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Abstract

This study investigates the structure of optimal incentives in a stochastic environ-

ment and provides evidence for the use of self-enforcing relational contracts. We show

theoretically that under relational contracting, firms can credibly promise chief execu-

tive officers (CEOs) larger bonuses in good states than in bad, in a way that depends

crucially on the state’s persistence and the firm’s discount factor. Formal contracting

instead implies the same bonus in both states. Estimating an empirical model using

ExecuComp data, we find that CEO annual bonuses are related to “luck” in a manner

consistent with relational contracting.
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1 Introduction

One principle concerning CEO compensation on which most would agree is the desirability of

tying part of CEO pay to firm performance. The relevance of such performance pay follows

both from agency theory and common sense. Deviations from this principle, particularly

during times of poor firm performance, provoke outcries from shareholders and the general

public. For example, during the recent global financial crisis, some CEOs received large

bonuses even though their failing firms required taxpayer-funded public bailouts. These

“rewards for failure” generated public outrage and calls to tighten the link between pay and

performance.

A problem with tying CEO pay to firm performance, however, is that performance can

sometimes depend on factors beyond the CEO’s control. In these cases, pay-for-performance

amounts simply to “pay-for-luck”.1 While the adage “You make your own luck” may be

partly true, it would seem unreasonable to reward CEOs for factors truly beyond their

control. The Informativeness Principle from agency theory suggests that only measures which

provide information about the CEO’s desired action should be used in her incentive contract

(Shavell, 1979; Holmström, 1979). Luck, reflecting factors beyond a CEO’s control, should

therefore have no impact on compensation. Bebchuk and Fried (2003, 2004) prominently

argued that pay-for-luck is inconsistent with agency theory but consistent with the hypothesis

of managerial power, in which excessive CEO influence and a lack of board independence

lead to inefficient forms of pay.

Empirical evidence suggests that CEO cash compensation does, in fact, respond to luck

(e.g., Blanchard et al., 1994; Bertrand and Mullainathan, 2001; Oyer, 2004; Garvey and

Milbourn, 2006; Bizjak et al., 2008). Most studies measure luck as the portion of firm

performance that can be predicted by exogenous price changes (e.g., oil prices and exchange

rates) or average industry performance (see, e.g., Bertrand and Mullainathan, 2001). Such

1Throughout the discussion we define “luck” to mean factors beyond a CEO’s control that impact firm
performance. Though such factors may appear “random” from the CEO’s perspective, in the broader sense
they may follow from the general economic environment.
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measures tend to be positively correlated over time. Our goal is to explore the implications

of this simple observation that good (or bad) luck is frequently followed by more of the same.

Because luck is persistent, the realization of luck today contains relevant information about

the likely state of the employment relationship tomorrow, which in turn has implications for

CEO effort and contract design. These implications have been neglected by the literature to

date. Moreover, the greater the degree of persistence in luck, the stronger these implications

should be.

Our focus is on CEO bonuses, as opposed to other components of compensation such as

base pay, stock options, and restricted stock. These bonuses can be contractually specified in

different ways. Firms can use formal contracts, that are directly enforceable by a third party,

or alternatively they can use relational contracts that are indirectly enforceable through the

threat of punishment in the context of repeated play. Both formal and relational contracting

perspectives seem reasonable, a priori, when analysing CEO compensation. Contracts for

CEOs often explicitly specify the relevant bonus structure. For example, Murphy (1999)

described formula-based “80/120 plans,” a commonly used piecewise-linear bonus contract.

However, in a cross-sectional study, Gillan et al. (2009) found that roughly half of the S&P

500 CEOs work without any explicit employment contract at all. When a contract does

exist, the board can often exercise discretion either in the performance metrics used or in

judgments about whether certain performance standards have been achieved. For instance,

“individual bonuses may be based in part on subjectively assessed individual performance

[....] Alternatively, the boards of directors may make discretionary adjustments.” (Murphy

and Oyer, 2004: 2).2

We develop a theoretical framework for analyzing the effect of persistent luck under

both formal and relational contracting. We consider an employment relationship between

a principal (the shareholders) and an agent (the CEO) with a common discount factor,

2The scope for discretion in executive bonuses is further articulated by Murphy and Jensen (2012: 42):
“sometimes these shadow plans have little or nothing to do with the performance criteria specified in the
shareholder approved plans.”
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in a simple Markovian environment with two states of the world (high and low). The

state is positively correlated over time and directly affects output in a way that is beyond

the CEO’s control. The CEO exerts effort to influence the probabilities of “success” or

“failure” in production, expecting that “success” will result in a larger bonus. The principal

is contractually obligated to pay any promised bonuses under formal contracting, whereas

he can always renege on his promise under relational contracting.

We show that under formal contracting, the principal offers the same bonus for success

in both states. In contrast, under relational contracting, the optimal bonus may vary across

states, depending on the value of the discount factor. The principal always offers the same

bonus as under formal contracting when the discount factor is sufficiently high. However,

when the discount factor is low, so is the future value of the employment relationship,

leaving this bonus too large to be credible. The principal then offers a smaller bonus that is

conditional on the state, with a relatively larger bonus in the high state than in the low. The

reason is that the principal’s credibility depends on the current state. A high state today

suggests a high state tomorrow, which in turn suggests higher profits from continuing the

employment relationship. The principal then has much to lose by reneging on his promise of

a bonus and inducing a disgruntled CEO to end the relationship. This dynamic enforcement

constraint under relational contracting means that conditioning the bonus on (persistent)

luck is efficient, in contrast to Bebchuk and Fried’s “managerial power” rationale that pay-

for-luck is inefficient.

The magnitude of the preceding result hinges on the degree of persistence of the state. If

the state has a strong positive correlation over time, then bonus payments under relational

contracting with a low discount factor will be highly sensitive to the state, since the current

state is very informative about the future value of the employment relationship. This means

that the difference between the bonus in the high state and the low state will be large.

In contrast, in the extreme case where the state is independent over time, the bonus is

insensitive to the state for all values of the discount factor, and exactly matches the bonus
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under formal contracting.3 Thus, persistence of the state is key to differentiating formal

from relational contracts, and the greater the persistence, the starker the differentiation.

These predictions derived from theory allow us to address the empirical question of

whether relational contracting plays a role in executive compensation. This question is

important, since there is a growing theoretical literature on relational contracts, but few em-

pirical tests to distinguish their implications from those of formal contracts. We investigate

our predictions using a merged data file drawn from ExecuComp, Compustat, and CRSP,

estimating an empirical model for executive bonuses that includes a measure of persistent

luck (i.e. the state) on the right-hand side. Our preferred measure of the state is an indi-

cator for whether the part of lagged sales growth that is predicted by observable variables

unrelated to CEO effort is positive. The rationale for lagging the measure and for using

predicted rather than actual values is to purge the measure of any influence of current CEO

effort.

We find that this measure of the state is positively autocorrelated and that it is also

positively correlated with our measure of CEO performance, which is firm income. To test

the main theoretical predictions, we estimate a reduced-form bonus equation that expresses

the amount of the CEO annual bonus as a function of the state. Our main prediction is that

the effect of the state on the bonus is positive, to the extent that relational contracting char-

acterizes CEO bonus pay. Furthermore, since this relationship only holds for a sufficiently

low discount factor, the empirical result should be stronger (and perhaps only detectable)

for low values of a discount factor proxy. We identify a proxy for the discount factor by

following the macroeconomics literature and assuming that the firm’s default probability –

and hence the probability that the employment relationship ends – is increasing in financial

leverage.

3The reason is that one-off events over which managers have no control only affect today’s surplus and have
no relevance to the future value of the relationship. The only different implication of relational contracts
compared to formal contracts is that the bonus would be smaller when the firm’s dynamic enforcement
constraint binds; however, without knowing the counterfactual for a given firm, estimating the difference is
not straightforward.
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The empirical results using leverage as a proxy for the (inverse) discount factor provide

support for our predictions under relational contracting. That is, the marginal effect of

the state on a CEO’s annual bonus payment is positive, with a larger magnitude when the

discount factor is low, as reflected by high values of leverage. In a sensitivity analysis, we

consider an alternative measure of the (inverse) discount factor, using estimated probabil-

ities of default, and find that our results are robust to this change. To test our prediction

that the positive marginal effect of the state on the CEO’s bonus is increasing in the state’s

persistence, we compute the first-order autocorrelation of the state for each firm and interact

that variable with the measure of state in the bonus regression. The results are again con-

sistent with our theoretical predictions under relational contracting. Overall, our empirical

evidence supports the view that relational contracts play a role in the payment of executive

bonuses.

The remaining discussion has the following structure. Section 2 surveys the related

literature. Section 3 describes the theoretical model, and Section 4 characterizes the optimal

contracts. Section 5 describes the data set, Section 6 presents estimation results, and Section

7 concludes.

2 Related Literature

The basic theory of stationary relational contracts is well known (e.g., Bull, 1987; MacLeod

and Malcomson, 1989; Baker et al., 1994; Levin, 2003; Malcomson, 2012). That is, relational

contracts are self-enforcing when the future value of the relationship is sufficiently large so

that both parties find it profitable to adhere to their implicit obligations, rather than to

engage in opportunistic behavior.4 Whereas our study looks at stationary contracts, the

recent literature has also considered relational contracts that are nonstationary. For instance,

Fong and Li (2012) showed that limited liability can lead to backloading of the agent’s utility.

4Relational contracts can be used when complete, explicit contracts are costly to design and enforce
(Kvaløy and Olsen, 2009).
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Chassang (2010), Board (2011), Halac (2012), Li and Matouschek (2012) and Yang (2013)

showed that relational contracts can involve nonstationary phases when the principal or the

agent has private information, or when there are switching costs.

Non-stationary incentives often relate to learning that occurs through the employment

relationship. While learning undoubtedly matters in some cases, it does not play a role in

our theoretical model, and is likely to be relatively unimportant in practice for CEOs. Unlike

most workers, CEOs have already successfully reached the top of their career ladders and

interact frequently with the board, and the findings of the previously mentioned studies on

non-stationary relational contracts suggest both these considerations diminish the impor-

tance of learning. We further comment on the implications of uncertain information in our

model at the end of Section 4.

Most existing evidence on relational contracting comes from inter-firm (supply) relation-

ships rather than intra-firm (employment) relationships (e.g., McMillan and Woodruff, 1999;

Banerjee and Duflo, 2000; Johnson et al., 2002; Lafontaine and Slade, 2012; Gil, 2013). These

studies mainly focused on showing that relational contracts can substitute for formal institu-

tions like courts and help sustain long-term relationships in developing countries. The study

closest to ours in this literature is Gil and Marion (2013), which explores how relationships

between contractors and subcontractors affect bidding behavior in highway procurement

auctions in California. They construct an exogenous instrument to measure the future value

of ongoing relationships, finding that a larger stock of relationships leads to lower bids and

a greater likelihood of entry, but only when the future value is high.

