
Discussion Papers
Department of Economics
University of Copenhagen

Øster Farimagsgade 5, Building 26, DK-1353 Copenhagen K., Denmark
Tel.: +45 35 32 30 01 – Fax: +45 35 32 30 00

http://www.econ.ku.dk

ISSN: 1601-2461 (E)

No. 13-04

A fast fractional difference algorithm

Andreas Noack Jensen & Morten Ørregaard Nielsen

http://www.econ.ku.dk/

A fast fractional difference algorithm∗

Andreas Noack Jensen
University of Copenhagen

Morten Ørregaard Nielsen†

Queen’s University and CREATES

First version April, 2013. This version May 23, 2013.

Abstract

We provide a fast algorithm for calculating the fractional difference of a time se-
ries. In standard implementations, the calculation speed (number of arithmetic op-
erations) is of order T 2, where T is the length of the time series. Our algorithm allows
calculation speed of order T log T . For moderate and large sample sizes, the differ-
ence in computation time is substantial.

JEL Codes: C22, C63, C87.

Keywords: Circular convolution theorem, fast Fourier transform, fractional differ-
ence.

1 Introduction
In the estimation or simulation of fractionally integrated (or fractional) time series mod-
els, the computational cost is almost exclusively associated with the calculation of frac-
tional differences. Indeed, the computational cost of these calculations can be so great
that estimation or simulation of fractional models is infeasible when the sample size is
very large.

In this paper, we derive an algorithm for the calculation of fractional differences based
on circular convolutions. The advantage of our algorithm is that it is designed to ex-
ploit very efficient implementations of the discrete Fourier transform, i.e. the fast Fourier
transform (Cooley and Tukey, 1965). The number of arithmetic operations required, and
hence the calculation speed, of standard implementations of the fractional difference
operation is of order T 2, where T is the length of the time series, i.e. the sample size.
Note that we use “order” to denote the tight (asymptotic) bound, that is, f (T) is of order
g (T) if for some T0 and Ku > Kl > 0 then Kl |g (T)| ≤ | f (T)| ≤ Ku |g (T)| whenever T > T0.

∗We are grateful to Jurgen Doornik, Uwe Hassler, Søren Johansen, James MacKinnon, and Rocco
Mosconi for comments and to the Canada Research Chairs program, the Social Sciences and Humani-
ties Research Council of Canada (SSHRC), and the Center for Research in Econometric Analysis of Time
Series (CREATES, funded by the Danish National Research Foundation) for financial support.

†Corresponding author. Postal address: Department of Economics, Dunning Hall, Queen’s University,
94 University Avenue, Kingston, Ontario K7L 3N6, Canada. Email address: mon@econ.queensu.ca

1

A.N. Jensen & M.Ø. Nielsen: A fast fractional difference algorithm 2

In contrast, our algorithm is able to achieve order T log T . For large sample sizes, the
difference in computation time is substantial.

As an example, suppose we observe a sample of size T = 100, 000, which is not at
all unreasonable for applications in, e.g., finance. As illustrated below, in a standard
MATLAB R© implementation (other languages provide similar timings), calculating the
fractional difference just one time requires about 2.7 seconds of CPU time on an Intel
Core i5-2400 3.1GHz desktop. In comparison, a MATLAB implementation of our algo-
rithm is able to calculate the same fractional difference in only 0.012 seconds of CPU
time. In the estimation of even the simplest fractional time series model, based on, e.g.,
a conditional-sum-of-squares criterion, one would expect to calculate 5-6 fractional dif-
ferences for each iteration in the numerical optimization (one to evaluate the objective
function and a few more to evaluate the gradient and Hessian numerically). If 15-20 it-
erations are required to locate an optimum of the objective function, that suggests that
roughly 100 fractional differences would need to be calculated. Thus, for T = 100, 000,
the difference in estimation time for the standard implementation versus our imple-
mentation of the fractional difference algorithm is of the order of 4.5 minutes versus 1.2
seconds. The computational costs with standard implementations seems prohibitive
for bootstrap or simulation procedures with large sample sizes. On the other hand, such
procedures remain quite feasible with our implementation of the fractional difference
operator.

The remainder of the paper is laid out as follows. In the next section we describe
the fractional difference operation in more detail and derive our proposed algorithm.
Section 3 provides numerical results, and some further discussion and conclusions are
given in section 4.

