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Abstract

We develop aCp statistic for the selection of regression models with
stationary and nonstationary ARIMA error term. We derive the asymptotic
theory of the maximum likelihood estimators and show they are consistent
and asymptotically Gaussian. We also prove that the distribution of the sum
of squares of one step ahead standardized prediction errors, when the param-
eters are estimated, differs from the chi-squared distribution by a term which
tends to infinity at a lower rate thanχ2

n. We further prove that, in the predic-
tion error decomposition, the term involving the sum of the variance of one
step ahead standardized prediction errors is convergent. Finally, we provide
a small simulation study. Empirical comparisons of a consistent version of
ourCp statistic with BIC and a generalized RIC show that our statistic has
superior performance, particularly for small signal to noise ratios. A new
plot of our time seriesCp statistic is highly informative about the choice of
model.
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On the way we introduce a new version of AIC for regression models,
show that it estimates a Kullback-Leibler distance and provide a version
for small samples that is bias corrected. We highlight the connections with
standard MallowsCp.

Keywords:AIC; ARMA models; bias correction; BIC;Cp plot; generalized
RIC; Kalman filter; Kullback-Leibler distance; state-space formulation

1 Introduction

There is a vast literature on methods for selection of non-nested models. In AIC
(Akaike, 1974) the maximized log-likelihood is penalized by the number of pa-
rameters in the model. For Gaussian regression models, AIC becomes Mallows’
Cp (Mallows, 1973) when the nuisance parameterσ2 is estimated from a full
model containing sufficiently many terms to ensure that the estimator is unbiased.
For such regression models the distribution ofCp is a linear function of anF ran-
dom variable (Gilmour, 1996). There is no simple non-asymptotic expression for
the distribution of AIC. Book length treatments of the properties and applications
of these and other procedures include McQuarrie and Tsai (1998), Burnham and
Anderson (2002) and, more recently, Konishi and Kitagawa (2008) and Claeskens
and Hjort (2008).

Tong (2001,§9) gives references to methods solely for time series. More re-
cent contributions include Soet al. (2006) who consider the case of, possibly
lagged, exogenous variables and GARCH errors. Wanget al. (2007) extend the
least absolute shrinkage and selection operator (‘lasso’)to regression models with
autocorrelated errors. Claeskenset al. (2007) emphasize the mean squared fore-
cast error and suggest an alternative to AIC and BIC in autoregressive time series
models. Finally, Shi and Tsai (2004) obtain a residual information criterion (RIC)
for joint selection of regression variables and the order ofautoregressive errors.
However, there appears to be no extension of the standard results to the class of
models of interest here, that of all models which contain explanatory variables,
and have a reduced form ARIMA representation whose AR and MA roots lie
outside the unit circle.

The structure of the paper is as follows. In§2 we propose new versions of
AIC (or its consistent version BIC) and ofCp which can be applied to the choice
of regression models with independent or stationary error terms as well as to some
non-stationary error processes. We provide arguments for the asymptotic distri-
bution of our time seriesCp statistic. We also show, for regression with indepen-
dent errors, that our new version of AIC is a consistent unbiased estimator of the
expected Kullback-Leibler information between the true model and the fitted can-
didate model. We derive a small sample correction factor to make this new AIC
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unbiased and we explore its close relationship with traditional AIC andCp.
We start the derivation of the asymptotic distribution of our Cp statistic for

time series in§3 by proving a series of theorems in the context of linear regres-
sion with ARIMA errors. The asymptotic distribution of the Gaussian maximum
likelihood estimator of the ARMA parameter vectorθ and the regression param-
etersβ, has been given by Hannan (1973), for stationary regressorsusing fre-
quency domain methods. Yao and Brockwell (2006) analyse themodel without
regressors and show thatθ̂ is consistent and asymptotically Gaussian using time
domain methods. In§3.2 we show how the results of Yao and Brockwell can be
applied and extended to the regression model with deterministic regressors. Our
new results cover the strong consistency of maximum likelihood estimators, and
we find expressions for the score and the information matrix and use them to find
the asymptotic distribution of the maximum likelihood estimator. In§3.3 we anal-
yse the likelihood ratio test of a linear hypothesis on the regression parameters,
both with the same ARMA parameters, and provide a new stochastic expansion
for the likelihood ratio test of a reduced model.

In §3.4 we recall the prediction error decomposition and prove that the distri-
bution of sum of squares of one step ahead standardized prediction errors, when
the ARMA parameters are estimated, differs from the chi-squared distribution by
a term which tends to infinity at a lower rate thanχ2

n. We also prove that the term
involving the sum of logarithms of the variances of one step ahead standardized
prediction errors is convergent, leading to a simplified asymptotic form for the
likelihood ratio test. In§4 we sketch the extension of our results to non-stationary
models.

In §5 we address the issue of model selection for linear regression with ARIMA
errors. We propose our newCp for time series and use the results of§3 to find its
asymptotic distribution. Theoretical arguments and simulations indicate that the
distribution of the new statistic is well approximated by anF distribution.

In §6 we provide a small simulation study and compare a consistent version
of our statistic with BIC and a generalized RIC (Shi and Tsai,2004) extended to
ARMA models. An important feature of our new statistic is that, as withCp in
regression, an error variance is estimated from a large model. Our calculations
show that, as expected, use of this estimate provides a statistic with superior per-
formance, particularly for small signal to noise ratios. Finally we suggest a new
plot for our time seriesCp statistic which is highly informative about the choice of
model. Theory and simulations show that the plot comes with abanded structure
which easily enables us to appreciate the effect of the introduction of additional
explanatory variables and/or stochastic parameters. Section 7 concludes and pro-
vides food for thought for further research.
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2 AIC, Cp and Likelihood Ratio Tests

2.1 Regression with i.i.d. Errors

It is often stated that the use of AIC in the selection of Gaussian models is equiv-
alent to the use ofCp (for example, Hastieet al., 2009, p. 231) and a Taylor se-
ries justification is sometimes given: Venables and Ripley (2002,§6.6), Davison
(2003, problem 8.16). We now establish an exact relationship for normal theory
regression.

We first consider regression without a time-series structure. For the linear
multiple regression model we assume thaty has been generated by the unknown
modely = X0β0 + ǫ whereǫ ∼ N(0 σ2I), X0 = (x10, ..., xn0)

′. We estimate the
modely = Xβ + ǫ, whereX is ann × d full-rank matrix of known constants,
with ith row x′i. The normal theory assumptions are that the errorsǫi are i.i.d.
N(0, σ2). To estimateσ2 we may also regressy on alld+ columns of then× d+

matrixX+.

Assumption 1. Let C(X) be the column space ofX. Null distributional results
are obtained whenC(X0) ⊆ C(X) ⊂ C(X+).

The log-likelihood ofn observationsy, a function ofσ2 and of thed×1 vector
of parametersβ isLn(β, σ2). If β̂ is the maximum likelihood estimator ofβ, AIC
is often defined, particularly in the time series context, as

AIC = −2Ln(β̂; y) + 2(d+ 1), (1)

since we have estimatedσ2 as well asβ. That model is selected for which AIC is
a minimum. It would be natural to usep as the number of parameters, but this is
a paper about the analysis of time series and our notation is intended to allow for
the discussion of general ARMA(p, q) models with regressors.

The residual sum of squares from fitting this model to the dataisRd and, for
knownσ2,

AICσ = n log(2π) + n log σ2 +Rd/σ
2 + 2d. (2)

If, as is usually the case,σ2 is not known, the maximum likelihood estimator is

σ̂2 = Rd/n. (3)

With this internal estimate ofσ2 the criterion (2) is replaced by

AICI = n log(2π) + n log{Rd/n}+ n + 2(d+ 1), (4)

a form frequently used in the selection of non-nested time series models with
normally distributed errors (Tong, 2001,§9).
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In the selection of regression variables, the unbiased estimator ofσ2 comes
from regression on alld+ columns ofX+ and can be written

s2d+ = Rd+/(n− d+). (5)

With this estimate the criterion (2) is

AICd+ = n log(2π)+n log{Rd+/(n−d+)}+(n−d+)Rd/Rd+ +2(d+1), (6)

although (4) is the standard form for AIC. The main difference betweenAICd+
andAICI is in the estimate ofσ2 which is used. In the context of model choice,
bothn ands2d+ are fixed, the variable factors being the value ofd and the regressors
that are being considered. Then choice of the model minimizing (6) is identical to
the choice of model minimizing

Cp = Rd/s
2
d+ − n+ 2d = (n− d+)Rd/Rd+ − n+ 2d. (7)

One interpretation ofCp (Mallows, 1973) is that its value provides an estimate
of the scaled mean squared error of prediction at then observational points from
the model of interest, provided Assumption 1 holds. Then E{Rd} = (n − d)σ2,
E(s2d+) = σ2 and E(Cp) is approximatelyd.