Further evidence on relational employment contracts has been almost exclusively exper-

imental (e.g., Brown et al., 2004; Fehr et al., 2009; Camerer and Linardi, 2010). We view

this literature as complementary to our study, as it has focused on capturing features of

competitive labor markets rather than testing the implications of principal-agent relation-

ships. For instance, Brown et al. (2004) conducted experiments in which firms offer wages to

workers, and workers can exert noncontractible effort. Relational contracting is made possi-
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ble by attaching ID numbers to all firms and workers, allowing firms to make private offers

to particular workers each period. They showed that repeated interactions in the absence

of third-party enforcement can lead to more efficient outcomes than one-shot interactions.

However, unlike in our study, there is no discretionary bonus payment at the end of the

period, and the rationale for cooperation focuses on reciprocity.

Our empirical evidence supporting relational contracts contributes to the growing liter-

ature on pay-for-luck (e.g., Blanchard et al., 1994; Bertrand and Mullainathan, 2001; Oyer,

2004; Garvey and Milbourn, 2006; Bizjak et al., 2008). An explanation for pay-for-luck that

has been proposed in a static framework is that CEOs’ outside options are correlated with

their firms’ performance, so firms adjust CEO pay for retention purposes (Oyer, 2004; Bizjak

et al., 2008). However, dynamics can also be an important consideration in CEO pay. For

instance, Holmström (2005) argued that increased demand (or the CEO’s outside option) is

not likely to be the sole driver for the recent rise in CEO pay, and it is important to examine

dynamic models where commitment problems and implicit incentives play a role. We argue

in this spirit that relational contracting gives rise to a dynamic enforcement constraint that

can help explain pay-for-luck, where firms adjust CEO pay in response to changes in the

expected future value of the employment relationship.

Our empirical model for CEO bonuses includes a measure of the state of the world,

which is an indicator of the sign of lagged sales growth (or, alternatively, the same measure

but using predicted rather than actual sales growth, where the prediction equation nets out

factors that may be related to CEO effort). The relationship between sales growth and

executive compensation has been explored in prior literature. For example, Hallock and

Oyer (1999) presented evidence that in addition to being rewarded for current performance,

CEOs are rewarded in year t for increases in earnings in year t + 1. They also showed

that fourth-quarter sales growth is a particularly good predictor of the following fiscal year’s

earnings growth. It follows that the most recent observations of sales growth should receive

the most weight in an executive’s compensation. Whereas Hallock and Oyer focused on
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whether executives have an incentive to shift sales from one fiscal quarter to another, we

focus on the role of sales growth as a persistent state variable that can help empirically

distinguish relational from formal contracting.

More generally, this study relates to an extensive literature on CEO compensation and

firm performance (see, e.g., Hall and Liebman 1998 and the surveys by Murphy 1999 and

Core et al. 2003). Whereas that literature focuses on the measurement of, and issues

surrounding, the sensitivity of pay to performance, we focus on the empirical implications of

relational versus formal contracting in the payment of CEO bonuses. To our knowledge, there

are no prior studies that focus on empirically distinguishing between formal and relational

contracting.5

3 The Model

Consider a repeated relationship between a principal and an agent, both of whom are risk

neutral. Time has an infinite horizon with discrete periods indexed by t = 1, 2, . . .. In each

period t, the agent produces output, and her work either meets with success or with failure.

Success or failure is a random variable equaling xS in the case of success and xF in the case

of failure, where xS > xF > 0. Output in each period, xt, depends on whether success or

failure was achieved in that period and also on two additional stochastic components (one

persistent and the other idiosyncratic). We refer to the persistent component as the state

of the world and denote it by ∆t; we refer to the idiosyncratic component as the shock and

denote it by εt. Thus, xt ∈ {xF + ∆t + εt, xS + ∆t + εt}.

The state can assume either of two possible values and evolves according to a Markov

process: ∆t = {−∆,∆}, where 0 < ∆ < xF , and P (∆t+1 = ∆t) = θ ∈ (1/2, 1). We say that

the period-t state is high if ∆t = ∆ and that it is low if ∆t = −∆. Both states are a priori

5Murphy and Oyer (2004) used survey data to examine the related question of discretion in executive
compensation. They found that nearly two-thirds of surveyed companies based bonuses in part on subjective
assessments of individual performance. This study is complementary to Murphy and Oyer, as it tests for
relational contracting by examining changes in the size of bonus payments.
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equally likely, i.e. P (∆1 = ∆) = P (∆1 = −∆) = 1/2. Random shocks are independently

and identically distributed with mean zero on [−ε, ε], where 0 < ε < xF −∆.

In each period t, the agent chooses effort et ∈ [0, 1] at a cost of C(et), with C(0) = 0,

C ′(0) = 0, C ′(e) ≥ 0, C ′′(e) > 0, C ′′′(e) ≥ 0, and lime→1C
′(e) =∞. This effort choice is not

observed by the principal. The role of effort in the model is to influence the probability of

success or failure. The probability of success, p(et) ≡ p(xt = xS + ∆t + εt|et), is increasing in

effort, and we assume that p(0) = 0, p′(e) > 0, p′′(e) < 0, p′′′(e) ≤ 0. The agent’s incentive

to increase the likelihood of success by exerting effort is driven by a desire to be paid a higher

bonus, as we explain shortly.

Output xt is observable to both the principal and the agent, but it may not be verifiable

by third parties. If xt is verifiable, then the principal can use formal contracting. If xt is

unverifiable, the principal must instead rely on relational contracting, as described below.

Both the principal and agent discount future payoffs with factor δ ∈ (0, 1). The discount

factor can be interpreted as the probability that the relationship continues to the following

period.

The timing of the game is as follows. At t = 0, the principal offers the agent a contract,

B, that specifies payment at the end of each period t ≥ 1, conditional on the history

of previous play. The principal can commit to these payments when output is verifiable

(formal contracting) but not when it is unverifiable (relational contracting). At the start of

any period t ≥ 1, the state ∆t and the shock εt are publicly revealed, and the agent chooses

effort et. Output xt is then realized and publicly revealed. The principal makes the payment

specified under B, or possibly reneges on this payment under relational contracting, and

the period ends. The agent then chooses whether or not to continue his relationship with

the principal into the next period. If the agent ends the relationship, then both he and the

principal earn a payoff of zero from their outside option in all later periods. If the agent

continues the relationship, then play moves to period t+ 1. The timing of play within each

period t ≥ 1 is summarized in Figure 1.
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We focus on stationary perfect public equilibria where, on the equilibrium path, period-

t payments and actions depend only on xt, ∆t, and εt. We can therefore write B =

(bSH(εt), bFH(εt), bSL(εt), bFL(εt)), where bSH and bFH denote, respectively, the bonuses for

success and failure when the state is high, and bSL and bFL denote the bonuses for success

and failure when the state is low. The notation makes clear that these bonuses may also

depend on the value of the contemporaneous shock, εt. We assume limited liability so that

B ≥ 0, and consider trigger strategies specifying the harshest credible punishment if the

principal reneges on a payment specified by B: the agent then immediately ends the em-

ployment relationship (Abreu, 1988).6 As part of the contract B, the principal could offer a

base salary w ≥ 0 paid at the start of each period, but we can restrict attention to contracts

consisting entirely of bonuses, since the optimal base salary in our setting is zero.7

4 Theoretical Results

We begin the analysis by providing expressions for the expected payoffs of the principal and

the agent. Henceforth, let eH (eL) denote the agent’s optimal effort choice in the high (low)

state. Suppose that the period-t state is high, i.e. ∆t = ∆. Then given contract B, effort

6Conditional on the relationship continuing after the principal reneges, the agent exerts zero effort in all
subsequent periods, and the principal offers zero bonus, so that each strategy specifies a best reply to the
other.

7Specifically, the principal offers a base salary that provides the same payoff as the agent’s outside option.
Paying any higher base salary would directly reduce the principal’s profits and indirectly reduce his ability
to credibly offer bonuses under relational contracting.
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choice eH , and shock εt, the principal’s expected period-t profits are πH(B, eH) + εt, where

πH(B, eH) = p(eH)(xS + ∆− bSH(εt)) + (1− p(eH))(xF + ∆− bFH(εt)), (1)

and the agent’s expected period-t payoff is

uH(B, eH) = p(eH)bSH(εt) + (1− p(eH))bFH(εt)− C(e). (2)

Suppose instead that the period-t state is low, i.e. ∆t = −∆. Then expected period-t

profits are πL(B, eL) + εt, where

πL(B, eL) = p(eL)(xS −∆− bSL(εt)) + (1− p(eL))(xF −∆− bFL(εt)), (3)

and the agent’s expected period-t payoff is

uL(B, eL) = p(eL)bSL(εt) + (1− p(eL))bFL(εt)− C(e). (4)

For any t′ ≥ t, define Pt′,t ≡ P (∆t′ = ∆t), which is the probability that the state in

period t′ is the same as the state in period t. Given that P (∆t+1 = ∆t) = θ, we can define

Pt′,t recursively by

Pt′,t = θPt′−1,t + (1− θ)(1− Pt′−1,t), (5)

for t′ ≥ t+ 1, with Pt,t = 1. Since θ > 1/2, the correlation between states in any two periods

should clearly be positive and increasing in θ. We establish these results formally in the

proofs of Proposition 1 and 2.

