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Abstract

A group of players in a cooperative game are partners (e.g., as in the form of

a union or a joint ownership) if the prospects for cooperation are restricted such

that cooperation with players outside the partnership requires the accept of all

the partners. The formation of such partnerships through binding aggrements

may change the game implying that players could have incentives to manipulate

a game by forming or dissolving partnerships. The present paper seeks to explore

the existence of allocation rules that are immune to this type of manipulation. An

allocation rule that distributes the worth of the grand coalition among players, is

called partnership formation-proof if it ensures that it is never jointly profitable

for any group of players to form a partnership and partnership dissolution-proof

if no group can ever profit from dissolving a partnership. The paper provides

results on the existence of such allocation rules for general classes of games as

well as more specific results concerning well known allocation rules.
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1 Introduction

A problem common to societies, clubs, joint venture organizations, and other formal

social structures is how to allocate the benefit, or cost, of a joint activity among the

contributing members. In the language of cooperative game theory we can describe such

a problem in the following stylized way. There is a set of players and each coalition of

players has a worth. This worth can be thought of as the income or surplus that the

coalition can obtain without cooperating with the other players, or it can be thought

of as a claim on total income. The problem is then to find an allocation rule that

specifies how total income (i.e., the worth of the grand coalition) is distributed among

the players for any configuration of the coalitional worths.

The present paper is concerned with the players’ incentives to create binding agree-

ments — called partnerships — in such cooperative game situations. If a group of players

create a partnership, they commit to not cooperate with players outside the partnership

without the accept of the rest of the group. We may think of such partnerships as if

every player in the group is given veto power over activities involving any member of

the partnership. The remaining players outside the partnership are also affected; these

outside players are deprived of the possibility of collaborating with any strict subset of

the players in the partnership.

Examples of partnerships include members of a parliament joined in political parties

or particular parties in a coalition government, a couple getting married, countries

forming a union (e.g., a trade union or a political union), workers or groups of workers

forming a labor union, partners within a firm, or firms establishing joint ownerships

over a common pool of assets.

The creation of a partnership may change the game and hence the outcome of any
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allocation process. Thus the creation or dissolution of a partnership can be seen as a

way of changing the cooperative game situation, whether it is due to players seeking

to manipulate the game or due to a modelling choice by the analyst. In any case,

for someone deciding on an allocation rule to be implemented in a cooperative game

situation, knowledge on whether a specific allocation rule gives players incentives to

manipulate the game by forming or dissolving partnerships could be highly relevant.

Particularly it may be of special interest to consider allocation rules that are “immune”

to such manipulation, or at least to be aware of if such rules exist at all.

We shall call an allocation rule partnership formation-proof if it is never strictly

profitable for any coalition of players to form a partnership when applying the allocation

rule and partnership dissolution-proof if it is never strictly profitable to dissolve a

partnership. Thus, implementing a partnership formation-proof allocation rule implies

that no manipulation in the form of players forming partnerships will occur while a

partnership dissolution-proof allocation rule will be immune to manipulation in the

form of players dissolving partnerships. The present paper explores whether allocation

rules exist that are in this way immune to manipulation while still satisfying some

desirable properties for allocation rules.

Manipulation of cooperative games has been studied by numerous papers starting

with, e.g., Postlewaite and Rosenthal (1974), Charnes and Littlechild (1975), Hart and

Kurz (1983), Kalai and Samet (1987), Legros (1987), Lehrer (1988), and Hart and

Moore (1990). The present paper is closely related to this literature, however, there are

also some important differences. In Postlewaite and Rosenthal (1974), Legros (1987),

Lehrer (1988), and more recently Haviv (1995), Derks and Tijs (2000), and Knudsen and

Østerdal (2008) groups of players can amalgamate into a single player.1 The present pa-

per follows Haller (1994), Carreras (1996) and Segal (2003) and considers environments

where the set of players is fixed but the worth of coalitions can be manipulated.

Haller (1994) focuses on bilateral agreements (i.e. agreements between two players),

1Postlewaite and Rosenthal (1974) and Legros (1987) follow Aumann (1973) and refer to a group
of players amalgamating into a single player as a syndicate. Charnes and Littlechild (1975) call it a
union.
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and considers so-called proxy- and association-agreements. In a proxy-agreement one

of the players becomes a null player, while the other player’s marginal contribution

to a coalition is set equal to the two players’ joint marginal contribution.2 In an

association-agreement, if one of the players enter a coalition, it contributes as if both

players entered. Carreras (1996) considers partnerships as defined in the present paper

and uses the Shapley value to discuss the effect of partnership formation in (especially)

simple games.3 Segal (2003) contains a general taxonomy of types of integration.

In contrast to e.g. the proxy- and association-agreements discussed by Haller (1994)

the creation of partnerships does not yield any technical efficiency gains as a partnership

does not increase the worth of any coalition as long as the game is monotonic; it only

reduces the worth of coalitions containing some but not all members of the partnership.

On the other hand, there is a dual effect of creating a partnership: Players outside

the partnership cannot obtain the full worth from cooperation with strict subsets of

players in the partnership. The purpose of forming a partnership should therefore be

to reduce the power of outside players without reducing the power of players in the

partnership equally. However, it is generally not clear which of the aforementioned

effects dominates.

Section 2 introduces the model and basic definitions. In section 3 some results on

the existence of partnership formation- and dissolution-proof allocation rules are given

for several general classes of cooperative games. We find that the equal-split rule is the

only symmetric allocation rule that is both partnership formation-proof and partnership

dissolution-proof. Further, while no symmetric partnership formation-proof allocation

rule exists that satisfies the null player condition we find that on the class of monotonic

games4 there do exist symmetric partnership dissolution-proof allocation rules satisfying

the null player condition. In section 4 we restrict attention to convex games and consider

some well-known allocation rules with favorable properties on this class of games. We

2Haller (1994, Section 6.4) discusses the similarities and differences between proxy-agreements and
amalgamations.

3See also Carreras et al. (2005), Carreras et al. (2009).
4Monotonic games hold the property that no player contributes negatively to a coalition.
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find that while a symmetric probabilistic allocation rule, such as the Shapley value,

is partnership dissolution-proof on the class of convex games5 other well-known core

allocation rules are neither partnership formation- nor dissolution-proof.

