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ABSTRACT: We propose a new and simple parametrization of the so-called speed of transition

parameter of the logistic smooth transition autoregressive (LSTAR) model. The new parametriza-

tion highlights that a consequence of the well-known identification problem of the speed of tran-

sition parameter is that the threshold autoregression (TAR) is a limiting case of the LSTAR process.

We demonstrate how this fact impedes numerical optimization of the original parametrization,

whereas this is not the case for the new parametrization. Next, we show that information criteria

provide a tool to choose between an LSTAR model and a TAR model; a choice previously based

solely on economic theory. Reestimation of two published applications illustrate the usefulness of

our findings.

1. INTRODUCTION

Regime switching models have become increasingly popular in the time series literature

over the last decades and applied to data from potential regime switching processes such

as, e.g., the business cycle, the unemployment rate, exchange rates, prices, interest rates,

etc. The majority of the models initiate from the threshold autoregressive (TAR) model

first presented by Tong and Lim (1980). Nevertheless, the idea of smooth regime switch-

ing was first discussed by Bacon and Watts (1971), but not formalized in terms of a time

series model until Chan and Tong (1986) proposed what they called a smoothed threshold

autoregressive model as an extension to the TAR model of Tong and Lim (1980). Heav-

ily cited contributions by Luukkonen et al. (1988) and Teräsvirta (1994) changed the label

from “smoothed threshold” to “smooth transition” resulting in the label smooth transition
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autoregression (STAR) used today. For an overview of the TAR and STAR literature, see

Tong (2011), Teräsvirta et al. (2010), and van Dijk et al. (2002).

The STAR model differentiates itself from the TAR model by smoothing out the regime

switches which in the TAR model take place instantly at a given point in time. The primary

economic motivation for the STAR model is that economic time series are often results

of decisions made by a large number of economic agents. Even if agents are assumed to

make only dichotomous decisions or change their behavior discretely, it is unlikely that

they do so simultaneously. Hence, any regime switching in economic time series may be

more accurately described as taking place smoothly over time. Moreover, the speed of the

regime switching can be of separate interest to an economist, e.g., to analyze how fast the

economy adapts to another regime or state of the economy.

The first contribution of this paper is a new and simple parameterization of the speed

of transition parameter of the logistic STAR (LSTAR) model. This parameter is particu-

lar difficult to identify and, as a result, large and imprecise estimates are often reported

in empirical applications. Using likelihood analysis, we study the consequences of this

identification problem for estimation and inference in the LSTAR model. We show that

the lack of identification, even with a relatively large sample, results in the TAR model (or

a very close approximation to the TAR model) as the global maximum of the likelihood

function. Due to poor parametrization, this fact impedes the numerical optimization of

the likelihood function because the original speed of transition parameter in the TAR cases

is infinity. Our new parametrization remedies this by mapping the speed of transition pa-

rameter into a much smaller interval. An additional advantage hereof is a simplification

of data analysis that makes it easier to identify cases with insufficient support of an LSTAR

model compared to a TAR model. Furthermore, we discuss numerical optimization of the

LSTAR likelihood function. In particular, we consider the origin of multiple maxima on

the likelihood function and grid search methods.

Having established that the TAR model can be the likelihood maximizing solution to

the LSTAR model, the second contribution of this paper is a model selection procedure

to select between these two models. In the literature of LSTAR models economic theory

is used as the only motivation for modeling an LSTAR model instead of a TAR model, see,

e.g., Granger and Teräsvirta (1993) and Teräsvirta (1998). However, our new parametriza-

tion facilitates a decision based upon the data, possibly in conjunction with economic

theory. We show how information criteria provide a neat, but conservative, tool to select

an LSTAR model over a TAR model that can be applied if the reseracher wishes to com-

ment on the speed of transition. The related issue of selecting between an LSTAR model

and an AR model is not treated in this paper. Although testing such hypothesis of linearity

2



is non-standard, procedures are available and well-described in the literature of both the

(L)STAR and TAR models, see Davies (1987), Luukkonen et al. (1988), Hansen (1996), and

Kristensen and Rahbek (2013).

We show the advantages of the new parametrization by reestimating two published

empirical applications. In the first application, the likelihood function for the reparame-

trized speed of transition parameter reveals that the published result is only a local max-

imum on the likelihood function, and that the global maximum is a TAR model. In the

second example, data contains insufficient information about the speed of transition pa-

rameter which then becomes irrelevant, and, as a result, information criteria prefer a TAR

model over the published LSTAR model.

The new parametrization can be applied to all kinds of regime switching models where

the regime switching is governed by one or more logistic type transition functions. Iden-

tification of the speed of transition parameter in the related exponential STAR (ESTAR)

model with an exponenetial transition function has recently been studied by Heinen et al.

(2012). However, the problem is different in the ESTAR model since this model approaches

an AR model when the speed of transition approaches infinity and not a TAR model. Hence,

their results do no carry over to the LSTAR model. Nevertheless, the new paramtrization

is also highly beneficial for estimation of the ESTAR model by facilitating numerical opti-

mization as well as identification of the global maximum of the likelihood funcition.