If Assumption 1 holds, an assumption we make for the rest of the paper, both
Rd+/(n − d+) andRd/(n − d) provide consistent estimates ofσ2. However,
if C(X0) 6⊂ C(X), Rd contains a non-centrality parameter and, becauses2d+ is
unbiased,Cp (7) will be large and the model will be rejected.

As we illustrate in§6, it helps not merely to select models with small values
of Cp but also to calibrate those values against their distribution. The distribution
of Cp, under the null Assumption 1, is given, for example, by Mallows (1973)
and by Gilmour (1996). From (7) we require the distribution of the ratio of two
nested residual sums of squares. It is straightforward to show that the required
distribution is

Cp ∼ (d+ − d)F + 2d− d+, where F ∼ Fd+−d,n−d+. (8)

In short, ifF ∗ ∼ Fν1,ν2,E(F ∗) = ν2/(ν2 − 2) and, from (8),

E(Cp) = d+ 2
d+ − d

n− d+ − 2
. (9)

As n → ∞, E(Cp) → d. Hurvich and Tsai (1989) find corrections for the bias
2(d+ − d)/(n− d+ − 2) for very smalln while Fujikoshi and Satoh (1997) give
modifications to AIC andCp to reduce bias when the candidate models may be
under- or over-specified and so Assumption 1 fails.
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In Appendix A we prove similar results for our new version of AIC and show
that it retains the same interpretation as traditional AIC in providing a consistent
estimator of the expected Kullback-Leibler information between the true model
and the fitted candidate model. We also give in the following theorem the ex-
pression for the bias corrected version of our new AIC – sayAIC+

d (u) – which
is

Theorem 1. The unbiased version of the new AIC suggested in equation(6) is
given by

AIC+
d (u) = n log(2π)+n log{Rd+/(n−d

+)}+(n−d+)Rd/Rd++2(d+1)
n− d+

n− d+ − 2
.

(10)

The model minimizing AIC orCp has a fixed probability of being too large,
even asn → ∞. Schwarz (1978) shows that replacing2(d + 1) in (6) by (d +
1) logn provides consistent model selection. The alternative of(d + 1) log(n −
d+) used in the RIC of Shi and Tsai (2004) is obviously also consistent. Such
consistency factors can also be applied to our new AIC.

3 Advances in linear regression with ARIMA errors

We now provide the necessary distributional results to justify an asymptoticF dis-
tribution for our time seriesCp, thus providing a natural extension of (8). Proofs
of the results are in Appendix B.

3.1 The model and the assumptions

We consider the regression model with stationary invertible ARMA errorsut and
deterministic regressors

yt = β ′xt + ut, t = 1, . . . , n. (11)

Ap(L)ut = Bq(L)εt, εt i.i.d. N(0, σ2), t = 1, . . . , n. (12)

The polynomials areAp(z) = 1−
∑p

i=1 φiz
i, φ0 = 1 andBq(z) =

∑q
i=0 ψiz

i, ψ0 =
1, and we define the parametersθ = (φ1, . . . , φp, ψ1, . . . , ψq). The matrices of re-
gressors are as in§2.1. We use the notationΩ = Ωn(θ) = σ−2V ar(y), and define
the autocovariance functionγ(h) = σ−2Cov(yt, yt+h) = Ωt,t+h. Note thatΩ is
n× n and therefore depends onn and the dynamic parametersθ.
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The Gaussian log likelihood function is

−2 logLn(β, θ, σ
2) = n log σ2 + log |Ω|+ σ−2(y −Xβ)′Ω−1(y −Xβ). (13)

In accordance with Yao and Brockwell (2006) we make the following assump-
tion.

Assumption 2. Let the roots ofAp(z) andBq(z) be denotedz1(θ), . . . , zp+q(θ)
and letθ ∈ D be a compact subset of the set whereAp(z) andBq(z) have no
common factors and whereAp(z) andBq(z) are invertible, that is, there is a
ρ < 1 for which

min
θ∈D

min
1≤i≤p+q

|zi(θ)| ≥ ρ−1 . (14)

Together with model (11) we also consider the regression with nonstationary
error term where (12) is replaced by

Ap(L)∆
dut = Bq(L)εt, εt i.i.d. N(0, σ2), t = 1, . . . , n, d = 1, 2 (15)

with Assumption 2 still satisfied.
Under Assumption 2 we apply the representation

ut =
Bq(L)

Ap(L)
εt =

∞∑

n=0

ηnεt−n, η0 = 1,

see Lemma 1 in Appendix B for the properties of the coefficients and for various
evaluations ofΩ and its derivatives.

In what follows we give our results in terms of asymptotic inference, hypoth-
esis testing and prediction error decomposition.

3.2 Asymptotic inference

The asymptotic distribution of the Gaussian maximum likelihood estimator of the
ARMA parameter vectorθ and the regression parametersβ̂, has been given by
Hannan (1973) for stationary regressors using frequency domain methods. Yao
and Brockwell (2006) analyse the model without regressors and show that̂θ is
consistent and asymptotically Gaussian using time domain methods. We show
here how the results of Yao and Brockwell can be applied and extended to the
regression model with deterministic regressors and possibly nonstationary ARMA
errors.

We denote the true values of the parameters byβ0, σ
2
0 andΩ0 and introduce

κ = (n−1X ′Ω−1
0 X)1/2(β − β0), (16)

with true valueκ0 = 0.
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Theorem 2. Under Assumption 2, the maximum likelihood estimators exist and
are strongly consistent

(σ̂2, θ̂, κ̂)
a.s.
→ (σ2

0 , θ0, 0).

It follows that ifλmin(n
−1X ′Ω−1

0 X) ≥ a > 0, thenβ̂
a.s.
→ β0.

Now let Dmf(θ) denote them′th derivatives off with respect to the argu-
ments ofθ, with then× n derivativesΩ̇s = DθsΩ andΩ̈sk = D

2
θsθk

Ω. Further, in
the following we denote by{A,B,C} the block diagonal matrix withA,B,C in
the diagonal. Then we can write the following theorem about asymptotic distri-
butions, see Hannan (1973) Theorem 2, and Yao and Brockwell (2006) Theorem
2.

Theorem 3. Let λ = (σ2, θ, κ). Under Assumption 2, the score functionSnλ =
n−1/2

D logL(λ0) = (Snσ2 , S
′
nθ, S

′
nκ)

′ is asymptotically Gaussian with covariance

lim
n→∞

E(−n−1
D

2 logL(λ0)) = {
1

2
σ−4
0 ,Σ0, σ

−2
0 Id}, (17)

whereΣ0 is (p+ q)× (p+ q) with elements

Σ0sk = lim
n→∞

1

2
n−1tr{Ω−1

0 Ω̇0kΩ
−1
0 Ω̇0s}.

Moreover for a sequenceεn → 0 we have for the information per observation
Inλλ(λ) = −n−1

D
2 logL(λ),

max
|λ−λ0|≤εn

||Inλλ(λ)− Inλλ(λ0)||2 = O(εn). (18)

The logical implication of Theorem 3 is that̂β is asymptotically independent
of (σ̂2, θ̂) and therefore estimates ofθ under two different models forβ satisfy
θ̂ − θ̂∗ = OP (n

−1), σ̂2 − σ̂2
∗ = OP (n

−1). These two key facts are stated more
formally in the two following corollaries.

Corollary 4. Under Assumption 2, the maximum likelihood estimators

(n1/2(σ̂2 − σ2
0), n

1/2(θ̂ − θ0), (X
′Ω−1

0 X)1/2(β̂ − β0))

are asymptotically Gaussian and asymptotically independent with an asymptotic
variance given by

{2σ4
0,Σ

−1
0 , σ2

0Id}.