Shocks have mean zero, so the present discounted value of expected profits as of a period

t when the state is high is ΠH(B, eH , eL) + εt, where

ΠH(B, eH , eL) =
∞∑
t=1

δt−1
(
Pt,1πH(B, eH) + (1− Pt,1)πL(B, eL)

)
, (6)
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with πH(B, eH) given by (1) and πL(B, eL) given by (3). Similarly, the present discounted

value of expected profits as of a period t when the state is low is ΠL(B, eH , eL) + εt, where

ΠL(B, eH , eL) =
∞∑
t=1

δt−1
(
Pt,1πL(B, eL) + (1− Pt,1)πH(B, eH)

)
. (7)

Given a stationary contract and unobservable effort, the agent’s optimal effort choice

in any period t depends only on the incentives offered in that period. Both states are a

priori equally likely, and shocks have mean zero, so the principal’s program under formal

contracting is

max Π =
1

2
ΠH(B, eH , eL) +

1

2
ΠL(B, eH , eL), subject to (8)

eH = arg max
e∈[0,1]

uH(B, e), (9)

eL = arg max
e∈[0,1]

uL(B, e), (10)

B = (bSH(εt), bFH(εt), bSL(εt), bFL(εt)) ≥ 0. (11)

Under relational contracting, the principal faces additional constraints. He must have an

incentive to actually pay each bonus specified under B when called upon to do so. Given

trigger strategies, the optimal way for the principal to renege on a bonus is to withhold it

completely, so the benefit of reneging equals the size of the bonus. The cost of reneging is

the expected future profits lost when the agent ends the productive relationship. This means

that the principal’s program under relational contracting includes credibility constraints

max{bSH(εt), bFH(εt)} ≤ δ

(
θΠH(B, eH , eL) + (1− θ)ΠL(B, eH , eL)

)
, (12)

max{bSL(εt), bFL(εt)} ≤ δ

(
θΠL(B, eH , eL) + (1− θ)ΠH(B, eH , eL)

)
, (13)

where both the cost and benefit from reneging may depend on the current state.

The value of the shock does not enter into the principal’s objective function (8), nor
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does it enter into any of constraints (9), (10), (11), (12), or (13). It follows immediately

that the bonuses prescribed under the optimal contract are independent of εt; that is, B =

(bSH(εt), bFH(ε), bSL(εt), bFL(εt)) ≡ (bSH , bFH , bSL, bFL).

We begin with a lemma that simplifies the principal’s program.

Lemma 1 Under both formal and relational contracting, the principal never pays a positive

bonus in a period where the agent fails: bFH = bFL = 0.

The intuition for Lemma 1 is straightforward. For any given effort level, offering a

positive bonus for failure increases the principal’s expected payout. It also makes success

relatively less attractive for the agent, which reduces his incentive to exert effort. This leads

the principal to set the payment for failure as low as possible, which under limited liability

is zero. The optimal contract can therefore be written as B = (bSH , 0, bSL, 0). To ease

notation, we henceforth drop the subscript S and write bH = bSH and bL = bSL. Moreover,

the optimal effort level in a given state depends only on the bonus offered for success in that

state, so that eH = e(bH) and eL = e(bL).

Finally, Lemma 1 implies that under relational contracting, credibility constraints (12)

and (13) reduce to

bH ≤ δ

(
θΠH(bH , bL, eH , eL) + (1− θ)ΠL(bH , bL, eH , eL)

)
, (14)

bL ≤ δ

(
θΠL(bH , bL, eH , eL) + (1− θ)ΠH(bH , bL, eH , eL)

)
. (15)

We now present a second lemma that will be useful in proving our main results. It shows

that the optimal effort level is increasing in the size of the bonus but at a decreasing rate.

As a result, expected profits in any given period will be a concave function of the promised

bonus.

Lemma 2 Let I ∈ {H,L}, and consider the agent’s optimal effort e(bI) in state I. Then

0 ≤ e(bI) < 1, where the inequality is strict for all bI > 0. Moreover, e(bI) is unique, with
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e′(bI) > 0 and e′′(bI) < 0.

We now state our first main result, where superscripts f and r denote optimal bonuses

under formal and relational contracting.

Proposition 1 If output is verifiable, then the principal will choose formal contracting and

offer the same bonus in both states: bf ≡ bfH = bfL > 0. If output is nonverifiable so that

contracting is relational, then the principal will offer a different bonus in each state if and

only if the discount factor is sufficiently low: for any θ ∈ (1/2, 1), there exists δ0 ∈ (0, 1)

such that 0 < brL < brH ≤ bf for all δ ∈ [0, δ0) and brH = brL = bf for all δ ∈ [δ0, 1].

Proposition 1 has two direct empirical implications for distinguishing relational from for-

mal contracting. First, if contracting is relational, then bonus payments should be positively

correlated with the state. Second, this positive correlation should be driven by firms with

low discount factors that place a relatively low weight on potential future profits.

The intuition behind the result is as follows. A large bonus will generate high effort,

which increases expected output, but it will also increase the expected payment to the

agent. Absent credibility concerns, the principal takes into account these two opposing

effects by setting the optimal bonus that gives marginal profits of zero. Marginal profits are

independent of the state, since the state does not affect the relationship between bonus and

effort or the relationship between effort and success. It follows that the principal offers the

same bonus bf in both states under formal contracting.

The difference under relational contracting is that the principal faces a commitment prob-

lem. He would like to offer the same profit-maximizing bonus as under formal contracting,

but he needs an incentive to actually pay this bonus when the agent succeeds. Reneging on

a promised bonus increases immediate profits, but it also decreases expected future profits,

as the agent reacts by ending the employment relationship. This means the bonus bf will

not be credible if it exceeds the discounted value of expected future profits, which happens

if the discount factor is sufficiently low.
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In this case, the principal can credibly promise a larger bonus in the high state than in the

low state, because profits are higher in the high state and states are positively correlated over

time. The principal then sets brL < brH under relational contracting. Total profits are lower

than under formal contracting, since marginal profits are strictly positive at the constrained

optimum, but the principal cannot credibly commit to paying a larger bonus.

The driving force behind Proposition 1 is the persistence of the state over time. We now

describe further how the optimal bonuses depend on the discount factor and the persistence

of the state.

Proposition 2 Consider the optimal bonuses bf , brH , and brL given by Proposition 1. Then:

(i) bf is independent of δ, whereas brL and brH are increasing in δ whenever brL < bf ,

brH < bf .

(ii) bf is independent of θ, whereas brH − brL is increasing in θ whenever brL < bf , brH < bf .

A corollary to part (i) is that ex-ante expected per-period profits are independent of δ

under formal contracting but increasing in δ under relational contracting. With relational

contracting, a larger discount factor allows the principal to credibly offer bonuses closer to

bf and implement more efficient levels of effort.

Proposition 2 has a number of additional empirical implications. First, if workers are

compensated through relational contracting, then firms with low discount factors should

pay lower bonuses. Second, these same firms will tend to earn lower profits than those

using formal contracts. Third, the sensitivity of bonus payments to the state with relational

contracting should be highest for firms facing a very persistent state.

Under formal contracting, the principal chooses the optimal bonus to maximize imme-

diate profits, which are independent of discounting or of the future state. In contrast, the

credibility constraint under relational contracting depends on δ and θ through the discounted

value of expected future profits. First, consider the result in part (i). When the discount

factor is low, the principal always offers a relatively small bonus, since a larger bonus would

16



not be credible. An increase in δ allows the principal to credibly increase both brL and brH

since he then has a larger stake in continuing the employment relationship. The prospect of

earning a larger bonus leads the agent to exert more effort, which in turn increases expected

profits.

Now consider the result in part (ii). When persistence is low, the current state provides

little information about future profits. The principal then faces similar credibility issues

across states and offers similar bonuses. As the state becomes more persistent, the difference

in expected future profits between the high and low states increases. This persistence dif-

ferentially affects the principal’s credibility across states and leads him to offer increasingly

different bonuses.

We have assumed the state has a simple autocorrelation structure that is known to the

principal and agent, but our main results should be robust to relaxing this assumption. For

instance, suppose the persistence of the high state θH could differ from that of the low state

θL, and that players were initially unaware of the true values of θH and θL, instead holding

prior beliefs about each variable over (1/2, 1).

In this setting, if players were to observe a recurring high state, they would infer the

high state was relatively persistent and update their beliefs about θH towards 1. If players

were to observe the state change from low to high, they would instead update their beliefs

about θL towards 1/2. Either way, players observing a high state would revise up their

expectation of future profits, which would loosen the credibility constraint and allow for a

larger bonus. Similarly, players observing the low state would revise down their expectation

of future profits, which would only allow a smaller bonus to be credible. We would still

expect the bonus to be larger if the state was high than if it was low, but now bonuses would

change over time as players continued updating their beliefs. In the long run, beliefs would

tend to the true values of θH and θL with probability one, and in the case where θH = θL,

bonus payments would tend to brH and brL from the preceding analysis.
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5 Data

The executive compensation data we use for the empirical analysis come from the Standard

& Poor’s Execucomp database for the period 1993–2011. Our sample comprises current

constituents of all S&P 500 (large cap), S&P 400 (mid cap) and S&P 600 (small cap)

companies.8 We focus on individuals identified as CEOs for each firm. The Execucomp

database contains an indicator for the executive who served as CEO for all or most of the year

(i.e., CEOANN); however, this variable often has missing entries, and the CEO designation

sometimes changes in a somewhat arbitrary fashion between co-CEOs and between chairman

and CEO, etc. Our solution was to check for irregular data patterns, verify the executives’

career profiles using online sources such as businessweek.com and forbes.com, and make

necessary corrections.

The data include individual executives’ age and the date they became chief executive

officers (i.e., BECAMECEO), from which we calculated each CEO’s tenure.9 Compensation

data are collected from each firm’s annual proxy (DEF 14A) and include the CEO’s salary,

bonus, equity-based compensation, and other components. Consistent with our theoretical

model, we focus on executive annual bonus payments. Hence, our primary dependent variable

is executive i’s year-t bonus, which we denote by BONUSit. Due to the SEC rule change FAS

123(R), ExecuComp made important changes in the reporting format for some variables as

of 2006. For our purposes, the most important change was that annual bonuses were mostly

reported as Non-Equity Incentive Plan Compensation as of 2006, meaning that the bonus

variable often equals zero in those years. We take this change into account by including

non-equity incentive pay in our bonus measure from 2006 forward.10

8Compustat does not show historical constituents, so our sample includes new entries but not drop-outs.
9Wherever the BECAMECEO entry was missing, we searched the executive’s career profile from the

previously mentioned source. Importantly, the ExecuComp database resets (overwrites) the BECAMECEO
variable when the same individual becomes a CEO more than once for various reasons. We did not reset the
CEO tenure when we found such cases.

10As Florin et al. (2010) note, “[s]trictly speaking, the bonus as listed in the table is formula-based pay
beyond cash salary. On the other hand, non-equity incentive compensation can be both short-term or long-
term pay that is based on some pre-set criteria (based on performance) whose outcome is uncertain [...] both
can be considered a type of bonus.”
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After eliminating firms for which only a few years’ data are observed, we have an unbal-

anced panel of 1490 firms by 19 years. We then obtain each firm’s financial information from

the Compustat annual industrial file and match that information with the compensation

data. All financial variables in the raw data are measured in nominal values (e.g., compen-

sation, income, and balance sheet items), which we convert to real values in 2005 dollars

using the GDP deflator. Following the literature (e.g., Bertrand and Mullanaithan, 2001),

we use income before extraordinary items as our measure of executive i’s year-t performance

and denote it by PERFit.

