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Summary: Iterated one-step Huber-skipM -estimators are considered for regres-
sion problems. Each one-step estimator is a reweighted least squares estimators with
zero/one weights determined by the initial estimator and the data. The asymptotic
theory is given for iteration of such estimators using a tightness argument. The results
apply to stationary as well as non-stationary regression problems.

Keywords: Huber-skip, iteration, one-step M -estimators, unit roots.
JEL Classification: C32.

1 Introduction

In regression analysis it is often an important concern to be able to detect outliers
or other unsuspected structures. A very simple algorithm addressing this is first
to obtain an initial estimator of the parameters, use this to discard observations
with large residuals, and then run the regression. This is the one-step Huber-skip
estimator. It is a special case of the one-step M -estimator in which the criterion
function is not convex. The one-step Huber-skip estimator could be used as a new
initial estimator when re-running the regression. We give an asymptotic fixed point
result for such iterations of one-step Huber-skip estimators when the model has no
outliers. The result is based on a tightness argument and allows regressors which are
fixed, stationary, and non-stationary.
One-stepM -estimators have been analysed previously in various situations: Bickel

(1975), Jurečová and Sen (1996, Section 7.4) considered cases of smooth weight func-
tions. Ruppert and Carroll (1980) considered one-step Huber-skip L-estimators.
Welsh and Ronchetti (2002) analyse the one-step Huber-skip estimator when the
initial estimator is the least squares estimator as well as one-step M -estimators with
general initial estimator but smooth weight functions. Johansen and Nielsen (2009)
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analyse one-step Huber-skip estimators for general initial estimators and stationary
as well as non-stationary regressors.
Iterated one-step M -estimators are related to iteratively reweighted least squares

estimators. Indeed the one-step Huber-skip estimator corresponds to a reweighted
least squares estimator with weights of zero or unity. Dollinger and Staudte (1991)
considered a situation with smooth weights, hence ruling out Huber-skips, and gave
conditions for convergence. Their argument was cast in terms of influence functions.
Our result for iteration of Huber-skip estimators is similar, but the employed tightness
argument is different.

2 Definition of the one-step Huber-skip estimator

Consider the regression model

Yt = β′Xt + εt t = 1, . . . , T, (2.1)

where Xt is a p-dimensional vector of regressors and the conditional distribution of
the errors, εt, given (X1, . . . , Xt, ε1, . . . , εt−1) has density σ−1f(σ−1ε) so that σ−1εt are
i.i.d. with known density f. The idea of the iterated one-step Huber-skip estimator
is to start with some preliminary estimator (β̂, σ̂2) and seek to improve it through
an iterative procedure by using it to identify outliers, discard these and then run a
regression on the remaining observations.
The preliminary estimator (β̂, σ̂2) could be a least squares estimator on the full

sample. Alternatively, the initial estimator could be chosen robustly. A candidate
would be the least trimmed squares estimator of Rousseeuw (1984), Rousseeuw and
Leroy (1987, p. 180). When the trimming proportion is at most a half this conver-
gences in distribution at a usual T 1/2-rate as established by Víšek (2006).
The outliers are identified by first choosing a ψ giving the proportion of good,

central observation and then introducing two critical values c and c so∫ c

c

f(v)dv = ψ and
∫ c

c

vf(v)dv = 0. (2.2)

This can also be written as τ 0 = ψ and τ 1 = 0, where τ k are the truncated moments

τ k =

∫ c

c

vkf(v)dv for k ∈ N0.

Observations are retained if their residuals Yt − β̂
′
Xt are in the interval from cσ̂wTt

to cσ̂wTt where w2Tt could be chosen for instance as 1 or as 1−X ′t(
∑T

s=1XsX
′
s)
−1Xt.
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The one-step Huber-skip estimators, β̂m and σ̂m, are the least squares estimator
of Yt on Xt among the retained observations. If β̂, σ̂

2 are denoted β̂m−1, σ̂
2
m−1 then

the one-step Huber-skip estimators, β̂m and σ̂
2
m, are defined recursively for m ∈ N as

β̂m = S−1xx Sxy, σ̂2m = (τ 2/ψ)−1S−111 (Syy − SyxS−1xx Sxy) (2.3)

where, for gt, ht ∈ (1, Xt, Yt), then

Sgh =
T∑
t=1

gth
′
t1(σ̂m−1wTtc≤Yt−X′tβ̂m−1≤σ̂m−1wTtc). (2.4)