2. THE MODEL AND THE IDENTIFICATION PROBLEM

We illustrate the identification problem and the benefits of our proposed reparametriza-

tion using a simple LSTAR model, cf., Teräsvirta (1994), given by the equations

yt =αyt−1G
(
yt−1;γ,c

)+εt , εt ∼ i .i .d . (0,1) (2.1)

and

G
(
yt−1;γ,c

)= (
1+exp

{−γ(yt−1 − c)
})−1 (2.2)

where yt is an observation at time t of some variable of interest and α is an autoregressive

parameter. The transition function Gt (we use Gt := G
(
yt−1;γ,c

)
as shorthand notation)

facilitates smooth regime changes between the two extreme regimes of the process pre-

vailing when Gt is close to its boundaries; Gt = 0 results in a pure white noise process and

Gt = 1 results in a autoregressive process with adjustment α, where |α| < 1. The two pa-
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rameters of the transition function are γ ∈ R̄+ and c ∈ R, where R̄+ := R+∪∞. Note that

we extend the original definition of the parameter space for γ to include infinity. This ex-

tension makes it possible to discuss both the LSTAR model and the TAR model within the

same framework. The parameter γ is the speed of transition parameter and c can be in-

terpreted as a threshold parameter. Figure 2.1 illustrates how the functional form of the

transition function and the identification area changes with γ. The larger γ is, the smaller

is the interval in which observations must lie to provide information about γ. Moreover,

yt−1

Gt (yt−1;γ,c)

c

0

1

γ= 1

Identification area

γ= 3

γ= 10

γ= 20

γ= 0

Figure 2.1: Functional form and identification area of the logistic transition function Gt ={
1+exp(−γ(yt−1 − c))

}−γ for different values of γ.

observe from (2.2) and figure 2.1 that Gt → I{yt−1−c>0} as γ→ ∞, and that, consequently,

the TAR is a limiting case of the LSTAR model prevailing when γ =∞. This feature of the

model is the heart of the identification problem discussed in this paper. It has the conse-

quence that the first and second order derivatives of the likelihood function tend to zero

as γ→∞ (as will be shown), resulting in a log-likelihood function with large flat areas in

the direction of γ that impede the numerical optimization.

The related ESTAR model is given by (2.1) and G
(
yt−1;γ,c

) = 1− exp
{−γ(yt−1 − c)2

}
.

When γ→ ∞, Gt → 0 (with a single blip at yt−1 = c) and the ESTAR model approaches a

white noise process or, in a more general case, an AR model. Hence, poor identification

of the speed of transition parameter is, in contrast to the LSTAR model, often anticipated

when testing against a linear model, which is standard in the STAR literature.
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3. LIKELIHOOD ANALYSIS OF THE SPEED OF TRANSITION PARAMETER

LSTAR models are traditionally estimated by maximum likelihood (ML) or non-linear least

squares (NLS). The two approaches are equivalent when the errors are assumed i.i.d. Gaus-

sian, and thus the essential insights from the following ML analysis carry over to NLS. Be-

fore introducing the new parametrization, we illustrate the consequences of the poor orig-

inal parametrization for estimation and inference in the LSTAR model. We are interested

in analyzing only the properties of the ML estimator of γ, and, hence, we ignore estima-

tion of α and c. The log-likelihood function (hereafter abbreviated “likelihood function”)

is given by

`T (γ) =−T

2
log(2π)− 1

2

T∑
t=1

εt
(
γ
)2 , (3.1)

where

εt
(
γ
)= yt −αyt−1G(yt−1;γ,c)

and G (·) is the logistic transition function given by (2.2). The individual score in the direc-

tion of γ is given by

St
(
γ
)= ∂`T (γ)

∂γ
= εt (γ)αyt−1

(
∂Gt

∂γ

)
(3.2)

where
∂Gt

∂γ
=Gt (1−Gt )

(
yt−1 − c

)
(3.3)

To analyze the information on γ, we consider the Hessian given by

Ht
(
γ
)= ∂2`T (γ)

∂γ∂γ′
=−α2 y2

t−1

(
∂Gt

∂γ

)2

+αyt−1εt
(
γ
)( ∂2Gt

∂γ∂γ

)
(3.4)

where
∂2Gt

∂γ∂γ
=Gt (1−Gt ) (1−2Gt )

(
yt−1 − c

)2 . (3.5)

With the definition of Gt given in (2.2), it holds that Gt → I{yt−1−c>0} when γ→∞ and, as a

consequence, Gt (1−Gt ) → 0. Hence,

St
(
γ
)→ 0 and Ht

(
γ
)→ 0 asγ→∞. (3.6)
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This result shows that the likelihood function becomes flat when the LSTAR model approx-

imates the TAR model. Thus, the TAR model always represents at least a local maximum

of the likelihood function. To illustrate the consequences of (3.6) for estimation, we sim-

ulate a dataset from an LSTAR model with T = 150, γ = 2, c = 0 and α = 0.5. The series

and transition function are graphed in figure 8.1 in appendix. The speed of transition is

fairly slow and virtually all observations lie in the identification area. The corresponding

likelihood function as a function of γ is depicted in figure 3.1(a) below. Observe that the

likelihood function gets flatter as the value of γ grows and the maximum is found, roughly,

somewhere in the interval γ ∈ [35;∞]. Consequently, the exact value of γ̂ becomes arbi-

trary as it depends on the choice of stopping criteria for the numerical optimizer used to

maximize the likelihood function.

