Discussion Papers
Department of Economics
University of Copenhagen

@ster Farimagsgade 5, Building 26, DK-1353 Copenhagen K., Denmark
Tel.: +45 35 32 30 01 — Fax: +45 35323000
http://www.econ.ku.dk

ISSN: 1601-2461 (E)


http://www.econ.ku.dk/

Experiments, Passive Observation and
Scenario Analysis: Trygve Haavelmo and the
Cointegrated Vector Autoregression

Kevin Hoover, Department of Economics and Department of Philosophy,
Duke University, and
Katarina Juselius, Department of Economics, University of Copenhagen

Abstract

The paper provides a careful, analytical account of Trygve Haavelmo’s
unsystematic, but important, use of the analogy between controlled
experiments common in the natural sciences and econometric tech-
niques. The experimental analogy forms the linchpin of the method-
ology for passive observation that he develops in his famous mono-
graph, The Probability Approach in Econometrics (1944). We show
how, once the details of the analogy are systematically understood, the
experimental analogy can be used to shed light on theory-consistent
cointegrated vector autoregression (CVAR) scenario analysis. CVAR
scenario analysis can be seen as a clear example of Haavelmo’s “ex-
perimental” approach; and, in turn, it can be shown to extend and
develop Haavelmo’s methodology and to address issues that Haavelmo
regarded as unresolved.
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1 The Problem of Passive Observation

Perhaps the two most vital contributions of Trygve Haavelmo’s path-breaking,
magisterial monograph, The Probability Approach in Econometrics (1944),
was to recast the application of the theory of probability to economic data
in order to bring economics models into the scope of formal statistical analy-
sis (see Juselius 2012) and to develop a methodology of passive observation
(including the contextualization of techniques such as multivariate regression
and the identification of simultaneous systems of equations) as an analogue
to controlled experiments. In Haavelmo’s formulation, Nature is cast in the
role of the experimenter, and the econometrician uses a model to define a
perspective or “point of view” in which the formulation of the model and
the statistical techniques applied to it play the role of experimental controls
(Haavelmo 1944, pp. 1, 6, 14-15, 51).1

It is hard to miss the weight that Haavelmo places on the notion of experi-
mentation: variants on the root “experiment” occurs fifty-four times through-
out the monograph. In the first forty or so pages, most of the references are
in variants on the construction “design of experiment.” Yet for all this atten-
tion, Haavelmo’s discussion is unsystematic, and a careful account of the role
that the simile of experimentation plays in The Probability Approach should
be illuminating.? We argue that, when systematically laid out, Haavelmo’s
understanding of passive observation as analogous to experimentation is rich
and nuanced and that it provides a deeper view of his methodological vision
than available hitherto, as well as a framework for understanding how some
modern practices neglect issues that he found vital. It also allows us to cast
other modern practices — especially scenario analysis in the context of the
cointegrated vector autoregression (CVAR) as closely related to Haavelmo’s
experimental methodology (Juselius 2006, 2012). In taking this view, we
reject the idea that Haavelmo is a strong apriorist who provides no account
of how economists learn from theories as opposed to merely testing them (cf.
Heckman 1992, 2000, and Eichenbaum 1995).

'Morgan 1990, ch. 8, provides a now standard account of these developments in the
history of econometrics; see also Hendry, Spanos, and Ericsson (1989) for a précis of the
main achievements of Haavelmo’s Probability Approach.

2Boumans (2005, 2012) has previously treated related aspects of Haavelmo’s method-
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2 Ideal Experiments

Controlled experiments are a well-known method of isolating and measur-
ing causal processes. The logic of the controlled experiment is described by
John Stuart Mill’s method of difference: “If an instance in which the phe-
nomenon under investigation occurs, and an instance in which it does not
occur, have every circumstance in common save one, that one occurring only
in the former; the circumstance in which alone the two instances differ, is
the effect, or the cause, or an indispensable part of the cause, of the phe-
nomenon” (Mill 1843[1973], p. 391). While Mill leaves the causal direction
undetermined, when the experimenter can select the controls (the circum-
stances in common) and the intervention (i.e., the one difference) directly,
rather than passively observe them, even the causal direction is determined.
Controlled experiments can be extended in some cases to determine not only
the existence of a cause but its quantitative measure by applying the method
of difference jointly with Mill’s method of concomitant variation: “Whatever
phenomenon varies in any manner whenever another phenomenon varies in
some particular manner, is either a cause or an effect of that phenomenon,
or is connected with it through some fact of causation” (Mill 1843[1973], p.
401).

Ideally, control in the controlled experiment is comprehensive. FEvery
relevant factor is set to determinate levels and interventions are independent
of one another and of the outcome variable. Some of the virtues of the
randomized controlled trial — often called the “gold standard” of statistical
investigation — arise from the fact that randomization helps to secure both
sorts of independence.

Haavelmo (1954, p. 2) refers to structural relations as “any economic
relation associated with, and valid for, a specified economic structure that
could conceivably be reproduced experimentally.” Thus, the purposes of
engaging in experimentation are closely related to our interest in structural
relations:

The study of structural relations may serve at least these three
purposes:

1. To satisfy scientific curiosity.

2. To study the functioning of alternative structures that could have prac-
tical interest from the point of view of economic reform.
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3. To explain current events in the actual economic structure under which
an economy is at present operating. [Haavelmo 1954, p. 2]

The first is related to the notion that the purpose of an experiment is
causal articulation — to learn which causes are operative, to map their in-
terconnections, and to quantify their strengths. Haavelmo (1954, p. 3) goes
on to point out that our understanding of more complicated economic struc-
tures derives from “piecing together relations derived from the consideration
of relatively simple partial experimental designs, or structures.” The second
is related to the use of economic models in conducting counterfactual exper-
iments, which frequently form the basis of policy advice. And the third is
related to prediction and ex post analysis of the actual paths of the economy.

Experiments require an experimenter. In economics experimentation is
sometimes feasible, but very often not, so that inference must rely on passive
observation (Haavelmo 1944, p. 7). For Haavelmo, a key idea is that Nature
may be thought of as an experimenter: “Nature is steadily turning out [ex-
periments| from her own enormous laboratory, ... which we merely watch as
passive observers” (Haavelmo 1944, p. 14; see also pp. 9, 16).

The distinction between truly controlled experimentation and passive ob-
servation is this: In a truly controlled trial, we may think of the outcome y as
a function of the intervention variable z ceteris paribus: y = f(x), with other
relevant factors set a fixed levels, In the case of passive observation, we may
think of the other relevant factors as observed and brought into the function,
so that they too may vary: y = f(z,a,b,c,...). In the case of passive observa-
tion, “control” is not so much as matter of setting particular values or literal
ceteris paribus as it is accounting for the variation in relevant confounding
factors. Such accounting is the natural domain of statistical analysis in which
literal control can often be replaced by conditioning on other variables.

