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Abstract

This paper considers asymptotic inference in the multivariate BEKK model
based on (co-)variance targeting (VT). By definition the VT estimator is a two-step
estimator and the theory presented is based on expansions of the modified like-
lihood function, or estimating function, corresponding to these two steps. Strong
consistency is established under weak moment conditions, while sixth order moment
restrictions are imposed to establish asymptotic normality. Included simulations in-
dicate that the multivariately induced higher-order moment constraints are indeed
necessary.

1 Introduction

As shown in Laurent, Rombouts, and Violante (2012) variance targeting (VT) estima-
tion, or simply VT, is highly applicable when forecasting conditional covariance matrices.
This paper derives large-sample properties of the variance targeting estimator (VTE) for
the multivariate BEKK-GARCH model, establishing that asymptotic inference is feasi-
ble in the model when estimated by VT. Whereas large-sample properties of the VTE
have recently been considered by Francq, Horvath, and Zakoian (2011) for the univariate
GARCH model, the properties have, to our knowledge, not been investigated before for
the multivariate case. We find that the VTE is strongly consistent if the observed process
has finite second-order moments, and asymptotic normality applies if the observed process
has finite sixth-order moments. These moment restrictions for large-sample inference in
the BEKK-GARCH model, when estimated by VT estimation, are in line with existing
literature for large-sample inference with quasi-maximum likelihood estimation (QMLE),
see Hafner and Preminger (2009b). Included simulations indicate that our imposed sixth
order moment restrictions cannot be relaxed for VT estimation, see also Avarucci, Beut-
ner, and Zaffaroni (2012) where it is argued that at least fourth order moments are needed
for QMLE. Thus our results points at that while VT estimation is simpler and even possi-
ble to implement for higher order systems, it requires no further moments than for QML
based estimation.
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from The Danish Council for Independent Research | Social Sciences (grant no: 10-07974) is gratefully
acknowledged.



Most financial applications are by nature multivariate with forecasts of conditional
covariance matrices as important components as in for example the rich portfolio choice
and Value-at-Risk literature. Such forecasts may be based on estimation of multivariate
conditionally heteroscedastic (GARCH) models such as the BEKK model proposed by
Engle and Kroner (1995), see e.g. Bauwens, Laurent, and Rombouts (2006) and Lau-
rent, Rombouts, and Violante (2012). This is by now a well-known and much applied
multivariate GARCH model; However, a drawback of the BEKK model, despite the fact
that it is a very simple extension of the popular univariate GARCH model in Bollerslev
(1987), is that it contains a large number of parameters even for a small number of series.
This implies that it is difficult, if not impossible, to estimate the model through classical
QMLE. At the same time, recent development in financial applications implies an increas-
ing interest in conditional covariances and correlations based on vast, or high-dimensional
models. In light of this, one may reparametrize, or modify the BEKK model to obtain
fewer parameters, while at the same time one may wish to consider a different estima-
tion method from the usual Gaussian QMLE of all parameters. Examples of reducing
the number of varying parameters in the optimization procedure include, for the BEKK
model, diagonal-BEKK and scalar-BEKK, see Bauwens, Laurent, and Rombouts (2006).

VT estimation was originally proposed by Engle and Mezrich (1996) as a two-step
estimation procedure, where the unconditional covariance matrix of the observed process
is estimated by a moment estimator in a first step. Conditional on this, the remaining
parameters are estimated in a second step by QMLE. This two-step procedure saves the
number of parameters in the optimization step which yields an optimization over fewer
parameters regardless of the model has a restricted or unrestricted BEKK representation.
Recently, Noureldin, Shephard, and Sheppard (2012) have proposed the so-called mul-
tivariate rotated ARCH (RARCH) model that is estimated in two steps closely related
to VT estimation and thus saving the number of varying parameters in the optimization
step.

High-order moment restrictions for the multivariate BEKK model — as contrary to the
univariate GARCH model — is extensively discussed in Avarucci, Beutner, and Zaffaroni
(2012), which argues that the high-order moment restrictions for QMLE cannot be re-
laxed. As mentioned simulations are included which support this view for the VT based
estimation. Note also in this respect that the strong moment restrictions for asymptotic
QML inference in the multivariate BEKK model are similarly in contrast to the very mild
conditions found for univariate GARCH models, see e.g. Jensen and Rahbek (2004) and
Francq and Zakoian (2012) who find that asymptotic inference in the GARCH model is
feasible even if the observed process is explosive.

The theoretical parts of this paper make extensive use of linear algebra and matrix
differential calculus, see Liitkepohl (1996) and Magnus and Neudecker (2007) respectively.

Some notation throughout the paper: For n € N, [, is the n x n identity matrix. The
vector vec(A) stacks the columns of a matrix A, and vech(A) stacks the columns from the
principal diagonal downwards. The trace of a square matrix A is denoted tr{A}, and the
determinant is denoted det(A). For a k x [ matrix A = {a,;} and an m x n matrix B, the
Kronecker product of A and B is the km x In matrix defined by A ® B = {a;; B}. The
matrix (Euclidean) norm of the matrix, or vector A, is defined as ||A| = (tr{A’A})¥/2.
With Ay, ..., A, the n distinct eigenvalues of a matrix A, p(A) = max;cqi,..n} |As| is the
spectral radius of A. For an n x n matrix A, the n? x n? commutation matrix K, has
the property K,,vec(A) =vec(A’). The letters K and ¢ denote strictly positive generic
constants with ¢ < 1.



2 The variance targeting (VT) BEKK model

As in Hafner and Preminger (2009b) we focus on the BEKK(1,1,1) model, the BEKK
model hereafter, which is the predominantly used version of the BEKK models in appli-
cations, see Silvennoinen and Terisvirta (2009). The BEKK model is given by

X, = H"*Z, (2.1)

where t = 1,...,T, and Z; is an IID(0, I;) sequence of random variables. Htl/ ? is the
symmetric square-root of H,; given by

H,=C+ AX, 1 X|_,A' + BH, B (2.2)

with X, and H, fixed, and H, positive definite. Moreover, C' € R? x R? is positive definite
and A, B € R? x R%, and hence H; in (2.2) is positive definite.

Theorem 2.1 below states that, under certain assumptions, there exists a covariance
stationary solution of the BEKK model. More precisely, if {X;},_, , is covariance
stationary, then V' [X;] = E'[H;| = T" where I is positive definite and solves the equation

['=C+ ATA + BI'B. (2.3)

Boussama, Fuchs, and Stelzer (2011, Lemma 4.2 and Proposition 4.3) establish that such
solution exists if p[(A® A) + (B ® B)] < 1. Variance targeting can be presented as
rewriting the model so that the unconditional covariance matrix of X; appears explicitly
in the equation for H;. Substituting (2.3) into (2.2) yields

H,=T — ATA' — BTB' + AX, X, ,A'+ BH, B, (2.4)

and we say that H; has the variance targeting BEKK representation, see also Noureldin,
Shephard, and Sheppard (2012).
Define v =vec(I") and
A = [vec(A)',vec (B)'}/, (2.5)
and let 6 denote the parameter vector of the model containing all the elements of T,
A, and B, so that § = [/, N']'. Throughout the text we will use the notation Hy(7y,\),

indicating that H,; depends on the parameters in v and A. Then the variance targeting
BEKK model with parameter vector [y, X is given by

Xt - Htl/2<77 )\)Zh (26)
where t = 1,..., T, and Z; is IID(0, 1), and
Ht<’)/, )\) =1 - AFA, — BFB/ + AXt—lXL{flA/ + BHt_l(’}/, )\)B/, (27)

where 7 =vec(I') and A = [vec(A4)" vec(B)']. Note that the parameters in A are re-
stricted such that p[(A ® A) + (B ® B)] < 1 on the parameter space © C R3¥. Moreover,
Xo and Hj are fixed, and Hy and I' are positive definite.

Some properties of a BEKK process have recently been investigated by Boussama,
Fuchs, and Stelzer (2011) and may be summarized in the following theorem.



Theorem 2.1 (Corollary to Theorem 2.4 of Boussama, Fuchs, and Stelzer (2011))
Let {Xt}tzl,...,T be a process generated by a variance targeting BEKK process and define

!/

W, = [vech(H,)", X]] . (2.8)
Suppose that the distribution of Z; is absolutely continuous with respect to the Lebesgue
measure on R, and that zero is an interior point of the support of the density.