In section 5 we address the influence of the definition of stability on the results

presented in section 3 and 4.

In section 6 we explore the situation where several disjoint partnerships exist within

a population and consider whether more players could be expected to join a partnership

or if players have incentives to dissolve existing partnerships and possibly create new

ones. A few results on the stability of partnership structures are provided. We comment

on the consequence of applying different definitions of stability in this context. Section

7 concludes.

2 Partnerships: model and definitions

A cooperative game with side-payments is a pair (N, v), where N = {1, .., n} is a finite

set of players with |N | = n ≥ 3 and v is a mapping from 2N into R+, with v (∅) = 0.6

Note that we consider only non-negative coalition worths. Since N is fixed we refer

to a game (N, v) simply as v, when no confusion can arise. Also, for players i and j,

we write v(i) instead of v({i}), v(i, j) instead of v({i, j}) etc. Coalitions of players are

subsets S, T , Q... of N . Given a vector x ∈ RN , x (S) specifies the aggregate payoffP
i∈S xi of coalition S ⊆ N . An allocation rule for a family of games V is a function

φ : V → RN such that
P

i∈N φi(v) = v(N), i.e., it satisfies efficiency.

The core of a game v is the set C (v) = {x ∈ RN |x (N) = v (N) , x (S) ≥ v (S) for

all S ⊂ N }. A game v is balanced if C(v) 6= ∅, monotonic if v (S) ≤ v (S0) for all

coalitions S, S0 ⊆ N with S ⊆ S0, superadditive if v (S) + v (S0) ≤ v (S ∪ S0) for any

disjoint coalitions S, S0 ⊆ N , and convex if v (S) + v (S0) ≤ v (S ∩ S0) + v (S ∪ S0) for

all coalitions S, S0 ⊆ N . Convexity implies both superadditivity and balancedness, cf.

5Convex games hold the property that a player’s marginal contribution to a coalition (weakly)
increases as the coalition grows.

6For a general treatment of cooperative games, see, e.g., Owen (1995) or Peleg and Sudhölter (2003).
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Shapley (1971). Note also that for convex games non-negativity implies monotonicity.

Players i, j ∈ N are said to be symmetric in v if for all S ⊆ N\{i, j} it holds that

v(S ∪ {i}) = v(S ∪ {j}). An allocation rule φ is symmetric if symmetric players are

treated equally, that is, if φi(v) = φj(v) for all symmetric players i, j ∈ N in v. We say

that player i is a null player in the game v if v (S ∪ {i}) = v (S) for all S ⊆ N\ {i},

and that an allocation rule φ satisfies the null player condition (or briefly, is null) if

φi (v) = 0 whenever i is a null player.

A coalition T ⊆ N forms a partnership when each player in T commits to not

contributing to any coalition S for which T 6⊆ S. More precisely, we follow Kalai and

Samet (1987), and Carreras (1996) and say that a coalition T ⊆ N is a partnership in

v if

v(R ∪ S) = v(R) for all S ⊂ T and all R ⊆ N\T.

This definition of a partnership corresponds to the notion of a p-type coalition intro-

duced in Kalai and Samet (1987) and to what Hart and Moore (1990) call a joint

ownership, see also Carreras (1996) and Segal (2003, p. 447).7 As in Carreras (1996),

the creation of a partnership changes the game from (N, v) to
¡
N, vT

¢
defined by

vT (S) =

⎧⎨⎩ v (S) , if T ⊆ S

v (S\T ) , otherwise.

Notice that in the partnership game, vT , of v any coalition S ⊂ T has the same worth

as the empty coalition, i.e. vT (S) = 0. Further, all players in T are symmetric in

vT . As mentioned above, we restrict attention to the class of non-negative games. This

allows us to preserve the natural interpretation of partnership formation and disregard

situations where the formation of a partnership allows the worth of a coalition within

the partnership to increase from some negative amount to zero.

7We follow the line of literature defining a partnership as a property of a coalition with respect to
the game. In contrast, Reny et al. (2009) consider the “partnership property” which is a property of
a collection of coalitions and does not involve the game but plays a role for their study of allocations
of a game for which there are no asymmetric dependencies between any two players.
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Given an allocation rule φ, it is not profitable to create any partnership if and only

if X
i∈T

φi
¡
vT
¢
≤
X
i∈T

φi (v) ,

for all T ⊆ N and all v. Allocation rules that satisfy this condition will be called

partnership formation-proof. Note that the definition implies that redistribution of the

joint profit is possible among members of a partnership. If the reverse inequality always

holds we say that the allocation rule is partnership dissolution-proof. For convenience

we use the abbreviations PFP and PDP respectively throughout this paper.

Lemma 1 below states that the partnership game inherits any properties such as

non-negativity, monotonicity, superadditivity, balancedness, and convexity from the

original game. The proofs are straightforward for non-negativity, monotonicity, and

superadditivity (as pointed out in Carreras (1996)) and are omitted here. The proofs

for the latter two properties are given.

Lemma 1 The following classes of games are closed under partnership formation.

1. Non-negative

2. Monotonic

3. Superadditive

4. Balanced

5. Convex

Proof: To show that a balanced game is closed under partnerships assume that x ∈

C (v). Note that since v(i) ≥ 0 for all i ∈ N , we have C (v) ⊆ RN
+ . For coalitions

S ⊆ N such that T ⊆ S or T ∩ S = ∅ we have x (S) ≥ vT (S) since vT (S) = v (S) .

For coalitions S ⊆ N such that T ∩ S 6= ∅ and T 6⊆ S, we also have x (S) ≥ vT (S)

since, if not, then x (S\T ) ≤ x (S) < vT (S) = v (S\T ) by C (v) ⊆ RN
+ , contradicting

that x ∈ C (v). Thus, x ∈ C
¡
vT
¢
.
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Convex games are closed under partnerships if for any convex game v and any

T it holds that vT is convex, i.e. for any two coalitions S, S0 ⊆ N the inequality

vT (S) + vT (S0) ≤ vT (S ∪ S0) + vT (S ∩ S0) holds. If T ⊆ S and T ⊆ S0, the inequality

is immediate from the convexity of v. If T 6⊆ S and T 6⊆ S0, then

vT (S) + vT (S0) = v (S\T ) + v (S0\T )

≤ v ((S ∪ S0) \T ) + v ((S ∩ S0) \T )

≤ vT (S ∪ S0) + vT (S ∩ S0) ,

where the first inequality follows from convexity of v, and the second follows since

v ((S ∩ S0) \T ) = vT (S ∩ S0) and vT (S ∪ S0) = v((S ∪ S0)\T ) if T 6⊆ S ∪ S0 and

vT (S ∪ S0) = v(S ∪ S0) ≥ v((S ∪ S0)\T ) if T ⊆ S ∪ S0 (because by monotonicity and

convexity v is monotonic).