Although Haavelmo typically refers to Neyman and Pearson as the source
of his statistical approach, the application of probability and statistics to
controlled experiments was already well developed in the 1930s, particularly
in the work of R.A. Fisher, including The Design of Experiments (1935).
Haavelmo’s achievement is, in part, an adaptation of techniques to suit the
special problems that economics raises for imposing statistical controls. How
can economic models be formulated so that statistical methods would be
adequate substitutes for literal experimental control? : “we try to take care
of the ceteris paribus conditions ourselves, by statistical devices of clearing
the data from influences not taken account of in the theory (e.g., by multiple
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correlation anslysis)” (Haavelmo 1944, p. 17; see also pp. 17-19).

The range of natural variation of the variables imposes an important lim-
itation on passive observation in comparison to active experimentation. The
difficulty is that a variable that may be causally important may nonetheless
display no actual variation. That is no problem when a model is used to
simulate the actual behavior of variables ceteris paribus the constant vari-
ables but it poses a much starker problem when trying to recover the causal
structure of the model from observable data or when the model is used for
counterfactual analysis that involves interventions on hitherto constant vari-
ables.?

Comprehensive control is an exacting standard — even for true controlled
experiments — and Haavelmo (1944, pp. 49-50) proposes that some of the
causally relevant factors may be unobservable and/or indeterminable which
provides the rationale for stochastic models. Haavelmo (1944, p.48) does not
make any strong claims for any particular interpretation of probability. Its
basis may be ontic (i.e., probability is true feature of reality) or epistemic
(i.e., it is a reflection of our ignorance), but Haavelmo (1944, pp. 51-52) ob-
serves that if it has a variety of independent sources of variation, a random
variable will conform to well-defined distributions, such as the normal, and
can be treated by the tools of probability theory and statistics. In introduc-
ing stochastic models, it may appear that we have left the domain of ideal
experiments. But this is not the case. We do not give up on a complete
characterization of the relevant variables; rather we characterize their behav-
ior under broader but still comprehensive categories (Haavelmo 1944, p. 2).
The move to stochastic models does not depart from the ideal unless a more
specific, nonstochastic characterization is actually available.

Stochastic models connect interventions and controls with outcomes and
rely on the analogy to controlled experiments in just the same way as non-
stochastic models, except that some variables must be generated as random
draws from a probability distribution. If such draws are repeated — e.g., in
the manner of Monte Carlo experiments — then a probability distribution for
all the variables of a model may be built up.

3Frisch refers to problem of the recovery of the underlying structure — a problem related
to, but not identical with, the identification problem, as the inversion problem (Frisch
1926, p. 86 cited by Louga 2007, p. 11; see also Frisch 1939 and Louga 2007, p. 95,
passim). The pitfalls of such counterfactual analysis were addressed directly in Marschak
(1953) and have become a mainstay of macroeconometric thinking since acquiring the
name “noninvariance” or “Lucas critique” (Lucas 1976).



For a stochastic model that involves time-dated variables, Haavelmo (1944,
pp. 48-49) famously characterizes the realized time series as a single draw
from n-dimensional distribution rather than n-draws from a one-dimensional
distribution. In many cases, the partition of the model into deterministic and
stochastic elements can be seen equivalently as n-draws from a conditional
probability distribution of the random terms in which the conditioning vari-
ables are updated for each draw. (The details of Haavelmo’s effort to bring

probability to bear on economic time-series is addressed more fully in Juselius
2012).

3 The Design of Measurement Experiments

We are used to thinking of (“crucial”) experiments as tests of the truth of a
theory or as a means of identifying causes, but many experiments presuppose
the broad truth and causal articulation of the underlying theory and seek only
to quantify an unknown value (Haavelmo 1944, p. 14). Haavelmo’s common
phrase “the design of experiment” is deployed most often in just this latter
context of quantification. The distinction between variables and parameters
is, for Haavelmo (1944, p. 3) a relative one. Variables typically refer to
the objects of investigation; parameters are introduced by the analyst; both
can be quantified using experimental methods. Thus, Haavelmo (1944, p.
1) sees the most basic act of observation as an experiment. For example, to
convert a “formal mathematical scheme” such as the analysis of choice as the
interaction of indifference surfaces with budget constraints into economics,
we must design the

experiments that would indicate, first, what real phenomena are
to be identified with the theoretical prices, quantities, and in-
come; second, what is to be meant by an “individual”; and, third,
how we should arrange to observe the individual actually making
his choice ... In the verbal description of his model in “economic
terms,” the economist usually suggests, explicitly or implicitly,
some type of experiments or controlled measurements designed
to obtain the real variables for which he thinks that his model
would hold. [Haavelmo 1944, pp. 6-7]

Later Haavelmo (1954, p. 2) glosses the notion of experimental design in
the context of obtaining values for variables as “all the things one would have
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to write in an instruction to even the most intelligent assistant observer in
order to communicate . . . a desired procedure of collecting appropriate data.”

Experiments used to obtain values for variables can be seen as measuring
devices in which an a priori experimental design is applied to the world (cf.
Hoover 1994 on the notion of “econometrics as measurement”). A priori in
this case does not mean non-empirical nor unrelated to the acquisition of
knowledge in the past, but only that the theoretical model, the design of the
measuring experiment, when applied to the real world, provides a maintained
perspective or “point of view” — a “classification of real phenomenal,] ...
viewing reality through the framework of some scheme” (Haavelmo 1944, p.
1; see also p. 11):

The model thereby becomes an a priori hypothesis about real
phenomena, stating that every system of values that we might
observe of the “true” variables will be one that belongs to the set
of value-systems that is admissible within the model. [Haavelmo,

p. 9]

Of course, a central point about perspectives is that they can be different,
that one may view reality from alternative, but no less correct, points of
view.4

Haavelmo does not provide a really good concrete example of multiple,
equally acceptable perspectives; yet he does give an important general char-
acterization in the context of parameter estimation. We need not, he argues,
work with a probability distribution (i.e., a perspective) in which a desired
parameter, say, « appears directly: “In general, any kind of data following a
probability distribution which depends in a known way upon «, may serve as
a means of estimating «, provided that the method of estimation is based on
the appropriate stochastic specification of the data . . .” (Haavelmo 1954, p.
5). While these are not Haavelmo’s own examples, we can easily illustrate
the point by considering the equivalence of models transformed from levels
to levels and differences or from real terms to nominal terms (see section 6

below).

*Hoover (2012a) develops the idea of a perspectival realism such as Haavelmo suggests
here.