2 Fast fractional difference algorithm
Consider the time series X t , which is observed for t = 1, . . . , T . Suppose we want to cal-
culate the fractional difference

Yt =∆
d
+X t =

t−1
∑

j=0

π j (−d)X t− j , t = 1, . . . , T , (1)

where the fractional coefficients π j (u) are defined as the coefficients in an expansion of
(1− z)−u , which are

π j (u) =
u (u +1) · · · (u + j −1)

j !
, j = 0, 1, (2)

Note that the summation in (1) is truncated at t −1 because we only observe X t starting
at time t = 1. The subscript “+” on the fractional difference operator thus indicates that
only observations on X t with a positive time index are included in the summation. If
we had pre-sample observations (initial values) on X t that we wanted to include, then
the summation would be extended to include those as well; see Johansen and Nielsen
(2012a,b). However, such considerations are not essential to the developments in this
paper, and therefore we do not consider this possibility further.1

1The convention applied here is that of a so-called ”type II” fractional process, see e.g. Marinucci and
Robinson (1999). While this is certainly not the only type of fractional process, these definitions are not

A.N. Jensen & M.Ø. Nielsen: A fast fractional difference algorithm 3

The standard calculation of the fractional difference in (1) is done as a linear convolu-
tion of the two series X = (X t)Tt=1 and q = (πt−1(−d))Tt=1. That is, the time series Y = (Yt)Tt=1
with t ’th element given in (1) can be written as

Yt =
t
∑

j=1

q j X t− j+1, t = 1, . . . , T . (3)

Because the number of arithmetic operations required in each sum in (3) is of order t ,
the whole linear convolution operation for t = 1, . . . , T is of order T 2.

Our algorithm for the fractional difference operator takes advantage of a frequency-
domain transformation, and we therefore define the discrete Fourier transform f = (f j)Tj=1

of a series a = (at)Tt=1 as the solution to the equation a = T −1F f , where F is the Fourier

matrix with (j , k)’th element (F) j k =w (j−1)(k−1)
T and wT = e i2π/T with i=

p
−1 denoting the

imaginary unit. Each element of a can therefore be expressed in terms of the Fourier co-
efficients f j and powers of wT as

at =
1

T

T
∑

j=1

f j w (t−1)(j−1)
T , t = 1, . . . , T . (4)

Since F is symmetric and F F = T IT , where the bar denotes complex conjugation, the
inverse operation is (T −1F)−1 = F , i.e. the complex conjugate of each element in F , such
that f j =
∑T

t=1 at w −(t−1)(j−1)
T . Thus, the matrix F represents the discrete Fourier transform

whereas T −1F is the inverse transform.
The circular convolution of two series a and b of length T is denoted a þb and is de-

fined such that it contains T elements, each calculated from a sum of T terms. Formally,
define

(a þ b)t =
∑

j ,k∈J T
t

a j bk , t = 1, . . . , T , (5)

where J T
t = {(j , k)| j , k = 1, . . . , T ∧ j +k −1≡ t (mod T)}. Finally, for any T ×1 vector a ,

let
ã = [a ′, 0′T−1]

′ (6)

denote the (2T −1)×1 vector consisting of a extended with T −1 zeros.
In Theorem 1 below, we state the finite version of the circular convolution theorem,

which shows how the circular convolution of finite sequences (5) can be calculated by
application of the discrete Fourier transform. For periodic integrable functions this re-
sult can be found in, e.g., Zygmund (2003, Theorem 1.5, p. 36). The finite version has
appeared in various forms in the engineering literature as an important application of
the fast Fourier transform, see e.g. Stockham (1966, p. 230) and Cooley, Lewis, and Welch
(1969, p. 32). The version in Theorem 1 allows a simple proof of our main result. Because
the notion of circular convolution of finite sequences seems less known in the econo-
metrics literature we provide a brief proof of the theorem.

essential to this paper, since our focus is on fast calculation of the fractional difference operator in (1).
Please see section 4 for some further remarks on this.

A.N. Jensen & M.Ø. Nielsen: A fast fractional difference algorithm 4

Theorem 1 Let a = (at)Tt=1 and b = (bt)Tt=1 be two sequences. Then

a þ b = T −1F (F a ◦ F b), (7)

where the symbol ◦ denotes element-wise matrix multiplication.