In the literature on LSTAR models, γ̂ is often reported to have a positive sample bias,

see, e.g., Chan and Tong (1986), Medeiros and Veiga (2005), Areosa et al. (2011), and Hille-

brand et al. (2013). However, we suspect that this bias is influenced by estimating γ with-

out recognizing the behavior of the numerical optimizer when the threshold alternative is

the global maximum of a model with a logistic transition function. Table 3.1 shows results

from a Monto Carlo study in which we have evaluated the estimation bias of γ̂ while only

changing the stopping criterion related to the score of the likelihood function. The posi-

tive bias in γ̂ depends heavily on this criterion. This illustrates that one has to be careful

when doing Monte Carlo analysis of LSTAR models.

In empirical applications, researchers tend to fix γ at some arbitrary large value when

they are unable to estimate γ since it is infinity. As our parametrization below clarifies, this

is approximative to estimating a TAR model, and a more satisfactory solution might be to

switch to the TAR framework which by now has a well-developed theoretical framework,

see Hansen (1997a), Hansen (2000), and references therein.

3.1. THE δ-PARAMETRIZATION

To avoid the drawbacks of theγ-parametrization in (2.2), we propose the following reparametriza-

tion. We define a new parameter δ ∈ (0;1], such that

δ= γ

1+γ (3.7)

with δ→ 0 as γ→ 0 and δ→ 1 as γ→∞. Hence, the transition function in (2.2) is replaced

by

G
(
yt−1;δ,c

)= (
1+exp

{
− δ

1−δ (yt−1 − c)

})
−1 (3.8)
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The main advantage of this parametrization is that it emphasizes the part of the likelihood

function that is of principal interest in an LSTAR model. Essentially, the reparametrization

maps γ ∈ R̄+ into δ ∈ (0;1], where δ ∈ (0;1) is an LSTAR model, δ= 1 is a TAR model, and δ=
0 is a AR model. Of particular importance is the mapping of γ ∈ [9;∞] into δ ∈ [0.9;1]. This

feature can facilitate numerical optimization of the likelihood function by compressing

the large flat area seen in figure 3.1(a) into a much smaller area in figure 3.1(b).

Figure 3.1: The profiled likelihood function as a function of γ (a) and δ(b). The data set is simu-
lated for T = 150, γ= 2/δ= 2

3 , c = 0, α= 0.5.

(a) (b)

The reparametrization highlights two important aspects that were unclear with the

original γ-parametrization. First, the likelihood function is bimodal with a well defined

local maximum around δ = 0.45, corresponding to an LSTAR model with γ ≈ 0.8. Appar-

ently, for this particular realization the local maximum undershoots the true value of the

speed of transition. Second, the δ-parametrization stresses that the global maximum of

the likelihood function is found close to or at the boundary of the parameter space,δ= 1,

i.e., corresponding to a TAR model. The fact that the likelihood function continues to in-

crease until δ= 1 is effectively masked in the γ-parametrization.

Next, as can be seen from table 3.1, the criterion dependent positive bias for γ̂ dissap-

pears when redoing the Monte Carlo experiments using the δ-parametrization. Note that

the size of the bias is not comparable across parametrizations due to the different scaling

of the parameters. Observe that since the ML estimator is consistent, the bias diminishes

as T grows.
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Table 3.1: Estimated bias in γ̂ and δ̂ as a function of the
stopping criterion for the numerical optimizer.

ST (x̂) = ∂`T (x̂)
∂x̂ ≤ 10−2 ≤ 10−6 ≤ 10−16

T = 150�B I AS(γ̂) =∑M
m=1(γ̂m −γ) 0.9063 8.2439 49.509�B I AS(δ̂) =∑M
m=1(δ̂m −δ) 0.0533 0.0545 0.0545

T = 300�B I AS(γ̂) =∑M
m=1(γ̂m −γ) 0.6594 5.4652 21.781�B I AS(δ̂) =∑M
m=1(δ̂m −δ) 0.0146 0.0148 0.0148

Note: The DGP is γ= 1/δ= 0.5, c = 0 and α= 0.5. T = 150,
M = 10,000 and c and α are fixed at the DGP values in
estimation.