If T ⊆ S and T 6⊆ S0, then

vT (S) + vT (S0) = v (S) + v (S0\T )

≤ v (S ∪ S0) + v ((S ∩ S0) \T )

= vT (S ∪ S0) + vT (S ∩ S0) ,

where the inequality follows from the convexity of v. Since the remaining case T 6⊆ S

and T ⊆ S0 is symmetric, we conclude that vT is convex. ¤

3 Partnership formation- and dissolution-proofness

It is easy to construct an allocation rule that is both PFP and PDP. Consider as a

trivial example an allocation rule that always allocates the total worth of the grand

coalition to the same player, i.e., a dictatorial rule. Since the worth that is allocated to

some coalition S ⊆ N will be unchanged in any partnership game the dictatorial rule is

both PFP and PDP. There also exists a symmetric allocation rule φ that is both PFP
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and PDP: the equal-split rule φES defined by φESi (v) = v(N)
n
for all v and all i ∈ N . It

is, in fact, the only symmetric rule that is both PFP and PDP.8

Proposition 1 For any class of games that is closed under partnerships, there is one

and only one symmetric PFP and PDP allocation rule: the equal split rule.

Proof: It is clear that the equal split rule is PFP and PDP. We show that it is the only

rule that satisfies both properties. Suppose that a symmetric rule φ is PFP and PDP

and φ 6= φES. Thus there is a game v such that φ(v) 6= φES(v). Pick a player imin ∈ N

for which no other player gets a smaller payoff at the allocation φ(v), and pick a player

imax ∈ N for which no other player gets a larger payoff at φ(v).

First, let T = N\{imin} and consider the partnership game vT based on v. Since φ is

both PFP and PDP, we have
P

i∈T φi(v
T ) =

P
i∈T φi(v), and hence φimin(v

T ) = φimin(v).

In particular we have by symmetry that φimax(v
T ) = i∈T φi(v

T )

|T | > v(N)
|N | . Note that

vT (S) = v(S) for S = T , vT (S) = v(imin) for any coalition S 3 imin, S 6= N, and

vT (S) = 0 otherwise.

Second, let U = N\{imax} and consider the partnership game vTU based on vT .

(We write vTU rather than (vT )U to avoid cumbersome notation). Since φ is both PFP

and PDP, we have
P

i∈U φi(v
TU) =

P
i∈U φi(v

T ), and hence φimax(v
TU) = φimax(v

T ) >

φimin(v
T ). In particular by symmetry: φimin(v

TU) = i∈U φi(v
TU )

|U | < v(N)
|N | . Note that

vTU(S) = v(imin) if S = U, S 6= N and vTU(S) = 0 for all S 6= U,N .

Third, consider again the coalition T = N\{imin} and the partnership game vTUT

based on vTU . Since vTU(imin) = 0 and vTU(T ) = 0 we have vTUT (S) = 0 for all

S 6= N . In particular, the game is symmetric. But since φ is PFP and PDP we haveP
i∈T φ(v

TUT ) =
P

i∈T φ(v
TU), and hence φimin(v

TUT ) = φimin(v
TU) < v(N)

|N | , contradict-

ing that φ is symmetric. ¤

The equal split rule violates the null player condition. Thus, as a consequence of

Proposition 1 we get the following negative result:

8After the initial version of this paper was submitted for publication, it has come to our attention
that a similar result has recently and independently been found by van den Brink (2009).
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Corollary 1 For no class of games that is closed under partnerships, does there exist

a symmetric allocation rule that is both PFP and PDP and satisfies the null player

condition.

It is now natural to ask whether symmetric allocation rules exist that are either

PFP or PDP while satisfying the null player condition. We get the following:

Proposition 2 i) For the class of non-negative convex games, there exist no symmetric

PFP allocation rule satisfying the null player condition. ii) There exist no symmetric

PDP allocation rule satisfying the null player condition on the class of non-negative

balanced games.

Proof: For the first part suppose that φ is a PFP allocation rule. Let n ≥ 3 and

consider the (convex) game v with v (N) = v(N \ {1}) = 1 and v (S) = 0 otherwise.

The only allocation consistent with symmetry and the null player condition is φ1(v) =

0, φi(v) =
1

n−1 for all i ∈ N \{1}. Now assume that players 1 and 2 form a partnership,

T = {1, 2}. This implies vT (N) = 1 and vT (S) = 0 otherwise. Then by symmetry

φi
¡
vT
¢
= 1

n
for all i ∈ N . Since φ1(v) + φ2(v) =

1
n−1 < 2

n
= φ1(v

T ) + φ2(v
T ) this

contradicts that φ is PFP.

For the second part, in order to provoke a counter example suppose that φ is PDP

and consider the following (balanced) game v, where n ≥ 3. v (N) = 1, v(1) = 1,

and v (S) = 0 otherwise. If T = {1, 2} form a partnership the partnership game vT

is symmetric implying that by symmetry φi(v
T ) = 1

n
for all i ∈ N . For φ to be PDP

it must therefore hold that φ1 (v) + φ2 (v) ≤ 2
n
. Next consider instead the formation

of a partnership U = {2, . . . , n}. Then vU(N) = 1, vU(S) = v(S\U) = v(1) = 1

for all S where 1 ∈ S, and v (S) = 0 otherwise, implying that all players 2,...,n are

null. Thus φ2(v
U) = · · · = φn

¡
vU
¢
= 0 and for φ to be PDP it must therefore hold

that φ2(v) = · · · = φn (v) ≤ 0. Since we know that
Pn

i=1 φi (v) = 1 this implies that

φ1 (v) = 1 −(n− 1)φ2 (v). Substituting this into the condition that φ1 (v) + φ2 (v) ≤ 2
n

in turn gives φ2 (v) ≥ 1
n
which contradicts φ2 (v) ≤ 0. ¤

10



Note that for the first part where the counter example is a non-negative convex

game the result holds by implication for the classes of monotonic, superadditive, and

balanced games. Note also that the counter example used for the second part of Prop.

