS algorithm to work correctly. However, due to the payoff-independence property for

the nτ component stage games SG
τ
(di,τ), i = 1, . . . ,nτ at each stage τ of G (Theorem 3 of section

2), the ordering of the nτ digits in each of the subvectors γτ (or “sections”) is irrelevant and the

RLS will generate the same results regardless of how the digits in each γτ substring are ordered.

Example 6. Consider an arbitrary DDG with the induced DAG presented in the left panel of
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Figure 1 and the stages of the game presented in Figure 2 and 3. This game has T = 3 stages

given by S1 = {d1}, S2 = {d2,d3} and S3 = d4. Allow this game to deviate from the Rubinstein’s

bargaining model presented in Example 2 by the existence of multiple MPE and suppose that the

maximum number of MPE for any of the four d-subgames is K = 3. Then an example of an

equilibrium string would be γ = (0,2,2,1), indicating that the first MPE is selected in stage τ = 3

(the index for equilibria starts from 0), the third MPE is selected in both substages of the at stage

τ= 2, and the second MPE is selected at stage τ= 1. Due to the decomposition property (Theorem

3), the choice of an MPE for the first substage of stage τ = 2 has no effect on the set of possible

MPE in the second substage, but different choices of MPE in these stages may affect the number

of MPE and the values of the MPE at stage τ = 1.

Note that there are KN possible equilibrium strings for the DDG G , so this represents an up-

per bound on the number of possible MPE of G . However, there will generally be far fewer

MPE than this. We can enumerate all possible equilibrium strings by doing mod(K) addition,

starting from the base equilibrium string γ0. If we form the base K representations of the integers

{0,1, . . . ,KN−1}, we obtain KN corresponding equilibrium strings {γ0,γ1, . . . ,γKN−1}which form

the set of all possible equilibrium selection strings that are N digits long.

Now consider the addition operation in base K and its representation as an equilibrium string.

Starting from the always feasible equilibrium string γ0 = (0, . . . ,0), which is the base-K repre-

sentation of the integer 0, we add 1 to this to get the next possible equilibrium string, γ1 which

is the base-K representation of the integer 1, i.e γ1 = (0,0, . . . ,0,1). The string γ1 may or may

not be a feasible ESS because there may be only a single MPE at the d1,n1-stage game of G . If

there is only a single MPE in this substage, then the equilibrium string γ1 is infeasible because

it corresponds to choosing the first MPE (which is guaranteed to exist) at every stage game of G
except for SG1(d1,n1), where the 1 in the right-most component of γ1 indicates that the second

MPE is to be selected for this stage game. However, there is no second MPE for this stage game,

and hence we say that γ1 is an infeasible equilibrium string. We show that the RLS algorithm can

quickly determine feasibility and will immediately skip over infeasible ESSs and “jump” directly

to the next feasible one, or terminate if it reaches the last ESS γKN−1. In the latter case, the RLS

algorithm will have established that G has a unique MPE, namely the MPE corresponding to the

equilibrium string γ0.

Definition 16 (Feasible Equilibrium Selection String). An equilibrium string γ is feasible if all of

its digits index a MPE that exists at each of the corresponding d-stage games of G , ∀d ∈ D.

Define an N× 1 vector ne(γ) to be the maximum number of MPE at each stage game of G
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under the ESR implied by the equilibrium string γ. We define ne(γ) using the same format as the

equilibrium string, so that the digits of the equilibrium string γ are in one to one correspondence

with the elements of the vector ne(γ) as follows:

ne(γ) =
(

neT ,neT −1
(
γ>T −1

)
, . . . ,ne1

(
γ>1
))

, (27)

where γ>τ =
(
γτ+1, . . . ,γT

)
is a T − τ× 1 vector listing the equilibrium selection sub-string for

stages of G higher than τ. In turn, neτ(γ>τ) denotes the nτ×1 vector listing the maximum number

of MPE in each of the stage games SG
τ
(di,τ), i = 1, . . . ,nτ of stage τ of G ,

neτ(γ>τ) =
(

ne1,τ
(
γ>τ)

)
, . . . ,nenτ,τ

(
γ>τ

))
. (28)

The vector ne(γ) ∈ ZN
+ summarizes how the number of possible MPE at any stage τ of G

depends on the choices of the MPE at the endgame and all stages after τ that are represented by the

equilibrium selection substring γ>τ =
(
γτ+1, . . . ,γT

)
. We use the notation neτ(γ>τ) to emphasize

that the number of MPE at stage τ depends only on the equilibria selected at higher stages of G .

Notice that in the endgame T there are no further stages of the game, so the maximum number of

MPE in this stage, nT does not depend on any substring of the equilibrium string γ. Further, by the

decomposition property for stage games in any stage τ of G (Theorem 3 of section 2), the number

of possible MPE at every sub-stage game SG
τ
(di,τ), i = 1, . . . ,nτ of stage τ depends only on the

equilibrium strings γ>τ and not on the choice of MPE in other substage games SG
τ
(d j,τ), j 6= i of

stage τ.

Lemma 5. The ESS γ is feasible if and only if

γi,τ < nei,τ(γ>τ), τ = 1, . . . ,T , i = 1, . . . ,nτ (29)

By assumption, we have K = maxτ=1,...,T maxi=1,...,nτ
{nei,τ(γ>τ)}. However, in the operation

of the RLS algorithm it is clear that we do not have to loop through all K digits {0, . . . ,K−1} for

every component of a candidate equilibrium string γ to check feasibility. We will generally have

to check far fewer than KN possible equilibrium strings for feasibility. But it should be evident

that due to the one-to-one correspondence between an ESS and an integer (the ESS is the base-

K representation of an integer), a simple do-loop over the integers {0,1, . . . ,KN − 1} is a way to

systematically enumerate all possible equilibrium strings, and thus all possible choices of MPE
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at each substage of G . However this “brute force” enumeration is not efficient because typically

there are huge gaps between the feasible ESSs in this full enumeration loop resulting from the fact

that many of the component stage games of G may have fewer than K of MPE, which is the upper

bound on the number of MPE for all stage games of G . We devise a vastly more efficient approach

that exploits the variability in the number of MPE of different stage games, and jumps directly to

the next feasible ESS γ. Consequently, the RLS algorithm has a run time that is linear in |EG |, the

total number of MPE of G . However, to describe this more efficient search procedure, we need to

introduce some basic facts about variable base arithmetic.

3.3 Variable Base Arithmetic

We say an ESS γ has a variable base (also known in computer science as mixed radix numeral

systems) if the integers in the different components or digits of γ are expressed in different bases.

Let the bases for the individual components of the ESS γ be given by the vector of integers ne(γ),

the number of MPE for each of the component stage games of G after state recursion was run

with ESR γ. Continuing the example above, if γ = (0,2,2,1) indexes a particular choice of MPE

in the 3 stages of G , suppose the corresponding number of equilibria in these three stages is

ne(γ) = (1,3,3,3). Then the first component γ1,3 = 0 is expressed in base=1 and can only have a

value of 0, while the other components are expressed in base-3 and can take values from 0 to 2.

An ESS γ is in one to one correspondence with an integer (i.e. it is a variable base representation

of an integer) in very much the same way as γ is a representation of an integer when all digits of

γ have the same base K. Let ι : ZN
+ → Z+ be the function that maps ESS of length N to integers.

Then we have

ι(γ) =
N

∑
j=1

γi( j),τ( j)

j−1

∏
j′=1

nei( j′),τ( j′)(γ>τ( j′)) (30)

where γi( j),τ( j) is the jth component of the ESS γ and nei( j),τ( j)(γ>τ( j)) is the j compo-

nent of the corresponding bases for the digits of the ESS γ. Continuing the example above,

ι(0,2,2,1) = 1+ 2× 3+ 2× 3× 3+ 0× 3× 3× 3 = 25, and ι(0,2,2,2) = 26, so (0,2,2,2) is

the largest number in this system.

Since an ESS γ can be viewed as a variable representation of an integer, we can do all of the

ordinary arithmetic, including addition and subtraction. Addition can be done as we were all taught

in elementary school for numbers in base-10, namely to start on the right and add to the first digit,

“carrying” the remainder mod(10) to the next digit of the number if adding a number causes the

first digit to exceed 10. In variable base addition we do the same thing, except we use a different
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base for determining how much to carry in each successive digit of the number.

We can define the successor function S : ZN
+ → ZN by the γ′ that results from adding 1 to the

ESS γ and carrying out the addition process as described above in variable base arithmetic. Thus,

ι(S(γ)) = ι(γ)+1 except if the successor will not exist because it represents an integer that is larger

than the largest integer than can be represented with N and the variable base ne(γ). Since all of

the components of a feasible ESS γ are nonnegative, we will define the result of successor operator

when there is “overflow” to be a vector in ZN all of whose components equal −1.

Now we show how variable base arithmetic can be used to define a very effective procedure for

jumping from one feasible ESS γ to another one.

Definition 17 (Jump function). Let J : ZN
+→ ZN

+ be defined by

J (γ) =

{
argminγ′{ι(γ′)|ι(γ′)> ι(γ) and γ′ is feasible}
(−1, . . . ,−1) if there is no feasible γ′ satisfying ι(γ′)> ι(γ).

(31)

Thus, J (γ) is the “smallest” ESS after γ that is also a feasible ESS.

Lemma 6. If γ is a feasible ESS, then J (γ) = S(γ).

What Lemma 6 tells us is that we can easily jump to the next feasible ESS in the lexicographical

order by simply using variable base arithmetic with bases ne(γ) and adding 1 to the ESS γ using

successor function S(γ) defined above.

3.4 Recursive Lexicographical Search (RLS) Algorithm

Having set up the machinery and showing how it is possible to jump directly from one feasible

ESS to another using the jump (successor) function J (γ) we are now ready to provide a simple

description of how the RLS algorithm works.