The correction factor (τ 2/ψ)−1 is needed to obtain consistency. The m times iterated
one-step Huber-skip estimator will be considered. Note that the iterateration has the
property that the set of retained observations can change in each iteration step.
The main asymptotic results concern the convergence with increasing m when T

is suffi ciently large. Thus a normalisation matrix NT in T is needed to normalize
the regressors. If (Yt, Xt) is stationary then NT = T−1/2Ip. If (Yt, Xt) is trending a
different normalisation is needed. For a linear trend component the normalisation
would be T 3/2 and for a random walk component it would be T. Limiting matrices
Σ, µ can then be introduced so

NT

T∑
t=1

XtX
′
tN
′
T

D→ Σ
a.s.
> 0, T−1/2NT

T∑
t=1

Xt
D→ µ.

Note that Σ and µ may be stochastic as for instance when Xt is a random walk. The
estimation errors are denoted

ûm,T =

{
(N−1T )′(β̂m − β)
T 1/2(σ̂m − σ)

}
. (2.5)

Introduce also coeffi cient matrices

Ψ1 =

(
ψΣ 0
0 2τ 2

)
, Ψ2 =

(
ξ1Σ ξ2µ
ζ2µ

′ ζ3

)
,

where ξn = (c)nf(c)− (c)nf(c) and ζn = ξn − ξn−2τ 2/ψ, so that

ρ = Ψ−11 Ψ2 =

(
ψ−1ξ1Ip ψ−1ξ2Σ

−1µ
(2τ 2)

−1ζ2µ
′ (2τ 2)

−1ζ3

)
,

along with a kernel

KT = Ψ−11
T∑
t=1

{
NTXtεt

T−1/2(ε2t − σ2τ 2/ψ)

}
1(cσ≤εt≤σc). (2.6)
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The asymptotic analysis of Johansen and Nielsen (2009) shows that the one-step
estimators β̂m, σ̂

2
m satisfy the one-step equation

ûm,T = ρûm−1,T +KT +RT (ûm−1,T ), (2.7)

for some remainder term RT (ûm−1,T ). In this notation it is emphasised that the
remainder term is a function of the previous estimator ûm−1,T . Indeed, RT (ûm−1,T )
is defined from the equation (2.7) where ûm,T is a function of the data and ûm−1,T
through (2.3), (2.4) and KT is a function of the innovations. A precise definition is
given in Lemma A.1 in the Appendix.
Moreover, it will be shown that through infinite iteration then, for fixed T, and

m→∞ it holds
ûm,T

P→ û∗T

where û∗T = (I1+p − ρ)−1KT satisfies the equation

û∗T = ρû∗T +KT . (2.8)

3 The fixed point result

The fixed point result is primarily a tightness results. Thus, for the moment, only
tightness of the kernel KT is needed, and it is not necessary to establish the limiting
distribution. The necessary assumptions are therefore fairly general. The Euclidean
norm for vectors x is denoted |x|.

Assumption A Suppose the initial estimator satisfies

T 1/2(σ̂20 − σ2), (N−1T )′(β̂0 − β) = OP(1).

Assumption B Consider the model (2.1). Suppose there exists weights wt,T , and
non-stochastic normalisation matrices NT → 0, so that
(i) The weights satisfy maxt≤T T

1/2|wtT − 1| = oP(1).
(ii)The regressors satisfy, jointly,

(a) NT

∑T
t=1XtX

′
tN
′
T

D→ Σ
a.s.
> 0,

(b) T−1/2NT

∑T
t=1Xt

D→ µ,
(c) maxt≤T E|T 1/2NTXt|4 = O(1).

(iii) The density f has continuous derivative f ′ and satisfies
(a) supv∈R{(1 + v4)f(v) + (1 + v2)|f ′(v)|} <∞,
(b) it has mean zero, variance one, and finite fourth moment,
(c) c, c are chosen so τ 0 = ψ and τ 1 = 0.
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The first result is a tightness result for the kernel. The proof uses Chebychev’s
inequality. The details of the proof are given in the appendix.

Theorem 3.1 Suppose Assumption B(iic, iiib) holds. Then KT = OP(1).