Corollary 5. For two modelsE(y) = Xβ andE(y) = XAξ, or β = Aξ, with
estimates(σ̂2, θ̂, β̂) and(σ̂2

∗, θ̂∗, β̂∗ = Aξ̂∗) respectively we have(σ̂2−σ̂2
∗ , θ̂−θ̂∗) =

OP (n
−1).
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3.3 Hypothesis testing

In the model withE(Y ) = Xβ,Ωn = Ωn(θ), β ∈ R
d, θ ∈ R

p+q with estimators
(σ̂2, θ̂, β̂), we want to test the hypothesisE(Y ) = XAξ, or equivalentlyβ = Aξ,
ξ ∈ R

d∗ , d∗ < d. Under this hypothesis the estimators are(σ̂2
∗, θ̂∗, β̂∗ = Aξ̂∗).

Let β̂, θ̂, σ̂2, Ω̂ denote the maximum likelihood estimators in model (11). We
want to test the hypothesis thatβ = Aξ̂ and denote the maximum likelihood
estimators under this restriction bŷβ∗ = Aξ̂∗, θ̂∗, σ̂

2
∗ , Ω̂∗.

The theorem below shows that under the null hypothesisβ = Aξ the fact of
estimating the covariance matrix with and without this restriction leads to an error
which is of orderOP (n

−1).

Theorem 6. For Ω andΩ̂ we have

(y −Xβ̂∗)
′(Ω̂−1 − Ω̂−1

∗ )(y −Xβ̂∗) = OP (n
−1). (19)

The theorem below provides a similar result for the log of theratio of the
estimates of the scale parameter of the covariance matrix.

Theorem 7. It follows from asymptotic theory of the maximum likelihoodesti-

mator that−2 logLR(β = Aξ)
D
→ χ2(d − d∗), but we also have the stochastic

expansion

−2 logLR(β = Aξ) = n log
σ̂2
∗

σ̂2
+OP (n

−1) = σ̂−2(β̂∗−β̂)
′X ′Ω̂−1X(β̂∗−β̂)+OP (n

−1).

3.4 The prediction error decomposition

In the extension of results onCp and its distribution to time series with a Gaus-
sian structure it is convenient to use the state-space representation (Anderson and
Moore, 1979; Durbin and Koopman, 2012) and the Kalman filter for calculation
of the likelihood associated with each model. In this section we briefly recall
the prediction error decomposition and provide new resultsand insight about the
distribution of its terms.

The best linear prediction ofyt is

ŷt = Et−1(yt) = x′tβ + Et−1(ut), t = 2, . . . , n, andE(y1) = x′1β,

where the subscript indicates expectation conditional ony1, . . . , yt−1. The predic-
tion errorvt is

vt = yt − ŷt, t = 2, . . . , n, andy1 − x′1β

and the variance of the prediction error, withσ2 concentrated out, defines the
factorf ct = f ct (θ) by

V art−1(yt) = σ2f ct (θ), t = 2, . . . , n, andV ar(y1) = σ2γ(0).
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Decomposing the density in successive conditional densities we get the prediction
error decomposition

p(y1, . . . , yn) =
n∏

t=1

p(yt|y1, . . . , yt−1) (20)

=
n∏

t=1

1√
2πσ2f ct

exp(−
1

2σ2

(yt − ŷt)
2

f ct
)

and hence the identities, see (13),

n∑

t=1

(yt − ŷt)
2

f ct
= (y −Xβ)′Ω−1(y −Xβ) and

n∑

t=1

log f ct = log |Ωn|.

The log likelihood can therefore be rewritten as:

−2 logL(β, θ̂, σ̂2) = n log(2π) + n log σ̂2 +

n∑

t=1

log f ct (θ̂) + σ̂−2

n∑

t=1

v2t

f ct (θ̂)

The expression for the log likelihood can be further simplified to

−2 logL(β, θ̂, σ̂2) = n log(2π) + n log σ̂2 +
n∑

t=1

log f ct (θ̂) + n, (21)

using the estimate

σ̂2 = n−1

n∑

t=1

v2t

f ct (θ̂)
.

Equation (21) is known in the literature as the concentratedprofile log likelihood
(see for example Franckeet al. (2010), for a discussion of alternative specifica-
tions for the likelihoods). The prediction error decomposition (Harvey, 1989, eq.
3.4.7) yields a particularly simple form for the likelihoodsince the quantitiesvt
and f ct can easily be calculated putting model (11) in the so-calledstate space
form and applying the Kalman filter.

Computational remark: whenβ is estimated we need to run the Kalman filter
with an additional set of recursions which are usually referred to in the literature
as the diffuse Kalman filter (de Jong, 1991).

The new result of this subsection refers to the behaviour of the two terms

n∑

t=1

log f ct (θ̂) and
n∑

t=1

v2t /f
c
t (θ̂). (22)
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The second term is the sum of squares of independent one-stepahead prediction
errors for normal random variables, scaled by their variances. If all dynamic pa-
rameters in the model are known and the current model is correct, this sum has
exactly aσ2χ2

n−d distribution, because thevt are linear functions of the obser-
vations and are independent with mean zero and varianceσ2f ct (θ) (e.g. Harvey,
1989).

However, when the model also requires estimation of the parametersθ in the
ARIMA model or, equivalently, the estimation of the variances of the disturbances
in the structural framework, the distribution, as we state in the theorem below, is
asymptotically chi-squared, differing from theχ2

n−d distribution by a term that
tends to infinity at a lower rate thanχ2

n−d.
In what follows we use the symbol·̃ to denote an estimate in which only the

regression parameters are estimated whilst using·̂ when both the regression coef-
ficients and the stochastic parameters are unknown and estimated.

Assumption 3. In addition to Assumption1 of§2.1, we also require that the mod-
els havep ≥ p0 andq ≥ q0.

Theorem 8. Let the data be generated with additive errorsut such thataφ0,p0(L)ut =
bθ0,q0(L)εt.We fit model (11). Under Assumptions 1 and 3 this will contain the true
model, so thatβ ′

0z0t = β ′xt for someβ. Then the residual sum of squares satisfies

û′Ω̂−1û = (y −Xβ̂)Ω̂−1(y −Xβ̂) = ũ′Ω−1
0 ũ{1 +OP (n

−1/2)}, n→ ∞. (23)

The result shows that the sum of squares of one step ahead prediction errors
divided by their scaled variances when all parameters are unknown is equal to
the sum of squares of the residuals which we obtain when only the regression
parameters are estimated, apart from a term which is of ordern1/2. That is

û′Γ̂−1û =
n∑

t=1

v̂2t

f̂ ct
=

n∑

t=1

ṽ2t

f̃ ct
{1 +OP (n

−1/2)} = ũ′Γ−1
0 ũ{1 +OP (n

−1/2)}. (24)

The effect of estimation of the stochastic parameters can accordingly be sum-
marized as

(y −Xβ̂)′Ω̂−1(y −Xβ̂) = χ2(n− d) + OP (n
1/2). (25)

For the first term in (22) we have

Theorem 9. The limits oflog |Ωn(θ)| =
∑n

t=1 log f
c
t and its derivatives

∂ log |Ωn(θ)|/∂θs, s = 1, . . . , p+ q exist as continuous functions

0 ≤ lim
n→∞

log |Ωn(θ)| <∞,

lim
n→∞

Ds log |Ωn(θ)| = Ds lim
n→∞

log |Ωn(θ)|.
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4 Extensions to non stationary models

For ARIMA models the error termut and henceyt is nonstationary but both can
be differenced until stationarity is obtained. The differenced model then includes
differencedxt. In addition we cover the class of “structural” models, so-called
because they have easily interpreted parameters for modelling economic times se-
ries. Harvey (1989, Appendix 1 and equation (2.4.26)) summarizes the ARIMA
form of these models by use of a multivariate error term. Our results for asymp-
totic inference require a univariate error term, in which case thep+ q parameters
θ in (12) can be restricted so it becomes a nonlinear function of the structural pa-
rameters:θ = θ(ξ), wheredim ξ ≤ dim θ. Using the methods developed in this
paper it is possible to obtain the asymptotic theory for the maximum likelihood
estimator in the structural model which is just the maximum likelihood estimator
in the restricted ARIMA model.