Any variable that is persistent, unaffected by CEO actions, and observed to economic

actors at the time decisions are made will suffice as a measure of ∆it. One variable we use

to capture the period-t state is SALESCHGPOSt−1, defined to equal 1 if SALESt−1 −

SALESt−2 > 0 and to equal 0 otherwise, where SALESt denotes period-t sales revenue.

Our use of lagged SALESCHGPOS as a measure of the state requires discussion given

that sales growth has also been used in the literature as a measure of executive performance.

Hallock and Oyer (1999) argued that since the CEO’s goal is to increase the firm’s scale,

sales growth can be thought of as a performance measure.

Although sales growth may often belong on the right-hand side of an executive compen-

sation equation (e.g., Murphy, 1985; and many subsequent studies), the specific measure we

consider is not particularly relevant for CEO performance.11 For example, suppose company

sales declined gradually, from 500 to 495, over a ten-year period, before plummeting abruptly

to 100 and then gradually increasing to 105 over the subsequent ten years. Using the annual

change in sales as the performance measure, the performance profile would look negative over

the first decade and positive over the second decade, even though a more natural conclusion

would be the opposite given the far greater sales revenue in the first decade.

11Murphy (1985: 22) explains the rationale for including sales growth (and also the level of sales) on the
right-hand side of an executive compensation equation as follows: “In addition to stock performance, firm
size or growth may yield information relevant for determining levels of managerial effort. Indeed, several
theories of managerial production suggest that compensation should be partially determined by firm size or
growth, reflecting the quantity of resources controlled by the individual executive and the scope of managerial
responsibilities.”
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A potential concern about using SALESCHGPOS as a measure of the state in our

model is that sales growth could partially reflect CEO actions. We address this concern in

two ways. First, in our regressions for the year-t executive bonus, we include only lagged

values of SALESCHGPOS on the right-hand side. The rationale is that even if sales growth

from years t− 2 to t− 1 contains information about CEO effort, this past effort is irrelevant

for period t compensation in our theoretical framework. All that we require to test our

predictions is a serially correlated variable that affects CEO performance, that is observed

to economic agents at the time of their decisions, and that is exogenous as of the current

year t.

Second, we also consider an alternative measure of the state: the predicted values from

individual regressions (one for each firm in the sample), each of the form SALESCHGt =

Ztγ + ωt. Here, Zt is a vector of potentially time-varying covariates measuring factors that

are observable to economic agents in year t, that affect sales growth, and that are unrelated

to CEO effort. We then compute a binary variable equaling 1 if the lagged predicted value is

positive and zero otherwise. Note that the residual, ωt, is the unexplained part of sales that

can be attributed in part to CEO effort. Measuring the state using predicted values nets

out these effort-based components that are embedded in ωt.
12 In the results we report, Zt

contains a constant, a linear time trend and the real GDP growth rate between years t− 2

and t− 1.

We measure the shock, εit in the notation of Section 3, using the sum of extraordinary

items and discontinued operations, which we denote by EIDOit. The factors included in

EIDO represent financial occurrences that are rare and unexpected. Such items would typ-

ically not factor into an evaluation of the future prospects of a company, because the shocks

are seen as one-time events. These irregular items are separately reported on income state-

ments. Examples could include natural disasters and adjustments arising from accounting

12A downside to this measure of the state is that ωt likely contains more than just CEO effort. By
subtracting ωt, we are potentially netting out too much, including some information that is persistent and
observed to the economic agents and that should be included in the measure of the state.
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changes.13

Addressing our model’s predictions empirically requires a measure of the discount factor,

δ. In the theoretical model, there is a critical threshold for the discount factor beyond which

the bonus is insensitive to the state both for formal and relational contracts. Only when

the discount factor is below the threshold does a difference emerge between the two contract

forms. We therefore need a proxy to identify low values of δit. We focus on the probability

of default, since the greater the likelihood of default, the less weight economic agents place

on future payoffs when making current decisions. Although the likelihood of default depends

on a number of factors, one important factor observed in the data is leverage, where high

leverage increases the risk of default (Crosbie and Bohn, 2003). We therefore use the measure

LEV ERAGEit as an empirical proxy for (1− δit).14

As a sensitivity check, we also use an alternative measure of the inverse discount factor:

a computed measure of the probability of default. We refer to this measure as PDit. Afik et

al. (2012) calculated this default probability based on Merton’s (1974) structural model for

“distance to default” for all non-December fiscal-year-end firm-years using the merged CRSP-

Compustat database covering years 1988 to 2008.15 The distance-to-default calculation uses

information on a firm’s equity volatility as well as a firm’s leverage, and it tends to increase

with financial leverage.16 Finally, we measure θ, the persistence of the state, by computing for

each firm i the first-order autocorrelation coefficient of SALESCHGPOSit, called CORRi.

13In principle, EIDO should be serially uncorrelated. In practice, some serial correlation might occur either
because the events themselves are autocorrelated (e.g., an unexpected hurricane might be the harbinger of
a broader climatic shift) or because of reporting errors (e.g., management might purposely misclassify an
ordinary, recurring expense transaction as an extraordinary item or discontinued operation to make the
numbers for continuing operations on the income statement look better).

14LEV ERAGE is defined to equal (DLTT + DLC)/(DLTT + DLC + CEQ), where DLTT and DLC
are the book value of long-term debt and debt in current liabilities, respectively. CEQ is the market value
of common/ordinary equity, which is calculated by multiplying the closing stock price and the number of
shares outstanding.

15We are grateful to Zvika Afik, Ohad Arad and Koresh Galil for sharing their estimates of the probability
of default.

16The bivariate correlation between LEV ERAGEit and PDit is 0.48, and a regression of LEV ERAGEit

on PDit and firm fixed effects has a slope of 0.8.

21



6 Empirical Analysis

Our goal in the empirical analysis is to model the variation in executive bonuses, over

time and across firms, as a function of “luck”, to show evidence for or against relational

contracts as opposed to formal contracts. We emphasize persistent “luck” (i.e., the state)

since persistence is necessary to generate observable differences between the two contracting

forms.

Table 1 presents summary statistics for the variables in our analysis. Panel A of Table

2 presents an autocorrelation matrix for SALESCHGPOSt and its first three lags. As

required by our model, this proxy for the state variable is positively autocorrelated, with

correlations in adjacent periods exceeding 0.21 and with correlations as far as three periods

apart remaining statistically significant at the five percent level with a magnitude exceeding

0.05. Panel B of Table 2 displays the autocorrelation matrix for the alternative state variable

based on the prediction equation that nets out factors that the CEO might influence. The

autocorrelations are considerably higher than those in Panel A, ranging from 0.61 to 0.67

for adjacent periods and reaching 0.38 even for the correlation three periods apart. Panel

C of Table 2 displays an autocorrelation matrix for EIDOt and its first three lags. These

results confirm that EIDO is a reasonable measure of idiosyncratic shocks; the variable is

positively correlated only in adjacent years, and even those correlations are all below 0.03.

Our theoretical model posits that the shock and the state both have positive direct effects

on output, or CEO performance. Therefore, we first estimate the following equation for CEO

performance, PERFit:

PERFit = α0 + α1EIDOit + α2SALESCHGPOSit−1 + Xitα + ξi + uit,

where Xit includes age, age squared, tenure, tenure squared, and year dummies, and where

ξi is a firm fixed effect. As seen in column 1 of Table 3, the estimates of α1 and α2 are

both positive and significant at the five percent level, suggesting that both the idiosyncratic
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shock and the persistent state are positively related to CEO performance. The same result

is found in column 2 of Table 3, using the alternative measure of the state.

Turning next to the predictions on bonus compensation, we start with the following linear

bonus equation:

BONUSit = β0 + β1EIDOit + β2SALESCHGPOSit−1 + Xitβ + φi + εit,

where again Xit includes age, age squared, tenure, tenure squared, and year dummies, and

where φi is a firm fixed effect.17

Our specification differs from what is typically seen in the executive compensation lit-

erature, in that the (endogenous) executive performance measure does not appear on the

right-hand side of the compensation equation. A common objective in this literature is to

measure pay-for-performance sensitivities, that is, the slope of a performance measure in

a total compensation regression. Given our theoretical model, our objective is instead to

measure the effect of stochastic “luck” on the CEO’s bonus. Our bonus equation can be

interpreted as a reduced form in which the performance equation substitutes for the (en-

dogenous) CEO performance measure that would otherwise appear on the right-hand side.

First, our theoretical model predicts β1 = 0. Second, it predicts β2 = 0 under formal

contracting, and β2 > 0 under relational contracting if some firms in the sample have a

sufficiently low discount factor δit. Results are displayed in column 1 of Table 4 and reveal

β2 > 0, consistent with relational contracting. However, β1 > 0 is at odds with both

contracting forms in our theoretical framework, and we discuss potential reasons for this at

the end of the section. The results are qualitatively the same for the alternative measure of

the state and are displayed in column 3 of Table 4.

The preceding results show that, on average, the size of CEO bonus payments is positively

related to the state. Given our theory, if the data-generating process is indeed characterized

17The CEO’s base salary and bonus can be expected to positively covary, but since base salary is endoge-
nous, we exclude it from the right-hand side of the bonus equation. Including base salary in the model does
not affect our results of interest.
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by relational contracting, we would expect observations with a low discount factor to be

driving this result. This leads us to consider the following interactive bonus specification:

BONUSit = β0 + β1EIDOit + β2SALESCHGPOSit−1 + β3(SALESCHGPOSit−1 ×

LEV ERAGEit) + β4LEV ERAGEit + Xitβ + φi + εit.

High leverage implies a high default risk and therefore a low value of δit. It follows that

our model predicts β2 + β3LEV ERAGEit = 0 and β3 = 0 under formal contracting, and

instead β2 + β3LEV ERAGEit > 0 and β3 > 0 under relational contracting. That is, with

relational contracting, the incremental effect of state should be positive and driven by firms

with higher leverage.

Results from the interactive bonus model are displayed in column 2 of Table 4. The esti-

mate of β2 is not statistically significant, while the estimate of β3 is positive and significant.