Next, the remainder term RT (u) is shown to vanish uniformly in |u| < U. The
proof involves a chaining argument which was given in Johansen and Nielsen (2009),
but the result is written in a slightly different way as discussed in the appendix.

Theorem 3.2 Suppose Assumption B holds. Then, for all U > 0 and T → ∞ it
holds

sup
|u|≤U

|RT (u)| = oP(1).

As a corollary to this result equation (2.7) reduces to

û1,T = ρû0,T +KT + oP(1),

when Assumptions A, B are satisfied.
The fixed point result is now given. Initially a tight estimator (β̂0, σ̂

2
0) is available.

This is iterated through the one-step equation (2.7). Theorem 3.3 shows that the
estimator converges in probability to the solution of the fixed point equation (2.8).

Theorem 3.3 Suppose Assumptions A, B hold and max |eigen(ρ)| < 1. Then

lim supm→∞ |ûm,T − û∗T | = oP(1).

The idea of iterating the one step estimator is also found in Cavaliere and Georgiev
(2011, Theorem 4). They consider, however, a completely different setup of a first
order autoregression with infinite variance innovations, a root close to one, and known
scale. The idea of the proof of Theorem 3.3 is to argue that if the initial estimator û0,T
takes values in a large compact set with large probability then, due to the iteration,
outcomes of ûm,T takes values in the same compact set while |ûm,T − (Ip+1− ρ)−1KT |
is the sum of two terms vanishing exponentially and in probability, respectively. The
details are given in the appendix. A necessary condition for the result is that the
autoregressive coeffi cient matrix ρ is contracting. Therefore ρ is analyzed next.

Theorem 3.4 The autoregressive coeffi cient matrix ρ has p− 1 eigenvalues equal to
ξ1ψ and two eigenvalue solving

λ2 − (
ζ3
2τ 2

+
ξ1
ψ

)λ+
1

2τ 2ψ
(ζ3ξ1 − ζ2ξ2µ′Σ−1µ) = 0.

5



When f is symmetric then ξ2 = 0 and ρ is the diagonal matrix diag{Ipξ1/ψ, ζ3/(2τ 2)}.
Further results can then be given about the eigenvalues.

Theorem 3.5 Suppose f is symmetric with third moments, f ′(c) ≤ 0 for c > 0 and
limc→0 f

′′(c) < 0. Then
(a) 0 < ξ1/ψ < 1 for 0 < ψ < 1 while limψ→0 ξ1/ψ = 1 and limψ→1 ξ1/ψ = 0;

(b) 0 < ζψ3 /(2τ
ψ
2 ) for 0 < ψ < 1 and limψ→0 ζ3/(2τ 2) = 1 and limψ→1 ζ3/(2τ 2) = 0;

(c) if [c{log
∫ c
0
f(x)dx}′]′ < 0 for c > 0 then ζ3/(2τ 2) < 1 for 0 < ψ < 1;

(d) {log f(c)}′′ < 0⇒ [c{log f(c)}′]′ < 0⇒ [c{log
∫ c
0
f(x)dx}′]′ < 0.

The condition [c{log
∫ c
0
f(x)dx}′]′ < 0 is satisfied for the Gaussian density which is

log-concave and by t-densities which are not log-concave but satisfy [c{log f(c)}′]′ < 0.
In the robust statistics literature Rousseuw (1982) uses the condition [c{log f(c)}′]′ < 0
when discussing change-of-variance curves forM -estimators and assumes log concave
densities.
A consequence of Theorem 3.5 is that the roots of the coeffi cient matrix ρ are

bounded away from unity for all compact subsets of the half open set 0 < ψ ≤ 1.
The uniform distribution on [−a, a] provides an example where ρ is not contracting
since in this situation ξ1 = ψ over the entire support. However, the weak unimodality
condition f ′(c) ≤ 0 in Theorem 3.5 is not necessary as long as the mode at the origin
is large in comparison to other modes.