Then the Markov chain {Wt}tzl,...,T 1s geometrically ergodic. Moreover, the strictly sta-

tionary and ergodic solution of the model associated with {W;},_, , has E | X:|I” < o0
and E ||Hy|| < oo for all t.

Remark 2.1 The geometric ergodicity of {Wt}t:h_,T implies that there exists a unique
mvariant distribution for W, and that the marginal distribution of {Wt}t=1,...,T converges
to this stationary distribution when the chain is not initialized from its stationary distri-
bution.

Remark 2.2 By initiating {Wi},_, __r from the invariant distribution, X; is covariance
stationary.

Remark 2.3 In Section 3 we show that asymptotic normality of the variance-targeting
estimator can be established when E || X,||® < co. Choosing a drift function for Wy in
(2.8) which implies E || X,||° < oo has, to our knowledge, not been considered anywhere in
the literature. In Appendiz C we establish conditions for geometric ergodicity and finite
second, fourth, sixth, and eighth-order moments for the simpler BEKK-ARCH(1) model
as in (2.2) with B =0 and Z; Gaussian.

3 Variance targeting (VT) estimation

Whereas classical QMLE of the BEKK model has been considered by Comte and Lieber-
man (2003) and Hafner and Preminger (2009b) (as a special case of the VEC GARCH
model), we consider the estimation method of variance targeting. VT estimation is a two-
step estimation method where 7 is estimated by a the sample unconditional covariance
matrix of Xy, and next A is estimated by QMLE by optimizing the VT log-likelihood with
respect to A. The two-step procedure yields the VTE of # denoted 6yr. This will be
explained in detail below.

Let A be a space of the same dimension as \ in (2.5). Note that the parameter § € R3%
only contains 2d? + d (d + 1) /2 unique elements since I' is symmetric. The VT procedure
suggests that I' is estimated by the sample covariance, so that

T
. 1 /
Yy = vec <T 521 XtXt> . (3.1)

We observe that if X, is strictly stationary and ergodic with E || X;||* < oo, Fy is a
(strongly) consistent estimator for v =vec(T"), by the ergodic theorem.
For the variance targeting BEKK model, the profiled quasi log-likelihood is given by

1 T

Lr(v.A) = = ) _h(y, ) (3.2)

t=1



with

lt(’% >‘) = IOg {det [Ht (77 )‘)]} +tr {XtXéHtil (77 )‘)} : (33)
Given an estimate (3.1) of 7, the VTE of X is defined as
Ayr = arg minLy Ay, A) - (3.4)
AEA

and the two-step procedure yields the VTE of v and A
~ ) ~ /
Ovr = [’VVTa /\VT} .

Remark 3.1 Although Z; is not assumed to be necessarily Gaussian, we choose to work
with the Gaussian log-likelihood and hence, similar to the notion of QMLE, one could
denote the estimator QVTE.

Compared to QMLE the VT procedure saves the number of varying parameters in the
optimization step: In the first step d (d + 1) /2 parameters are estimated by method of
moments, and in the second step 2d? parameters are estimated through optimization. If
A and B are diagonal matrices, which is a restriction that is often imposed in practice,
the proportion of varying parameters, relative to the total number of parameters to be
estimated, is small for a moderate dimension of the observed process. This suggests
that the combination of a restricted BEKK model, say the diagonal, and VT allows for
estimating high-dimensional systems.

For estimation of C' in the original BEKK model in Definition 2.2, recall that

GVT = /F\VT — A\VTf/VT‘A\VT — EVTf,VTEVT- (35)

Its asymptotic distribution is stated in Proposition 4.1 below.

4 Large-sample properties of VT estimation

In this section we establish the consistency and asymptotic normality of the VTE. The
proofs are stated in Appendix A.

As in Comte and Lieberman (2003), Hafner and Preminger (2009b), and Francq,
Horvéth, and Zakoian (2011), we assume that{X;},_, ; is strictly stationary and er-
godic:

Assumption 4.1 The assumptions of Theorem 2.1 are satisfied, and the observed process
{Xi},—o. 1 is generated by the strictly stationary and ergodic solution of a variance-
targeting BEKK process.

Note that one could weaken this assumption so that {X;},_,  is initiated from a
fixed value, see Jensen and Rahbek (2004).
In addition to Assumption (4.1) we make the following assumptions:

Assumption 4.2 The true parameter g € © and © is compact.

Assumption 4.3 For A\ € A, if X # XAy then Hy (7o, A) # Hi (79, \o) almost surely, for
allt > 1.



We are now able to state the following theorem.
Theorem 4.1 Under Assumptions 4.1, 4.2, and 4.3, as T — oo the VTE satisfies
Gyvr =3 .

Remark 4.1 Assumptions 4.2, and 4.3 are in line with Comte and Lieberman (2003)
and Hafner and Preminger (2009b).

Remark 4.2 The finite second-order moments of X, implied by Assumption 4.1, are
in line with the moment restrictions for consistency of the VI'E in the univariate case,
see Francg, Horvath, and Zakoian (2011). The relatively weak sufficient conditions of
Theorem 4.1 suggest that consistency of the VTE applies for many practical purposes.
Notice that the moment restrictions are stronger than the ones that are sufficient for
consistency of the QMLE for the BEKK model of the form (2.2) where finite second-order
moments of X, are not necessary, see Hafner and Preminger (2009b).

In order to show that the VTE is asymptotically normal, we make two additional
assumptions:

Assumption 4.4 E || X,||° < co.
Assumption 4.5 6, is in the interior of ©.

Theorem 4.2 Under Assumptions 4.1-4.5, as T — oo

VT (e —00) 2N (o0 (5 0 Va4 Y I
VT 0 ) _JO—IKO _Jo—l 0 _Jo—lKO _Jo—l )
where the matrices Jy and Kq are stated in (A.10) and Qq is stated in (B.36) below.

Remark 4.3 Assumption 4.4 states that the observed process X; is required to have fi-
nite sixth-order moments. The moment restrictions are required in order to show that the
second-order derivatives of the log-likelihood function converges uniformly on the parame-
ter space, see the proof of Lemma B.5 below. Notice that the requirement of sixth-order
moments is stronger than the requirement of finite fourth-order moments found by Francq,
Horvdth, and Zakoian (2011) for the univariate case. However, notice that if we choose
d = 1, our model corresponds to the one considered by Francq, Horvdath, and Zakoian
(2011) and Assumption 4.4 can be weakened such that only finite fourth-order moments
of X; are required. In the case where the dimension is greater than one, the structure of
the BEKK model implies that high-order moments of the X; are required to be finite. This
issue is discussed extensively in Avarucci, Beutner, and Zaffaroni (2012). Notice that the
moment conditions are just as weak as the ones found in existing literature on asymp-
totic normality of the QMLE, see Hafner and Preminger (2009b). Assumption 4.4 is a
strong assumption that is rarely satisfied in practice, and illustrates the main drawback of
the BEKK models: Standard large-sample inference requires moment conditions that are
rarely satisfied in real-world applications. Assumption 4.5 is a standard assumption in the
literature.

Given the asymptotic distribution of EVT, we may derive the asymptotic distribution
of the VTE for C' in the original BEKK model in (2.2):
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Proposition 4.1 Under the assumptions of Theorem 4.2, as'T — oo

A I 0 I 0\
VT (vec (C’VT) — vec (Og)) ZN <O,ZO (—JodiKo _Jol) Qo (_JOdiKU —J01> 26) ,

where

WS- (12 — (Ao ® Ag) — (Bo @ By)] — [Lp + Kaa] [(AcTo) ® L] — [I2 + Kaa] [(BoT'0) ® 1)) .

5 Simulation study

In this section we illustrate the theoretical results of Section 4 through simulations. Specif-
ically, we simulate the large-sample distribution of the VTE for three different cases. In
the first case the sufficient moment restrictions for asymptotic normality, see Theorem
4.2, are satisfied - in particular the data-generating process (DGP) has finite sixth-order
moments. In the second case the DGP does not have finite sixth-order moments, but finite
fourth-order moments. Hence the conditions of Theorem 4.2 are violated, so the VTE
for the entire parameter vector may not be asymptotically normal. However, the moment
restrictions for asymptotic normality of the VTE for v are satisfied. In the last case the
DGP has only finite second-order moments which suggests that even the VTE of ~ cannot
be asymptotically normally distributed. In order to keep things simple we focus on the
bivariate diagonal-BEKK-ARCH(1) with Gaussian noise , that is the process in (2.2) with
d =2, A diagonal, B = 0, and Z; IIDN(0, I5). In Appendix C we establish conditions for

77777

and such that certain moments of the stationary solution are finite.