4 Measurement, Observation, and Testing

In an ideal case, Haavelmo conceives of the testing of a theoretical model
as simply conducting a measurement. If the relationships and values of the
theoretical model are completely matched to the relationships and values
obtained by using the same design of an experiment but applying it to the
real world, then one would judge the model to be true: “It is then natural
to adopt the convention that a theory is called true or false according as the
hypotheses implied are true or false, when tested against the data chosen
as the ‘true’ variables” (Haavelmo 1944, p. 9). Haavelmo would regard
the simulation of a theoretical model that perfectly matched the observed
behavior of the variables in the world as sufficient evidence for its truth. The
issue is only slightly more complicated in this case that there are multiple
valid modeling perspectives on the data (see section 3 above). In that case,
so long as we can derive the probability distribution of our theoretical model
from the one that actually characterizes the observed relationships, we may
judge the theoretical model to be true.

Theory may be incomplete or have only qualitative implications. In one
type of case, theory may determine the values of variables or parameters only
loosely or within a range. Theory may not, for example, assign a parameter
« a particular value, but perhaps only a range — say, @ > 0. A successful
test, then, measures the analogue to o in the world to be within that range.
In a second type of case, theory may imply only a broad property such as a
homogeneity restriction (e.g., the neutrality of money) or the selected char-
acteristic of a probability distribution. Then, a class of theoretical models,
rather than a unique theoretical model, would be supported by their con-
sistency with the observed or measured relationships (Haavelmo 1944, pp.
82-83).

In all of these cases, the logic that relates theory to the world through
the design of an experiment expressed in a theoretical model is the same as
that for observation or the collection of data discussed in section 3. The the-
oretical model implies a set of procedures that applied in ideal circumstances
would elicit information from the world. If the empirical model displays
verisimilitude with respect to the world observed according to the experi-
mental design implied by the theoretical model, then the theoretical model
is supported. Both observation of particular variables and testing of the
model follow Haavelmo’s template for measurement, although the one seeks
to find a value, the other a relationship: “The essential feature of ... a rule



of measurement is that it does not a priori impose [the theoretical restriction
at stake] upon the variables to be measured” (Haavelmo 1944, p. 13). A
genuine measurement or a genuine test might impose a particular theoreti-
cal perspective on the data, but it must leave open alternative possibilities
within that perspective.’

The distinction between testing and observation is thus one of degree,
not of kind. When using an experimental design to measure the value of
a variable or parameter (or even a relationship), there may be no degree of
freedom with respect to the maintained theoretical assumptions, even though
different values are permissible. The measurement would not be checkable
against any other standard than its conforming to the a priori design of an
observational experiment. Such a measurement cannot constitute a test of
maintained assumptions, since it builds them in from the beginning. Only by
embedding those assumptions in a broader maintained or a priori framework
that is consistent with their either holding or not holding could one construct
a genuine test.

What is a stake may be illustrated by an example that is not Haavelmo’s.
The United States Congressional Budget Office (1995) publishes estimates
of the natural rate of unemployment. These estimates are backed out of a
particular specification of an expectations-augmented Phillips curve of a quite
specific specification. They, thus, presuppose the experimental design and do
not provide a test of it. The Phillips curve is used as a measuring instrument;
and, while it may supply data that are used to test other hypotheses, it is
not directly involved in a test of what it estimates.®

Both tests and observations are kinds of measurements in Haavelmo’s
scheme. An observed variable or relationship is defined by the application
of an experimental design to the real world. In contrast, the test is defined
by the application of the experimental design of the theoretical model to
the data generated by observation. A genuine test is possible only if the
design of the test experiment is independent of the design of the observational
experiment — that is, a genuine test requires that there is nothing in the
design of the observational experiment that guarantees its concordance with
the theoretical model.

®Haavelmo (1944, p. 66; cf. p. 10) sees the relationship between measurement and
testing as so close that he refers to estimation as “a particular form of testing hypotheses.”

6See Boumans (2005, ch. 5, appendix) for a useful discussion and another example.
Duarte and Hoover (2012) provide another relevant example in the use of economic models
to measure shocks.



A further consequence of Haavelmo’s view is that observations are relative
to a point of view — that is, at one level or another observations build in a
theoretical perspective and none is a completely raw or free-floating fact.
The real world constrains us, to be sure, but what we see in the real world
depends, in part, on how we look at it.

5 Design of Observational Experiments

Testing for Haavelmo is conceived of as a matter of matching theoretical mod-
els to observations, which are themselves also the product of experimental
design. In each case, our object is to provide a model of an experiment:

The idea behind this is, one could say, that Nature has a way
of selecting joint value-systems of the “true” variables such that
these systems are as if the selection had been made by the rule
defining our theoretical model. [Haavelmo 1944, p. 9]

But the observations must not be constructed in such a way that they
necessarily confirm the theoretical model. Stochastic models undermine the
strategy to the degree that any apparent mismatch between theory and ob-
servation may be explained as a rare event rather than as a failure of the
model under test (Haavemo 1944, p. 2). Although, the details are beyond
our current scope, Haavelmo’s (1944, ch. 4) discussion of Neyman and Pear-
son’s framework for statistical hypothesis testing aims to supply practicable
standards for drawing a pragmatic distinction between events that support
a match between theoretical model and observation and events that do not
support such a match.

Haavelmo’s account of the ideal test provides too “clean” a view of econo-
metric methodology. It would be easy to read it as, a priori theory proposes
and observation disposes, which in turn supports a caricature: the economic
theorist, working in isolation, passes his hypotheses to the econometrician
who “[aJrmed with an array of tools ... goes about his grim task — testing
and rejecting models,” reporting “yes” or “no” but not otherwise interacting
with the theorist (Eichenbaum 1995, p. 1619). The vision of the econo-
metrician as the as grim executioner of models that fail to fit reality, gives
him a role as a gatekeeper, but not as a constructive contributor to the ac-
cumulation of empirical knowledge (cf. Heckman 1992, pp. 883-884; 2000,
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pp. 86-87). The caricature misses Haavelmo’s actual vision of econometric
practice in two related respects.