To see this more formally, we start by noticing that, for example for d = 1,
equations (15) can be written in the equivalent form

y1 = β ′x1 + u0 + v1, t = 1, (26)

∆yt = β ′∆xt + vt, t = 2, . . . , n,

wherevt = ∆ut, is a stationary ARMA(p, q) process andut = u0+
∑t

i=1 vi where
u0 is an initial value independent ofv1, . . . , vt. The transformation of the data to
the lastn−1 equations, that is equations for∆yt, t = 2, . . . , nmeans ignoring the
first equation because we can write the density ofy1, y2, . . . , yT conditional onu0
as

p(y1, y2, . . . , yT |u0) = p(y1,∆y2, . . . ,∆yT |u0)

= p(∆y2, . . . ,∆yT )p(y1|∆y2, . . . ,∆yT , u0)

In the Gaussian case the last factor is a Gaussian distribution with mean

E(y1|∆y2,∆xt . . . ,∆yT , u0) = β ′xt + u0 + E(v1|∆y2, . . . ,∆yT ),

and varianceV ar(v1|∆y2, . . . ,∆yT ). This reduces the problem of inference in the
regression model with nonstationary ARIMA errors (15) to the case of regression
of ∆yt on∆xt with stationary ARMA errors in (26).

If instead we consider (15) ford = 2 we definevi = ∆2ui and findut =
u0 + t∆u0 +

∑t
i=1(t+ 1− i)vi. Then the equations are

y1 = β ′x1 + u0 +∆u0 + v1

y2 = β ′x2 + u0 + 2∆u0 + 2v1 + v2

∆2yt = β ′∆2xt + vt, t = 3, . . . , n,

and a similar argument can be made for focussing on the lastn− 2 equations.
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5 Model selection for linear regression with station-
ary ARIMA errors

5.1 Model selection

In this section we extend the criteria from§2 developed for i.i.d. observations to
ARMA models with explanatory variables. We continue to consider models of the
form (11) under Assumptions 1 and 3. Then the model defined byMX+

= (θ ∈
R
p+q, E(y) = X+β+, β+ ∈ R

d+ , σ2 > 0) contains the data generating process
because forX0 = X+A we can takeβ+0 = Aβ0.

We search over regression models defined byMX = (θ ∈ R
p+q, E(y) =

Xβ, ξ ∈ R
d, σ2 > 0), for which C(X) ⊆ C(X+). We denote the maximum

likelihood estimators by(θ̂, β̂, σ̂2). We also fit the modelMX+
and denote the

estimators by(θ̂+, β̂+, σ̂2
+).

If σ2 andθ are not estimated we get the analogue of (2)

AICσ,θ = n log(2π) + n log σ2 + log |Ω|+ σ−2(y −Xβ̂)′Ω−1(y −Xβ̂) + 2c,

wherec = d andβ̂ = (X ′Ω−1X)−1X ′y.
If σ2 andθ are estimated we get the analogue of (4)

AICI = n log(2π) + n(log σ̂2 + 1) +
n∑

t=1

log f ct (θ(κ̂)) + 2c, (27)

wherec = 1 + d+ k, k = p+ q and

σ̂2 = (n− d)−1(y −Xβ̂)′Ω(θ(κ̂))−1(y −Xβ̂). (28)

Finally the analogue ofAICd+ (6) uses an estimator ofσ2 andΩ based upon the
model withd+ regressorsX+ and unrestrictedθ :

AICT
d+ = n log(2π) + n log σ̂2

+ + log |Ω̂+|+ nσ̂2σ̂−2
+ + 2c, (29)

wherec = 1 + d+ k, and

σ̂2 = (n− d)−1(y −Xβ̂)′Ω̂−1(y −Xβ̂),

σ̂2
+ = (n− d+)−1(y −X+β̂+)

′Ω̂−1
+ (y −X+β̂+). (30)

Our simulations show, in complete agreement with the theorems developed in the
previous section, that (29) has a distribution close to thatof AICI .

We now derive a statistic with an asymptotically known distribution. The
choice of the model minimizing (29) is identical to the choice of model mini-
mizing

CT
p = log |Ω̂+|+ (n− d)σ̂2σ̂−2

+ − n+ 2c. (31)

13



In this criterion the termlog |Ω̂+| isOP (1), so for selection purposes we focus on

Cp =
(y −Xβ̂)′Ω̂−1(y −Xβ̂)

σ̂2
+

− n+ 2c, (32)

wherec = 1 + d + k, is the number of fitted parameters (β, σ2, θ) in the model
with d regressorsX and dynamic parametersθ of dimensionk.

The simulation results of Tables 1 and 2 show the effect of this omission,
which is beneficial when regression is relatively weak. For the full model with
c+ parameters,Cp has the exact value2c+ − d+, since we have the same sum of
squares in the numerator and denominator of (32). Distributional results about
Cp rely on the asymptoticχ2 distribution of the residual sums of squares (25) for
models satisfying our assumptions. From (32) the approximate distribution ofCp
is given by

Cp ∼ (c+ − c)F + 2c− d+ where F = Fc+−c,n−d+. (33)

and that

E(Cp) = c+
(c+ − d+)(n− d+)

n− d+ − 2
+

2(d+ − c)

n− d+ − 2
.

As n→ ∞ we obtain

E(Cp) → c+ (c+ − d+) = c+ p+ + q+.

Thus the expected value of the statistic, for largen, depends on the total number
of parameters in the reduced model and on the number of stochastic parameters
in the full model. This, however, is a constant when comparing different reduced
models, so that the penalty in comparisons is justc, as it isd for regression models.
In neither case does the parameter for the error variance, which is concentrated out
in the time series application, affect theF distribution of the statistic. However, a
consequence of takingc = 1+ d+ k in the time series formulation is that the two
statistics differ by a constant value of 2 when the errors areindependent.

Application of the prediction error decomposition to (12) of Shi and Tsai
(2004) yields the generalization

RICG = (n− c) log σ2
∗ +

n∑

t=d+1

log f̂ ct + c log{n− (p+ q)} − {2(p+ q) + d}

+
4

n− 2(p+ q)− d− 2
, (34)

whereσ2
∗ is estimated from the current model.
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6 Cp Plots and Empirical Performance Using Simu-
lated Data

To compare the performance of our new statistic with those inthe literature we
report the results of a small simulation experiment. We included our newCp
statistic (32) andCT

p (31) from which it was derived in both their original and
consistent forms in which2c is replaced byc log(n − c). Also included are AIC,
BIC and our generalization of RIC, called RICG, to general state-space models.
The seven statistics are

Cp. TheF -distributed statistic (32).
Bp. ConsistentCp; (32) with2c replaced byc log(n− c).
CT
p . Cp including the sum of termslog f̂ ct (31).

BT
p . ConsistentCT

p ; (31) with2c replaced byc log(n− c).
AICI . Equation (27) witĥσ2 given by (28).
BICI . ConsistentAICI ; (27) with2c replaced byc log(n− c).
RICG. GeneralizedRIC; (34).
The comparative performance of the seven statistics depends on the signal to

noise ratio. The signal comes from the matrix of explanatoryvariablesX+ gener-
ated, once for each table, from standard normal random variables with the values
of β equal to one. Following Shi and Tsai (2004), we take as the numerator of
the ratio the average variance of the mean function of the data-generating model.
Here, withk variables each with variance one, the mean equals one. We vary the
variance of the errors var(ǫt) from one to 200, so that the range of the signal to
noise ratio is 1 to 0.005. The results for an MA model are in Table 1 and, for an
AR model, in Table 2.

