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 Abstract 

Events that occur over a period of time can be described either as sequences 

of outcomes at discrete times or as functions of outcomes in an interval of 

time. This paper presents discounting models for events of the latter type. 

Conditions on preferences are shown to be satisfied if and only if the 

preferences are represented by a function that is an integral of a discounting 

function times a scale defined on outcomes at instants of time. 
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 1.  Introduction 
 
 An analyst who is developing an evaluation of alternatives in a decision model must 

judge whether to model the consequences of the alternatives as outcomes that occur at 

discrete times, to be called outcome sequences, or as outcomes that occur over intervals of 

time, to be called outcome streams. Outcome sequences are modeled as functions defined 

on a set of discrete times and outcome streams are modeled as functions defined on a set 

that is an interval of times. The judgment as to which type of model to use depends on the 

nature of the data, the nature of the consequences, and the proclivities of the analyst. Each 

type seems more appropriate under some circumstances. 

 This paper is concerned with outcome streams. The outcomes are numbers or vectors  

x,  and the outcome streams are real- or vector-valued functions  x  defined on instants of 

time  t  in a planning period  P.  At an instant  t,  the value  x = x(t)  of an outcome stream  

x  is a rate or an amount, or it is a vector of rates and amounts. For example, an outcome  

x(t)  might be: the rate of usage of a natural resource, one or more rates of monetary costs 

and benefits, an amount that measures a type of environmental quality, or the amounts of 

multiple attributes that describe the health of an individual. 

 Comparisons between outcome streams will be modeled as a relation   ,  that is, as a 

set of statements  x  y.  We will regard a statement  x  y  as meaning that  x  is at least 

as good as  y  in some sense. Relations of strict preference,  x  y,  and of indifference,          

x ~ y,  are to be defined in terms of  .  We will say that a function  V(x)  represents a 

relation    on a set of outcome streams provided that:  V(x) ≥ V(y)  if and only if  x  y  

for any  x, y  in the set. Following the usage of decision analysis rather than that of 

economics, we will call such a function a value function rather than a utility function. 

 A relation    defined on outcome streams can be interpreted either as comparisons      

of wellbeing due to the outcome streams, i.e., as hedonic comparisons, or as preferences 

between the outcome streams. Suppose, for example, that the outcomes,  x = (x1, … , xN ),  

are average global concentrations of  N  greenhouse gases. Then,    can represent either 

comparisons of the effects (in some sense) of the outcome streams  x  or as the preferences 

(of some group) between the outcome streams. For brevity, we will call    a preference 

relation. In choosing this terminology, we must emphasize that in a particular application 
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a preference relation may or may not have a preference interpretation. 

 For a set of alternatives of any type (outcome streams or some other type), we define a 

preference model as a mathematical result which shows that if a preference relation on the 

alternatives satisfies specified conditions then there exists a specified type of function that 

represents the relation. We prefer the term, preference model, to the term, representation 

theorem, for two reasons; it is limited to the study of preference relations (unlike the use 

of representation theorem in mathematics) and it gives weight to the other parts of the 

model, e.g., to the set of alternatives and to the conditions on the relation. By the above 

definition, a model that includes a function to represent a preference relation but does not 

state conditions on the relation that imply the representation is not a preference model. 

 There are well-known preference models for outcome sequences. On the one hand, 

there are linear models, i.e., models in which the value function is a linear function,  V(x) 

= ∑t a(t) x(t),  of the outcomes  x(t);  e.g., Williams and Nassar (1965). On the other hand, 

there are additive models, i.e., models in which the value function has the additive form,  

V(x) = ∑t a(t) v(x(t));  e.g., Koopmans (1960, 1972), Diamond (1965), and Harvey (1986, 

1995). And there are more special models (e.g., some of the models referenced above) in 

which the discount weights  a(t)  form a negative-exponential sequence. 

 In linear models, the outcomes are single-attribute and  v(x)  is the identity function. 

These models do not include such issues as: multiattribute tradeoffs, decreasing marginal 

utility, and equity between outcomes at different times and perhaps for different persons. 

 The results in this paper are preference models for outcome streams. They provide 

value functions that have the integral form: 
 

 V(x)  =  ∫P a(t) v(x(t)) dt, (1) 
 
where  a(t)  and  v(x)  are functions that have specified properties. A preference model 

having this type of value function will be called an integral discounting model. 

 By analogy with the additive value function,  V(x) = ∑ a(t) v(x(t)),  in a preference 

model for outcome sequences, we will call a value function (1) an integral value function. 

The function  v(x)  will be called an outcome scale, and the function  a(t)  will be called a 

discounting function. An outcome scale  v(x)  represents preferences between outcomes  x  
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at an instant of time, and a discounting function  a(t)  represents tradeoffs between amounts 

of the outcome scale at different times; in particular, it compares an outcome scale amount 

at a future time to the same scale amount at the present time. 

 We present two integral discounting models. In the first model, the planning period  P  

on which the outcome streams are defined is a bounded interval  [0, T ],  T > 0,  and the 

value function is a Riemann integral,  V(x) = ∫0
T a(t) v(x(t)) dt.  And in the second model,  

P  is the unbounded interval  (0, ∞),  and the value function is an improper Riemann 

integral,  V(x) = lim T → ∞ ∫0
T

 a(t) v(x(t)) dt. These models are intended for prescriptive 

applications. We expect that there are important behavioral violations of many of the 

conditions on a preference relation that are an essential part of the models. 

 In each model, an outcome stream  x  is a real-valued or vector-valued function that is 

piecewise continuous and bounded in the following sense:  x  is continuous except for at 

most a finite number of times, and there are outcomes  a, b  such that  a ≤ x(t) ≤ b  for any 

time  t.  If the outcomes are multiattribute, i.e.,  x = (x1, … , xN ),  N > 1,  the boundedness 

condition is to be satisfied for each attribute.  This class of outcome streams seems to be 

large enough for essentially any application. 

 Each model implies that the outcome scale  v(x)  is continuous and that the discounting 

function  a(t)  is positive and non-increasing. Also, the model for an unbounded planning 

period implies that the integral,  lim T → ∞ ∫0
T

 a(t) dt,  is finite. Neither  a(t)  nor  v(x)  is 

otherwise restricted; for example,  a(t)  is not required to be constant or to be a negative-

exponential function, and  v(x)  is not required to be a linear function (when the outcomes 

are single-attribute) or to be an additive function (when the outcomes are multiattribute). 

 On the one hand, this generality allows an analyst to include a variety of preference 

issues in applying one of these models. For example, in a public policy study with long 

range implications he can use a discounting function that decreases more slowly than an 

exponential function and thereby assigns appreciable importance to the distant future. 

 On the other hand, the generality of these models creates a need for special models in 

which there are additional conditions on a preference relation that it will satisfy if and only 

if one of the functions  a(t), v(x)  has a special form (e.g.,  a(t)  has an exponential form or  

v(x)  has an additive form). Harvey (1998a,b) discusses several such additional conditions. 
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 Harvey (1998a,b) also discusses procedures for assessing a discounting function or an 

outcome scale and procedures for using a value function  V(x)  to evaluate an outcome 

stream. Some of these conditions and procedures are analogous to well-known conditions 

and procedures for a discounting model for outcome sequences. But some are not; they 

utilize the fact that the planning period is a continuum rather than a discrete set of times. 

 A well-known evaluation procedure, both for outcome sequences and for outcome 

streams, is that of net present value. For a given sequence or stream, one uses the value 

function to calculate an indifferent sequence or stream in which the only non-zero outcome 

occurs at the present time. For an outcome stream  x,  one can choose a unit interval, e.g.,          

a year, and calculate an outcome  x0  such that  x  is indifferent to the outcome stream  x0  

defined by:  x0(t) = x0  for  0 ≤ t ≤ 1  and  x0(t) = 0  for  t > 1.  Another procedure, perhaps 

opposite to this one, is to calculate a constant outcome stream that is indifferent to  x. 

 Proofs are in Appendix A. They use only classical real analysis and do not involve 

abstract measure and integration theory. 
 

 2.  Previous research 
 
 It is surprising that integral discounting models were not developed long ago—and 

many readers may assume that they have been. This section discusses previous research 

on related models and describes how they differ from integral discounting models. The 

discussion involves abstract mathematics and can be omitted without a loss of continuity. 

 There are three models, or more accurately groups of models, that are closely related 

to the models in this paper. Each of these models is not an integral discounting model—

and for a different reason for each group of models. We are not aware of any previous 

integral discounting models, i.e., any preference models having a value function (1). 

 Using our notation and terminology as a lingua franca, the models are as follows. 

 (1)  Weibull (1985) presents a model for outcome streams in which the value function 

has the linear form,  V(x) = ∫P a(t) x(t) dµ.  The model is a preference model, but it is not 

sufficiently general to be an integral discounting model as we have defined the term. It 

corresponds to linear models for outcome sequences. Like those models, it excludes 

multivariable outcomes and types of preferences represented by an outcome scale. 
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 Here, the triple  (P, F, µ)  is an abstract measure space; the set  X  of outcomes is an 

interval  (– ∞, 0],  [0, ∞),  or  (– ∞, ∞);  and the set  C  of outcome streams  x  is a convex 

cone in the space  L1(P, µ)  of Lebesgue integrable functions defined on  P. 

 (2)  Grodal and Mertens (1968) and Grodal (2003) present a model having a function,  

V(x) = ∫P a(t) v(x(t)) dµ,  of the form (1). It is shown that if a preference relation    on a 

set  C  of outcome streams satisfies certain conditions then there exists such a function  

V(x)  such that:  V(x) ≥ V(y)  implies x  y  for  x, y  in  C.  However, the model does not 

show the converse implication, that:  x  y  implies  V(x) ≥ V(y)  for  x, y  in  C.  Hence,  

V(x)  may fail to be a value function, and thus the model is not a preference model. 

 Here,  (P, F, µ)  is an abstract measure space; the set of outcomes is a metric space; 

and the set  C  is a space of Lebesgue integrable functions that is closed under mixtures. 

 (3)  Savage (1954, 1972), Fishburn (1970, 1982), Wakker (1985, 1989, 1993), Kopylov 

(2010) and others present preference models for what is often called subjective expected 

utility (SEU). Here, a decision maker chooses an alternative, called an act; a state of nature 

occurs; and the decision maker receives a consequence which is a function of his choice 

and the state of nature. A preference relation is defined on the acts, and conditions on the 

preference relation are introduced. In our notation, the models show that if the preference 

relation satisfies the conditions then there exists a probability set-function  π  defined on 

subsets of the set  P  of states of nature and a utility function  u(x)  defined on consequences 

such that acts  x  having greater expected utility,  U(x) = ∫P u(x(t)) dπ,  are preferred. 