2 is not a monotonic game. This is no coincidence as monotonicity does allow for a

symmetric PDP rule that satisfies the null player condition:

Proposition 3 There exist a symmetric PDP allocation rule satisfying the null player

condition on the class of monotonic games. Indeed, the equal non-null split rule (which

divides v(N) equally between all non-null players in N) satisfies PDP.

Proof: For a game v, let D(v) ⊆ N denote the set of null players i in N. Let φ∗ be

the rule that gives 0 to the null players and then divides v(N) equally between the

remaining players in N ; i.e. φ∗i (v) = 0 if i ∈ D(v) and φ∗i (v) =
v(N)

|N\D(v)| otherwise.

Clearly, φ∗ is a symmetric rule satisfying the null player condition. We now show that

φ∗ satisfies the PDP property.

For this, consider a game v and suppose that the players in T ⊆ N form a partner-

ship. We now claim that (i) for all i 6∈ T we have i ∈ D(v) implies i ∈ D(vT ), and (ii)

for all i ∈ T we have i 6∈ D(v) implies i 6∈ D(vT ).

Ad (i). Let i ∈ D(v)\T. Let S ⊆ N be an arbitrary coalition with i /∈ S. If

S ∩ T = ∅ or T ⊆ S we have vT (S) = v(S) and vT (S ∪ {i}) = v(S ∪ {i}), and

thus vT (S ∪ {i}) − vT (S) = v(S ∪ {i}) − v(S) = 0. If T * S and S ∩ T 6= ∅ then

vT (S) = v(S\T ) and vT (S∪{i}) = v((S\T )∪{i}), and thus have vT (S∪{i})−vT (S) =

v((S\T ) ∪ {i})− v(S\T ) = 0. Thus, i ∈ D(vT ).

Ad (ii). Let i ∈ T\D(v). Since i is not a null player and the game v is monotonic,

there is a coalition S ⊆ N with i /∈ S where v(S∪{i})−v(S) > 0. In particular, we have

vT ((S ∪ T )\{i}) = v(S\T ) ≤ v(S), and vT (S ∪ T ) = v(S ∪ T ) ≥ v(S ∪ {i}) where the

inequalities follow by monotonicity of v. We therefore get vT (S∪T )−vT ((S∪T )\{i}) ≥

v(S ∪ {i})− v(S) > 0. Thus, i /∈ D(vT ).

If v(N) > 0 we have N\D(v) 6= ∅ and since vT (N) = v(N) we get N\D(vT ) 6= ∅.

In particular, it follows by (i) and (ii) that |T\D(v)|
|N\D(v)| ≤

|T\D(vT )|
|N\D(vT )| . Thus,

P
i∈T

φ∗i (v
T ) =

11



|T\D(vT )|
|N\D(vT )|v

T (N) ≥ |T\D(v)|
|N\D(v)|v(N) =

P
i∈T

φ∗i (v)which shows that φ
∗ is PDP. ¤

Proposition 2 ii) implies that there exists no symmetric PDP allocation rule sat-

isfying the null player condition on the family of non-negative games. In fact, PDP

allocation rules cannot be found on this family of games even if the symmetry require-

ment is dropped.

Proposition 4 There exist no PDP allocation rules satisfying the null player condition

on the class of non-negative games.

Proof: In order to provoke a counter example, suppose that φ is PDP and consider

the game v defined by n ≥ 3, v (N) = 1, v(i) = 1 for all i, v (S) = 0 otherwise.

There must exist some two player combination {i, j} for which φi (v) + φj (v) > 0.

Then, if T = {i, j} forms a partnership they become null players in vT with payoff

φi(v
T ) = φj(v

T ) = 0 contradicting that φ is PDP. ¤

4 The Shapley value and other core allocation rules

An allocation rule φ defined on the family of balanced games is a core allocation rule if

φ(v) ∈ C (v) for all balanced v. Note that all core allocation rules satisfy the null player

condition. It turns out that the positive result from Prop. 3 cannot be strengthened to

the case of core allocation rules, at least if n ≥ 6.

Proposition 5 For n ≥ 6, there exists no symmetric PDP core allocation rule on the

class of monotonic balanced games.

Proof: Suppose that φ is a PDP symmetric core allocation rule. Let n = 6 and define a

(monotonic balanced) game v as follows: v(i) = 0 for all i, v(1, 2) = v(1, 3) = v(2, 3) =

v(1, 2, 3) = v(4, 5, 6) = 2, v(S) = 2 if S contains at least two players in {1, 2, 3} but

not coalition {4, 5, 6} or if S contains coalition {4, 5, 6} but no more than one of the

players in {1, 2, 3}, v(S) = 4 if S contains {4, 5, 6} and at least one of the coalitions

{1, 2}, {1, 3}, {2, 3}, v(N) = 5 and otherwise v(S) = 0. Then C(v) only contains
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one symmetric element and we must have φ(v) = {1, 1, 1, 2
3
, 2
3
, 2
3
}. Let T = {1, 2, 3}.

Then vT (S) = 0 if |S| ≤ 2, vT (S) = 2 if contains either {1, 2, 3} or {4, 5, 6} but not

both of them. By symmetry, we have φ{1,2,3}(v
T ) = φ{4,5,6}(v

T ) = 5
2
< φ{1,2,3}(v) = 3

contradicting that φ is PDP.

Finally, we note that since φ is a core allocation rule it satisfies the null player

condition. Hence we can extend the counter example to any n > 6 by adding null

players. ¤

As stated in Prop. 5 it is not possible to find symmetric PDP core allocation rules

on the family of monotonic balanced games. It is, however, possible to find symmetric

PDP core allocation rules on the family of convex games. Segal (2003) gives a condition

for a partnership to always be (weakly) (un)profitable when a game is solved by a

probabilistic value. It can be inferred from his analysis that partnerships are always

(weakly) profitable in convex games. We give a short and illustrative proof for the case

of the Shapley value. The Shapley value, which is a symmetric probabilistic value, is

defined as

φShi (N, v) =
X

S⊆N,S3i
p(S)(v(S)− v(S\{i})),

where p(S) = (|S|−1)!(|N |−|S|)!
|N |! , cf. Shapley (1953).