Proof. Let f = F a and g = F b denote the discrete Fourier transforms of a and b , re-
spectively. It then needs to be shown that a þ b = T −1F (f ◦ g). To do this, insert the
expressions for a and b in terms of their discrete Fourier transforms,

(a þ b)t =
∑

j ,k∈J T
t

a j bk =
∑

j ,k∈J T
t

�

T −1
T
∑

s=1

fs w (j−1)(s−1)
T

��

T −1
T
∑

u=1

gu w (k−1)(u−1)
T

�

= T −2
T
∑

s=1

T
∑

u=1

fs gu

∑

j ,k∈J T
t

w (j+k−2)(s−1)+(k−1)(u−s)
T

= T −2
T
∑

s=1

T
∑

u=1

fs gu w (t−1)(s−1)
T

T
∑

k=1

w (k−1)(u−s)
T = T −1

T
∑

s=1

fs g s w (t−1)(s−1)
T ,

where the penultimate equality follows by definition of J T
t and the last equality follows

because of the well-known result

T
∑

j=1

w (j−1)k
T =

¨

T if k ≡ 0 (mod T),
0 if k 6≡ 0 (mod T).

This shows that the Fourier coefficients of a þ b are given by the elementwise product
of the Fourier coefficients of a and b .

The next theorem presents our main result, which is to show how the finite circular
convolution theorem can be used to calculate the fractional difference in (1), or equiva-
lently in (3), by the discrete Fourier transform.

Theorem 2 The fractionally differenced time series Y in (3) can be calculated as the first
T elements of the (2T −1)×1 vector

T −1F (F q̃ ◦ F X̃). (8)

Proof. By equation (7) it holds that the t ’th element of (8) is equal to (q̃ þ X̃)t . Further-
more, for t = 1, . . . , T , we have

(q̃ þ X̃)t =
∑

j ,k∈J 2T−1
t

q̃ j X̃k =
t
∑

j=1

q̃ j X̃ t− j+1+
2T−1
∑

j=t+1

q̃ j X̃2T+t− j =
t−1
∑

j=0

π j X t− j (9)

because q̃ j = π j−1 for j = 1, . . . , T and q̃ j = 0 for j ≥ T + 1, while X̃ t− j+1 = X t− j+1 for
j = 1, . . . , t and X̃2T+t− j = 0 for t +1≤ j ≤ T by the definition (6).

The significance of Theorem 2 lies in the fact that the discrete Fourier transform can
be calculated very efficiently by means of the fast Fourier transform algorithm, where

A.N. Jensen & M.Ø. Nielsen: A fast fractional difference algorithm 5

the number of arithmetic operations required is proportional to T log T , see Cooley and
Tukey (1965). Because the operation in (8) only applies three discrete Fourier transforms
and one element-wise multiplication of two vectors (which is of order T), the fractional
difference algorithm (8) in Theorem 2 is itself of order T log T .

Note that our result in Theorem 2 provides an exact calculation of the fractional dif-
ference in (1), and that no approximation is involved. Finally, also note that, depending
on the particular implementation of the fast Fourier transformation applied, it may be
necessary in practice to extend the series X and q to a length greater than the 2T − 1
used in (6). Specifically, some implementations of the fast Fourier transform require the
length to be a power of two, and in that case X̃ and q̃ should be extended with zeros to
length equal to the smallest power of two that is at least 2T −1.

3 Numerical results
In this section we illustrate numerically the difference in computational cost between
the standard implementation in (1) or (3) and the algorithm (8) in Theorem 2 for a range
of sample sizes, T .

The baseline algorithm computes the convolution (3) directly, where the number
of required arithmetic operations is of order T 2. The computation time is expected to
be proportional to the number of arithmetic operations, and consequently also of or-
der T 2. These timings are compared to algorithms of order T log T based on the fast
Fourier transform. The algorithms differ in the number of arithmetic operations re-
quired and therefore the results should be independent of programming language. How-
ever, in practice this may not be true because of, e.g., different implementations of the
fast Fourier transform. We present results in the three popular languages MATLAB (Math-
Works, 2012), Ox (Doornik, 2007), and R (R Core Team, 2013) in order to exemplify the
time gains in practical application.