 The SEU models can be reinterpreted as models concerning outcome streams. Suppose 

that the states of nature are interpreted as times  t  in an interval  P  with Lebesgue measure  

λ  and that the acts are interpreted as outcome streams  x.  Then, the SEU models infer the 

existence of a value function of the form,  V(x) = ∫P v(x(t)) dπ,  where  π  is an infered set-

function (without a probability interpretation) defined on a family of subsets of  P  and  v(x)  

is an infered function (without a utility interpretation) defined on a set  X  of outcomes. 

 The set-function  π  in an SEU model may or may not have a derivative  dπ = a(t) dt  

for some function  a(t).  The situation is that  V(x) = ∫P v(x(t)) dπ  does not have the form,  

V(x) = ∫P a(t) v(x(t)) dt,  unless  π  is absolutely continuous with respect to  λ  and thus has 
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a Radon-Nikodym derivative  a(t)  with respect to  λ.  Therefore, the SEU models do not 

provide a discounting function  a(t),  and thus they are not integral discounting models. 

 One can argue to the contrary that integral discounting models are a variation of the 

SEU models since the class of value functions of the form,  V(x) = ∫P v(x(t)) dπ,  includes 

the class of value functions of the form,  V(x) = ∫P a(t) v(x(t)) dt,  namely those in which 

the measure  π  is absolutely continuous with respect to Lebesgue measure.  But to derive 

a discounting model from an SEU model, one must define additional conditions on the 

preference relation in the SEU model and show that the previous and new conditions 

together imply the existence of a value function that has the discounting form (1). 

 In conclusion, the development of abstract integral discounting models appears to be 

an open research question. 

 The models (1)–(3) also differ from those in this paper with respect to an important 

feature not mentioned above. If the set  P  in a model (1)–(3) is chosen as an interval of 

time and the set  C  of outcome streams is chosen to contain the continuous, bounded 

outcome streams, then  C  will also contain some outcome streams that are discontinuous 

at an uncountable number of times. Appendix B provides a discussion of this feature. 

 The feature is important for applications because it may be impossible to visualize an 

outcome stream that is discontinuous at an uncountable number of times (e.g., the index 

function for a Cantor set). Thus, it would be impossible to judge whether the conditions 

on preferences are satisfied by such functions. 

 For the special case in which preferences satisfy the condition of stationarity, Kopylov 

(2010) constructs an exponential discounting model for a set  C  of so-called step outcome 

streams. (Harvey, 1995 presents a similar model and a model with a general function  a(t)  

for sets of outcome sequences.) Kopylov also suggests that the stationarity condition can 

be added to his SEU model for larger sets  C.  Like his SEU model, such a model would 

have the feature described above. 

 

 3.  Outcome streams and preference relations 
 
 This section defines the objects that are assumed in an integral value model, namely 

outcomes, outcome streams, and preference relations on outcomes and outcome streams. 
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3.1.  Outcome streams 

 An outcome is a vector  x = (x1, … , xN )  of amounts of one or more attributes. Each 

variable  xj  is defined on an interval  Xj ,  j = 1,… , N,  and the set of outcomes is the 

product set,  X = X1 × … × XN .  The set  X  will be called an outcome set. 

 A planning period  P  is an interval of times  t.  We will consider bounded intervals of 

the form,  P = [0, T ],  0 < T < ∞,  and the unbounded interval,  P = [0, ∞). 
 
Definition 1a.  An outcome stream is a real- or vector-valued function  x = (x1, … , xN ),  

N ≥ 1,  whose domain is a planning period  P,  whose values are in an outcome set  X,  

and which has the following properties: 

 (i) x  is piecewise continuous, i.e.,  for each  j = 1,… , N  the component function  xj             

is continuous except for at most a finite number of times  t. 

 (ii) x  is bounded, i.e., for each  j = 1,… , N  there are amounts  aj , bj  in the interval  Xj  

such that  aj ≤ xj(t) ≤ bj  for any time  t. 
 
 Constant outcome streams will be denoted by letters at the beginning of the alphabet. 

Thus, an outcome stream  a  is to have the outcome  a  for any time,  and so forth. 

 A subinterval of  P  with endpoints  s, s′  will be denoted by  〈s, s′ 〉.  Here, an endpoint  

0 ≤ s ≤ s′ ≤ ∞  may or may not be in  〈s, s′ 〉.  For two outcome streams  x, y  and an interval  

〈s, s′ 〉,  (x〈s, s′ 〉, y)  will denote the outcome stream such that  (x〈s, s′ 〉, y)(t) = x(t)  for  t  in  

〈s, s′ 〉  and  (x〈s, s′ 〉, y)(t) = y(t)  otherwise. And for outcome streams  x, y, z  and disjoint 

intervals  〈s, s′ 〉, 〈t, t′ 〉,  (x〈s, s′ 〉, y〈t, t′ 〉, z)  will have a similar meaning. An outcome stream  

(x〈s, s′ 〉, y)  will be called a splicing of  x  and  y,  and a set  C  of outcome streams such                  

that  (x〈s, s′ 〉, y)  is in  C  for any  x, y  in  C  will be called closed under splicing. 
 
Definition 1b.  An outcome stream set is a set of outcome streams that contains the constant 

outcome streams and is closed under splicing. 
 
 The distance between two outcomes  x, y  will be defined as,  | x – y | = ∑ j | xj – yj | ,  

and the distance between two outcome streams  x, y  for a bounded planning period  P = 

[0, T ]  will be defined as,  ∫ | x – y | = ∑ j  ∫0
T

 | xj(t) – yj(t) | dt . 

 We assume that there is a distinguished outcome which can be interpreted as a zero 

amount or rate or as a vector of zero amounts or rates. This null outcome will be denoted 
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by  o,  and the constant outcome stream with this outcome will be denoted by  o.  In an 

application,  o  can be defined in a manner that is specific for that application. 
 
3.2.  Preference relations 

 A pair of preference relations, one on outcomes and the other on outcome streams,                        

can be defined in two ways:  (i)  Define a relation    on outcome streams and then define 

a relation  X  on outcomes in terms of   ,  or  (ii)  Define two relations,  X  and   ,  and 

then require    to agree with  X  in some sense. The two methods can be shown to be 

equivalent. We will use the second method because outcome streams are defined in terms 

of outcomes and thus it seems more natural to begin with outcomes. 
 
Definition 2.  Suppose that  X  is an outcome set and that  C  is an outcome stream set 

with outcomes in  X.  A preference relation  X  on  X  is a set of statements  x X
 y  for  

x, y  in  X,  and a preference relation    on  C  is a set of statements  x  y  for  x, y  in  

C.  The pair  (X, X
 )  will be called an outcome space provided that it has non-indifferent 

outcomes. Then, the pair  (C, )  will be called an outcome stream space. 

 

  4.  Conditions on preferences 
 
 This section presents conditions on preferences in an outcome stream space  (C,  ). 

In constructing the integral discounting models,  C  will be a variety of sets.  Definition 2 

above enables us to state the conditions once rather than several times. 
 
(A)    agrees with  X  on  C :  For any  x, y  in  C, 

 (a)  If  x(t) X y(t)  for all  t  in  P  except for at most a finite number, then  x  y. 

 (b)  If  x(t) X y(t)  for all  t  in  P  except for at most a finite number and  x(t) X y(t)  

on a non-point interval in  P,  then  x  y. 

 By a non-point interval, we mean an interval  〈s, s′ 〉  such that  s < s′.  In the case that  

s = s′,  〈s, s′ 〉  is either a point interval  [s, s]  or the empty interval. 
 
(B)  X  is complete and transitive on  X,  and    is complete and transitive on  C: 

 (a)  For any  x, y, z  in  X:  x X y  or  y X x,  and if  x X y  and  y X z  then  x X z. 

 (b)  For any  x, y, z  in  C:  x  y  or  y  x,  and if  x  y  and  y  z  then  x  z. 
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(C)    is continuous on  C :  For any  x  in  C  and any constant outcome stream  a, 

 (a)  If  a  x,  then there is a  δ > 0  such that  | c – a | < δ  implies  c  x  for all  c  in  X. 

 (b)  If  a  x,  then there is a  δ > 0  such that  | c – a | < δ  implies  c  x  for all  c  in  X. 
 
(D)    is preferentially independent on  C :  For any  w, x, y, z  in  C  and any bounded 

interval  〈s, s′ 〉,  (w〈s, s′ 〉, x)  (w〈s, s′ 〉, y)  implies  (z〈s, s′ 〉, x)  (z〈s, s′ 〉, y). 
 
 Condition (D) states that if two outcome streams are equal during an interval  〈s, s′ 〉, 

then the common outcome stream in  〈s, s′ 〉  can be changed to another common outcome 

stream in  〈s, s′ 〉  without changing the comparison. 

 Conditions analogous to (D) play an essential role in additive value models such as 

those of Debreu (1960) and Gorman (1968). In brief, imagine that a planning period  P = 

[0, T ]  is partitioned into subintervals,  〈ti–1, ti 〉,  i = 1, … , m, such that  〈ti–1, ti 〉 = 〈s, s′ 〉  

for some  i.  By (D), preferences between two step outcome streams (see Appendix) with 

the same outcome in  〈s, s′ 〉  do not depend on the common outcome in  〈s, s′ 〉.  Thus, the 

subintervals in the partition have the same role as attributes in an additive value model. 

 The conditions below involve outcome streams with only two or three outcomes. As 

above, we denote constant outcome streams by letters at the beginning of the alphabet. 

 For two disjoint, non-point intervals,  〈s, s′ 〉  and  〈t, t′ 〉,  two outcomes  a– X a+  in             

〈s, s′ 〉  and two outcomes  b– X b+  in  〈t, t′ 〉  will be called tradeoffs pairs provided that  

(a+
〈s, s′ 〉, b

–
〈t, t′ 〉, ο) ~ (a–

〈s, s′ 〉, b
+
〈t, t′ 〉, ο).  Intuitively, a person is just willing to receive  

a–  instead of  a+  in order to receive  b+  instead of  b–. 