RLS initialization

• Set i = 0 and let γ0 = (0,0, . . . ,0,0) be the always feasible N-digit ESS that corresponds to

the ESR for the DDG G where the first MPE is selected at each d-subgame. Run the state

recursion algorithm to calculate an MPE of G corresponding to this ESR and label all of the

MPE in each stage game and record the number of possible MPE in each stage game of G in

the N×1 vector ne(γ0).

• Let Λ be the set of feasible ESS found by RLS. Set Λ = {γ0}.
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Main RLS do-loop

• Compute γi+1 = J (γi), the next candidate feasible ESS. Let j0 denote the highest digit of the

ESS that changed.

• Stopping rule: If γi+1 = (−1, . . . ,−1) then RLS stops and has computed all MPE.

• Otherwise γi+1 is a feasible ESS by Lemma 6. Run partial state recursion for the stages τ′

which are dependent on stage τ where j0 belongs, i.e. τ′ < τ, and using the ESR implied by

the ESS γi+1, index the MPE of every stage game of G , and record the total number of MPE

found at each stage in the N×1 vector ne(γi+1).

• Update the set of feasible ESS found by RLS by setting Λ = Λ∪{γi+1}.

• Update the loop counter by setting i = i+1 and continue the main RLS do-loop.

3.5 Convergence of RLS Algorithm

The RLS algorithm terminates in a finite number of steps since there at most KN ESSs of length

N. Upon termination the set Λ will contain a finite number J of feasible ESSs, Λ = {γ0, . . . ,γJ−1}.
We now prove that J = |E(G)|, i.e. the RLS algorithm has found all MPE of the DDG G .

Let eγ be the MPE of G that is implied by the feasible ESS γ∈Λ returned by the RLS algorithm.

Theorem 2 implies that via the use of continuation strategies, eγ induces a MPE for all of the τ-

stage games and d-stage games of G . The following lemma proves that every MPE in a stage game

is implied by some ESS returned by RLS algorithm. This is a key stepping stone for the main result

of this section, namely that the RLS algorithm finds all MPE of the DDG G .

Lemma 7. Let γ ∈ Λ be a feasible ESS returned by the RLS algorithm, and let eγ be the MPE of

G induced by γ. Let Eτ(G |eγ) denote the set of all MPE of G that revert to the MPE eγ after stage

τ, i.e. the players use eγ to define a continuation strategy for stages τ+1, . . . ,T . If e ∈ Eτ(G |eγ),

then there exists a γ′ ∈ Λ such that e = eγ′ .

Theorem 5. Assume there exists an algorithm that can find all MPE of every stage game of the

DDG G , and that the number of these equilibria is finite in every stage game. Then the RLS

algorithm finds all MPE of DDG G in at most |E(G)| steps, which is the total number of MPE of

the DDG G .

It is important to emphasize that the RLS algorithm requires no prior knowledge of the maxi-

mum number of MPE K of any stage game of G . This information is updated over the course of run-
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ning the RLS algorithm, starting with the initialization at the always feasible ESS γ0 = (0, . . . ,0).

Each time the RLS algorithm encounters a new feasible ESS γ, it updates the maximum number

of MPE in state points where the solution may have changed. In this way the RLS algorithm can

systematically search for all MPE of G even though the user has no prior knowledge of how many

MPE G or any of its stage games might have.

4 Applications of State Recursion and the RLS Algorithm

In this section we present two non-trivial examples of dynamic directional games and show how we

can solve these games using the state recursion and the recursive lexicographical search algorithms.

We consider two versions of a dynamic model of Bertrand price competition with cost-reducing

investments analyzed by Iskhakov et. al (2013). The first is the simultaneous move version of this

pricing and investment game, all dimensions of which are directional, and thus the stage games

are relatively simple. Our second example is the alternating move version of the same model. We

introduce a state variable indicating which firm has the right to move in any given time period,

thus allowing for alternating moves. Because the right of move alternates back and forth between

the two players, this state variable is non-directional. We show however, that it is still possible

to find all stage game MPE, despite the additional complications induced by the non-directional

dimension. Consequently, the alternating move version of the leapfrogging model can also be

handled by by the RLS algorithm and we can thus find all MPE of this game as well.

4.1 Bertrand price and investment game with simultaneous moves

We begin with the simultaneous move formulate of the leapfrogging model of Iskhakov et al.

(2013). The description of the model is shortened, please refer to Iskhakov et al. (2013) for

economic motivation and greater detail on the model.

The model

We consider a discrete-time, infinite horizon stochastic game where two firms j, j ∈ {1,2}, are

producing an identical good at a constant marginal cost of c1 and c2, respectively. We assume

that the two firms are price setters, have no fixed costs and face no capacity constraints when

producing the good. We also assume that demand is perfectly elastic. Under these assumptions,

the Bertrand equilibrium for the two firms is for the cost leader to serve the entire market at a

price p(c1,c2) = max[c1,c2]. We let r1(c1,c2) denote the expected profits that firm 1 earns in a
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single period equilibrium play of the Bertrand-Nash pricing game when the two firms have costs

of production c1 and c2, respectively.

r1(c1,c2) =

{
0 if c1 ≥ c2

max[c1,c2]− c1 otherwise.
(32)

and the profits for firm 2, r2(c1,c2) are defined symmetrically, so we have r2(c1,c2) = r1(c2,c1).

The two firms have the ability to make an investment to replace their existing plant with a new

state of the art production facility. If either one of the firms purchases the current state of the

art technology, then starting from next period this firm can produce at the new marginal cost of

production, ct . Stochastic technological progress drives down the state of the art marginal cost of

production over time, such that ct evolves according to a exogenous Markov process with transition

probability π(ct+1|ct). With probability π(ct |ct) we have ct+1 = ct (i.e. there is no improvement in

the state of the art technology at t +1), and with probability 1−π(ct |ct) the technology improves,

so that ct+1 < ct and ct+1 is a draw from some discrete distribution over the interval [0,ct ]. Both

firms have equal access to the new technology conditional on paying an investment cost K(ct).

Each firm j incurs idiosyncratic “disruption costs” (or subsidies) ηεt, j = (ηε0,t, j,ηε1,t, j) as-

sociated with each of the choices of not to invest (ηε0,t, j) and to invest (ηε1,t, j) respectively. It

is common knowledge among the two firms that {ηεt,1} and {ηεt,2} are independent IID (across

choices, players and time periods) Type I bivariate extreme value processes with common scale

parameter η ≥ 0. Firm j observes its current and past idiosyncratic investment shocks {ηεt, j},
but does does not observe its future shocks or it’s opponent’s past, present, or future idiosyncratic

investment cost shocks. The presence of the private shocks leads to a game of incomplete infor-

mation, but because they are serially independent and thus satisfy the CI condition in Rust (1987),

these shocks are allowed in our definition of a DDG as described in Section 2.1.

The timing of events and the corresponding information structure in the model are as follows.

Each period, both firms observe the state of the the industry, set their prices and simultaneously

decides whether or not to invest in the state of the art production technology. In setting the prices,

the two firms also act independently and simultaneously. Production in period t is performed with

their existing plants independent of their investment decisions.

Assuming that the two firms are expected discounted profit maximizers and have a common

discount factor β ∈ (0,1), we search for stationary Markov Perfect Equilibria of the game defined

in Definition 1. In particular, MPE of the duopoly investment and pricing game is a pair of value

functions and a pair of strategies (Pj(c1,c2,c), p j(c1,c2)), j ∈ {1,2} where Pj(c1,c2,c) ∈ [0,1]
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is firm j’s probability of investing and p j(c1,c2) = max[c1,c2] is firm j’s pricing decision. The

investment function Pj(c1,c2,c) must maximize the expected discounted value of firm j’s future

profit stream taking into account then investment and pricing strategies of its opponent. The value

functions Vj, j = 1,2 take the form

Vj(c1,c2,c,ε0, j,ε1, j) = max
[
vI, j(c1,c2,c)+ηε0, j, vN, j(c1,c2,c)+ηε1, j

]
(33)

where, vN, j(c1,c2,c) denotes the expected value to firm j if it does not acquire the state of the art

technology, and vI, j(c1,c2,c,m) is the expected value to firm j if it does. These expected values

are given by

vN, j(c1,c2,c) = r j(c1,c2)+βEVj(c1,c2,c,0), (34)

vI, j(c1,c2,c) = r j(c1,c2)−K(c)+βEVj(c1,c2,c,1), (35)

where EVj(c1,c2,c, i) denotes the conditional expectation of firm j’s next period value functions

Vj(c1,c2,c,ε0, j,ε1, j) depending on whether the firm invests this period or not, i ∈ {0,1}. The

expected value function summarize firms’ expectations about future technological development

governed by π(ct+1|ct), opponent’s investment and pricing decisions and the future idiosyncratic

cost components ηεt, j. Since the two firms move simultaneously, firm j’s investment decision is

probabilistic from the standpoint of firm i 6= j because firm j’s decision depends on the cost bene-

fits/shocks (ε0, j,ε1, j) that only firm j observes. But since firm i knows the probability distribution

of these shocks, it can calculate it’s belief about the probability that firm j will invest given the

mutually observed state (c1,c2,c). Let Pj denote such beliefs of firm i. Given the assumption of

extreme value distribution of (ε0, j,ε1, j), Pj is given by the binary logit formula

Pj(c1,c2,c) =
exp{vI, j(c1,c2,c)/η}

exp{vN, j(c1,c2,c)/η}+ exp{vI, j(c1,c2,c)/η}
. (36)

Firm i’s belief of firm j’s probability of not investing is then 1−Pj(c1,c2,c).