Remark 3.6 In the robustness literature there has been considerable discussion of
the pure location case where the scale is known so σ = 1. The above results carry
through. To write down the new result let

b̂m,T = (N−1T )′(β̂m − β), Kb,T = (ψΣ)−1
T∑
t=1

NTXtεt1(cσ<εt≤cσ),

so that the 1-step equation (2.7) becomes

b̂m,T = ψ−1ξ1b̂m−1,T +Kb,T +Rb,T (b̂m−1,T ), (3.1)

where sup|b|<U |Rb,T (b)| = oP(1). This equation is therefore the same as equation (2.7)
with the estimation error for the scale set to zero. The fixed point equation (2.8)
becomes

b̂∗T = ψ−1ξ1b̂
∗
T +Kb,T . (3.2)

This equation is the same as the location part of the general location-scale fixed point
equation (2.8) when either the density is symmetric or the estimation uncertainty for
the scale is set to zero. It has solution

b̂∗T =
1

ψ − ξ1
Σ−1Kb,T . (3.3)
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4 Distribution of the kernel

Due to the fixed point equation (2.8) the fully iterated one-step estimator is

u∗T = (Ip+1 − ρ)−1KT .

Thus for the distributional analysis it suffi ces to analyse the distribution of the kernel
KT . We do this in a few situations.
Stationary case. Suppose the regressors are fixed or arise from a stationary time

series model. Then the limits Σ, µ in Assumption B(i) are deterministic. The Central
Limit Theorem then shows that

KT
D→ Ψ−11 Np+1(0,Φ), (4.1)

where

Φ =

[
Σσ2τ 2 µσ3τ 3
µ′σ3τ 3 σ4{τ 4 − (τ 2)

2ψ−1}

]
. (4.2)

As a consequence the fully iterated estimator has limiting distribution

u∗T = (Ψ1 −Ψ2)
−1Ψ1KT

D→ (Ψ1 −Ψ2)
−1Np+1(0,Φ). (4.3)

In the special case where the errors are symmetric then the fully iterated estimator
has limiting distribution

(N−1T )′(β̂
∗ − β) =

Σ−1

(ψ − ξ1)
T∑
t=1

NTXtεt1(−cσ≤εt≤σc)
D→ Np{0,

σ2τ 2Σ
−1

(ψ − ξ1)2
}, (4.4)

noting that ψ > ξ1 is satisfied for symmetric, unimodal distributions by Theorem
3.5(a). This limiting distribution also applies in the symmetric, pure location case,
see Remark 3.6. It is also seen elsewhere in the robust statistic literature.
First, Víšek (2006, Theorem 1, p. 215) analysed the least trimmed squares esti-

mator of Rousseeuw (1984). The estimator is given by

β̂
LTS

= arg minβ∈Rp
int(Tψ)∑
t=1

r2(t)

where r2(1) < · · · < r
(2)
T are the ordered squared residuals rt = Yt−X ′tβ. The estimator

has the property that it does not depend on the scale of the problem. Víšek showed
that in the symmetric case the least trimmed squares estimator satisfies

(N−1T )′(β̂
LTS − β) =

Σ−1

(ψ − ξ1)
T∑
t=1

NTXtεt1(−cσ≤εt≤cσ) + oP(1).
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With Remark 3.6 in mind it is seen that the leading term of β̂
LTS

solves the fixed
point equation (3.2). Thus, if in the case of known scale β̂

LTS
is chosen as the initial

estimator, then the distribution of the 1-step M -estimator equals that of the initial
estimator apart from terms which are oP(1).
Secondly, Huber (1964, p. 79) considered a pure location problem without regres-

sors so Xt = 1 and σ = 1. He suggested estimating the location β by theM -estimator,
which in the symmetric case, minimizes the equation

β̂
M

= arg minβ
T∑
t=1

(Yt − β)21(−c<Yt−β≤c).

He conjectured that the variance of the limiting distribution would be τ 2/(ψ − ξ1)2,
matching the limit distribution of the iterated 1-step M -estimator as found in (4.4).
A formal theory is given in Jurečová and Sen (1996, Theorem 5.3.3) showing that

T 1/2(β̂
M − β) =

T−1/2

(ψ − ξ1)
T∑
t=1

εt1(−c≤εt≤c) + OP(T−1/4).

Thus, as a complement to Theorem 3.3, it follows that

lim supm→∞ P(|β̂m,T − β̂
M

T | > η) < ε.