Table 1: Percentage of time true model (MA(1) + 2 explanatoryvariables) is
chosen. Results of 1,000 simulations withn = 200. Full model ARMA(2,2) + 4
explanatory variables. Signal to noise ratio = 1/var(ǫt)

var(ǫt) Cp Bp CT
p BT

p BIC RICG AIC

100 16 5 0 0 7 0 7
50 37 25 8 2 16 1 22
25 45 71 34 27 54 23 43
10 48 91 64 93 92 65 74
1 51 90 64 94 92 94 80

The results in the two tables are surprisingly similar. Whenthe signal to noise
ratio is large, var(ǫt) = 1, the best performance in terms of automatic model
selection is forBT

p , BIC and RICG. If the signal to noise ratio decreases to 0.1
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Table 2: Percentage of time true model (AR(2) + 1 explanatoryvariable) is cho-
sen. Results of 1,000 simulations withT = 200. Full model ARMA(2,2) + 3
explanatory variables. Signal to noise ratio = 1/var(ǫt)

var(ǫt) Cp Bp CT
p BT

p BIC RICG AIC

200 18 10 0 1 1 0 1
150 24 12 0 1 1 0 2
100 31 20 2 1 3 0 4
50 45 44 10 4 17 2 10
20 56 76 36 28 47 21 32
10 57 91 73 92 89 76 67
1 57 92 74 95 94 94 85

(var(ǫt) = 10), whileBT
p and BIC still show high values, those of RICG rapidly

decrease. On the other hand, when the ratio is small (say not greater than than
0.02, that is var(ǫt) = 50), Cp significantly outperforms all other statistics, even
though it is not consistent. The consistent version of our statistic,Bp, is good,
although not best, over the whole range. A conclusion from the tables is that there
is much to be gained, over the whole range of signal to noise ratios, from using
statistics based on̂σ2

+ (30).
We now show how ourCp statistic can be used to provide an informative plot

for the selection of time series models keeping in mind that,in our opinion, the
mechanical use ofCp is to be avoided.

Table 3: Notation used in the figures for ARMA models with regressors

Notation Model and Regressors

a0 AR(1)
0a MA(1)
0b MA(2)
aa34 ARMA(1,1) x3 x4

We look at the structure of plots ofCp for time series in a simulated example.
We label the models with a notation of the form “p q i1 i2...”, wherep andq de-
note the order of the autoregressive and moving average models and theij denote
those regression variables that are included in the model. Further, we denote the
increasing values ofp andq as0, a, b etc. Some examples are in Table 3.

We simulated 100 observations from an MA(1), that is 0a, with θ = 0.9, that
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Figure 1: Plot ofCp statistic for time series for simulated MA(1) process (0a)
with θ = 0.9. Large modelb b1 2 3 4 plus a constant (c+ = 10).× MA and ARMA
models with explanatory variables;♦ AR(2) models with explanatory variables;
• AR(1) models with explanatory variables;△ regression models. See Table 3
for notation. Bands 1% and 99% points of (33). The importanceof selecting the
correct stochastic model is evident

included a constant, equal to 5, and four explanatory variables that were unre-
lated to the time series. The explanatory variables were independently distributed
N(0, 1) andσ2 = 1. In our calculation ofCp the maximum model wasb b1 2 3 4,
all models containing a constant. So the maximum number of parametersc+ = 9.
Figure 1 shows the resulting plot ofCp for all models containing at least two
parameters.

The times seriesCp plot shows four bands of values corresponding to different
families of stochastic models. The family with smallestCp values, marked with
crosses in the figure, falls within the band of the 1% and 99% points of theF
distribution (33). The simplest model is the MA(1) without explanatory variables,
that is 0a, from which the data were simulated. Reading upwards, the next two
models in this band, with three parameters, area a and 0b, with Cp values around
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two lower than that of their special case 0a. The remaining four models, with
higherCp values, are 0a i, i = 1,...,4; that is MA(1) models including one of the
explanatory variables. The models with more parameters in this group (c ≥ 4) are
all at least ARMA(1,1) or MA(2) with explanatory variables.For the maximum
model withc+ = 9, the value ofCp is 13, agreeing with the special case of (32).

The second series ofCp values in the plot, shown by diamonds, are for AR(2)
models including explanatory variables. The next band is for AR(1) models also
including such variables. The highest band of all, the triangles, is for pure regres-
sion models without any time series component.

An informative feature of this plot is that the bands sort themodels into clear
groups with differing stochastic structure. It is clear from the figure that we need
at least an MA(1) model and that the improvements from including explanatory
variables are negligible. In the provision of this information the time seriesCp plot
is very different from theCp plot for regression, for example Figure 1 of Atkinson
and Riani (2008), in which the form is that of the series of values for one of the
sets of models with the same stochastic structure in Figure 1.

We have found the banded structure of Figure 1 to be typical for the analysis
of time series. An example for data on one-day-ahead electricity prices is in Riani
and Atkinson (2010b). We trust that this extension of the plot will be as useful as
the customaryCp plot in regression.

7 Discussion

In our calculations we used the latest version of the librarySSFPACK (Koopman
et al., 2008) in conjunction with the Ox programming language of Doornik (2001).

The procedure we have developed applies to a wide class of models. However,
it has not escaped our attention thatCp is an aggregate statistic, based on all the
data. For regression, Atkinson and Riani (2008) and Riani and Atkinson (2010a)
use the forward search (Hadi, 1992; Atkinson and Riani, 2000; Atkinson et al.,
2004) to determine how the choice of a regression model usingCp is affected by
groups of observations. Although the numerical procedure is more complicated,
related methods can be applied to ourCp statistics for time series to illuminate the
dependence of model choice on individual observations, breaks in structure and
on anomalous patches of observations in the time series.

Appendix A: properties of new AIC

We show thatAICd+, the new version of AIC, is a consistent estimator of the
Kullback-Leibler (KL) information for the fitted model. We derive the small sam-
ple correction factor to make our new AIC unbiased.
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Let f(y, θ) be the model for the data andg(y) the true density. In the KL
distance

KL(g, f(·, θ̂)) =

∫
g(y) log

g(y)

f(y, θ̂)
dy =

∫
g(y) log g(y)dy − Sn.

Given that
∫
g(y) log g(y)dy is constant across models, the AIC strategy is in

essence to estimateQn,

Qn = EgSn = Eg

∫
g(y) log f(y, θ̂)dy, (35)

for each candidate model and then to select the model with thehighest estimated
Qn; this is equivalent to searching for the model with the smallest estimated KL
distance.

Let the regression modelE(Y ) = Xβ satisfy Assumption 1. Then, in the
standard AIC, we use the mle ofβ andσ (see, for example Hurvich and Tsai,
1989) and obtain

Eg(Q̂n − Sn) =
d+ 1

n

n

n− d− 2
. (36)

Thus AIC is an asymptotically unbiased estimator ofSn. The bias-corrected AIC
can be written as

AICc = −2L(β̂; σ̂2; y) + 2(d+ 1)n/(n− d− 2).

When we estimateσ2 by s2d+ from the full model (5) we obtain

Eg(Q̂n−Sn) = −
1

2n
E(Cp+n−2d)+

1

2
Eg

[
σ2

s2d+

{
(β − β̂)′X ′X(β − β̂)/(nσ2) + 1

}]
.

Taking the various expectations under Assumption 1 on both models yields

Eg(Q̂n − Sn) = −
1

2n

{
2

d+ − d

n− d+ − 2
+ n− d−

n− d+

n− d+ − 2
(n+ d)

}
.

After boring calculations we find

Eg(Q̂n − Sn) =
(n− d+)(d+ 1)

n(n− d+ − 2)
.