5.1 Case 1: The DGP satisfies the sufficient conditions for as-
ymptotic normality

Consider the bivariate DGP for X; given by (2.2) with B = 0. That is
X, = H?Z, Z, 1IDN(0,L), and H, = C + AX, 1 X| A/, (5.1)

. 0.8 0.5
with ¢ = (Cyj); jor 2 = (0.5 0.7) ' 52)
First we choose A such that F || X;||® < co. Specifically, we set

06 O
A= (Aij)m':l’z = ( 0 05> ) (53)

and observe that p (A ® A) = 0.36. By Theorem C.1 the stationary solution of the process
has E || X,||° < oo, and hence the moment restrictions of Theorem 4.2 are satisfied.

For N = 1000 realizations of (5.1)-(5.3), t = 1, ...,10000, H; = C', we estimate A and
C by VTE using the GQRCH Package version 6.1 for OxMetrics 6.1.

Figure 5.1 contains density and Q-Q plots of the estimates of A;; and C1; in the process
(5.1)-(5.3). The figure suggests that the estimates seem to fit a normal distribution well,
which is in line with Theorem 4.2.
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Figure 5.1: Density and Q-Q plots of N = 1000 VT estimates of A;; and C7; of the process
(5.1)-(5.3). In the density plots the red line is the plot of the estimated density of the VT
estimates, and the black dashed line is the plot for the normal distribution. The Q-Q plots
compare the quantiles of the estimate with the ones of a normal distribution (red crosses). The
solid blue lines are the asymptotic 95% standard error bands of a normal distribution.

We now turn to the second case where the DGP does not satisfy the conditions in
Theorem 4.2.

5.2 Case 2: The DGP does not satisfy the sufficient conditions
for asymptotic normality

Next we consider the DGP (5.1)-(5.2) and choose A such that E || X;||* < oo, but E || X;||°
is not finite. We set

0.75 0
A= (Aij)i’j:LQ = ( 0 05) ) (54)

so that p(A® A) = 0.75> = 0.5625. This implies that E || X,|° is not finite, however

p(ARA) < \/ig ~ 0.5774, so we have that the DGP is geometrically ergodic with

E||X,|* < oo for the stationary solution by Theorem C.1. As in Case 1 we consider
N = 1000 realizations of the DGP and estimate A and C' by VTE.

Figure 5.2 contains density and Q-Q plots of the estimates of A;; and C1; in the
process (5.1),(5.2),(5.4). The estimates of A;; do not seem to be normally distributed.
The density is skewed compared to normal distribution, which can also be deduced by
the S-shape of the points in the Q-Q plot. The estimates of C1; do seem to fit a normal
distribution, except for a few outliers (see Q-Q plot). In the following we explain why
this can happen.
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Figure 5.2: Density and Q-Q plots of N = 1000 VT estimates of A;; and C7; of the process
(5.1),(5.2),(5.4). In the density plots the red line is the plot of the estimated density of the
VT estimates, and the black dashed line is the plot for the normal distribution. The Q-Q plots
compare the quantiles of the estimate with the ones of a normal distribution (red crosses). The
solid blue lines are the asymptotic 95% standard error bands of a normal distribution.

Recall that VeC(GVT) = [Ip — (/AlVT ® A\VT”;)\/VT, so the distribution of VGC(@VT)
(or more correctly v/T[vec(Cyr)—vec(Cp)]) depends on the distribution of (Ayy @ Ay )
and Jy,. Recall that 7y, is asymptotically Gaussian if E || X;||* < co by the Central
Limit Theorem, which can be verified by observing that vec(I'y7) is given by (B.33),
and that /T [vec(Ty7)—vec(I'g)] is asymptotically Gaussian, if E ||.4;| < oo, see proof
of Lemma B.9. This is the case if E[|X,||* < oo, which holds for our choice of DGP, so
VT [vec(Ty7)—vec(Ty)] is indeed asymptotically Gaussian. Next

VTvec <6VT — C’O) = [Idz — (gVT ® A\VTH VTvec (fVT — F()) (5.5)
VT [(EVT ® EVT) (A A)} vec (Ty) .

If E || X;||* < oo the first term of the right hand side of (5.5) converges to a Gaussian vari-
able, and determines the distribution of v/T'vec <6VT — C) if [(fAlVT ® EVT> —(A® A)]
converges to some (unknown) distribution with a rate of T2+ for some ¢ > 0. Suppose
[(EVT ® EVT) —(A® A)} = Op (1/TV?*9), then VT [(EVT ® /TVT> (A® A)} _
op(1), and hence

VTvec <6VT — C) = [Idz — <ﬁVT X fAlVTﬂ VTvec (fVT — F()) + op(1), which ensures
that /T Vec<6’vgp — C’O) is asymptotically normally distributed.



~ Density

100  QQplot

095 |

0.90 |

0.85

=t = o e e e e e e

0.875 0.900 0.925 0.950 0.975 1.000 0.875 0.900 0.925 0.950 0.975
~ Density ~ QQplot

—— N(s=0.595) 151 +cCy, " norma "

10 - .

50 +

: +
0 [ J

o L 7%’\ L L L L | L L L L 1 L L L

5.0 75 100 125 150 -1 0 1 2

Figure 5.3: Density and Q-Q plots of N = 1000 VT estimates of A;; and C}; of the process
(5.1),(5.2),(5.6). In the density plots the red line is the plot of the estimated density of the
VT estimates, and the black dashed line is the plot for the normal distribution. The Q-Q plots
compare the quantiles of the estimate with the ones of a normal distribution (red crosses). The
solid blue lines are the asymptotic 95% standard error bands of a normal distribution.

Next we turn to the case where E || X;||> < oo, but E || X;||* is not finite.

5.3 Case 3: The DGP has E | X,;||” < oo, but E || X;||" is not finite

Finally, we consider the DGP (5.1)-(5.2) and choose A such that F||X;||*> < oo, but
E||X,||* is not finite. We set

0.95 0
A= (A, = ( : 0.8) , (5.6)

and we have that p (A ® A) = 0.95% = 0.9025. This implies that E || X;|* is not finite,
however p (A ® A) < 1, so we have that the DGP is geometrically ergodic with E || X,||* <
oo by Theorem C.1. As in Case 1 and 2 we consider N = 1000 realizations of the DGP
and estimate A and C' by VTE.

Figure 5.3 contains density and Q-Q plots of the estimates of A;; and Ci; in the
process (5.1),(5.2),(5.6). None of the estimates seem to be normally distributed. In light

of Case 2 this might be explained by the fact that v/T'vec <fVT — F) is not asymptotically
normal as F || X,||* is not finite.
Briefly, the simulation study suggests that asymptotic normality of the VTE applies

when X; has finite sixth-order moments, which is in line with the theory derived in
Section 4. Case 2 showed that when relaxing the moment restrictions, Ay is no longer
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asymptotically normally distributed. This indicates that F HXtH6 < 00 IS a necessary
moment restriction for doing standard large-sample inference in the BEKK-ARCH(1)
model when estimated by VTE. Case 2 also showed that GVT is asymptotically normal
even if E || X;||° is not finite (but £ | X,||* < c0) , which might be explained by the fact
that asymptotlc normality of I‘VT only requires that F ||Xt|| < 00. Case 3 showed that
when E||X;||> < oo but E || X,||" is not finite, neither Ayz nor Cy are asymptotically
normal.

6 Extensions and concluding remarks

We derive the asymptotic properties of the variance-targeting estimator (VTE) for the
multivariate BEKK-GARCH model. Variance-targeting estimation relies on reparametriz-
ing the BEKK model in (2.1)-(2.2) such that the variance of the observed process appears
explicitly in the model equation. This yields a reparametrized (variance-targeting) model
given by (2.6)-(2.7). The parameters of the model are estimated in two steps yielding
the VTE: The variance of the observed process is estimated by method of moments, and
conditional on this, the rest of the parameters are estimated by QMLE. We establish
that the VTE is consistent when the observed process has finite second-order moments,
and is asymptotically Gaussian when the process has finite sixth-order moments. Our
simulations indicate that these moment restrictions cannot be relaxed.

An obvious way to extend our results is to consider the general BEKK(p, ¢, k) model
and the multivariate Rotated GARCH (RARCH) model recently proposed in Noureldin,
Shephard, and Sheppard (2012). The model and the proposed two-step estimation pro-
cedure has some similarities to VTE, and it may be possible to exploit some of our
theoretical results when investigating the asymptotic properties of the two-step estimator
for the RARCH.