 For three outcomes  a0 X a1/2 X a1  in  〈s, s′ 〉,  a1/2  will be called a mid-outcome of  

a0, a1  provided that there are outcomes  b– X b+  in  〈t, t′ 〉  such that  a0, a1/2  and  b–, b+  

are tradeoffs pairs and  a1/2, a1  and  b–, b+  are tradeoffs pairs with respect to  〈s, s′ 〉  and  

〈t, t′ 〉.  Intuitively, a person is willing to worsen the outcome in  〈t, t′ 〉  by the same amount 

in order to improve the outcome in  〈s, s′ 〉  either from  a0  to  a1/2  or from  a1/2  to  a1 . 
 
(E)    is mid-outcome independent on  C :  For any disjoint, non-point intervals  〈s, s′ 〉  

and  〈t, t′ 〉  and outcomes  a0 X a1,  if the pair  a0 , a1  in  〈s, s′ 〉  has a mid-outcome with 

respect to outcomes in  〈t, t′ 〉,  and the pair  a0 , a1  in  〈t, t′ 〉  has a mid-outcome with 

respect to outcomes in  〈s, s′ 〉,  then  a0 , a1  has the same mid-outcomes in each case. 
 



 10 

 Condition (E) implies that the outcome scale  v(x)  does not depend on time. A variety 

of similar conditions in additive models for multiattribute outcomes or outcome sequences 

are described in Fishburn (1970), Krantz et al. (1972, p. 305), and Harvey (1986, 1995). 
 
(F)  For any outcomes  a X b  and any times  s ≤ t,  (a〈s, s+∆〉, b〈t, t+∆〉, ο)  (b〈s, s+∆〉,              

a〈t, t+∆〉, ο)  for disjoint intervals  〈s, s + ∆〉, 〈t, t + ∆〉. 
 
 Intuitively, condition (F) states that a person prefers a better event  a  to occur sooner 

rather than later. Indifference is not excluded. Similar conditions for preferences between 

outcome sequences are defined in Koopmans (1972) and Harvey (1986, 1995). 
 
(G)  For any time  s > 0,  there exist outcomes  a X

 b X c  such that  (c[s – ∆, s], a)                 

(b[0, ∆], a)  for  0 < ∆ < ½ s. 
 
 Intuitively, condition (G) states that the greater improvement from  a  to  c  at the 

future time  s  is preferred to the lesser improvement from  a  to  b  at the present time. 

Similar conditions in models for outcome sequences are not used because the discount 

weights  a(t)  in a sum,  V(x) = ∑t a(t) v(x(t)),  are finite and positive. 

 Conditions (F) and (G) exclude opposite extremes in discounting. (F) excludes valuing 

the present less than a future time, and (G) excludes valuing the present infinitely more 

than a future time. Each of these exclusions seems appropriate for prescriptive purposes. 

 Condition (F) implies that the discounting function  a(t)  is non-increasing, and (G) 

implies that it is bounded at the origin. These conditions can be omitted—as is done in 

Harvey and Østerdal (2007). If (G) is omitted, then the Riemann integral,  ∫0
Ta(t) v(x(t)) dt, 

generalizes to an improper Riemann integral,  lim s → 0 ∫s
T a(t) v(x(t)) dt.  And if both (F) 

and (G) are omitted, then  ∫0
T a(t) v(x(t)) dt  generalizes to a Lebesgue integral.  

 

 5.  Model for a bounded planning period 
 
 This section presents the following integral discounting model for outcome streams 

defined on a bounded planning period  P = [0, T ],  0 < T < ∞. 

Theorem 1.  An outcome stream space  (XT ,  )  satisfies conditions (A)-(G) if and only 

if it has a value function of the form, 
 
 V(x)  =  ∫0T

 a(t) v(x(t)) dt,   x  in  XT . (2) 
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such that the Riemann integral (2) exists for any  x  in  XT  and: 

 (a)  The function  v(x),  x  in  X,  is a continuous value function for  (X, X
 )  which has 

a non-point interval range and the value  v(o) = 0. 

 (b)  The function  a(t),  0 ≤ t ≤ T,  is positive and non-increasing. 

 (c)  The function  A(t) = ∫0
t
a(s) ds,  0 ≤ t ≤ T,  is strictly increasing. 

 Moreover, each of the functions  v(x),  A(t)  is unique up to a positive multiple. 
 
 As remarked in the introduction,  v(x)  will be called an outcome scale and  a(t)  will 

be called a discounting function.  A(t)  will be called a cumulative discounting function. 

 Harvey (1998a,b) and Harvey and Østerdal (2007) present related models in which 

condition (C) is stronger and (F), (G) are not present. In those models, the discounting 

function  a(t)  is Lebesgue integrable and thus the integral  V(x)  is a Lebesgue integral. 

 As presented in the Appendix, we construct a value function (2) by two extensions of 

the set of outcome streams on which the preference relation is defined. This construction 

is parallel to the construction described below for Riemann integration itself. 

 Suppose that a planning period  P = [0, T ]  is partitioned into disjoint subintervals,             

〈t0, t1〉, … , 〈tm–1, tm 〉,  where  0 = t0 ≤ t1 ≤ … ≤ tm–1 ≤ tm = T.  An outcome stream that 

is constant on each subinterval  〈ti–1, ti 〉,  i = 1, … m,  will be called a step outcome stream. 

 To construct our model, we first interpret the additive model of Debreu (1960) as a 

model with an additive value function  Vp(x)  for the set of step outcome streams defined 

by a single partition  p.  The first extension is to extend this additive value model to a 

model for the larger set  ST  of all step outcome streams defined by any partition. 

 The second extension is to extend the model for the set  ST  to a model for the set  XT .  

This extension relies on approximating an outcome stream by step outcome streams. More 

specifically, it relies on the squeeze property of Riemann integration, i.e., the equivalence 

of Riemann’s definition in 1854 of the integral of a function  ƒ(t)  and Darboux’ definition 

in 1875 of the integral of  ƒ(t)  as the common limit of sequences of sums associated with 

step functions  n(t),  un(t),  n = 1, 2, … ,  which are defined such that  n(t) ≤ ƒ(t) ≤ un(t)  

for all  t  and the distances  ∫ | un – n |  tend to zero as  n  tends to infinity. 
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 6. Model for an unbounded planning period 
 
 This section presents an integral discounting model for outcome streams defined on 

the unbounded planning period,  P = [0, ∞).  As part of the model, we introduce the 

following condition on a preference space  (X∞ , ). 
 
(H)  For any  x  in  X∞ ,  any non-point interval  [s, s′ ],  and any  a X b,  there is a  T ≥ s′  

such that  (a[s, s′ ], x)  (b[s, s′ ], x, o(t,∞))  and  (a[s, s′ ], x, o(t,∞))  (b[s, s′ ], x)  for all  t > T. 
 
 Intuitively, condition (H) states that an outcome stream is arbitrarily unimportant in the 

sufficiently distant future. Thus, (H) is a counterpart to condition (G) on the importance of 

an outcome stream in the very near future. 
 
Theorem 2.  An outcome stream space  (X∞ ,  )  satisfies conditions (A)-(H) if and only 

if it has a value function of the form, 
 
 V(x)  =  limT→∞ ∫0T

 a(t) v(x(t)) dt    (3) 
 
such that the improper Riemann integral (2) exists for any  x  in  X∞  and the functions  

v(x),  a(t),  and  A(t)  have the properties (a)-(c) in Theorem 1 for all  0 ≤ t < ∞. 

 Moreover, each of the functions  v(x)  and  A(t)  is unique up to a positive multiple. 
 
 In this model, a discounting function  a(t)  has a finite integral,  limT→∞ ∫0T

 a(t) dt,  

since  X∞  includes the constant outcome streams. Therefore, the model includes most 

types of discounting but excludes discounting in which  a(t)  decreases very slowly as a 

function of time. For example, it includes constant discounting, i.e., discounting with a 

negative-exponential discounting function,  a(t) = exp( –r t),  r > 0,  but it excludes non-

discounting, i.e., discounting with the constant function, a(t) = 1. 

 The model includes some but not all types of discounting in which the discount rate, 

r(t) = – a′(t) / a(t), is decreasing. Consider, for example, the discounting functions,  a(t) = 

(1 + b t)– k,  with the parameters  b > 0,  k > 0,  discussed in Harvey (1998a,b). The model 

includes such discounting functions with  k > 1  but not with  k ≤ 1. 

 Harvey (1998a,b) and Harvey and Østerdal (2007) also present models for  P = [0, ∞).  

There, the set  C  of outcome streams to be compared is not the same for any preference 

relation (e.g., the set  X∞  in Theorem 2) but is defined in terms of the preference relation. 
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 Appendix:  Proofs of Results 
 
Lemma A1.  If an outcome stream space  (C,  )  satisfies conditions (A)-(C), then: 

 (a)  Either there exists an outcome  a X o  or there exists an outcome  a X o. 

 (b)  For any outcomes  a, b,  a X b  if and only if  (a〈s, s′ 〉, x)  (b〈s, s′ 〉, x)  for any  x  

in  C  and any non-point interval  〈s, s′〉. 

 (c)  X  is continuous in the sense that for any outcomes  a X b  there exists a  δ > 0  

such that:  |c – a| < δ  implies  c X b  and  |c – b| < δ  implies  c X a  for all outcomes  c. 

 (d)  There exists a continuous value function for  X. 

 (e)  Any continuous value function for  X  has a non-point interval range. 

 (f)  For any  x  in  C,  there exists a constant outcome stream  a  with  a ~ x. 
 
Proof.  Definition 2 implies that there is an outcome  a  that is not indifferent to  o.  Then,  

a X o  or  a X o  since  X  is complete by condition (B). 

 To show (b), first assume  a X b.  Then,  (a〈s, t〉, x)  (b〈s, t〉, x)  by condition (A.a).  

Next, assume  (a〈s, t〉, x)  (b〈s, t〉, x)  for any  x  in  C.  By Definition 1,  (a〈s, t〉, x)  and  

(a〈s, t〉, x)  are in  C  for any  x  in  C.  If  b X a,  then  (b〈s, t〉, x)  (a〈s, t〉, x)  by condition 

(A.b).  Thus,  b X a  is false.  Hence,  a X b  since  X  is complete by condition (B). 

 To show (c), consider  a X b.  By condition (C.a), there is a  δ > 0  such that  |c – a| < δ  

implies  c X b,  and by (C.b), there is a  δ > 0  such that  |c – b| < δ  implies  c X a. 

 To show (d) and (e), note that: (i)  X  is a product of intervals, and (ii)  X  is complete 

and transitive by condition (B), and continuous by (c). By Debreu (1954), it follows that  

X  has a continuous value function. The range of any such function is a non-point interval 

since the set  X  is connected and contains outcomes that are not indifferent. 