Further, the distributional assumption for cost shocks (ε0, j,ε1, j) also allow us to express the

conditional expectation EVj(c1,c2,c) for each firm j by the well known closed form log-sum for-
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mula ∫
ε

j
0

∫
ε

j
1

Vj(c1,c2,c,ε0, j,ε1, j)q(ε0, j)q(ε1, j)dε1, jdε0, j =

η log
[
exp{vN, j(c1,c2,c)/η}+ exp{vI, j(c1,c2,c)/η}

]
=

φ(vN, j(c1,c2,c),vI, j(c1,c2,c)), (37)

where we use φ() to denote the log-sum formula. Using this notation, we are now ready to present

the system of Bellman equations for the simultaneous move version of the model, namely

vN,1(c1,c2,c) = r1(c1,c2)+β

∫ c

0

[
P2(c1,c2,c)φ(vN,1(c1,c,c′),vI,1(c1,c,c′)) +

(1−P2(c1,c2,c))φ(vN,1(c1,c2,c′),vI,1(c1,c2,c′))
]

π(dc′|c).

vI,1(c1,c2,c) = r1(c1,c2)−K(c)+β

∫ c

0

[
P2(c1,c2,c)φ(vN,1(c,c,c′),vI,1(c,c,c′)) +

(1−P2(c1,c2,c))φ(vN,1(c,c2,c′),vI,1(c,c2,c′))
]

π(dc′|c),

vN,2(c1,c2,c) = r2(c1,c2)+β

∫ c

0

[
P1(c1,c2,c)φ(vN,2(c,c2,c′),vI,2(c,c2,c′)) +

(1−P1(c1,c2,c))φ(vN,2(c1,c2,c′),vI,2(c1,c2,c′))
]

π(dc′|c).

vI,2(c1,c2,c) = r2(c1,c2)−K(c)+β

∫ c

0

[
P1(c1,c2,c)φ(vN,2(c,c,c′),vI,2(c,c,c′)) +

(1−P1(c1,c2,c))φ(vN,2(c1,c,c′),vI,2(c1,c,c′))
]

π(dc′|c). (38)

Directionality of the simultaneous move game

The state of the art marginal cost of production, ct , is trivially a directional state variable since it

can only improve. It also has a natural absorbing state ct = 09, which together with some initial

level of the state of the art cost c0 allow for finite discrete approximations of the state space by

discretizing the interval [0,c0]. Further, it is easy to see, that the remaining two state variables in

the model, c1 and c2, are also directional because in the absence of depreciation once an investment

is made by either firm, its marginal cost of production will always be at the acquired state of

the art level or lower. Hence, all state variables of the simultaneous move Bertrand pricing and

investment game belong to the “directional” component of the state space. Using notation of

Section 2, the directional variable is equal to the entire state vector, d = (c1,c2,c), i.e, S = D

and X is singleton. Because for every point of the state space it hold that c1,c2 > c, S = D is a 3-

dimensional square pyramid with the apex at the point (c0,c0,c0) and the base given by a Cartesian

9We assume without loss of generality that the largest lower bound of the state of the art cost is zero.
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Figure 4: Possible transitions between state points in the dynamic Bertrand investment and pricing game

Notes: Each dot represents a vector (c1,c2,c). Dashed boxes enclose different layers of the state space pyramid: from the apex

to the end game. White colored dots in each layer represent interior points (c1 > c, c2 > c), grey dots represent edges (c1 = c or

c2 = c), and solid black dots represent the corners (c1 = c2 = c). Only transitions from transitive reduction are shown between

layers, full set of transitions can be reconstructed by considering the transitive closure of the presented graph. The state variables

c1, c2 and c are defined on a grid with n = 4 values.

product [0,c0]× [0,c0] on (c1,c2) plane.

Figure 4 presents the induced DAG (as per Definition 7) for the game with n = 4 points on

the grid for costs. Each dot represents the state vector (c1,c2,c) and arrows represent possible

transitions between points in the state space. Dashed boxes enclose different layers of the state

space pyramid corresponding to different values of c: from the apex where c = c1 = c2 = c0 to the

base of the pyramid where c = 0 (the rightmost box). White colored dots in each layer represent

“interior points” in each layer, i.e. (c1,c2,c) where c1,c2 > c. The grey dots represent “edges”,

(c,c2,c) and (c1,c,c). The solid black dots represent the (c,c,c) “corners” where c1 = c2 = c.

The DAG in Figure 4 visualizes the coarsest common refinement (join) �G of strategy-specific

partial orders �σ over the state space, which is given by the union over all feasible strategies

σ ∈ Σ(G) according to Theorem 1. In this case, (c′1,c
′
2,c
′) �G (c1,c2,c) iff c′ < c or c′ = c and

c′1 < c1 or c′2 < c2. Thus, only transitions between the “layers” of the state space that correspond

to exogenous technological improvements (lower values of c) take place independently from the

actions of the players. All transfers within the layers are strategy-specific, and the definition of�G

insures that it is the coarsest common refinement of all the strategy-specific partial orders �σ.

Consider, for example, some interior point (c1,c2,c) at a time period when no technological

improvement takes place. Under all strategies σ that assign a positive probability of investment
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to firm 1 in this point and zero probability of investment to firm 2, the game may transfer to

a point at the edge (c,c2,c). Conversely, under all strategies σ that assign zero probability of

investment to firm 1 and a positive probability of investment to firm 2, the game may transfer to a

point at the opposite edge (c1,c,c). Finally, under all strategies σ that assign positive probabilities

of investment to both firms there can be a transfer to the corner (c,c,c). These transitions are

indicated with arrows from white dots to grey and black dots respectively. Under any strategy it is

only possible to move from the edges to the corner (unless the technology improves) as indicated

by the arrows from grey to black dots. If technology improves, so that ct+1 < ct , the state of the

industry can move to the interior points at lower levels of the state space pyramid. These transitions

are indicated with the arrows that cross the borders of the dashed boxes in Figure 4.

Figure 4 contains many points which are not connected (in one or several steps) indicating that

they are not comparable under �G , i.e. under any strategy. It is not hard to verify that when any

two points are not comparable, it is because they do not communicate, so the no loop condition (as

per Definition 3) is satisfied. Indeed, because from any interior point only transfers to the edges

or the corner are possible, the inner points do not communicate. Similarly, because from any edge

point only a transfer to the corner is possible, the points on the edges also don’t communicate.

Further, it is not hard to verify that there are no two strategies that result in the opposite transfers

between any two points in the state space, implying that all strategy-specific partial orders�σ in the

game are pairwise consistent. If this was not true, the graph in Figure 4 which pictures the union of

strategy-specific partial orders�σ, would end up having two-way transitions between some points,

i.e. loops, which would imply that the graph is not a DAG. Therefore, the Bertrand pricing and

investment game satisfies Definition 1 and does belong to the class of directional dynamic games.

Applying the DAG recursion algorithm (see Lemma 2) to the DAG in Figure 4 splits the state

space into the stages by layer (indicated by dashed line in Figure 4) and the type of the points

(indicated by color in Figure 4). The endgame stage (τ = T ), is the (0,0,0) corner, corresponding

to the rightmost black dot in Figure 4. The T -stage game G(T ) has a state space consisting of

a single point (0,0,0), and therefore effectively constitutes a infinitely repeated Bertrand pricing

game with investments only taking place because of idiosyncratic private shocks when η > 0.

The next stage corresponding to τ = T − 1 consists of the 2(n− 1) edge states of the form

(c1,0,0) and (0,c2,0). Thus, there are multiple values of the directional state variable in this stage,

but because they do not communicate among each other, each separate point induces an infinite

horizon d-subgame in which the cost vector may remain the same or change to (0,0,0) at some

future time period. So, the only possible “direction” of movement is to the stage T . Because of no
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communication, each of these d-subgames is solved independently in the inner loop of the stage

recursion algorithm. In accordance with Theorem 2 by “solution” we mean finding an MPE of

the d-stage game within the class of continuation strategies that revert to the MPE in state (0,0,0)

(stage T , which happens to be a unique no investment MPE) that was already found in the previous

step of the stage recursion algorithm.

The next stage τ = T −2 consists of the interior points in the bottom layer where c1,c2 > c, and

c = 0. These points also don’t communicate with each other, and thus form (n−1)2 independent

d-subgames which are solved taking into account the solutions on the edges and in the corner of

the bottom layer. The stage after that, τ = T −3, equals the (c,c,c) corner stage in the second to

last layer of the game where c > 0, and so on.

Theorem 6 (Solution method for the d-stage games in simultaneous move leapfrogging game).

Given a fixed equilibrium selection rule Γ, solution method for every d-subgame in the Bertrand

pricing and investment game with simultaneous moves exists and is guaranteed to find all d-

subgame MPE for every d = (c1,c2,c) when η = 0. Moreover, the number of MPE in every stage

game is finite.

Theorem 6 ensures that the condition of the Theorem 5 is satisfied, which implies that the state

recursion and RLS algorithms developed in the previous sections can find all MPE of the Bertrand

pricing and investment game (for the case of η = 0).

Finding all MPE using RLS

Assume η = 0. Theorem 6 establishes that state recursion is guaranteed to find all d-subgame

MPE given a fixed equilibrium selection rule Γ. We will now show how the RLS algorithm finds

all MPE of the simultaneous move leapfrogging game, by systematically examining all feasible

ESS γ corresponding to all possible ESRs Γ. We have illustrated this process in Figure 5 for the

case where the number of points on the grid for costs is n = 3.

The first three rows in Figure 5 present a possible indexing of the ESS digits corresponding

to d-substages within the stages of the game indexed with τ in the first row of the table. The top

line contains indicators of the type of the points with “c”, “e” and “i” denoting respectively corner,

edge and interior. Note that while there are n = 14 state points, there are only T = 7 stages in this

game and hence there are multiple ways we can order the state points within each stage τ and still

obey the ordering of the stages of the game. Recall, however, that because of no communication

between the points within the same stage τ, the corresponding d-subgames can be solved within
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Figure 5: Graphic representation of RLS algorithm.

Notes: Each column refers to a digit in the ESS and thus corresponds to a state point. The “corner” (where c1 = c2 = c), the “edges”

(where c1 = c and c2 = c), and the “interior” points (where c1 > c and c2 > c) are marked with symbols “c”, “e” and “i”.

the stage recursion algorithm in any order. The chosen order of digits of the ESS string is given in

the second and third rows of the table in Figure 5.