A Proofs of Theorems

In the asymptotic analysis we assume that the observed process {X;},_, , is strictly
stationary and ergodic, see Assumption 4.1. Throughout the text we use the probability
measure where W; = [Vech(Ht)/,Xﬂl in (2.8) is strictly stationary and ergodic with
appropriate moments finite. We define for ¢ > 1

Hy(v,\) =T — ATA' — BTB' + AX, 1 X, A+ BH, 1(7,\)B, (A.1)

where Hy(v, A) is strictly stationary. For the recursions defining Hy(y,A) in (A.1) it is
useful to introduce also Hy (v, A) given by

ch(’)/, )\) =1 - AFA, — BFB/ + AXt_le{ilA, + BHt—l,h(/% )\)B/, (A?)

where Hyy, (7, \) = h is fixed and positive definite. We observe that as both recursions in
(A.1) and (A.2) are defined for the same strictly stationary {X:},_,

vec [Hy(v,A) — Hip(7, A)] = (B ® B) vec [Hy—1(v,\) — Hi—1.n(7, A)], t > 1. (A.3)

11



Recall that

Ly(y,A) = %Z Le(7, A), (A4)
with
l(7y, A) = log {det [Hy (7, \)]} + tr { X, X[ H, " (v, \) }, (A.5)

and Hy(7y, A) given by (A.1). To distinguish between H;(y,\) and Hy (7, \) we introduce
correspondingly

LTh ’77 Z lt h ’77 <A6)
with
L(v, A) = log {det [H;, (7, M)]} + tr { X, X[H, , (v, M)}, (A7)
with H;j, (7, A) given by (A.2).

A.1 Proof of Theorem 4.1

In order to make the proof readable, most of its steps rely on lemmas stated and proved
in Section B.1 below.
Observe initially that by the ergodic theorem, as T" — oo

Y = Yo- (A.8)

It now remains to verify that /):VT is consistent. The proof follows the technique from the
proof of Theorem 2.1 in Newey and McFadden (1994). We have that for any ¢ > 0 almost
surely for large enough T'

£l (i)

} < Lp (70,XVT> +¢/5 by Lemma B.3
Ly (70, )\VT) < Lgp <3VT,XVT> +¢/5 by Lemma B.1

Lra (Fyrdvr) < Lra Gz, do) +¢/5 by (34)
Lrn (QyrsXo) < Lz (79, o) +€/5 by Lemma B.1

)
Ly (79, 20) < E[l: (79, Mo)] +¢/5 by Lemma B.3.

Hence for any € > 0,
B [t (v0:Avr) | < Bl (0, h0)] + ¢

By standard arguments as in Newey and McFadden (1994), it follows that as T" — oo,
Avr =3 Ao. Combined with (A.8), we conclude that as T — oo, Oy —> 6.
We now turn to the proof of asymptotic normality of the VTE.

A.2 Proof of Theorem 4.2

Again, in order to make the proof readable, most of the steps rely on lemmas stated in
Section B.2. By Assumption 4.5, (3.4), and the mean-value theorem

0L (Yo, Mo)

O:
O\

+ Krp (67) Gz = 70) + I (07) (vr = 2o) - (A9)

12



where

8LT,h (’707 /\0) _ aLTyh (’% )‘) K (6*) o a2LT,$ (77 >‘)
AN Ny, " N |y
82LT,h (77 )\>

and JT,h (9*) =

)
0=0*

ONON

and #° on the line between 6y and /G\VT, see also the proof of Lemma 1 in Jensen and
Rahbek (2004). Let

OLr (79, Xo) _ ILr (7, )
oA O\

9%L , A
, Kp(07) = O Ly (v,N)

82LT (’7 )\)
and Jr (0%) = ’
6=, OOy

o TN |,

By Lemma B.6, Lemma B.7, and Theorem 4.1, Jp (0*) is invertible with probability
approaching one, so by Lemma B.11

VTvee (Avr = ha) =~ 0IVT 0020 (5470 (09) VT (B~ 20) Hor (1)

o\
Hence
~ I 0 ('/7\ -7 )
VT (Byr— 6 :< Joo )ﬁ(v ) 1o (1),
( vT 0) —Jr (9 ) IKT (9 ) —Jr (9 ) 8LTgy)\0,)\0) OP( )
Define
82lt (’y, A) 82lt (’7, )\)
Jo:= B | 20 A d Ky=p| 22280 Al
0 AN |y | 00 DAY gy, 0

By Lemma B.6 and Theorem 4.1

Id2 0 5} Id2 0
—Jp (07) K (07) —Jz (07) —Jg Ko —Jgt) "
The asymptotic normality of the VTE now follows from Lemma B.10 and Slutzky’s the-
orem.

A.3 Proof of Proposition 4.1
Notice that vec[C (0)] = [l — (A® A) — (B ® B)]~. Since 6 = [/ )\']I,

dvec [C (0)] _ [8vec[C(9)] dvec|C(0)] 8vec[C(9)]}/
89/ o' dvec(A) dvec(B)' ’

We have that
%3(9)] — e - (A® A) — (B B)],

and

Ovec[C'(0)]  Ovec(AT'A')
dvec(A)  Odvec(A)

13



Since I' is symmetric

Ovec (AT'A’)

v (A) [z + Kaa] [(AT) ® 14]

which follows by Result 7 in Section 10.5.1 of Liitkepohl (1996). Likewise,

Ovec (BI'B')
— L = ([p+ K BT)Y® 1.
dvec (B) a2 + Kaa] [(BT) ® 1]
The distribution of /T [Vec <6VT> — vec (C’o)] now follows by the delta method.

B Lemmas

The following section contains the lemmas that were used for establishing consistency and
asymptotic normality of the VTE in Section 4. Before we turn to the lemmas we introduce
some definitions and useful matrix analysis results for the proofs, see also Liitkepohl
(1996).

If the matrix A is positive definite we write A > 0, and if A is positive semi-definite
we write A > 0. For the matrices A, B, C, and D, suppose ABC'D is defined and square.
Then

tr {ABCD} = (vec(D')) (C' ® A)vec(B) = (vec (D)) (A® C")vec (B').

The spectral norm of the matrix A is defined as [|A|,,,. = \/p (A’A). For the matrices A
and B, if AB is well-defined,

tr (AB)| < || All|B]], (B.1)
IABI < [|Allgpec 1B s - [[ABI < [|A[ 1Bl gpee » and  [[A+ Bllpee < [[Allgpec + 1B gpec -
(B.2)
If Aisn x n, then
HA”spec S HAH S \/HHAHspec : (B3)
For an n x n matrix A > 0 with eigenvalues \; (A), ..., A\, (A), it holds that
logdet(A) = > "log A; (A) <> A (A) = tr(A). (B.4)
i=1 i=1
Moreover,
log det(A) = log (det(A'A))"* < nlog (p(A'A))"* = nlog |[A]l,...  (BS)
where the inequality follows from the fact that det (A) < p (A)".
For two square matrices A and B it holds that
tr(A® B) =tr(A)tr(B). (B.6)

Consider an n x n matrix A > 0 and an n X n matrix B > 0 with eigenvalues A\ (B) <
- < A\ (B). Let My (A+B) < --- < X\, (A+ B) denote the eigenvalues of (A + B),

14



Then

by Result 4 in Section 5.3.2 of Liitkepohl (1996). Moreover,
0<XN(A+B) ) <N (B, i=1.,n

Hence
O<tr[(A+B)'] <tr(B™). (B.7)

For an n x n matrix A and an n X n matrix B > 0, it holds that
det (A+ B) > det (A), (B.8)

by Result 11 in Section 4.2.6 of Liitkepohl (1996).
For two positive semi-definite n x n matrices A and B, it holds that

det (A+ B) > det (A) + det (B), (B.9)

by Result 12 in Section 4.2.6 of Liitkepohl (1996).
For some matrix A we introduce the notation A®? := (A ® A).

B.1 Lemmas for the proof of consistency

Lemma B.1 Under Assumptions 4.1-4.3, as T — oo

a.s

S/\ug) |Lr (Y9s A) — Loy Yy, A)| = 0 (B.10)
(S

where Ly (v, \) is stated in (A.4) and Ly, (Y1, A) is stated in (A.6).