It follows from the estimate of β3 that the incremental effect of SALESCHGPOS varies

considerably with leverage. When evaluated at 0.04 (the 25th percentile of the LEV ERAGE

distribution) the incremental effect is only 33.4, whereas when evaluated at 0.52 (the 90th

percentile of the LEV ERAGE distribution) the incremental effect is about 320, show-

ing it is indeed high-leverage firms that drive the positive and significant coefficient for

SALESCHGPOS in the linear model of column 1. Once again, the results are supportive

of relational contracting rather than formal contracting, though again β1 > 0 is at odds

with both contract forms in our framework. As seen in column 4 of Table 4, the qualitative

results remain consistent with relational contracting when using the alternative measure of

the state, though now the estimated β2 is negative and statistically significant.18

Furthermore, our theory predicts that both CEO performance and bonus payments

should be increasing in the discount factor under relational contracting, but not under formal

18In the interactive specification, it is the incremental effect β2 + β3LEV ERAGEit, rather than the
parameter β2, that is of interest.
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contracting. Relational contracting therefore implies these variables should be decreasing in

LEV ERAGE. The data support both predictions, as seen in columns 3 and 4 of Table 3

and in columns 2 and 4 of Table 4, where in both cases LEV ERAGE has a negative incre-

mental effect. The latter result is also consistent with Fahn et al.’s (2013) prediction that a

firm’s financial leverage may directly affect the size of bonus the firm can credibly promise.

That is, our empirical specification nests this prediction, and we indeed find support for the

hypothesis that debt also directly weakens the firm’s incentive to honor its commitments.

While leverage is an endogenous choice variable of the firm, Graham et al. (2013) show that

there is little relation in the aggregate between a firm’s financial leverage and its executive

compensation.19

Yet another prediction under relational contracting is that the incremental effect of the

state on the bonus is increasing in θ. In other words, we expect a stronger positive re-

lationship between BONUSit and SALESCHGPOSi,t−1 when the positive autocorrela-

tion in SALESCHGPOS is particularly strong. To address this prediction, we extend

the bonus regressions from Table 4 to include CORRi along with its interactions with

SALESCHGPOSi,t−1 and SALESCHGPOSi,t−1 × LEV ERAGEit. The theory predicts

that the incremental effect of SALESCHGPOSi,t−1 should be increasing in CORRi. Table

5 displays the results. Estimation is by OLS, without fixed effects, given that CORRi is

time invariant. Columns 1 and 2 reveal a positive and statistically significant coefficient on

the two-way interaction, and the same is true in column 3. These results suggest that the

positive incremental effect of the state on the bonus is increasing in the state’s persistence,

consistent with our prediction under relational contracting.20

19Specifically, Graham et al. (2013: 4) says that “both the level and performance sensitivity of executive
compensation was largely constant from the end of World War II through the mid-1970s – precisely when
leverage ratios underwent their largest change. Only after 1980 did executive pay experience a significant
increase in amount and sensitivity to performance, precisely as corporate leverage stabilized and began a
slight decline.”

20While the coefficient of the two-way interaction in column 4 is statistically insignificant, the key point is
that the incremental effect of SALESCHGPOS on the bonus should be increasing in CORR(pred). This
is indeed the case, even setting the positive coefficient of the two-way interaction to zero (its value under the
null hypothesis that we fail to reject at conventional significance levels). The incremental effect just noted
is then −175.106 + 1086.704× LEV ERAGE × CORR(pred), which is clearly increasing in CORR(pred).
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Financial and utilities industries are frequently excluded from estimation samples in the

literature, so we excluded those observations from our sample and found our results are

insensitive to this change. Our main analysis is based on the entire sample that combines

S&P 500 (large cap), S&P 400 (mid cap), and S&P 600 (small cap) companies. We also

repeated the analysis within each of those three subsamples. In each subsample, our main

result concerning the incremental effect of SALESCHGPOS on the bonus (and how it varies

with LEV ERAGE) remained qualitatively unchanged. We also tried including additional

dummies for different ranges of values of sales growth, as opposed to simply a binary indicator

for whether sales growth is positive. Again, our results were qualitatively unchanged, though

in specifications with larger numbers of dummies not all of them were statistically significant.

Both the linear and interactive bonus models show a positive and statistically significant

marginal effect of EIDO, even though our theory predicts a value of zero under both formal

and relational contracting.21 This result suggests that pay-for-luck in our data is partly

driven by features not captured by the model. One alternative explanation could be that

firms are liquidity constrained and use part of any unexpected cash flow to award CEO

bonuses. Another explanation could be that CEOs have bargaining power that allows them

to claim a share of any windfall profits.

Neither alternative explanation can explain both our empirical findings of a positive in-

teraction between state and leverage, and an incremental effect of the state that is increasing

in its persistence. If pay-for-luck were due only to liquidity constraints, then the impact of

the state on bonus payments should not depend on the discount factor or the state’s auto-

correlation, since all that matters would be current cash flow. If instead pay-for-luck were

due only to bargaining power, then the impact of the state on bonus payments should be

largest for firms with high discount factors, who are likely to remain solvent and for whom

the current state has a large impact on expected future profits. Taken together, our empirical

results suggest at least part of pay-for-luck is driven by relational contracting.

21Note, however, that EIDO does exhibit some, albeit a small degree of, positive autocorrelation, whereas
its theoretical counterpart is independent over time.
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As an alternative proxy for the (inverse) discount factor, we also used estimates of a firm’s

probability of default (PD). As seen in Table 1, the average estimated default probability in

the sample is low, at only 0.03. Results using this alternative measure are broadly consistent

with the results using LEV ERAGE. Columns 5 and 6 of Table 3 (using PD) reveal the

same qualitative pattern of results as columns 3 and 4 (using LEV ERAGE). In both

specifications, the incremental impact on performance is negative, and estimated with high

precision.

Turning to the CEO bonus regressions, the first two columns of Table 6 replicate columns

2 and 4 of Table 4, using PD rather than LEV ERAGE. Both columns 1 and 2 show a

negative and statistically significant coefficient for PD, consistent with relational contracting.

Moreover, the incremental effect of SALESCHGPOS on the bonus is clearly positive, as

it was using LEV ERAGE. Columns 3 and 4 of Table 6 replicate columns 2 and 4 of Table

5 but now using PD rather than LEV ERAGE. In both columns, the incremental effect of

PD on the bonus is negative, again consistent with relational contracting. Column 3 shows

that the incremental effect of SALESCHGPOS evaluated at the means given in Table 1 is

also positive, whether we compute it using all relevant coefficients (127.8) or only those that

differ from zero at a five percent significance level (39.3). In column 4, the corresponding

incremental effects of SALESCHGPOS are -120.3 and 52.85, respectively. Thus, as in

Table 5, the incremental effect of SALESCHGPOS on bonus payments is positive, if we

compute it using parameters estimated with high precision and set the others to zero (their

value under the null hypothesis on a significance test at the five percent level). Following

the same procedure, Table 6 also shows that the incremental effect of SALESCHGPOS on

the bonus is generally increasing in PD and in our proxy for θ, as predicted under relational

contracting.22

22Incremental effects are calculated as in footnote 20. Following this procedure, the only incremental effect
that is decreasing with respect to a variable of interest is in column 3, where −4902.897×SALESCHGPOS×
PD × CORR = −13.385 × SALESCHGPOS. However, this result changes if we include the positive
coefficient for SALESCHGPOS × PD, which is statistically significant at the 10 percent level: 925.455×
SALESCHGPOS × PD − 4902.897× SALESCHGPOS × PD × CORR = 14.379× SALESCHGPOS.
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7 Conclusion

We have presented a simple model in which formal and relational contracts have different

implications for how bonus payments respond to (persistent) “luck”. With those results in

hand, our main focus in the empirical work was to find evidence for or against relational

contracting in CEO compensation. Drawing on a large sample of publicly-traded companies,

and using reasonable proxies for the state and shock variables, we found evidence consistent

with relational contracting in the payment of CEO bonuses. Our findings shed new light on

the debate over pay-for-luck: a reason why firms seem to reward CEOs for luck is that the

expected future value of the employment relationship is larger in good states of the world

than in bad, so that the firm’s credibility to pay bonuses (as well as the CEO’s incentive

to exert effort) is higher in good states. Our approach can also be applied to establish the

empirical relevance of relational contracting for other groups of workers, where management

discretion over bonus payments likely plays an even bigger role.

8 Appendix

Proof of Lemma 1. By (2) and (9), the agent’s optimal effort in the high state is

eH = arg max
e∈[0,1]

p(e)bSH + (1− p(e))bFH − C(e),

= arg max
e∈[0,1]

p(e)(bSH − bFH)− C(e).
(16)

By (4) and (10), the agent’s optimal effort in the low state is

eL = arg max
e∈[0,1]

p(e)bSL + (1− p(e))bFL − C(e),

= arg max
e∈[0,1]

p(e)(bSL − bFL)− C(e).
(17)

Consider two contracts, B = (bSH , bFH , bSL, bFL) and B′ = (b′SH , 0, b
′
SL, 0), with b′SH =

bSH − bFH and b′SL = bSL − bFL. By (16) and (17), the contracts result in identical effort in
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both states: eH(B) = eH(B′) and eL(B) = eL(B′).

Clearly, bFH > 0 implies bSH > b′SH . Looking at (1) then gives ∂πH(B,eH)
∂bSH

≤ 0 and

∂πH(B,eH)
∂bFH

≤ 0 where at least one inequality is strict. Hence, bFH > 0 implies πH(B, eH) <

πH(B′, eH), so that B′ yields higher profits than B in the high state. Similarly, bFL > 0

implies bSL > b′SL, and (3) shows that ∂πL(B,eL)
∂bSL

≤ 0 and ∂πL(B,eL)
∂bFL

≤ 0 where at least one

inequality is strict. Hence, bFL > 0 implies πL(B, eL) < πL(B′, eL), so that B′ yields higher

profits than B in the low state.

Recall from (5) and P1,1 = 1 that P2,1 = θ ∈ (1/2, 1). It then follows from (6) and

(7) that both ΠH(B) < ΠH(B′) and ΠL(B) < ΠL(B′) whenever bFH > 0 or bFL > 0.

Hence, the optimal formal contract that solves (8), subject to (9), (10) and (11), must have

bFH = bFL = 0. Relational contracting differs from formal contracting through additional

constraints (12) and (13). The left-hand sides of (12) and (13) are clearly larger under B

with bFH > 0 or bFL > 0 than they are under B′. The right-hand sides of (12) and (13) are

smaller under B than they are under B′, since ΠH(B) < ΠH(B′) and ΠL(B) < ΠL(B′). It

follows that if B satisfies (12) and (13), then B′ satisfies these constraints as well. Therefore,

the optimal relational contract must also have bFH = bFL = 0. �

Proof of Lemma 2. We prove the case for I = H, where the proof is entirely analogous

for I = L. By Lemma 1, (2) reduces to

uH(bH , eH) = p(eH)bH − C(eH).