First, as already noted in section 3, a priori for Haavelmo does not imply
considerations independent of all empirical considerations, experience, and
so forth:

It is almost impossible, it seems, to describe exactly how a sci-
entist goes about constructing a model. It is a creative process, an
art, operating with rationalized notions of some real phenomena
and of the mechanism by which they are produced. The whole
idea of such models rests upon a belief, already backed by a vast
amount of experience in many fields, in the existence of certain
elements of invariance in a relation between real phenomena, pro-
vided we succeed in bringing together the right ones. [Haavelmo
1944, p. 10]

Rather a priori refers to a maintained perspective or point of view that is
a) independent of the experimental design for measuring the observations on
which it will be tested and b) allows no feedback from the current observa-
tions to the current experimental design. Feedback from observational results
to new experimental designs, however, is an essential element in the growth
of knowledge. Haavelmo sees the requirement of an a priori experimental
design as a condition of interpretability. So, for example, it is only within a
framework in which the space of admissible hypotheses is set out in advance
and held constant that the notions of size and power (or type I and type II
error) have precise, quantifiable counterparts. Apriorism of this sort is part of
his general view that knowledge is perspectival: we can understand — or even
properly observe — empirical reality only through the theoretical framework
of a well-defined experimental design (cf. Hoover 2012a). Such apriorism
does not rule out learning from the data: “It is clearly irrelevant how we
happen to choose the hypothesis to be tested ... In particular, the hypoth-
esis might be one that suggests itself by inspection of the data” (Haavelmo
1944, p. 83).

The second way in which the caricature of Haavelmo’s econometrician
as the grim executioner of models misses his actual methodology builds on
the last point. Haavelmo sees economic knowledge as advancing through
the interplay of theory and observation. He quotes approvingly Bertrand
Russell (1927, p. 194; see Haavelmo 1944, p. 14): “The actual procedure of
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science consists of an alternation of observation, hypothesis, experiment, and
theory.” He himself writes: “In scientific research — in the field of economics
as well as in other fields — our search for ‘explanations’ consists of digging
down to more fundamental relations than those that appear before us when
we merely ‘stand and look’ ” [Haavelmo 1944, p. 38]. Even in the context of
formal Neyman-Pearson statistical tests, Haavelmo observes that the class of
admissible hypotheses might be incomplete and that examining the power of
tests against hypotheses outside the admissible class might be enlightening.
Haavelmo’s vision is one in which the outcomes of one experiment shapes
new questions, new perspectives, and new experimental designs.

The upshot is that rather than an overly clean view of the nature of
empirical investigation, Haavelmo takes a messy view — even in the case
of real-world controlled experiments, but especially for the case of passive
observation. With experimentation as the governing simile, much of The
Probability Approach is devoted to understanding the nature of the empirical
mess and to proposing workable strategies for managing it.

Haavelmo distinguishes three types of variables — where “variable” also
comprises parameters and relationships — each defined in relationship to the
experiments in which it participates. In effect, Haavelmo sees two worlds
— the world of theory and the world of reality. The world of theory is the
home of precisely defined concepts and relationships, a world undisturbed
by unknown or unaccounted for factors, a world of ideal experimentation.
This world is populated by theoretical variables. An experiment in this
world amounts to evaluating a counterfactual claim: “the most interesting
[structural relations| are those for which the associated design of experiment
consists in fixing a set of datum-parameters or ‘independent variables,” the
‘outcome’ of the experiment being the choice of a particular value of some
dependent variable” (Haavelmo 1954, p. 3). In the context of a formal theo-
retical model, such outcomes might be deduced mathematically or simulated
— in the latter case, the experimentation is literal though it takes place in an
artificial world. Ideal testing, as we saw in section 3, amounts to establishing
the perfect (or, at least, adequate match between) the theoretical model and
the measured behavior of variables in the world.

The world of reality lacks the crisp characterization of the artificial world
of theory. In Haavelmo’s account, it is populated by two types of variables:
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“true” and “observational” variables (Haavelmo 1944, p. 5).” The true
variables are those that correspond perfectly to the experimental design for
the measurement of a variable.

But the theoretical variables are not defined as identical with
some “true” variables. For the process of correct measurement is,
essentially, applied to each variable separately. To impose some
functional relationship upon the variables means going much fur-
ther. We may express the difference by saying that the “true”
variables (or time functions) represent our ideal as to accurate
measurements of reality “as it is in fact,” while the variables de-
fined in a theory are the true measurements that we should make
if reality were actually in accordance with our theoretical model.
[Haavelmo 1944, p. 5]

Haavelmo’s point is this: ideally, the values of true variables would cor-
respond conceptually to the theoretical variables, but the relationships in
which they stand one with another are not built into the experimental design
through which they are measured. Rather whether true variables correspond
to theoretical variables is the central question of testing, and it must remain
an open question in the design of an empirical model to be settled only with
regard to the data; otherwise, no genuine test is possible.

The observational variables are the variables that are actually collected.
Haavelmo’s distinction is vital; for he proposes that the testing relationship
is a relationship between theoretical and true variables. If observational vari-
ables are to be meaningful, they must correspond more or less closely to true
variables. The failure of such correspondence poses a serious methodological
challenge. The researcher must either assure such correspondence or find a
way to compensate for it absence.

At least three questions can be raised with respect to any variable: First,
what is it? The question has two senses. What is its value? And what is it
conceptually? This is the central question in the comparison for real-world
variables. Does the observational variable capture the concept aimed at for
the true variable? For various practical reasons, it may not.

"Haavelmo is fond of scare quotes. Partly, this is a matter of personal style, but the
fact that they are most consistently used with reference to epistemological concepts, such
as truth and reality possibly reflects a fear of committing himself in fraught philosophical
debates (see Hoover 2012a). Not sharing his diffidence, we shall not adopt his practice.
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Second, how does it behave? Theoretical variables behave according to
the rules embedded in theoretical models. True and observational variables
behave according to the rules governing reality. But many features of re-
ality may serve to obscure or undercut the relationship between true and
observational variables.

Third, what does it mean? For Haavelmo (1944, p. 6) meaning is a
matter of tested theory. Theoretical models taken as formal systems have
no meaning. The models and their variables gain their meaning through
being applied to the world, through the relationships among the theoretical
variables corresponding to those among the true variables. But this is not a
one-way street. Haavelmo (1944, p. 12) suggests that the natural history of
most sciences begins with ill-formulated metaphysical theories and are made
increasingly complex to deal with the challenges posed by observational data.
At some point, “clearing work is needed, and the key to such clearing is found
in a priori reasoning, leading to the introduction of some very general — and
often very simple — principles and relationships, from which whole classes of
apparently very different things may be deduced.” Theory thus helps in the
conceptual understanding of true variables and, therefore, of the relationships
among them, and consequently also in the design of appropriate experiments
to make practical observations.

An example of our own may help to clarify Haavelmo’s distinctions. Key-
nesian theory classifies a person as involuntarily unemployed when he is not
employed and the real wage exceeds his marginal disutility of labor —i.e., he
would like to work at the going wage but is not offered a job (Keynes 1936,
ch.2). The theoretical concept suggests an experimental design to elicit un-
employment data: People should first be divided into those working and those
not working. Those not working should be surveyed and asked whether they
would be willing to work for the actual wage rate being paid to workers in
jobs that they would be qualified to do.