Our newAIC is also an asymptotically unbiased estimator ofQn = E(Sn). In
addition, if we want a more precise penalty for the loglikelihood we obtain

AIC+
d (u) = −2L(β̂; s2; y) + 2(d+ 1)(n− d+)/(n− d+ − 2),

which leads to (10).
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8 Appendix B: proofs

For anyn×m matrixBn×m we define the norms||B||1 and||B||2 by

||B||1 = max
1≤i≤n

m∑

j=1

|Bij | and||B||22 = tr(B′B) =

n∑

i=1

m∑

j=1

B2
ij (37)

and note that

||AB||1 ≤ ||A||1||B||1 and ||B||1 ≤ ||B||2 ≤ n1/2||B||1, (38)

||C ′AD||1 ≤ ||C ′||1||D||1||A||1 ≤ ||C||2||D||2||A||1, (39)

tr{A} ≤ n||A||1, (40)

and ifA is symmetric then

||A||1 ≤ max
i

|λi(A)|. (41)

We collect some technical results about the coefficients. Wecall ann × n
matrixA exponentially decreasing if|Aij| ≤ cρ|i−j| for someρ < 1

Lemma 1. Under Assumption 2 it holds that

ut =
Bq(L)

Ap(L)
εt =

∞∑

n=0

ηnεt−n, η0 = 1 (42)

εt =
Ap(L)

Bq(L)
ut =

∞∑

n=0

ξnut−n, ξ0 = 1. (43)

ThenV ar(ut) ≥ σ2 and equality holds only forut = εt. Moreover

max(Dmξn(θ),D
mηn(θ)) ≤ cρn, m = 0, 1, 2. (44)

It follows thatΩ and itsn × n derivativesΩ̇s = DθsΩ and Ω̈sk = D
2
θsθk

Ω are
exponentially decreasing and therefore have bounded 1-norm, and furthermore

||Ω(θ)− Ω(θ0)||1 ≤ c|θ − θ0|, (45)

||Ω̇s(θ)− Ω̇s(θ0)||1 ≤ c|θ − θ0|, (46)

||Ω̈sk(θ)− Ω̈sk(θ0)||1 ≤ c|θ − θ0|. (47)

The eigenvalues ofΩ(θ) andΩ(θ)−1 are bounded away from zero and infinity
uniformly inθ ∈ D andn, so that

||Ω−1(θ)− Ω−1(θ0)||1 ≤ c|θ − θ0|, (48)

c1Ω0 ≤ Ω ≤ c2Ω0. (49)
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Proof of Lemma 1. Proof of (42), (43), and (44):
Condition (14) shows that uniformly forθ ∈ D, the power series

∞∑

n=0

ηnz
n =

Bq(z)

Ap(z)
,

∞∑

n=0

ξnz
n =

Ap(z)

Bq(z)
,

∞∑

n=0

Dφsηnz
n = −

Bq(z)

Ap(z)2
zs,

∞∑

n=0

Dφsξnz
n =

zs

Bq(z)
,

∞∑

n=0

Dψs
ηnz

n = −
zs

Ap(z)
,

∞∑

n=0

Dψs
ξnz

n = −
Ap(z)

Bq(z)2
zs,

∞∑

n=0

D
2
φsφk

ηnz
n = 2

Bq(z)

Ap(z)3
zs+k,

∞∑

n=0

D
2
φsψk

ηnz
n = −

1

Ap(z)2
zs+k,

∞∑

n=0

D
2
ψsψk

ηnz
n = 0,

∞∑

n=0

D
2
ψsψk

ξnz
n = 2

Aq(z)

Bp(z)3
zs+k,

∞∑

n=0

D
2
φsψk

ξnz
n = −

1

Bq(z)2
zs+k;

∞∑

n=0

D
2
φsφk

ξnz
n = 0,

are convergent for|z| < ρ−1, and hence the coefficients are bounded bycρt for
someρ < 1, see Yao and Brockwell (2006, page 867). Therefore the representa-
tions (42) and (43) hold and it follows thatV ar(ut) = σ2

∑∞
n=0 η

2
n ≥ σ2η20 = σ2

where equality holds only ifηn = 0, n ≥ 1, that is,ut = εt.
Proof of (45), (46), and (47): We then findΩij(θ) = σ−2

∑∞
n=0 ηn(θ)ηn+|i−j|(θ)

is bounded by
∑∞

n=0 cρ
nρn+|i−j| ≤ cρ|i−j|, so thatΩ is bounded in 1-norm:

||Ω||1 = max
i

∑

j

|Ωij | ≤ max
i

∑

j

cρ|i−j| ≤ c.

The same result holds for the derivatives, so they are all exponentially decreasing
and therefore bounded in 1-norm. Moreover by a Taylor’s expansion

Ωij(θ)− Ωij(θ0) =

p+q∑

s=1

(θs − θ0s)Ω̇s,ij(θ∗),

which is bounded by

c

p+q∑

s=1

|θs − θ0s|ρ
|i−j| ≤ c|θ − θ0|ρ

|i−j|,

so that

||Ω(θ)− Ω(θ0)||1 ≤ cmax
i

∑

j

|

p+q∑

s=1

|θs − θ0s|ρ
|i−j| ≤ c|θ − θ0|.
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This shows (45), and the same argument works for the derivatives in (46) and
(47).

Proof of (48) and (49):We next need the result, see Hannan and Kavalieris
(1984, p. 539), that any eigenvalue,λ(Ω), of the n × n matrix Ω is bounded
between two constants0 < c(θ) ≤ λ(Ωn(θ)) ≤ C(θ) < ∞ independently ofn,
and Assumption 2 shows that0 < c ≤ λ(Ωn(θ)) ≤ C < ∞, so the bound is
uniform inθ ∈ D. Finally this holds forΩ−1 becauseλ(Ω−1) = 1/λ(Ω), and (48)
follows from

||Ω(θ)−1 − Ω(θ0)
−1||1 = ||Ω(θ)−1(Ω(θ)− Ω(θ0)Ω(θ0)

−1||1

≤ ||Ω(θ)−1||1||Ω(θ)− Ω(θ0)||1||Ω(θ0)
−1||1.

Finally the uniform bound on the eigenvalues implies (49).

Proof of Theorem 2. The normalized log likelihood, usingΩ = Ωn(θ), is

ℓn(σ
2, θ, β) = log σ2 + n−1 log |Ω|+ σ−2n−1(y −Xβ)′Ω−1(y −Xβ)

Minimizing overβ givesβ̂ = (X ′Ω−1X)−1X ′Ω−1y, and the profile loglikelihood

ℓn(σ
2, θ, β̂(θ))

= log σ2 + n−1 log |Ω|+ σ−2n−1u′Ω−1u− σ−2n−1u′Ω−1X(X ′Ω−1X)−1X ′Ω−1u

= ℓn(σ
2, θ)− σ−2n−1u′Ω−1X(X ′Ω−1X)−1X ′Ω−1u = ℓn(σ

2, θ)− σ−2n−1u′Au,

where ℓn(σ2, θ) is the loglikelihood function analysed by Yao and Brockwell
(2006) in the model without regressors. They prove that in the model without
regressors the maximum likelihood estimators ofσ2 andθ, obtained by minimiz-
ing ℓn(σ2, θ) are consistent. The maximum likelihood estimators ofσ2 andθ in
the model with regressors are found by minimizingℓn(σ2, θ, β̂(θ)), but the same
result holds in this case because the difference tends to zero almost surely, that is,
n−1u′Au

a.s.
→ 0. To see this, we apply the inequality (49), and find that uniformly

for θ ∈ D :

A = Ω−1X(X ′Ω−1X)−1X ′Ω−1 ≤ cΩ−1
0 X(X ′Ω−1

0 X)−1X ′Ω−1
0 = A0. (50)

Thenu′Au ≤ u′A0u, which is distributed asσ2
0χ

2(d) so that−n−1u′Au
a.s.
→ 0 and

therefore(θ̂, σ̂2)
a.s.
→ (θ0, σ

2
0).

We thus obtain

κ̂ = n−1/2(X ′Ω−1
0 X)1/2(X ′Ω̂−1X)−1X ′Ω̂−1u

and find from (49) that

κ̂′κ̂ = n−1u′Ω̂−1X(X ′Ω̂−1X)−1(X ′Ω−1
0 X)(X ′Ω̂−1X)−1X ′Ω̂−1u ≤ cu′A0u

a.s.
→ 0.
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Finally

κ̂′κ̂ = (β̂ − β0)
′n−1X ′Ω−1

0 X(β̂ − β0) ≥ λmin(n
−1X ′Ω−1

0 X)(β̂ − β0)
′(β̂ − β0)

which shows that ifλmin(n
−1X ′Ω−1

0 X) ≥ c > 0 thenβ̂
a.s.
→ β0.

Proof of Theorem 3. We find the normalized scores

Snσ2 =
1

2
n−1/2σ−4

0 (u′Ω−1
0 u− nσ2

0),

Snθs =
1

2
n−1/2tr{Ω−1

0 Ω̇0sΩ
−1
0 (σ−2

0 uu′ − Ω0)},

Snκ = σ−2
0 u′Ω−1

0 X(X ′Ω−1
0 X)−1/2.

The observed information per observation is found from the negative second
derivative of the loglikelihood function,u = Y −Xβ,