Optimal effort eH = arg max
e∈[0,1]

uH(bH , e) is therefore defined by the first-order condition

p′(eH)bH − C ′(eH) = 0, (18)

and the second-order condition

p′′(eH)bH − C ′′(eH) < 0.
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Neither condition depends on ∆, which confirms that effort only depends indirectly on

the state, through the bonus offered in that state. The second-order condition always holds

by C ′′(e) > 0 and p′′(e) < 0. It follows that eH is unique for any bH .

If bH = 0, then (18) reduces to C ′(eH) = 0, so that C ′(0) = 0 implies e(0) = 0. If instead

bH > 0, then (18) will be violated at eH = 0, since p′(0) > 0 and C ′(0) = 0. (18) will also

be violated at eH = 1, since p′(1) is finite and lime→1C
′(e) =∞. It follows that eH ∈ [0, 1)

with eH ∈ (0, 1) for bH > 0.

Differentiating both sides of (18) with respect to bH yields

p′′e′(bH)bH + p′ − C ′′e′(bH) = 0, (19)

where we write e′(bH) = eH and drop the arguments for p′, p′′ and C ′′. Rearranging gives

e′(bH) =
p′

C ′′ − p′′bH
.

The second-order condition and p′ > 0 then imply e′(bH) > 0. Now differentiating (19)

with respect to bH yields

p′′′(e′(bH))2bH + p′′e′′(bH)bH + 2p′′e′(bH)− C ′′′(e′H(bH))2 − C ′′e′′(bH) = 0,

and rearranging gives

e′′(bH) =
(p′′′bH − C ′′′)(e′(bH))2 + 2p′′e′(bH)

C ′′ − p′′bH
.

The numerator is strictly negative by p′′′ ≤ 0, C ′′′ ≥ 0, p′′ < 0 and e′(bH) > 0. The

denominator is strictly positive by the second-order condition. It follows that e′′(bH) < 0. �

Proof of Proposition 1. Relational contracting only differs from formal contracting

through additional constraints (14) and (15). It follows immediately that the principal will

use formal contracting whenever it is feasible, so whenever output is verifiable.
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By (6) and (7), Π = 1
2
ΠH + 1

2
ΠL is increasing in πH and πL, where specifically

ΠH(bH , bL) =

( ∞∑
t=1

δt−1Pt,1

)
πH(bH) +

( ∞∑
t=1

δt−1(1− Pt,1)
)
πL(bL), (20)

and

ΠL(bH , bL) =

( ∞∑
t=1

δt−1Pt,1

)
πL(bL) +

( ∞∑
t=1

δt−1(1− Pt,1)
)
πH(bH). (21)

Applying Lemma 1 to (1) yields

πH(bH) = p(e(bH))(xS − xF − bH) + xF + ∆, (22)

and applying Lemma 1 to (3) yields

πL(b) = p(e(bL))(xS − xF − bL) + xF −∆. (23)

The first-order condition π′(b) = 0 and the second-order condition π′′(b) < 0 are the same

in both states:

p′(e)e′(b)(xS − xF − b)− p(e) = 0, (24)

(
p′′(e)e′2 + p′(e)e′′(b)

)
(xS − xF − b)− 2p′(e)e′(b) < 0.

The first-order condition is violated at b = 0, where π′(0) > 0, since e(0) = 0 and

e′(0) > 0 by Lemma 2, and since p(0) = 0 and p′(0) > 0. It is also violated for b ≥ xS − xF ,

where π′(b) < 0, since e(b) > 0 and e′(b) > 0 by Lemma 2, and since p(e) > 0 and p′(e) > 0.

The second-order condition is satisfied for all b < xS − xF , since e′′(b) < 0 by Lemma

2, and since p′′(e) < 0. It follows that bf ≡ bfH = bfL = arg max
b≥0

πH(b) = arg max
b≥0

πL(b) ∈

(0, xS − xF ) is uniquely defined by (24), where π′H(b) > 0 and π′L(b) > 0 for b ∈ [0, bf ), and
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where π′H(b) < 0 and π′L(b) < 0 for b > bf .

We now turn to the optimal bonuses under relational contracting. Denoting b = bL, and

substituting (6) and (7) into (14) gives

bH ≤ δ

(
∞∑
t=1

δt−1 [θPt,1 + (1− θ)(1− Pt,1)]πH(bH) +
∞∑
t=1

δt−1 [(1− θ)Pt,1 + θ(1− Pt,1)] πL(b)

)
,

(25)

where πH(bH) is evaluated at e(bH) and πL(b) is evaluated at e(b). Similarly, denoting

b = bH , and substituting (6) and (7) into (15) gives

bL ≤ δ

(
∞∑
t=1

δt−1 [θPt,1 + (1− θ)(1− Pt,1)]πL(bL) +
∞∑
t=1

δt−1 [(1− θ)Pt,1 + θ(1− Pt,1)]πH(b)

)
,

(26)

where πL(bL) is evaluated at e(bL) and πH(b) is evaluated at e(b).

Under relational contracting, the optimal bonus pair (brH , b
r
L) must satisfy brH ≤ bf and

brL ≤ bf . If either inequality were violated, then setting (bf , bf ) instead of (brH , b
r
L) would

yield strictly higher profits Π = 1
2
ΠH + 1

2
ΠL, by (20) and (21). The reason is that π′H(b) < 0

and π′L(b) < 0 for b > bf . Moreover, setting (bf , bf ) instead of (brH , b
r
L) would decrease the

left-hand side and increase the right-hand side of both (25) and (26). Hence, if (25) and (26)

are satisfied by (brH , b
r
L), they must also be satisfied by (bf , bf ).

The constraint (25) holds strictly at bH = 0, since πH(0) = xF + ∆ > 0 by (22) and

πL(0) = xF − ∆ > 0 by (23). The right-hand side of (25) is concave in bH on [0, bf ] while

the left-hand side is linear. It follows that for any given b, there is at most one value of

bH ≤ bf for which (25) binds, and this value (if it exists) will be strictly positive. Define the

function bH(b) on domain [0, bf ] as the minimum of this value and bf . Since π′H(bH) > 0 for

bH ∈ [0, bf ), the optimal bonus in the high state given bL = b is precisely bH(b).

By the same reasoning, for any b, there is at most one value of bL ≤ bf for which (26)

binds, and this value (if it exists) will be strictly positive. Define the function bL(b) on
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domain [0, bf ] as the minimum of this value and bf . Since π′L(bL) > 0 for bL ∈ [0, bf ), the

optimal bonus in the low state given bH = b is precisely bL(b).

The optimal bonus pair (brH , b
r
L) must satisfy bH(bL(brH)) = brH , with brL = bL(brH). Define

the correspondence f(b) by f(bH(b)) ≡ b, so that f(b) is the inverse of bH(b). Then (brH , b
r
L)

must also satisfy bL(brH) = f(brH), again with brL = bL(brH). Geometrically, f(b) is the

reflection of bH(b) about the 45 degree line, and (brH , b
r
L) lies at an intersection of f(b) and

bL(b).

The function bL(b) is continuous, with domain [0, bf ] and range [bL(0), bL(bf )], where

bL(0) > 0 and bL(bf ) ≤ bf . The function bH(b) is continuous, with domain [0, bf ] and range

[bH(0), bH(bf )], where bH(0) > 0 and bH(bf ) ≤ bf . It follows that its inverse f(b) is also

continuous, with domain [bH(0), bH(bf )] and range [0, bf ], with f(bH(0)) = 0.

We now show that b′H(b) > 0 and b′′H(b) < 0 whenever bH(b) < bf , and that b′L(b) > 0

and b′′L(b) < 0 whenever bL(b) < bf . This also implies f ′(b) > 0 and f ′′(b) > 0. Suppose that

bH(b) < bf , so that (25) binds at bH < bf , and fix the value of bH . The right-hand side of

(25) is increasing in b, since π′L(b) > 0 for all b < bf . It follows that (25) no longer binds

after a marginal increase in b. Hence, b′H(b) > 0. Similarly, suppose that bL(b) < bf , so that

(26) binds at bL < bf , and fix the value of bL. The right-hand side of (26) is increasing in b,

since π′H(b) > 0 for all b < bf . It follows that (26) no longer binds after a marginal increase

in b. Hence, b′L(b) > 0, and f ′(b) > 0.

Implicitly differentiating (25) with respect to b and rearranging gives

b′H(b) =

δ

(∑∞
t=1 δ

t−1[(1− θ)Pt,1 + θ(1− Pt,1)
]
π′L(b)

)
1− δ

(∑∞
t=1 δ

t−1
[
θ Pt,1 + (1− θ)(1− Pt,1)

]
π′H(bH)

) . (27)

The numerator and the denominator of (27) are both positive by π′L(b) > 0 and b′H(b) > 0.

An increase in b will decrease the numerator since π′′L(b) < 0, and increase the denominator

since b′H(b) > 0 and π′′H(bH) < 0. This means that b′′H(b) < 0 whenever bH(b) < bf .

Implicitly differentiating (26) with respect to b and rearranging yields
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b′L(b) =

δ

(∑∞
t=1 δ

t−1[(1− θ)Pt,1 + θ(1− Pt,1)
]
π′H(b)

)
1− δ

(∑∞
t=1 δ

t−1
[
θPt,1 + (1− θ)(1− Pt,1)

]
π′L(bL)

) . (28)

The numerator and the denominator of (28) are both positive by π′H(b) > 0 and b′L(b) > 0.

An increase in b will decrease the numerator since π′′H(b) < 0 and increase the denominator

since b′L(b) > 0 and π′′L(bL) < 0. This means that b′′L(b) < 0 whenever bL(b) < bf , so that

f ′′(b) > 0.

Given continuity and their respective domain and range, there exists some brH ∈ (0, bf ] for

which bL(brH) = f(brH), so where the curves bL(b) and f(b) intersect. Since bL(b) is concave

while f(bH) is strictly convex, this point of intersection is unique. It defines the optimal

bonus pair, brL = bL(brH) = f(brH).

To compare the size of the two bonuses, note that brL = brH holds if and only if bL(b)

and f(b) intersect on the 45 degree line. This is the case if bL(b) = b implies f(b) = b or,

equivalently, bH(b) = b. In contrast, brL < brH holds if and only if bL(b) intersects the 45

degree line before f(b) does. This is the case if bL(b) = b implies f(b) < b or, equivalently,

bH(b) > b.

We now prove that bH(b) = bf whenever bL(b) = bf and that bH(b) > bL(b) when-

ever bL(b) < bf . It is sufficient to show that (25) holds strictly whenever (26) is satisfied.