The data needed to construct the true unemployment rate would have
to survey every person in the economy. In practice, of course, there are
practical difficulties. Surveys will always be more limited, so that questions
of representativeness arise. People may not answer the survey honestly. And
in a world of heterogeneous labor, determining which of the variety of wage
rates is relevant is daunting. Thus, the observed unemployment rate may
fail to conform in various ways to the true rate. But many of the problems
are remediable, so that with sufficient will and resources, greater conformity
between the two variables might be obtained.
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Some of the practical problems, however, may bleed into conceptual prob-
lems. In practice, the U.S. Bureau of Labor Statistics actually conducts its
surveys somewhat differently (see Hoover 2012b, ch. 12, section 12.2). They
ask two questions: Are you working? And if not, have you actively sought
work in the past two weeks? The first question establishes the division of
persons into workers and nonworkers, and the second is supposed to estab-
lish the division between the involuntary and voluntarily unemployed. The
conceptual basis for the second division is not the same as that proposed
in Keynesian theory, so that reported unemployment data diverge from the
true data needed to test any Keynesian theory involving involuntary unem-
ployment. In practice, the mismatch may prove inconsequential if, in fact,
the time-series behavior of the unemployment data approximated that of a
conceptual purer involuntary unemployment data sufficiently well (Haavelmo
1944, p. 7). But there are in many other cases, a range of deeper problems,
not so easily solved by an appeal to approximation.

The distinction between theory and model is not drawn explicitly in
The Probability Approach, but it is implicit in Haavelmo’s term “theoretical
model.” Roughly, Haavelmo treats theory as abstracted from real phenom-
ena and, possibly, conceptually incomplete. For example, economic theory
may tell us that demand and price are related inversely, but may be indiffer-
ent among further possible concretizations — for example, among particular
values for the price elasticity or among other variables that are taken to
influence demand. There exist, then, a variety of theoretical models compat-
ible with the theory. Many of these models may be mutually incompatible.
Others may form families of compatible models, the members of which are
consistent, as long as restricted to specific domains defined by ceteris paribus
assumptions. For example, a demand relationship ¢ = f(p) may be compat-
ible with ¢ = g(p,y), so long as they share, say, a related functional form,
and the appropriate ceteris paribus condition holds: y = . This is one sense
in which different compatible perspectives on the same reality are possible.

Theoretical models posit stable relationships. A deep problem in eco-
nomics is that there is no guarantee that correspondingly stable relations
exist in reality. Haavelmo (1944, p. 13) calls relationships that in fact are
stable under experimentation autonomous (see Aldrich 1989). Autonomy is
not a property of the abstract theoretical model, but a property of observ-
able reality. No experiment — either controlled experiments of laboratory
science or the hypothetical experiments invoked in passive observation — are
completely controlled (Haavelmo 1944, p. 18). In setting up an experiment,
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we frequently ignore potentially influential factors because they are known to
be stable or they are inaccessible or simply because we are ignorant. Should
these factors change, the observed relationship will fail to be autonomous.

In the case that we know that influential factors are constant, autonomy in
observational models is analogous to ceteris paribus conditions in theoretical
models. A shift in the value of an influential factor shifts the domain of
applicability of the observational model. While we may account for the
effects of shifts in known factors in the observational model, whether we are
able to incorporate them into the theoretical model depends on whether they
are comprehensible given the conceptual resources of the theory.

Haavelmo also recognizes that autonomy can be threatened by factors
that are inaccessible to us or of which we are ignorant. Observable rela-
tionships typically hold only in an “environment” or “milieu” that cannot
be fully specified in advance and so open up the possibility of unpredictable
collapses of autonomy (Haavelmo 1944, section 8; 1954, p. 2). These may to
some degree be treated as exceptional cases and captured through statistical
methods ez post: “The construction of systems of autonomous relations is,
therefore, a matter of intuition and factual knowledge; it is an art” (Haavelmo
1944, p. 29). But too many exceptions, too many failures of autonomy, sap
the value of the observational model (Haavelmo 1944, p. 25). Luck matters.

As we have seen already, testing for Haavelmo amounts to checking the
match between the theoretical model and the true model of the observations.
An autonomous stochastic model must, according to Haavelmo, account for
the stochastic behavior of the observable variables as it is in reality, not as
it is posited by some theoretical model. In the case of passive observation

we can only try to adjust our theories to reality as it appears be-
fore us... We try to choose a theory and a design of experiments
to go with it, in such a way that the resulting data would be those
which we get by passive observation of reality. [Haavelmo 1944,p.
14]

He argues that stochastic variables are interpretable only in a well-defined
stochastic model and “it is ... important ... not to force certain data into
an alien model” (Haavelmo 1954, p. 6; cf. p. 5 and 1944, p. iv). A
stochastic model adequate to the observed variables can be used to test a
theoretical model in Haavelmo’s view as long as the key features of the theory
are preserved in a way that conforms both to the theoretical model and to
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the model of the true variables. The central difficulty of empirical research
is establishing the necessary conformity to justify tests and to make their
conclusions meaningful.

Haavelmo sees empirical research as an iterative process. When the model
of the observable data do not sufficiently match the theoretical data to permit
a useful test, then there are two choices, bring the data closer to the theory or
bring the theory closer to the data. Haavelmo provides an example. Consider
a theory that the quantity of a good (y) depends on its price (p).® The theory
is realized in a theoretical stochastic model:

(A)y=ap+u

(B) p can be deliberately fixed for experimental purposes.

(C) For every fixed value of p, u is an unobservable random vari-
able with a known distribution which does not depend on the
value of p. The u’s are independent in repeated trials.

(D) E(y) = ap+ constant

(E) a is an unknown parameter. [Haavelmo 1954, appendix]

Haavelmo treats the model as an experimental design in which the be-
havior of the data can be determined through repeated realizations of the
random term u.

Haavelmo then asks what happens if the data are not, in fact, generated
in the manner that the theoretical models supposes, but instead from a time
series process:

(a) y(t) = ap(t) + wi(t) + hw(t)
(b) p(t) = Bp(t = 1) + ws(t) + kw(t)

(¢) w,wy,wy are mutually and serially independent (unobserv-
able) random variables with known distributions.

(d) « is the same unknown parameter as in (A). 3, h, and k are
unknown constants. [Haavelmo 1954, appendix]

8Haavelmo actually writes = rather than y in initially defining the quantity demanded,
but he writes y in the actual demand functions and in all but one other case in working
out the example. It appears to be a slip, and we write y consistently.
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The second, observed model is incompatible with the first theoretical
model. In particular, as Haavelmo points out, except for special choices of
the parameters, E(y(t)) # ap+ constant. To insist on using the theoretical
model in the face of the fact that the time-series model describes the actual
behavior of the data is precisely to force “certain data into an alien model.”