Each column corresponds to a state point and thus to a digit in a ESS. The next three rows in

Figure 5 explicitly specify the values of the state variables (c1,c2,c) corresponding to particular

ESS digits. Starting from the right, the lowest digit represents the top layer the game with a

single point c1 = c2 = c = c0 = 2. As we explained above, the solution in this initial state depend

on all subsequent points of the state space, whereas the opposite is true for the endgame where

c1 = c2 = c = 0 and which corresponds to the highest digit 14. The ESS digits are arranged in

such a way as to obey the ordering of the stages of the game, namely stages with lower index τ are

located to the right and correspond to the lower digits. The solution associated with a given digit

in the ESS, γi,τ does not depend on equilibrium selected at higher stages (digits to the right), but

only depends on equilibrium selected an lower states (digest to the left γ>τ).

We begin RLS with the initial ESS, γ0 that consist of zeros at all 14 digits and solve for all
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MPE given the induced equilibrium selection rule, i.e. a rule that selects the “first” equilibrium in

each d-stage game. Having computed all MPE using the state recursion algorithm, we obtain the

number of MPE at each d-stage game, which we collect in the vector ne(γ0). As mentioned above,

the MPE at the corner and edge d-subgames have unique MPE, whereas interior states can have

either 1,3, or 5 equilibria. Figure 5 presents the case when ne(γ0) equals 3 for all interior points as

indicated in the top “ne” line.

The next feasible ESS is found by adding 1 to ESS in ne(γ0) variable base arithmetic. Since

ne1,1 = 1 (the two subscripts should be read from the first two rows in Figure 5), adding 1 changes

not the first but the second ESS digit. This implies that in principle the number of MPE in the stage

game corresponding to the first ESS digit might change when the state recursion is run with the

new ESS. As explained in Section 3.4 the state recursion only has to be run for the points which

are affected by the change of ESS, in this case only for the point (2,2,2). The updated number of

stage game MPE is marked by color in the next “ne” line. Again, adding 1 in ne(γ1) arithmetic

changes the second ESS digit, which in γ2 takes the value of 2.

Note that some times changing the ESS at lower levels not only affects the value functions and

strategies at higher levels, it may also results in a different number of MPE. This is the case when

we move from γ2 to γ3, where the number of MPE at the only point of stage τ = 2 increases from 3

to 5. This causes no problem for RLS, only that the base in the variable base arithmetic is updated

accordingly. In general, the feasibility of each particular ESR string γ is simply defined through the

set of inequalities on the digits given in Lemma 5. Using the simple successor function in variable

base arithmetics ensures that the feasibility condition is satisfied, and we can continue the RLS

loop until it is no longer possible to find feasible ESS that satisfies the feasibility constraint. When

the process is completed we have found all MPE of the overall game.

4.2 Bertrand price and investment game with alternating moves

We now turn to our second example, which is an alternating move version model outlined above.

As before, we assume that firms simultaneously set their prices after having made their investment

choices. However their investment choices are no longer made simultaneously. Instead, the right

to move alternates between the two firms. Let mt ∈ {1,2} be a state variable that indicates which

of the two firms is allowed to undertake an investment at time t. We will assume that {mt} evolves

as an exogenous two state Markov chain with transition probability f (mt+1|mt) independent of the

other state variables (c1,t ,c2,t ,ct), and that f (mt+1|mt) is common knowledge.

In the alternating move case, the Bellman equations for the two firms lead to a system of
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eight functional equations for (vN, j(c1,c2,c,m),vI, j(c1,c2,c,m)) for j,m ∈ {1,2}. Note that the

interpretation of the first subscript is slightly changed — N and I in the alternating move game

denote if the investment is made in the current period by the firm that has the right to move. Below

we write out the four Bellman equations for firm 1, but we omit the value functions for firm 2 to

save space as they are defined similarly.

vN,1(c1,c2,c,1) = r1(c1,c2)+β f (1|1)
∫ c

0
φ(vN,1(c1,c2,c′,1),vI,1(c1,c2,c′,1))π(dc′|c)+

β f (2|1)
∫ c

0
ev1(c1,c2,c′)π(dc′|c)

vI,1(c1,c2,c,1) = r1(c1,c2)−K(c)+β f (1|1)
∫ c

0
φ(vN,1(c,c2,c′,1),vI,1(c,c2,c′,1))π(dc′|c)+

β f (2|1)
∫ c

0
ev1(c,c2,c′)π(dc′|c)

vN,1(c1,c2,c,2) = r1(c1,c2)+β f (1|2)
∫ c

0
φ(vN,1(c1,c2,c′,1),vI,1(c1,c2,c′,1))π(dc′|c)+

β f (2|2)
∫ c

0
ev1(c1,c2,c′)π(dc′|c)

vI,1(c1,c2,c,2) = r1(c1,c2)+β f (1|2)
∫ c

0
φ(vN,1(c1,c,c′,1),vI,1(c1,c,c′,1))π(dc′|c)+

β f (2|2)
∫ c

0
ev1(c1,c,c′)π(dc′|c). (39)

where

ev1(c1,c2,c) = P2(c1,c2,c,2)vI,1(c1,c2,c,2)+ [1−P2(c1,c2,c,2)]vN,1(c1,c2,c,2). (40)

Note that neither firm is allowed to invest out of turn, i.e. P2(c1,c2,c,1) = P1(c1,c2,c,c,2) = 0.

In this example not all state variable are directional, since the right to move alternates back and

forth between the two players, and thus we treat dimension m∈{1,2}=X of the state space as non-

directional, while directional component is d = (c1,c2,c) ∈ D as before. Despite this additional

complexity, the partial order over D is the same as in the simultaneous move example above, and we

can still solve every (c1,c2,c)-stage game. In particular, it can be shown that the eight functional

equations (given by the four equations for firm 1 given in (39) above and the four equations that are

defined similarly for firm 2) at the each stage game G(τ−1), can be solved “almost analytically”

given the solution at the previously calculated stage games G(τ) and a deterministic equilibrium

selection rule Γ. Thus, state recursion and RLS algorithms apply, allowing for a full solution of

the alternating move pricing and investment game.
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Figure 6: Typical sets of equilibrium outcomes in Bertrand pricing and investment game with simultaneous
(a) and alternating (b) moves.

Notes: Each point represents a pair of expected discounted value functions for firm 1 and 2. The vertices of the triangles are

determined by the expected discounted monopoly profit under the same technological process. Panel (a) plots 164,295,079 MPE

of the simultaneous move game with n = 5. Panel (b) plots 3,138,026 MPE of the alternating move game with n = 6 and randomly

alternating right of move. Precise model parameters used in building the graphs are available upon request. See Iskhakov, Rust,

Schjerning (2013) for further details.

Theorem 7 (Solution method for the d-stage games in alternating move leapfrogging game). Given

a fixed equilibrium selection rule Γ, solution method for every d-subgame in the Bertrand pricing

and investment game with alternating moves exists and is guaranteed to find all d-subgame MPE

for every d = (c1,c2,c).

4.3 Performance of the solution algorithms

Theorems 6 and 7 ensure that the key assumption under the stage recursion and RLS algorithms

is satisfied, and thus these methods can be applied for the Bertrand pricing and investments game.

When we apply RLS to the simultaneous and alternating move formulation of this game, we find

that these infinite horizon games turns out to have a surprisingly rich set of equilibrium outcomes.

Figure 6 displays the computed equilibrium expected profits of the two firms in the Bertrand

investment and pricing game with simultaneous moves under deterministic (panel a) and stochastic

(panel b) technological improvement. With only 5 points in the grid of the costs, there are around

200 million MPE in each of the two versions of the game, although the number of distinct payoffs

is much larger under stochastic technological improvement (as indicated by the size and color of

the dots in Figure 6).

Table 1 reports the times spent to compute the MPE of several specifications of the Bertrand
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Table 1: Run times for full solution of the leapfrogging game

Simultaneous moves Alternating moves
Number of points in cost grid 3 4 5 5
Total number ESS 4,782,969 3,948,865,611 1.7445·1026 1.7445·1026

Number of feasible ESS 127 46,707 192,736,405 1
Time used 0.008 sec. 0.334 sec. 45 min. 0.006 sec.

Notes: The total number of ESS is computed using K = 3 constant base arithmetics for comparison.

pricing and investment game of different sizes. Comparing the running times for the three simul-

taneous moves games, it is obvious that due to a sharply increasing number of times the state

recursion (or partial state recursion) is invoked in the RLS loop the runtimes are increasing highly

non-linearly. Yet, comparing the runtimes for the largest game with simultaneous moves to that of

the alternating moves, it becomes obvious that the RLS algorithm itself take a negligible amount

of time to loop through all feasible ESR strings compared to the time needed for state recursions.

A comprehensive analysis of the Bertrand investment and pricing game, and a complete set

of theoretical results from this model can be found in the companion paper Iskhakov,Rust and

Schjerning (2013).

5 Conclusion

We introduced the concept of directionality in finite state Markovian dynamic games, defined the

class of directional dynamic games (DDGs), and proposed two new solution algorithms for the

games in this class. The state recursion algorithm finds a single MPE of a DDG for a specified

equilibrium selection rule; the recursive lexicographical search (RLS) algorithm finds all possible

MPE of the game by efficiently searching over all feasible equilibrium selection rules. The run-

time of the RLS algorithm is linear in the number of points in the directional part of the state

space, ensuring that negligible time is spent on enumerating all feasible equilibrium selection rules

relative to the time spent to compute each of the corresponding equilibria.

The class of DDGs we defined in this paper appears to be quite large and there are many

examples of games of this type in the existing literature. The flexibility and range of application of

DDGs is due partly to the fact that it is sufficient to identify just one directional component of the

state space for the game to qualify as a DDG, and also because our definition places no restrictions

on the non-directional components of the state space X .

On the other hand, we do have to assert the existence of the solution algorithm for the com-

41



ponent stage games that have reduced state spaces of the form {d×X}. State recursion and RLS

may not be applicable to DDGs that have numerous or complicated non-directional components X

— since this may result in stage games that are too complex, making it intractable to find all or

even some of their MPE. Yet, there are several extensions of the DDG class where the RLS method

of finding all MPE can be useful, provided there is an algorithm that can find at least some of the

MPE of their stage games.