Proposition 6 The Shapley value (which is indeed a core allocation rule on convex

games) is a symmetric PDP core allocation rule on the class of non-negative convex

games.

Proof: For any n ≥ 3 and i 6∈ T , we have

φShi
¡
vT
¢
=

X
S⊆N,i∈S

p (S)
£
vT (S)− vT (S\ {i})

¤
=

X
S⊆N,i∈S,

T⊆S

p (S) [v (S)− v (S\ {i})] +
X

S⊆N,i∈S,
T∩S=∅

p (S) [v (S)− v (S\ {i})] +

X
S⊆N,i∈S,

T∩S 6=∅,T*S

p (S) [v (S\T )− v (S\ (T ∪ {i}))] .
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The value for player i 6∈ T in the games v and vT respectively will only differ in the last

term. That is,

φShi
¡
vT
¢
− φShi (v)=

X
S⊆N,i∈S,
T∩S 6=∅,
T*S

p (S) [v (S\T )− v (S\ (T ∪{i}))− (v (S)− v (S\ {i}))] .

By convexity of v we have v (S\T ) − v (S\ (T ∪ {i})) ≤ v (S) − v (S\ {i}) implying

φShi
¡
vT
¢
−φShi (v) ≤ 0 for all i 6∈ T and thus by efficiency

P
i∈T φ

Sh
i

¡
vT
¢
≥
P

i∈T φ
Sh
i (v).

Furthermore, in the case of strict convexity we have
P

i∈T φ
Sh
i

¡
vT
¢
>
P

i∈T φ
Sh
i (v) . ¤

As a corollary of Prop. 6 and Lemma 1 it can be noted that when the Shapley value

is applied to strictly convex games some set of players can jointly profit from forming

a partnership as long as the game is not symmetric in which case further partnership

formation has no effect.

The Shapley value was shown to be a PDP core allocation rule on convex games,

however, other well-known symmetric core allocation rules do not share this property

as will be shown below.

Fujishige (1980) and Dutta and Ray (1989) and numerous subsequent papers have

analyzed the allocation rule that for any convex game selects the unique most egalitarian

allocation in the core. This rule will be denoted the Fujishige-Dutta-Ray allocation rule,

φFDR, in the following. The algorithm resulting in φFDR in a convex game partitions

the set of players N in a game (N, v) into subsets S1, S2, ..., Sm, where S1 is the (unique)

largest coalition having the highest average worth in (N, v). For any coalition S and any

characteristic function v the average worth of S under v is defined by e(S, v) = v(S)/|S|.

For k = 2, ...,m, Sk is the unique largest coalition with the highest average worth in

the game (Nk, vk) with player set Nk = N\{S1 ∪ · · · ∪ Sk−1}, given that the worth of

a coalition S in any game (Nk, vk) is defined as vk(S) = vk−1(Sk−1 ∪ S) − vk−1(Sk−1),

where v1 = v, see Dutta and Ray (1989). Then the amount allocated to a player i

according to φFDR equals φFDR
i = e(Sk, vk) for all i ∈ Sk. In convex games φ

FDR is the
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unique egalitarian allocation and belongs to the core.

Another well-known allocation rule with favorable properties on the class of convex

games is the nucleolus introduced by Schmeidler (1969). The nucleolus is the allocation

rule φnu that assigns an allocation x = φnu(v) to each game v such that x lexicographi-

cally minimizes the vector of excesses e(S, x) = v(S)−
P

i∈S xi. The nucleolus is unique

and is in the core whenever the core is non-empty.9

While it follows from Prop. 2 i) that none of the above-mentioned core allocation

rules are PFP on convex games, it can be shown by way of simple counter examples

that neither the Fujishige-Dutta-Ray allocation rule nor the nucleolus is PDP on the

class of convex games.

Proposition 7 Neither the Fujishige-Dutta-Ray allocation rule nor the nucleolus is

PDP on the class of non-negative convex games.

Proof: For n = 3 consider a game v defined by v(N) = 2, v(1) = 1, v(1, 2) = v(1, 3) =

1 and v(S) = 0 otherwise. Then φFDR(v) =
¡
1, 1

2
, 1
2

¢
and φnu(v) =

¡
4
3
, 1
3
, 1
3

¢
. If

a partnership is formed between players 1 and 2 the game changes to vT (N) = 2,

vT (1, 2) = 1, and v(S) = 0 otherwise. This implies φFDR(vT ) =
¡
2
3
, 2
3
, 2
3

¢
, which shows

that φFDR cannot be PDP since φFDR
1 (v) +φFDR

2 (v) = 3
2
> 4

3
= φFDR

1 (vT ) + φFDR
2 (vT ).

Likewise we get that φnu(vT ) =
¡
3
4
, 3
4
, 1
2

¢
from which we conclude that φnu cannot be

PDP since φnu(v) + φnu(v) = 5
3
> 3

2
= φnu(vT ) + φnu(vT ).

Since the FDR allocation rule as well as the nucleolus satisfy the null player condition

similar counterexamples can be constructed for n > 3 by adding null players to the

game. ¤
9It has been shown by Maschler, Peleg and Shapley (1971) that the nucleolus coincides with the

prekernel on the domain of convex games.
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5 Weak partnership formation- and dissolution-

proofness

The definition of PFP and PDP applied in sections 3 and 4 holds an implicit assumption

of the ability of members in a partnership to redistribute the joint profit. An obvious

alternative to this definition is to consider a deviation to be profitable only if it is

individually profitable for every member of a partnership in question. Thus, we define

an allocation rule φ to be weakly partnership formation-proof (WPFP) if and only if

for any game v and any nonempty T ⊆ N there exists i ∈ T such that φTi (v) ≤ φi(v).

Likewise, an allocation rule φ is said to be weakly partnership dissolution-proof (WPDP)

if and only if for any game v and any nonempty T ⊆ N there exists i ∈ T such that

φTi (v) ≥ φi(v). In the following we reconsider some of the previous results in light of

these alternative definitions.

We consider again the equal non-null split rule φ∗ and show that it is both WPFP

and WPDP on the class of non-negative convex games. This finding contrasts Prop. 1.