Proof. We have that

sup [ L7 (9, A) — Lrp (v, Al (B.11)
AEA
T
1 det [H; (7, )] } P 1 )
= sup|= lo — +tri Xo X, |H ) — H ;A
e th:1< At G 7+ 6 7 0 = 5 G )
T
1 det [H, (79, A)] }'
< = sup |lo =
R =a {det Hun Gvrs V]

1 <& A 1a
+T Zsup ‘tr {XtXt [Ht ! (Yo, A) — Ht,hl v )‘)} H )

=7 AeA
and we want to show that each of the averages in (B.11) converges to zero almost surely.
By definition of H;(vy,A) in (2.7), ' — ATA" — BI'B’ > 0 on © and AX; 1 X; ;A" +
BH; 1B’ > 0 for all t and for all # € ©, so applying (B.8) and (B.9) yields
det [H; (v, \)] > det (T — ATA’ — BTB’) > 0.

In particular, H, (v, \), and similarly for H;j (7, ), is invertible for all ¢ and all 6 € ©.

15



Moreover,

2

([ CTPNI g 1y GO

= tr [H (1, )] < tr [(F — ATA' — BrB)7Y,

where the second inequality follows by (B.7). As the eigenvalues of H; (7, \) are continuous
in v and A, and © is compact,

sup || H;7 (7, V)| < suptr [(F _ADA — BFB’)_l] <K, (B.12)
0cO [USC)

and, likewise, supycq HH;hl (7, /\)|| < K.
By (A.8) we have that for T sufficiently large almost surely

sup || Hy ! (Gyr, A)|| < sup || H,y) (7, 0)]| < K, and sup [[H; (79, A)|| < sup [[H (7, V)| < K.
A€A 0cO A€A 0cO

(B.13)
Next, we note that
vec [Hy (79, A)] — vec [Hep (Yyp, A)]
= (lp — A% = B®?) (vo — Ayr) + B®vec [H; (79, A) = Hiw (s )]
(B.14)

t—
— (B®%)" (Ip — A®? — B®?) (vo — Ayr) + (B®2)tvec [Ho (7o, \) — Hopl -

]

—_

Il
o

As p(A®? 4+ B®?) < 1 on O it follows from Proposition 4.5 of Boussama, Fuchs, and Stelzer
(2011) that p(B®?) < 1 on ©. Hence for any i we have that

B®2 i
sup | (8°7)

< K¢ (B.15)

As in Francq, Horvath, and Zakoian (2011, p.644), (B.14), the compactness of ©, (A.8),
and (B.15) imply that as ' — oo

iug |vec [Hy (Yo, A)] — vee [Hyp (Fyr, V]| < K¢' +o0(1) as. (B.16)
S
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Considering (B.11), we have that for T sufficiently large

IA

IN

IA

<

(e

t=1
1 T
= Z sup |log det [Hy (7o, A) Hyyt (Fyr, V] |
T
ZS |10g det {Id + Ht(%a )\) — Hyp, (:V\VTa A)] Htjhl @VT» )\)H

T & e

T
K— ZSUP ‘log ||Id + [Hi(79, A) — Hyp, Vv M) Ht_hl Fvrs )\)H

spec

1 ~
Kf;%g(log (Ilfdllspech |[He(v0, ) = Hepe Gy, N Hypy Gy, A H)‘
1 — _
KT Zilellz |log (1 + H[Ht(”Ym A) — Hyp, Yy, N)] H, ’VVT7 H)‘
t=1
1 — N R
Kf Z ilelg H [Hi (79, A) = Hey (Gyrs )] Ht,h} Vv )\)”
t=1

T
1
K= sup||Hivy,\) — Hep Gy, V|
T;l AE1A3H (Y0, A) = Hen (v, M|

where the first inequality follows from (B.5), the second from (B.2) and (B.3), and the
third follows from the fact that log (z) <z — 1 for z > 1. Likewise,

IN

<

— Zsup |tr { X X7 [H; (70, \) — Hepy Gvrs V]

AEA

1 o ~ . ,
- Z sup [t {Hp ! Grs A [Huw G A) = He (0, N H;™ (70, XX}
t=1

1 <& . N
KTZSUPHH;;('YV%)‘)HHHt,w(’VVTv/\) H (vos M H (o M) || 11X X

K Zsup 1Hee Gyrs A) = He (v, VX

t1€

where the inequalities follow by (B.1) and (B.13) respectively. By (B.16) we conclude

that

AEA

T T
~ 1 1
sup [Lr (79, A) = Lo Gy, Al < K > o+ K > X +0(1) as.
t=1 t=1

17



By Markov’s inequality and E || X;||> < oo, it follows that for any & > 0

o0 - . ,
STP (X > €) < Z% e
=1 t=1

By the Borel-Cantelli lemma ¢! || X;[* “ 0 as t — co. It now follows by Cesaro’s mean
theorem that X Zt LA IX|IP %% 0., and we conclude that (B.10) holds. m
Lemma B.2 Under Assumptions 4.1-4.3,

Esup [l (7,0 < K.

€O
Proof. We note that
vec [Hy (7,A)] = (I — A®* — B®?) v + A®*vec (X;1 X, ;) + B®*vec [H;_1 (7, A)]
_y (B®?)' [(Lp — A®2 — B®?) 5y + A%%ec (X1 X)1;)]  (B.AT)
=0

SO

Sup |vec [Hy (v, M)]]| < Z sup H B(X’2 ) [Tz — A®* — B®?) v + A%*vec (Xy—1-X, 1)) H :
=)

Notice that

Z E {Sup H (B®2)i [([d2 _A®2 B®2) v+ A®2vec (Xt,l,iXLl,i)} H}
=0 USC]

< D0 (Ko + KB XP) < o
i=0
By Theorem 9.2 of Jacod and Protter (2003) we conclude that

E [sup VL (4, A)H] <K (B.18)
0cO
Now

E {sup |l (7, )\)]} = FE {sup |log det [H, (v, \)] + tr [X, X, H, " (v, A)] ‘}
SIS 0€®

< E{(ggg\tr [H (v, )] + tr [Xo XTH (%MH}

< 2o K [l o0 + %X G0 ]

< K {Eigepllﬂt (7. A)H} +KE {?ElgHXtHQ [ (. A)H}
< K+KE|X/|?

< K

Y
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where the first inequality follows from (B.4), the second from (B.1), the fourth from (B.18)
and (B.12), and the last inequality follows by the fact that E || X;||> < co. m

Lemma B.3 Under Assumptions 4.1-4.3, as T — oo

sup [ L (v, A) = E [l (v, V)] =5 0
00

where Ly (0) is the log-likelihood and 1, (0) is the log-likelihood contribution (at time t)
stated in (A.4) and (A.5), respectively.

Proof. The result follows by Lemma B.2 and the Uniform Law of Large Numbers for
stationary ergodic processes, see Theorem A.2.2 of White (1994). =

Lemma B.4 Under Assumptions 4.1-4.3,
E |lt (707A0)| < 00,

and if X # Ao then
El; (79, M) > E [l (70, Ao)] -

Proof. E|l; (7, \o)| < oo follows from Lemma B.2.

Following the steps from Section 3 in Comte and Lieberman (2003), suppose A # A\g and
let {e; :i=1,..,d} be the (positive) eigenvalues of H, (74, \o) H; * (7o, A) for a fixed t.
Note that

tr {XtXt, [Ht_l (Yo, A) = H; (70, AO)} }
=t {[H" (30, 20) B (20, 0) By (30, 30) — L] 2024}

By the law of iterated expectations and since Z; is independent of F;_1 = 0 (X;—1, X¢—2.),

B (b {XX] [H (0, 0) = H (o 20)] ) = B (e [ (0, 20) B (0, ) B2 (70, 20) = L] })
= K (tl“ { [Ht (70, Mo) Htfl (Yo, A) — Id] })

d
= E|> (ea— 1)]
i=1
Moreover,
d
logdet [Hy (0, A) H; ' (70, M)] = —logdet [Hy (vg, ho) H ' (10, A)] = —log [ [ et
i=1
d
= —Zlog €t
i=1
Hence

El (70, M| = El (70, M) = E {108; det {Ht (70, A) Ht_l (Yo, Ao)”
+E (tr {XeX{ [H (70, A) = Hy ' (0, 20) H ' (70, A) = Hy ' (70, 20)] )

Z (e;s — 1 — logey)

i=1

= F >0
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as logx < x — 1 for all x > 0. Since logx = z — 1 if and only if z = 1, the inequality
is strict unless e; = 1 for all ¢ almost surely. e; = 1 for all 7 almost surely is equiv-
alent to Hy; (79, A) = H; (79, o) almost surely, but this cannot be the case in light of
Assumption 4.3. Hence the inequality must be strict, and we conclude that if A # Ay then