MATLAB does not ship with a function for fractional differencing. Instead we have
written the function fracfilter that computes the fractional difference by direct linear
convolution through the MATLAB function filter. The function fracdiff uses the
fast Fourier transform to compute the convolution as in Theorem 2, and the time series
is padded with zeros such the total length of the series is a power of two. Ox, on the
other hand, has the built-in function diffpow for fractional differencing, see the arfima
package v1.04 by Doornik and Ooms (2003), and we use that as benchmark. The function
for the fast Fourier transform in Ox automatically pads the input with sufficient zeros,
and hence we do not need to do so in our code. Finally, R also has a package for analyzing
fractionally differenced data, namely fracdiff by Maechler (2012) (not to be confused
with our algorithm of the same name), which has the built-in function diffseries for
fractional differencing. We compare that with our implementation, which again uses
the fast Fourier transform and padding with zeros such that the length of the time series
is a power of two. All these algorithms are presented in Listings 1, 2, and 3, for MATLAB,
Ox, and R, respectively, and are downloadable from the authors’ websites.

Listing 1: Matlab code
function [dx] = fracfilter(x, d)

T = size(x, 1);

A.N. Jensen & M.Ø. Nielsen: A fast fractional difference algorithm 6

k = (1:T-1)';
b = [1; cumprod ((k-d-1)./k)];
dx = filter(b, 1, x);

end

function [dx] = fracdiff(x, d)
T = size(x, 1);
np2 = 2.^ nextpow2 (2*T-1);
k = (1:T-1)';
b = [1; cumprod ((k-d-1)./k)];
dx = ifft(fft(x, np2).* fft(b, np2));
dx = dx(1:T, :);

end

Listing 2: Ox code
fracdiff(const x, const d)
{

decl T, k, b, dx;
T = rows(x);
k = range(1, T-1)';
b = 1| cumprod (((k-d-1)./k));
dx = fft(cmul(fft(b'~ zeros(1, T-1)), fft(x'~ zeros(1, T-1))) , 2);
return dx[:T-1]';

}

Listing 3: R code
fracdiff <- function(x, d){

iT <- length(x)
np2 <- nextn (2*iT - 1, 2)
k <- 1:(iT -1)
b <- c(1, cumprod ((k - d - 1)/k))
dx <- fft(fft(c(b, rep(0, np2 -iT)))*

fft(c(x, rep(0, np2 -iT))), inverse=T)/np2;
return(Re(dx[1:iT]))

}

The computations are run on a desktop with an Intel Core i5-2400 3.1GHz processor
running Ubuntu 13.04. The software versions are MATLAB 2012b, Ox Professional 6.2,
and R 3.0.0. The timings are computed for sample sizes ranging from 100 to 100,000.
For each sample size the fractional differences of 10 random series are calculated and
the fastest computing time of the 10 series is saved. We used the fastest computing time
rather than the average time to clean the results from computing time used for back-
ground tasks, etc.2 Results for the average computing time are nearly identical. The
resulting computation times are plotted with logarithmic axes in Figure 1. This clearly

2 Unlike MATLAB and Ox, the timing functions in R are not sufficiently accurate to allow for measure-
ment of one fractional difference when the sample size is relatively small or the fast algorithm is used.
Therefore, for T < 3000 the timings in R are actually the minima over 10 replications of the total time
to calculate 100 fractional differences for diffseries and 1000 for fracdiff, divided by 100 and 1000,
respectively. For T ≥ 3000 we used 1 and 100 fractional differences for diffseries and fracdiff, re-
spectively.

A.N. Jensen & M.Ø. Nielsen: A fast fractional difference algorithm 7

Figure 1: Computation times in seconds against sample size

(a) MATLAB

102 103 104 105
10−5

10−4

10−3

10−2

10−1

100

101

102

Sample size

Se
co

n
d

s

fracfilter
fracdiff

(b) Ox

102 103 104 105
10−5

10−4

10−3

10−2

10−1

100

101

102

Sample size
Se

co
n

d
s

diffpow
fracdiff

(c) R

102 103 104 105
10−5

10−4

10−3

10−2

10−1

100

101

102

Sample size

Se
co

n
d

s

diffseries
fracdiff

Note: The figure displays computation times in seconds for a range of sample sizes. Panels (a), (b), and

(c) show the timings for MATLAB, Ox, and R, respectively. In each panel, both axes are logarithmic.