A consequence of this result is that the iterated 1-step M -estimator has the same
limiting distribution as the M -estimator.
Deterministic trends. As a simple example consider the regression

Yt = β1 + β2t+ εt,

where εt ∈ R satisfies Assumption B(iii). Define the normalisation

NT =

(
T−1/2 0

0 T−3/2

)
.

Then Assumption B(ii) is met with Xt = (1, t)′ and

Σ =

(
1 1/2

1/2 1/3

)
, µ =

(
1

1/2

)
,

and maxt≤T E|T 1/2NTXt|4 ≤ 4. The kernel then has a limiting distribution given
by (4.1) where the matrix Φ in (4.2) is computed in terms of the Σ and µ derived
immediately above.
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Trend stationary autoregressions. The derivation is in principle similar to the
deterministic trend case but involve a notationally tedious detrending argument. The
argument is similar to that of Johansen and Nielsen (2009, Section 1.5.1).
Unit roots. Consider the autoregression Yt = βYt−1 + εt where β = 1. To derive

the asymptotic distribution of the kernel note that the autoregression implies that
Xt = Yt−1 = Y0 +

∑t−1
s=1 εs. Thus let NT = T−1. By the functional Central Limit

Theorem then

T−1/2
int(Tu)∑
t=1


εt
εt1(cσ≤εt≤σc)
(ε2t − σ2τ 2/ψ)1(cσ≤εt≤σc)

 D→

 Wx,u

W1,u

W2,u

 ,

where the limit is a Brownian motion with zero mean and variance

ΦW =

 σ2 σ2τ 2 σ3τ 3
σ2τ 2 σ2τ 2 σ3τ 3
σ3τ 3 σ3τ 3 σ4{τ 4 − (τ 2)

2/ψ}

 .
Thus the limiting variables Σ and µ in Assumption B(ii) are

Σ =

∫ 1

0

W 2
x,udu, µ =

∫ 1

0

Wx,udu,

while the kernel has limiting distribution

KT
D→ Ψ−11

( ∫ 1
0
Wx,udW1,u

W2,1

)
.

Thus, when the density of εt is symmetric, the fully iterated estimator for β will have
limiting distribution

T (β̂
∗ − β)

D→
∫ 1
0
Wx,udW1,u

(ψ − ξ1)
∫ 1
0
W 2
x,udu

.

When ψ → 1 then ξ1 → 0 and τ 2 → 1 so W1,u and Wx,u become identical and the
limiting distribution becomes the usual Dickey-Fuller distribution. See also Johansen
and Nielsen (2009, Section 1.5.4) for a related and more detailed derivation.

5 Discussion

The iteration result in Theorem 3.3 will have a variety of applications. An issue of
interest in the literature is whether a slow initial convergence rate can be improved
upon through iteration. This would open up for using robust estimators converging
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for instance at a T 1/3 rate as initial estimator. Such a result would complement
the result of He and Portney (1992) who find that the convergence rate cannot be
improved in a single step. The key would be to show that the remainder term of the
one-step estimator in Theorem 3.2 remains small in an appropriate neighbourhood.
The proof of Theorem 3.3 will then apply more or less in the same way leading to the
same fixed point result.
A related algorithm is the Forward Search of Atkinson, Riani and Cerioli (2004,

2010). This involves finding an initial set of ‘good’observations using for instance the
least trimmed squares estimator of Rousseeuw (1984) and then increase the number of
‘good’observations using a recursive test procedure. The algorithm involves iteration
of one-step Huber-skip estimators, see Johansen and Nielsen (2010). Again the key
to its analysis would be to improve Theorem 3.2, in this instance to hold uniformly
in the cut-off fraction ψ. We are currently working on proving such generalisations
of Theorem 3.2. Another algorithm of interest would be to analyse algorithms such
as Autometrics of Hendry and Krolzig (2005) and Doornik (2009) which involves
selection over observations as well as regressors.

A Proofs

Proof of Theorem 3.1. Chebychev’s inequality gives P(|KT | > C) ≤ C−2E|KT |2.
Since KT is a martingale then E|KT |2 =

∑T
t=1 E(NTXtX

′
tN
′
T )E{ε2t1(εt<xσ)}. Due to

assumptions (iic), (iiib) this is bounded. Thus, for all ε > 0 then C can be chosen so
large that P(|KT | > C) < ε.