El; (70, N)] > E [l (70, Xo)]- m

B.2 Lemmas for the proof of asymptotic normality

In the following we will make use of matrix differentials and apply the following notation:

Let f; be a function of the non-stochastic matrices A and B. Then d {f; (Ao, By),dA}

denotes the first-order differential of f; in the direction dA and evaluated at (Ag, By).
Let 0;, i = 1,...,3d?, denote the i element of 0. Let Hy; := H; (74, Ao)-

Lemma B.5 Under Assumptions 4.1-4.5 £ [supee@ ’8;3?9”,\) H < oo foralli,j =1,...,3d>

Proof. Notice that

a2lt (77 A) -1 aQHt (77 A) -1 aHt (77 A) -1 aHt (’77 )‘)
EALANLEO R 7] A o (H AN g FLA)
881893 tr < t (77 /\) 89180] ) tr ( t (77 A) 89] t (77 )\) 802 >
. . OH, (v, \) OH, (. \
o (B (0,0 XXUH () PR ) 2 )
j i
B — O?H, (v, \

—or (7 o0 XX 0 T ) (B.19)

By (B.17), Minkowski’s inequality, and Assumption 4.4,
3
B (sl 0.0 <K (B.20)
00

Moreover, using Minkowski’s inequality repeatedly (see also Hafner and Preminger, 2009b,
Proof of Lemma 3), and Assumption 4.4 one can show that

aHt (77 )‘) ‘ )3 ( a2];[1‘/ (77 )‘) ‘ )3
E|sup||———= < Kand F (sup||——————= < K. B.21
(eeg 26, = b6 || 00,06, = (B.21)
By (B.1), (B.12), Holder’s inequality, and (B.21),
_ , . 0Hy __OH
E {323 tr <Ht 'X, X H; 1%}@ ! 5 e;) H
1/3 511/3
@Ht )3 < 8Ht ) 611/3
< K |FE|supl|— E | su EF X
B (eeg 0, ] [ eeg 00; [ Xl ]
< K.

By similar arguments we conclude that E [supeee )62%(%” H < oo for all i = 1,...,3d?

80,00,
and, j=1,..,3d%. m

Y20 for all

BQLT(’%)‘) _ E’ BQlt(’Y:)‘)
90,00, 30,00,

Lemma B.6 Under Assumptions 4.1-4.5 supyce ’
i, =1,...,3d%
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Proof. Notice that 8;3((;(;’,\) is a function of (X, X;_;, ) and 6 and thereby strictly sta-
10U

tionary and ergodic. Hence the result follows by Lemma B.5 and the Uniform Law of
Large Numbers for stationary ergodic processes, see Theorem A.2.2 of White (1994). m

Lemma B.7 Under Assumptions 4.1-4.5 Jy stated in (A.10) is non-singular.

Proof. We prove this lemma arguing in line with the proof of Theorem 3.2 in Francq and
Zakotan (2010), see also p.77-78 in Comte and Lieberman (2003). By definition

a2lt (707/\0)
— g |22tV 0 0]
Jo [ NN ] ’
with %f\t(g/\)‘) given by (B.19). Hence, with F;_y := 0 (X;—1, Xi—2 )
%l (70 >\0) OHo, OHy,
B| —2 N F| = Hy,! Hy,?! B.22
{ ONON; Fe 1} < L) VI )Y > (B:22)

= W,

where

B ®2 H,
hy = <H0t1/2> Eyi, and ky; = vec <%/\0f) )

9ot js symmetric. We now define the d* x 2d? matrices
1

ht = (htl cee Eht2d2> and k?t = <l€t1 cee Ekt2d2) .

©2
Let H;, = (Ho_tl/ 2) , and that hy = H;k; and Jy = E [h}h]. Suppose Jy is singular. Then

there exists a non-zero ¢ € R2® such that ¢/ Jyc = E [dhihic) = 0. As d'hihie > 0, then
almost surely

noting that

chihie = ki H ke = 0.
Since H? is positive definite a.s.,

d2
k?tC =

i=1

(‘5\ vec (Hyp) =0 a.s. for all . (B.23)

Let w= (Ip — A®? — B®%) ~, then (B.23) gives

2d?
&+ Avec (Xt,lXé_l) + Bvec (Hoi_1) + B®? Z Cigy

(Hopt—1) =0 as.  (B.24)

where
N 2d? 9 _ d? 9 - 2d? 9 -
w:;ci 8)\w9_90’A:;Ci8_)\iA oo B:iZdQcia)\iB -
By (B.23), (B.24) reduces to
&+ Avec (X, 1X,_;) + Bvec (Hp—1) =0 a.s. (B.25)
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Subtracting (B.25) from vec(Hy,) yields

vec (Ho) = (wo — @) + (A?Z — /T) vec (Xt_lXé_l) + <B§§’2 - é) vec (Hoi—1) -
Since ¢ # 0, we have found another representation of vec(Hy,), which contradicts As-
sumption 4.3 that ensures that vec(Hp;) has a unique representation. Hence .Jy must be

non-singular. =

Lemma B.8 Under Assumptions 4.1-4.5, as T — 00,

VT (%) = % Z Y: (Yo, Ao) vee (Z: 2] — I4) + op (1) (B.26)
where
{Ie - A5* - B} (H 1/2)
Y, (vo: M) = | | ; (B(?Q)i Mi—1-i (70, Ao) (Ho_tl/2> ; (B.27)
=30 W) | ()
with _ _
M, (4,0) = ({A X, ~T)] @ i} + {1 ® [A (X,X] — T)]} Ka) (B.28)
and
My (7, A) = [({B[H, (v, \) =T} @ Ly) + (Ia @ {B[H; (v,A) = T}) Kug] .~ (B.29)

Proof. The first-order differential of the log-likelihood contribution at time ¢ with respect
to A and evaluated in (7,, \o) is given by

a{l (0, M), dA} = tr { o'/ [a {H, (75, M) . dA}] Hy'*}

(5
— tr { Hy X0 X[ Ho, 2 [d {Hy (0, M) dA}] Hy, 2 |
=t { Hy " [d {H (70, M), dA}] Hy,'?)

—tr{ZtZ Hy, Y2 [d {H, (79, No) , dAY] —1/2}

— vec(ly — Z,7!)' (H(;l/z) vec [d {H, (79, o) , dA}].
Likewise,

A {1 (0, 2o) , dBY} = vec(Iy — Z,Z]) (Hy," 2)®2 vee [d {H, (o, ho) , B} .

Notice that

Hy(v,\) =T+ A(X;1X]_, —T)A = B[H,_1 (v,\) - T] B
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The first-order differential of H, (v, A) with respect to A is

d{H; (7,\),dA} = (dA) (X421 X]_; —T) A+A (X;21 X, — 1) (dA)+B[d{H;—1 (7, \) ,dA}] B’

implying directly

vec [d{H; (v, \),dA}] (B.30)
= vec [(dA) (X4 X[, —T) A+ A(X,_1X[_, = T) (dA)'] + B®*vec[d{H;_1 (7, \) ,dA}].

We note that

vec [(dA) (X1 X[, —T) A+ A(X, 1 X[, —T) (dA)']

= vec [(dA) (X;—1X,_; — T)A'] + vec [A(X;1 X[, — I)(dA)']

={[A(Xim1 X[, —T)] @ L} vec(dA) + {14 ® [A (X;21 X, —T)] } vec(dA')
={[A(Xi1 X[, —T)] @ L} vec(dA) + {I; @ [A(X;21 X[, —T)] } Kaavec(dA)
({[A (XX, D) @ L} + {La® [A (X1 X, —T)] } Kaa) vec(dA).

With M; (v, A) defined in (B.28), recursions yield

vec[d{H; (v,)),dA}] = Z (B®?)' "M,_1_; (v, \) vec(dA).

=0

We conclude that
_ ®2 > i
d{l; (7o, No) , dA} = vec(Z, Z] — 1) <H0t1/2> [— (BSM) M1 (7, )\0)] vec(dA).
i=0

Identifying the Jacobian from the first-order differential, see e.g. Magnus and Neudecker
(2007, p. 199), we find that the score of the log-likelihood function with respect to vec(A)
and evaluated at € = 6 is given by

/
aL Y ,)\ 1 r > i _ ®2
% -7 Z N Z (3?2) Mi—1-i (7o, )\0)] <H0t1/2) vec(ZiZy — Ia).
t= i=0
By similar arguments

OLr ( 70,)\0 1 i

/
(BE?)' M1 (70, Mo) <H1/2)®2vec(ZZ'—[)
Bvec(B t—1—i (70> A0 ot tZy — 1d),
i=0

)

with M, (v, A) defined in (B.29).