 To show (f), note that  x  has values in a compact subset  j ≤ xj(t) ≤ uj ,  j = 1, … , N,  

of  X.  By (d), there is a continuous value function  v(x)  for  X.  Such a function has a 

maximum value  v*  and a minimum value  v*  for the compact set, and thus  v* ≤ v(x(t)) 

≤ v*  for all  t.  Choose outcomes  a*, a*  such that  v(a*) = v*  and  v(a*) = v* .  Then,  

v(a*) ≤ v(x(t)) ≤ v(a*)  for all  t  which implies  a* X x(t) X a*  for all  t  which implies  

a*  x  a*.  If  x ~ a*  or  x ~ a*,  we are through. Otherwise, the sets  {b  in  X:  b  

x}  and  {b  in  X:  b  x}  are non-empty. They are open by condition (C), and thus their 

union is not all of the connected set  X.  Hence,  a ~ x  for some  a  since    is complete. 
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 A partition  p  of an interval  [0, T ]  is a set of subintervals,  〈t0, t1〉, … , 〈tm–1, tm 〉,  

where  0 = t0 ≤ t1 ≤ … ≤ tm–1 ≤ tm = T  and the subintervals are disjoint with the union  

[0, T ].  A step outcome stream based on a partition  p  is an outcome stream that is constant 

on each subinterval  〈ti–1, ti 〉,  i = 1, … , m.  By a slight abuse of notation, we will denote 

the values of a step outcome stream  x = (x1, … , xN )  by  x(t) = (x1(t), … , xN(t) ) = x(i) 

= (x1(i), … , xN(i) )  for  t  in  〈ti–1, ti 〉,  i = 1, … , m. 

 The set of step outcome streams based on a partition  p  will be denoted by  Sp ,  and the 

set of step outcome streams for all partitions of  [0, T ]  will be denoted by  ST .  A step 

outcome stream  x  in  Sp  can be regarded as a vector  (x(1), … , x(m) )  of outcomes, and 

the set  Sp  can be regarded as the product set  X × … × X  of the vectors  (x(1), … , x(m) ). 

 For two step outcome streams  x, y,  the distances  ∫ | xj – yj |  and  ∫ | x – y |  defined in 

Section 3.1 are,  ∫ | xj – yj | = ∑ i | xj(i) – yj(i) | (ti – ti–1)  and  ∫ | x – y | = ∑ j ∫ | xj – yj |.  We 

will define the distance between two outcomes  x, y  as,  | x – y | = ∑ j | xj – yj |.  Then, the 

distance between two outcome streams is also,  ∫ | x – y | = ∑ i, j | xj(i) – yj(i) | (ti – ti–1). 

 A partition  p  with at least three non-point intervals will be called proper. Then, the 

set  Sp  and the space  (Sp , )  also will be called proper. 

 The additive value model due to Debreu (1960) and Gorman (1968) can be interpreted 

as an additive value model for a proper space  (Sp , ).  The following result does so. 
 
Lemma A2.  If a proper space  (Sp ,  )  satisfies conditions (A)-(D), then: 

 (a)  If a subinterval  〈s, s′〉 = 〈ti–1, ti 〉  is non-point, then it is essential, i.e., there exists  

x, y, z  in  Sp  such that  (x〈s, s′ 〉, z)  and  (y〈s, s′ 〉, z)  are not indifferent. 

 (b)  If a subinterval  〈s, s′〉 = 〈ti–1, ti 〉  is a point or is empty, then it is inessential, i.e.,  

(x〈s, s′ 〉, z)  and  (y〈s, s′ 〉, z)  are indifferent for any  x, y, z  in  Sp . 

 (c)    is component independent on  Sp ,  i.e., for any  〈s, s′〉 = 〈ti–1, ti 〉  and any  x, y, 

w, z  in  Sp :  (x〈s, s′ 〉, w)  (y〈s, s′ 〉, w)  if and only if  (x〈s, s′ 〉, z)  (y〈s, s′ 〉, z). 

 Part (c) implies that for each subinterval  〈s, s′〉 = 〈ti–1, ti 〉  the relation    defines a 

relation  i  on the set  X  by:  a i b  if and only if  (a〈s, s′ 〉, w)  (b〈s, s′ 〉, w). 

 (d)  If a subinterval  〈ti–1, ti 〉  is essential, then the relation  i  on  X  is the relation  X.  

And if  〈ti–1, ti 〉  is inessential, then  a ~i b  for all  a, b  in  X. 
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 (e)  The space  (Sp ,  )  has an additive value function,  V(x) = ∑ i ∈ E vi(xi ),  where: 

 (i) E  denotes the set of indices for the essential subintervals  〈ti–1, ti 〉. 

 (ii) vi(x),  i ∈ E,  are continuous value functions for the outcome space  (X, X
 ). 

 (f)  A function  V(x)  is cardinally unique, i.e., a function  V*(x)  is also an additive value 

function for  (Sp ,  )  if and only if  V*(x) = a V(x) + b  for some constants  a > 0  and  b. 
 
Proof.  By Lemma A1.a  there exist outcomes  a X b.  If an interval  〈s, s′〉  is non-point, 

then,  (a〈s, s′ 〉, ο)  (b〈s, s′ 〉, ο)  by condition (A.b).  And if  〈s, s′〉  is a point set or empty, 

then  (x〈s, s′ 〉, z) ~ (y〈s, s′ 〉, z)  for all  x, y, z  by condition (A.a). 

 To show (c), suppose that  [0, s〉  denotes the interval of times that are less than those 

in  〈s, s′〉  and  〈s′, T]  denotes the interval of times that are greater than those in  〈s, s′〉.  

Then, for example,  (x〈s, s′ 〉, w) = (w[0, s〉, x〈s, s′ 〉, w〈s′, T]).  Note that by condition (D), 

(w[0, s〉, x〈s, s′ 〉, w〈s′, T])  (w[0, s〉, y〈s, s′ 〉, w〈s′, T])  implies that  (z[0, s〉, x〈s, s′ 〉, w〈s′, T])  

(z[0, s〉, y〈s, s′ 〉, w〈s′, T])  which implies that  (z[0, s〉, x〈s, s′ 〉, z〈s′, T])  (z[0, s〉, y〈s, s′ 〉, z〈s′, T]). 

 To show (d),  note that if  〈ti–1, ti 〉  is essential then  i  is  X  by Lemma A1.b.  And 

if  〈ti–1, ti 〉  is inessential then  a ~i b  for all  a, b  by condition (A.a). 

 To show (e) and (f), regard the set  Sp  as the set  X × … × X  vectors  (x(1), … , x(m) )  

of outcomes. The set  X  is a product set of intervals, and thus  X × … × X  is a product                  

of intervals. The relation     on  X × … × X  is complete, transitive, and continuous by 

conditions (B), (C), and it is preferentially independent by condition (D).  Since  Sp  is 

proper, at least three components of  Sp  are essential. Thus, the additive value model of 

Debreu (1960) can be interpreted as a model for (Sp , )  as described in (e) and (f). In 

particular, a component function  vi(xi )  is a continuous value function for  i  and thus  

vi(xi )  is a continuous value function for  X  if  i  is in  E. 
 
 Since the functions  vi(xi ),  i ∈ E,  in part (e) above are ordinal value functions for the 

relation  X,  they are ordinally equal, i.e.,  vj(x) = ƒij( vi(x) )  for some strictly increasing 

function  ƒij(v).  Below, we show that condition (E) implies that the functions  vi(xi )  are 

cardinally equal, i.e.,  vj(x) = aij vi(x) + bij  for some constants  aij > 0  and  bij .  Harvey 

(1986) presents a similar result for the case of outcome sequences. 
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Lemma A3.  If a space  (Sp , )  as described in Lemma A2 also satisfies condition (E), 

then it has a value function of the form,  V(x) = ∑ i d(i) v(xi),  such that: 

 (a)  The function  v(x),  x  in  X,  is a continuous value function for  (X, X
 )  which has 

a non-point interval range and the value  v(o) = 0. 

 (b)  A weight  d(i)  is positive if the interval  〈ti–1, ti〉  is non-point and is zero otherwise. 

 Moreover, the function  v(x)  and the weights  d(i)  are unique up to positive multiples. 
 
Proof.  Suppose that  v(x), w(x)  denote two functions  vi(x), vj(x),  i ≠ j,  in an additive 

value function,  V(x) = ∑ i ∈ E vi(xi ),  as described in Lemma A2.e and that  Iv , Iw  denote 

their ranges. As the major part of the proof, we show that  v(x), w(x)  are cardinally equal. 

 Each function  v(x), w(x)  is a continuous value function for  X  by Lemma A2.e, and 

thus each range  Iv , Iw  is a non-point interval by Lemma A1.e. Moreover,  v(x), w(x)  are 

ordinally equal, i.e.,  w(x) = ƒ(v(x)  for some strictly increasing function  ƒ(v).  The range 

of  ƒ(v)  is an interval (namely  Iw ), and so  ƒ(v)  is continuous. 

 Suppose that  v  and  w  denote the lengths of  Iv  and  Iw .  Then,  v , w > 0  (and  

v , w ≤ ∞).  An outcome pair  x– X x+  in  〈ti–1, ti 〉  and an outcome pair   y– X y+  in  

〈tj–1, tj 〉  are tradeoffs pairs if and only if  v(x+) – v(x–
 ) = w(y+) – w(y–

 ).  It follows that if  

v(x+) – v(x–
 ) < w ,  then  x– X x+  has a tradeoffs pair in  〈tj–1, tj 〉,  and if  w(y+) – w(y–

 ) 

< v ,  then  y– X y+  has a tradeoffs pair  in  〈tj–1, tj 〉. 

 Next, we show that for any  a0 X a1/2 X a1 :  If  v(a1/2) – v(a0) = v(a1) – v(a1/2),  then  

w(a1/2) – w(a0) = w(a1) – w(a1/2).  First, assume that:  v(a1/2) – v(a0),  v(a1) – v(a1/2) < w  

and  w(a1/2) – w(a0),  w(a1) – w(a1/2)< v .  Then, each of the pairs  a0 , a1/2  and  a1/2 , a1  

in  〈ti–1, ti 〉  has a tradeoffs pair in  〈tj–1, tj 〉,  and each of the pairs  a0 , a1/2  and  a1/2 , a1  

in  〈tj–1, tj 〉  has a tradeoffs pair in  〈ti–1, ti 〉.  If  v(a1/2) – v(a0) = v(a1) – v(a1/2),  then the 

pairs  a0 , a1/2  and  a1/2 , a1  in  〈ti–1, ti 〉  have the same tradeoffs pairs in  〈tj–1, tj 〉,  and 

thus  a1/2  is a mid-outcome of  a0 , a1  in  〈ti–1, ti 〉.  Hence, by condition (E),  a1/2  is also 

a mid-outcome of  a0 , a1  in  〈tj–1, tj 〉,  and thus  w(a1/2) – w(a0) = w(a1) – w(a1/2). 