Substituting (22) and (23) into (25) and (26) shows the latter two constraints are symmet-

ric with respect to bH and bL except for terms involving ∆. Specifically, the expression

δ(2θ−1)
∑∞

t=1 δ
t−1(2Pt,1−1)∆ enters with a positive sign on the right-hand side of (25) and

a negative sign on the right-hand side of (26). We claim that Pt,1 > 1/2 for all t ≥ 1 which,

together with θ > 1/2, implies this expression is itself strictly positive. Hence, (25) holds

strictly whenever (26) is satisfied.

We prove the claim Pt,1 > 1/2 by induction. Recall from (5) the recursive definition

P1,1 = 1 and
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Pt,1 = θPt−1,1 + (1− θ)(1− Pt−1,1),

for all t ≥ 2. Clearly Pt,1 > 1/2 for t = 1. Now fix t′ ≥ 2, and suppose that Pt,1 > 1/2

for all t = 1, . . . t′ − 1. Write

Pt′,1 = θPt′−1,1 + (1− θ)(1− Pt′−1,1).

The induction hypothesis implies Pt′−1,1 > 1/2 and (1 − Pt′−1,1) < 1/2. Combined with

θ > 1/2, this yields Pt′,1 > 1/2, which establishes the claim.

To complete the proof, note that the right-hand side of (26) increases without bound as

δ tends to 1. Fix b = bf and define δ0 ∈ (0, 1) as the value of δ for which (26) binds. Then

(26) holds for all b ∈ [0, bf ] if and only if δ ∈ [δ0, 1]. Therefore, we have brL < brH for all

δ ∈ (0, δ0) and brL = brH = bf for all δ ∈ [δ0, 1]. �

Proof of Proposition 2. The bonus, bf , under formal contracting is defined by the

first-order condition (24), which is independent of δ and θ. It follows that bf is independent

of δ and θ as well. To complete part (i), it remains to show that bonuses brL and brH under

relational contracting are increasing in δ whenever brL < bf and brH < bf . Define bH(b), bL(b),

and f(b) as in the proof of Proposition 1. The optimal bonus pair (brH , b
r
L) is defined by

bH(bL(brH)) = brH or, equivalently, bL(brH) = f(brH), with brL = bL(brH).

Differentiating both sides of bL(brH) = f(brH) with respect to δ gives

∂bL
∂δ

+
∂bL
∂b

dbrH
dδ

=
∂f

∂δ
+
∂f

∂b

dbrH
dδ

,

or equivalently

dbrH
dδ

=
∂bL
∂δ
− ∂f

∂δ
∂f
∂b
− ∂bL

∂b

, (29)

where all partial derivatives are evaluated at b = brH . The denominator of (29) is strictly
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positive since bL(b) is concave, f(b) is strictly convex, and (brL, b
r
H) is their point of intersec-

tion: bL(brH) = f(brH), with brL = bL(brH). For the numerator of (29), suppose that (26) binds

at bL < bf , and fix the value of bL. The right-hand side of (26) is strictly increasing in δ. It

follows that (26) no longer binds after a marginal increase in b, so that ∂bL
∂δ

> 0. Applying

the same reasoning to (25) shows that ∂bH
∂δ

> 0. This in turn implies ∂f
∂δ
< 0, since f(b) is

the inverse of bH(b). We conclude that the numerator of (29) is strictly positive and that

dbrH
dδ

> 0. Differentiating brL = bL(brH) with respect to δ gives
dbrL
dδ

= ∂bL
∂δ

+ ∂bL
∂b

dbrH
dδ

. Recall that

∂bL
∂b

> 0, so we can also conclude that
dbrL
dδ

> 0. This completes the proof of part (i).

To complete part (ii), we first show that ∂bH
∂b

< ∂bL
∂b

for any b such that bL(b) < bf

and bH(b) < bf . Recall that ∂bH
∂b

and ∂bL
∂b

are given by expressions (27) and (28). Since

π′H(b) = π′L(b), these expression only differ by the terms π′H(bH) and π′L(bL) in their respective

denominators. Combining bH(b) > bL(b) from the proof of Proposition 1 with π′′H(b) =

π′′L(b) < 0 for all b < bf gives π′H(bH) < π′L(bL), so that (27) and (28) imply ∂bH
∂b

< ∂bL
∂b

.

We now show that ∂bH
∂θ

> 0 whenever b < bH(b) < bf and that ∂bL
∂θ

< 0 whenever bL(b) <

b < bf . Suppose that (25) binds at bH ∈ (b, bf ), and fix the value of bH . Differentiating the

right-hand side of (25) with respect to θ gives

δ
∞∑
t=1

δt−1
[(

2Pt,1 − 1 + P ′t,1(2θ − 1)
)
(πH(bH)− πL(b))

]
, (30)

where P ′t,1 denotes the derivative of Pt,1. Since πH(b) > πL(b) by (22) and (23), and since

π′H(b) > 0 for all b < bf , it follows from b < bH that πH(bH) − πL(b) > 0. We claim that

P ′t,1 ≥ 0 for all t ≥ 1, which we will prove below. Combined with Pt,1 > 1/2 and θ > 1/2,

this claim implies that (30) is strictly positive, so that (25) no longer binds after a marginal

increase in θ. Hence, ∂bH
∂θ

> 0. Since the inverse function f(b) is the reflection of bH(b) about

the 45-degree-line, it also follows that ∂f
∂θ
< 0 whenever f(b) < b < bf .

Similarly, suppose that (26) binds at bL < b, and fix the value of bL. Differentiating the

right-hand side of (26) with respect to θ gives
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δ

∞∑
t=1

δt−1
[(

2Pt,1 − 1 + P ′t,1(2θ − 1)
)
(πL(bL)− πH(b))

]
,

where πL(bL) − πH(b) < 0 follows from bL < b. Our claim that P ′t,1 ≥ 0 for all t ≥ 1

therefore implies that a marginal increase in θ will violate (26). Hence, ∂bL
∂θ

< 0 whenever

bL(b) < b < bf .

We prove our claim by induction. The cases of t = 1 and t = 2 are trivial, since P1,1 = 1

and P2,1 = θ. Now fix t′ ≥ 3, and suppose that P ′t,1 > 0 for all t = 1, . . . , t′−1. Differentiating

(5) with respect to θ gives

P ′t′,1 = 2Pt′−1,1 − 1 + P ′t′−1,1(2θ − 1).

Pt′−1,1 > 1/2 and θ > 1/2 both hold, so that P ′t′,1 > 0 follows from the induction

hypothesis.

To complete the proof, differentiating brL = bL(brH) with respect to θ gives

dbrL
dθ

=
∂bL
∂θ

+
∂bL
∂b

dbrH
dθ

,

so that

d(brH − brL)

dθ
=
dbrH
dθ

(
1− ∂bL

∂b

)
− ∂bL

∂θ
. (31)

Differentiating both sides of bL(brH) = f(brH) with respect to θ and rearranging gives

dbrH
dθ

=
∂bL
∂θ
− ∂f

∂θ
∂f
∂b
− ∂bL

∂b

. (32)

Using (32) to substitute for
dbrH
dθ

in the right-hand side of (31) and simplifying then yields

d(brH − brL)

dθ
=

[
∂bL
∂θ

(
1− ∂f

∂b

)
− ∂f

∂θ

(
1− ∂bL

∂b

)](
1

∂f
∂b
− ∂bL

∂b

)
, (33)
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where all partial derivatives are evaluated at b = brH .

Recall from Proposition 1 that brL < brH whenever brL < bf . Geometrically, this means

bL(b) and f(b) intersect to the right of the 45-degree line, where brL = bL(brH) = f(brH) < brH .

From the result shown above, bL(brH) = f(brH) < brH < bf in turn implies ∂bL
∂θ

< 0 and ∂f
∂θ
< 0

when evaluated at b = brH . Furthermore, bL(brH) < brH also implies ∂bL
∂b

< 1 when evaluated

at b = brH , since the function bL(b) is increasing in b at a decreasing rate and has already

crossed the 45-degree-line at some b < brH . Combining ∂bL
∂b

< 1 with ∂bH
∂b

< ∂bL
∂b

, the fact that

f(b) is the inverse of bH(b), and that f(b) is increasing in b at an increasing rate, a simple

geometric argument shows that ∂f
∂b
> 1 when evaluated at brH .

Looking at (33), we have established ∂bL
∂θ

< 0, ∂f
∂θ

< 0, ∂bL
∂b

< 1, and ∂f
∂b

> 1, when

evaluated at b = brH . This implies
d(brH−b

r
L)

dθ
> 0 as required.
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                                              Table 1 

 

                             DESCRIPTIVE STATISTICS 
 

 Mean SD 

BONUSit 1037.359      1885.46 

SALARYit 712.138      394.103           

PERFit 0.038     0.562   

EIDOit -0.465     404.581   

SALESCHGPOSit-1 

SALESCHGPOSit-1 (predicted) 

0.737  

0.867    

0.440   

0.339         

LEVERAGEit 

PDit 

0.221     

0.030 

0.206   

0.094         

AGEit 55.924     7.620          

TENUREit 

CORRi 

CORRi (predicted) 

8.209     

0.091 

0.412 

8.109          

 0.285 

0.366 

NOTE. – Sample size is 24,919 firm-years (though 10,240 for PDit).  

Years cover 1993-2011. All monetary variables are measured in 2005  
U.S. dollars, converted via the GDP deflator.   

 

 
 

 

                                                                                 Table 2 
 

PANEL A: AUTOCORRELATION MATRIX FOR SALESCHGPOS 
 SALESCHGPOSit SALESCHGPOSit-1 SALESCHGPOSit-2 SALESCHGPOSit-3 

SALESCHGPOSit 1.000    

SALESCHGPOSit-1 0.217* 1.000   

SALESCHGPOSit-2 0.070* 0.210* 1.000  

SALESCHGPOSit-3 0.051* 0.084* 0.232* 1.000 

NOTE. – * indicates correlation is statistically significantly different from zero at the 5% level. 

 

PANEL B: AUTOCORRELATION MATRIX FOR (PREDICTED) SALESCHGPOS 
 SALESCHGPOSit SALESCHGPOSit-1 SALESCHGPOSit-2 SALESCHGPOSit-3 

SALESCHGPOSit 1.000    

SALESCHGPOSit-1 0.607* 1.000   

SALESCHGPOSit-2 0.462* 0.673* 1.000  

SALESCHGPOSit-3 0.379* 0.463* 0.659* 1.000 

NOTE. – * indicates correlation is statistically significantly different from zero at the 5% level. SALESCHGPOSit equals 1 if the  

the predicted value for year t from an individual regression for the ith firm is positive, and equals 0 otherwise, where the regression 

for firm i takes the following form: SALESCHGt = Ztγ + ωt, where Zt includes the first lag of real GDP growth, a linear time 
trend, and a constant.  