4. SELECTING BETWEEN LSTAR AND TAR BY MEANS OF INFORMATION

CRITERIA

The bimodality of the likelihood function seen above is a common small sample property

of LSTAR models. Typically, there exists one inner maximum corresponding to an LSTAR

model and a maximum on the boundary of the parameter space (δ= 1) corresponding to

a TAR model. The simulation considered above in figure 3.1 is an extreme example of this,

where the global optimum of the likelihood function is at δ = 1. A more typical case is

one with the inner maximum being the global maximum and a local, smaller maximum is

found at the TAR solution, see for example figure 6.2(b). A relevant question is therefore

whether the likelihood value of the inner maximum is large enough compared to the like-

lihood value of the TAR maximum to justify the estimation of a speed of transition param-

eter. One way to investigate this question would be to derive a test for the null-hypothesis

of δ = 1. However, such a test is highly non-standard and we save the analysis of this test

to future research. Instead we consider model selection based on information criteria.

Information criteria combine a measure of goodness-of-fit with a penalty for model

complexity. Comparing information criteria would therefore indicate whether the addi-

tional speed of transition parameter of an estimated LSTAR model leads to a notable im-

provement of fit compared to a corresponding TAR model. Psaradakis et al. (2009) pur-

sue this idea and consider selecting between several non-linear autoregressive models by

means of classical information criteria. In the following, we conduct similar simulation

study for the choice between a TAR and an LSTAR using the proposed reparametrization.
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We focus on the Bayesian Information Criterion (BIC), Schwarz (1978), and the Hannan-

Quinn Information Criterion (HQIC), Hannan and Quinn (1979), defined as

BIC =−2`T +k log(T ) , and HQIC =−2`T +2k log
(
log(T )

)
, (4.1)

where `T is the log-likelihood value. The preferred model is the one that minimizes the

information criteria. In appendix 8.2 we show formally that such a model selection pro-

cedure is consistent. We illustrate this selection method using four different models as

data generating processes, an LSTAR model with δ = {0.2,0.5,0.9} and a TAR model. We

simulate M = 104 data sets and estimate only the speed of transition parameter δ while

keeping the remaning parameters fixed at the true values. For each replication, we cal-

culate the percentage selected LSTAR models when applying the two information criteria.

The experiment is done for a range of different sample lengths. The selection percentages

are given in table 4.1.

Table 4.1: Percentage selected LSTAR models using information criteria. c = 0.

DGP LSTAR, δ= 0.2 LSTAR, δ= 0.5 LSTAR, δ= 0.9 TAR, δ= 1

T BIC HQIC BIC HQIC BIC HQIC BIC HQIC

100 48 64 13 25 1 4 0 0

250 82 92 26 45 0 3 0 0

500 98 99 47 69 1 3 0 0

1,000 100 100 76 90 1 4 0 0

10,000 100 100 100 100 1 6 0 0

50,000 100 100 100 100 2 21 0 0

100,000 100 100 100 100 6 42 0 0

1,000,000 100 100 100 100 100 100 0 0

Note: The information criteria BIC and HQIC are defined in (4.1). Only δ is
estimated.

The slower the speed of transition, the better the performance of the information crite-

ria. Nevertheless, even with a relatively slow transition speed of δ= 0.5 and T = 1,000, BIC

and HQIC still select a rather large number of incorrect TAR models, 24 and 10 percent, re-

spectively. For the LSTAR model with δ= 0.9 the information criteria are appearently pun-

ishing too severely for the additional parameter. The information criteria do not choose

the LSTAR model until T = 1,000,000. Again, this shows that while the identification prob-
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lem for δ is a small sample problem, the label “small sample” is misleading since T needs

to be extremely large to get a clear distinction between an LSTAR and a TAR model. I.e.,

the number of observations in the identification area grows extremely slow with T, espe-

cially when the speed of transition is relatively fast. Observe that when the TAR model is

the DGP, the information criteria perform surprisingly well.

The results of a repeated Monte Carlo experiment with c = 1 in table 4.2 show signif-

icantly improvements in the selection rates of the information criteria for small samples.

It is peculiar that the power of the information criteria depends on the (fixed) value of the

threshold parameter c.

Table 4.2: Percentage selected LSTAR models using information criteria. c = 1.

DGP LSTAR, δ= 0.2 LSTAR, δ= 0.5 LSTAR, δ= 0.9 TAR, δ= 1

T BIC HQIC BIC HQIC BIC HQIC BIC HQIC

100 52 67 24 42 4 11 0 0

250 84 92 51 71 6 17 0 0

500 98 99 77 89 9 27 0 0

1,000 100 100 96 98 18 45 0 0

10,000 100 100 100 100 98 100 0 0

50,000 100 100 100 100 100 100 0 0

100,000 100 100 100 100 100 100 0 0

1,000,000 100 100 100 100 100 100 0 0
Note: The information criteria BIC and HQIC are defined in (4.1). Only δ is

estimated.

Overall, the results in table 4.1 and 4.2 show that if model selection based on infor-

mation criteria prefer an LSTAR, it is a clear indication that the speed of transition is slow

enough to make a difference compared to the TAR model. On the other hand, if the TAR

is chosen, there is a risk that one has incorrectly fixed δ = 1 and selected the TAR model.