The key to the proving Theorem 3.2 is to understand the remainder terms of the
moment matrices. This was done in Johansen and Nielsen (2009). As that paper was
concerned only with the convergence of the 1-step estimator the main Theorem 1.1
simply stated that the remainder terms vanishes as T → ∞. A more detailed result
can, however, be extracted from the proof. To draw that out let a and b be the scale
and location coordinates of u, respectively, and define product moment matrices

S̃gh(u) =
T∑
t=1

gth
′
t1{(σ+T−1/2a)wTtc<εt−X′tN ′T b≤(σ+T−1/2a)wTtc},

for gt, ht ∈ (1, Xt, Yt). The original product moment matrices in (2.4) then satisfy
Sgh = S̃gh{(N−1T )′(β̂ − β), T 1/2(σ̂ − σ)}.

Lemma A.1 Suppose Assumption B holds. Define the remainder terms R11(u),
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RXX(u), RX1(u), RXε(u), and Rεε(u) by the equations

T−1S̃11(u) = ψ +R11(u),

NT S̃XX(u)N ′T = ψΣ +RXX(u),

T−1/2NT S̃X1(u) = ψµ′ +RX1(u),[
NT S̃Xε(u)

T−1/2{ψS̃εε(u)− σ2τ 2S̃11(u)}

]
=

T∑
t=1

{
NTXtεt

T−1/2(ψε2t − σ2τ 2)

}
1(cσ<εt≤cσ)

+

(
ξ1Σ ξ2µ
ζ2µ

′ ζ3ψ

)(
b
a

)
+

{
RXε(u)
Rεε(u)

}
,

where, for notational convenience, the dependence of T is suppressed. Then for all
U > 0 and T →∞ it holds that

sup|u|<U{|R11(u)|+ |RXX(u)|+ |RX1(u)|+ |RXε(u)|+ |Rεε(u)|} = oP(1). (A.1)

Proof of Lemma A.1. Theorem 1.1 in Johansen and Nielsen (2009) states
that |R11(u)|, |RXX(u)|, |RX1(u)|, |Rε(u)|, |Rεε(u)| vanish when u is evaluated at
û = {(N−1T )′(β̂ − β), T 1/2(σ̂ − σ)} under the assumption that û = OP(1), as T →∞.
The proof of that result then progresses by noting that assumption û = OP(1) means
that for all ε > 0 then a U exists so P(|u| ≥ U) < ε and therefore for it suffi ces
to prove that (A.1) holds. Therefore the proof of that theorem continues to prove
precisely the statement (A.1), which is the desired result here.

Proof of Theorem 3.2. The updated estimator is defined in (2.3) in terms of
the product moment statistics Svw = S̃vw(û) where û = {(N−1T )′(β̂ − β), T 1/2(σ̂− σ)}
and it is given by

(N−1T )′(β̂m − β) = (NTSXXN
′
T )−1NTSXε,

T 1/2(σ̂2m − σ2) = (τ 2S11)
−1T 1/2

×{ψSεε − σ2τ 2S11 − ψSεXN ′T (NTSXXN
′
T )−1NTSXε}.

Insert the definitions from Lemma A.1 to get

(N−1T )′(β̂m − β) = {ψΣ +RXX(û)}−1

× {
T∑
t=1

(NTXtεt)1(cσ<εt≤cσ) + ξ1Σb̂+ ξ2µâ+RXε(û)}.

Since
∑T

t=1(NTXtεt)1(cσ<εt≤cσ) is tight by Theorem 3.1, û is OP(1) and the remainders
are vanishing by Lemma A.1 for T →∞, then

(N−1T )′(β̂m − β) = (ψΣ)−1
T∑
t=1

(NTXtεt)1(cσ<εt≤cσ) + (ψΣ)−1(ξ1Σb̂+ ξ2µâ) +Rb,T (û),
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where sup|u|<U |Rb,T (u)| = oP(1). A similar argument shows

T 1/2(σ̂2m − σ2) = (ψτ 2)
−1T−1/2

T∑
t=1

(ψε2t − σ2τ 2)1(σc<εt≤σc)

+ τ−12 (ζ2µ
′b̂+ ζ3â) +Ra,T (û),

where sup|u|<U |Ra,T (u)| = oP(1). Since σ̂2m − σ2 vanishes, then Taylor expanding
(y + σ2)1/2 − σ = y/2 + O(y2) shows that σ̂j − σ and (σ̂2j − σ2)/2 have the same
limiting behaviour.