Proposition 8 i) The equal non-null split rule φ∗ is both WPDP and WPFP on the

class of non-negative convex games, however, ii) There exists no symmetric WPFP rule

satisfying the null player condition on the class of monotonic games.

Proof: For the first part: As in the proof of Proposition 3, let D(v) denote the set of

null players in v and let φ∗i (v) = 0 if i ∈ D(v) and φ∗i (v) =
v(N)

|N\D(v)| otherwise. Note

that since v is convex, i ∈ N\D(v) if and only if v(N)− v(N\{i}) > 0. Consequently,

for any partnership such that T ⊆ N\D(v), it follows that
¯̄
N\D(vT )

¯̄
= |N\D(v)| and

the allocation remains unchanged, i.e. no one can profit from this type of deviation.

However, for any partnership T such that T 6⊆ N\D(v) we get
¯̄
N\D(vT )

¯̄
> |N\D(v)|

and φ∗i (N, vT ) < φ∗i (N, v) for all i ∈ N\D(v), implying that forming a partnership can

never be strictly profitable for each player in T . Thus, the allocation rule is WPFP.

On the other hand, when T 6⊆ N\D(v) and
¯̄
N\D(vT )

¯̄
> |N\D(v)| then for those

i 6∈ N\D(v) but in T (and thus in N\D(vT )) we have that φ∗i (v) = 0 < v(N)
|N\D(vT )| =
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φ∗i (N, vT ). Since these players will prefer to keep the partnership intact the allocation

rule will also be WPDP.

For the second part, let N = {1, ..., n} and consider the (monotonic) game v where

v(S) = 0 if |S| = 1 and v(S) = 1 otherwise (such that v(i, j)− v(i) = 1 for j 6= i and

v(S) − v(S\{i}) = 0 otherwise). Let φ be a symmetric rule satisfying the null player

condition. Then φi(v) =
1
n
for all i ∈ N . Now, let T = {1, ..., n−1} form a partnership.

Then, vT (T ) = vT (N) = 1 and and vT (S) = 0 otherwise. Since player n is a null player

in vT by symmetry we get φi(v
T ) = 1

n−1 for all i ∈ T , contradicting WPFP. ¤
From Prop. 3 we know that the equal non-null split rule (which is a a symmetric

rule satisfying the null player condition) is also WPDP on the class of monotonic games.

Further, the result from Prop. 5 holds also for the case of WPDP, that is, there exists

no symmetric WPDP core allocation rule on the family of monotonic balanced games.

To see this note that in the example given in the proof of Prop. 5, every player in the

partnership is strictly better off by dissolving the partnership, implying that no WPDP

allocation rule can be found.

Reconsidering the allocation rules from the previous section we notice first that

since the Shapley value is PDP it is also WPDP, but as shown below it is not WPFP.

However, the FDR-allocation rule is WPFP. Recall that on convex games the allocation

rule φFDR satisfies the properties that φFDR
i = φFDR

j for all i, j ∈ St and t = 1, ..,m

and that φFDR
i > φFDR

j if i ∈ Sk, j ∈ St and k < t, cf. Dutta and Ray (1989).

Proposition 9 i) the FDR-allocation rule (which is indeed a symmetric allocation rule

satisfying the null player condition) is WPFP on the class of non-negative convex games,

however, ii) Neither the Shapley value nor the nucleolus is WPFP on non-negative

convex games.

Proof: For the first part consider a game (N, v) and let N be partitioned into subsets

S1, ..., Sm according to the description of the FDR-allocation rule in the previous section.

Then i ∈ S1 belongs to the coalition with the highest average worth and φFDR
i (vB) =

vB(S1)/|S1|. Since creating a partnership will not strictly increase the payoff of a
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coalition but may decrease the payoff of certain coalitions, players in S1 can never

strictly profit from joining a partnership. Since no player belonging to S1 will form

a partnership with players outside S1 and no partnership among players in N\S1 can

affect vB(S1), each player in of S1 is secured the payoff vB(S1)/|S1|.

The algorithm first allocates the worth to S1 and then considers the set of remaining

players N\S1. Thus within the player set N\S1 the players in S2 will be allocated the

greatest worth among the remaining coalitions. Given this, the players of S2 could

never (strictly) profit from joining a partnership among the remaining players. This

reasoning can be applied to any Sk , k = 1, ..,m, in the partitioning of N . Since this

holds for any v it can be concluded that the FDR-allocation rule is WPFP.

For the second part: consider the (convex) game v defined by n = 3, v(N) =

3, v(1) = 1, v(2) = v(3) = 0, v(1, 2) = v(1, 3) = 2 and v(2, 3) = 1. Then φSh(v) =

φnu(v) =
¡
5
3
, 2
3
, 2
3

¢
. If a partnership is formed between players 2 and 3 the game changes

to v(N) = 3, v(1) = 1, v(2) = v(3) = 0, v(1, 2) = v(1, 3) = v(2, 3) = 1. This implies

φSh(vT ) =
¡
4
3
, 5
6
, 5
6

¢
, which shows that φSh cannot be WPFP since φSh2 (v) = φSh3 (v) =

2
3
< 5

6
= φSh1 (v

T ) = φSh2 (v
T ). Likewise we get that φnu(vT ) =

¡
6
4
, 3
4
, 3
4

¢
from which

we conclude that φnu cannot be WPFP since φnu(v) = φnu(v) = 2
3
< 3

4
= φnu(vT ) =

φnu(vT ). Again similar examples can be constructed for n > 3 by adding null players

to the game. ¤
Since the FDR rule satisfies symmetry and the null player condition it shows that

Prop. 2 i) does not hold for the case of WPFP.

6 Stability of partnership structures

Until now we have considered the existence of PFP and/or PDP allocation rules on

specific classes of games as well as the properties of certain allocation rules. In this

context we considered the decision of a group of players to form or dissolve a given

partnership. However, given a population where several disjoint partnerships may exist

a related problem would be to consider the incentives of any group of players (from the
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same or from different partnerships) to form a new partnership, possibly breaking up

others in the process. In other words we could consider the incentives of any group of

players to change the partnership structure.