However, this only means that δ is irrelevant for the model. Hence, information crite-

ria provide a conservative means of selecting LSTAR models over TAR models that can be

used if the reseracher wishes to comment on the speed of transition.
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5. ESTIMATING LSTAR MODELS

The properties of the likelihood function for LSTAR models discussed so far introduce a

number of difficulties for numerical optimization. We observe two seperate problems that

have to be taken into account. First, the likelihood function might have a few maxima in

the direction of δ, as described in the previous sections. To handle this problem, it is useful

to estimate δ with a derivative based optimizer and using different initial values from the

parameter space δ ∈ (0;1]. To ensure that the reached maximum is global, it is important

to always calculate the additional likelihood value at the limit, δ= 1.

The second difficulty is that the likelihood function approaches the step-wise likeli-

hood function of a TAR model in the direction of c as δ→ 1. Consequently, many local

maxima exist in the direction of c and derivative based optimizers will not work well. For

an illustration see figure 5.1, which shows the likelihood as a function of c for different

values of δ.

Figure 5.1: Simulated profiled likelihood functions in the direction of c for different values of δ.
Data is simulated for T = 300, c = 0 and α= 0.5.

To circumvent the problem of a step-wise likelihood function, a grid search algorithm

over c can be performed with an interval that covers observed values of yt−1 spanning

from, e.g., the 10th to the 90th percentile of the distribution of yt−1. This grid search tech-

nique for c is standard in the TAR litterature and ensures that all relevant points for thresh-

old locations are examined. The rest of the parameters are estimated using least squares

conditional on the transition function parameters.

When estimating simple models as the one analyzed in this paper, performing a two
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dimesional grid search over δ and c and drawing the profiled likelihood function is gener-

ally informative. This approach allows the researcher to take into account both problems.

Note that this proposal is by no means new and is in fact standard practice in the littera-

ture for finding candidates for initial values, see inter alia Bec et al. (2008) and Teräsvirta

et al. (2010, ch. 12). Our contribution is that the δ-parametrization clarifies the reason for

doing the grid search, and we emphasize that the main problem of multiple equilibria of

the LSTAR model is related to the fact that the likelihood function approaches a step-wise

likelihood function as δ→ 1.

In more complex models with several transition function parameters, such a thorough

approach might not be possible. For those applications, the researcher could consider

performing grids over all the threshold-like parameters while letting the speed of transi-

tion parameters vary freely and using only a few initial values to capture the inner maxima

corresponding to smooth transition models. Alternatively, heuristic optimization algo-

rithms such as, e.g., simulated annealing or genetic algorithms might provide a means of

estimating complex LSTAR models, see inter alia Maringer and Meyer (2008) for a discus-

sion.

6. EMPIRICAL APPLICATIONS

This section reestimates two published LSTAR applications to demonstrate the advantages

of the δ-parameterization over the γ-parametrization and model selection based on infor-

mation criteria. The first application illustrates a situation where the δ-parametrization

reveals that the reported maximum of the likelihood function is not the global maximum.

In the second application, the δ-parametrization confirms that the global maximum is

the reported one, but information criteria prefer the TAR model over the LSTAR model

because the regime switching is so fast that estimating the additional speed of transition

parameter is superfluous.

6.1. WOLF’S ANNUAL SUNSPOT NUMBERS

Teräsvirta et al. (2010, p. 390), illustrate a suggested STAR modeling procedure by analyz-

ing Wolf’s annual sunspot numbers dating from 1700 to 1979. The data is published at

the Belgian webpage of Solar Influences Data Analysis Center.1 Following Teräsvirta et al.

(2010) the series is transformed as: yt = 2
{
(1+ z t )1/2 −1

}
where zt is the original series.

The motivation for transformation is that the transformed series is easier to model than
1http://www.sidc.oma.be/sunspot-data/
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the untransformed one. The original estimated LSTAR model is reproduced with both

parametrizations and given by (standard errors in paranthesis)2

yt = 1.46
(0.08)

yt−1 −0.76
(0.13)

yt−2 +0.17
(0.05)

yt−7 +0.11
(0.04)

yt−9

+(2.65
(0.85)

−0.54
(0.13)

yt−1 +0.75
(0.18)

yt−2 −0.47
(0.11)

yt−3

+0.32
(0.11)

yt−4 −0.26
(0.07)

yt−5 −0.24
(0.05)

yt−8 +0.17
(0.06)

yt−10)×Ĝ x
t (6.1)

x = γ : Ĝ x = 1+exp{−5.46
(1.11)

(yt−2 −7.88
(0.36)

)/σ̂yt−2 }−1

x = δ : Ĝ x = 1+exp

−
0.85
(0.03)

1−0.85
(0.03)

(yt−2 −7.88
(0.36)

)/σ̂yt−2


−1

T = 270, RSS = 921.84, Log L =−2,091.2

B IC = 4,260.8, HQIC = 4,230.7

The profiled likelihood function in direction of c and γ is showed in figure 6.1(a). The

Figure 6.1: Profiled likelihood functions of the LSTAR model for Wolf ’s sunspot numbers, 1710-
1979. (a) is for the γ-parametrization and (b) is the for the δ-parametrization.