Proof of Theorem 3.3. We want to show that for all η, ε > 0 there is a T0 and
m0 so that for T ≥ T0 and m ≥ m0 we have for u∗T = (Ip+1 − ρ)−1KT , and prove

P (|ûm,T − (Ip+1 − ρ)−1KT | > η) < ε, (A.2)

and we start by showing
sup

0≤m<∞
|ûm,T | = OP(1). (A.3)

Matrix norm: For matricesM choose the spectral norm ||M || = max{eigen(M ′M)}1/2,
so ||x|| = |x| for vectors x.We will use that the spectral norm and the Euclidean norm
are compatible so |Mx| ≤ ||M || |x| as well as Gelfand’s formula limm→∞ ||Mm||1/m =
max{eigen(M)}, see Varga (2000, Theorems 1.5, 3.4).
Proof of (A.3): From the recursion (2.7) we find the representation

ûm+1,T = ρm+1û0,T +
m∑̀
=0

ρ`{KT +RT (ûm−`,T )} (A.4)

and the evaluation

|ûm+1,T | ≤ ||ρm+1|| |û0,T |+ (|KT |+ max
0≤`≤m

|RT (û`,T )|)
m∑̀
=0

||ρ`||.

By assumption a δ exists so max |eigen(ρ)| < δ < 1. Gelfand’s formula then shows
there is an m0 > 0 so for all m > m0 then ||ρm|| ≤ δm. This in turn implies for some
c > 1 then max0≤m<∞ ||ρm|| < c and

∑∞
`=0 ||ρ`|| < c, and hence

|ûm+1,T | ≤ c{|û0,T |+ |KT |+ max
0≤`≤m

|RT (û`,T )|}. (A.5)

Because it is assumed that û0,T is tight, and KT is tight by Theorem 3.1, and
max|u|≤U1 |RT (u)| = oP(1) by Theorem 3.2, then constants U0, T0 > 0 exist so that for
T ≥ T0, the set

AT = (c|û0,T | ≤ U0) ∩ (c|KT | ≤ U0) ∩ (c max
|u|≤3U0

|RT (u)| ≤ η/2)
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has probability larger than 1− ε.
An induction over m is now used to show that sup0≤m<∞ |ûm,T | ≤ 3U0 on the

set AT . As induction start, for m = 0, then |û0,T | ≤ c−1U0 < 3U0 by the tightness
assumption to û0,T and c > 1. The induction assumption is that max0≤`≤m |û`,T | ≤
3U0. This implies that on the set AT then cmax0≤`≤m |RT (û`,T )| ≤ η/2. Thus, the
bound (A.5) becomes |ûm+1,T | ≤ 2U0+η/2 ≤ 3U0. It follows that max0≤`≤m+1 |û`,T | ≤
3U0. This proves (A.3).
Proof of (A.2): In order to show (A.2) note that

∑m
`=0 ρ

` = (Ip+1 − ρm+1)(Ip+1 −
ρ)−1 where (Ip+1−ρ)−1 =

∑∞
`=0 ρ

`. Therefore equation (A.4) shows that the deviation
∆̂m+1,T = ûm+1,T − (Ip+1 − ρ)−1KT has the representation

∆̂m+1,T = ρm+1{û0,T − (Ip+1 − ρ)−1KT}+
m∑̀
=0

ρ`RT (ûm−`,T ).

To bound this, note first that ||(Ip+1 − ρ)−1|| = ||
∑∞

`=0 ρ
`|| ≤

∑∞
`=0 ||ρ`|| < c. Thus

on the set AT it holds

|∆̂m+1,T | ≤ ||ρm+1||(c−1U0 + U0) + c max
0≤`≤m

|RT (û`,T )| ≤ ||ρm+1||2U0 + η/2.

Now, for m ≥ m0 then ||ρm|| ≤ δm. Since δm declines exponentially then m0 can be
chosen so large that it also holds that ||ρm+1||2U0 ≤ η/2. Thus P(|∆̂m+1,T | ≥ η) < ε,
for m ≥ m0 and T ≥ T0 which proves (A.2).

Proof of Theorem 3.4. The matrices ρ and ρ− λIp+1 are of the form

A =

(
aIp b
c′ d

)
.