For example, we discussed how the RLS algorithm can be used to approximate the set of all

MPE of infinite horizon dynamic games that have no exploitable directional structure at all other

than time. Under fairly general conditions, we can approximate the MPE of the infinite horizon

game by the set of MPE for a corresponding finite horizon game, when the horizon T < ∞ is

chosen to be sufficiently large. For finite horizon games, we can always use the time variable t

as the directional component D, in which case state recursion is equivalent to ordinary backward

induction and RLS is a method for systematically building all MPE of the overall game. Thus,

whether RLS is applicable is determined by whether it is possible to find all MPE each stage game

— and the stage games are equivalent to static games in this case and thus even easier to solve.

We have also shown that some dynamic games that appear to be non-directional at first glance

can satisfy our definition of a DDG by appropriate redefinitions of the state space. For instance,

Example 3 in Section 2 presented in the left panel of Figure 1 has a loop in the directional com-

ponent of the state space, violating the No-Loop Condition to qualify as a DDG. However we can

add second dimension to the state space and redefine the states so that the states connected by a

loop have the same value on the newly defined directional dimension, and differ only in the newly

defined non-directional dimension. After this redefinition of the states, the game can be shown to

be a DDG. Whether RLS is applicable is again determined by whether it is possible to find all MPE

of the aggregated states (including all points that result in loops) simultaneously, as they form one

of the elemental stage games of the equivalent game with the redefined state space.

We emphasize that RLS can be used even when we have no algorithm that is capable of finding

all MPE of every stage game of the overall game G . Instead, if we only have an algorithm that

is capable of finding some of the MPE of each stage game, state recursion and RLS can still be

quite helpful as a way of building a much larger multiplicity of MPE for the overall game G . In

particular, RLS can be used to compliment path-following homotopy methods, helping to find far

more MPE of G than if we were to rely exclusively on homotopy methods to find the MPE.

The reason why the homotopy approach is not well suited for finding all MPE of finite state

DDGs is due to numerous bifurcations along the equilibrium correspondence that the homotopy
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Figure 7: Equilibrium correspondence, alternating move game: expected profit of the firm 1 by different
values of cost shock η.

algorithm tries to follow in an attempt to find all MPE of G . Figure 7 illustrates the nature of

the problem by graphing the equilibrium correspondence in the Bertrand pricing and investments

game with alternating moves. This figure shows all MPE for each value of the typical homotopy

parameter η, which indexes the variance of idiosyncratic investment shocks as discussed in section

4. When η is sufficiently large there is a unique MPE of G as we can see from figure 7. The

homotopy algorithm tries to follow this initially unique equilibrium path as η is reduced in a

series of steps towards 0. However it is evident that this path does not lead to all MPE of G as

η→ 0. Besides frequent bifurcations in the original path, we see that a multitude of new completely

disjoint paths pop up elsewhere at η decreases.

However since there are far fewer MPE in each of the stage games (in our example there was

at most 5), the homotopy method may have a better chance of finding all (or at least many) of

the MPE of the stage games. This is the sense in which the homotopy method might be far more

effective when it is used together with state recursion and RLS than trying to rely on it as the

exclusive method for finding all MPE of G .

Our Bertrand pricing and investment example leads us to conjecture that the multiplicity of

MPE in general dynamic games is due to the combinatoric explosion resulting from the freedom

to choose different MPE at different stages of the game. RLS naturally accounts for all such

combinations of equilibria selected in different stage games, and if the conjecture is true, it can

provide new insights into the bifurcations and complex structure of the equilibrium correspondence

such as illustrated in figure 7.
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A final caveat is that RLS is likely to be subject to a curse of dimensionality that originates

both from an exponential increase in the number of points in the directional component of the state

space as the dimension of the problem rises, and also from a curse of dimensionality in how the

total number of MPE increase with the total number of points in the state space. Even though

the run-time of the RLS is linear in the total number of MPE of G , the number of MPE itself

may increase exponentially as the number of points in the state space increases. This is evident

in our results for the simultaneous move version of the leapfrogging game in table 1 of section 4.

However there are games where the MPE may be unique or for which the total number of MPE

grow only polynomially fast as the number of points in the state space increases. In such cases RLS

may be a tractable algorithm for finding all MPE, and can run very quickly even for games with

large numbers of states. In fact, we have been able to run RLS to find all MPE of alternating move

games where the state space has many hundreds of points. Thus whether or not the RLS algorithm

is subject to a curse of dimensionality is largely dependent on whether or not the number of MPE

of the game increases exponentially as the number of points in the state space increases.
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A Proofs

Lemma 1 (Partial order over directional component of the state space).

Proof. Recall that a (strict) partial order � of the elements of a set D is a binary relation (i.e. a

subset of D×D) that is 1) irreflexive (d 6� d for all d ∈D), 2) asymmetric (if d′ � d then d 6� d′ for

all d′,d ∈D) and 3) transitive (if d3 � d2 and d2 � d1, then d3 � d1 for all d1,d2,d3 ∈D). It is clear

from (3) that�σ is irreflexive, since d�σ d would require that ρ{d|d,x,σ} be simultaneously equal

to 0 and greater than 0. For similar reasons�σ is asymmetric, since (3) can not hold simultaneously

for the pairs (d,d′) and (d′,d). Then suppose that d3 �σ d2 and d2 �σ d1. This means that there is

a positive probability of going from d1 to d2 (but zero probability of going from d2 back to d1) and

similarly there is positive probability of going from d2 to d3 (but zero probability of going from

d3 back to d2). Via a probability chain formula (the Chapman-Kolmogorov equation) it follows

that there is a positive probability of going from d1 to d3. It remains to be shown that there must

be a zero probability of a reverse transition from d3 to d1. Supposing the contrary. Then the

chain formula implies that the probability of a transition from d2 back to d1 via d3 is positive,

contradicting the hypothesis that d2 �σ d1.

Theorem 1 (Join of pairwise consistent partial orders of D).

Proof. We first demonstrate that �G is irreflexive, asymmetric and transitive, and thus a partial

order of D. For any d ∈ D it cannot be the case that d �G d because by the definition of �G it

would have to be the case that d �σ d for some σ ∈ Σ(G). However each strategy-specific partial

order �σ is irreflexive by Lemma 1, so this is a contradiction. To establish asymmetry of the

partial order �G suppose to the contrary that there is a pair of points d,d′ ∈ D such that d′ �G d

and d �G d′. Then since each partial order �σ is asymmetric by Lemma 1, it must be the case

that there exist two feasible strategies σ and σ′ in Σ(G) such that d′ �σ d and d′ �σ′ d. However

this violates the consistency condition (5) in the definition of a DDG, Definition 4. The transitivity

of �G follows from the fact that this binary relation is the transitive closure of the union of the

transitive binary relations �σ.

It follows that �G is a partial order that contains each strategy-specific partial order �σ for

σ∈ Σ(G), and hence it is a common refinement of the set of a partial orders induced by all feasible

strategies of G , {�σ |σ ∈ Σ(G)}. To show that it is the coarsest common refinement, suppose

to the contrary that there is another partial order � that is a strict subset of �G . Let (d′,d) be a

ordered pair that is in the order �G but not in �. Then there are two possibilities. Either d′ �σ d
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for some σ ∈ Σ(G), or (d′,d) is a point added to ∪σ∈Σ(G) �σ to ensure it is transitive. In the

latter case, deleting this point implies that the relation � is no longer transitive, so it cannot be

a common refinement of the transitive {�σ |σ ∈ Σ(G)}. The other possibility is that d′ �σ d for

some σ ∈ Σ(G). However removing this point implies that � is no longer a refinement of �σ and

thus it cannot be a common refinement of {�σ |σ ∈ Σ(G)}.

Lemma 2 (DAG recursion).

Proof. The sequence starts at the DAG D(G) which is non-empty and has a finite number of

vertices, as game G is a finite state DDG. Vertices are not added by the recursion (9), so it follows

at each step j < T D j(G) is a DAG with finite number of vertices. Thus, the N operator never

returns the empty set, reducing the number of vertices remaining in D j(G) as j increases. It follows

that the recursion must eventually terminate at some value T for which we have

DT (G) = N (DT (G)).

Corollary 2.1 (D is a DAG if DAG recursion terminates with no descendants after final step).

In an arbitrary directed graph D with a finite number of vertices, let recursion (9) terminate either

in the case when the vertices of D are exhausted, or when N operator returns the empty set. Let

DT +1 denote the final element of the sequence {D0,D1, . . . ,DT +1}. Then D is a DAG if and only

if DT +1 = /0.

Proof. Necessity follow from the proof of Lemma 2. To show sufficiency, imagine the contrary

that DT 6= /0 and yet D is DAG. If T +1 is a terminal step, it must hold that every vertex in DT +1

has a descendant. Because the number of vertices in DT +1 is finite, repeatedly following the link

to a descendant would result in a loop in DT +1, leading to a contradiction.

Lemma 3 (Stage 1 subgame).

Proof. From equation (11) we see that Ω1 = S. Therefore G1 has the same state space as G and is

identical in all other respects to G .

Lemma 4
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Proof. This result follows easily since at the terminal stage of the DDG T the continuation game

for each stage game SGT (d) is empty for d ∈ DT , so the set of feasible Markovian continuation

strategies for each stage game at stage T , Σ(SGT (d)), coincide with the set of feasible Markovian

strategies for the end game, Σ(GT (d)). This implies that SGT (d) = GT , d ∈ DT , establishing

equation (18). The second equation (19) follows from the fact that T is the terminal stage, so the

set of all continuation strategies for SGT (d) is the same as the set of all feasible strategies for

GT (d).

Theorem 2 (Subgame perfection).