(a) (b)

characteristically flatness in the direction of γ is pronounced, and the reported maximum

2The normalization by σ̂yt−2 in the transition function is standard in the litterature of applied STAR
models because it facilitates the choice of grid or initial values for γ, see van Dijk et al. (2002).
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for (ĉ, γ̂) = (5.46,7.88) appears relatively well-defined. However, figure 6.1(b) reveals that

the global maximum is actually the TAR model at the boundary δ= 1, whereas the LSTAR

model is only a local maximum. The γ-parametrization has effectively blurred the shape

of the likelihood function. At the boundary, the TAR likelihood function is characterized by

discrete jumps over the range of c. This implies that performing a careful grid search over

potential values of c is crucial for the estimation of c, as discussed in section 5 and, more

importantly, that inference on c is non-standard, cf., Chan (1993) and Hansen (1997b).

Estimating the TAR model yields3

yt = 1.43
(0.08)

yt−1 −0.77
(0.14)

yt−2 +0.17
(0.05)

yt−7 +0.12
(0.05)

yt−9

+(2.69
(0.70)

−0.45
(0.11)

yt−1 +0.69
(0.18)

yt−2 −0.48
(0.11)

yt−3

+0.36
(0.11)

yt−4 −0.27
(0.07)

yt−5 −0.21
(0.05)

yt−8 +0.14
(0.05)

yt−10)× I(yt−2 > 6.39
)

. (6.2)

T = 270, RSS = 920.66, Log L =−2,090.9

B IC = 4,254.6, HQIC = 4,226.6

While the autoregressive parameters are almost identical to those of the LSTAR model in

(6.1), the threshold parameter differs between the models. This TAR maximum is preferred

by the information criteria to the reported LSTAR model in (6.1) because the TAR model

achieves a lower (higher) value of RSS (LogL) in addition to be one parameter short of the

LSTAR model.4 The TAR maximum (6.2) can easily be reproduced with theδ-parametrization

by performing a two-dimensional grid search over c and δ ∈ (0;1]. A similar exercise for the

γ-paramterization produces, depending on the choice of grid for γ as well as the choice

of stopping criterion, either the local LSTAR maximum of (6.1) or an invalid maximum

with all observations in one regime. Hence, the model that truly maximizes the likelihood

function is impossible to estimate with the γ-parametrization because γ is infinity.

Nevertheless, given that an LSTAR process has a TAR model as a small sample property,

as found in section 4, and the relatively small sample size of 270, the LSTAR model cannot

3The grid search of c is performed over values of yt−2, disregarding values in the lower 10% percentile
and upper 90% percentile of the distribution of yt−2. No standard error of ĉ is reported due to the non-
standard inference on the threshold parameter in a TAR model.

4Teräsvirta et al. (2010) reach similiar conclusion when estimating a TAR model for the same data later
in the book, though without specifying a measurement. Their TAR model is, however, specified differently
and nonnested with (6.2) and (6.1) making direct comparisons infeasible.
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be discarded as being the DGP of this sunspot data. In addition, the likelihood function in

the region of the local LSTAR maximum in (6.1) and appearing in figure 6.1, seems closely

approximated by a quadratic form, and is thus a well defined maximum. Based on these

considerations, one could also argue that the LSTAR model may be the DGP of the process.

6.2. U.S. UNEMPLOYMENT RATE

The paper by van Dijk et al. (2002) illustrates a suggested STAR modeling cycle which in-

cludes, among others, impulse response and forecasting analysis. The date series is the

monthly seasonally unadjusted unemployment rate for U.S. males aged 20 and over for

the period 1968:6-1989:12.5

The LSTAR model is reproduced with both parametrizations and given by (standard

errors in paranthesis)

∆yt = 0.479
(0.07)

+0.645
(0.07)

D1,t −0.342
(0.10)

D2,t −0.680
(0.09)

D3,t −0.725
(0.11)

D4,t −0.649
(0.10)

D5,t

−0.317
(0.09)

D6,t −0.410
(0.09)

D6,t −0.501
(0.09)

D8,t −0.554
(0.09)

D9,t −0.306
(0.07)

D10,t

+[−0.040
(0.01)

yt−1 −0.1460
(0.08)

∆yt−1 −0.101∆
(0.06)

yt−6 +0.097
(0.06)

∆yt−8 −0.123
(0.06)

∆yt−10

+0.129
(0.07)

∆yt−13 −0.103∆
(0.06)

yt−15]× [1−Ĝ x
t ]

+[−0.011
(0.01)

yt−1 +0.225
(0.08)

∆yt−1 +0.307∆
(0.08)

yt−2 −0.119
(0.07)

∆yt−7 −0.155
(0.09)

∆yt−13

−0.215
(0.09)

∆yt−14 −0.235
(0.09)

∆yt−15]×Ĝ x
t (6.3)

x = γ : Ĝ x = 1+exp{−23.15
(21.75)