Inθsθk =
1

2
n−1tr{Ω−1Ω̇kΩ

−1Ω̇s} (51)

+
1

2
n−1tr{(Ω−1(Ω̈sk − 2Ω̇kΩ

−1Ω̇s)Ω
−1(Ω− σ−2uu′)},

Inσ2σ2 = −
1

2
σ−4 + n−1σ−6u′Ω−1u, (52)

Inθsσ2 =
1

2
n−1σ−4u′Ω−1Ω̇sΩ

−1u, (53)

Inκκ = σ−2Id, (54)

Inθκ = n−1/2σ−2u′Ω−1Ω̇sΩ
−1X(X ′Ω−1

0 X)−1/2, (55)

Inσ2κ = n−1/2σ−4u′Ω−1X(X ′Ω−1
0 X)−1/2. (56)

The expected information per observation forλ = λ0 is

E




Inσ2σ2 Inσ2θk Inσ2κ
Inθsσ2 Inθsθk Inθsκ
Inκσ2 Inκθk Inκκ


 = (57)




1
2
σ−4
0

1
2n
σ−2
0 tr{Ω−1

0 Ω̇0s} 0
1
2n
σ−2
0 tr{Ω−1

0 Ω̇s}
1
2n
tr{Ω−1

0 Ω̇0kΩ
−1
0 Ω̇0s} 0

0 0 σ−2
0 Id


 , (58)

and it follows from the formula

Cov(σ−2
0 u′Au, σ−2

0 u′Bu) = tr(BΩ0A
′Ω0) + tr(BΩ0AΩ0) for u ∼ Nn(0,Ω0)

(59)
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that the variance of the scoreSnλ is (58). This expression has the same limit as
the block diagonal matrix

{
1

2
σ−4
0 , (

1

2n
tr{Ω−1

0 Ω̇0kΩ
−1
0 Ω̇0s})

p+q
s,k=1, σ

−2
0 Id},

because Theorem 9 shows that

1

2n
σ−2
0 tr{Ω−1

0 Ω̇0s} =
1

2n
σ−2
0 Dθs log |Ω(θ0)| = O(n−1).

Proof of (17):We need to show that the main term

1

2n
tr{Ω−1

0 Ω̇0kΩ
−1
0 Ω̇0s}

converges to a limit which we callΣ0sk. We notice that the score and expected
information for(θ, σ2) are the same as for the model without regressors analysed
by Yao and Brockwell (2006). They prove asymptotic normality of the maximum
likelihood estimator in this model, and find a nice representation of the limiting
variance in terms of two AR Gaussian processes generated byAp(L) andBq(L),
see Yao and Brockwell (2006), Theorem 2 and Hannan (1973) Theorem 2. It was
part of their proof to show that the expected information converges, so the result
follows.

Proof of (18): Next we analyse the terms of the information matrixInλλ(λ),
see (51-56). It is seen that all components ofInλλ(λ)− Inλλ(λ0), except for some
trivial factors, have one of the forms

n−1tr(A− A0) for A = Ω−1Ω̇kΩ
−1Ω̇s orΩ−1(Ω̈sk − 2Ω̇kΩ

−1Ω̇s),

n−1u′Ω
−1/2
0 (A− A0)Ω

−1/2
0 u for A = Ω

1/2
0 Ω−1(Ω̈sk − 2Ω̇kΩ

−1Ω̇s)Ω
−1Ω

1/2
0

orΩ1/2
0 Ω−1Ω

1/2
0 orΩ1/2

0 Ω−1Ω̇sΩ
−1Ω

1/2
0 ,

n−1/2u′Ω
−1/2
0 AΩ

−1/2
0 X(X ′Ω−1

0 X)−1/2 for A = Ω
1/2
0 Ω−1Ω̇sΩ

−1Ω
1/2
0 orΩ1/2

0 Ω−1Ω
1/2
0 ,

where

u = Y −Xβ = Y −Xβ0 −X(β − β0) = u0 + n1/2X(X ′Ω−1
0 X)−1/2κ.

For all such matricesA it follows from Lemma 1 that, for|λ− λ0| ≤ εn,

||A− A0||1 ≤ c|θ − θ0| ≤ cεn,

and we can evaluate

n−1u′Ω−1
0 u = n−1(u0 + n1/2X(X ′Ω−1

0 X)−1/2κ)′Ω−1
0 (u0 + n1/2X(X ′Ω−1

0 X)−1/2κ)

≤ 2(n−1u′Ω−1
0 u+ κ′κ).
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Moreover we have from inequality (40)

n−1|tr(A−A0)| ≤ ||A− A0||1 = O(εn),

and from inequality (39) withC = D = Ω
−1/2
0 u :

n−1|u′Ω
−1/2
0 (A− A0)Ω

−1/2
0 u| ≤ n−1u′Ω−1

0 u||A− A0||1 = OP (εn)

and finally from (39) withC ′ = u′Ω
−1/2
0 andD = Ω

−1/2
0 X(X ′Ω−1

0 X)−1/2, for
whichD′D = Id, we find

n−1/2||u′Ω
−1/2
0 (A−A0)Ω

−1/2
0 X(X ′Ω−1

0 X)−1/2||1 =

≤ (n−1u′Ω−1
0 u)1/2||Id||2||A− A0||1 = OP (εn).

Proof of Corollary 4. Note thatn1/2κ̂ = (X ′Ω−1
0 X)1/2(β̂−β0); we continue with

the parameterκ. Againλ = (σ2, θ, κ) denotes them = 1+ p+ q + d parameters.
In order to find the asymptotic distribution, we consider theTaylor expansion of
the score function aroundλ = λ0

n1/2(λ̂− λ0) = (−n−1
D

2 logL(λ∗))
−1n−1/2

D logL(λ0), (60)

where the notationλ∗ indicates that rows is evaluated at an intermediate pointλ
(s)
∗

which satisfies|λ(s)∗ − λ0s| ≤ |λ̂ − λ0|. The result now follows from Theorem 3

becausen−1/2
D logL(λ0)

D
→ N1+p+q+d(0, {

1
2
σ−4
0 ,Σ0, σ

−2
0 Id}) and from (18) get

that

−n−1
D

2 logL(λ∗)
P
→ {

1

2
σ−4
0 ,Σ0, σ

−2
0 Id}.

Proof of Corollary 5. We letτ = (σ2 − σ2
0, θ

′ − θ′0)
′ and find the equation

Inττ (λ∗)n
1/2τ̂ + Inτκ(λ∗)n

1/2κ̂ = Snτ ,

which shows that whenInτκ(λ∗) = OP (n
−1/2) we have

n1/2τ̂ = E(Inττ )
−1Snτ +OP (n

−1/2).

The same result holds in the modelβ = Aξ with estimatorτ̂∗ and, as a conse-
quence,

n1/2(τ̂ − τ̂∗) = OP (n
−1/2),

which proves the result.
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Proof of Theorem 6. We write û∗ = y − Xβ̂∗ and expand̂u′∗Ω(θ̂)
−1û∗ as a

function of θ̂ aroundθ̂∗ and find, using̃θ for an intermediate point for which
|θ̃ − θ̂∗| ≤ |θ̂ − θ̂∗|, that

û′∗(Ω̂
−1 − Ω̂−1

∗ )û∗ = −

p+q∑

s=1

(θ̂s − θ̂s∗)û
′
∗Ω̂

−1
∗

̂̇Ω∗sΩ̂
−1
∗ û∗ +Rn, (61)

where

Rn =
1

2

p+q∑

s=1

p+q∑

k=1

(θ̂s− θ̂s∗)(θ̂k− θ̂k∗)û
′
∗[Ω̃

−1 ˜̈ΩskΩ̃
−1− Ω̃−1 ˜̇ΩsΩ̃

−1 ˜̇ΩkΩ̃
−1]û∗. (62)

Here ˜̇Ωs = DθsΩ(θ̃) and ˜̈Ωsk = D
2
θsθk

Ω(θ̃). The main term of (61) can be simpli-

fied using the first order condition atθ̂∗, that is,∂ℓn/θs|θ=θ̂∗ = 0 :

û′∗Ω̂
−1
∗

̂̇Ω∗sΩ̂
−1
∗ û∗ = σ̂2

∗Dθs log |Ω(θ)|, s = 1, . . . , p+ q.