Proof. Suppose (σ,V ) = e(SG
τ
(d)) ∈ E(SG

τ
(d)). We want to show that it is also an element of

E(Gτ(d)). We prove the result by mathematical induction. The result holds trivially at the last

stage T by virture of Lemma 4. This implies that SGT (d) = GT (d) for d ∈ DT which implies

that E(SGT (d)) = E(GT (d)) for d ∈ DT . Now suppose the result holds for all d-subgames for

all stages τ′ = τ+ 1, . . . ,T . We now show that it holds for all d-subgames at stage τ as well. By

definition, e(SG
τ
(d)) is a MPE of the stage game SG

τ
(d) in the restricted class of continuation

strategies. However, by definition, a continuation strategy is a MPE strategy in the stage τ1 sub-

game Gτ+1. It follows that e(SG
τ
(d)) is a MPE strategy on the set (d×X) for d ∈ Dτ and also

on the stage τ+ 1 subgame Gτ+1, so it must be a MPE for the full d-subgame Gτ(d), since if it

wasn’t it would have to fail to be a MPE at some point s either for s ∈ (d×X) or s ∈Ωτ+1, where

Ωτ+1 is the state space for the stage τ+1 subgame, given in equation (11) of Definition 9. In either

case there would be a contradiction, since the property that e(SG
τ
(d)) is a continuation strategy

implies that it must be a MPE at each s ∈ Ωτ+1, and the fact that it is also a MPE for the stage

game SG
τ
(d) implies that it is also must be a MPE strategy for each s ∈ (d×X). Thus, e(SG

τ
(d))

is a MPE strategy at each point s ∈Ωτ(d). Sincce this is the state space for the d-subgame Gτ(d),

it follows that e(SG
τ
(d)) must be a MPE of Gτ(d).

Conversely, suppose that e(Gτ(d)) is a MPE strategy of the d-subgame Gτ(d). We can express

e(Gτ(d)) as a continuation strategy as follows

e(Gτ(d))(s) =

{
e(Gτ(d))(s) if s ∈ (d×X) and d ∈ Dτ

e(Gτ+1)(s) otherwise.
(41)

This follows from the general definition of MPE in equation (1) of Definition 1, since the Bell-

man equation must hold at very point in the state space, and the state space for Gτ(d) includes
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Ωτ+1, so e(Gτ(d)) must be a MPE for s ∈Ωτ+1 which implies that e(Gτ(d)) = e(Gτ+1) for a par-

ticular equilibrium selection from the stage τ+ 1 subgame Gτ+1. Thus, it follows that e(Gτ(d))

is a MPE in the restricted class of continuation strategies for the stage game SG
τ
(d), and thus

e(Gτ(d)) ∈ E(SG
τ
(d)).

Theorem 4 (Convergence of State Recursion).

Proof. The state recursion algorithm given in definition 14 leads to a recursively defined MPE for

each stage τ stage game SG
τ
, τ = (1, . . . ,T ). By Theorem 2, these MPE also constitute MPE of

the stage τ subgames Gτ, τ = (1, . . . ,T ). However by Lemma 3 we have G1 = G , so it follows that

e(G1) = e(G), i.e. the state recursion algorithm has computed a MPE of the DDG G by computing

MPE for a total of

N =
T

∑
τ=1

nτ (42)

d-stage games of the game G . By Lemma 3 we have G1 = G , so it follows that e(G1) = e(G).

Thus, it follows that the state recursion algorithm has computed a MPE of the DDG G .

Lemma 6 (Feasibility of S(γ))

Proof. If S(γ) = (−1, . . . ,−1), then there can be no feasible γ′ ∈ ZN
+ satisfying ι(γ′)> ι(γ) because

the successor is the result of incrementing γ by the smallest possible non-zero value, 1. It follows

that J (γ) = (−1, . . . ,−1) and so J (γ) = S(γ) in this case. Otherwise, if S(γ) 6= (−1, . . . ,−1) then

we have ι(S(γ)) = ι(γ)+ 1, so if S(γ) is feasible, it must be the smallest ESS after γ, and hence

J (γ) = S(γ). But if S(γ) 6= (−1, . . . ,−1) it must be feasible by the properties of the successor

operator in variable base arithmetic. The long addition process insures that we have for each

i = 1, . . . ,nτ and τ = 1, . . . ,T , γi,τ < nei,τ(γ>τ), but by Lemma 5 it follows that S(γ) must be a

feasible ESS.

Theorem 6 (Solution method for the d-stage games in simultaneous move leapfrogging game).

Proof. The proof is by mathematical induction. The base of the induction is the bottom layer of

the leapfrogging game where c = 0. In this case the system of Bellman equations (38) is greatly

simplified because no further technological improvement is possible. It is simplified even further

in the corner and the edges of the game where investments by one or both firms don’t change

their future production cost. This makes it possible to solve Bellman equations analytically or
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with simple numerical procedures, as described in Appendices B.1 to B.3. The numerical method

described there is guaranteed to find all equilibria among continuation strategies in d-stage games

where d = (c1,c2,0). By Theorem 2 these equilibria constitute MPE equilibria in the correspond-

ing d-subgames. The induction step is the following. Assume all layers below the layer given by

the value of c are solved. Then we show that d-subgames in the layer c given by d = (c1,c2,c)

can also be solved. This follows from the solution method described in Appendices B.4 and B.5

which is again applied in a sequence prescribed by the ordering of states within the layer. When

η = 0, the solution algorithm is guaranteed to find all equilibria in every d-stage as fixed points

in the second order best response function in a particular state (c1,c2,c) and taking into account

the solutions on the lower layers. Again, applying Theorem 2 we conclude that found equilibria

constitute the MPE equilibria in every d-subgame on the layer c. The finiteness of the d-stage

game equilibria is shown alongside the solution method in Appendix B.

Theorem 7 (Solution method for the d-stage games in the alternating move leapfrogging game).

Proof. The proof is analogous to the proof of Theorem 7, whereas solution methods for the d-stage

games are presented in Appendix C.

B Solving the simultaneous move pricing and investment game

B.1 (T )-end game, (c1,c2,c) = (0,0,0) corner

The T stage of the leapfrogging game with simultaneous moves is a single point (c1,c2,c)= (0,0,0),

and it is easy to show that the pair of Bellman equations (38) simplifies such that the value of in-

vesting for firm j, vI, j(0,0,0) can be expressed as

vI, j(0,0,0) = vN, j(0,0,0)−K(0), (43)

which via equation (36) implies that

Pj(0,0,0) =
exp{−K(0)/η}

1+ exp{−K(0)/η}
. (44)

Recall that φ denotes a log-sum formula as per (37). In addition to (43) we can add one of the

two Bellman equations (38) for firm j to form the system of two equations with two unknowns,
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namely vI, j(0,0,0) and vN, j(0,0,0). Solving this system yields

vN, j(0,0,0) =
r j(0,0)+βφ(0,−K(0))

1−β
, (45)

and vI, j(0,0,0) determined by (43).

In this zero cost absorbing state, where firms have adopted the c = 0 state-of-the-art production

technology neither firm would invest in the absence of random IID shocks (εi
0,ε

i
1). Yet, if η > 0,

there can be some idiosyncratic reasons. As η approaches zero, Pj(0,0,0) will approach zero as

well, and the φ in (45) can be replaced by the maximum, yielding vN, j(0,0,0) = ri(0,0)/(1−β).

Yet, because r j(0,0) = 0 the end game (0,0,0) is a zero-cost, zero-price and zero-profit absorbing

state. The solution for the other firm is identical.

B.2 (T −1)-stage game, (c1,0,0) and (0,c2,0) edges

The T −1 stage is formed by the edges of the bottom layer of the state space where the state of the

art cost has fallen to zero, and one of the firms has alaredy invested to acquire zero marginal cost.

Similar to the corner stage, there can only be idiosyncratic reasons for investments by the first with

positive marginal cost, an investment will only bring the game to zero-profit case (0,0,0).

In the point (c1,0,0) where c1 > 0, the two Bellman equations for firm 1 (38) take the form

vN,1(c1,0,0) = r1(c1,0)+βφ(vN,1(c1,0,0),vI,1(c1,0,0)) (46)

vI,1(c1,0,0) = r1(c1,0)−K(0)+βφ(vN,1(0,0,0),vI,1(0,0,0)). (47)

Note that vI,1(c1,0,0) only depends on the known entities, and can therefore be computed di-

rectly. Substituting vI,1(c1,0,0) into (46) results in a nonlinear equation with a single unknown

vN,1(c1,0,0), the unique solution of which can be found by Newton’s method. The probability

P1(c1,0,0) of investment choice by firm 1 can then be found using (36).

At point (c1,0,0) the situation for firm 2 is similar to that of the end game (0,0,0) since

investing will not affect it’s marginal cost

vI,2(c1,0,0) = vN,2(c1,0,0)−K(0), (48)

corresponding probability for firm 2 to invests

P2(c1,0,0) =
exp{−K(0)/η}

1+ exp{−K(0)/η}
, (49)
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and the solution for the value function vN,2(c1,0,0) that in this case depends on the probability of

firm 1 to invest

vN,2(c1,0,0)=
r2(c1,0)+βP1(c1,0,0)φ(vN,2(0,0,0),vI,2(0,0,0))+β[1−P1(c1,0,0)]φ(0,−K(0))

1−β[1−P1(c1,0,0)]
.

(50)

The value functions in the (0,c2,0)-stage games can be derived in the analogous way.

B.3 (T −2)-stage game, (c1,c2,0) interior points

T − 2 stage consists of the interior points in the bottom layer of the state space (c1,c2,0) where

c1,c2 > 0. The Bellman equations (38) for firm 1 take the form

vN,1(c1,c2,0) = r1(c1,c2)+βP2(c1,c2,0)φ(vN,1(c1,0,0),vI,1(c1,0,0))

+β[1−P2(c1,c2,0)]φ(vN,1(c1,c2,0),vI,1(c1,c2,0)) (51)

vI,1(c1,c2,0) = r1(c1,c2)−K(0)+βP2(c1,c2,0)φ(vN,1(0,0,0),vI,1(0,0,0))

+β[1−P2(c1,c2,0)]φ(vN,1(0,c2,0),vI,1(0,c2,0)). (52)

The value vI,1(c1,c2,0) in (52) depends mostly on the quantities already calculated in previous

steps, but also on the investment probability P2(c1,c2,0) of firm 2, which is determined using

(36) from value functions of firm 2. Let vI,1(c1,c2,0,P2) denote such value of vI,1(c1,c2,0) that

satisfies (52) if an arbitrary probability P2 is used in place of the investment probability P2(c1,c2,0).