(∆12 yt−1 −0.274
(0.04)

)/σ̂∆12 yt−1 }−1

x = δ : Ĝ x = 1+exp

−
0.96
(0.04)

1−0.96
(0.04)

(∆12 yt−1 −0.274
(0.04)

)/σ̂∆12 yt−1


−1

T = 240, RSS = 8.178, Log L =−725.0

B IC = 1,597.9, HQIC = 1,541.8

5The series is constructed from data on the unemployment level and labor force for the particular sub-
population. These two series are published together with Gauss programs used to estimate their model at
http://swopec.hhs.se/hastef/abs/hastef0380.htm.
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Ds,t is monthly dummy variables where Ds,t = 1 if observation t corresponds to month s

and Ds,t = 0 otherwise. van Dijk et al. (2002) have sequentially removed all variables with

a t-statistic lower than 1 in absolute value. Observe that γ is rather large and imprecisely

estimated indicating that data contains little information about the size of this parameter.

The profiled likelihood functions for the two parametrizations are displayed in figure 6.2.

Because γ̂ is so large, the maximum is almost blurred by the flatness of the γ-likelihood

Figure 6.2: Profiled likelihood functions of the LSTAR model for U.S. male unemployment rate,
1968:6-1989:12. (a) is for the γ-parametrization and (b) is the for the δ-parametrization.

(a) (b)

function in figure 6.2(a). In contrast, the δ-likelihood function in figure 6.2(b) confirms

that the reported maximum is in fact the global maximum of the likelihood function. In-

terestingly, the δ-likelihood function shows that the local TAR maximum at the boundary

leads to only a minor drop in likelihood value compared to the LSTAR model. To check

whether this TAR model is preferred by information criteria, the TAR model is estimated

and given by6

∆yt = 0.473
(0.07)

+0.644
(0.07)

D1,t −0.343
(0.10)

D2,t −0.675
(0.09)

D3,t −0.721
(0.11)

D4,t −0.641
(0.10)

D5,t

−0.308
(0.09)

D6,t −0.410
(0.09)

D6,t −0.505
(0.08)

D8,t −0.546
(0.09)

D9,t −0.295
(0.07)

D10,t

+[−0.040
(0.01)

yt−1 −0.140
(0.08)

∆yt−1 −0.094∆
(0.06)

yt−6 +0.092
(0.06)

∆yt−8 −0.116
(0.06)

∆yt−10

+0.136
(0.07)

∆yt−13 −0.106∆
(0.06)

yt−15]× I(∆12 yt−1 ≤ 0.268
)

[−0.012
(0.01)

yt−1 +0.227
(0.08)

∆yt−1 +0.307∆
(0.08)

yt−2 −0.094
(0.07)

∆yt−7 −0.146
(0.09)

∆yt−13

6Similar to the previous TAR estimation, the grid search of c is performed over values of ∆12 yt−1, disre-
garding values in the lower 10% percentile and upper 90% percentile of the distribution of∆12 yt−1. No stan-
dard error of ĉ is reported due to the non-standard inference on the threshold parameter in a TAR model.
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+−0.211
(0.09)

∆yt−14 −0.216
(0.09)

∆yt−15]× I(∆12 yt−1 > 0.268
)

(6.4)

T = 240, RSS = 8.191, Log L =−725.3

B IC = 1,593.2, HQIC = 1,539.1

The information criteria prefer this TAR model implying that the speed of transition is too

poorly estimated to make a difference.

This application highlights one of the key points of the present paper, namely that a

large and imprecise estimated γ implies that the LSTAR model is effectively a TAR model.

Estimation of the LSTAR model is too much to ask of the data. The δ-parametrization

clarifies this and, hence, such an analysis may continue by applying the TAR model.

7. CONCLUSION

Regime swicthing models characterized by smooth transitions only differ from discrete

regime switching models by the speed of transition parameter. Thus, estimation and iden-

tification of this parameter is essential not only for economic interpretation but also for

model selection. Nevertheless, the identification problem and its conseqences for esti-

mation have received little attention in the STAR literature. We show that the original

parameterization of the speed of transition parameter is impractical because the like-

lihood function is chacterized by large flat areas implying that the size of the estimate

may depend on the arbitrary chosen stopping criteria of the numerical optimizer. To cir-

cumvent this problem, we propose a new and simple reparamterization of this parameter.