Table 1: Examples of computing time

Sample size

100 1,000 10,000 100,000

MATLAB fracfilter 0.0165 0.157 19.95 2682.4
fracdiff 0.0397 0.105 1.24 11.7

Ox diffpow 0.0075 0.751 77.92 7943.1
fracdiff 0.0174 0.133 2.95 29.4

R diffseries 1.2400 19.010 878.00 77842.0
fracdiff 0.0520 0.282 6.57 77.9

Note: Entries are computing times in milliseconds for the calculation of

one fractional difference for a variety of sample sizes and for the algorithms

given in Listings 1, 2, and 3 as well as the benchmark algorithms. The re-

ported times are the fastest of 10 calculations (except for R, cf. footnote 2).

shows the different orders of the algorithms. The graphs for the benchmark algorithms
are nearly straight lines with slope two except for the shortest samples. For ourfracdiff
algorithm, the graphs appear like step functions with jumps at each power of two, due
to the application of the fast Fourier transform and the padding with zeros to a length of
powers of two. Overall, Figure 1 clearly shows the advantage of the algorithm in Theorem
2 in terms of computation speed, especially when recalling that the axes are logarithmic.

In Table 1 we give some examples of the actual computing time in milliseconds re-
quired to calculate one fractional difference for sample sizes T = 100, 1000, 10000, 100000
using both the standard implementations as well as our fast fractional difference algo-
rithm, fracdiff, in Listings 1, 2, and 3.

For samples of T = 100 the computation times are all very small, at least in MATLAB
and Ox, and even though the new fracdiff algorithm is actually slower than the bench-

A.N. Jensen & M.Ø. Nielsen: A fast fractional difference algorithm 8

mark in MATLAB and Ox, they are all very fast and in practice there will hardly be any
noticable difference between the implementations. Already for samples of 1,000 there is
a substantial difference in favor of our algorithm, especially for Ox and R. For T = 10, 000
and T = 100, 000 the differences in computation times are enormous. For T = 100, 000,
our proposed fracdiff algorithm is about 230 times faster in MATLAB, about 270 times
faster in Ox, and about 1000 times faster in R compared to the baseline algorithms.

4 Discussion and conclusions
In this paper we have provided a fast algorithm for calculating the fractional difference of
a time series based on the circular convolution theorem and the fast Fourier transform.
The required number of arithmetic operations for our algorithm is of order T log T com-
pared to T 2 for standard implementations, and similarly for the computation time. For
large sample sizes, the difference in computation time is very substantial and can eas-
ily be the difference between feasible and infeasible estimation with moderate to large
sample sizes. Moreover, the much faster calculation of the fractional difference achieved
by our algorithm opens up new possibilities for bootstrap or simulation methods to be
applied to fractional time series models with moderate to large sample sizes.

Of course, large data sets are common in many fields such as meteorology and fi-
nance. For example, in Carlini, Manzoni, and Mosconi (2010) and Bollerslev, Osterrei-
der, Sizova, and Tauchen (2013), the authors apply the fractional cointegration model of
Johansen and Nielsen (2012a) to large data sets in finance. More specifically, Carlini et
al. (2010) analyze supply and demand imbalances on stock prices using high-frequency
observations. In the estimation, the authors use only a small subset of T = 110, 000 ob-
servations from a data set with a total of T = 5.8 million observations, citing the “ex-
treme computational burden” of the estimation. Indeed, extrapolating from Table 1,
the time (in MATLAB) required to compute just one fractional difference with the stan-
dard implementation with T = 5.8 million would be approximately 2.7 seconds times
(5, 800, 000/100, 000)2 = 582, which is roughly 2.5 hours. On the other hand, with our al-
gorithm, the same calculation of one fractional difference would take only 0.012 seconds
times 58 log(5, 800, 000)/ log(100, 000), which is 0.94 second. Thus, the computation time
of our algorithm is over 9500 times faster, which we conjecture is sufficiently fast to allow
estimation with the full sample.

In a related strand of literature on the so-called “type I” fractional processes, there has
been some focus on efficient simulation of fractional processes. An early algorithm by
Davies and Harte (1987), see also Craigmile (2003), Doornik (2006), and Chen, Hurvich,
and Lu (2006), applies the circulant embedding method to show that, when a time series
of length T is to be generated with autocovariances γ0,γ1, . . . ,γT−1, the fast Fourier trans-
form can be used to simulate the time series such that the operation is of order T log T .
However, this method and related methods require a non-negativity condition on the
Fourier coefficients of the autocovariance function and they also require that d < 1/2
such that the autocovariances are in fact well-defined. Also, an idea similar to our The-
orem 1 appears in Sowell (1992, p. 170), using the continuous rather than the discrete
Fourier transform, as an approximation device for the untruncated fractional difference
operator for type I processes.