Several issues arise with respect to this example. What is the status of the
second model? Is it a new theoretical model or is it an observational model
that must be interpreted through the first theoretical model? Haavelmo is
noncommittal: one could “if one wants” offer an interpretation of the new
elements of the structure. He gives a little story; but the story draws on
very different conceptual resources than those that we usually associate with
economic theory; and, in any case, it seems to be optional. So, another
interpretation would be to regard it as a purely observational construct. One
way that we could have obtained the model is through an iterative process in
which statistical tests would have revealed that key stochastic assumptions
of the first model, such as (B) the serial independence of the u’s would have
failed. This might suggest some sort of dynamic process.” The second model
would, then, be a good guess, informed by the test of the first model.

Were we to change Haavelmo’s example a little and to treat wi,ws not
as independent and unobservable random variables, but as other observ-
able variables governed by processes similar to (b), then changes in these
variables would have been revealed as failures in the implicit assumption of
autonomy of the demand curve (A). Extra-statistical knowledge (and, again,
good guessing) might have suggested that these variables be introduced as
additional controls.

We can, therefore, think either of adapting theory to observation (i.e.,
replacing the first model with the second as the theoretical model) or as pro-
viding a better experimental design that takes account of features of the data
not addressed in the theory in such a way that we can accurately measure the
true variables — in this case, particularly, the value of .. Either way, the first
model will never be accepted on any well formulated test. Under the second
way of interpreting the example, Haavelmo’s condition (d) that asserts that
the same « appears in both models can be rationalized in the following way.
The first model is rejected against the more general second model. But the
features that produce the rejection (i.e., the failure to capture the dynamics)
do not touch the interpretive core (i.e., the meaning of «); hence it is accept-

9See Hoover, Johansen, and Juselius (2008) for a similar analysis of another example.
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able to use the simpler first model to represent a class of models that embed
the same linear law of demand and to use if for conceptual analysis.

A final issue is that Haavelmo draws special attention to the role of w,
the common random shock to y and p. We shall come back to this issue in
the next section.

The key lessons from Haavelmo’s illustration are these: In order to isolate
the relevant true variables and true relationships (to control the experiment),
a process of adapting either the observational design or the theoretical model
is essential. While the adaptations can take place on either pole, only ac-
tual examination of the data will point out when adaptations are required,
so the process is not purely theoretical, but rather fundamentally empiri-
cal. The relationships of stochastic variables can be interpreted legitimately
only within a stochastic model consonant with the observable data and more
general than any relationships to be tested. Some aspects of an appropriate
stochastic model may have clear theoretical interpretations, others may be at
best empirically warranted, ex post adjustments that deliver an interpretable
stochastic model.

We address the way in which these features play out in the cointegrated
vector autoregression in the next section.

6 Experiments and CVAR Scenarios

The power of Haavelmo’s use of the experiment as a simile for understanding
passive observation is well illustrated in the light that it casts upon “scenario
analysis” in the context of the cointegrated vector autoregression (CVAR).
To take a concrete case, we refer to the test of monetarism on Danish data
discussed by Juselius (2006, ch. 2) and Juselius and Johansen (2006).
Monetarism comprises, among other features, the quantity theory of
money, which implies that money is neutral in the long run though it af-
fects real variables in the short run (Friedman 1956, 1969). Friedman (1956)
argues that the quantity theory depends fundamentally on the notion of a
stable demand-for-money function that comprises a transactions demand de-
pendent on nominal income and, therefore, in aggregate on real GDP and the
price level, and an asset demand for which there are two relevant margins:
between money and (i) real goods with an opportunity cost measured by
the rate of inflation and (ii) other financial assets with an opportunity cost
measured as the yield differential between an alternative asset and money.
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Monetarism is compatible with a variety of relationships among real and
nominal variables in the short run (Friedman 1974). As we saw in section 4,
Haavelmo does not argue that a theory tested through an experimental design
must be complete. Rather the theoretical model may exemplify a class of
models with specific generic features leading to a test of a class of models. We
note that, in addition, to the quantity theory, most versions of monetarism
also subscribe to two doctrines that are related to the quantity theory in
various ways: first, Irving Fisher’s hypothesis that a nominal interest rate is
the sum of an independent real rate of interest and an inflation rate; and,
second, the expectations theory of the term structure of interest rates. Our
focus is on long-run versions of these doctrines as well as of the quantity
theory of money. In addition, many macroeconomists treat the quantity
theory as requiring a minimum of two independent types of shock — demand
and supply shocks. We also restrict our attention to versions of monetarism
in which the rational-expectations hypothesis holds.

Haavelmo’s notion of the design of experiments already constrains the
formulation of a model of the true variables. On the one hand, the true
variables must be adequate counterparts of the theoretical variables; and,
on the other, the observational variables must adequately represent the true
variables. Furthermore, the model must be general enough to allow a generic
test of the key theoretical relationships. The design strategy thus operates
along two margins governing the relationships (i) between the theoretical and
the true variables and (ii) between the true and the observed variables. The
observed Danish counterparts to the theoretical variables in Juselius (2006)
are: the logarithm of the M3 monetary aggregate (m), the logarithm of real
gross national expenditure (y"), the logarithm of the consumer price index
(p), the own yield on M3 (R,,), and the yield on a long-term government bond
(Rp). Of course, the inflation rate is then Ap; the real stock of money, m — p;
the opportunity cost against real goods (the real short rate of interest), R, —
Ap; and the opportunity cost against financial assets, R, — R,,,. With respect
to the first margin, the conceptual match between the theoretical variables
(broad money, the general price level, level of activity and opportunity costs)
is reasonably good. However, the underlying theory is not completely specific
and, we could, for instance, make other choices of variables for, say, the long-
term rate of interest or the price level with equal claim to being true variables.
With respect to the second margin, even taking these particular choices as
given, we cannot rule out some deviation between the actual measurements
of these variables and the ideally correct measurements.
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A test of monetarism requires a model of the true variables in which
particular monetarist claims may or may not hold. A VAR representation of
these data provides a very high level of generality in which to frame such a
test. It is a structured characterization of the information in the data. The
VAR model can be written as

xt:,uo—i—ﬂlxt_l—i— "'+Hkxt—k+(1)Dt+€t7 tzl, 2,...,T, (1)

where z; is a vector of variables, i, is a vector of constants; D; is a vector of
deterministic terms (such as, trends, and dummy variables) ¢; is a vector of
identically distributed normal random variables; and II and ® are matrices of
parameters; all of conformable dimensions; and there exists a sufficient set of
initial conditions for the lagged 2’s. The VAR is similar to Haavelmo’s (1954)
dynamic demand model (see Section 5 above), although both models are more
general than the ones that Haavelmo (1944, 1954) typically contemplates,
since each is compatible with all the variables, except the deterministic terms,
being endogenously determined.!’