Substituting this into (51) leads to an equation with one unknown, which can be solved numerically

for vN,1(c1,c2,0,P2). Plugging the two found values into (36) leads to the investment probability

and thus best response function P∗1 (P2) for firm 1.

Similar arguments are used to derive the best response function P∗2 (P1). Then the investment

probability of firm 1 in all MPE in the d-stage game (c1,c2,0) at T −2 stage satisfies

P∗1 (P
∗
2 (P1)) = P1. (53)

By Brouwer’s fixed point theorem, at least one solution to the fixed point equation (53) exists.

Further, when η > 0, the objects entering this equation are C∞ functions of P2 and P1, so stan-

dard topological index theorems be applied to show that for almost all values of the underlying

parameters, there will be an odd number of separated equilibria. We will explain how we find all

fixed points in the second order best response function (see Figure 8) below when talking about
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Figure 8: End game equilibria

interior points of the higher layers of the game. Once all the equilibrium investment probabilities

are found, computing value functions vI, j(c1,c2,0,P∼ j) and vN, j(c1,c2,0,P∼ j) (where∼ j denotes

the opponent of firm j) is straight forward for both firms.

B.4 Solving the (τ < T −2)-stage games — corners and edges

The points contained in the stages preceding T −2 are characterized by c > 0, and so the integrals

in the Bellman equations (38) do not drop out as at the later stages. It is helpful to rewrite the

Bellman equations for firm 1 as

vN,1(c1,c2,c) = r1(c1,c2)+β[P2(c1,c2,c)H1(c1,c,c)+(1−P2(c1,c2,c))H1(c1,c2,c)] (54)

vI,1(c1,c2,c) = r1(c1,c2)−K(c)

+β[P2(c1,c2,c)H1(c,c,c)+(1−P2(c1,c2,c))H1(c,c2,c)] (55)

where the function H1 is given by

H1(c1,c2,c) = (1−π(c|c))
∫ c

0
φ(vN,1(c1,c2,c′),vI,1(c1,c2,c′)) f (c′|c)dc′

+π(c|c)φ(vN,1(c1,c2,c),vI,1(c1,c2,c)). (56)

Recall that π(c|c) is the probability for a cost-reducing innovation not to occur, and f (c′|c) is the

conditional density of the new (lower) state-of-the-art marginal cost of production conditional on

an innovation having occurred. Corresponding equations for firm 2 are derived analogously.

Because in some points (c1,c2,c′) entering the equation (56) the stage game may have multi-

ple equilibria, we invoke the deterministic equilibrium selection rule Γ to select particular values

53



v·,·(c1,c2,c′) as described in Section 2. Note also that the integral component in (56) only contains

entities that are calculated on the preceding stages in the state recursion algorithms, and therefore

can be considered known.

The corner (c,c,c)-stage game is very similar to the (0,0,0)-stage game because investments

by either firm does not change their marginal costs. It is straightforward to show that in this case

(54-55) imply the version of (48) where zero stat-of-the-art cost is replaced with c > 0, (44) holds,

and a similar system of two equations with two unknowns can be analytically solved for vI,1(c,c,c)

and vN,1(c,c,c). The same argument applies for firm 2.

The edge (c1,c,c) and (c,c2,c)-stage games are also solved using the same principles as on

the bottom layer of the state space. Using (c1,c,c) as an argument in (55) it is easy to see that

vI,1(c1,c,c) is uniquely determined from the already computed entities. Then, substituting this

value into (54) results in a single nonlinear equation with a unique solution vN,1(c1,c,c) that can

be computed numerically. After both value functions are found, the investment choice probability

P1(c1,c,c) is computed using (36). Because firm 2 is already at the stat-of-the-art cost level, in-

vestment is only possible for idiosyncratic reasons, so the analogues to (48-50) with zeros replaced

by c hold. The (c,c2,c)-stage games are solved analogously.

B.5 Solving the (τ < T −2)-stage games — (c1,c2,c) interior

In the (c1,c2,c) interior nodes, both firms have not yet invested in the current state of the art

production technology, and there is room for strategic investment by each of the two firms. The

best responses therefore depend on the investment probability of the opponent. Therefore the

investment probabilities (36) have to be determined endogenously in the solution of the system of

Bellman equations (38). It turns out that taken into the choice probability space, the system of

Bellman equations is greatly simplified.

Note that according to (55) the values of investing vI, j(c1,c2,c) for both firms depend on the en-

tities computed on the preceding stages, except the investment choice probabilities of the opponent

P∼ j(c1,c2,c). We can express vI,1(c1,c2,c) as a linear function of P2 = P2(c1,c2,c)

vI,1(c1,c2,c,P2) = c10 + c11P2, (57)

where c10 and c11 are functions dependent on known quantities derived from (54-56). Then, ex-

press the value of not investing vN,1(c1,c2,c) as an indirect function of P2

vN,1(c1,c2,c,P2) = a10 +a11P2 +βπ(c|c)(1−P2)φ
(
vN,1(c1,c2,c),vI,1(c1,c2,c)

)
, (58)
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where

a10 = r1(c1,c2)+β(1−π(c|c))
∫ c

0
φ(vN,2(c1,c2,c′),vI,2(c1,c2,c′)) f (c′|c)dc,

a11 = βH1(c1,c,c)−β
(
1−π(c|c)

)∫ c

0
φ(vN,2(c1,c2,c′),vI,2(c1,c2,c′)) f (c′|c)dc

are known from solutions of the preceding stages. Finally, expressing the value functions

in the probability space using the identities vI,1(c1,c2,c) − vN,1(c1,c2,c) = η log( P1
1−P1

) and

φ
(
vN,1(c1,c2,c),vI,1(c1,c2,c)

)
= vI,1(c1,c2,c)−η logP1 we have

a10 +(βπ(c|c)−1)c10−βπ(c|c)η logP1 +η log
P1

1−P1
+(

a11 +(βπ(c|c)−1)c11−βπ(c|c)(c10−η logP1)
)
·P2 +(

−βπ(c|c)c11

)
· (P2)

2 = 0. (59)

Expression (59) implicitly defines P1 = P1(c1,c2,c) as the best response of firm 1 to the investment

with probability P2 by firm 2, and is in fact a second order polynomial in P2. There are at most

two solutions for the equation (59) in P2, and the real roots of this polynomial as functions of P1

define the inverse best response function of firm 1 that we denote P2 = f−1
1 (P1). A similar line of

arguments yields the inverse best response function of firm 2 P1 = f−1
2 (P2), allowing us to form

the second order inverse best response mapping

P′1 = f−1
2

(
f−1
1 (P1)

)
. (60)

Because computing the roots of second degree polynomials is a very fast computational task, find-

ing fixed points of the mapping (60) is not too computationally expensive. The main difficulty for

the numerical procedure is to find all of the fixed points, as (60) is not a contraction mapping and

thus successive approximations are not guaranteed to converge. We applied a numerical procedure

designed around the combination of successive approximations and grid search facilitated by the

fact that probabilities are bounded to unit interval. All the equilibria in the (c1,c2,c)-stage game

correspond to the fixed points of the second order inverse best response mapping.

Using the results of Harsanyi (1973) as extended to dynamic Markovian games by Doraszelski

and Escobar (2009) we can show that η serves as a “homotopy parameter”, so that for sufficiently

small η the set of equilibria to the “perturbed” game of incomplete information converge to the

limiting game of complete information. Yet, using the representation (59) we can compute the
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solutions for the case η = 0 directly. In this case the best response functions jump discontinuously

from zero to one at the points where firms are indifferent between investing and not investing. The

thresholds are then the real roots of the second degree polynomials (59) much simplified due to

η = 0, and thus can be found very fast and robustly.

C Solving the Alternating Move Pricing and Investment Game

Each (c1,c2,c)-stage game of the alternating move pricing and investment game is itself a stochas-

tic dynamic game with state m ∈ {1,2} indicating which of the two firms has the right to move

in a given time period. In the same time, the fact that the firms move in the alternating fashion

does not change the dynamics of the cost states (c1,c2,c), and thus the sequence of stages the state

recursion algorithm proceeds through and the types of the stages (corner, edges and interior points)

are the same as in the simultaneous move game. Unlike in the Appendix B, here we don’t separate

c = 0 case, and present the solution method for the three types of stage games for any c.

It is useful to rewrite the Bellman equations (39) to emphasize the elements that at a given

stage τ would already be computed at preceding stages τ′ > τ and in case of multiple equilibria

singled out using a given ESR Γ. Let H1(c1,c2,c,m) denote the conditional expectation of the

future value function for firm 1 when firm m has the right to invest, given that technology improves

with probability one. We have

H1(c1,c2,c,1) =
∫ c

0

[
f (1|1)φ

(
vI,1(c1,c2,c′,1),vN,1(c1,c2,c′,1)

)
+ f (2|1)ev1(c1,c2,c′)

]
π(dc′|c,dc′ < 0), (61)

H1(c1,c2,c,2) =
∫ c

0

[
f (1|2)φ

(
vI,1(c1,c2,c′,1),vN,1(c1,c2,c′,1)

)
+ f (2|2)ev1(c1,c2,c′)

]
π(dc′|c,dc′ < 0), (62)

where

ev1(c1,c2,c) = P2(c1,c2,c,2)vI,1(c1,c2,c,2)+ [1−P2(c1,c2,c,2)]vN,1(c1,c2,c,2)

is the expected value for firm 1 not to have the right of move next period. In the bottom layer of
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the state space c = 0 and H1(c1,c2,c,m) = 0. The Bellman equations (39) for firm 1 are then

vI,1(c1,c2,c,1) = r1(c1,c2)−K(c)+βπ(c|c) f (1|1)φ(vI,1(c,c2,c,1),vN,1(c,c2,c,1))

+βπ(c|c) f (2|1)ev1(c,c2,c)+β(1−π(c|c))H1(c,c2,c,1),

vN,1(c1,c2,c,1) = r1(c1,c2)+βπ(c|c) f (1|1)φ(vI,1(c1,c2,c,1),vN,1(c1,c2,c,1))

+βπ(c|c) f (2|1)ev1(c1,c2,c)+β(1−π(c|c))H1(c1,c2,c,1),

vI,1(c1,c2,c,2) = r1(c1,c2)+βπ(c|c) f (1|2)φ(vI,1(c1,c,c,1),vN,1(c1,c,c,1))

+βπ(c|c) f (2|2)ev1(c1,c,c)+β(1−π(c|c))H1(c1,c,c,2),

vN,1(c1,c2,c,2) = r1(c1,c2)+βπ(c|c) f (1|2)φ(vI,1(c1,c2,c,1),vN,1(c1,c2,c,1))

+βπ(c|c) f (2|2)ev1(c1,c2,c)+(1−π(c|c))H1(c1,c2,c,2), (63)

and the 4 Bellman equations for firm 2 are defined similarly.