It suffi ces to show that det(A) = ap−1(ad− c′d). If b = 0 or c = 0 then A is triangular
and the result follows. Otherwise, define {p × (p − 1)}-matrices b⊥, c⊥ so (b, b⊥)
and (c, c⊥) are regular and b′b⊥ = c′c⊥ = 0. The skew projection identity Ip =
c⊥(b′⊥c⊥)−1b′⊥ + b(c′b)−1c′ implies

det(A) = det[

 b′⊥ 0
c′ 0
0 1

A

{
c⊥(b′⊥c⊥)−1 b(c′b)−1 0

0 0 1

}
] = det

 aIp−1 0 0
0 a c′b
0 1 d

 ,

which is seen to have the correct determinant.

Proof of Theorem 3.5. (a) For c > 0 then f(x)1(|x|≤c) ≥ f(c)1(|x|≤c) because f
is symmetric and non-increasing. Integration gives

ψ =

∫ c

−c
f(x)dx ≥ 2cf(c) = ξ1,

13



where equality holds for f(x) = f(c) for |x| ≤ c, by continuity of f. This is, how-
ever, ruled out by assuming limψ→0 f

′′(c) < 0. It holds limψ→0 c
−1 ∫ c

0
f(x)dx = f(0)

and limc→0 ξ1/(2c) = f(0) so limψ→0 ξ1/ψ = 1. Similarly,
∫∞
0
f(x)dx = 1/2 and

limψ→1 cf(c)→ 0 so limψ→1 ξ1/ψ = 0.
(b) Let g(c) = ξ3/(2τ 2)− ξ1/(2τ 0). Since f is symmetric then τ 2k = 2

∫ c
0
x2kf(x)dx

and ξ2k+1 = cτ ′2k = 2c2k+1f(c) so 2g(c) = cτ ′2/τ 2− cτ ′0/τ 0. It holds (cτ ′2k)
′ = τ ′2k{2k+

1 + c(log f)′}. Therefore l’Hôpital’s rule gives

lim
ψ→0

cτ ′2k
τ 2k

= lim
ψ→0

(cτ ′2k)
′

τ ′2k
= 2k + 1.

As a conseqence limψ→0 g(c) = 1.Assuming that f has third moments then limψ→1 τ 2k <
∞ while limψ→1 cτ

′
2k = 0 for k = 0, 1. As a consequence limψ→1 g(c) = 0.

(c) Rewrite g(c) as N/D where N = cτ ′0(c
2τ 0− τ 2) and D = 2τ 2τ 0. Then g(c) < 1

holds if and only if N −D < 0. It is convenient to write N −D = τ 0M where

M = c
τ ′0
τ 0

(c2τ 0 − τ 2)− 2τ 2.

As τ 0 > 0 for c > 0 it has to be shown that M < 0. Now limψ→0M = 0 since
limψ→0 cτ

′
0/τ 0 = 1 and limψ→0 τ 2k = 0 so it suffi ces to show that M ′ < 0. But

M ′ = (cτ ′0/τ 0)
′(c2τ 0 − τ 2) for which it holds that c2τ 0 − τ 2 =

∫ c
0
(c2 − x2)f(x)dx > 0

and (cτ ′0/τ 0)
′ = [c{log

∫ c
0
f(x)dx}′]′ < 0 by assumption.

(d) First, assume {log f(c)}′′ < 0 and f ′(c) < 0 for c > 0. Then

[c{log f(c)}′]′ = {log f(c)}′ + c{log f(c)}′′ = f ′(c)

f(c)
+ c{log f(c)}′′ < 0.

Secondly, assume [c{log f(c)}′]′ < 0. Denote F(c) =
∫ c
0
f(x)dx. Then

[c{log F(c)}′]′ = {cf(c)}
′F(c)− c{f(c)}2
{F(c)}2 =

f(c)

{F(c)}2L,

where L = [1 + c{log f(c)}′]F(c) − cf(c). Since f(c) ≥ 0 and F(c) > 0 for c > 0 it has
to be argued that L < 0. Now limψ→0 L = 0 so it suffi ces to argue that L′ < 0 for
c > 0. But L′ = [c{log f(c)}′]′F(c) which is negative by assumption.
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