To provide an adequate account of the stochastic mechanism, we must
work both margins: on the one hand, providing an adequate empirical char-
acterization of the data; on the other, transforming it into a perspective in
which the theoretical and true relations among the data can be compared.
Such a framework in which theory can be brought to bear on the appropriate
data is essential; for as Haavelmo observes:

A sample of observations is just a set of cold, uninteresting num-
bers unless we have a theory concerning the stochastic mechanism
that has produced them. [Haavelmo, 1950: p. 265].

The design of the experiment in Haavelmo’s view involves establishing a
perspective on the data in several stages. The VAR model in (1) provides
a conceptual framework. The first stage uses misspecification tests to de-
termine whether the model is an adequate description of the data. If not,
it must be turned into one through further specification for which the tests
may provide some useful guidance. But we note that (1) is not perfectly gen-
eral, as we have supposed linearity in parameters. Linearity is a perspective
imposed on the data that could correspond to a true feature of the world,

0Haavelmo typically refers to endogenous variables as dependent and exogenous vari-
ables as independent or datum-variables.
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but which may also work when a first-order Taylor expansion is an adequate
approximation to an inherently nonlinear economic model. Also, in practice,
we contemplate a restricted set of deterministic variables, such as constant,
trend, dummies. Furthermore, formulating an adequate model of the true
variables is a process that is informed by the actual properties of the observed
data:

The economist ... is presented with some results which, so to
speak, Nature has produced in all their complexity, his task being
to build models that explain what has been observed. [Haavelmo
1944, p. 7).

To secure a stable well-formulated stochastic structure, such as Haavelmo
requires for interpretability, it be may necessary to control for important
events or institutional change (such as reforms, interventions, wars) through
additional variables (particularly, deterministic variables, such as step or
impulse dummies) or additional lags. In some cases, the precise variables,
lags, or functional forms may be anticipated on the basis of background
knowledge or shrewd theoretical insights, but in others, it will be a matter
of ex post adjustments to the actual behavior of the observed data informed
by either general characteristics of the data or by formal specification tests.
(See Juselius (2006, 2012) for a more detailed account of the formulation of
an adequate VAR representation.)

At this stage, it is essential to follow Haavelmo’s advice to use the concep-
tual resources of economic theory to design an experiment that is statistically
adequate and, at the same time, formulated in a manner that the key propo-
sitions of the theoretical model can be adequately represented and tested.
We refer to this formulation as a scenario — that is, a concrete specialization
or set of restrictions on a more general stochastically and observationally
adequate representation of the observed data that corresponds to the dis-
tinguishing features of the theoretical model. The general representation is,
thus, the controlled framework within which the experiment is run, and the
scenario is the experiment to be run within that framework.

To turn to the specific case, the long-run relationships of monetarism are
naturally expressed as cointegrating relationships, so it is natural to refor-
mulate equation (1) as a CVAR:

Az, = py+ af'zy 1+ T1Ax 1+ D, + &, (2)
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where for p variables and r cointegrating relationships, II = aﬁ/ and « and
B are p x r matrices, r < p, and 3'x; defines the stationary combination of
nonstationary variables. Here both for ease of exposition and because a VAR
in levels with only two lags characterizes the Danish data well, the CVAR is
formulated with only one lagged difference.

It is useful to also represent (2) in its inverted form in which the variables
are expressed as a function of shocks and deterministic components:

t t
1 =C> &+ Cugt+C> ®D;+C* (L) (&, + ®Dy) + Xo,  (3)
=1 =1

where C'= 3, (a; (I —=T1)8,) *a, measures the long-run impact of a shock
to the system; C* (L) (g; + ®D;) is an infinite lag polynomial describing
the impulse response function of the stochastic shocks, ¢;,and deterministic
shocks, D,; and X, contains the initial values, xo,x_1, of the process and
the initial value of the short-run dynamics C* (L) ey. The representation (3)
describes a decomposition of the vector process, z;, into stochastic trends,
t
C > &4, deterministic trends, C'ugt, cycles, C* (L) &, and irregular compo-

t=1
nents, £; and D;.

As a first step to bring the general CVAR perspective to bear on mone-
tarism, we let x; = [my, pr, Yy, Ryt Rot)'. We note that statistical tests sug-
gest the variables are nonstationary: that p and m are 1(2) and the remaing
variables are I(1). This leads to a tentative decomposition of the data vector
into two stochastic trends, one deterministic time trend, and a stationary
cycle component:

my C11 din dip g1

bt €21 do1  da2 S uy g2

Yi | = 0 [Z Z Uli] +| ds1 ds2 [ D ul’% ]4- 93 | [t]+ Xo
Rt 0 dy  dy 2 0
Ry 0 dsi  dso 0

(4)
where X is a catch-all for stationary components and initial values. The
specification is constrained both by facts about the data, particularly the
integration properties, and background assumptions to the monetarist sce-
nario, particularly the assumption of two autonomous shocks — an aggregate
demand or nominal shock (u; ;) and an aggregate supply (or real) shock (us).
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Under the testable assumption that m,; and p; are 1(2), the nominal shock,
u14, cumulates twice to describe a second-order stochastic trend in money
and prices and once to describe a first-order stochastic inflation trend. The
real shock, us;,cumulates once, consistent with the real variables being I(1).
The linear deterministic trends for my,p;, and y; reflected in assumption
that g1, g2, 93 # 0 corresponds to the fact that the average growth rates of
my, Dy, and y; are significantly different from zero. For the Danish data, it
is also necessary to include one step-dummy in the cointegration relations to
account for the change in the equilibrium mean associated with the deregu-
lation of capital movements in 1983 which caused (i) a strong reallocation of
money holdings; (ii) a change in the inflation rate; and (iii) a change in the
risk premium of the interest rate spread.

A formulation such as CVAR model (4) addresses one of Haavelmo’s
(1954, appendix) concerns (discussed in section 5 above), that models would
very commonly be driven by common shocks. He worried that this would
be a confounding feature that would stand in the way of recovering the un-
derlying structure from the observations. While the concern is a live one for
stationary data, for nonstationary data, nearly the opposite is the case: coin-
tegrating relations among variables with genuinely common stochastic and
deterministic trends are easier to observe and cointegrating relations among
variables with unrelated stochastic trends are easier to reject than for long-
term relationships among stationary variables. Nonstationarity amounts to
Nature performing very dramatic experiments that reveal, rather than cloak,
structure. They also help to resolve another of Haavelmo’s characteristic
concerns — the idea that a potentially important casual variable might show
too little variance either to be an important actual cause or to support a pre-
cise parameter estimate. Again, because the variance of nonstationary series
increases over time, we generally do not have to wait very long for potential
factors to be revealed. This is because parameter estimates among nonsta-
tionary variables are superconsistent, converging at a rate of 1/T rather than
1/v/T as with stationary variables.!