C.1 Solving the (c,c,c) corner stage games

Similarly to the corners in the simultaneous move game, setting c1 = c2 = c in (63) yields

vI,1(c,c,c,1) = vN,1(c,c,c,1)−K(c)

vI,1(c,c,c,2) = vN,1(c,c,c,2).

Further, it is easy to verify that P2(c,c,c,2) completely drops out of the Bellman equations, and

that the value functions becomes a system of linear equations that we can solve analytically.

vN,1(c,c,c,1) =
AN,1(c,c,c,1)(1−B2,2)+AN,1(c,c,c,2) ·B2,1

1−B1,1 +B2,2−B1,1 ·B2,2 +B1,2 ·B2,1

vN,1(c,c,c,2) =
AN,1(c,c,c,2)(1−B1,1)+AN,1(c,c,c,1) ·B1,2

1−B1,1 +B2,2−B1,1 ·B2,2 +B1,2 ·B2,1

where Bi, j = β ·π(c|c) f (i| j) , AN,1(c,c,c,1)= r1(c,c)+β(1−π(c|c))H1(c,c,c,1)+B1,1 ·φ(0,−K(c))

and AN,1(c,c,c,2) = r1(c,c)+β(1−π(c|c))H1(c,c,c,2)+B1,2 ·φ(0,−K(c)) are coefficients of the

linear system. The value functions for firm 2 can be derived analogously.
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C.2 Solving the (c1,c,c) and (c,c2,c) edge stage games

Consider (c1,c,c)-stages where c1 > c. Setting c2 = c in (63) immediately yields

vI,1(c1,c,c,2) = vI,1(c1,c,c,2) = ev1(c1,c,c),

and the analytical expression for the value of investing by firm 1

vI,1(c1,c,c,1) =r1(c1,c)−K(c)+β(1−π(c|c))H1(c,c,c,1)

+β∗π(c|c)[ f (1|1)φ(vN,1(c,c,c,1),vI,1(c,c,c,1))+ f (2|1)∗ vN,1(c,c,c,2)].

Substituting the resulting solution into the equation for vN,1(c1,c,c,1) results in the nonlinear

equation, the unique solution of which can be found by Newton method. Next, value functions of

the case when m = 2 are given by

ev1(c1,c,c) =

r1(c1,c)+β(1−π(c|c))H1(c1,c,c,2)+βπ(c|c) f (1|2)φ(vN,1(c1,c,c,1),vI,1(c1,c,c,1))
(1−βπ(c|c) f (2|2))

.

The investment choice probability P1(c1,c,c,1) is calculated using standard formula (36), and

P1(c1,c,c,2) = 0.

Because firm 2 has only idiosyncratic reasons to invest at (c1,c,c), it holds

vI,2(c1,c,c,2) = vN,2(c1,c,c,2)−K(c).

Given the probability of investment by firm 1 and substituting for vI,2(c1,c,c,2), we have a system

of three linear equation for the three remaining value functions for firm 2. The solution is

vI,2(c1,c,c,1) = r2(c1,c)+H2(c,c,c,1)+(B2,1φ(vN,2(c,c,c,2),vI,2(c,c,c,2))+B1,1vI,2(c,c,c,1)])

vN,2(c1,c,c,2) =
r2(c1,c)(1+ f1(c1,c,c))+H2(c1,c,c,2)+ f1(c1,c,c)H2(c1,c,c,1)

(1−B2,2−B2,1 f1(c1,c,c))

+
(B2,2 +B2,1 f 1)φ(0,−K(c))+ vI,2(c1,c,c,1)P1(c1,c,c)(B1,2 +B1,1)

(1−B2,2−B2,1 f1(c1,c,c))

vN,2(c1,c,c,1) =
r2(c1,c)+H2(c1,c,c,1)
(1−B2,2(1−P1(c1,c,c)))

+
B2,1φ(vN,2(c1,c,c,2),vN,2(c1,c,c,2)−K(c))+B1,1P1(c1,c,c)vI,2(c1,c,c,1)

(1−B2,2(1−P1(c1,c,c)))
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where f1(c1,c,c) = B1,2(1−P1(c1,c,c))/(1−B1,1(1−P1(c1,c,c))) and Bi, j are defined above for

the (c,c,c) stage. The investment choice probability P2(c1,c,c,2) is again calculated using stan-

dard logit formula (36), and P2(c1,c,c,1) = 0. The other edge (c,c2,c) is solved in a completely

analogous way.

C.3 Equilibrium solutions at (c,c2,c) interior stage games

In the interior points (c1,c2,c) where c1,c2 > c, the values functions for firm 1 in case when

investment is made vI,1(c1,c2,c,1) and vI,1(c1,c2,c,2) depend only on the entities found in the

preceding stages, and thus can be computed directly. The values in case the investment is not made

vN,1(c1,c2,c,1) and vN,1(c1,c2,c,2) depend on all four value functions of firm 1 at (c1,c2,c) as

well as the opponent’s investment probability P2(c1,c2,c,2). Yet, rearranging and substituting for

vN,1(c1,c2,c,2), we obtain a single non-linear equation in vN,1(c1,c2,c,1) and P2(c1,c2,c)

vN,1(c1,c2,c,1,P2) = A1(P2)+B1(P2)φ(vN,1(c1,c2,c,1,P2),vI,1(c1,c2,c,1)), (64)

where

A1(P2) = (1+ f1(P2))r1(c1,c2)+(1−π(c|c))H1(c1,c2,c,1)+ f1 p(c)H1(c1,c2,c,2)

+(B2,1 +B2,2 f1(P2))vI,1(c1,c2,c,2)P2,

B1(P2) = B1,1 +B1,2 f1(P2),

f1(P2) =
B2,1(1−P2)

1−B2,2(1−P2)
,

which is equivalent to

A1(P2)−η log(
1−P1

P1
)− vI,1 +B1(P2)(vI,1(c1,c2,c,1)−η log(P1)) = 0 (65)

in choice probability space (recall that vI,1(c1,c2,c,1) is a known quantity). This equation im-

plicitly defines firm 1’s best response P1 = P1(c1,c2,c,1) as a function of firm 2 probability

P2 = P2(c1,c2,c,2) to invest in the next period in case the cost structure is the same and the right

of move is transferred to firm 2.

It can be shown that for a given value of P1 the left hand side of (65) is a rational function

in P2, i.e. an algebraic fraction Q1(P2,P1)/Q2(P2), where both Q1(P2,P1) and Q2(P2) are linear

functions of P2. The denominator is Q2(P2) = 1−B2,2(1−P2) which is never zero since P2 ∈ [0,1]
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and B2,2 < 1. Hence, solutions of (65) can be found by solving a linear equation

Q1(P2,P1) = D1,0(P1)+D1,1(P1) ·P2 = 0, (66)

where

D1,0(P1) = (B2,1 +(1−B2,2))r1(c1,c2)

+ (B2,2 +B1,1 +B2,1b11−B2,2B1,1−1)vI,1(c1,c2,c,1)

+ β(1−π(c|c)((1−B2,2)H1(c1,c2,c,1)−B2,1H1(c1,c2,c,2))

− η

[
(B1,1 +B2,1B1,2−B2,2B1,1) lnP1 +(1−B2,2) ln

(
1−P1

P1

)]
,

D1,1(P1) = (B2,2−B2,1)r1(c1,c2)+B2,1vI,1(c1,c2,c,2)

+ (B2,2B1,1−B2,2−B2,1B1,2)vI,1(c1,c2,c,1)

+ β(1−π(c|c))(B2,2H1(c1,c2,c,1)−B2,1H1(c1,c2,c,2))

+ η

[
(B2,1B1,2−B2,2B1,1) lnP1−B2,2 ln

(
1−P1

P1

)]
.

Equation (66) has a single solution in P2 which defines the inverse best response function of firm 1

that we denote P2 = f−1
1 (P1). A similar line of arguments yields the inverse best response function

of firm 2 P1 = f−1
2 (P2), allowing us again to form the second order inverse best response mapping

P′1 = f−1
2

(
f−1
1 (P1)

)
. (67)

Finding fixed points of of the mapping (67) is even easier than in the simultaneous move case since

we only have to solve simplest linear equations in each iteration. Again, the difficulty is to find

all of the fixed points, as (60). We apply similar computational procedure as in the simultaneous

move game. All value functions and investment probabilities of both firms in the (c1,c2,c)-stage

game can be computed once the fixed points of the second order inverse best response mapping are

found.

When η = 0, coefficients in (66) are no more dependent on P1, yielding discontinuously jump-

ing best response functions, with thresholds determined by the solutions of the equation (66) and

similar one for firm 2. Therefore, as in the simultaneous move case, our solution approach allows

for direct fast and robust computations of all (c1,c2,c)-stage equilibria when η = 0 without the

need to invoke homotopy methods.
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