Consider the sample covariance matrix on vec form:

1

T
~ 1/2) %2 E :
Yvr = T E (Hot/ > vec (ZtZ — Id —|— vec ( HOt) . (B'?’l)
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Moreover,

T T
1 1
( E H()t) ]d2 A(%ZQ _ BS?Q] Yo + A(%ZQVGC (T t:E 1 Xt_1X£_1> + B(()X)QVGC (? E H()t—l

t=1
1 « 1 «
— [I — A2 — B$?] v, + A%vec (T ZXtX;> + B®2vec (T > HOt)
t=1 t=1

1 1
A®2?vec (XoXo — XrX7) + ngzf"ec (Hoo — Hor) ,

and collecting terms

T
ec <% ZHot) = [le = B§’] " [l — AP = B o+ [l — BS?) T A Avr  (B.32)

- 1 1
+ |:Id2 — B(?Q] ! |:A(()®2fV€C (X()X(/) — XTX%) + Bgﬂ?vec (HOO — HOT)

Notice that (I;z — BS?) is invertible since p(B$?) < 1, as already mentioned in the proof
of Lemma B.1. Next, inserting (B.31) in (B.32) and isolating 7y, yields

)

T
o~ A3 = B Avr = (Lo = B) 3 3 (H®) " vee (22~ I + [T - A" = B§*] v,

t=1

1 1
+ |:A6®2TVGC (X[)X(,) — XTX;«) + 3?2?VGC (HOO — HOT):| .
Hence

e =7 = [Le — A% - B Iz — BS?

Z( 1/2> vec (Z,Z! — 1)

t=1

'ﬂl*—‘

. 1
+ [Ip — AZ* — BE? ™ {A?zfvec (XoXg — XrX7) + B vee (Hoo - HOT)] .

For any € > 0, by Markov’s inequality,
P (' A®2ivec (XoX) — XrX7) + B®2ivec (Hoo — Hor)
0 \/T 0 T 0 \/T

as T' — oo, which yields

KE
- KE|X
- VTe

N

~ 1
Yvr—Y0 = [Id2 - AEM - BSM] Id - B®2

257 () e (22— Ty+op (T772).

=
(B.33)
We conclude that (B.26) holds. m

Lemma B.9 Under Assumptions 4.1-4.5

E [Y; (70, Mo) vee (2,2, = La)||” < oo,
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where Y; (7o, Ao)is given by (B.27).

Proof. By definition

{Ip — AZ® - BE*}~ ( 1/2)@)2
97

i —1/2) ®2
(36@2) M, (’YOa)\o) (H0t1/2>

= 9/

—~ _ ®2
<B®2) Mtflfi </707 )\0) (H()tl/z)

'Plﬁ%%

~
Il
o

Y; (’707 )\0) =

'M8

~
Il
o

Define

Et .= vec (ZtZt/ — Id) R 7]?4 =

'M8

Il
=)

(B®)Mt11(707)\0]; up [ Z Mtlz(%a)\o) 5

i =0

and observe that

A B ¢
Y: (Y0, Ao) vec (ZeZ — 1a) vee (2,2 — 1) Vi (9, o) = | Bi Dy &
c &G

where
B ®2 ®2 _
A = [Ip— AP - BFY <Hét/2) €€y (Hétﬂ) [l — AT = B§]
_ ® ©2
B, = [[dQ - Aggz - BO®2] ' (Hétm) 5t51/t <H;1/2> 777{\/[7

Ct — [IdQ A®2 B®2] -

®2 ®2
D () e (1)
®2 —~
& = 0" (H_1/2> €1} (Ho_tl/2> ",
__ 3 ®2 B ®2 —~
G = 77?4/ <H0t1/2> Etgft (H0t1/2> 77?4-

Hence Y; (¢, Ao)vec(Z: Z] — 1) is square-integrable if F' || A;|| < K, F || B:|| < K, E||C]] <
K, E|Df| < K, E||&| < K, and E[|G]| < K.
Using Minkowski’s inequality,

E || < {i ¢ (K +KE \IXt!\6)l/3} <K. (B.34)

=1

Likewise, by Minkowski’s inequality and (B.20)

E‘m

0o 3
1=1
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We note that

®2||2
plal < K| (7)) £la?

by the independence between Z; and W,;_;. Moreover,

H m

®2 ®2
—E ‘tr [(Hgf) (Hgf) ] ‘ = Bt (Hy) < KE | Hyl® < K,

by (B.6) and (B.20). Moreover,
Elal® < ElZ|* + K < K,

as E|Z,|' < KE||X,||*. Hence F ||A|| < K. Next,

pisl < e (m) ] | () H [ | e
o
Note that
| ()| = Vo G 1) = o 1) < o 1) <

by (B.6) and (B.12). Hence by Holder’s inequality and (B.34)

| ]
oo Qtr}“ e

By similar arguments E ||| < K, E||Dy|| < K, E||&|| < K,and E |G| < K. =

plsl < &6 || ()

IN

Lemma B.10 Under Assumptions 4.1-4.5, as T — oo

T
TZ + (Yo, Mo) vee (Z:Z; — 1) = N (0,90), (B.35)

where
Qo = E{Y; (79, Mo) vee (Z:Z] — 1) [vee (ZiZ, — 12)] Yy (gs Xo)'} (B.36)
and Y; (7, No) s given by (B.27)

Proof. Let F, = o (W, W,;_4,...) with W, = [vech (Ho)', Xﬂ/, see Theorem 2.1. Since

Yi(6p) is F;_1-measurable and vec(Z; Z, — I;) and F;_; are independent, {Y; (7o, \o) vec (Z,Z, — 1) , Fi}
is an ergodic martingale difference sequence. Moreover, from Lemma B.9 the sequence

is square-integrable, and the regularity conditions of Brown (1971) are satisfied by the

ergodic theorem, which establishes (B.35). m

26



Lemma B.11 Under Assumptions 4.1-4.5, as T — oo,

OLr (Yo, Ao) L1 (Y0, M) || as.
’ — B.
‘f { 3y 3y 0, (B.37)
fori=1,..,2d?, and
82LT (’77 )\) 82LTh ('.)/7 >\) a.s
B & B.
S| 6,06, 20,00, | " (B.38)

fori,j=1,..,3d>"

Proof. We have that
Il (70, Mo) _ Ali.n (70, Mo)
O\ o\

H H,
oottt )

OHyp, (70> )\0) OH, (’Yo, Ao)
O\
K |lvec OHyy, (%a)\O) OH; ( 707>\0
O\
4| vee |:8Ht,h ('70»)\0> aHt %a)\o ]H

+ |tr

{Ho—t}hXtXtHo—t}h Hy ' X, X, Hp," } ‘

IN

K| X,

O\
If i = 1,...,d* (corresponding to the elements of A) using (B.14) repeatedly

vec |:8Ht,h (707 )‘0) . aHt (707 )‘0):| H

O, O,
_ aii {(B(??)tvec [Hoo — HOO]}H
o)
< K¢,

since ||vec [Hoo,, — Hool|| and Hvec [W} H can be treated as constants, as they do

not depend on t. Hence

‘ [alt (7o: Ao) 9l (0, Mo)

” < K X,

o\ O\
and
OL71 (79, M) OLzh (79, No) LT, ( 707)\0 Ol (Y0, M)
’ﬁ{ O\ A - \/_tz o\,

T
Z Kot X

3\
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Since .
: 4
fim 308 [K X)) < K
t—
it follows by Theorem 9.2 of Jacod and Protter (2003) that
T
Z K¢t HXtH4 = Oa.s. (1) )
t=1

Similarly, if i = d? + 1, ..., 2d* (corresponding to the elements of B),

Al (¢, No) B Ol (795 o)

] ‘ <K (16 + ') (1+[x]%).
and

OLt (79, M) OLzs (79, Mo)
’ﬁ { o oA

3=

o\

i {8& (Yo, Ao) Ol (’YoJ\O)H

t=1

IN
\

T
fz (to" ' +¢) (14 [1X:") .

and we conclude that (B.37) holds.