Finally, depending on the particular fast Fourier transform algorithm that is being

A.N. Jensen & M.Ø. Nielsen: A fast fractional difference algorithm 9

used, we note that further (although modest) decreases in computation time can be
achieved by padding the series such that the total length is a product of small prime
numbers, i.e. 2k 3m 5n . In the calculation of the fast Fourier transform, this prevents ex-
cessive padding when 2T − 1 is slightly greater than a power of two. Indeed, in unre-
ported MATLAB calculations, we found that additional (modest) decreases in computa-
tion time were attained with this procedure compared to the fracdiff algorithm in List-
ing 1 above. This alternative procedure had the further effect of generating a “smoother”
line compared to the step function-type line in Figure 1(a). However, to keep focus on
the (fast) calculation of the fractional difference, rather than efficient calculation of the
fast Fourier transform, we have not included an in-depth discussion of the benefits of
padding the series to a length given as a product of small primes.

5 List of references
1. Bollerslev, T., D. Osterreider, N. Sizova, and G. Tauchen (2013). Risk and return:

long-run relationships, fractional cointegration, and return predictability. Journal
of Financial Economics 108, 409–424.

2. Carlini, F., M. Manzoni, and R. Mosconi (2010). The impact of supply and demand
imbalance on stock prices: An analysis based on fractional cointegration using
Borsa Italiana ultra high frequency data. Working paper, Politecnico di Milano.

3. Chen, W.W., C.M. Hurvich, and Y. Lu (2006). On the correlation matrix of the dis-
crete Fourier transform and the fast solution of large Toeplitz systems for long-
memory time series. Journal of the American Statistical Association 101, 812–822.

4. Cooley, J.W., P.A.W. Lewis, and P.D. Welch (1969). The fast Fourier transform and its
applications. IEEE Transactions on Education 12, 27–34.

5. Cooley, J.W. and J.W. Tukey (1965). An algorithm for the machine calculation of
complex Fourier series. Mathematics of Computation 19, 297–301.

6. Craigmile, P.F. (2003). Simulating a class of stationary Gaussian processes using
the Davies-Harte algorithm, with application to long memory processes. Journal
of Time Series Analysis 24, 505–511.

7. Davies, R.B. and D.S. Harte (1987). Tests for Hurst effect. Biometrika 74, 95–101.
8. Doornik, J.A. (2006). Efficient ARFIMA modelling when the sample size is large.

Unpublished manuscript, University of Oxford.
9. Doornik, J.A. (2007). Object-Oriented Matrix Programming Using Ox, 3rd ed., Tim-

berlake Consultants Press, London, England.
10. Doornik, J.A. and M. Ooms (2003). Computational aspects of maximum likelihood

estimation of autoregressive fractionally integrated moving average models. Com-
putational Statistics and Data Analysis 41, 333–348.

11. Johansen, S. and M.Ø. Nielsen (2012a). Likelihood inference for a fractionally coin-
tegrated vector autoregressive model. Econometrica 80, 2667–2732.

12. Johansen, S. and M.Ø. Nielsen (2012b). The role of initial values in nonstationary
fractional time series models. QED working paper 1300, Queen’s University.

13. Maechler, M. (2012). The fracdiff package for R, version 1.4-2. URL: http://
cran.r-project.org/web/packages/fracdiff/.

14. Marinucci, D. and P.M. Robinson (1999). Alternative forms of fractional Brownian
motion. Journal of Statistical Planning and Inference 80, 111–122.

A.N. Jensen & M.Ø. Nielsen: A fast fractional difference algorithm 10

15. MathWorks (2012). MATLAB 2012b, The MathWorks, Inc., Natick, MA.
16. R Core Team (2013). R: A Language and Environment for Statistical Computing. R

Foundation for Statistical Computing, Vienna, Austria. URL:http://www.R-project.
org.

17. Sowell, F. (1992). Maximum likelihood estimation of stationary univariate fraction-
ally integrated time series models. Journal of Econometrics 53, 165–188.

18. Stockham, T.G. (1966). High-speed comvolution and correlation. Proceedings of
the Spring Joint Computer Conference 28, 229–233.

19. Zygmund, A. (2003). Trigonometric Series, vol. I and II, 3rd rev. ed., Cambridge Uni-
versity Press, Cambridge, England.

	DPforside1304
	FFD-note-v7