 The general case can be reduced to this special case as follows. For the three outcomes  

a0 X a1/2 X a1  in  〈ti–1, ti 〉,  define  ∆ =  v(a1/2) – v(a0) = v(a1) – v(a1/2) > 0.  For any 

even integer  n ≥ 2,  there exists a sequence  a0 X a1/n X … X a(n–1)/n X a1  in  〈ti–1, ti 〉  
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that includes  a0 , a1/2 , a1  such that  v(ak/n ) – v(a(k–1)/n ) = ∆/n,  k = 1, … , n.  If  n ≥ ∆/w ,  

then  ∆ /n ≤ w  and each pair  a(k–1)/n , ak/n  in  〈ti–1, ti 〉  has a tradeoffs pair in  〈tj–1, tj 〉. 

 The continuous function  ƒ(v)  is uniformly continuous on the interval  [v(a0), v(a1)]  

in  Iv  since it is continuous on  Iv ,  and thus there exist sufficiently large even integers  n  

such that  ƒ(v(ak/n )) – ƒ(v(a(k–1)/n )) = w(ak/n ) – w(a(k–1)/n ) ≤ v ,  k = 1, … , n.  Then, each 

pair  a(k–1)/n , ak/n ,  k = 1, … , n,  in  〈tj–1, tj 〉  has a tradeoffs pair in  〈ti–1, ti 〉.  Thus, by 

the above argument,  w(a(k+1)/n ) – w(ak/n ) = w(ak/n ) – w(a(k–1)/n ),  k = 1, … , n.  These 

equations imply that  w(a1/2) – w(a0) = w(a1) – w(a1/2). 

 Now, consider any  v0 < v1  in  Iv .  There are outcomes  a0 , a1/2 , a1  such that  v(a0 ) = 

v0 ,  v(a1 ) = v1 ,  and  v(a1/2 ) = ½ v0 + ½  v1 .  Thus,  v(a1/2) – v(a0) = v(a1) – v(a1/2)  which 

implies  w(a1/2) – w(a0) = w(a1) – w(a1/2)  which implies  w(a1/2) = ½  w(a0) + ½  w(a1).  

But  v(a1/2 ) = ½ v0 + ½ v1  implies  ƒ(v(a1/2 )) = ƒ(½ v0 + ½ v1),  and  w(a1/2) = ½ w(a0) +        

½ w(a1)  implies that  ƒ(v(a1/2 )) = ½ ƒ(v0) + ½ ƒ(v1).  Hence, the function  ƒ(v)  satisfies 

Jensen’s equation,  ƒ(½ v0 + ½ v1) = ½ ƒ(v0) + ½ ƒ(v1).  It follows that  ƒ(v) = a v + b  for 

some constants  a, b  (e.g., Aczél, 1966).  Here,  a > 0  since  ƒ(v)  is strictly increasing. 

 In conclusion, the function  V(x)  can be written as,  V(x) = ∑ i ∈ E ( d(i) v(xi ) + bi ) = 

∑ i ∈ E d(i) v(xi ) + ∑ i ∈ E b(i),  where  d(i) > 0  and  v(xi )  is one of the functions  vi(xi ).  

By the cardinal uniqueness of  V(x),  we can omit the constant  ∑ i ∈ E b(i).  Finally, by 

defining  d(i) = 0  for the inessential intervals we can write  V(x)  as,  V(x) = ∑ i d(i) v(xi ). 

 Property (a) is implied by Lemmas A2.e and A1.e;  property (b) is implied by Lemma 

A2.d;  and the uniqueness properties of  v(x)  and  d(i)  are implied by Lemma A2.f. 
 
 Next, we extend the model for a set  Sp  to a model for the union  ST  of the sets  Sp .  

The key idea is as follows. Suppose that  p: 〈si–1, si〉,  i = 1, … , m,  and  q: 〈tj–1, tj〉,  j = 

1, … , n,  are two partitions of  [0, T ].  Since the intersections  〈si–1, si〉 ∩ 〈tj–1, tj〉  are 

pairwise disjoint, they form a partition of  [0, T ].  We will denote this partition by  pq  

and call it the conjunction of  p  and  q.  An outcome stream in  Sp  or  Sq  is constant on 

each interval  〈si–1, si〉 ∩ 〈tj–1, tj〉.  Thus, the sets  Sp  and  Sq  are subsets of  Spq ,  and for 

the same reason the function (A1) below is well-defined, i.e., if an outcome stream  x  is 

in two sets  Sp , Sq ,  then  V(x) = ∑i (A(si) – A(si–1)) v(x(i)) = ∑j (A(tj) – A(tj–1)) v(x(j)). 
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Theorem A1.  If an outcome stream space  (ST , ),  T > 0,  satisfies conditions (A)-(E), 

then it has a value function of the form, 
 
 V(x)  =  ∑i (A(si) – A(si–1)) v(x(i)),   x  in  ST . (A1) 
 
such that: 

 (a)  The function  v(x),  x  in  X,  is a continuous value function for  (X, X
 )  which has 

a non-point interval range and the value  v(o) = 0. 

 (b)  The function  A(t),  0 ≤ t ≤ T,  is strictly increasing and has the value  A(0) = 0. 

 Moreover, each of the functions  v(x), A(t)  is unique up to a positive multiple. 
 
Proof.  If a set  Sp  or  Sq  is proper, then the conjunction  Spq  is proper. Hence,  ST  is a 

union of proper sets, and it suffices to consider only proper sets. 

 The functions and weights  v(x),  d(i), V(x)  that are associated with a (proper) space  

(Sp , )  will be written as  vp(x),  dp(i),  and  Vp(x).  Thus,  Vp(x) = ∑i dp(i) vp(x(i)). 

 Assume that the weights  dp(i)  are normalized such that  ∑i dp(i) = 1.  If there is an 

outcome  a X o,  assume that such an outcome has been chosen and the function  vp(x)  

is normalized such that  vp(o) = 0  and  vp(a) = 1.  Otherwise, there is an outcome  a X
 o.  

In this case, assume that such an outcome is chosen and  vp(x)  is normalized such that  

vp(o) = 0  and  vp(a) = –1.  Then, the quantities  vp(x),  dp(i),  and  Vp(x)  are unique. 

 Since a space  (Sp , )  is a subspace of a space  (Spq , ),  a value function  Vpq(x) = 

∑i, j dpq(i, j) vpq(x(i, j))  for  (Spq , )  is also a value function for  (Sp , ).  An outcome 

stream  x  in  Sp  has the outcome  x(i)  in the intervals  〈si–1, si〉 ∩ 〈tj–1, tj〉,  j = 1, … , n,  

and thus  Vpq(x) = ∑i (∑j dpq(i, j)) vpq(x(i))  for  x  in  Sp .  But  vpq(x)  and  dpq(i, j)  are 

normalized, and thus  vpq(x) = vp(x)  for  x  in  X  and  ∑j dpq(i, j) = dp(i),  i = 1, … , m.  

By the same argument,  vpq(x) = vq(x)  for  x  in  X  and  ∑i dpq(i, j) = dq(j),  j = 1, … , n. 

 It follows that  vp(x) = vq(x)  for  x  in  X,  and thus the normalized functions  vp(x)  are 

equal. Suppose that  v(x)  denotes the common function.  

 Next, we show that an weight for an interval depends only on its endpoints, i.e., if  

dp(h), dq(k)  are the weights for intervals  〈sh–1, sh〉,  〈tk–1, tk〉  in two partitions  p, q  and  

sh–1 = tk–1,  sh = tk ,  then  dp(h) = dq(k). For the interval  〈sh–1, sh〉 ∩ 〈tk–1, tk〉  in  pq  

also has these endpoints, and thus the intersection intervals  〈si–1, si〉 ∩ 〈tk–1, tk〉,  i ≠ h,  
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and  〈sh–1, sh〉 ∩ 〈tj–1, tj〉,  j ≠ k,  are point sets or empty. Hence,  dpq(i, k) = 0,  i ≠ h  and  

dpq(h, j) = 0,  j ≠ k.  It follows that  dp(h) = ∑j dpq(h, j) = dpq(h, j) = ∑i dpq(i, k) = dq(k).  

 As shown, a weight  dp(h)  is a function,  dp(h) = ƒ(sh–1, sh),  of the endpoints  sh–1, 

sh  of the interval  〈sh–1, sh〉.  But what type of function?  Suppose that  p  has adjacent 

intervals  〈sh–1, sh〉,  〈sh, sh+1〉  and  q  has an interval  〈tk–1, tk〉 = 〈sh–1, sh〉 ∪ 〈sh, sh+1〉.  

Then,  dp(h) = dpq(h, k),  dp(h+1) = dpq(h+1, k),  and thus  ƒ(sh–1, sh+1) = ƒ(tk–1, tk) = 

dq(k) = dpq(h, k) + dpq(h+1, k) = dp(h) + dp(h+1) = ƒ(sh–1, sh) + (sh, sh+1). 

 The endpoints are not restricted, and thus  ƒ(s, u) = ƒ(s, t) + ƒ(t, u)  for any  s ≤ t ≤ u  

in  [0, T ].  Define  A(t) = ƒ(0, t),  0 ≤ t ≤ T.  Then,  ƒ(t, u) = A(u) – A(t)  and  A(0) = 0. 

 A function  Vp(x)  can now be written as,  Vp(x) = ∑i (A(si) – A(si–1)) v(x(i))  where 

the functions  v(x)  and  A(t)  are independent of the partition  p.  Therefore,  V(x)  can be 

defined as equal to  Vp(x)  for outcome streams  x  in the set  Sp . 

 Since  ∑i A(si) – A(si–1) = ∑i dp(i) = 1,  an amount  V(x)  is a weighted average of 

amounts  v(x).  Thus, the range of   V(x)  is the non-point interval range of  v(x). 

 V(x)  is a value function for  ST .  For consider  x, y  in  ST .  Then,  x  is in  Sp  and  y  

is in  Sq  for some  p, q.  Hence,  x  and  y  are in  Spq ,  and thus  V(x) = Vpq(x)  and  V(y) 

= Vpq(y).  Therefore,  x  y  if and only if  Vpq(x) ≥ Vpq(y)  if and only if  V(x) ≥ V(y). 