CVAR model (4) turns out to be an observationally consistent description
of the Danish data. It is, at once, constrained enough to characterize the
data and flexible enough to provide a key part of the experimental design
— the controlled framework in which characteristic monetarist propositions

'The superconsistency of estimates also eliminates simultaneity bias in cointegrating
relationships, which was another of Haavelmo’s (1943) central concerns (see Juselius 2012).
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can be tested. The other key part is the monetarist scenario itself: the long-
run neutrality of money implies that money and prices are homogeneous
of degree one; a stable long-run demand for money implies that velocity is
stationary; the expectations-theory of the term structure implies that the
differential between short and long rates of interest is stationary; and the
Fisher hypothesis implies that the real rate of interest is stationary. More
explicitly:

5.A m; and v; are homogeneous of degree 1:  the neutrality of money
5B m—p—y" ~1(0): the velocity of money

5.C R, — R, ~ 1(0) : the term structure

5D R,,— Ap ~ I(0): the Fisher hypothesis

5.E expectations are rational

The assumption of homogeneity can be formulated as the restriction in
CVAR model (4). In practice, the neutrality between money and prices (5.A)
is accepted for the Danish data. Homogeneity allows us to impose a useful
simplification on CVAR model (4) that amounts to a more restrictive change
of perspective. Under this assumption, (Kongsted, 2005) shows that CVAR
model (4) can be reformulated in an (almost) equivalent form:

my — Pt dyy —dor  dy2 — dag g1 — g2
Apy C21 0 0
yi | = ds1 d32 [ %Z;Z 1 + | g3 [t] + Xo
Ry day d42 " 0
Ryt ds; ds2 0

()
where all variables are now at most I(1).
Incorporating these assumptions as restrictions on CVAR model (5) re-
sults in a model consistent with the monetarist scenario:

my — Pt 0 dip 9
Ap, C21 0 0
Ui
Y | = 0 dio { %ul’. } +1 9 | [t]+Xo (6)
Rmﬂg Co1 0 20 0
Ry Co1 0 0
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where real income and real money stock share the real stochastic trend, > us;
and the deterministic time trend; and inflation and the two nominal interest
rates share the nominal trend, ) uy ;.

We have, so far, ignored the stationary components of the data in CVAR
models (4) - (6). An important feature of the CVAR formulation is the
dichotomy between the long-term, nonstationary component and the short-
term, stationary component. The superconsistency of the parameter es-
timates among nonstationary variables allows a substantially independent
analysis of the nonstationary component. The error-correction of deviations
from cointegrating relationships is one of the forces that affects short-term
adjustment behavior, as, in effect, these deviations are another element of
the stationary component. Because of the superconsistency of the parameter
estimates of the cointegrating relationships, the stationary component can
be analyzed as a second stage of a complete analysis conditional on having
adequately identified the cointegrating relationships.

The long-term monetarist scenario defines a class of models compatible
with a variety of short-term specifications. For example, an extended mone-
tarist scenario, including the hypotheses that money causes prices in the long
run and that money causes nominal income in the short-run would be evalu-
ated in a model that specified both the contemporary and lagged dynamics
of the variables. We do not, however, pursue these extensions here.!?

The actual empirical investigation of Danish data shows that each of the
key monetarist relationships in 5.B-5.C are too persistent to be stationary
(Juselius 2006, p. 188). Although this is an important negative result, at
least for a particular class of monetarist theories, such results may more
generally yield positive information. For example, the fact that some cointe-
grating relationships are supported and others contradicted for a particular
scenario, could suggest the empirically relevant direction in which it would
be helpful to reformulate the theoretical model. More concretely, in a ver-
sion of monetarism with rational expectations, just the fact that an ex post
step dummy variable is necessary to formulate an adequate stochastic spec-
ification (as in the Danish data) helps to direct further investigation. The
usual approaches to rational expectations (5.E) assume stationary probabil-

12Giese (2008) provides an illustration, using a similar scenario analysis to investigate
a common specialization of the expectations theory of the term-structure model in which,
in addition to their cointegrating relationship, the short rate of interest causes the long
rate. She rejects the relevant zero restriction and, indeed, finds evidence for the weak
exogeneity of long rates.
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ity distributions in order to apply the law of iterative expectations (Sargent
1987, ch. 3, Sargent and Lundqvist 2004, ch. 2). A location shift in the
stochastic trend violates this assumption (Hendry and Mizon, 2010). There
are several approaches that might be taken to address this issue within a
rational-expectations framework: for example, restricting the scope of ratio-
nal expectations to the periods between location shifts as in Lucas (1976)
or modeling learning as in Sargent (1994) or Evans and Honkopohja (2001).
Another alternative, the imperfect knowledge economics (IKE) of Frydman
and Goldberg(2007, 2011), is compatible not only with the structural breaks
in 1983, but also with the positive finding of persistence in the real interest
rate, the term spread, and the velocity of money. These further approaches
call for new experimental designs and the evaluation of new scenarios.

7 Experiments and the Growth of Economic
Knowledge

The scope for actual experimentation in economics is limited. Nonetheless,
Haavelmo found the simile of the controlled experiment to be a fruitful way
to formulate a positive methodology of passive observation. Unfortunately,
the constructive aspects of Haavelmo’s methodology have frequently been
neglected to the point that it has been caricatured the almost wholly neg-
ative view of the economist as the grim executioner of theories. Haavelmo
has been thought to advocate relying on a nonempirical, a priori economic
theory to propose hypotheses that are then accepted or rejected mechan-
ically on the basis of statistical tests. Such a characterization is wide of
the mark. Haavelmo in fact provided a subtle account of the constructive
interplay between theory and observation. In his account, experiments are
designed using theoretical perspectives and revised and elaborated in light of
the observational results of those experiments. Passive observation is under-
stood through analogy to experiment in which statistical techniques serve a
similar function to experimental controls, while the interplay between theory
and observation is fundamentally similar to the case with actual experiments.
Haavelmo’s ideas illuminate the practice of a theory-consistent CVAR sce-
nario, which in turn pushes the experimental analogy beyond the point that
Haavelmo left it six decades ago. A theory consistent CVAR scenario is often
informative about how to modify the theory model when the correspondence
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between the theoretical and observed structure is weak. In Haavelmo’s words:

we can only try to adjust our theories to reality as it appears
before us. And what is the meaning of a design of experiment in
this case. It is this: We try to choose a theory and a design of
experiments to go with it, in such a way that the resulting data
would be those which we get by passive observation of reality.
And to the extent that we succeed in doing so, we become masters
of reality — by passive agreement. [Haavelmo, 1944, p.14]
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