Consider a game v. Define any partition B = {T1, T2, ..., Tm} of N as a partnership

structure withm partnerships and note that now we consider an element of B with only

one member a partnership. The game vB is then defined by vB = (...(vT1)T2)...)Tm and

the worth of a coalition S is vB(S) = v(
S

Tj⊆S Tj).
10 Given a game v and an allocation

rule φ we say that a partnership structure B is stable, if no set of players can profitably

leave their respective partnerships and form new (possibly trivial) partnerships. In

this context a change from one partnership structure (B) to another (B0) is considered

profitable for a set of players S if the payoff allocated to each player in the set is strictly

larger under the new partnership structure, that is, if φi(v
B0) > φi(v

B) for all i ∈ S.

Alternatively, one could apply a stronger notion of stability by considering a change of

partnership structure to be profitable for a set of players S whenever the total worth

allocated to S is greater under B0 than B. While the latter definition is in accordance

with the analysis of sections 3 and 4, in this section we nevertheless choose to consider

its weaker counterpart discussed in the previous section. First, this is the definition

applied in other papers where the stability of partnership structures — or alternatively,

coalition structures — have been analyzed, see e.g., Hart and Kurz (1983, 1984) and

Segal (2003).11 Second, while the previous analysis concerned only the group decision

of whether or not to form a partnership in a given game, the approach taken in the

present section also considers an individual’s incentives to leave an existing partnership

and possibly join another. Concerning such decisions the strong version of stability

may not be a satisfactory concept as the following example demonstrates.

Consider the game (N, v) defined by N = {1, 2, 3}, v(N) = 4, v(1, 2) = 3 and

10This definition is applicable also to the case where different partnerships do not necessarily consist
of disjoint sets of players. As noted in Carreras (1996), the formation order of the partnerships does
not matter.
11What we in the present paper have denoted “a partnership” is in the terminology of Segal (2003)

referred to as a special case of “exclusion” or “exclusive integration”.
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v(S) = 0 otherwise. Note that for the trivial partnership structure B = {{1}, {2}, {3}}

we have that
¡
N, vB

¢
= (N, v). In this game the FDR allocation becomes φFDR(vB) =

(3
2
, 3
2
, 1). If a partnership T = {1, 3} is created the partnership structure changes to

B0 = {{1, 3}, {2}} and the game
¡
N, vB

0¢
is defined by vB

0
(N) = 4 and vB

0
(S) = 0

otherwise, implying that φFDR(vB
0
) = (4

3
, 4
3
, 4
3
). Since the change from B to B0 is jointly

profitable for the players in the partnership the trivial partnership structure cannot

be (strongly) stable. However, since φFDR
1 (vB

0
) = 4

3
< 3

2
= φFDR

1 (vB) player 1 as an

individual was strictly better off under B and will therefore have incentives to leave the

partnership he just joined. The problem is that when considering the strong version

of stability we allow a player to form a partnership even if he is individually worse

off assuming that other members of the partnership will be able to compensate him

for joining. However, when considering his decision to leave the partnership we only

evaluate the payoff allocated to this player individually according to the allocation rule

and thus fail to take the possible compensation offered by other partnership members

into account (i.e., the redistribution of the joint profit). To avoid this problem we

hereafter only consider the weaker notion of stability.

The definition of stability of partnership structures may also depend on what hap-

pens when one player (or more) leaves a partnership that is, whether the entire part-

nership breaks down or a partnership continues to exist among the remaining partners.

In Hart and Kurz (1983) this question leads to the definition of two distinct types of

stability. For the extent of this paper we assume that in the case of some member(s)

leaving a partnership the remaining members will continue to cooperate. The following

results, however, apply to both settings.

Considering the stability of partnership structures a relevant question is whether a

stable partnership structure always exists when employing a specific allocation rule. We

find that for the case of the Fujishige-Dutta-Ray allocation rule a stable partnership

structure does always exist. In fact when using the FDR allocation rule the trivial

partnership structure is always stable for convex games.
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Corollary 2 For the class of non-negative convex games the trivial partnership struc-

ture consisting of singletons is stable for any game (N, v) when the Fujishige-Dutta-Ray

allocation rule is applied.

Proof: This follows directly from Prop. 8 i). ¤
For both the Shapley value and the nucleolus examples of games where stable part-

nership structures exist can be found. Consider e.g. the example from Prop. 9 ii). Here

the partnership structure TB = {{1}, {2, 3}} is stable whether the allocation is done by

the Shapley value or the nucleolus.12

However, for the Shapley value as well as the nucleolus there exist games for any

n ≥ 3 such that no stable partnership structure exist as shown below.

Proposition 10 For any n ≥ 3, there exist non-negative convex games such that no

stable partnership structure exists when the Shapley value φSh is applied.

Proof: For any given n ≥ 3, let the convex game v be defined as follows: v(N) = 2,

v(N\{i}) = 1 for all i 6= 1 and v(S) = 0 otherwise. Further, for any partnership

structure B = {T1, T2, ..., Tm} let TB denote the set that is the union of player 1 and

all players in some Ti that is not a singleton. Then it holds for all i ∈ TB that

vB(N\{i}) = 0.

Recalling the definition of the Shapley value and noting the structure of the game

v, it is seen that the allocation to player i will equal

φShi (v) =
1

n
(v(N)− v(N\{i}) +

X
S3i,|S|=n−1

1

n(n− 1)(v(S)− v(S\{i})). (1)

This implies that the worth allocated to player i according to the Shapley value and a

partnership structure B will be: φShi (vB) = 1
n
∗ 2 + 1

n(n−1)
¡
n− |TB|

¢
for i ∈ TB and

φShi (v
B) = 1

n
+ 1

n(n−1)
¡
n− |TB|− 1

¢
for i 6∈ TB, where the first term in each expression

reflects the contribution made to the grand coalition and the second term reflects the

contribution made to coalitions of size n− 1.
12To see this note that for TB = {{1, 2}, 3} we get φShi (v) = ( 43 ,

4
3 ,

1
3) and φShi (v) = (

5
4 ,

5
4 ,

1
2 )
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Now consider any i 6∈ TB and let B0 denote some partnership structure such that i ∈

TB
0
(i.e., where i belongs to a non-trivial partnership). Then a change in the partnership

structure from B to B0 would induce the following change in the Shapley value of player

i: ∆φShi (v
B0 , vB) = φShi (v

B0) − φShi (v
B) = 1

n
− ((|TB0| − |TB|) − 1) 1

n(n−1) > 0, where

(|TB0|− |TB|) reflects the change in the number of players belonging to a partnership.