 Next, we show that the functions  v(x),  A(t)  have the properties (a), (b). Lemma A3 

implies that  v(x)  has the properties in (a). It also implies that  A(t)  is strictly increasing 

since a weight  dp(i) = A(si) – A(si–1)  for a non-point interval is positive. 

 It remains to show the uniqueness properties of  v(x)  and  A(t).  Suppose that  V1(x) = 

∑i ( A1(si) – A1(si–1) ) v1(x(i))  and  V2(x) = ∑i ( A2(si) – A2(si–1) ) v2(x(i))  are value 

functions for  ST  with the properties (a), (b). Then, for a partition  p,  V1(x)  and  V2(x)  

are value functions for the subset  Sp  of  ST . Lemma A3 states that: (i)  v2(x) = ap v1(x)  

where  ap > 0,  and (ii)  A2(si) – A2(si–1) = cp ( A1(si) – A1(si–1) ),  i = 1, … , m,  where        

cp > 0.  Equation (ii) implies by addition that  A2(si) = cp A1(si)  for  i = 1, … , m.  In 

particular,  A2(T) = cp A1(T)  since  sm = T.  But  v1(x), v2(x) ≠ 0  for some outcome  x  

and  A1(T), A1(T) ≠ 0,  and thus the constants  ap  and  cp  are independent of  p. 

 Conversely, if  V1(x)  is a value function and  v2(x) = a v1(x),  A2(t) = c A1(t)  where         

a, c > 0,  then  V2(x) = ∑i ( A2(si) – A2(si–1) ) v2(x) = c a V1(x)  is also a value function. 
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Lemma A4.  Suppose that an outcome stream space  (ST , )  as described in Theorem 

A1 satisfies the conditions (F), (G). Then,  A(t),  0 ≤ t ≤ T,  has the additional properties:  

 (a)  A(t),  0 ≤ t ≤ T,  is concave (i.e.,  A( p t + (1–p) t′ ) ≥ p A(t) + (1–p) A(t′ )  for  t, t′  in  

[0, T ]  and  0 ≤ p ≤ 1)  and is absolutely continuous. 

 (b)  The left derivative,  A′–(t) = lim∆ ↓ 0 ((A(t) – A(t – ∆)) / ∆,  exists for  0 < t ≤ T  and is 

bounded, non-increasing, and positive. (It follows that  limt ↓ 0 A′–(t)  exists and that  A′–(t) 

≥ limt ↓ 0 A′–(t)  for  0 < t ≤ T.) 

 (c)  A(t),  0 ≤ t ≤ T,  is an indefinite Riemann integral,  A(t) = ∫0
t
 a(s) ds,  where the 

function  a(t)  is defined as  a(0) = limt ↓ 0 A′–(t)   and  a(t) = A′–(t)  for  0 < t ≤ T. 

 (d)  The value function  V(x)  in (A1) can be written as the Riemann integral, 
 
 V(x)  =  ∫0T

 a(t) v(x(t)) dt,   x  in  ST . (A2) 
 
Proof.  Define  u = ½ (s + t)  for any s < t.  Condition (F) implies that  V(a〈s, u〉, b〈u, t〉, ο) ≥ 

V(b〈s, u〉, a〈u, t〉, ο)  for any outcomes  a X
 b.  This implies (by algebraic manipulation) 

that  (A(u) – ½ A(s) – ½ A(t)) (v(a) – v(b)) ≥ 0.  But  v(a) > v(b)  whenever  a X
 b,  and 

thus  A(u) ≥ ½ A(s) + ½ A(t),  that is,  A(t),  0 ≤ t ≤ T,  is midpoint concave. 

 Since  A(t),  0 ≤ t ≤ T,  is strictly increasing, it follows that it is concave. (The proof of 

this result but not the statement of it is in Hardy et al., 1934, pp. 72, 73.) 

 Therefore,  A(t)  is continuous for  0 < t < T, (see, e.g., Stromberg, 1981, p. 199). It is 

straightforward to infer from  A(t)  is continuous at  t = T  and that  A(t),  0 ≤ t ≤ T,  is 

bounded (since  A(0) = 0). Next, we will show that condition (G) implies that  A(t)  is 

continuous at  t = 0.  Then,  A(t)  is continuous for all  0 ≤ t ≤ T.  Hence, it is absolutely 

continuous for  0 ≤ t ≤ T  (see, e.g., Stromberg, 1981, p. 202).  

  Condition (G) implies that for  s > 0  there exist  a X
 b X c  such that  V(c[s – ∆, s], a) 

≥ V(b[0, ∆], a)  for all  0 < ∆ < ½ s.  Then,  (A(s) – A(s – ∆)) (v(c) – v(a)) ≥ (A(∆) – A(0)) 

(v(b) – v(a))  which implies that  A(∆) – A(0) ≤ Ks (A(s) – A(s – ∆))  where  Ks = (v(c) – 

v(a)) / (v(b) – v(a)) > 1.  Thus,  A(t)  is continuous at  t = 0  since it is continuous at  t = s. 

 To show parts (b)-(d), we will use the following properties of a function  A(t)  that is 

concave on an interval  0 < t < T.  See, e.g., Stromberg (1981, pp. 129, 199) for proofs. 
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 (i) The left derivative  A′–(t) = lim∆ ↓ 0 ((A(t) – A(t – ∆)) / ∆  and the right derivative  

A′+(t) = lim∆ ↓ 0 ((A(t + ∆) – A(t)) / ∆  exist for  0 < t < T. 

 (ii) ((A(t) – A(t – ∆)) / ∆  ≥  A′–(t)  ≥  A′+(t)  ≥  ((A(t + ∆) – A(t)) / ∆  for  t, ∆  such that      

0 < t – ∆ < t < t + ∆ < T. 

 (iii) A′–(t),  0 < t < T,  is non-increasing. (It follows that  A′–(t)  is continuous except for 

at most countably many points.) 

 (iv) A′–(t) = A′+(t)  0 < t < T  (i.e., the derivative  A′(t) = A′–(t) = A′+(t)  exists) except for 

at most countably many points. 

 Since  A(t)  is strictly increasing, we also have the property that  A′+(t)  and  A′–(t)  are 

positive for  0 < t < T.  For by choosing  ∆ > 0  such that  t < t + ∆ < T  we have,  A′–(t) ≥ 

A′+(t) ≥ ((A(t + ∆) – A(t)) / ∆ > 0  by (ii). 

 We next investigate the cases,  t = 0  and  t = T.  Since  A(t)  is concave on  0 ≤ t ≤ T,                

it has the following properties (see, e.g., Stromberg (1981, p. 199):  (1)  A(∆) – A(0) ≥ 

A(½T) – A(½T – ∆) ≥ A(½T + ∆) – A(½T) ≥ A(T) – A(T – ∆),  and (2)  (A(T) – A(T – ∆′ ) / ∆′ 

≤ A(T) – A(T – ∆) / ∆  for  ∆′ < ∆ .  And as shown above, condition (G) with  s = T  implies 

that:  (3)  A(∆) – A(0) ≤ KT (A(T) – A(T – ∆))  for  0 < ∆ < ½T. 

 First, consider  t = 0.  The inequalities (1), (3) imply that  A′–(∆) ≤ (A(∆) – A(0)) / ∆                     

≤ KT (A(T) – A(T – ∆)) / ∆ ≤ KT (A(½T + ∆) – A(½T)) / ∆ ≤ KT A′+(½T). Thus,  A′–(t)  is 

bounded above. It is also non-increasing, and thus  limt ↓ 0 A′–(t)  exists. Second, consider,  

t = T.  The inequalities (1), (3) imply that  (A(T) – A(T – ∆)) / ∆ ≥ KT
–1(A(∆) – A(0)) / ∆ ≥ 

KT
–1(A(½T) – A(½T – ∆)) / ∆ ≥ KT

–1A′–(½T).  Thus,  (A(T) – A(T – ∆)) / ∆  has a positive 

lower bound. By (2), it is non-increasing as  ∆  decreases, and thus  A′–(T) > 0  exists. 

 Now, define  a(t),  0 ≤ t ≤ T,  as in part (c). Then,  a(t)  is bounded and is continuous 

except for at most countably many points, and thus it is Riemann integrable on [0, T ]. 

 Since  A(t)  is absolutely continuous and  A(0) = 0,  the fundamental theorem of 

calculus implies that  A′(t)  is Lebesgue integrable on  [0, T ]  and that  A(t) = ∫0
t
 A′(s) ds  

for  0 ≤ t ≤ T.  But  A′(t) = A′–(t)  wherever  A′(t)  exists, and thus  A(t) = ∫0
t
 a(s) ds. 

 For any  x  in  ST ,  V(x) = ∑i ( A(si) – A(si–1) ) v(x(i)) = ∑i (∫〈si–1, si〉 a(t) dt) v(x(i)) = 

∑i (∫〈si–1, si〉 a(t) v(x(i)) dt) = ∫0T
 a(t) v(x(t)) dt,  and thus  V(x)  has the form (A2). 
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Proof of Theorem 1.  For the forward part of the proof, assume that an outcome stream 

space  (XT , )  satisfies the stated conditions. Then,    restricted to the set  ST  satisfies 

the conditions in Theorem A1 and Lemma A4. Hence, there exist functions  v(x),  a(t),  

A(t)  with the properties stated there such that  V(x)  is a value function for  (ST , ). 

 By Lemma A1, the range of  v(x),  x  in  X,  is an interval  Iv .  By Definition 1, for any  

x  in  XT ,  each function  xj  has bounds,  aj ≤ xj(t) ≤ bj ,  in the interval  Xj ,  j = 1, … , N.  

Thus, the range of  x  is a subset of the product set  S = [a1, b1] × … × [aN, bN].  Since the 

set  S  is compact and the function  v(x)  is continuous, the image of  S  is a compact 

subinterval  [, u]  of  Iv ,  that is,  v(S) = [, u].  Thus,   ≤ v(x(t)) ≤ u,  for all  0 ≤ t ≤ T. 

 For  x  in  XT ,  the function  v(x(t))  is Riemann integrable since  v(x)  is continuous  

and  x(t)  satisfies Definition 1. But  a(t)  is Riemann integrable by Lemma A4. Hence,  

a(t) v(x(t))  is Riemann integrable, that is,  V(x) = ∫0T a(t) v(x(t)) dt  is well-defined. 

 Since    is complete by condition (B), the properties (2), (3) below suffice to show 

that  V(x)  is a value function for the space  (XT , ). 
 