The reparametrization maps the parameter space of the original parameter into a much

smaller interval which facilitates identifying the global maximum of the likelihood func-

tion as well as numerical optimization. By means of this new speed of transition parameter

we show that the TAR model can be the global maximum of a LSTAR likelihood function,

while it, by construction, is always at least a local maximum. Hence, justifying the addi-

tional parameter of the LSTAR model becomes important. Instead of relying solely on eco-

nomic theory when chosing between these two models, we suggest to use information cri-

teria. We show that information criteria provide a conservative model selection tool that

can be applied if the researcher wishes to comment of the speed of transition. Acknowl-

edging that the LSTAR model considered in this paper is simple and the presented simu-

lation results only apply to this particular framework, the new parametrization provides
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general insights on the shape of the likelihood function in directions of the two param-

eters of the transition function that can be generalized to a broad range of other models

within the smooth switching litterature. For example, the double-logistic smooth transi-

tion (D-LSTAR), the Multi Regime Smooth Transition Autoregression (MR-STAR) and the

logistic autoregressive conditional root (LACR) model, see, e.g. , ? and Bec et al. (2008).
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8. APPENDIX

8.1. SIMULATED LSTAR PROCESS AND LOGISTIC TRANSITION FUNCTION

Figure 8.1: Simulated data series (a) and transition function (b) for the LSTAR model (2.1) with
γ= 2, c = 0, α= 0.5 and T = 150.

(a) (b)

8.2. CONSISTENCY OF INFORMATION CRITERIA

We show in the following that the BIC and HQIC are consistent as model selection proce-

dures when considering the choice between an LSTAR and TAR model. The log-likelihood
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functions of the LSTAR (`S
T ) and TAR (`S

T ) as functions of δ and yt are (ignoring constants)

given by

`S
T =−1

2

T∑
t=1

(
yt −αyt−1G

(
δ; yt−1

))2

with Gt defined in (3.8) and

`T
T =−1

2

T∑
t=1

(
yt −αyt−1I

(
yt−1

))2

The information criteria have the form

IC =−2`T +kcT (8.1)

where cT is a penalty for model complexity that increases with T . The term cT is given

by log(T ) and 2log(log(T )) for BIC and HQIC, respectively. The number of estimated pa-

rameters is given by kS = 1 for the LSTAR model and kT = 0 for the TAR model. The true

values of k and δ are denoted k0 and δ0, respectively. A selection procedure for k based on

minimizing an information criterion is said to be consistent if k̂
p−→ k0 as T →∞, where

k̂ = argmin
k=1,0

{IC (k)} (8.2)

and IC (k) is of the form (8.1).

Proposition 1. With k̂, k0 and cT defined as in the previous section, it holds that k̂
p−→ k0 if

and only if

lim
T→∞

cT =∞ (8.3)

and

lim
T→∞

(T −1cT ) = 0. (8.4)

Proof. First, consider the case where the TAR model is the DGP such that k0 = kT = 0. The

probability of choosing the incorrect LSTAR model is given by Pr
[
IC S < IC T

]
. Observe

that as T →∞,

Pr
[
IC S < IC T ]= Pr

[−2`S
T +kScT <−2`T

T +kT cT
]= Pr

[
`S

T −`T
T > 1

2
cT

]
→ 0,

since by (8.3) limT→∞
(1

2 cT
)=∞ and limT→∞

(
`S

T −`T
T

)= 0.
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Next, if an LSTAR model is the DGP, then the probability of choosing the incorrect TAR

model is Pr
[
IC T < IC S

]
. It holds that as T →∞,

Pr
[
IC T < IC S]= Pr

[−T −12
(
`T

T −`S
T

)< T −1cT
]→ 0 (8.5)

since by (8.4) limT→∞(T −1cT ) = 0 and limT→∞
(−T −12

(
`T

T −`S
T

)) = K , where K > 0. The

validity of the second statement is proven in the following.

Recall that the DGP is given by the LSTAR process,

yt =αyt−1G
(
δ0; yt−1

)+εt (8.6)

with εt ∼ i .i .d . (0,1). Consider now the statistic

−T −12
(
`T

T −`S
T

)= T −1
T∑

t=1

(
yt −αyt−1I

(
yt−1

))2 −T −1
T∑

t=1

(
yt −αyt−1G

(
δ̂; yt−1

))2
.

Replacing yt by the DGP in (8.6) and using the definitions ϕt := G
(
δ0; yt−1

)− I
(
yt−1

)
and

ψt :=G
(
δ0; yt−1

)−G
(
δ̂; yt−1

)
, one obtains

−T −12
(
`T

T −`S
T

) = T −1
T∑

t=1
α2 y2

t−1

{
ϕ2

t −ψ2
t

}+T −1
T∑

t=1
2αyt−1εt

{
ϕt −ψt

}
. (8.7)

Note that

E
[
2αyt−1εt

{
ϕt −ψt

} | yt−1
]= 2αyt−1E

[
εt |yt−1

]{
ϕt −ψt

}= 0,

where the second equality holds by the assumption of E [εt ] = 0. Moreover, observe that

by consistency of δ̂ and since δ0 ∈ ]0;1[, we have

Pr
[
ϕ2

t −ψ2
t ≤ 0

]→ 0

as T → ∞. Hence, by the law of large numbers for geometrically ergodic Markov chains

(see e.g. Jensen and Rahbek (2007)) it holds that

T −1
T∑

t=1
α2 y2

t−1

{
ϕ2

t −ψ2
t

}→ E

[
T −1

T∑
t=1

α2 y2
t−1

{
ϕ2

t −ψ2
t

}]= K

where K > 0 provided that yt has a non-zero variance. This completes the proof.
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