 

PANEL C: AUTOCORRELATION MATRIX FOR EIDO 
 EIDOit EIDOit-1 EIDOit-2 EIDOit-3 

EIDOit 1.000    

EIDOit-1 0.027* 1.000   

EIDOit-2 0.006 0.027* 1.000  

EIDOit-3 0.007 0.006 0.026* 1.000 

NOTE. – * indicates correlation is statistically significantly different from zero at the 5% level. 
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Table 3 

 

CEO PERFORMANCE REGRESSIONS (y = PERFit) 

 

                                              (1)          (2)               (3)          (4)   (5)       (6) 
EIDOit        0.006 

(0.002)*** 

 0.006 

(0.002)*** 

0.005 

(0.002)*** 

 0.005               0.006                  0.006 

(0.002)***      (0.002)***         (0.002)*** 

SALESCHGPOSit-1 16.753 

(1.903)*** 
      

 

14.022 

(1.870)*** 

                        12.058                 

                        (2.760)***          

SALESCHGPOSit-1 (predicted)  18.009 

(2.569)*** 

 15.557                                        13.075 

(2.519)***                                 (4.509)*** 

LEVERAGEit 

 

PDit 

  -205.541 

(7.740)*** 

-206.547           

(7.471)*** 

                        -273.371           -272.906 

                        (14.572)***      (14.230)*** 

AGEit 2.154 

(1.562) 

1.971 

(1.492) 

 2.660 

(1.531)* 

2.480               3.541                 3.285 

(1.462)*          (2.656)               (2.523) 

(AGEit)
2 -2.346 

(1.382)* 

-2.178 

(1.320)* 

-2.770 

(1.355)** 

-2.597              -3.387               -3.194 

(1.293)**        (2.338)               (2.220) 

TENUREit 0.224 

(0.370) 

 0.300 

(0.354) 

 0.201 

(0.363) 

 0.247              -0.083                0.103 

(0.347)             (0.565)              (0.534) 

(TENUREit)
2 0.849 

(1.128) 
 0.672 

 (1.077) 

 1.013 

(1.106) 

 0.873              1.748                 1.190 

(1.055)            (1.828)               (1.737) 

Constant       -1.675 

      (43.943) 

 1.902 

 (41.982) 

31.627 

(43.108) 

35.008             -46.184             -40.902 

(41.144)          (75.034)             (71.407) 

Sample Size N = 18,511 N = 19,117                       N = 18,488 N = 19,094     N = 7913            N = 8251 

NOTE. – Both specifications include year dummies and firm fixed effects. Standard errors are in parentheses below each estimate. 
Statistical significance at the 10%, 5%, and 1% levels denoted by *, **, and ***. Dependent variable, PERFit, is income before  

extraordinary items. SALESCHGPOSit-1 (predicted), used in model (2), is computed as described in the note to Table 2, Panel B.  

All coefficients and standard errors are multiplied by 1000 for easier reading.    
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                                         Table 4  

 

CEO BONUS REGRESSIONS (y = BONUSit) 

 

                                                         (1)               (2)              (3)  (4) 
EIDOit      0.076 

(0.024)*** 

0.069 

(0.026)*** 

        0.076 

      (0.022)*** 

0.069 

(0.023)*** 

SALESCHGPOSit-1 175.248 

(31.207)*** 
9.479 

(41.479) 

       

 

 

SALESCHGPOSit-1×LEVERAGEit  596.845 

(178.136)*** 

  

SALESCHGPOSit-1 (predicted)        94.703 

     (47.848)** 

-161.308 

(78.790)** 

SALESCHGPOSit-1×LEVERAGEit (pred.)    875.790 

(300.078)*** 

LEVERAGEit  -1858.987 

(277.995)*** 

 -2194.114 

(381.525)*** 

AGEit -11.167 

(65.996) 

-7.823 

(67.360) 

    10.361 

    (67.593) 

11.492 

(69.140) 

(AGEit)
2 11.282 

(59.934) 

8.208 

(61.106) 

     -4.760 

    (61.206) 

-5.509 

(62.545) 

TENUREit 30.488 

(8.358)*** 
30.460 

(8.419)*** 

     25.998 

    (8.480)*** 

25.993 

(8.540)*** 

(TENUREit)
2 -62.612 

(24.936)** 
-61.071 

(25.158)** 

    -53.536 

    (26.234)** 

-53.984 

(26.510)** 

Constant     1453.532 

   (1782.245)       

1808.982 

(1802.595) 

     612.872 

    (1825.512) 

1124.455 

(1859.221) 

Sample Size N = 18,323 N = 18,300 N = 18,929 N = 18,906 

NOTE. – All specifications include year dummies and firm fixed effects. Standard errors are in parentheses below  

each estimate, clustered by firm. Statistical significance at the 10%, 5%, and 1% levels denoted by *, **, and ***.  
Dependent variable, BONUSit, is the year-t bonus for firm i’s CEO in 2005 dollars. SALESCHGPOSit-1 (predicted),  

used in models (3) and (4) is computed as described in the note to Table 2, Panel B.    
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                                         Table 5 

 

CEO BONUS REGRESSIONS (y = BONUSit) 

 

                                                                      (1)               (2)                   (3)   (4) 
EIDOit          0.051 

(0.031) 

0.053 

(0.031)* 

      0.034 

      (0.031) 

0.036 

(0.031) 

SALESCHGPOSit-1 105.107 

(36.716)*** 
-17.296 

(53.244) 

       

 

 

SALESCHGPOSit-1×LEVERAGEit  589.001 

(163.666)*** 

  

SALESCHGPOSit-1×CORRi 605.131 

(118.117)*** 
629.232 

(138.507)*** 

  

SALESCHGPOSit-1×LEVERAGEit×CORRi  -177.639 

(321.744) 

  

SALESCHGPOSit-1 (pred.)        -131.792 

     (79.598)* 

-175.106 

(98.397)* 

SALESCHGPOSit-1×CORRi (pred.)         272.685 

      (126.760)** 

13.078 

(140.937) 

SALESCHGPOSit-1×LEVERAGEit (pred.)    152.741 

(227.370) 

SALESCHGPOSit-1×LEVERAGEit×CORRi (pred.)    1086.704 

(274.628)*** 

CORRi -227.722 

(98.326)** 
-344.458 

(91.098)*** 

  

CORRi (pred.)         -162.643 

      (113.735) 

-161.127 

(113.834) 

LEVERAGEit  33.535 

(131.004) 

 -85.359 

(170.920) 

AGEit 56.658 

(20.185)*** 

50.503 

(20.201)** 

      23.650 

      (23.427) 

12.811 

(23.471) 

(AGEit)
2 -28.242 

(17.870) 

-24.092 

(17.874) 

      1.868 

      (20.756) 

10.326 

(20.777) 

TENUREit -4.889 

(5.013) 
-3.598 

(5.017) 

     -0.962 

      (5.960) 

0.753 

(5.970) 

(TENUREit)
2 5.393 

(15.262) 
5.22 

(15.260) 

     -17.519 

      (18.346) 

-20.624 

(18.348) 

Constant     -913.106 

   (567.417)       

-716.829 

(568.105) 

     -142.634 

      (662.971) 

213.449 

(665.441) 

Sample Size N = 17,058 N = 17,039 N = 12,280 N = 12,262 

NOTE. – All specifications are estimated via OLS and include year dummies. Standard errors are in parentheses below  

each estimate. Statistical significance at the 10%, 5%, and 1% levels denoted by *, **, and ***. Dependent variable,  
BONUSit, is the year-t bonus for firm i’s CEO in 2005 dollars. SALESCHGPOSit-1 (predicted), used in models (3) and 

(4) is computed as described in the note to Table 2, Panel B.    

 
 

                                       

  



47 

 

                                           Table 6 

 

CEO BONUS REGRESSIONS (y = BONUSit) 

 

                                                                      (1)               (2)               (3)              (4) 
EIDOit          0.077 

(0.034)** 

0.081 

(0.028)*** 

0.048 

(0.033) 

0.030 

(0.033) 

SALESCHGPOSit-1 149.959 

(48.876)*** 
 60.761 

(61.670) 

 

SALESCHGPOSit-1×PDit 

 

851.644 

(776.487) 
 925.455 

(552.399)* 

 

SALESCHGPOSit-1×CORRi   579.206 

(205.236)*** 

 

SALESCHGPOSit-1×PDit×CORRi   -4902.897 

(1102.318)*** 

 

SALESCHGPOSit-1 (pred.)  51.695 

(111.833) 

 -109.682 

(154.771) 

SALESCHGPOSit-1×PDit (pred.)  2521.767 

(1179.791)** 

 1761.622 

(776.506)** 

SALESCHGPOSit-1×CORRi (pred.)    -136.761 

(258.682) 

SALESCHGPOSit-1×PDit×CORRi (pred.)    -577.577 

(924.650) 

CORRi    -192.78 

(175.957) 

 

CORRi (pred.)    341.204 

(243.434) 

PDit -2222.064 

(487.408)*** 

-3814.658 

(1036.555)*** 

-1204.325 

(464.900)*** 

-2380.854 

(619.842)*** 

AGEit -58.716 

(146.661) 

-59.511 

(139.371) 

50.085 

(35.883) 

7.635 

(38.819) 

(AGEit)
2 57.666 

(131.609) 

57.239 

(124.884) 

-25.953 

(31.448) 

18.276 

(34.029) 

TENUREit 37.622 

(11.476)*** 

39.358 

(11.641)*** 

3.990 

(8.323) 

19.779 

(9.280)** 

(TENUREit)
2 -95.289 

(45.662)** 
-98.656 

(46.304)** 

-2.507 

(26.654) 

-79.705 

(29.290)** 

Constant      1761.91 

     (3985.296) 

1693.592 

(3804.394) 

-1313.691 

(1024.679) 

-460.142 

(1121.821) 

Sample Size N = 7913 N = 8251 N = 7562 N = 5700 

NOTE. – All specifications include year dummies. Specifications 1 and 2 include firm fixed effects. Standard errors are in 

parentheses below each estimate, clustered by firm. Statistical significance at the 10%, 5%, and 1% levels denoted by *, **,  
and ***. Dependent variable, BONUSit, is the year-t bonus for firm i’s CEO in 2005 dollars. SALESCHGPOSit-1 (predicted),  

is computed as described in the note to Table 2, Panel B.    
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