 (1)  If  V(x) < V(y),  then there exist step outcome streams  w, z  such that:  x  w,  z  y  

and  | V(w) – V(x) | < ½ ε,  | V(y) – V(z) | < ½ ε  where  ε = V(y) – V(x) > 0. 

Proof.  Suppose that  pn ,  n = 1, 2, … ,  is a sequence of partitions of the interval  [0, T]  

into subintervals  〈 ti–1
(n), ti

(n)
 〉  such that,  limn→∞ maxi | ti

(n) – ti–1
(n)

 | = 0.  For each 

partition  pn ,  define  u(n)(i) = sup{ v(x(t)):  t  in  〈 ti–1
(n), ti

(n)
 〉 }  and  (n)(i) = inf{ v(x(t)):  

t  in  〈 ti–1
(n), ti

(n)
 〉 },  and then define upper and lower step functions  u(n)(t),  (n)(t)  for 

the function  v(x(t))  by  u(n)(t) = u(n)(i)  and  (n)(t) = (n)(i)  for  t  in  〈 ti–1
(n), ti

(n)
 〉. 

 Then, for each  n = 1, 2, … :  (n)(t) ≤ v(x(t)) ≤ u(n)(t)  for all  0 ≤ t ≤ T.  Moreover,  

limn→∞ ∫0T u(n)(t) dt = limn→∞ ∫0T (n)(t) dt = ∫0T v(x(t)) dt,  since  v(x(t))  is Riemann 

integrable. But,  ∫0Ta(t) u(n)(t) dt – ∫0Ta(t) (
n)(t) dt  ≤  a(0) ( ∫0T u(n)(t) dt – ∫0T (n)(t) dt ),  

and thus:  limn→∞ ∫0Ta(t) u(n)(t) dt = limn→∞ ∫0Ta(t) (
n)(t) dt = ∫0Ta(t) v(x(t)) dt.    

 The range of  v(x(t))  is a subset of the interval  [, u]  defined above. Thus, there exist 

outcomes  a(n)(i), b(n)(i)  such that  v(a(n)(i)) = (n)(i)  and  v(b(n)(i)) = u(n)(i).  Define step 

outcome streams  a(n)(t)  and  b(n)(t)  by:  a(n)(t) = a(n)(i)  and  b(n)(t) = b(n)(i)  for  t  in          

〈 ti–1
(n), ti

(n)
 〉.  Then,  v(a(n)(t)) = (n)(t)  and  v(b(n)(t)) = u(n)(t). 

 Thus,  v(a(n)(t)) ≤ v(x(t)) ≤ v(b(n)(t))  for  0 ≤ t ≤ T,  and  limn→∞ ∫0Ta(t) v(a(n)(t)) dt = 
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limn→∞ ∫0Ta(t) v(b(n)(t)) dt = ∫0Ta(t) v(x(t)) dt.  In particular, the inequalities imply that,  

x(t) X b(n)(t)  for  0 ≤ t ≤ T  and each  n = 1, 2, …  which implies that  x  b(n)  for each  

n = 1, 2, …  by condition (A). And the limits imply that for any  ε > 0  there exists an  n  

such that  | ∫0Ta(t) v(b(n)(t)) dt = ∫0Ta(t) v(x(t)) dt | < ½ ε.  

 Choose  w  above as such a step outcome steam  b(n).  By a similar argument, we can 

show the existence of a step outcome stream  z  that satisfies the other statements in (1). 
 
 (2)  V(x) < V(y)  implies  x  y  for all  x, y  in  XT . 

Proof.  The inequalities in (1) imply that  V(w) < V(z).  Thus,  w  z  since  V(x)  is a value 

function for  ST .  Hence,  x  w  z  y  which implies that  x  y  by condition (B). 
 
 (3)  x  y  implies  V(x) < V(y)  for all  x, y  in  XT . 

Proof.  By Lemma A1, there exist constant outcome streams  a, b  such that  a ~ x  and               

b ~ y.  Thus,  V(a) = V(x),  V(b) = V(y)  by (2). But,  a ~ x  y ~ b  implies  a  b  by 

condition (B). Hence,  V(a) < V(b)  since  a, b  are in  ST ,  and thus  V(x) < V(y). 
 
 To show that  v(x), a(t), A(t)  have the properties (a)-(c), note that  v(x), A(t)  have the 

properties (a), (c) by Theorem A1 and  a(t)  has the property (b) by Lemma A4. 

 The uniqueness  properties of  v(x)  and  A(t)  are implied by their uniqueness properties 

in Theorem A1 since  ST  is a subset of  XT .  

 The converse implications, namely that the existence of a value function as described 

implies conditions (A)-(G), are straightforward to verify except for the case of condition 

(A.b). In this case, the implication is a conseqence of the following stronger result. 
 
 (4)  For any  x, y  in  XT ,  if  x(t) X y(t)  for a non-finite number of times  t,  then there 

exists a non-point interval  [s, s′ ]  such that  ∫[s, s′ ] a(t) v(x(t)) dt < ∫[s, s′ ] a(t) v(y(t)) dt. 

Proof.  Choose a time  tc  such that  x(t), y(t)  are continuous and  x(t) X y(t)  at  tc .  Since  

v(y(tc)) – v(x(tc)) > 0,  tc  is in a non-point interval  [s, s′ ]  such that,  sup{v(x(t)):  t  in                

[s, s′ ]} < inf{v(y(t)):  t  in  [s, s′ ]},  and thus,  ∫[s, s′ ] a(t) v(x(t)) dt <  ∫[s, s′ ] a(t) v(y(t)) dt .  
 
 A set  XT  of outcome streams  x  will be identified with the subset of  X∞  containing 

the outcome streams of the form  ( x[0, T], ο).  The union of these subsets of  X∞  will be 

denoted by  Xƒ .  For  T < T ′,  the set  XT   will also be identified with the subset of  XT ′  
containing the outcome streams of the form  ( x[0, T], ο (T, T′] ). 
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Theorem A2.  If an outcome stream space  (Xƒ ,  )  satisfies conditions (A)-(G), then it 

has a value function of the form,  V(x) = limT→∞ ∫0T
 a(t) v(x(t)) dt,  such that the improper 

Riemann integral  V(x)  exists for any  x  in  Xƒ  and: 

 (a)  The function  v(x),  x  in  X,  is a continuous value function for  (X , X
 )  which has 

a non-point interval range and the value  v(ο) = 0. 

 (b)  The function  a(t),  0 ≤ t < ∞,  is positive and non-increasing, and it is Riemann 

integrable on each interval  [0, T ],  T > 0. 

 (c)  The function  A(t) = ∫0
t
 a(s) ds,  0 ≤ t < ∞,  is bounded and strictly increasing and 

has the value  A(0) = 0. 

 Moreover, each of the functions  v(x)  and  A(t)  is unique up to a positive multiple. 
 
Proof.  Since  XT  is a subset of  XT′   for  T ′ > T,  Xƒ  is the union of the sets  XT ,  T ≥ 1.  

By Lemma A1.a there exists an outcome  a X ο  or an outcome  a X ο.  The arguments 

are the same in both cases, so it suffices to assume that there is an outcome  a X ο. 

 The assumptions here imply those in Theorem 1 for any  T > 0.  Thus, for any  T ≥ 1  

there is a value function,  VT(x) = ∫0T
 aT(t) vT(x(t)) dt,  as described in Theorem 1 for the 

subspace  (XT ,  )  of  (Xƒ ,  ).  We will assume that the functions  vT(x), AT(t)  are 

normalized such that  vT(ο) = 0,  vT(a) = 1,  AT(0) = 0,  AT(1) = 1.  Hence,  vT(x)  and  

AT(t)  are unique. Then, for any  T ´> T ≥ 1,  VT(x)  and  VT′ (x)  are normalized value 

functions for  XT ,  and thus  vT(x) = vT′ (x),  x  in  X,  and  AT(t) = AT′ (t),  0 ≤ t ≤ T.  It 

follows that the left derivatives of  AT(t)  and  AT′ (t)  are equal for  0 ≤ t ≤ T  and that 

they have the same limit as  t  tends to zero. 

 Hence, the following functions are well-defined: the function  v(x)  defined by  v(x) = 

vT(x)  for  x  in  X,  the function  A(t),  0 ≤ t < ∞,  defined by  A(t) = AT(t)  for  0 ≤ t ≤ T,  

the function  a(t),  0 ≤ t < ∞,  defined as the left derivative of  AT(t)  for  0 ≤ t ≤ T,  and 

the function  V(x),  x  in  Xƒ,  defined as  V(x) = VT(x) = ∫0T
 aT(t) vT(x(t)) dt  for  x  in  XT .  

Since  v(o) = 0,  the last definition implies that  V(x) = limT→∞ ∫0T
 a(t) v(x(t)) dt,  x  in  Xƒ. 

 Theorem 1 implies that  V(x)  is a value function for any set  XT ,  T ≥ 1,  and that the 

functions  v(x),  A(t),  a(t)  have properties (a)-(c). Moreover,  V(x)  is a value function for  

(Xƒ , ).  For if  x, y  are in  Xƒ ,  then  x  is in  XT  and  y  is in  XT´  for some  T, T ´ ≥ 1.  
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Define  T* = max{T, T ′}.  Then,  x  and  y  are in  XT*  and thus can be compared by the 

normalized function  VT*(x).  Hence,  x  y  if and only if  VT*(x) ≥ VT*(y)  if and only if  

V(x) ≥ V(y)  since  V(x) = VT*(x)  and  V(y) = VT*(y). 

 To show that each function  A(t),  v(x)  is unique up to a positive multiple, consider 

two value functions,  V1(x) = limT→∞ ∫0T
 a1(t) v1(x(t)) dt  and  V2(x) = limT→∞ ∫0T

 a2(t) 

v2(x(t)) dt  as described. Then,  v1(ο) = v2(ο) = 0  and  A1(0) = A2(0) = 0.  Since  V1(x)  

and  V2(x)  are value functions for any set XT ,  Theorem 1 implies that there are constants  

αT > 0,  γT > 0  such that  v2(x) = αTv1(x),  x in  X ,  and  A2(t) = γTA1(t),  0 ≤ t ≤ T .  For           

T ≤ T ′:  αT v1(x) = v2(x) = αT´v1(x),  x  in  X  and  γT A1(t) = A2(t) = γT´A1(t),  0 ≤ t ≤ T.  

But  v(a) ≠ 0  and  A(T) ≠ 0,  and thus  αT = αT′  and  γT = γT′ .  Hence,  αT  and  γT  are 

independent of  T > 0. 
 