This implies that

p+q∑

s=1

(θ̂s − θ̂s∗)û
′
∗Ω̂

−1
∗

̂̇Ω∗sΩ̂
−1
∗ û∗ =

p+q∑

s=1

(θ̂s − θ̂s∗)σ̂
2
∗Dθs log |Ω̂(θ̂∗)|.

It follows from Theorem 9 thatDθs log |Ω̂(θ̂∗)|
P
→ DθsF

c
t (θ0), so that the main

term isOP (θ̂ − θ̂∗) = OP (n
−1).

The remainder term (62) is alsoOP (n
−1) because it is bounded by

c|θ̂ − θ̂∗|
2[|û′∗Ω̃

−1 ˜̈ΩskΩ̃
−1û∗|+ |û′∗Ω̃

−1 ˜̇ΩsΩ̃−1 ˜̇ΩkΩ̃−1û∗|]

≤ c|θ̂ − θ̂∗|
2û′∗û∗(||Ω̃

−1 ˜̈ΩskΩ̃
−1||1 + ||Ω̃−1 ˜̇ΩsΩ̃−1 ˜̇ΩkΩ̃−1||1)

The first factor isOP (n
−2) and||Ω̃−1 ˜̈ΩskΩ̃−1||1 + ||Ω̃−1 ˜̇ΩsΩ̃−1 ˜̇ΩkΩ̃−1||1 ≤ c be-

cause of Lemma 1. Finallŷu′∗û∗ = OP (n).

Proof of Theorem 7. The likelihood ratio test is

−2 logLR(β = Aξ) = n(log σ̂2
∗ − log σ̂2) + log |Ωn(θ̂∗)| − log |Ωn(θ̂)|

whereσ̂2
∗ = n−1(y−Xβ̂∗)

′Ω̂−1
∗ (y−Xβ̂∗) andσ̂2 = n−1(y −Xβ̂)′Ω̂−1(y−Xβ̂)

both converge toσ2 and(σ̂2 − σ2
0, σ̂

2
∗ − σ2

0) = OP (n
−1/2), but it follows from (5)

that σ̂2 − σ̂2
∗ = O(n−1). A Taylor expansion gives

n(log σ̂2
∗ − log σ̂2) = n log(σ̂2

∗ σ̂
−2) (63)

= n(σ̂2
∗σ̂

−2 − 1) + nOP ((σ̂
2
∗ − σ̂2)2) = n(σ̂2

∗σ̂
−2 − 1) +OP (n

−1).
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Similarly, θ̂∗ − θ̂ = OP (n
−1) andF c

t (θ) =
∑∞

t=1 log f
c
t (θ), see Theorem 9, so

that

log |Ωn(θ̂∗)| − log |Ωn(θ̂)| = F c
t (θ̂∗)− F c

t (θ̂) +OP (ρ
−2n) = OP (n

−1). (64)

Thus from (63) and (64) we find

−2 logLR(β = Aξ) = nσ̂−2(σ̂2
∗ − σ̂2) +OP (n

−1).

The first order condition forβ is (y −Xβ̂)′Ω̂−1X = 0 so that

y −Xβ̂∗ = (y −Xβ̂) + (Xβ̂ −Xβ̂∗)

is an orthogonal decomposition with respect toΩ̂−1, that is,(y−Xβ̂)′Ω̂−1(Xβ̂−
Xβ̂∗) = 0, and

(y−Xβ̂∗)
′Ω̂−1(y−Xβ̂∗) = (y−Xβ̂)′Ω̂−1(y−Xβ̂)+(β̂∗− β̂)

′X ′Ω̂−1X(β̂∗− β̂).

Therefore

n(σ̂2
∗ − σ̂2) = (y −Xβ̂∗)

′Ω̂−1
∗ (y −Xβ̂∗)− (y −Xβ̂)′Ω̂−1(y −Xβ̂)

= (y −Xβ̂∗)
′Ω̂−1(y −Xβ̂∗)−

(y −Xβ̂)′Ω̂−1(y −Xβ̂) + (y −Xβ̂∗)
′(Ω̂−1

∗ − Ω̂−1)(y −Xβ̂∗)

= (β̂∗ − β̂)′X ′Ω̂−1X(β̂∗ − β̂) + (y −Xβ̂∗)
′(Ω̂−1 − Ω̂−1

∗ )(y −Xβ̂∗).

The first term measures the deviation between the estimatorsusing the variance
estimate from the larger of the two models, and the second term tends to zero
because

Rn = (y −Xβ̂∗)
′(Ω̂−1 − Ω̂−1

∗ )(y −Xβ̂∗) = OP (n
−1),

see Lemma 6. This proves (7).

Proof of Theorem 8. For β̂ = (X ′Ω̂−1X)−1X ′Ω̂−1y we find

(y−Xβ̂)′Ω̂−1(y−Xβ̂) = y′X⊥(X
′
⊥Ω̂X⊥)

−1X ′
⊥y = u′X⊥(X

′
⊥Ω0X⊥)

−1X ′
⊥u+Rn,

where
Rn = u′X⊥[(X

′
⊥Ω̂X⊥)

−1 − (X ′
⊥Ω0X⊥)

−1]X ′
⊥u.

The first term is distributed asσ2χ2(n− d) becauseX ′
⊥u ∼ Nn(0, X

′
⊥Ω0X⊥).

For the remainder term we find, using inequality (39), forC ′ = u′X⊥(X
′
⊥Ω0X⊥)

−1X ′
⊥Ω

1/2
0 ,

D = Ω̂1/2X⊥(X
′
⊥Ω̂X⊥)

−1X ′
⊥u, andA = Ω

−1/2
0 (Ω̂− Ω0)Ω

−1/2
0 that

|Rn| = |C ′AD|

≤ (u′X⊥(X
′
⊥Ω0X⊥)

−1X ′
⊥u)

1/2(u′X⊥(X
′
⊥Ω̂X⊥)

−1X ′
⊥u)

1/2||Ω
−1/2
0 (Ω̂− Ω0)Ω̂

−1/2||1

≤ c(u′X⊥(X
′
⊥Ω0X⊥)

−1X ′
⊥u)|θ̂ − θ0| = OP (n

1/2).
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Proof of Theorem 9. The processut =
∑∞

n=0 ηnεt−n is a linear invertible process
with exponentially decreasing coefficients, so that

εt =
Ap(L)

Bq(L)
ut =

∞∑

n=0

ξnut−n, or ut = −

∞∑

n=1

ξnut−n + εt

where|ξn| ≤ cρn. It follows that the prediction variance for Gaussian variables
satisfies

V art−1(yt) = V art−1(

∞∑

n=t

ξnut−n|Ft−1) + σ2 ≤ σ2 + E(

∞∑

n=t

ξnut−n)
2.

Then

E(
∞∑

n=t

ξnut−n)
2 = σ2

∞∑

n=0

∞∑

m=0

ξn+tξm+tγ(n−m) ≤ cρ2t
∞∑

n=0

∞∑

m=0

ρn+m|γ(n−m)| ≤ cρ2t.

Thus0 ≤ log f ct (θ) ≤ f ct (θ) − 1 = σ−2(V art−1(yt) − σ2) ≤ cρ2t, and therefore
log f ct (θ) is summable uniformly inθ and hence the limit is continuous

0 ≤ log |Ωn(θ)| =

n∑

t=1

log f ct (θ) →

∞∑

t=1

log f ct (θ).

It follows from Brockwell and Davis (1991, p 394-395) that also

|
∂

∂θs
f ct (θ)| ≤ cρt,

for θ ∈ D. Becausef ct (θ) ≥ 1 the same argument shows that∂ log f ct (θ)/∂θs is
uniformly dominated bycρt and hence the sum

∑∞
t=1 ∂ log f

c
t (θ)/∂θs exists as a

continuous function. This shows that

∂ log |Ωn(θ)|

∂θs
=

n∑

t=1

∂ log f ct (θ)

∂θs
→

∞∑

t=1

f ct (θ)
−1∂f

c
t (θ)

∂θs

is finite and the uniform convergence shows continuity.
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