The change ∆φShi (v
B0 , vB) will always be positive (since |TB0| − |TB| ≤ n − 1), and a

player currently not in a partnership will therefore always have incentives to join one.

Thus, if at least two players (other than player 1) are not in a (non-trivial) partnership

they have incentives to form one.

On the other hand any player i ∈ TB, TB
0
is negatively affected when more play-

ers join partnerships. To see this note that in this case ∆φShi (v
B0 , vB) = −(|TB0| −

|TB|)) 1
n(n−1) is negative whenever |TB

0| > |TB|. A player in TB will therefore always

prefer that fewer players belong to non-trivial partnerships. This can be interpreted as

an incentive to exclude other players from partnerships or break up existing partner-

ships and form new and smaller ones. Therefore, if partnerships with more than two

players exists, there will always be incentives to exclude one player.13 If partnerships

with two players (other than player 1) exist, each member has incentives to break up

the partnership and join a partnership with player 1, thereby excluding their former

partner. However, if player 1 is in a two-player partnership he will have incentives to

dissolve it. ¤
Since the result shows non-existence of stability in the weak sense it also applies to

the case where the stronger version of stability is invoked.

Proposition 11 For any n ≥ 3, there exist non-negative convex games such that no

stable partnership structure exists when the nucleolus φnu is applied.

Proof: For any given n ≥ 3, let the convex game v be defined as follows: v(N) = 2,

v(N\{i}) = n
n+2

v(N) = 2n
n+2

for all i 6= 1 and v(S) = 0 otherwise. As in the proof

13If remaining members were assumed to split up when some players leave a partnership (opposed
to what is assumed here) there would be incentives to exclude more than one player.
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of Proposition 10 for any partnership structure B = {T1, T2, ..., Tm} let TB denote the

union of player 1 and the set of all players in some Ti that is not a singleton. Then for

any n and any B the allocation according to the nucleolus will be:

φnu(vB) =
2− 2n

n+2

|TB| +
2

n+ 2
for all i ∈ TB, and (2)

φnu(vB) =
2

n+ 2
for all i /∈ TB. (3)

First, to show this is true let

eij = max
S
i∈S
j /∈S

(v(S)−
X
i∈S

xi)

be the maximum excess over coalitions that contain i but not j where x is the vector

of allocations. Then since the nucleolus coincides with the prekernel on the domain of

convex games it suffices to show that eij = eji for all i, j with i 6= j, cf. Maschler, Peleg

and Shapley (1971).

For any i /∈ TB it holds that v(i)−xi = − 2
n+2

while v(i)−xi < − 2
n+2

for all i ∈ TB.

Further, for all larger coalitions S where v(S) = 0 the excess must be even smaller.

Thus the only coalitions left to consider are those coalitions where v(S) > 0. For all

coalitions S = N \ {i} where i /∈ TB we get:

v(S)−
X
i∈S

xi =
2n

n+ 2
−
µ
2− 2n

n+ 2
+ |TB| 2

n+ 2
+ (n− |TB|− 1) 2

n+ 2

¶
= − 2

n+ 2
.

Since all players in TB are symmetric and all players not in TB are symmetric we

conclude that eij = eji for all i, j, i 6= j. Specifically for any i /∈ TB, j ∈ N, j 6= i we

have eij = − 2
n+2

and for i ∈ TB, j /∈ TB we have eij = − 2
n+2

while eij = −φnu(vB) for

all i ∈ TB, j ∈ TB, j 6= i. The above allocation therefore equals the nucleolus.

Now, since the worth allocated to a player in TB always exceeds the worth allocated
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to players not in TB (no matter the number of players in TB) any two players not in

a partnership will always have incentives to form one. On the other hand, considering

two different partnership structures TB, TB
0
where |TB0| > |TB| it is seen that for a

player i ∈ TB, TB
0
we have φnu(vB

0
) < φnu(vB). Therefore, if partnerships with more

than two players exists, there will always be incentives for the members to exclude one

player.14 If partnerships with two players (other than player 1) exist, each member has

incentives to break up the partnership and join a partnership with player 1 to exclude

their former partner. However, if player 1 is in a two-player partnership he will have

incentives to dissolve it. ¤

7 Concluding remarks

For several classes of games we have considered the existence of partnership formation-

proof and partnership dissolution-proof allocation rules. Such allocation rules will be

immune to manipulation by players forming or dissolving partnerships. We showed

that if allocations rules must satisfy symmetry and the null player condition then for

some classes of games neither partnership formation-proof nor partnership dissolution-

proof allocation rules exist, while dissolution-proof allocation rules that satisfy these

properties do exist for other classes of games.

We considered in particular three well-known allocation rules; the Shapley value,

the nucleolus and the Fujishige-Dutta-Ray rule. The first two are classical solution

concepts that are widely used and studied in the literature while especially in recent

years the egalitarian FDR-rule has attracted considerable attention.

We have focused here on non-negative games that are either convex or satisfy milder

regularity conditions such a monotonicity, superadditivity and balancedness. Impor-

tant cooperative decision problems, such a classes of common pool games, oligopoly

games, production games and cost sharing situations, are indeed both non-negative

14If remaining members were assumed to split up when some players leave a partnership (opposed
to what is assumed here) there would be incentives to exclude more than one player.
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and convex15. Thus, many cooperative game situations fall within the classes of games

considered here.

When considering the incentives of players to form partnerships, a key distinction

is whether partnerships are likely to form when every individual member is better

off or simply when members are jointly better off. This leads to our distinction be-

tween partnership formation/dissolution-proofness and the weak versions of the con-

cepts. The appropriate concept depends on assumptions of redistribution possibilities

between members. These may vary greatly between different game situations and with

the nature of the payoff (e.g. money, publicity, seats in a parliament, individual util-

ity). For instance, if partnerships involve private firms establishing joint ownerships,

or a couple getting married, redistribution between the partners is likely to take place

unhindered. In contrast, in games when players are for example different regions in

a country or different departments of a public institution, allocations are likely to be

determined by a fixed rule and the possibilities for internal redistributions between

players severely limited.
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