Proof of Theorem 2.  For the forward part of the proof, assume that an outcome stream 

space  (X∞ , )  satisfies the stated conditions. Then,    restricted to the set  Xƒ  satisfies 

the conditions in Theorem A2. Hence, there exist functions  v(x),  a(t),  A(t)  with the 

stated properties such that  V(x)  in (A2) is a value function for  (Xƒ , ).   

 To show that  V(x)  converges for any  x  in  X∞ ,  it suffices to show that for any  ε > 0  

there exists a time  T > 0  such that  | V((x[0,s], ο)) – V((x[0,s′ ], ο)) | < ε  for all  s, s′ > T. 

 For  x  in  X∞  and  ε > 0, choose outcomes  a X b X c  with  A(1)(v(c) – v(a)) < ε.  

Condition (H) implies that there is a time  T ≥ 1  such that  (a[0,1], x, o(s,∞))  (b[0,1], x)  

and  (b[0,1], x)  (c[0,1], x, o(s′ ,∞))  for all  s, s′ > T.  Then,  (a[0,1], x, o(s,∞))  (c[0,1], x, 

o(s′ ,∞))  by transitivity,  and  V((a[0,1], x, o(s,∞))) ≤ V((c[0,1], x, o(s′ ,∞)))  since  V(x)  is a 

value function for  Xƒ .  Thus,  A(1)v(a) + V((x[0,s], ο)) ≤ A(1)v(c) + V((x[0,s′ ], ο))  which 

implies that  V((x[0,s], ο)) – V((x[0,s′ ], ο)) ≤ A(1)(v(c) – v(a)) < ε.  Since this argument is 

valid with  s  and  s′  interchanged,  | V((x[0,s], ο)) – V((x[0,s′ ], ο)) | < ε  for  s, s′ > T. 

 Since    is complete by condition (B), the properties (2), (3) below suffice to show 

that  V(x)  is a value function for  (X∞, ).   
 
 (1)  If  V(x) < V(y),  then there exist a non-point interval  [s, s′ ]  and outcomes  a X b  

such that:  x  (a[s, s′ ], x),  (b[s, s′ ], y)  y  and  | V((a[s, s′ ], x)) – V((x) | < 1/4 ε,  | V((y) – 

V((b[s, s′ ], y)) | < 1/4 ε  where  ε = V(y) – V(x). 
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Proof.  V(x) < V(y)  implies that  V((x[0,T], ο)) < V((y[0,T], ο))  for some  T > 0  which 

implies that  (x[0,T], ο))  (y[0,T], ο)  since  V(x)  is a value function for  Xƒ .  By the proof 

of (4) in the proof of Theorem 1, there exist a non-point interval  [s, s′ ]  such that:  0 < 

∫[s, s′ ] a(t) v* dt – ∫[s, s′ ] a(t) v(x(t)) dt < 1/4 ε  and  0 < ∫[s, s′ ] a(t) v(y(t)) dt – ∫[s, s′ ] a(t) v* dt 

< 1/4 ε  where  v* = sup{v(x(t)):  t  in  [s, s′ ]} < v* = inf{v(y(t)):  t  in  [s, s′ ]}.  The 

conclusions in (1) are true for any outcomes  a, b  such that  v(a) = v*  and  v(b) = v*. 
 
 (2)  If  V(x) < V(y),  then  x  y. 

Proof.  Assume the situation in (1) . Since  b X a,  there exists an outcome  a+ X a  such 

that  ∫[s, s′ ] a(t) v(a+) dt – ∫[s, s′ ] a(t) v(a) dt < 1/8 ε.  Then,  | V((a+
[s, s′ ], x)) – V((a[s, s′ ], x)) | 

< 1/8 ε.  By condition (H), there is a time  T1  such that  (a[s, s′ ], x)  (a+
[s, s′ ], x, o(t,∞))  

for  t > T1.  There is also a  T1′  such that  | V((a+
[s, s′ ], x)) – V((a+

[s, s′ ], x, o(t,∞))) | < 1/8 ε  

for  t > T1′.  Define  M1 = max{T1, T1′}.  Then, by addition of inequalities,  | V((a+
[s, s′ ], x, 

o(t,∞))) – V((a[s, s′ ], x)) | < 1/4 ε  for  t > M1. 

 By a similar argument, there exist an outcome  b– X b  and a time  M2  such that                

(b–
[s, s′ ], y, o(t,∞))  (b[s, s′ ], y)  and  | V((b–

[s, s′ ], y, o(t,∞))) – V((b[s, s′ ], y)) | < 1/4 ε  for           

t > M2.  Since  ε = V(y) – V(x),  it follows from the two inequalities in (1) and the above 

two inequalities that  V((b–
[s, s′ ], y, o(t,∞))) > V((a+

[s, s′ ], x, o(t,∞)))  for  t > max{M1,M2}. 

 Hence,  (b–
[s, s′ ], y, o(t,∞))  (a+

[s, s′ ], x, o(t,∞))  for  t > max{M1, M2}  since  V(x)  is a 

value function for  (Xƒ , ).  In summary, the above arguments yield the preferences:  x  
(a[s, s′ ], x)  (a+

[s, s′ ], x, o(t,∞))  (b
–
[s, s′ ], y, o(t,∞))  (b[s, s′ ], y)  y.  Therefore,  x  y. 

 
 (3)  x  y  implies  V(x) < V(y)  for all  x, y  in  XT . 

Proof.  Define  A(∞) = limT→∞ ∫0T
 a(t) dt < ∞.  The value of a constant outcome stream  a  

is,  V(a) = A(∞) v(a).  By Lemma A1, there exist constant outcome streams  a, b  such that  

a ~ x,  b ~ y.  Thus,  V(a) = V(x),  V(b) = V(y)  by (2). But,  a ~ x  y ~ b  implies  a  b  

by condition (B).  Hence,  V(a) = A(∞) v(a) < V(b) = A(∞) v(b),  and thus,  V(x) < V(y). 
 
 To show that  v(x),  a(t),  A(t)  have the properties (a)-(c), note that  v(x), A(t)  have 

the properties (a), (c) by Theorem A1 and  a(t)  has the property (b) by Lemma A4. 

 The uniqueness  properties of  v(x)  and  A(t)  follow from those in Theorem A1 since  

Xƒ  is a subset of  X∞ .  And it is straightforward to verify the converse implications. 
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 Appendix B:  Comments on related models 
 
 Here, we substantiate a claim made at the end of Section 2. The claim is that when-

ever the set  C  of outcome streams in a model (1)–(3) discussed in Section 2 contains the 

continuous, bounded outcome streams, then  C  also contains some outcome streams that 

are discontinuous at an uncountable number of times. We will show a stronger result, 

namely that for any proportion,  p < 1,  the set  C  contains some outcome streams  x  

such that the proportion of times at which  x  is discontinuous is greater than  p. 

 By a model (1)–(3), we will mean the special case of such a model in which  P  is an 

interval of times and the set  X  is a product of intervals. In such a model, there is a field 

(= algebra)  F  of subsets of  P  such that for any partition of  P  into sets in  F  the set  C  

contains any outcome stream that is constant on each set in the partition, i.e., any simple 

outcome stream. A set  C  that also contains the continuous, bounded outcome streams 

will be called a proper set. It suffices to show the following property of a model (1)–(3). 
 
(I)  If the set  C  in a model (1)–(3) is proper, then the field  F  in the model contains any 

closed subset  P ′  of  P. 
 
 The reason that (I) suffices is as follows. The Cantor subsets of  [0, 1]  are closed, and 

for any  p < 1  there is a Cantor set whose Lebesgue measure is greater than  p.  For  P = 

[0, T]  or  P = [0, ∞),  we can choose  P ′  as a union of shifted Cantor sets. If  xj < x′j   are 

amounts in a component interval  Xj  for the outcome space  X,  then an outcome stream  x  

such that  xj(t)  is constant for  k ≠ j,  xj(t) = xj  for  t  in  P ′  and  xj(t) = x′j  otherwise 

will be in the set  C,  and  x  will be discontinuous at every time  t  in the Cantor set  P ′. 

 In a model (1), (2),  F  is a σ-field that contains the Borel sets. Thus,  F  contains the 

closed sets, and (I) is established. 

 In an SEU model (3), however,  F  may or may not be a σ-field, and different argu-

ments are needed for different models. Here, we present arguments for two such models. 

 First, consider Theorem V.4.6 in Wakker (1989, p. 100). Here, the set  X  has a field  

∆  of subsets that contains the open subsets of  X,  and any outcome stream  x  in  C  is  

(F, ∆)–measureable, i.e.,  x–1(Y)  is in  F  for any  Y  in  ∆.  The field  ∆  is assumed to 

contain the open subsets of  X  (p. 94). 
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 Choose an outcome stream  x  such that a component function  xj  is continuous, 

bounded, and strictly increasing, and the other component functions are constant. For 

such an outcome stream, the image  x(A)  of any open subset  A  of  P  is an open subset 

of  X,  and  x–1(x(A)) = A.  Thus,  A  is in the field  F.  Since any closed subset of  P  is 

the complement of an open subset, it follows that any closed subset of  P  is in  F. 

 As a second example, consider Theorem 1 in Kopylov (2010). The assumptions (I) and 

(III) in his paper imply with a short argument that there exists a field  F  of subsets of  P  

such that the simple outcome streams with respect to  F  are in the set  C. 

 We will assume that for some  j = 1, … , N  greater amounts  xj   are strictly preferred 

for some fixed amounts  xk ,  k ≠ j.  (This assumption can be weakened, but doing so 

seems unnecessary since in applications at least one attribute will be strictly monotonic.) 

 For any closed subset  A  of  P  and amounts  xj < x′j  in  Xj ,  there is a continuous 

function  xj  such that  xj ≤ xj(t) ≤ x′j  for  t  in  P  and  { t : xj(t) ≤ xj } = A.  For example, 

define  xj(t) = (x′j – xj ) ( d(t, A) / (1 + d(t, A)) )  where  d(t, A)  is the distance function,  

d(t, A) = inf{ |t – a| : a  in  A }.  Suppose that  x  denotes the outcome stream such that its  

j-th component function is  xj  and  xk(t) = xk ,  k ≠ j,  for the amounts  xk  mentioned 

above. Also, suppose that  xc  denotes the constant outcome stream,  xc(t) = (xj ; xk , k ≠ j) 

 The set  { t : x(t)  xc(t) } = { t : xj(t) ≤ xj } = A.  Thus, assumption (IV) states that the 

closed set  A  is in the field  F  mentioned above. 
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