Next, we turn to (B.38) which we establish along the lines of the proof of Lemma 4
in Hafner and Preminger (2009a). From (B.19) and suppressing notation for parameter
dependence, we have that

82lt (77 )‘) . 82lt,h (’77 )‘)
90,00, 90,00,
0H 0?H 0*H 0H 0?H 0?H
_t H_1 tH_1 t t,h H_1 t,h H_1 H_1 t t,h H_1
g { t 89J t (‘99%803 80189] th 80] o ¢ 8018@ (‘99189]

OH, __,0H, OH,, . , LOH, )
— ~H , X; X, H_ H
803‘ 8(92 802 t,h

b 0p;
0°H,  O*Hyp,
00:00; 00,00,

H

+2tr {H[lXtXt’Ht‘l

—tr {H;lxtxgﬂt—l HtjthtXt’H;,}} : (B.39)

Observe that by (A.3)

vee |:8Ht (% )\) ach 77 :| H

E sup
0co

E sup
0co

00;

{(B®2)t vec [Hop — Ho (7, )\)]}H .

Hence by (B.21), Holder’s inequality and as Hy, is fixed, we get

E sup ||vec OH: (v, ) _ (9ch % = 0(¢'), i=1,..,2d% and (B.40)
0c6 00,

Esup vec |:8Hta(677 >\) ach 77 :| H O(t¢t71) ’ Z:2d2+1,,3d2(B41)
0c® i
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Likewise, using (A.3) as above

ath (% /\) 82Ht,h (% )\) o8 ®2\?
Esup|fvee l 90,00, 90,00, } = s | 56,00, {(B ) vee Hop — Ho (v, A)]} ’
and by (B.21) and Holder’s inequality
-82Ht (77 >‘) ath,h (/Yv >‘)- t .. 2
Ezlelg vec 20,00, — 90,00, | —O(gb), i,j=1,..,2d (B.42)
(PH; (v,A\)  PHip (7, N)] =2\ . 2 2
Ezlelg vec_ 90,00, — 30,00, —O(t(t—l)gb ),2,]—2d +1,...,3d
(B.43)
(0PH, (v, A)  OPHyn (7, N)] t—1
E - — TR =0 (¢t therwise. B.44
gtelg vec 90,00, 50,00, O (t¢'™!), otherwise ( )

Observe that

t—1 t—

{(B) (10— 4% - B) 7} 4+ 3 (B%)" A%%ee (Xi10iX[ 4 )

—_

vec [Hyp (7, )] =

™

1=0 1=0
+(B®%)" vec (Ho ) - (B.45)
By simple differentiation of (B.45) and using that Hy, is fixed, we conclude that
0H A
Esup wH <K. (B.46)
0co 90

Considering the last term in (B.39) and using Holder’s inequality, Assumption 4.4, and
(B.12),

_ . 0?H, O%H,, IRTEE
Ezlelg tr {Ht "X, X/H, 189i85j _ 89202]' chlXtXt'Ht’,ll} (B.47)
Hy (v, ) Hin (1, V) [\ 1 1/4
< KI|F ) _ ) ; ElX
- ( beo 00,00, 00,00 (E1X%) ",

which is either O (¢") , O (t (t — 1) ¢?), or O (t¢" ") in light of (B.42)-(B.44). By similar
arguments together with (B.40)-(B.41) and (B.46), it follows by the C,. inequality (White,

1/4
2001, Proposition 3.8) that Esupyce ‘8%(7”\) _ Plnly) is O (*¢"). Next, by the

90,00, 90,00,
1/4
< 00,

generalized Chebyshev inequality for any ¢ > 0

- 82115 (77 )‘) a2lt h (77 )‘) S 1 82[75 (77 )‘) aQZt h (77 )‘)
P — - < —F — -
Sp (sl Tanan ~ aman 7)< 2 ant e T~ o
so by the Borel-Cantelli lemma as t — oo
82lt (77 )‘) 82lt h (77 )‘) a.s.
— ’ 0. B.48
beo | 00,00, 20,00, | (B48)

By (B.48) and Cesaro’s mean theorem we conclude that (B.38) holds. =
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C Drift criteria for the BEKK-ARCH(1) model

In order to find conditions for which the BEKK-ARCH(1) model with Gaussian noise is
geometrically ergodic with high-order moments we will make use of the following lemmas.

Lemma C.1 (Bec and Rahbek, 2004, Proof of Theorem 1)
Let (Xt)t:o,l,... be a time-homogeneous Markov chain on the state space R? endowed with
the Borel o-algebra, BY. Assume that for all sets A € B and for some integer m > 1,
that the m-step transition density with respect to the Lebesgue measure f (-|-) as defined
by

P(Xi€ A =1) = [ [ (ole)dy

is strictly positive and bounded on compact sets. Let v : R? +— [1,00) be some drift
function. Assume there exists an integer k > 1, a compact set B C R? and constants
0<~v<1, g>0 such that

Ev(Xe) [ Xy = 2] <o ()

for x € B¢, while E [v(Xyyk) | Xy = x] is bounded by g on B.
Then X; 1s geometrically ergodic and Xy can be given an initial distribution such that X,
is stationary. Moreover, all moments bounded by v (-) ezist.

Lemma C.2 (Corollary 1 (i)-(iii) in Ghazal (1996))
Let QQ = 2'Qx be a quadratic form where ) is a d X d symmetric non-stochastic matrix

and x is IIDN(0, 1;). Then

E (I/Q$)2 = {Q} +2tr {Q%}
E (x'Qx)g = {Q} +6tr{Q} tr {Q°} + 8tr {O*}
El@0)| = 0t {0} + 1207 {0} tr {07} + 1262 {02} + 3200 {0} r {27} + a8t {2}

We are now able to prove the following theorem,

Theorem C.1 Let {X;},_, r follow a BEKK-ARCH(1) process as in (2.2) with B =0

and Z; UDN(O 1;). Then X, is geometrically ergodzc and the strictly statzonary solution
has (i) E || X,|]> < oo if p(A® A) < 1, (i) E|| X" < 00 if p(A® A) < ~ 0.5774,

(m) E|X° <0 if p(A® A) < =i ~ 0.4055, and (iv) E|X|® < o0 zf,o(A@A)

o7 ~ 03124,

Proof. Results (i) and (i) are established in Rahbek (2004), see also Rahbek, Hansen,
and Dennis (2002). Now consider (7i4): Clearly X; is a Markov chain and, conditional
on X;_ 1, X; is Gaussian with mean zero and covariance H;. So indeed the one-step
(m = 1) transition density of X; conditional on X; ; is continuous in both X; and X; 4
and positive. Hence we can apply Lemma C.1. Define the drift function

v(z) =1+ (2'z)° =1+ ||z]|° = 1 + tr® (z2") .
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Define Q, = C' + Azaz’A’, then
E(0(X) X =) =1+ B (X)X =) =1+ B ((ZIH2)" | X1 = o)

— 1+E [(Z;szt)?’] =14 6% {Q,} + 6tr {Q,} tr {Q2)} + 8tr {3}

where the fourth equality follows by Lemma C.2. Ignoring terms of lower order than ||z|°,
the right-hand side equals 15 (2/ A’ Az)? .

Let L (Rd) denote the space of linear mappings from R? — R¢. For linear mappings ¢ :
L (Rd) — L (Rd) we use the operator norm defined by

¢ ()l
o, = sup ————.
191y lelzo |l
It holds that Uk

Let X be a d x d matrix in L (R?), and define the mapping ¢ = (A ® A) from L (R?) —
L (R) by
6(X) = (A A) (X) = AXA"

We notice that ¢" (X) = A*X A¥ and Q, = Co+ ¢ (z2').
Recursions give that E (v (X;x) | Xt = z), apart from the lower-order terms, equals

3
6
[
op

15k (ZZ’IAk/Ak{[‘)3 _ (15k/3xlAk/Akq;)3 _ H (151/3)k ¢k (3713/) 3 < H (151/3¢)k

In light of (C.1), by choosing k large enough, we have that the drift condition is satisfied,
if p (15'/3¢) < 1,which means that p (¢) = p (A® A) < 1/15"3 ~ 0.4055.
Result (iv) follows by similar arguments. =

Remark C.1 Theorem C.1 can be adjusted in order to establish conditions on p (A ® A)
for bounding other higher-order moments of X;. If one seeks to verify that X; is geo-
metrically ergodic and E | X;||" < oo, n = 2k, k € N, one can define the drift function
v (z) = 1+ (2/2)""* and use general results for n'-order moments of quadratic forms, see
e.g. Corollary 2 of Bao and Ullah (2010).
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